Sample records for processes regulating lycopene

  1. Generation of lycopene-overproducing strains of the fungus Mucor circinelloides reveals important aspects of lycopene formation and accumulation.

    PubMed

    Zhang, Yingtong; Chen, Haiqin; Navarro, Eusebio; López-García, Sergio; Chen, Yong Q; Zhang, Hao; Chen, Wei; Garre, Victoriano

    2017-03-01

    To generate lycopene-overproducing strains of the fungus Mucor circinelloides with interest for industrial production and to gain insight into the catalytic mechanism of lycopene cyclase and regulatory process during lycopene overaccumulation. Three lycopene-overproducing mutants were generated by classic mutagenesis techniques from a β-carotene-overproducing strain. They carried distinct mutations in the carRP gene encoding lycopene cyclase that produced loss of enzymatic activity to different extents. In one mutant (MU616), the lycopene cyclase was completely destroyed, and a 43.8% (1.1 mg/g dry mass) increase in lycopene production was observed in comparison to that by the previously existing lycopene overproducer. In addition, feedback regulation of the end product was suggested in lycopene-overproducing strains. A lycopene-overaccumulating strain of the fungus M. circinelloides was generated that could be an alternative for the industrial production of lycopene. Vital catalytic residues for lycopene cyclase activity and the potential mechanism of lycopene formation and accumulation were identified.

  2. Transcriptional regulation of lycopene metabolism mediated by rootstock during the ripening of grafted watermelons.

    PubMed

    Kong, Qiusheng; Yuan, Jingxian; Gao, Lingyun; Liu, Peng; Cao, Lei; Huang, Yuan; Zhao, Liqiang; Lv, Huifang; Bie, Zhilong

    2017-01-01

    Rootstocks have comprehensive effects on lycopene accumulation in grafted watermelon fruits. However, little is known about lycopene metabolic regulation in grafted watermelon. To address this problem, parallel changes in lycopene contents and the expression of its metabolic genes were analyzed during the fruit ripening of nongrafted watermelon and watermelon grafted onto bottle gourd, pumpkin, and wild watermelon. Results showed that rootstocks mediated the transcriptional regulations of lycopene accumulation in different ways. Bottle gourd and wild watermelon promoted lycopene accumulation in grafted watermelon fruits by upregulating the biosynthetic genes phytoene synthase (PSY) and ζ-carotene desaturase (ZDS), and downregulating the catabolic genes β-carotene hydroxylase (CHYB), zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenase (NCED), and carotenoid cleavage dioxygenase (CCD). However, pumpkin did not affect lycopene accumulation by upregulating both biosynthetic and catabolic genes. The rootstock-dependent characteristic of lycopene accumulation in grafted watermelon fruits provided an alternative model for investigating lycopene metabolic regulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. β-Carotene-9′,10′-Oxygenase Status Modulates the Impact of Dietary Tomato and Lycopene on Hepatic Nuclear Receptor–, Stress-, and Metabolism-Related Gene Expression in Mice123

    PubMed Central

    Tan, Hsueh-Li; Moran, Nancy E.; Cichon, Morgan J.; Riedl, Ken M.; Schwartz, Steven J.; Erdman, John W.; Pearl, Dennis K.; Thomas-Ahner, Jennifer M.; Clinton, Steven K.

    2014-01-01

    Tomato and lycopene (ψ, ψ-carotene) consumption is hypothesized to protect against nonalcoholic steatohepatitis and hepatocarcinogenesis, processes that may depend upon diet and gene interactions. To investigate the interaction of tomato or lycopene feeding with β-carotene-9′,10′-monooxygenase (Bco2) on hepatic metabolic and signaling pathways, male wild-type (WT) and Bco2−/− mice (3-wk-old; n = 36) were fed semi-purified control, 10% tomato powder–containing, or 0.25% lycopene beadlet–containing diets for 3 wk. Serum lycopene concentrations were higher in lycopene- and tomato-fed Bco2−/− mice compared with WT (P = 0.03). Tomato- and lycopene-fed mice had detectable hepatic apolipoprotein (apo)-6′-, apo-8′-, and apo-12′-lycopenal concentrations. Hepatic expression of β-carotene-15,15’-monooxygenase was increased in Bco2−/− mice compared with WT (P = 0.02), but not affected by diet. Evaluation of hepatic gene expression by focused quantitative reverse transcriptase-polymerase chain reaction arrays for nuclear receptors and coregulators (84 genes) and stress and metabolism (82 genes) genes indicates that tomato feeding affected 31 genes (≥1.5-fold, P < 0.05) and lycopene feeding affected 19 genes, 16 of which were affected by both diets. Lycopene down-regulation of 7 nuclear receptors and coregulators, estrogen-related receptor-α, histone deacetylase 3, nuclear receptor coactivator 4, RevErbA-β, glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ, coactivator 1 β was dependent upon interaction with Bco2 status. Lycopene and tomato feeding induced gene expression patterns consistent with decreased lipid uptake, decreased cell proliferation and mitosis, down-regulated aryl hydrocarbon receptor signaling, and decreased expression of genes involved in retinoid X receptor heterodimer activation. Tomato feeding also caused expression changes consistent with down-regulation of DNA synthesis and terpenoid metabolism. These data suggest tomato components, particularly lycopene, affect hepatic gene expression, potentially affecting hepatic responses to metabolic, infectious, or chemical stress. PMID:24553694

  4. Thermal processing differentially affects lycopene and other carotenoids in cis-lycopene containing, tangerine tomatoes.

    PubMed

    Cooperstone, Jessica L; Francis, David M; Schwartz, Steven J

    2016-11-01

    Tangerine tomatoes, unlike red tomatoes, accumulate cis-lycopenes instead of the all-trans isomer. cis-Lycopene is the predominating isomeric form of lycopene found in blood and tissues. Our objective was to understand how thermal processing and lipid concentration affect carotenoid isomerisation and degradation in tangerine tomatoes. We conducted duplicated factorial designed experiments producing tangerine tomato juice and sauce, varying both processing time and lipid concentration. Carotenoids were extracted and analysed using high-performance liquid chromatography with photodiode array detection. Phytoene, phytofluene, ζ-carotene, neurosporene, tetra-cis-lycopene, all-trans-lycopene and other-cis-lycopenes were quantified. Tetra-cis-lycopene decreased with increasing heating time and reached 80% of the original level in sauce after processing times of 180min. All-trans-lycopene and other-cis-lycopenes increased with longer processing times. Total carotenoids and total lycopene decreased with increased heating times while phytoene and phytofluene were unchanged. These data suggest limiting thermal processing of tangerine tomato products if delivery of tetra-cis-lycopene is desirable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Potential role of lycopene in targeting proprotein convertase subtilisin/kexin type-9 to combat hypercholesterolemia.

    PubMed

    Sultan Alvi, Sahir; Ansari, Irfan A; Khan, Imran; Iqbal, Johar; Khan, M Salman

    2017-07-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK-9) is a serine protease of the proprotien convertase (PC) family that has profound effects on plasma low density lipoprotein cholesterol (LDL-C) levels, the major risk factor for coronary heart disease (CHD), through its ability to mediate LDL receptor (LDL-R) protein degradation and reduced recycling to the surface of hepatocytes. Thus, the current study was premeditated not only to evaluate the role of lycopene in targeting the inhibition of PCSK-9 via modulation of genes involved in cholesterol homeostasis in HFD rats but also to examine a correlation between HFD induced inflammatory cascades and subsequent regulation of PCSK-9 expression. Besides the effect of lycopene on hepatic PCSK-9 gene expression, PPI studies for PCSK-9-Lycopene complex and EGF-A of LDL-R were also performed via molecular informatics approach to assess the dual mode of action of lycopene in LDL-R recycling and increased removal of circulatory LDL-C. We for the first time deciphered that lycopene treatment significantly down-regulates the expression of hepatic PCSK-9 and HMGR, whereas, hepatic LDL-R expression was significantly up-regulated. Furthermore, lycopene ameliorated inflammation stimulated expression of PCSK-9 via suppressing the expression of inflammatory markers. The results from our molecular informatics studies confirmed that lycopene, while occupying the active site of PCSK-9 crystal structure, reduces the affinity of PCSK-9 to complex with EGF-A of LDL-R, whereas, atorvastatin makes PCSK-9-EGF-A complex formation more feasible than both of PCSK-9-EGF-A alone and Lycopene-PCSK-9-EGF-A complex. Based on above results, it can be concluded that lycopene exhibits potent hypolipidemic activities via molecular mechanisms that are either identical (HMGR inhibition) or distinct from that of statins (down-regulation of PCSK-9 mRNA synthesis). To the best of our knowledge, this is the first report that lycopene has this specific biological property. Being a natural, safer and alternative therapeutic agent, lycopene could be used as a complete regulator of cholesterol homeostasis and ASCVD. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Lycopene inhibits regulator of calcineurin 1-mediated apoptosis by reducing oxidative stress and down-regulating Nucling in neuronal cells.

    PubMed

    Lim, Seiyoung; Hwang, Sinwoo; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2017-05-01

    Regulator of calcineurin 1 (RCAN1) is located on the Down syndrome critical region (DSCR) locus in human chromosome 21. Oxidative stress and overexpression of RCAN1 are implicated in neuronal impairment in Down's syndrome (DS) and Alzheimer's disease (AD). Serum level of lycopene, an antioxidant pigment, is low in DS and AD patients, which may be related to neuronal damage. The present study is to investigate whether lycopene inhibits apoptosis by reducing ROS levels, NF-κB activation, expression of the apoptosis regulator Nucling, cell viability, and indices of apoptosis (cytochrome c release, caspase-3 activation) in RCAN1-overexpressing neuronal cells. Cells transfected with either pcDNA or RCAN1 were treated with or without lycopene. Lycopene decreased intracellular and mitochondrial ROS levels, NF-κB activity, and Nucling expression while it reversed decrease in mitochondrial membrane potential, mitochondrial respiration, and glycolytic function in RCAN1-overexpressing cells. Lycopene inhibited cell death, DNA fragmentation, caspase-3 activation, and cytochrome c release in RCAN1-overexpressing cells. Lycopene inhibits RCAN1-mediated apoptosis by reducing ROS levels and by inhibiting NF-κB activation, Nucling induction, and the increase in apoptotic indices in neuronal cells. Consumption of lycopene-rich foods may prevent oxidative stress-associated neuronal damage in some pathologic conditions such as DS or AD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tomato (Lycopersicon esculentum) or lycopene supplementation attenuates ventricular remodeling after myocardial infarction through different mechanistic pathways.

    PubMed

    Pereira, Bruna L B; Reis, Patrícia P; Severino, Fábio E; Felix, Tainara F; Braz, Mariana G; Nogueira, Flávia R; Silva, Renata A C; Cardoso, Ana C; Lourenço, Maria A M; Figueiredo, Amanda M; Chiuso-Minicucci, Fernanda; Azevedo, Paula S; Polegato, Bertha F; Okoshi, Katashi; Fernandes, Ana A H; Paiva, Sergio A R; Zornoff, Leonardo A M; Minicucci, Marcos F

    2017-08-01

    The objective of this study was to evaluate the influence of tomato or lycopene supplementation on cardiac remodeling after myocardial infarction (MI). Male Wistar rats were assigned to four groups: the sham group (animals that underwent simulated surgery) that received a standard chow (S; n=18), the infarcted group that received a standard chow (MI; n=13), the infarcted group supplemented with lycopene (1 mg of lycopene/kg body weight/day) (MIL; n=16) and the infarcted group supplemented with tomato (MIT; n=16). After 3 months, morphological, functional and biochemical analyses were performed. The groups MIL and MIT showed decreased interstitial fibrosis induced by infarction. Tomato supplementation attenuated the hypertrophy induced by MI. In addition, tomato and lycopene improved diastolic dysfunction evaluated by echocardiographic and isolated heart studies, respectively. The MI group showed higher levels of cardiac TNF-α compared to the MIL and MIT groups. Decreased nuclear factor E2-related factor 2 was measured in the MIL group. Lipid hydroperoxide levels were higher in the infarcted groups; however, the MIT group had a lower concentration than did the MI group [S=223±20.8, MI=298±19.5, MIL=277±26.6, MIT=261±28.8 (nmol/g); n=8; P<.001]. We also examined left ventricle miRNA expression; when compared to the S group, the MIL group uniquely down-regulated the expression of eight miRNAs. No miRNA was found to be up-regulated uniquely in the MIT and MIL groups. In conclusion, tomato or lycopene supplementation attenuated the cardiac remodeling process and improved diastolic function after MI. However, the effect of lycopene and tomato supplementation occurred through different mechanistic pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Enhancing the lycopene in vitro bioaccessibility of tomato juice synergistically applying thermal and non-thermal processing technologies.

    PubMed

    Jayathunge, K G L R; Stratakos, Alexandros Ch; Cregenzán-Albertia, Oliver; Grant, Irene R; Lyng, James; Koidis, Anastasios

    2017-04-15

    The influence of moderate intensity pulsed electric field pre-processing on increasing the lycopene bioaccessibility of tomato fruit, and the combined effect of blanching, ultrasonic and high intensity pulsed electric field processing on further enhancement of the lycopene bioaccessibility after juicing were investigated. Maximum total lycopene bioaccessibility (9.6%) of the tomato fruit was achieved by a 4μs pre-processed treatment after 24h holding period and further processing results revealed that all treatments were effective to increase the total lycopene. Most of juice processing treatments decreased the release of lycopene from the tomato matrix during digestion. Only the treatment of blanching followed by high intensity pulsed electric field showed a significant release of trans-(4.01±0.48) and cis-(5.04±0.26μg/g) lycopene, achieving 15.6% total lycopene bioaccessibility. Thus, processing of pre-blanched juice using high intensity pulsed electric field, derived from pre-processed tomato was the best overall process to achieve the highest nutritive value. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Depression-like behaviors and heme oxygenase-1 are regulated by Lycopene in lipopolysaccharide-induced neuroinflammation.

    PubMed

    Zhang, Fang; Fu, Yanyan; Zhou, Xiaoyan; Pan, Wei; Shi, Yue; Wang, Mei; Zhang, Xunbao; Qi, Dashi; Li, Lei; Ma, Kai; Tang, Renxian; Zheng, Kuiyang; Song, Yuanjian

    2016-09-15

    Previous studies have demonstrated that lycopene possesses anti-inflammatory properties in the central nervous system. However, the potential role and the molecular mechanisms of lycopene in lipopolysaccharide (LPS)-challenge inflammation and depression-like behaviors has not been clearly investigated. The present study aimed to assess the effects and the potential mechanisms of lycopene on LPS-induced depression-like behaviors. Lycopene was orally administered (60mg/kg) every day for seven days followed by intraperitoneal LPS injection (1mg/kg). The Forced swim test and tail suspension test were used to detect changes in the depression-like behaviors. ELISA was used to measure the expression of interleukin-6 (IL-6) and tumor necrosis factor-α(TNF-α) in the plasma. Immunoblotting was performed to measure the expression of interleukin-1β (IL-1β) and heme oxygenase-1 (HO-1) in the hippocampus. The results showed that pretreatment with lycopene could ameliorate depression-like behaviors. Moreover, lycopene relieved neuronal cell injury in hippocampal CA1 regions. Furthermore, lycopene decreased LPS-induced expression of IL-1β and HO-1 in the hippocampus together with decreasing level of IL-6 and TNF-α in the plasma. Taken together, these results suggest that lycopene can attenuate LPS-induced inflammation and depression-like behaviors, which may be involved in regulating HO-1 in the hippocampus. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Lycopene inhibits ICAM-1 expression and NF-κB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells.

    PubMed

    Yang, Po-Min; Wu, Zhi-Zhen; Zhang, Yu-Qi; Wung, Being-Sun

    2016-06-15

    Age-related macular degeneration (AMD) is one of the most common diseases leading to blindness in elderly people. The progression of AMD may be prevented through anti-inflammation and antioxidation in retinal pigment epithelium (RPE) cells. Lycopene, a carotenoid, has been shown to possess both antioxidative and anti-inflammatory properties. This research was conducted to detail the mechanisms of these effects of lycopene-treated RPE cells. We exposed ARPE-19 cells to TNFα after pretreatment with lycopene, and measured monocyte adhesion, ICAM-1 expression, NF-κB nuclear translocation, and transcriptional activity. Cell viability was assayed with Alamar Blue. The cell redox state was tested by glutathione (GSH) and reactive oxygen species (ROS) levels. The importance of the Nrf2 pathway was tested in nuclear translocation, promoter reporter assay, and siRNA. Lycopene could reduce TNF-α-induced monocyte adhesion and H2O2- induced cell damage in RPE cells. Furthermore, lycopene inhibits ICAM-1 expression and abolishes NF-κB activation for up to 12h in TNFα-treated RPE cells. Lycopene upregulates Nrf2 levels in nuclear extracts and increases the transactivity of antioxidant response elements. The use of Nrf2 siRNA blocks the inhibitory effect of lycopene in TNF-α-induced ICAM-1 expression and NF-κB activation. Glutamate-cysteine ligase (GCL) is the rate-limiting enzyme in the de novo synthesis of GSH. We found that lycopene increases intracellular GSH levels and GCL expression. Following lycopene treatment, TNF-α-induced ROS production was abolished. The Nrf2-regulated antioxidant property plays a pivotal role in the anti-inflammatory mechanism underlying the inhibition of NF-κB activation in lycopene-treated ARPE-19 cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Putative carotenoid genes expressed under the regulation of Shine-Dalgarno regions in Escherichia coli for efficient lycopene production.

    PubMed

    Jin, Weiyue; Xu, Xian; Jiang, Ling; Zhang, Zhidong; Li, Shuang; Huang, He

    2015-11-01

    Putative genes crtE, crtB, and crtI from Deinococcus wulumiqiensis R12, a novel species, were identified by genome mining and were co-expressed using the optimized Shine-Dalgarno (SD) regions to improve lycopene yield. A lycopene biosynthesis pathway was constructed by co-expressing these three genes in Escherichia coli. After optimizing the upstream SD regions and the culture medium, the recombinant strain EDW11 produced 88 mg lycopene g(-1) dry cell wt (780 mg lycopene l(-1)) after 40 h fermentation without IPTG induction, while the strain EDW without optimized SD regions only produced 49 mg lycopene g(-1) dry cell wt (417 mg lycopene l(-1)). Based on the optimization of the upstream SD regions and culture medium, the yield of the strain EDW11 reached a high level during microbial lycopene production until now.

  12. An Update on the Health Effects of Tomato Lycopene

    PubMed Central

    Story, Erica N.; Kopec, Rachel E.; Schwartz, Steven J.

    2013-01-01

    Lycopene is a non-provitamin A carotenoid that is responsible for the red to pink colors seen in tomatoes, pink grapefruit, and other foods. Processed tomato products are the primary dietary lycopene source in the United States. Unlike many other natural compounds, lycopene is generally stable to processing when present in the plant tissue matrix. Recently, lycopene has also been studied in relation to its potential health effects. Although promising data from epidemiological, as well as cell culture and animal, studies suggest that lycopene and the consumption of lycopene containing foods may affect cancer or cardiovascular disease risk, more clinical trial data is needed to support this hypothesis. In addition, future studies are required to understand the mechanism(s) whereby lycopene or its metabolites are proven to possess biological activity in humans. PMID:22129335

  13. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering.

    PubMed

    Chen, Yan; Xiao, Wenhai; Wang, Ying; Liu, Hong; Li, Xia; Yuan, Yingjin

    2016-06-21

    Microbial production of lycopene, a commercially and medically important compound, has received increasing concern in recent years. Saccharomyces cerevisiae is regarded as a safer host for lycopene production than Escherichia coli. However, to date, the lycopene yield (mg/g DCW) in S. cerevisiae was lower than that in E. coli and did not facilitate downstream extraction process, which might be attributed to the incompatibility between host cell and heterologous pathway. Therefore, to achieve lycopene overproduction in S. cerevisiae, both host cell and heterologous pathway should be delicately engineered. In this study, lycopene biosynthesis pathway was constructed by integration of CrtE, CrtB and CrtI in S. cerevisiae CEN.PK2. When YPL062W, a distant genetic locus, was deleted, little acetate was accumulated and approximately 100 % increase in cytosolic acetyl-CoA pool was achieved relative to that in parental strain. Through screening CrtE, CrtB and CrtI from diverse species, an optimal carotenogenic enzyme combination was obtained, and CrtI from Blakeslea trispora (BtCrtI) was found to have excellent performance on lycopene production as well as lycopene proportion in carotenoid. Then, the expression level of BtCrtI was fine-tuned and the effect of cell mating types was also evaluated. Finally, potential distant genetic targets (YJL064W, ROX1, and DOS2) were deleted and a stress-responsive transcription factor INO2 was also up-regulated. Through the above modifications between host cell and carotenogenic pathway, lycopene yield was increased by approximately 22-fold (from 2.43 to 54.63 mg/g DCW). Eventually, in fed-batch fermentation, lycopene production reached 55.56 mg/g DCW, which is the highest reported yield in yeasts. Saccharomyces cerevisiae was engineered to produce lycopene in this study. Through combining host engineering (distant genetic loci and cell mating types) with pathway engineering (enzyme screening and gene fine-tuning), lycopene yield was stepwise improved by 22-fold as compared to the starting strain. The highest lycopene yield (55.56 mg/g DCW) in yeasts was achieved in 5-L bioreactors. This study provides a good reference of combinatorial engineering of host cell and heterologous pathway for microbial overproduction of pharmaceutical and chemical products.

  14. Natural Origin Lycopene and Its "Green" Downstream Processing.

    PubMed

    Papaioannou, Emmanouil H; Liakopoulou-Kyriakides, Maria; Karabelas, Anastasios J

    2016-01-01

    Lycopene is an abundant natural carotenoid pigment with several biological functions (well-known for its antioxidant properties) which is under intensive investigation in recent years. Lycopene chemistry, its natural distribution, bioavailability, biological significance, and toxicological effects are briefly outlined in the first part of this review. The second, major part, deals with various modern downstream processing techniques, which are assessed in order to identify promising approaches for the recovery of lycopene and of similar lipophilic compounds. Natural lycopene is synthesized in plants and by microorganisms, with main representatives of these two categories (for industrial production) tomato and its by-products and the fungus Blakeslea trispora, respectively. Currently, there is a great deal of effort to develop efficient downstream processing for large scale production of natural-origin lycopene, with trends strongly indicating the necessity for "green" and mild extraction conditions. In this review, emphasis is placed on final product safety and ecofriendly processing, which are expected to totally dominate in the field of natural-origin lycopene extraction and purification.

  15. Stability of lycopene during food processing and storage.

    PubMed

    Xianquan, S; Shi, J; Kakuda, Y; Yueming, J

    2005-01-01

    With an increasing understanding of the health benefit of lycopene, how to preserve lycopene during food processing and storage has caused much attention. Lycopene belongs to the carotenoid family and mostly exists in nature as the all-trans form. Heat, light, oxygen, and different food matrices are factors that have an effect on lycopene isomerization and autooxidation. Lycopene may isomerize to mono- or poly-cis forms with the presence of heat or oil or during dehydration. Reisomerization takes place during storage. After oxidation, the lycopene molecule split, which causes loss of color and off-flavor. The effects of heat, oxygen, light, and the presence of oil on the stability of lycopene are uniform in much of the literature; however, controversy still exists on some details, such as the conditions causing the occurrence of isomerization, the optimal moisture, and temperature for storage.

  16. Identification and Quantification of Apo-lycopenals in Fruits, Vegetables, and Human Plasma

    PubMed Central

    Kopec, Rachel E.; Riedl, Ken M.; Harrison, Earl H.; Curley, Robert W.; Hruszkewycz, Damian P.; Clinton, Steven K.; Schwartz, Steven J.

    2010-01-01

    Research has suggested that lycopene may be metabolized by eccentric cleavage, catalyzed by β-carotene oxygenase 2 (BCO2), resulting in the generation of apo-lycopenals. Apo-6′-lycopenal and apo-8′-lycopenal have been reported previously in raw tomato. We now show that several other apo-lycopenals are also present in raw and processed foods, as well as in human plasma. Apo-lycopenal standards were prepared by in vitro oxidation of lycopene, and a high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method using atmospheric pressure chemical ionization in negative mode was developed to separate and detect the apo-6′-, 8′-, 10′-, 12′-, 14′-, and 15′-lycopenal products formed in the reaction. Hexane/acetone extracts of raw tomato, red grapefruit, watermelon, and processed tomato products were analyzed, as well as plasma of individuals who had consumed tomato juice for eight weeks. Apo-6′-, 8′-, 10′-, 12′-, and 14′-lycopenals were detected and quantified in all food products tested, as well as plasma. The sum of apo-lycopenals was 6.5 µg/100 g ‘Roma’ tomato, 73.4 µg/100 g tomato paste, and 1.9 nmol/L of plasma. We conclude that several apo-lycopenals, in addition to apo-6′- and 8′-lycopenal, are present in lycopene containing foods. In addition, the presence of apo-lycopenals in plasma may derive from the absorption of apo-lycopenals directly from food and/or human metabolism. PMID:20178389

  17. Characterization of lycopene hydrocolloidal structure induced by tomato processing.

    PubMed

    Jazaeri, Sahar; Mohammadi, Abdorreza; Kermani, Amir Mehrabi Panah; Paliyath, Gopinadhan; Kakuda, Yukio

    2018-04-15

    Tomato juice and paste are special type of dispersions, composed of suspended particles (pulp) dispersed in a colloidal liquid medium (serum). The bright red appearance of soluble solid separated by high speed centrifugation denoted the presence of lycopene in this fraction. Since lycopene is a hydrophobic compound it is not expected to appear in the water soluble fraction. HPLC analysis indicated presence of substantial amount of lycopene in soluble fraction which was confirmed by the appearance of lycopene crystals when observed under Transmission Electron Microscope (TEM). Considerable amount of pectin in the soluble fraction led to hypothesis that pectin facilitated the formation of hydrocolloidal system of suspended lycopene during processing. Enzyme treatment confirmed this hypothesis when pectinase effectively disrupted colloidal system and precipitated lycopene. Necessity of the divalent ions to retain the suspension signified the electrostatic interactions in the matrix surrounding lycopene crystals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lycopene attenuates Aβ1-42 secretion and its toxicity in human cell and Caenorhabditis elegans models of Alzheimer disease.

    PubMed

    Chen, Wei; Mao, Liuqun; Xing, Huanhuan; Xu, Lei; Fu, Xiang; Huang, Liyingzi; Huang, Dongling; Pu, Zhijun; Li, Qinghua

    2015-11-03

    Growing evidence suggests concentration of lycopene was reduced in plasma of patients with Alzheimer disease (AD). Lycopene, a member of the carotenoid family, has been identified as an antioxidant to attenuate oxidative damage and has neuroprotective role in several AD models. However, whether lycopene is involved in the pathogenesis of AD and molecular underpinnings are elusive. In this study, we found that lycopene can significantly delay paralysis in the Aβ1-42-transgenic Caenorhabditis elegans strain GMC101. Lycopene treatment reduced Aβ1-42 secretion in SH-SY5Y cells overexpressing the Swedish mutant form of human β-amyloid precursor protein (APPsw). Next, we found lycopene can down-regulate expression level of β-amyloid precursor protein(APP) in APPsw cells. Moreover, lycopene treatment can not change endogenous reactive oxygen species level and apoptosis in APPsw cells. However, lycopene treatment protected against H2O2-induced oxidative stress and copper-induced damage in APPsw cells. Collectively, our data support that elevated lycopene contributes to the lower pathogenesis of AD. Our findings suggest that increasing lycopene in neurons may be a novel approach to attenuate onset and development of AD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Home cooking and ingredient synergism improve lycopene isomer production in Sofrito.

    PubMed

    Rinaldi de Alvarenga, José Fernando; Tran, Camilla; Hurtado-Barroso, Sara; Martinez-Huélamo, Miriam; Illan, Montserrat; Lamuela-Raventos, Rosa M

    2017-09-01

    There has been increasing interest in tomato products rich in lycopene Z-isomers since these carotenoids present greater bioavailability and antioxidant capacity than the all-E lycopene form. Intrinsic food properties as well as processing and the interaction between dietary components can all influence the content, type and bioavailability of carotenoids. The aim of this study was to evaluate whether carotenoid content and isomerization in tomato-based Mediterranean sofrito is affected by the process of home cooking and the presence of other ingredients such as extra virgin olive oil, onion and garlic. We used a full factorial design to clarify the contribution of each ingredient to the carotenoid composition of sofrito and to determine whether this can be improved by the cooking time and ingredient synergism. Cooking time and onion content were associated with a higher production of 5-Z-lycopene, 9-Z-lycopene and 13-Z-lycopene in sofrito. Onion proved to be the most interesting ingredient in the sofrito formulation due to their enhancing effect on lycopene isomerization. The use of onion combined with an adequate processing time may improve the bioavailability of lycopene in tomato products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Changes in plasma and oral mucosal lycopene isomer concentrations in healthy adults consuming standard servings of processed tomato products.

    PubMed

    Allen, Charlotte M; Schwartz, Steven J; Craft, Neal E; Giovannucci, Edward L; De Groff, Valerie L; Clinton, Steven K

    2003-01-01

    The consumption of tomato products is associated with a reduced risk of cardiovascular disease and several cancers. It is hypothesized that lycopene, the major carotenoid in tomato products, may mediate this relationship. We designed a study to examine changes in plasma and buccal mucosal cell (BMC) lycopene concentrations in healthy adults consuming standard daily servings of processed tomato products: spaghetti sauce, tomato soup, or vegetable juice. Thirty-six healthy subjects consumed a lycopene-free diet for 2 wk and were then assigned to one of three (n = 12) intervention groups consuming daily, single servings of sauce (21 mg lycopene per (1/2) cup), soup (12 mg lycopene per 1 cup), or juice (17 mg lycopene per 8 oz) for 4 wk. Fasting blood and BMC samples were evaluated by high-performance liquid chromatography analysis for carotenoids and lycopene isomers. Total plasma lycopene concentrations (Mean +/- SEM) decreased from 1.05 +/- 0.07 to 0.54 +/- 0.05 micromol/l (49%, P < 0.0001) during the 2-wk washout period. Following intervention, plasma lycopene concentrations increased significantly for those consuming sauce, soup, and juice (compared with washout baseline) to 2.08 (192%, P < 0.0001), 0.91 (122%, P < 0.0001), and 0.99 (92%, P < 0.0001) micromol/l, respectively. Plasma isomer concentrations show a 61:39 ratio of cis:all-trans at the start of the study. During the 2-wk washout the decrease in plasma all-trans-lycopene was greater than that for pooled cis isomers (70:30 cis:trans ratio, P < 0.001). After 2 wk of dietary intervention isomer ratios returned to those observed at the start of the study. Total BMC lycopene concentrations did not significantly change during the brief washout. During the 4-wk intervention period, BMC total lycopene concentrations increased (P < 0.005) by 165, 42, and 48% nmol/mg protein for those consuming sauce, soup, and juice, respectively. This study demonstrates that plasma lycopene decreases by 50% after approximately 2 wk on a lycopene-free diet with a decrease in the ratio of all-trans compared with cis isomers. Single, daily servings of processed tomato products significantly increase blood and BMC lycopene for 2 wk. Additional studies of lycopene bioavailability, isomerization, metabolism, and bioactivity will provide greater insight into the potential health benefits suggested by epidemiological studies and laboratory investigations.

  1. Stability assessment of lycopene microemulsion prepared using tomato industrial waste against various processing conditions.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2017-11-01

    Green separation techniques are growing at a greater rate than solvent extraction as a result of the constant consumer drive to 'go natural'. Considering the increasing evidence of the health benefits of lycopene and massive tomato industrial waste, in the present study, lycopene was extracted from tomato industrial waste using microemulsion technique and its mean droplet size and size distribution was determined. Moreover, the effects of pasteurization, sterilization, freeze-thaw cycles and ultraviolet (UV) irradiation on the thermodynamic stability, turbidity and lycopene concentration of the lycopene microemulsion were monitored. Freeze-thaw cycles, pasteurization and short exposure to UV irradiation showed no or negligible influence on lycopene content and turbidity of the microemulsion. However, long exposure to UV (260 min) reduced the lycopene content and turbidity by 34% and 10%, respectively. HHST (higher-heat shorter-time) and sterilization also reduced lycopene content (25%) and increased turbidity (32%). The lycopene microemulsion showed satisfactory stability over a process where its monodispersity and nanosize could be of potential advantage to the food and related industries. Regarding the carcinogenicity of synthetic colourants, potential applications of the lycopene microemulsion include in soft drinks and minced meat, which would result in a better colour and well-documented health-promoting qualities. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Genetic ablation of carotene oxygenases and consumption of lycopene or tomato powder diets modulates carotenoid and lipid metabolism in mice

    PubMed Central

    Ford, Nikki A.; Elsen, Amy C.; Erdman, John W.

    2013-01-01

    Carotene-15,15'-monooxygenase (CMO-I) cleaves β-carotene to form vitamin A while carotene-9’,10’-monooxygenase (CMO-II) preferentially cleaves non-provitamin A carotenoids. Recent reports indicate that beta-carotene metabolites regulate dietary lipid uptake while lycopene regulates peroxisome-proliferated activator receptor (PPAR) expression. To determine the physiologic consequences of carotenoids and their interactions with CMO-I and CMO-II, we characterized mammalian carotenoid metabolism, metabolic perturbations and lipid metabolism in female CMO-I−/− and CMO-II−/− mice fed lycopene or tomato-containing diets for 30 days. We hypothesized that there would be significant interactions between diet and genotype on carotenoid accumulation and lipid parameters. CMO-I−/− mice had higher levels of leptin, insulin and hepatic lipidosis, but lower levels of serum cholesterol. CMO-II−/− mice had increased tissue lycopene and phytofluene accumulation, reduced IGF-1 levels and cholesterol levels, but elevated liver lipids and cholesterol compared with WT mice. The diets did not modulate these genotypic perturbations, but lycopene and tomato powder did significantly decrease serum insulin-like growth factor-I. Tomato powder also reduced hepatic PPAR expression, independent of genotype. These data point to the pleiotropic actions of CMO-I and CMO-II supporting a strong role of these proteins in regulating tissue carotenoid accumulation and the lipid metabolic phenotype, as well as tomato carotenoid-independent regulation of lipid metabolism. PMID:24034573

  3. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Concepcion, M.; Gruissem, W.

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression ofmore » HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.« less

  4. Lycopene treatment against loss of bone mass, microarchitecture and strength in relation to regulatory mechanisms in a postmenopausal osteoporosis model.

    PubMed

    Ardawi, Mohammed-Salleh M; Badawoud, Mohammed H; Hassan, Sherif M; Rouzi, Abdulrahim A; Ardawi, Jumanah M S; AlNosani, Nouf M; Qari, Mohammed H; Mousa, Shaker A

    2016-02-01

    Lycopene supplementation decreases oxidative stress and exhibits beneficial effects on bone health, but the mechanisms through which it alters bone metabolism in vivo remain unclear. The present study aims to evaluate the effects of lycopene treatment on postmenopausal osteoporosis. Six-month-old female Wistar rats (n=264) were sham-operated (SHAM) or ovariectomized (OVX). The SHAM group received oral vehicle only and the OVX rats were randomized into five groups receiving oral daily lycopene treatment (mg/kg body weight per day): 0 OVX (control), 15 OVX, 30 OVX, and 45 OVX, and one group receiving alendronate (ALN) (2μg/kg body weight per day), for 12weeks. Bone densitometry measurements, bone turnover markers, biomechanical testing, and histomorphometric analysis were conducted. Micro computed tomography was also used to evaluate changes in microarchitecture. Lycopene treatment suppressed the OVX-induced increase in bone turnover, as indicated by changes in biomarkers of bone metabolism: serum osteocalcin (s-OC), serum N-terminal propeptide of type 1 collagen (s-PINP), serum crosslinked carboxyterminal telopeptides (s-CTX-1), and urinary deoxypyridinoline (u-DPD). Significant improvement in OVX-induced loss of bone mass, bone strength, and microarchitectural deterioration was observed in lycopene-treated OVX animals. These effects were observed mainly at sites rich in trabecular bone, with less effect in cortical bone. Lycopene treatment down-regulated osteoclast differentiation concurrent with up-regulating osteoblast together with glutathione peroxidase (GPx) catalase (CAT) and superoxide dismutase (SOD) activities. These findings demonstrate that lycopene treatment in OVX rats primarily suppressed bone turnover to restore bone strength and microarchitecture. Copyright © 2015. Published by Elsevier Inc.

  5. Effect of high power low frequency ultrasound processing on the stability of lycopene.

    PubMed

    Oliveira, Valéria S; Rodrigues, Sueli; Fernandes, Fabiano A N

    2015-11-01

    The stability of lycopene was evaluated after application of high power low frequency ultrasound. The study was carried out on a solution containing pure lycopene to evaluate the direct effect of ultrasound on lycopene and on tomato purée to evaluate the direct and indirect effects of ultrasound application within a food matrix. Power densities ranging from 55 to 5000 W/L and temperatures ranging from 23°C (ambient) to 60°C were evaluated. The experiments on pure lycopene showed that the application of ultrasound did not have any direct effect over lycopene. However, the retention of lycopene in tomato puree has decreased indicating an indirect effect on lycopene stability caused by high concentration of hydrogen peroxide and the activation of peroxidase enzymes leading to the reduction of ascorbic acid and its regenerative action towards lycopene. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Enzymatic cell wall degradation of high-pressure-homogenized tomato puree and its effect on lycopene bioaccessibility.

    PubMed

    Palmero, Paola; Colle, Ines; Lemmens, Lien; Panozzo, Agnese; Nguyen, Tuyen Thi My; Hendrickx, Marc; Van Loey, Ann

    2016-01-15

    High-pressure homogenization disrupts cell structures, assisting carotenoid release from the matrix and subsequent micellarization. However, lycopene bioaccessibility of tomato puree upon high-pressure homogenization is limited by the formation of a process-induced barrier. In this context, cell wall-degrading enzymes were applied to hydrolyze the formed barrier and enhance lycopene bioaccessibility. The effectiveness of the enzymes in degrading their corresponding substrates was evaluated (consistency, amount of reducing sugars, molar mass distribution and immunolabeling). An in vitro digestion procedure was applied to evaluate the effect of the enzymatic treatments on lycopene bioaccessibility. Enzymatic treatments with pectinases and cellulase were proved to effectively degrade their corresponding cell wall polymers; however, no further significant increase in lycopene bioaccessibility was obtained. A process-induced barrier consisting of cell wall material is not the only factor governing lycopene bioaccessibility upon high-pressure homogenization. © 2015 Society of Chemical Industry.

  7. Effect of pilot-scale aseptic processing on tomato soup quality parameters.

    PubMed

    Colle, Ines J P; Andrys, Anna; Grundelius, Andrea; Lemmens, Lien; Löfgren, Anders; Buggenhout, Sandy Van; Loey, Ann; Hendrickx, Marc Van

    2011-01-01

    Tomatoes are often processed into shelf-stable products. However, the different processing steps might have an impact on the product quality. In this study, a model tomato soup was prepared and the impact of pilot-scale aseptic processing, including heat treatment and high-pressure homogenization, on some selected quality parameters was evaluated. The vitamin C content, the lycopene isomer content, and the lycopene bioaccessibility were considered as health-promoting attributes. As a structural characteristic, the viscosity of the tomato soup was investigated. A tomato soup without oil as well as a tomato soup containing 5% olive oil were evaluated. Thermal processing had a negative effect on the vitamin C content, while lycopene degradation was limited. For both compounds, high-pressure homogenization caused additional losses. High-pressure homogenization also resulted in a higher viscosity that was accompanied by a decrease in lycopene bioaccessibility. The presence of lipids clearly enhanced the lycopene isomerization susceptibility and improved the bioaccessibility. The results obtained in this study are of relevance for product formulation and process design of tomato-based food products. © 2011 Institute of Food Technologists®

  8. Lycopene Protects Keratinocytes Against UVB Radiation-Induced Carcinogenesis via Negative Regulation of FOXO3a Through the mTORC2/AKT Signaling Pathway.

    PubMed

    Chen, Ping; Xu, Shina; Qu, Jinlong

    2018-01-01

    Lycopene, one of the most potent anti-oxidants, has been reported to exhibit potent anti-proliferative properties in a wide range of cancer cells through modulation of the cell cycle and apoptosis. Forkhead box O3 (FOXO3a) plays a pivotal role in modulating the expression of genes involved in cell death. Herein, we investigated the role of FOXO3a signaling in the anti-cancer effects of lycopene. Results showed that lycopene pretreatment attenuated UVB-induced cell hyper-proliferation and promoted apoptosis, accompanied by decreased cyclin-dependent kinase 2 (CDK2) and CDK4 complex in both human keratinocytes and SKH-1 hairless mice. FOXO3a is phosphorylated in response to UVB irradiation and sequestered in the cytoplasm, while lycopene pretreatment rescued this sensitization. Gene ablation of FOXO3a attenuated lycopene-induced decrease in cell hyper-proliferation, CDK2, and CDK4 complex, indicating a critical role of FOXO3a in the lycopene-induced anti-proliferative effect of keratinocytes during UVB irradiation. Transfection with FOXO3a siRNA inhibited the lycopene-induced increase in cell apoptosis, BAX and cleaved PARP expression. Moreover, loss of AKT induced further accelerated lycopene-induced FOXO3a dephosphorylation, while loss of mechanistic target of rapamycin complex 2 (mTORC2) by transfection with RICTOR siRNA induced levels of AKT phosphorylation comparable to those obtained with lycopene. In contrast, overexpression of AKT or mTORC2 decreased the effects of lycopene on the expression of FOXO3a as well as AKT phosphorylation, suggesting that lycopene depends on the negative modulation of mTORC2/AKT signaling. Taken together, our findings demonstrate that the mTORC2/AKT/FOXO3a axis plays a critical role in the anti-proliferative and pro-apoptotic effects of lycopene in UVB-induced photocarcinogenesis. J. Cell. Biochem. 119: 366-377, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Lycopene mitigates β-amyloid induced inflammatory response and inhibits NF-κB signaling at the choroid plexus in early stages of Alzheimer's disease rats.

    PubMed

    Liu, Chong-Bin; Wang, Rui; Yi, Yan-Feng; Gao, Zhen; Chen, Yi-Zhu

    2018-03-01

    The choroid plexus is able to modulate the cognitive function, through changes in the neuroinflammatory response and in brain immune surveillance. However, whether lycopene is involved in inflammatory responses at the choroid plexus in the early stages of Alzheimer's disease, and its molecular underpinnings are elusive. In this rat study, lycopene was used to investigate its protective effects on inflammation caused by β-amyloid. We characterized the learning and memory abilities, cytokine profiles of circulating TNF-α, IL-1β and IL-6β in the serum and the expressions of Toll like receptor 4 and nuclear factor-κB p65 mRNA and protein at the choroid plexus. The results showed that functional deficits of learning and memory in lycopene treatment groups were significantly improved compared to the control group without lycopene treatment in water maze test. The levels of serum TNF-α, IL-1β and IL-6β were significantly increased, and the expressions of TLR4 and NF-κB p65 mRNA and protein at the choroid plexus were up-regulated, indicating inflammation response was initiated following administration of Aβ 1-42 . After intragastric pretreatment with lycopene, inflammatory cytokines were significantly reduced and lycopene also reversed the Aβ 1-42 induced up-regulation of TLR4 and NF-κB p65 mRNA and protein expressions at the choroid plexus. These results provided a novel evidence that lycopene significantly improved cognitive deficits and were accompanied by the attenuation of inflammatory injury via blocking the activation of NF-κB p65 and TLR4 expressions and production of cytokines, thereby endorsing its usefulness for diminishing β-amyloid deposition in the hippocampus tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Processed tomato products as a source of dietary lycopene: bioavailability and antioxidant properties.

    PubMed

    Rao, A Venket

    2004-01-01

    Oxidative stress is one of the major contributors to increased risk of chronic diseases. A diet rich in tomatoes and tomato products containing lycopene, a carotenoid antioxidant, has been found to protect against these chronic diseases by mitigating oxidative damage. The study aim was to evaluate the effects of a long-term tomato-rich diet, consisting of various processed tomato products, on bioavailability and antioxidant properties of lycopene. Seventeen healthy human subjects (ten men, seven non-pregnant women) participated in the study. Following a two-week washout period during which subjects avoided foods containing lycopene, all subjects consumed test tomato products including tomato juice, tomato sauce, tomato paste, ketchup, spaghetti sauce, and ready-to-serve tomato soup providing 30 mg of lycopene a day for four weeks. At the end of treatment, serum lycopene level increased significantly (p <0.05), from 181.79 +/- 31.25 to 684.7 +/- 113.91 nmol/L. Similarly, total antioxidant potential increased significantly (p <0.05), from 2.26 +/- 0.015 to 2.38 +/- 0.17 mmol/L Trolox equivalent. Lipid and protein oxidation was reduced significantly (p <0.05). The results suggest that a tomato-rich diet containing different sources of lycopene can increase serum lycopene levels and reduce oxidative stress effectively.

  11. Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells.

    PubMed

    Assar, Emelia A; Vidalle, Magdalena Castellano; Chopra, Mridula; Hafizi, Sassan

    2016-07-01

    We studied the effect of the potent dietary antioxidant lycopene on multiple points along the nuclear factor kappa B (NF-κB) signaling pathway in prostate and breast cancer cells. Lycopene significantly inhibited prostate and breast cancer cell growth at physiologically relevant concentrations of ≥1.25 μM. Similar concentrations also caused a 30-40 % reduction in inhibitor of kappa B (IκB) phosphorylation in the cells, as determined by western blotting. Furthermore, the same degree of inhibition by lycopene was observed for NF-κB transcriptional activity, as determined by reporter gene assay. Concomitant with this, immunofluorescence staining of lycopene-treated cells showed a significant suppression (≥25 %) of TNF-induced NF-κB p65 subunit nuclear translocation. Further probing of lycopene's effects on upstream elements of the NF-κB pathway showed a 25 % inhibition of both activity of recombinant IκB kinase β (IKKβ) kinase in a cell-free in vitro assay, as well as activity of IKKβ immunoprecipitated from MDA-MB-231 cells treated with lycopene. In conclusion, the anticancer properties of lycopene may occur through inhibition of the NF-κB signaling pathway, beginning at the early stage of cytoplasmic IKK kinase activity, which then leads to reduced NF-κB-responsive gene regulation. Furthermore, these effects in cancer cells were observed at concentrations of lycopene that are relevant and achievable in vivo.

  12. Rapid, accurate, and direct determination of total lycopene content in tomato paste

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Anese, M.; Luterotti, S.; Dadarlat, D.; Gibkes, J.; Lubbers, M.

    2003-01-01

    Lycopene that imparts red color to the tomato fruit is the most potent antioxidant among carotenes, an important nutrient and also used as a color ingredient in many food formulations. Since cooked and processed foods derived from tomatoes were shown to provide optimal lycopene boost, products such as paste, puree, juice, etc. are nowadays gaining popularity as dietary sources. The analysis of lycopene in tomato paste (partially dehydrated product prepared by vacuum concentrating tomato juice) is carried out using either high pressure liquid chromatography (HPLC), spectrophotometry, or by evaluating the color. The instability of lycopene during processes of extraction, etc., handling, and disposal of organic solvents makes the preparation of a sample for the analysis a delicate task. Despite a recognized need for accurate and rapid assessment of lycopene in tomato products no such method is available at present. The study described here focuses on a direct determination of a total lycopene content in different tomato pastes by means of the laser optothermal window (LOW) method at 502 nm. The concentration of lycopene in tomato paste ranged between 25 and 150 mg per 100 g product; the results are in excellent agreement with those obtained by spectrophotometry. The time needed to complete LOW analysis is very short, so that decomposition of pigment and the formation of artifacts are minimized. Preliminary results indicate a good degree of reproducibility making the LOW method suitable for routine assays of lycopene content in tomato paste.

  13. Higher dietary lycopene intake is associated with longer cardiac event-free survival in patients with heart failure

    PubMed Central

    Biddle, Martha; Moser, Debra; Song, Eun Kyeung; Heo, Seongkum; Payne-Emerson, Heather; Dunbar, Sandra B.; Pressler, Susan; Lennie, Terry

    2012-01-01

    Background The antioxidant lycopene may be beneficial for patients with heart failure (HF). Processed tomato products are a major source of lycopene, although they are also high in sodium. Increased sodium intake may counter the positive antioxidant effect of lycopene. Methods This was a prospective study of 212 patients with HF. Dietary intake of lycopene and sodium was obtained from weighted 4-day food diaries. Patients were grouped by the median split of lycopene of 2471 μg/day and stratified by daily sodium levels above and below 3 g/day. Patients were followed for 1 year to collect survival and hospitalization data. Cox proportional hazards modeling was used to compare cardiac event-free survival between lycopene groups within each stratum of sodium intake. Results Higher lycopene intake was associated with longer cardiac event-free survival compared with lower lycopene intake (p = 0.003). The worst cardiac event-free survival was observed in the low lycopene intake group regardless of sodium intake (> 3 g/day HR = 3.01; p = 0.027 and ≤ 3 g/day HR= 3.34; p = 0.023). Conclusion These findings suggest that increased lycopene intake has the potential to improve cardiac event-free survival in patients with HF independent of sodium intake. PMID:23076979

  14. Higher dietary lycopene intake is associated with longer cardiac event-free survival in patients with heart failure.

    PubMed

    Biddle, Martha; Moser, Debra; Song, Eun Kyeung; Heo, Seongkum; Payne-Emerson, Heather; Dunbar, Sandra B; Pressler, Susan; Lennie, Terry

    2013-08-01

    The antioxidant lycopene may be beneficial for patients with heart failure (HF). Processed tomato products are a major source of lycopene, although they are also high in sodium. Increased sodium intake may counter the positive antioxidant effect of lycopene. This was a prospective study of 212 patients with HF. Dietary intake of lycopene and sodium was obtained from weighted 4-day food diaries. Patients were grouped by the median split of lycopene of 2471 µg/day and stratified by daily sodium levels above and below 3 g/day. Patients were followed for 1 year to collect survival and hospitalization data. Cox proportional hazards modeling was used to compare cardiac event-free survival between lycopene groups within each stratum of sodium intake. Higher lycopene intake was associated with longer cardiac event-free survival compared with lower lycopene intake (p = 0.003). The worst cardiac event-free survival was observed in the low lycopene intake group regardless of sodium intake (> 3 g/day HR = 3.01; p = 0.027 and ≤ 3 g/day HR= 3.34; p = 0.023). These findings suggest that increased lycopene intake has the potential to improve cardiac event-free survival in patients with HF independent of sodium intake.

  15. Complex interactions between dietary and genetic factors impact lycopene metabolism and distribution

    PubMed Central

    Moran, Nancy E.; Erdman, John W.; Clinton, Steven K.

    2013-01-01

    Intake of lycopene, a red, tetraterpene carotenoid found in tomatoes is epidemiologically associated with a decreased risk of chronic disease processes, and lycopene has demonstrated bioactivity in numerous in vitro and animal models. However, our understanding of absorption, tissue distribution, and biological impact in humans remains very limited. Lycopene absorption is strongly impacted by dietary composition, especially the amount of fat. Concentrations of circulating lycopene in lipoproteins may be further influenced by a number of variations in genes related to lipid absorption and metabolism. Lycopene is not uniformly distributed among tissues, with adipose, liver, and blood being the major body pools, while the testes, adrenals, and liver have the greatest concentrations compared to other organs. Tissue concentrations of lycopene are likely dictated by expression of and genetic variation in lipoprotein receptors, cholesterol transporters, and carotenoid metabolizing enzymes, thus impacting lycopene accumulation at target sites of action. The novel application of genetic evaluation in concert with lycopene tracers will allow determination of which genes and polymorphisms define individual lycopene metabolic phenotypes, response to dietary variables, and ultimately determine biological and clinical outcomes. A better understanding of the relationship between diet, genetics, and lycopene distribution will provide necessary information to interpret epidemiological findings more accurately and to design effective, personalized clinical nutritional interventions addressing hypotheses regarding health outcomes. PMID:23845854

  16. Carotenoids, Fatty Acid Composition and Heat Stability of Supercritical Carbon Dioxide-Extracted-Oleoresins

    PubMed Central

    Longo, Cristiano; Leo, Lucia; Leone, Antonella

    2012-01-01

    The risk of chronic diseases has been shown to be inversely related to tomato intake and the lycopene levels in serum and tissue. Cis-isomers represent approximately 50%–80% of serum lycopene, while dietary lycopene maintains the isomeric ratio present in the plant sources with about 95% of all-trans-lycopene. Supercritical CO2 extraction (S-CO2) has been extensively developed to extract lycopene from tomato and tomato processing wastes, for food or pharmaceutical industries, also by using additional plant sources as co-matrices. We compared two S-CO2-extracted oleoresins (from tomato and tomato/hazelnut matrices), which showed an oil-solid bi-phasic appearance, a higher cis-lycopene content, and enhanced antioxidant ability compared with the traditional solvent extracts. Heat-treating, in the range of 60–100 °C, led to changes in the lycopene isomeric composition and to enhanced antioxidant activity in both types of oleoresins. The greater stability has been related to peculiar lycopene isomer composition and to the lipid environment. The results indicate these oleoresins are a good source of potentially healthful lycopene. PMID:22605975

  17. Foam Fractionation of Lycopene: An Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Wang, Yan; Zhang, Mingjie; Hu, Yongliang

    2010-01-01

    A novel experiment for the extraction of lycopene from tomato paste by foam fractionation is described. Foam fractionation is a process for separating and concentrating chemicals by utilizing differences in their surface activities. Extraction of lycopene by foam fractionation is a new method that has not been previously reported in the…

  18. Lycopene bioaccessibility and starch digestibility for extruded snacks enriched with tomato derivatives.

    PubMed

    Dehghan-Shoar, Zeinab; Mandimika, Tafadzwa; Hardacre, Allan K; Reynolds, Gordon W; Brennan, Charles S

    2011-11-23

    To improve the nutritional value of energy-dense extruded snacks, corn grits were replaced with tomato paste and/or tomato skin powder at ratios of 5, 10, and 20% and extruded to make expanded snack foodlike products. Using a model digestion system, lycopene bioaccessibility and uptake from the snacks into Caco-2 cells were determined. The digestibility of the starch, the main nutrient component of the snacks, was also investigated. While extrusion cooking reduced the lycopene content of the snacks, the proportion of bioaccessible lycopene increased. Lycopene uptake by the Caco-2 cells from the extruded snacks exceeded that of the control in which the lycopene was not extruded, by 5% (p < 0.05). The digestibility of starch in the snacks varied depending on the type of tomato derivative and its concentration. Optimization of the extrusion cooking process and the ingredients can yield functional extruded snack products that contain bioavailable lycopene.

  19. Lycopene inhibits reactive oxygen species production in SK-Hep-1 cells and attenuates acetaminophen-induced liver injury in C57BL/6 mice.

    PubMed

    Bandeira, Ana Carla Balthar; da Silva, Talita Prato; de Araujo, Glaucy Rodrigues; Araujo, Carolina Morais; da Silva, Rafaella Cecília; Lima, Wanderson Geraldo; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Our aim was to investigate the antioxidant potential of lycopene in different experimental liver models: in vitro, to evaluate the influence of lycopene on reactive oxygen species (ROS) production mediated by the PKC pathway and in vivo, to evaluate the protective effects of lycopene in an experimental model of hepatotoxicity. The in vitro study assessed the lycopene antioxidant potential by the quantification of ROS production in SK-Hep-1 cells unstimulated or stimulated by an activator of the PKC pathway. The role of NADPH oxidase was evaluated by measuring its inhibition potential using an inhibitor of this enzyme. In the in vivo study, male C57BL/6 mice received lycopene (10 or 100 mg/kg by oral gavage) and 1 h later, acetaminophen (APAP) (500 mg/kg) was administrated. Lycopene decreased ROS production in SK-Hep-1 cells through inhibition of NADPH oxidase, brought about in the PKC pathway. Lycopene improved hepatotoxicity acting as an antioxidant, reduced GSSG and regulated tGSH and CAT levels, reduced oxidative damage primarily by decreasing protein carbonylation, promoted the downregulation of MMP-2 and reduced areas of necrosis improving the general appearance of the lesion in C57BL/6 mice. Lycopene is a natural compound that was able to inhibit the production of ROS in vitro and mitigate the damage caused by APAP overdose in vivo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. In vitro effects and mechanisms of lycopene in MCF-7 human breast cancer cells.

    PubMed

    Peng, S J; Li, J; Zhou, Y; Tuo, M; Qin, X X; Yu, Q; Cheng, H; Li, Y M

    2017-04-13

    Breast cancer adversely affects the health status of women; therefore, the prevention and treatment of breast cancer is of critical importance. Lycopene is known to possess several biological effects such as removal of free radicals, alleviation of biological oxidative injury, and inhibition of tumor growth. In this study, we aimed to illustrate the effect of lycopene on tumor cell proliferation and modulation of cancer progression as well as its possible underlying mechanisms in human breast carcinoma cell line MCF-7 in vitro. MCF-7 cells were treated with different lycopene concentrations for 24, 48, and 72 h. Light field microscopy was used to observe cell morphology. MTT assay was used to determine the effect of lycopene on MCF-7 proliferation. Flow cytometry was employed to evaluate cell apoptosis. Real-time quantitative polymerase chain reaction was performed to detect the expression of p53 and Bax. Under microscopic examination, the untreated MCF-7 cells appeared to have a diamond or polygonal shape. Lycopene treatment resulted in cell shrinkage and breakage, whose severity increased in a dose and duration dependent manner. In addition, reduced cell proliferation and increased apoptosis (P < 0.05) were observed using MTT assay and flow cytometry, respectively. Moreover, lycopene could also upregulate the expression of p53 and Bax mRNAs in MCF-7 cells. In conclusion, lycopene inhibits proliferation and facilitates apoptosis of MCF-7 cells in vitro, possibly by regulating the expression of p53 and Bax.

  1. Transcriptome analysis of a spontaneous mutant in sweet orange [Citrus sinensis (L.) Osbeck] during fruit development.

    PubMed

    Liu, Qing; Zhu, Andan; Chai, Lijun; Zhou, Wenjing; Yu, Keqin; Ding, Jian; Xu, Juan; Deng, Xiuxin

    2009-01-01

    Bud mutations often arise in citrus. The selection of mutants is one of the most important breeding channels in citrus. However, the molecular basis of bud mutation has rarely been studied. To identify differentially expressed genes in a spontaneous sweet orange [C. sinensis (L.) Osbeck] bud mutation which causes lycopene accumulation, low citric acid, and high sucrose in fruit, suppression subtractive hybridization and microarray analysis were performed to decipher this bud mutation during fruit development. After sequencing of the differentially expressed clones, a total of 267 non-redundant transcripts were obtained and 182 (68.2%) of them shared homology (E-value < or = 1x10(-10)) with known gene products. Few genes were constitutively up- or down-regulated (fold change > or = 2) in the bud mutation during fruit development. Self-organizing tree algorithm analysis results showed that 95.1% of the differentially expressed genes were extensively coordinated with the initiation of lycopene accumulation. Metabolic process, cellular process, establishment of localization, response to stimulus, and biological regulation-related transcripts were among the most regulated genes. These genes were involved in many biological processes such as organic acid metabolism, lipid metabolism, transport, and pyruvate metabolism, etc. Moreover, 13 genes which were differentially regulated at 170 d after flowering shared homology with previously described signal transduction or transcription factors. The information generated in this study provides new clues to aid in the understanding of bud mutation in citrus.

  2. Compartmental and noncompartmental modeling of ¹³C-lycopene absorption, isomerization, and distribution kinetics in healthy adults.

    PubMed

    Moran, Nancy E; Cichon, Morgan J; Riedl, Kenneth M; Grainger, Elizabeth M; Schwartz, Steven J; Novotny, Janet A; Erdman, John W; Clinton, Steven K

    2015-12-01

    Lycopene, which is a red carotenoid in tomatoes, has been hypothesized to mediate disease-preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, whereas human plasma and tissues show greater proportions of cis isomers. With the use of compartmental modeling and stable isotope technology, we determined whether endogenous all-trans-to-cis-lycopene isomerization or isomeric-bioavailability differences underlie the greater proportion of lycopene cis isomers in human tissues than in tomato foods. Healthy men (n = 4) and women (n = 4) consumed (13)C-lycopene (10.2 mg; 82% all-trans and 18% cis), and plasma was collected over 28 d. Unlabeled and (13)C-labeled total lycopene and lycopene-isomer plasma concentrations, which were measured with the use of high-performance liquid chromatography-mass spectrometry, were fit to a 7-compartment model. Subjects absorbed a mean ± SEM of 23% ± 6% of the lycopene. The proportion of plasma cis-(13)C-lycopene isomers increased over time, and all-trans had a shorter half-life than that of cis isomers (5.3 ± 0.3 and 8.8 ± 0.6 d, respectively; P < 0.001) and an earlier time to reach maximal plasma concentration than that of cis isomers (28 ± 7 and 48 ± 9 h, respectively). A compartmental model that allowed for interindividual differences in cis- and all-trans-lycopene bioavailability and endogenous trans-to-cis-lycopene isomerization was predictive of plasma (13)C and unlabeled cis- and all-trans-lycopene concentrations. Although the bioavailability of cis (24.5% ± 6%) and all-trans (23.2% ± 8%) isomers did not differ, endogenous isomerization (0.97 ± 0.25 μmol/d in the fast-turnover tissue lycopene pool) drove tissue and plasma isomeric profiles. (13)C-Lycopene combined with physiologic compartmental modeling provides a strategy for following complex in vivo metabolic processes in humans and reveals that postabsorptive trans-to-cis-lycopene isomerization, and not the differential bioavailability of isomers, drives tissue and plasma enrichment of cis-lycopene. This trial was registered at clinicaltrials.gov as NCT01692340. © 2015 American Society for Nutrition.

  3. The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes.

    PubMed

    Gao, Yang; Jia, Pengyu; Shu, WenQi; Jia, Dalin

    2016-03-05

    Nowadays, drugs protecting ischemia/reperfusion (I/R) myocardium become more suitable for clinic. It has been confirmed lycopene has various protections, but lacking the observation of its effect on endoplasmic reticulum stress (ERS)-mediated apoptosis caused by hypoxia/reoxygenation (H/R). This study aims to clarify the protective effect of lycopene on ERS induced by H/R in H9C2 cardiomyocytes. Detect the survival rate, lactic dehydrogenase (LDH) activity, apoptosis ratio, glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP), c-Jun-N-terminal protein Kinase (JNK) and Caspase-12 mRNA and protein expression and phosphorylation of JNK (p-JNK) protein expression. LDH activity, apoptosis ratio and GRP78 protein expression increase in the H/R group, reduced by lycopene. The survival rate reduces in the H/R and thapsigargin (TG) groups; lycopene and 4-phenyl butyric acid (4-PBA) can improve it caused by H/R, lycopene also can improve it caused by TG. The apoptosis ratio, the expression of GRP78, CHOP and Caspase-12 mRNA and protein and p-JNK protein increase in the H/R and TG groups, weaken in the lycopene+H/R, 4-PBA+H/R and lycopene+TG groups. There is no obvious change in the expression of JNK mRNA or protein. Hence, our results provide the evidence that 10 μM lycopene plays an obviously protective effect on H/R H9C2 cardiomyocytes, realized through reducing ERS and apoptosis. The possible mechanism may be related to CHOP, p-JNK and Caspase-12 pathways. Copyright © 2016. Published by Elsevier B.V.

  4. Microemulsion-based lycopene extraction: Effect of surfactants, co-surfactants and pretreatments.

    PubMed

    Amiri-Rigi, Atefeh; Abbasi, Soleiman

    2016-04-15

    Lycopene is a potent antioxidant that has received extensive attention recently. Due to the challenges encountered with current methods of lycopene extraction using hazardous solvents, industry calls for a greener, safer and more efficient process. The main purpose of present study was application of microemulsion technique to extract lycopene from tomato pomace. In this respect, the effect of eight different surfactants, four different co-surfactants, and ultrasound and enzyme pretreatments on lycopene extraction efficiency was examined. Experimental results revealed that application of combined ultrasound and enzyme pretreatments, saponin as a natural surfactant, and glycerol as a co-surfactant, in the bicontinuous region of microemulsion was the optimal experimental conditions resulting in a microemulsion containing 409.68±0.68 μg/glycopene. The high lycopene concentration achieved, indicates that microemulsion technique, using a low-cost natural surfactant could be promising for a simple and safe separation of lycopene from tomato pomace and possibly from tomato industrial wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Producing a lycopene nanodispersion: Formulation development and the effects of high pressure homogenization.

    PubMed

    Shariffa, Y N; Tan, T B; Uthumporn, U; Abas, F; Mirhosseini, H; Nehdi, I A; Wang, Y-H; Tan, C P

    2017-11-01

    The aim of this study was to develop formulations to produce lycopene nanodispersions and to investigate the effects of the homogenization pressure on the physicochemical properties of the lycopene nanodispersion. The samples were prepared by using emulsification-evaporation technique. The best formulation was achieved by dispersing an organic phase (0.3% w/v lycopene dissolved in dichloromethane) in an aqueous phase (0.3% w/v Tween 20 dissolved in deionized water) at a ratio of 1:9 by using homogenization process. The increased level of homogenization pressure to 500bar reduced the particle size and lycopene concentration significantly (p<0.05). Excessive homogenization pressure (700-900bar) resulted in large particle sizes with high dispersibility. The zeta potential and turbidity of the lycopene nanodispersion were significantly influenced by the homogenization pressure. The results from this study provided useful information for producing small-sized lycopene nanodispersions with a narrow PDI and good stability for application in beverage products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Degradation of lycopene and beta-carotene in model systems and in lyophilized guava during ambient storage: kinetics, structure, and matrix effects.

    PubMed

    Ferreira, J E M; Rodriguez-Amaya, D B

    2008-10-01

    Being highly unsaturated, carotenoids are susceptible to isomerization and oxidation during the processing and storage of food. In the present study, the degradation of acyclic lycopene and dicyclic beta-carotene in low-moisture and aqueous model systems, as well as in lyophilized guava, during storage at ambient temperature, in the absence or presence of light, was investigated. Both carotenoids followed first order kinetics under the various conditions investigated. Lycopene degraded much faster than beta-carotene in all the model systems. In a comparison of lycopene isolated from guava, tomato, and watermelon, greater losses were observed with lycopene from tomato. Since the model system was identical in the 3 cases, these results indicated that other compounds from the food sources, co-extracted with lycopene, might have influenced the oxidation. Light consistently and strongly promoted degradation under all conditions studied. The susceptibility of lycopene to degradation was much less in lyophilized guava than in the model systems, showing the marked protective influence of the food matrix. Loss of beta-carotene, found at a concentration of about 18 times lower than lycopene, was only slightly lower than that of lycopene in lyophilized guava, indicating that the effect of matrix and/or the initial concentration overshadowed the structural influence.

  7. Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions.

    PubMed

    Mantzouridou, Fani Th; Naziri, Eleni

    2017-03-01

    This study deals with the scale up of Blakeslea trispora culture from the successful surface-aerated shake flasks to dispersed-bubble aerated column reactor for lycopene production in the presence of lycopene cyclase inhibitor 2-methyl imidazole. Controlling the initial volumetric oxygen mass transfer coefficient (k L a) via airflow rate contributes to increasing cell mass and lycopene accumulation. Inhibitor effectiveness seems to decrease in conditions of high cell mass. Optimization of crude soybean oil (CSO), airflow rate, and 2-methyl imidazole was arranged according to central composite statistical design. The optimized levels of factors were 110.5 g/L, 2.3 vvm, and 29.5 mg/L, respectively. At this optimum setting, maximum lycopene yield (256 mg/L) was comparable or even higher to those reported in shake flasks and stirred tank reactor. 2-Methyl imidazole use at levels significantly lower than those reported for other inhibitors in the literature was successful in terms of process selectivity. CSO provides economic benefits to the process through its ability to stimulate lycopene synthesis, as an inexpensive carbon source and oxygen vector at the same time.

  8. Isolation and Characterization of a Lycopene ε-Cyclase Gene of Chlorella (Chromochloris) zofingiensis. Regulation of the Carotenogenic Pathway by Nitrogen and Light

    PubMed Central

    Cordero, Baldo F.; Couso, Inmaculada; Leon, Rosa; Rodriguez, Herminia; Vargas, Maria Angeles

    2012-01-01

    The isolation and characterization of the lycopene ε-cyclase gene from the green microalga Chlorella (Chromochloris) zofingiensis (Czlcy-e) was performed. This gene is involved in the formation of the carotenoids α-carotene and lutein. Czlcy-e gene encoded a polypeptide of 654 amino acids. A single copy of Czlcy-e was found in C. zofingiensis. Functional analysis by heterologous complementation in Escherichia coli showed the ability of this protein to convert lycopene to δ-carotene. In addition, the regulation of the carotenogenic pathway by light and nitrogen was also studied in C. zofingiensis. High irradiance stress did not increase mRNA levels of neither lycopene β-cyclase gene (lcy-b) nor lycopene ε-cyclase gene (lcy-e) as compared with low irradiance conditions, whereas the transcript levels of psy, pds, chyB and bkt genes were enhanced, nevertheless triggering the synthesis of the secondary carotenoids astaxanthin, canthaxanthin and zeaxanthin and decreasing the levels of the primary carotenoids α-carotene, lutein, violaxanthin and β-carotene. Nitrogen starvation per se enhanced mRNA levels of all genes considered, except lcy-e and pds, but did not trigger the synthesis of astaxanthin, canthaxanthin nor zeaxanthin. The combined effect of both high light and nitrogen starvation stresses enhanced significantly the accumulation of these carotenoids as well as the transcript levels of bkt gene, as compared with the effect of only high irradiance stress. PMID:23118722

  9. Quantification of lycopene in the processed tomato-based products by means of the light-emitting diode (LED) and compact photoacoustic (PA) detector

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Skenderović, H.; Marković, K.; Dóka, O.; Pichler, L.; Pichler, G.; Luterotti, S.

    2010-03-01

    The combined use of a high power light emitting diode (LED) and the compact photoacoustic (PA) detector offers the possibility for a rapid (no extraction needed), accurate (precision 1.5%) and inexpensive quantification of lycopene in different products derived from the thermally processed tomatoes. The concentration of lycopene in selected products ranges from a few mg to several tens mg per 100 g fresh weight. The HPLC was used as the well established reference method.

  10. A comparison of plasma and prostate lycopene in response to typical servings of tomato soup, sauce or juice in men before prostatectomy.

    PubMed

    Grainger, Elizabeth M; Hadley, Craig W; Moran, Nancy E; Riedl, Kenneth M; Gong, Michael C; Pohar, Kamal; Schwartz, Steven J; Clinton, Steven K

    2015-08-28

    Tomato product consumption and estimated lycopene intake are hypothesised to reduce the risk of prostate cancer. To define the impact of typical servings of commercially available tomato products on resultant plasma and prostate lycopene concentrations, men scheduled to undergo prostatectomy (n 33) were randomised either to a lycopene-restricted control group ( < 5 mg lycopene/d) or to a tomato soup (2-2¾ cups prepared/d), tomato sauce (142-198 g/d or 5-7 ounces/d) or vegetable juice (325-488 ml/d or 11-16·5 fluid ounces/d) intervention providing 25-35 mg lycopene/d. Plasma and prostate carotenoid concentrations were measured by HPLC. Tomato soup, sauce and juice consumption significantly increased plasma lycopene concentration from 0·68 (sem 0·1) to 1·13 (sem 0·09) μmol/l (66 %), 0·48 (sem 0·09) to 0·82 (sem 0·12) μmol/l (71 %) and 0·49 (sem 0·12) to 0·78 (sem 0·1) μmol/l (59 %), respectively, while the controls consuming the lycopene-restricted diet showed a decline in plasma lycopene concentration from 0·55 (sem 0·60) to 0·42 (sem 0·07) μmol/l ( - 24 %). The end-of-study prostate lycopene concentration was 0·16 (sem 0·02) nmol/g in the controls, but was 3·5-, 3·6- and 2·2-fold higher in tomato soup (P= 0·001), sauce (P= 0·001) and juice (P= 0·165) consumers, respectively. Prostate lycopene concentration was moderately correlated with post-intervention plasma lycopene concentrations (r 0·60, P =0·001), indicating that additional factors have an impact on tissue concentrations. While the primary geometric lycopene isomer in tomato products was all-trans (80-90 %), plasma and prostate isomers were 47 and 80 % cis, respectively, demonstrating a shift towards cis accumulation. Consumption of typical servings of processed tomato products results in differing plasma and prostate lycopene concentrations. Factors including meal composition and genetics deserve further evaluation to determine their impacts on lycopene absorption and biodistribution.

  11. Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults123

    PubMed Central

    Moran, Nancy E; Cichon, Morgan J; Riedl, Kenneth M; Grainger, Elizabeth M; Schwartz, Steven J; Novotny, Janet A; Erdman, John W; Clinton, Steven K

    2015-01-01

    Background: Lycopene, which is a red carotenoid in tomatoes, has been hypothesized to mediate disease-preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, whereas human plasma and tissues show greater proportions of cis isomers. Objective: With the use of compartmental modeling and stable isotope technology, we determined whether endogenous all-trans-to-cis-lycopene isomerization or isomeric-bioavailability differences underlie the greater proportion of lycopene cis isomers in human tissues than in tomato foods. Design: Healthy men (n = 4) and women (n = 4) consumed 13C-lycopene (10.2 mg; 82% all-trans and 18% cis), and plasma was collected over 28 d. Unlabeled and 13C-labeled total lycopene and lycopene-isomer plasma concentrations, which were measured with the use of high-performance liquid chromatography–mass spectrometry, were fit to a 7-compartment model. Results: Subjects absorbed a mean ± SEM of 23% ± 6% of the lycopene. The proportion of plasma cis-13C-lycopene isomers increased over time, and all-trans had a shorter half-life than that of cis isomers (5.3 ± 0.3 and 8.8 ± 0.6 d, respectively; P < 0.001) and an earlier time to reach maximal plasma concentration than that of cis isomers (28 ± 7 and 48 ± 9 h, respectively). A compartmental model that allowed for interindividual differences in cis- and all-trans-lycopene bioavailability and endogenous trans-to-cis-lycopene isomerization was predictive of plasma 13C and unlabeled cis- and all-trans-lycopene concentrations. Although the bioavailability of cis (24.5% ± 6%) and all-trans (23.2% ± 8%) isomers did not differ, endogenous isomerization (0.97 ± 0.25 μmol/d in the fast-turnover tissue lycopene pool) drove tissue and plasma isomeric profiles. Conclusion: 13C-Lycopene combined with physiologic compartmental modeling provides a strategy for following complex in vivo metabolic processes in humans and reveals that postabsorptive trans-to-cis-lycopene isomerization, and not the differential bioavailability of isomers, drives tissue and plasma enrichment of cis-lycopene. This trial was registered at clinicaltrials.gov as NCT01692340. PMID:26561629

  12. Lycopene and male infertility

    PubMed Central

    Durairajanayagam, Damayanthi; Agarwal, Ashok; Ong, Chloe; Prashast, Pallavi

    2014-01-01

    Excessive amounts of reactive oxygen species (ROS) cause a state of oxidative stress, which result in sperm membrane lipid peroxidation, DNA damage and apoptosis, leading to decreased sperm viability and motility. Elevated levels of ROS are a major cause of idiopathic male factor infertility, which is an increasingly common problem today. Lycopene, the most potent singlet oxygen quencher of all carotenoids, is a possible treatment option for male infertility because of its antioxidant properties. By reacting with and neutralizing free radicals, lycopene could reduce the incidence of oxidative stress and thus, lessen the damage that would otherwise be inflicted on spermatozoa. It is postulated that lycopene may have other beneficial effects via nonoxidative mechanisms in the testis, such as gap junction communication, modulation of gene expression, regulation of the cell cycle and immunoenhancement. Various lycopene supplementation studies conducted on both humans and animals have shown promising results in alleviating male infertility—lipid peroxidation and DNA damage were decreased, while sperm count and viability, and general immunity were increased. Improvement of these parameters indicates a reduction in oxidative stress, and thus the spermatozoa is less vulnerable to oxidative damage, which increases the chances of a normal sperm fertilizing the egg. Human trials have reported improvement in sperm parameters and pregnancy rates with supplementation of 4–8 mg of lycopene daily for 3–12 months. However, further detailed and extensive research is still required to determine the dosage and the usefulness of lycopene as a treatment for male infertility. PMID:24675655

  13. Mitochondrial β-Carotene 9',10' Oxygenase Modulates Prostate Cancer Growth via NF-κB Inhibition: A Lycopene-Independent Function.

    PubMed

    Gong, Xiaoming; Marisiddaiah, Raju; Zaripheh, Susan; Wiener, Doris; Rubin, Lewis P

    2016-10-01

    Despite numerous inquiries into protective roles of lycopene in prostate cancer prevention or therapy, little is known about mechanisms by which lycopene or its metabolites inhibit prostate cancer. The enzyme β-carotene 9',10'-oxygenase (BCO2), which catalyzes asymmetric cleavage of several carotenoids, is the principal regulator of lycopene metabolism, but the range of BCO2 biological functions is incompletely understood. This study investigated expression and functional roles of BCO2 in human prostate cancer. Expression of the bco2 gene is dramatically decreased in prostate cancer tissue and in a range of prostate cancer cell lines as compared with nonneoplastic prostate tissue and normal prostatic epithelial cells, respectively. Inhibition of DNA methyltransferase activity restored bco2 expression in prostate cancer cell lines tested. Treatment with lycopene or its metabolite, apo-10-lycopenal, also increased bco2 expression and reduced cell proliferation in androgen-sensitive cell lines, but lycopene neither altered bco2 expression nor cell growth in androgen-resistant cells. Notably, restoring bco2 expression in prostate cancer cells inhibited cell proliferation and colony formation, irrespective of lycopene exposure. Exogenous expression of either wild-type BCO2 or a mutant (enzymatically inactive) BCO2 in prostate cancer cells reduced NF-κB activity and decreased NF-κB nuclear translocation and DNA binding. Together, these results indicate epigenetic loss of BCO2 expression is associated with prostate cancer progression. Moreover, these findings describe previously unanticipated functions of BCO2 that are independent of its enzymatic role in lycopene metabolism. This study identifies BCO2 as a tumor suppressor in prostate cancer. BCO2-mediated inhibition of NF-κB signaling implies BCO2 status is important in prostate cancer progression. Mol Cancer Res; 14(10); 966-75. ©2016 AACR. ©2016 American Association for Cancer Research.

  14. Optimization of extraction of high purity all-trans-lycopene from tomato pulp waste.

    PubMed

    Poojary, Mahesha M; Passamonti, Paolo

    2015-12-01

    The aim of this work was to optimize the extraction of pure all-trans-lycopene from the pulp fractions of tomato processing waste. A full factorial design (FFD) consisting of four independent variables including extraction temperature (30-50 °C), time (1-60 min), percentage of acetone in n-hexane (25-75%, v/v) and solvent volume (10-30 ml) was used to investigate the effects of process variables on the extraction. The absolute amount of lycopene present in the pulp waste was found to be 0.038 mg/g. The optimal conditions for extraction were as follows: extraction temperature 20 °C, time 40 min, a solvent composition of 25% acetone in n-hexane (v/v) and solvent volume 40 ml. Under these conditions, the maximal recovery of lycopene was 94.7%. The HPLC-DAD analysis demonstrated that, lycopene was obtained in the all-trans-configuration at a very high purity grade of 98.3% while the amount of cis-isomers and other carotenoids were limited. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of solvent addition sequence on lycopene extraction efficiency from membrane neutralized caustic peeled tomato waste.

    PubMed

    Phinney, David M; Frelka, John C; Cooperstone, Jessica L; Schwartz, Steven J; Heldman, Dennis R

    2017-01-15

    Lycopene is a high value nutraceutical and its isolation from waste streams is often desirable to maximize profits. This research investigated solvent addition order and composition on lycopene extraction efficiency from a commercial tomato waste stream (pH 12.5, solids ∼5%) that was neutralized using membrane filtration. Constant volume dilution (CVD) was used to desalinate the caustic salt to neutralize the waste. Acetone, ethanol and hexane were used as direct or blended additions. Extraction efficiency was defined as the amount of lycopene extracted divided by the total lycopene in the sample. The CVD operation reduced the active alkali of the waste from 0.66 to <0.01M and the moisture content of the pulp increased from 93% to 97% (wet basis), showing the removal of caustic salts from the waste. Extraction efficiency varied from 32.5% to 94.5%. This study demonstrates a lab scale feasibility to extract lycopene efficiently from tomato processing byproducts. Published by Elsevier Ltd.

  16. Vitamin E and Lycopene Reduce Coal Burning Fluorosis-induced Spermatogenic Cell Apoptosis via Oxidative Stress-mediated JNK and ERK Signaling Pathways.

    PubMed

    Tian, Yuan; Xiao, Yuehai; Wang, Bolin; Sun, Chao; Tang, Kaifa; Sun, Fa

    2017-12-22

    Although fluoride has been widely used in toothpaste, mouthwash, and drinking water to prevent dental caries, the excessive intake of fluoride can cause fluorosis which is associated with dental, skeletal, and soft tissue fluorosis. Recent evidences have drawn the attention to its adverse effects on male reproductive system that include spermatogenesis defect, sperm count loss, and sperm maturation impairment. Fluoride induces oxidative stress through the activation of mitogen activated protein kinase (MAPK) cascade which can lead to cell apoptosis. Vitamin E (VE) and lycopene are two common anti-oxidants, being protective to reactive oxygen species (ROS)-induced toxic effects. However, whether and how these two anti-oxidants prevent fluoride-induced spermatogenic cell apoptosis are largely unknown. In the present study, a male rat model for coal burning fluorosis was established and the histological lesions and spermatogenic cell apoptosis in rat testes were observed. The decreased expression of clusterin, a heterodimeric glycoprotein reported to regulate spermatogenic cell apoptosis, is detected in fluoride-treated rat testes. Interestingly, the co-administration with VE or lycopene reduced fluorosis-mediated testicular toxicity and rescued clusterin expression. Further, fluoride caused the enhanced Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) phosphorylation, which was reduced by VE or lycopene. Thus, VE and lycopene prevent coal burning fluorosis-induced spermatogenic cell apoptosis through the suppression of oxidative stress-mediated JNK and ERK signaling pathway, which could be an alternative therapeutic strategy for the treatment of fluorosis. ©2017 The Author(s).

  17. Lycopene Inhibits NF-kB-Mediated IL-8 Expression and Changes Redox and PPARγ Signalling in Cigarette Smoke–Stimulated Macrophages

    PubMed Central

    Simone, Rossella E.; Russo, Marco; Catalano, Assunta; Monego, Giovanni; Froehlich, Kati; Boehm, Volker; Palozza, Paola

    2011-01-01

    Increasing evidence suggests that lycopene, the major carotenoid present in tomato, may be preventive against smoke-induced cell damage. However, the mechanisms of such a prevention are still unclear. The aim of this study was to investigate the role of lycopene on the production of the pro-inflammatory cytokine IL-8 induced by cigarette smoke and the possible mechanisms implicated. Therefore, human THP-1 macrophages were exposed to cigarette smoke extract (CSE), alone and following a 6-h pre-treatment with lycopene (0.5–2 µM). CSE enhanced IL-8 production in a time- and a dose-dependent manner. Lycopene pre-treatment resulted in a significant inhibition of CSE-induced IL-8 expression at both mRNA and protein levels. NF-kB controlled the transcription of IL-8 induced by CSE, since PDTC prevented such a production. Lycopene suppressed CSE-induced NF-kB DNA binding, NF-kB/p65 nuclear translocation and phosphorylation of IKKα and IkBα. Such an inhibition was accompanied by a decrease in CSE-induced ROS production and NOX-4 expression. Lycopene further inhibited CSE-induced phosphorylation of the redox-sensitive ERK1/2, JNK and p38 MAPKs. Moreover, the carotenoid increased PPARγ levels which, in turn, enhanced PTEN expression and decreased pAKT levels in CSE-exposed cells. Such effects were abolished by the PPARγ inhibitor GW9662. Taken together, our data indicate that lycopene prevented CSE-induced IL-8 production through a mechanism involving an inactivation of NF-kB. NF-kB inactivation was accompanied by an inhibition of redox signalling and an activation of PPARγ signalling. The ability of lycopene in inhibiting IL-8 production, NF-kB/p65 nuclear translocation, and redox signalling and in increasing PPARγ expression was also found in isolated rat alveolar macrophages exposed to CSE. These findings provide novel data on new molecular mechanisms by which lycopene regulates cigarette smoke-driven inflammation in human macrophages. PMID:21625550

  18. Safety assessment of a natural tomato oleoresin containing high amounts of Z-isomers of lycopene prepared with supercritical carbon dioxide.

    PubMed

    Honda, Masaki; Higashiura, Takuma; Fukaya, Tetsuya

    2017-02-01

    Z-isomers of lycopene, which are abundantly present in processed tomato products, are more bioavailable than (all-E)-lycopene found predominantly in raw tomatoes. Despite extensive studies on the bioavailability and biological activities of Z-isomers of lycopene, detailed studies on their safety and toxicology are limited. The geno-, acute and subacute toxicities of tomato oleoresin that contained high amounts of lycopene Z-isomers (10.9% lycopene with 66.3% Z-isomer content) and had been prepared with supercritical carbon dioxide were investigated. The oleoresin was non-mutagenic in the Ames test with and without metabolic activation (S9 mix). The medial lethal dose (LD 50 ) of the oleoresin in rats, as determined by a single-dose oral test, was more than 5000 mg kg body weight -1 (bw) [361 mg (Z)-lycopene kg bw -1 ]. In the 4-week repeated-dose oral toxicity test, rats were administered oleoresin at 4500 mg kg -1 day -1 [325 mg (Z)-lycopene kg bw -1 day -1 ]. There were no clinically significant changes with respect to vital signs, physical examination outcomes and laboratory test values during the test period. Based on our findings and as supported by its long history of consumption, tomato oleoresin that contains high amounts of Z-isomers of lycopene prepared with supercritical carbon dioxide can be considered as safe for human consumption. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Application of a LED-based reflectance sensor for the assessing in situ the lycopene content of tomatoes (Lycopersicon esculentum Mill.)

    NASA Astrophysics Data System (ADS)

    Mignani, Anna G.; Ciaccheri, Leonardo; Mencaglia, Andrea A.; Tuccio, Lorenza; Agati, Giovanni

    2015-05-01

    Nondestructive in situ determination of the antioxidant lycopene of fresh tomato fruits is of large interest for the growers, willing to optimize the harvest time for high quality products. For this, we developed a portable LED-based colorimeter which was able to measure reflectance spectra of whole tomatoes in the 400-750 nm range. The tomato skins from the same samples were then frozen in liquid nitrogen, extracted with an acetone/ethanol/hexane mixture and analyzed by means of a spectrophotometer for their lycopene content. Concentration of lycopene was varying between 70 and 550 mg/Kg fresh weight skin. Partial Least Square regression was used to correlate spectral data to the tomato lycopene content. The multivariate processing of the reflectance data showed that lycopene content could be nicely predicted with a coefficient of determination R2=0.945 and a root mean square error of cross-validation RMSECV=57 mg/Kg skin fresh weight. These results suggest that portable, low-cost and compact LED-based sensors appear to be promising instruments for the nondestructive assessment of tomato lycopene even in the field.

  20. Lycopene Modulates THP1 and Caco2 Cells Inflammatory State through Transcriptional and Nontranscriptional Processes

    PubMed Central

    Makon-Sébastien, Njock; Francis, Fouchier; Eric, Seree; Henri, Villard Pierre; François, Landrier Jean; Laurent, Pechere; Yves, Barra; Serge, Champion

    2014-01-01

    We revisited the action of a carotenoid, the lycopene, on the expression of proinflammatory genes, reactive oxygen species (ROS) production, and metalloprotease (MMP9) activity. THP1 and Caco2 cell lines were used as in vitro models for the two main cell types found in intestine tissue, that is, monocytes and epithelial cells. Proinflammatory condition was induced using either phorbol ester acetate (PMA), lipopolysaccharide (LPS) or tumor necrosis factor (TNF). In THP1 cells, short term pretreatment (2 h) with a low concentration (2 μM) of lycopene reinforce proinflammatory gene expression. The extent of the effect of lycopene is dependent on the proinflammtory stimulus (PMA, LPS or TNF) used. Lycopene enhanced MMP9 secretion via a c-AMP-dependent process, and reduced ROS production at higher concentrations than 2 μM. Cell culture media, conditioned by PMA-treated monocytes and then transferred on CaCo-2 epithelial cells, induced a proinflammatory state in these cells. The extent of this inflammatory effect was reduced when cells has been pretreated (12 h) with lycopene. At low concentration (2 μM or less), lycopene appeared to promote an inflammatory state not correlated with ROS modulation. At higher concentration (5 μM–20 μM), an anti-inflammatory effect takes place as a decrease of ROS production was detected. So, both concentration and time have to be considered in order to define the exact issue of the effect of carotenoids present in meals. PMID:24891766

  1. Cardiovascular benefits of lycopene: fantasy or reality?

    PubMed

    Thies, Frank; Mills, Lynsey M; Moir, Susan; Masson, Lindsey F

    2017-05-01

    Epidemiological evidence indicates that high consumption of tomatoes and tomato-based products reduces the risk of chronic diseases such as CVD and cancer. Such potential benefits are often ascribed to high concentrations of lycopene present in tomato products. Mainly from the results of in vitro studies, potential biological mechanisms by which carotenoids could protect against heart disease and cancer have been suggested. These include cholesterol reduction, inhibition of oxidation processes, modulation of inflammatory markers, enhanced intercellular communication, inhibition of tumourigenesis and induction of apoptosis, metabolism to retinoids and antiangiogenic effects. However, with regard to CVD, results from intervention studies gave mixed results. Over fifty human intervention trials with lycopene supplements or tomato-based products have been conducted to date, the majority being underpowered. Many showed some beneficial effects but mostly on non-established cardiovascular risk markers such as lipid peroxidation, DNA oxidative damage, platelet activation and inflammatory markers. Only a few studies showed improvement in lipid profiles, C reactive protein and blood pressure. However, recent findings indicate that lycopene could exert cardiovascular protection by lowering HDL-associated inflammation, as well as by modulating HDL functionality towards an antiatherogenic phenotype. Furthermore, in vitro studies indicate that lycopene could modulate T lymphocyte activity, which would also inhibit atherogenic processes and confer cardiovascular protection. These findings also suggest that HDL functionality deserves further consideration as a potential early marker for CVD risk, modifiable by dietary factors such as lycopene.

  2. Lycopene and Risk of Prostate Cancer

    PubMed Central

    Chen, Ping; Zhang, Wenhao; Wang, Xiao; Zhao, Keke; Negi, Devendra Singh; Zhuo, Li; Qi, Mao; Wang, Xinghuan; Zhang, Xinhua

    2015-01-01

    Abstract Prostate cancer (PCa) is a common illness for aging males. Lycopene has been identified as an antioxidant agent with potential anticancer properties. Studies investigating the relation between lycopene and PCa risk have produced inconsistent results. This study aims to determine dietary lycopene consumption/circulating concentration and any potential dose–response associations with the risk of PCa. Eligible studies published in English up to April 10, 2014, were searched and identified from Pubmed, Sciencedirect Online, Wiley online library databases and hand searching. The STATA (version 12.0) was applied to process the dose–response meta-analysis. Random effects models were used to calculate pooled relative risks (RRs) and 95% confidence intervals (CIs) and to incorporate variation between studies. The linear and nonlinear dose–response relations were evaluated with data from categories of lycopene consumption/circulating concentrations. Twenty-six studies were included with 17,517 cases of PCa reported from 563,299 participants. Although inverse association between lycopene consumption and PCa risk was not found in all studies, there was a trend that with higher lycopene intake, there was reduced incidence of PCa (P = 0.078). Removal of one Chinese study in sensitivity analysis, or recalculation using data from only high-quality studies for subgroup analysis, indicated that higher lycopene consumption significantly lowered PCa risk. Furthermore, our dose–response meta-analysis demonstrated that higher lycopene consumption was linearly associated with a reduced risk of PCa with a threshold between 9 and 21 mg/day. Consistently, higher circulating lycopene levels significantly reduced the risk of PCa. Interestingly, the concentration of circulating lycopene between 2.17 and 85 μg/dL was linearly inversed with PCa risk whereas there was no linear association >85 μg/dL. In addition, greater efficacy for the circulating lycopene concentration on preventing PCa was found for studies with high quality, follow-up >10 years and where results were adjusted by the age or the body mass index. In conclusion, our novel data demonstrates that higher lycopene consumption/circulating concentration is associated with a lower risk of PCa. However, further studies are required to determine the mechanism by which lycopene reduces the risk of PCa and if there are other factors in tomato products that might potentially decrease PCa risk and progression. PMID:26287411

  3. Microarray analysis of gene expression patterns of high lycopene tomato generated from seeds after long-term space flight

    NASA Astrophysics Data System (ADS)

    Lu, Jinying; Ren, Chunxiao; Pan, Yi; Nechitailo, Galina S.; Liu, Min

    Lycopene content is a most vital trait of tomatoes due to the role of lycopene in reducing the risk of some kinds of cancers. In this experiment, we gained a high lycopene (hl) tomato (named HY-2), after seven generations of self-cross selection, from seeds Russian MNP-1 carried in Russia MIR space station for six years. HPLC result showed that the lycopene content was 1.6 times more than that in Russian MNP-1 (the wild type). Microarray analysis presented the general profile of differential expressed genes at the tomato developmental stage of 7DPB (days post breaker). One hundred and forty three differential expression genes were identified according to the following criterion: the average changes were no less than 1.5 folds with q-value (similar to FDR) less than 0.05 or changes were no less than 1.5 folds in all three biological replications. Most of the differential expressed genes were mainly involved in metabolism, response to stimulus, biosynthesis, development and regulation. Particularly, we discussed the genes involved in protein metabolism, response to unfolded protein, carotenoid biosynthesis and photosynthesis that might be related to the fruit development and the accumulation of lycopene. What's more, we conducted QRT-PCR validation of five key genes (Fps, CrtL-b, CrtR-b, Zep and Nxs) in the lycopene biosynthesis pathway through time courses and that provided the direct molecular evidence for the hl phenotype. Our results demonstrate that long-term space flight, as a rarely used tool, can positively cause some beneficial mutations in the seeds and thus to help to generate a high quality variety, combined with ground selections.

  4. cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development.

    PubMed

    Zhu, Changfu; Yamamura, Saburo; Nishihara, Masashiro; Koiwa, Hiroyuki; Sandmann, Gerhard

    2003-02-20

    cDNAs encoding lycopene epsilon -cyclase, lycopene beta-cyclase, beta-carotene hydroxylase and zeaxanthin epoxidase were isolated from a Gentiana lutea petal cDNA library. The function of all cDNAs was analyzed by complementation in Escherichia coli. Transcript levels during different stages of flower development of G. lutea were determined and compared to the carotenoid composition. Expression of all genes increased by a factor of up to 2, with the exception of the lycopene epsilon -cyclase gene. The transcript amount of the latter was strongly decreased. These results indicate that during flower development, carotenoid formation is enhanced. Moreover, metabolites are shifted away from the biosynthetic branch to lutein and are channeled into beta-carotene and derivatives.

  5. Olive oil enriched in lycopene from tomato by-product through a co-milling process.

    PubMed

    Bendini, Alessandra; Di Lecce, Giuseppe; Valli, Enrico; Barbieri, Sara; Tesini, Federica; Toschi, Tullia Gallina

    2015-01-01

    The aim of this investigation was to produce an olive oil (OO) naturally enriched with antioxidants, recovering carotenoids, in particular lycopene, using an industrial by-product of tomato seeds and skin. For this purpose, a technological process in a low-scale industrial plant to co-mill olives and tomato by-product in de-frosted or freeze-dried forms was applied and studied with respect to control samples. Preliminary results obtained from two different experiments were carried out by 40 kg of cultivar Correggiolo olives and 60 kg of olive blends from different cultivars. In both the experiments, the co-milling showed significant enrichment in carotenoids, especially in lycopene (mean values of 5.4 and 7.2 mg/kg oil from defrosted and freeze-dried by-products, respectively). The experimental results demonstrated the possibility to obtain a new functional food naturally enriched in antioxidant compounds, which might be marketed as "OO dressing enriched in lycopene" or "condiment produced using olives and tomato by-product".

  6. A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces

    PubMed Central

    Arrach, Nabil; Fernández-Martín, Rafael; Cerdá-Olmedo, Enrique; Avalos, Javier

    2001-01-01

    Previous complementation and mapping of mutations that change the usual yellow color of the Zygomycete Phycomyces blakesleeanus to white or red led to the definition of two structural genes for carotene biosynthesis. We have cloned one of these genes, carRA, by taking advantage of its close linkage to the other, carB, responsible for phytoene dehydrogenase. The sequences of the wild type and six mutants have been established, compared with sequences in other organisms, and correlated with the mutant phenotypes. The carRA and carB coding sequences are separated by 1,381 untranslated nucleotides and are divergently transcribed. Gene carRA contains separate domains for two enzymes, lycopene cyclase and phytoene synthase, and regulates the overall activity of the pathway and its response to physical and chemical stimuli from the environment. The lycopene cyclase domain of carRA derived from a duplication of a gene from a common ancestor of fungi and Brevibacterium linens; the phytoene synthase domain is similar to the phytoene and squalene synthases of many organisms; but the regulatory functions appear to be specific to Phycomyces. PMID:11172012

  7. Enzyme-aided extraction of lycopene from high-pigment tomato cultivars by supercritical carbon dioxide.

    PubMed

    Lenucci, Marcello Salvatore; De Caroli, Monica; Marrese, Pier Paolo; Iurlaro, Andrea; Rescio, Leonardo; Böhm, Volker; Dalessandro, Giuseppe; Piro, Gabriella

    2015-03-01

    This work reports a novel enzyme-assisted process for lycopene concentration into a freeze-dried tomato matrix and describes the results of laboratory scale lycopene supercritical CO2 (SC-CO2) extractions carried out with untreated (control) and enzyme-digested matrices. The combined use of food-grade commercial plant cell-wall glycosidases (Celluclast/Novozyme plus Viscozyme) allows to increase lycopene (∼153%) and lipid (∼137%) concentration in the matrix and rises substrate load onto the extraction vessel (∼46%) compared to the control. The addition of an oleaginous co-matrix (hazelnut seeds) to the tomato matrix (1:1 by weight) increases CO2 diffusion through the highly dense enzyme-treated matrix bed and provides lipids that are co-extracted increasing lycopene yield. Under the same operative conditions (50 MPa, 86 °C, 4 mL min(-1) SC-CO2 flow) extraction yield from control and Celluclast/Novozyme+Viscozyme-treated tomato matrix/co-matrix mixtures was similar, exceeding 75% after 4.5h of extraction. However, the total extracted lycopene was ∼3 times higher in enzyme-treated matrix than control. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids.

    PubMed

    Saini, Ramesh Kumar; Moon, So Hyun; Keum, Young-Soo

    2018-06-01

    Globally, the amount of food processing waste has become a major concern for environmental sustainability. The valorization of these waste materials can solve the problems of its disposal. Notably, the tomato pomace and crustacean processing waste presents enormous opportunities for the extraction of commercially vital carotenoids, lycopene, and astaxanthin, which have diverse applications in the food, feed, pharmaceuticals, and cosmetic industries. Moreover, such waste can generate surplus revenue which can significantly improve the economics of food production and processing. Considering these aspects, many reports have been published on the efficient use of tomato and crustacean processing waste to recover lycopene and astaxanthin. The current review provides up-to-date information available on the chemistry of lycopene and astaxanthin, their extraction methods that use environmentally friendly green solvents to minimize the impact of toxic chemical solvents on health and environment. Future research challenges in this context are also identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Dietary tomato and lycopene impact androgen signaling- and carcinogenesis-related gene expression during early TRAMP prostate carcinogenesis

    PubMed Central

    Wan, Lei; Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Pearl, Dennis K.; Erdman, John W.; Moran, Nancy E.; Clinton, Steven K.

    2014-01-01

    Consumption of tomato products containing the carotenoid lycopene is associated with a reduced risk of prostate cancer. To identify gene expression patterns associated with early testosterone-driven prostate carcinogenesis, which are impacted by dietary tomato and lycopene, wild type (WT) and transgenic adenocarcinoma of the mouse prostate (TRAMP) mice were fed control or tomato- or lycopene-containing diets from 4-10 wk-of-age. Eight-week-old mice underwent sham surgery, castration, or castration followed by testosterone-repletion (2.5 mg/kg/d initiated 1 wk after castration). Ten-wk-old intact TRAMP mice exhibit early multifocal prostatic intraepithelial neoplasia (PIN). Of the 200 prostate cancer-related genes measured by quantitative NanoString®, 189 are detectable, 164 significantly differ by genotype, 179 by testosterone status, and 30 by diet type (P<0.05). In TRAMP, expression of Birc5, Mki67, Aurkb, Ccnb2, Foxm1, and Ccne2 is greater compared to WT and is decreased by castration. In parallel, castration reduces Ki67-positive staining (P<0.0001) compared to intact and testosterone-repleted TRAMP mice. Expression of genes involved in androgen metabolism/signaling pathways are reduced by lycopene feeding (Srd5a1) and by tomato-feeding (Srd5a2, Pxn, and Srebf1). Additionally, tomato-feeding significantly reduced expression of genes associated with stem cell features, Aldh1a and Ly6a, while lycopene-feeding significantly reduced expression of neuroendocrine differentiation-related genes, Ngfr and Syp. Collectively, these studies demonstrate a profile of testosterone-regulated genes associated with early stages of prostate carcinogenesis that are potential mechanistic targets of dietary tomato components. Future studies on androgen signaling/metabolism, stem cell features, and neuroendocrine differentiation pathways may elucidate the mechanisms by which dietary tomato and lycopene impact prostate cancer risk. PMID:25315431

  10. Interaction of tomato lycopene and ketosamine against rat prostate tumorigenesis.

    PubMed

    Mossine, Valeri V; Chopra, Pankaj; Mawhinney, Thomas P

    2008-06-01

    Prior investigations on the beneficial effect of dietary processed tomato products and lycopene on prostate cancer risk suggested that lycopene may require the presence of other constituents to exert its chemopreventive potential. We investigated whether ketosamines, a group of carbohydrate derivatives present in dehydrated tomato products, may interact with lycopene against prostate tumorigenesis. One ketosamine, FruHis, strongly synergized with lycopene against proliferation of the highly metastatic rat prostate adenocarcinoma MAT-LyLu cell line in vitro. The FruHis/lycopene combination significantly inhibited in vivo tumor formation by MAT-LyLu cells in syngeneic Copenhagen rats. Energy-balanced diets, supplemented with tomato paste, tomato powder, or tomato paste plus FruHis, were fed to Wistar-Unilever rats (n = 20 per group) treated with N-nitroso-N-methylurea and testosterone to induce prostate carcinogenesis. Survival from carcinogenesis was lowest in the control group (median survival time, 40 weeks) and highest in the group fed the tomato paste/FruHis diet (51 weeks; P = 0.004, versus control). The proportions of dying rats with macroscopic prostate tumors in the control, tomato paste, tomato powder, and tomato paste/FruHis groups were 63% (12 of 19), 39% (5 of 13), 43% (6 of 14), and 18% (2 of 11), respectively. FruHis completely blocked DNA oxidative degradation at >250 micromol/L in vitro, whereas neither ascorbate nor phenolic antioxidants from tomato were effective protectors in this assay. FruHis, therefore, may exert tumor-preventive effect through its antioxidant activity and interaction with lycopene.

  11. [Functional properties and health benefits of lycopene].

    PubMed

    Cruz Bojórquez, Reyna María; González Gallego, Javier; Sánchez Collado, Pilar

    2013-01-01

    Lycopene is a carotenoid, which is found mainly in tomatoes, retains its functional properties after processing, is not toxic and has antioxidant, anti-inflammatory and chemotherapeutics effects in cardiovascular or neurodegenerative diseases and in some cancers. However, it seems that its intake through the diet is inadequate. The objective of this review is to highlight the properties of lycopene and provide recommendations to improve its health benefits. We performed a literature review related to the topic through Pub Med database. The WHO and national governments promote through food guides the daily consumption of 400 g of fruits and vegetables because of their contain in antioxidants including lycopene. Lycopene intake widely varies, with an average consumption between 5 and 7 mg/day. Controversy arises from the ranger of figures between different studies and the fact that there is no recommended amount, precluding comparisons of national and international level and the establishment of policies and strategies to ensure its consumption. Lycopene intake can be seen as a preventive measure and non pharmacological therapy for different types of diseases, but the work of professionals in nutrition and health is required to increase its intake through food education and to propose daily intakes from results of scientific research. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.

  12. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit.

    PubMed

    Grassi, Stefania; Piro, Gabriella; Lee, Je Min; Zheng, Yi; Fei, Zhangjun; Dalessandro, Giuseppe; Giovannoni, James J; Lenucci, Marcello S

    2013-11-12

    Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Total carotenoids progressively increased during fruit ripening up to ~55 μg g(-1) fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening.

  13. Comparative genomics reveals candidate carotenoid pathway regulators of ripening watermelon fruit

    PubMed Central

    2013-01-01

    Background Many fruits, including watermelon, are proficient in carotenoid accumulation during ripening. While most genes encoding steps in the carotenoid biosynthetic pathway have been cloned, few transcriptional regulators of these genes have been defined to date. Here we describe the identification of a set of putative carotenoid-related transcription factors resulting from fresh watermelon carotenoid and transcriptome analysis during fruit development and ripening. Our goal is to both clarify the expression profiles of carotenoid pathway genes and to identify candidate regulators and molecular targets for crop improvement. Results Total carotenoids progressively increased during fruit ripening up to ~55 μg g-1 fw in red-ripe fruits. Trans-lycopene was the carotenoid that contributed most to this increase. Many of the genes related to carotenoid metabolism displayed changing expression levels during fruit ripening generating a metabolic flux toward carotenoid synthesis. Constitutive low expression of lycopene cyclase genes resulted in lycopene accumulation. RNA-seq expression profiling of watermelon fruit development yielded a set of transcription factors whose expression was correlated with ripening and carotenoid accumulation. Nineteen putative transcription factor genes from watermelon and homologous to tomato carotenoid-associated genes were identified. Among these, six were differentially expressed in the flesh of both species during fruit development and ripening. Conclusions Taken together the data suggest that, while the regulation of a common set of metabolic genes likely influences carotenoid synthesis and accumulation in watermelon and tomato fruits during development and ripening, specific and limiting regulators may differ between climacteric and non-climacteric fruits, possibly related to their differential susceptibility to and use of ethylene during ripening. PMID:24219562

  14. Prediction Models for Assessing Lycopene in Open-Field Cultivated Tomatoes by Means of a Portable Reflectance Sensor: Cultivar and Growing-Season Effects.

    PubMed

    Ciaccheri, Leonardo; Tuccio, Lorenza; Mencaglia, Andrea A; Sikorska-Zimny, Kalina; Hallmann, Ewelina; Kowalski, Artur; G Mignani, Anna; Kaniszewski, Stanislaw; Agati, Giovanni

    2018-05-09

    Reflectance spectroscopy represents a useful tool for the nondestructive assessment of tomato lycopene, even in the field. For this reason, a compact, low-cost, light emitting diode-based sensor has been developed to measure reflectance in the 400-750 nm spectral range. It was calibrated against wet chemistry and evaluated by partial least squares (PLS) regression analyses. The lycopene prediction models were defined for two open-field cultivated red-tomato varieties: the processing oblong tomatoes of the cv. Calista (average weight: 76 g) and the fresh-consumption round tomatoes of the cv. Volna (average weight: 130 g), over a period of two consecutive years. The lycopene prediction models were dependent on both cultivar and season. The lycopene root mean square error of prediction produced by the 2014 single-cultivar calibrations validated on the 2015 samples was large (33 mg kg -1 ) in the Calista tomatoes and acceptable (9.5 mg kg -1 ) in the Volna tomatoes. A more general bicultivar and biyear model could still explain almost 80% of the predicted lycopene variance, with a relative error in red tomatoes of less than 20%. In 2016, the in-field applications of the multiseasonal prediction models, built with the 2014 and 2015 data, showed significant ( P < 0.001) differences in the average lycopene estimated in the crop on two sampling dates that were 20 days apart: on August 19 and September 7, 2016, the lycopene was 98.9 ± 9.3 and 92.2 ± 10.8 mg kg -1 FW for cv. Calista and 54.6 ± 13.2 and 60.8 ± 6.8 mg kg -1 FW for cv. Volna. The sensor was also able to monitor the temporal evolution of lycopene accumulation on the very same fruits attached to the plants. These results indicated that a simple, compact reflectance device and PLS analysis could provide adequately precise and robust (through-seasons) models for the nondestructive assessment of lycopene in whole tomatoes. This technique could guarantee tomatoes with the highest nutraceutical value from the production, during storage and distribution, and finally to consumers.

  15. Identification of an Epoxide Metabolite of Lycopene in Human Plasma Using 13C-Labeling and QTOF-MS.

    PubMed

    Cichon, Morgan J; Moran, Nancy E; Riedl, Ken M; Schwartz, Steven J; Clinton, Steven K

    2018-03-20

    The carotenoid lycopene is a bioactive component of tomatoes and is hypothesized to reduce risk of several chronic diseases, such as prostate cancer. The metabolism of lycopene is only beginning to be understood and some studies suggest that metabolites of lycopene may be partially responsible for bioactivity associated with the parent compound. The detection and characterization of these compounds in vivo is an important step in understanding lycopene bioactivity. The metabolism of lycopene likely involves both chemical and enzymatic oxidation. While numerous lycopene metabolites have been proposed, few have actually been identified in vivo following lycopene intake. Here, LC-QTOF-MS was used along with 13 C-labeling to investigate the post-prandial oxidative metabolism of lycopene in human plasma. Previously reported aldehyde cleavage products were not detected, but a lycopene 1,2-epoxide was identified as a new candidate oxidative metabolite.

  16. The thermal Z-isomerization-induced change in solubility and physical properties of (all-E)-lycopene.

    PubMed

    Murakami, Kazuya; Honda, Masaki; Takemura, Ryota; Fukaya, Tetsuya; Kubota, Mitsuhiro; Wahyudiono; Kanda, Hideki; Goto, Motonobu

    2017-09-16

    The effect of Z-isomerization of (all-E)-lycopene on its solubility in organic solvents and physical properties was investigated. Lycopene samples containing different Z-isomer contents (23.8%, 46.9%, and 75.6% of total lycopene) were prepared from high-purity (all-E)-lycopene by thermal Z-isomerization in dichloromethane (CH 2 Cl 2 ). As the Z-isomer content increased, the relative solubility of lycopene significantly improved. Although (all-E)-lycopene barely dissolved in ethanol (0.6 mg/L), the solubilities of lycopene containing 23.8%, 46.9%, and 75.6% Z-isomers were 484.5, 914.7, and 2401.7 mg/L, respectively. Furthermore, differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses clearly indicated that (all-E)-lycopene was present in the crystal state, while Z-isomers of lycopene were present in amorphous states. A number of studies have suggested that Z-isomers of lycopene are better absorbed in the human body than the all-E-isomer. This may be due to the change in solubility and physical properties of lycopene by the Z-isomerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Non-Invasive Immunofluorescence Assessment of Lycopene Supplementation Status in Skin Smears.

    PubMed

    Petyaev, Ivan M; Zigangirova, Naylia A; Pristensky, Dmitry; Chernyshova, Marina; Tsibezov, Valeriy V; Chalyk, Natalya E; Morgunova, Elena Y; Kyle, Nigel H; Bashmakov, Yuriy K

    2018-06-14

    Circulating lycopene level is negatively associated with the prevalence of cardiovascular disease, cancers (prostate and breast), type 2 diabetes mellitus, and aging. Traditionally, lycopene is measured in biological specimens by a combination of high-performance liquid chromatography (HPLC) and mass spectrometry methods. Moreover, as we recently reported, tissue/cell lycopene depositions can be observed by the immunohistochemistry method with a newly developed monoclonal antibody (mAb) against lycopene. A main objective of this study is to evaluate the performance of a new noninvasive immunofluorescence (IF) lycopene quantification skin test with mAbs against lycopene versus HPLC lycopene assay of serum lycopene in volunteers subjected to lycopene supplementation and represents its novelty. For this purpose, 32 healthy volunteers, 30-40 years old, were supplemented with lycopene (n = 15) or placebo (n = 17) for a period of 4 weeks. It was found that lycopene supplementation leads to a significant increase in serum lycopene concentration after 2 and 4 weeks by 2.6- and 3.4-fold over control, respectively. This was accompanied by a concordant step-wise rise in IF staining of skin corneocytes and sebum, quantifiable by arbitrary IF scores. Placebo supplementation did not affect serum lycopene values or intensity of IF staining of the skin samples. There was 86.6% agreement in paired HPLC/IF variants for the intermediate time point and 80.0% agreement at the end of the study in the lycopene group. Intraclass correlation between paired values in this group was +0.49 for the 2-week time point and +0.63 for the end point. These results indicate that the new antibody-based skin assay can be used for rapid detection of lycopene deficiencies. Moreover, the noninvasive nature of the skin swab test would allow using it to monitor, optimize, and personalize lycopene supplementation protocol of risk groups in the general population.

  18. Review of the anticarcinogenic properties and other health benefits of tomato compounds lycopene and tomatine in pure form and in fresh and processed tomatoes

    USDA-ARS?s Scientific Manuscript database

    Tomatoes produce the bioactive compounds the red pigment lycopene and the glycoalkaloid a-tomatine that are reported to have potential health-promoting effects in animals and humans but our understanding of the roles of these compounds in the diet is incomplete. This review surveys and interprets t...

  19. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates

    PubMed Central

    Wei, Jia; Wang, Qiaomei

    2012-01-01

    One of the main characteristics of tomato (Solanum lycopersicum) fruit ripening is a massive accumulation of carotenoids (mainly lycopene), which may contribute to the nutrient quality of tomato fruit and its role in chemoprevention. Previous studies have shown that ethylene (ET) plays a central role in promoting fruit ripening. In this study, the role of jasmonic acid (JA) in controlling lycopene accumulation in tomato fruits was analysed by measuring fruit lycopene content and the expression levels of lycopene biosynthetic genes in JA-deficient mutants (spr2 and def1) and a 35S::prosystemin transgenic line (35S::prosys) with increased JA levels and constitutive JA signalling. The lycopene content was significantly decreased in the fruits of spr2 and def1, but was enhanced in 35S::prosys fruits. Simultaneously, the expression of lycopene biosynthetic genes followed a similar trend. Lycopene synthesis in methyl jasmonate (MeJA) vapour-treated fruits showed an inverted U-shaped dose response, which significantly enhanced the fruit lycopene content and restored lycopene accumulation in spr2 and def1 at a concentration of 0.5 µM. The results indicated that JA plays a positive role in lycopene biosynthesis. In addition, the role of ET in JA-induced lycopene accumulation was also examined. Ethylene production in tomato fruits was depressed in spr2 and def1 while it increased in 35S::prosys. However, the exogenous application of MeJA to Never ripe (Nr), the ET-insensitive mutant, significantly promoted lycopene accumulation, as well as the expression of lycopene biosynthetic genes. Based on these results, it is proposed that JA might function independently of ethylene to promote lycopene biosynthesis in tomato fruits. PMID:22945939

  20. Oxidative metabolites of lycopene and their biological functions

    USDA-ARS?s Scientific Manuscript database

    To gain a better understanding of the beneficial biological activities of lycopene on cancer prevention, a greater knowledge of the metabolism of lycopene is needed. In particular, the identification of lycopene metabolites and oxidation products in vivo; the importance of tissue specific lycopene c...

  1. Development of lycopene micelle and lycopene chylomicron and a comparison of bioavailability

    NASA Astrophysics Data System (ADS)

    Jyun Chen, Yi; Inbaraj, Baskaran Stephen; Shiau Pu, Yeong; Chen, Bing Huei

    2014-04-01

    The objectives of this study were to develop lycopene micelles and lycopene chylomicrons from tomato extracts for the enhancement and comparison of bioavailability. Lycopene micelles and chylomicrons were prepared by a microemulsion technique involving tomato extract, soybean oil, water, vitamin E and surfactant Tween 80 or lecithin in different proportions. The encapsulation efficiency of lycopene was 78% in micelles and 80% in chylomicrons, with shape being roughly spherical and mean particle size being 7.5 and 131.5 nm. A bioavailability study was conducted in rats by both gavage and i.v. administration, with oral bioavailability of lycopene, phytoene and phytofluene being 6.8, 4.3 and 3.1% in micelles and 9.5, 9.4 and 7.1% in chylomicrons, respectively. This outcome reveals higher lycopene bioavailability through incorporation into micelle or chylomicron systems. Both size and shape should be considered for oral bioavailability determination. For i.v. injection, lycopene micelles should be more important than lycopene chylomicrons for future clinical applications.

  2. Encapsulation of lycopene in Chlorella pyrenoidosa: Loading properties and stability improvement.

    PubMed

    Pu, Chuanfen; Tang, Wenting

    2017-11-15

    Aiming to improve the stability of lycopene and incorporate it into a complex nutraceutical, exogenous lycopene-loaded Chlorella pyrenoidosa cells (CPCs) were developed. The complex had an encapsulation yield of 13.06±0.89% and an encapsulation efficiency of 96.31±3.10%. Fluorescence analyses indicated that lycopene was encapsulated in the CPCs. X-ray diffraction, thermogravimetric and differential scanning calorimetric analyses were conducted and compared to those of the non-loaded CPCs, lycopene and their physical mixture. These studies demonstrated that lycopene was amorphous in the complex. The degradation kinetics indicated that encapsulation increased the stability of lycopene. The antioxidant activity of lycopene loaded CPCs against DPPH free radicals was higher than that of the unencapsulated lycopene after storage at 25°C for 25d. This study proved the feasibility of encapsulation of lycopene in the CPCs and combined the activities of both materials, which could be employed in the production of novel nutraceuticals to reduce oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cyclase inhibitor tripropylamine significantly enhanced lycopene accumulation in Blakeslea trispora.

    PubMed

    Wang, Yanlong; Chen, Xiwen; Hong, Xiao; Du, Shipeng; Liu, Chunxiao; Gong, Wenfang; Chen, Defu

    2016-11-01

    Lycopene is a member of carotenoids that exhibits strong antioxidant activity. In this study, on the basis of screening suitable strain combination [ATCC 14271(+) and ATCC 14272(-)] and establishing the optimal inoculation proportion of mated culture (1/2, +/-, w/w) for carotenoid production, the efficiency of compounds, mainly tertiary amines, on enhancing the lycopene content of Blakeslea trispora was systematically assessed. Of these compounds, tripropylamine showed the best enhancing effect, and then sequentially followed by triethylamine, tributylamine, trimethylamine, diisopropylamine, and isopropylamine. After treated with 1.8 g/L tripropylamine for two days, the lycopene proportion was increased from 1.7% to 90.1%, while the β-carotene proportion was decreased from 91.1% to 6.4% of the total carotenoids. In this case, the lycopene and total carotenoid contents were increased to 83.2 and 92.4 mg/gDW, which were 315.8- and 5.9-fold of that of the untreated control, respectively; while the growth of mycelia was only decreased at 6.0 g/L tripropylamine. Gene expression analysis showed that all the tested genes, especially genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (hmgr) and isopentenyl pyrophosphate isomerase (ipi) in mevalonate pathway, as well as phytoene desaturase (carB) in carotenoid biosynthesis process were upregulated. Therefore, tripropylamine enhanced lycopene content of B. trispora by inhibiting the cyclase activity, and by upregulating the expression of genes associated with terpenoid biosynthesis. Besides, a possible association between the structure and the lycopene-enhancing capability of these compounds was also discussed. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Lycopene dietary intervention: a pilot study in patients with heart failure.

    PubMed

    Biddle, Martha J; Lennie, Terry A; Bricker, Gregory V; Kopec, Rachel E; Schwartz, Steven J; Moser, Debra K

    2015-01-01

    Heart failure (HF) is a condition of chronic exacerbations and injury resulting from an intricate relationship between biochemical and biological mechanisms. Inflammation can be a significant contributor in the pathophysiology of HF. Antioxidants may slow the progression of HF because of their ability to inhibit damaging inflammatory processes. The purpose of this study was to test a dietary intervention in patients with HF to assess the impact of lycopene on biomarkers of inflammation. Forty participants with HF were randomly assigned to 1 of 2 groups: lycopene intervention and usual care. The lycopene intervention group received 29.4 mg of lycopene intake per day by drinking an 11.5 oz serving of V8 100% vegetable juice for 30 days. We obtained serum lycopene, uric acid, C-reactive protein (CRP), and b-type natriuretic peptide to determine the impact of the intervention. Plasma lycopene levels increased in the intervention group compared with the usual care group (0.51 μmol/L to 0.76 μmol/L, P = .002; 0.56 μmol/L to 0.58 μmol/L). C-reactive protein levels decreased significantly in the intervention group in women and but not in men (P = .04). The preintervention CRP level for women was 5.9 ± 3.7 mg/dL and for men was 2.2 ± 2.1 mg/dL. The postintervention CRP level for women was 4.5 ± 3.6 mg/dL and for men was 2.4 ± 2.1 mg/dL. These findings suggest that the antioxidants in a 30-day intervention of V8 juice affect CRP levels in a sample of female patients with HF.

  5. High dose lycopene supplementation increases hepatic cytochrome P4502E1 protein and inflammation in alcohol-fed rats.

    PubMed

    Veeramachaneni, Sudipta; Ausman, Lynne M; Choi, Sang Woon; Russell, Robert M; Wang, Xiang-Dong

    2008-07-01

    Recent in vitro evidence suggests that the antioxidant lycopene can prevent alcohol-induced oxidative stress and inflammation. However, knowledge of possible interactions in vivo between escalating doses of lycopene and chronic alcohol ingestion are lacking. In this study, we investigated potential interactions between alcohol ingestion and lycopene supplementation and their effect on hepatic lycopene concentration, cytochrome P4502E1 (CYP2E1) induction, and inflammation. Fischer 344 rats (6 groups, n = 10 per group) were fed either a liquid ethanol Lieber-DeCarli diet or a control diet (isocaloric maltodextrin substituted for ethanol) with or without lycopene supplementation at 2 doses (1.1 or 3.3 mg x kg body weight(-1) x d(-1)) for 11 wk. Plasma and hepatic concentrations of lycopene isomers were assessed by HPLC analysis. We examined expressions of hepatic CYP2E1 and tumor necrosis factor-alpha (TNFalpha) and the incidence of hepatic inflammatory foci. Both plasma and hepatic lycopene concentrations were greater in alcohol-fed rats than in control rats supplemented with identical doses of lycopene. In contrast, alcohol-fed rats had a lower percentage of lycopene cis isomers in the plasma and the liver compared with control rats fed the same dose of lycopene. Notably, lycopene supplementation at the higher dose significantly induced hepatic CYP2E1 protein, TNFalpha mRNA, and the incidence of inflammatory foci in the alcohol-fed rats but not in the control rats. These data indicate an interaction between chronic alcohol ingestion and lycopene supplementation and suggest a need for caution among individuals consuming high amounts of both alcohol and lycopene.

  6. Effects of Lycopene on the Initial State of Atherosclerosis in New Zealand White (NZW) Rabbits

    PubMed Central

    Lorenz, Mario; Fechner, Mandy; Kalkowski, Janine; Fröhlich, Kati; Trautmann, Anne; Böhm, Volker; Liebisch, Gerhard; Lehneis, Stefan; Schmitz, Gerd; Ludwig, Antje; Baumann, Gert; Stangl, Karl; Stangl, Verena

    2012-01-01

    Background Lycopene is the main carotenoid in tomatoes, where it is found in high concentrations. Strong epidemiological evidence suggests that lycopene may provide protection against cardiovascular diseases. We therefore studied the effects of lycopene on diet-induced increase in serum lipid levels and the initiation of atherosclerosis in New Zealand White (NZW) rabbits. Methodology/Principal Findings The animals, divided into four groups of 9 animals each, were fed either a standard diet, a high-cholesterol diet containing 0.5% cholesterol, a high-cholesterol diet containing placebo beadlets, or a high-cholesterol diet plus 5 mg/kg body weight/day of lycopene (in the form of lycopene beadlets), for a period of 4 weeks. We found significantly elevated lycopene plasma levels in the animal group treated with lycopene beadlets. Compared to the high-cholesterol and the placebo group, this was associated with a significant reduction of 50% in total cholesterol and LDL cholesterol serum levels in the lycopene group. The amount of cholesteryl ester in the aorta was significantly decreased by lycopene. However, we did not observe a significant decrease in the extent of aortic surface lipid accumulation in the lycopene group. In addition, no differences in the intima-media thickness among groups were observed. Endothelial-dependent and endothelial-independent vasodilation in isolated rabbit aortic and carotid rings did not differ among any of the animal groups. Conclusions Lycopene supplementation for 4 weeks increased lycopene plasma levels in the animals. Although we found strongly reduced total and LDL cholesterol serum levels as well as significantly lower amounts of cholesteryl ester in the aortae in the lycopene-treated group, no significant differences in initial lesions in the aortae were detected. PMID:22295112

  7. Low Prostate Concentration of Lycopene Is Associated with Development of Prostate Cancer in Patients with High-Grade Prostatic Intraepithelial Neoplasia

    PubMed Central

    Mariani, Simone; Lionetto, Luana; Cavallari, Michele; Tubaro, Andrea; Rasio, Debora; De Nunzio, Cosimo; Hong, Gena M.; Borro, Marina; Simmaco, Maurizio

    2014-01-01

    Prostate cancer (PC) is a frequent male malignancy and represents the second most diagnosed cancer in men. Since pre-cancerous lesions, i.e., the high-grade prostatic intraepithelial neoplasia (HGPIN), can be detected years before progression to PC, early diagnosis and chemoprevention are targeted strategies to reduce PC rates. Animal studies have shown that lycopene, a carotenoid contained in tomatoes, is a promising candidate for the chemoprevention of PC. However, its efficacy in humans remains controversial. The present study aimed to investigate the relevance of plasma and prostate concentration of lycopene after a lycopene-enriched diet in patients diagnosed with HGPIN. Thirty-two patients diagnosed with HGPIN were administered a lycopene-enriched diet (20–25 mg/day of lycopene; through 30 g/day of triple concentrated tomato paste) for 6 months. A 6-month follow-up prostate biopsy assessed progression to PC. Patients were classified into three groups according to the histopathological features of the 6-month follow-up biopsy results: prostatitis; HGPIN and PC. PSA and plasma lycopene levels were measured before and after the dietary lycopene supplementation. Prostatic lycopene concentration was only assessed after the supplementation diet. Only prostatic lycopene concentration showed significant differences between the three groups (p = 0.03). Prostatic lycopene concentration below a 1 ng/mg threshold was associated with PC at 6-month follow-up biopsy (p = 0.003). We observed no overall benefits from a 6-month lycopene supplementation, as the rate of HGPIN progression to PC in our population (9/32, 28%) was similar to rates reported in the literature. Baseline PSA levels also showed no significant changes after a lycopene-enriched diet. Our findings point to prostatic lycopene concentration as a promising biomarker of PC. Further prospective longitudinal studies are needed to assess the prognostic role of prostatic lycopene in PC. PMID:24451130

  8. A Possible Indicator of Oxidative Damage in Smokers: (13Z)-Lycopene?

    PubMed

    Graham, Daniel L; Lorenz, Mario; Young, Andrew J; Lowe, Gordon M

    2017-09-13

    In vitro, the gaseous phase of cigarette smoke is known to induce both isomerization and degradation of dietary carotenoids, such as β-carotene and lycopene. However, the effects of cigarette smoke on the composition of circulating lycopene in vivo are not well understood. In this study, we examined the lycopene profiles of plasma from non-smokers and smokers. No oxidative intermediates of lycopene that have been observed previously in vitro were detected in the plasma, but evidence of isomerization of the carotenoid was seen. Four geometric forms of lycopene were detected in the plasma of both smokers and non-smokers, namely the (5 Z ), (9 Z ), (13 Z ) and (all- E ) forms. The relative amounts of these isomers differed between the two cohorts and there was a significant difference ( p < 0.05) between smokers and non-smokers for the ratio of total-Z:all- E lycopene, and in the relative amounts of (13 Z ) and (all- E )-lycopene. The ratio of (all- E ):(13 Z )-lycopene was 0.84:1.00 in smokers compared to 1.04:1.00 in non-smokers. In smokers, the (13 Z )-isomer was generated in preference to the more thermodynamically stable (5 Z ) and (9 Z )-isomers. This mirrors the scenario seen in vitro, in which the formation of (13 Z )-lycopene was the main isomer that accompanied the depletion of (all- E ) lycopene, when exposed to cigarette smoke. The results suggest that the relative amount of (13 Z )-lycopene could be used as an indicator of oxidative damage to lycopene in vivo.

  9. Lycopene Deficiency in Ageing and Cardiovascular Disease

    PubMed Central

    Petyaev, Ivan M.

    2016-01-01

    Lycopene is a hydrocarbon phytochemical belonging to the tetraterpene carotenoid family and is found in red fruit and vegetables. Eleven conjugated double bonds predetermine the antioxidant properties of lycopene and its ability to scavenge lipid peroxyl radicals, reactive oxygen species, and nitric oxide. Lycopene has a low bioavailability rate and appears in the blood circulation incorporated into chylomicrons and other apo-B containing lipoproteins. The recent body of evidence suggests that plasma concentration of lycopene is not only a function of intestinal absorption rate but also lycopene breakdown via enzymatic and oxidative pathways in blood and tissues. Oxidative stress and the accumulation of reactive oxygen species and nitric oxide may represent a major cause of lycopene depletion in ageing, cardiovascular disease, and type 2 diabetes mellitus. It has been shown recently that low carotenoid levels, and especially decreased serum lycopene levels, are strongly predictive of all-cause mortality and poor outcomes of cardiovascular disease. However, there is a poor statistical association between dietary and serum lycopene levels which occurs due to limited bioavailability of lycopene from dietary sources. Hence, it is very unlikely that nutritional intervention alone could be instrumental in the correction of lycopene and carotenoid deficiency. Therefore, new nutraceutical formulations of carotenoids with enhanced bioavailability are urgently needed. PMID:26881023

  10. [Effects of lycopene on the skeletal system].

    PubMed

    Sołtysiak, Patrycja; Folwarczna, Joanna

    2015-02-21

    Antioxidant substances of plant origin, such as lycopene, may favorably affect the skeletal system. Lycopene is a carotenoid pigment, responsible for characteristic red color of tomatoes. It is believed that lycopene may play a role in the prevention of various diseases; despite theoretical premises and results of experimental studies, the effectiveness of lycopene has not yet been clearly demonstrated in studies carried out in humans. The aim of the study was to present the current state of knowledge on the effects of lycopene on the osseous tissue in in vitro and in vivo experimental models and on the skeletal system in humans. Results of the studies indicate that lycopene may inhibit bone resorption. Favorable effects of high doses of lycopene on the rat skeletal system in experimental conditions, including the model of osteoporosis induced by estrogen deficiency, have been demonstrated. The few epidemiological and clinical studies, although not fully conclusive, suggest a possible beneficial effect of lycopene present in the diet on the skeletal system.

  11. Lycopene metabolism and its biological significance12345

    PubMed Central

    2012-01-01

    The beneficial effects of a high intake of tomatoes and tomato products on the risk of certain chronic diseases have been presented in many epidemiologic studies, with the suggestion that lycopene (a major carotenoid in tomatoes) is a micronutrient with important health benefits. Within the past few years, we have gained greater knowledge of the metabolism of lycopene and the biological effects of lycopene derivatives. In particular, the characterization and study of β-carotene 9′,10′-oxygenase has shown that this enzyme can catalyze the excentric cleavage of both provitamin and non–provitamin A carotenoids to form apo-10′-carotenoids, including apo-10′-lycopenoids from lycopene. This raised an important question of whether the effect of lycopene on various cellular functions and signaling pathways is a result of the direct actions of intact lycopene or its derivatives. Several reports, including our own, support the notion that the biological activities of lycopene can be mediated by apo-10′-lycopenoids. More research is clearly needed to identify and characterize additional lycopene metabolites and their biological activities, which will potentially provide invaluable insights into the mechanisms underlying the effects of lycopene in humans. PMID:23053559

  12. Absorption and distribution of lycopene in rat colon.

    PubMed

    Oshima, S; Inakuma, T; Narisawa, T

    1999-01-01

    Colonic absorption and distribution of lycopene, which inhibited rat colon carcinogenesis in our previous studies, were investigated in Sprague-Dawley rats. Three groups of six rats each with or without a single-barreled colostomy at the mid colon were given a single intragastric or intracolonic dose of 0.2 mL of corn oil containing 12 mg of lycopene. Twenty-four hours later, all rats were sacrificed and the blood and some tissues were collected. The contents of lycopene in the samples were assayed by HPLC. Lycopene was detected in an appreciable amount in the liver, but only in trace amount in the serum of all rats treated with an intracolonic dose of lycopene and in rats with an intragastric dose. After an intragastric lycopene treatment, lycopene was detected in the mucosa of the proximal colon and of the distal colon of the colostomized rats, whose distal colon had been excluded from the fecal stream. A large amount of lycopene was recovered in the feces. None was detected in any sample from the control rats treated with an intragastric or intracolonic dose of plain corn oil. The results suggest that lycopene is absorbed from the colon and also from the small intestine. It might be concluded that both ways of absorption contribute to a comparative amount of lycopene accumulation in the colon mucosa after ingestion of this carotenoid.

  13. Storage quality of walnut oil containing lycopene during accelerated oxidation.

    PubMed

    Xie, Chaonan; Ma, Zheng Feei; Li, Fang; Zhang, Hongxia; Kong, Lingming; Yang, Zhipan; Xie, Weifeng

    2018-04-01

    The purpose of investigation was to assess the effect of lycopene on the peroxide value, acid value, fatty acids, total phenolic content and ferric-reducing antioxidant power of walnut oil. Walnut oil was extracted from Xinjiang walnut variety using cold pressing method. Our study reported that after 45 days of accelerated oxidation at 60 °C (Schaal oven test), 0.005% lycopene exhibited the greatest antioxidant effect than other addition levels of lycopene. Therefore, under ambient storage conditions, the shelf-life of walnut oil could be extended up to 16 months by 0.005% lycopene. Moreover, 0.005% lycopene added to walnut oil had a significantly higher content of saturated fatty acid, unsaturated fatty acid, total phenol, reducing ability of the polar and non-polar components than the blank sample (walnut oil without any addition of lycopene). In conclusion, lycopene improved the quality of walnut oil because of its antioxidant effect against lipid oxidation.

  14. Effect of lycopene and {beta}-carotene on peroxynitrite-mediated cellular modifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzandu, Kaampwe; Ishizuka, Mayumi; Sakamoto, Kentaro Q.

    2006-09-15

    Peroxynitrite formed by the reaction of superoxide and nitric oxide is a highly reactive species with a role in various pathological processes such as cancer, chronic inflammation, and cardiovascular and neurological diseases. In the present study, the effect of the carotenoids, lycopene and {beta}-carotene, on peroxynitrite-mediated modifications in plasmid DNA as well as cellular DNA and proteins were investigated. In pUC18 plasmid DNA, these carotenoids strongly inhibited DNA strand breaks caused by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1). SIN-1 was also used to determine effects on DNA damage and protein tyrosine nitration in Chinese hamster lung fibroblasts. SIN-1 dose-dependently increased nitrationmore » of proteins in cells above basal levels as determined by Western blotting. This nitration was inhibited in the presence of the uric acid as well as lycopene. Physiological concentrations (0.31-10 {mu}M) of lycopene and {beta}-carotene also had protective effects on DNA damage, as measured by the comet assay. Lycopene significantly reduced DNA damage particularly, in the median range of concentrations (2.5 {mu}M). The protective effects of lycopene and {beta}-carotene could be due to their scavenging of reactive oxygen (ROS) and/or nitrogen species (RNS) as they reduce the amount of intracellular ROS/RNS produced following treatment with SIN-1 by as much as 47.5% and 42.4%, respectively. The results obtained in this study suggest that carotenoids may alleviate some of the deleterious effects of peroxynitrite and possibly other reactive nitrogen species as well in vivo.« less

  15. Effect of thermal treatment and light irradiation on the stability of lycopene with high Z-isomers content.

    PubMed

    Murakami, Kazuya; Honda, Masaki; Takemura, Ryota; Fukaya, Tetsuya; Wahyudiono; Kanda, Hideki; Goto, Motonobu

    2018-06-01

    The stability of lycopene with high Z-isomers content during thermal treatment and light irradiation was investigated. Purified (all-E)-lycopene was thermally isomerized to the Z-isomers in dichloromethane (CH 2 Cl 2 ) at 50 °C for 24 h. The total content of the Z-isomers of lycopene reached 56.1%. Then, the mixture of lycopene isomers was stored in the dark at 4, 25, and 40 °C for 30 days, and under light irradiation using a fluorescent light at 4 °C for 336 h. The degradation rate of lycopene during thermal treatment rose with increasing temperature and the activation energy for decomposition of the mixture of lycopene isomers was calculated to be 71.0 kJ mol -1 . The degradation rate of lycopene isomers was almost the same under thermal treatment. On the other hand, during light irradiation, isomerization was promoted rather than decomposition, i.e. (9Z)- and (13Z)-lycopene converted to the (all-E)-isomer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Use of the product of mean intensity ratio (PMIR) technique for discriminant analysis of lycopene-rich vegetable juice using a portable NIR-excited Raman spectrometer.

    PubMed

    Hara, Risa; Ishigaki, Mika; Kitahama, Yasutaka; Ozaki, Yukihiro; Genkawa, Takuma

    2018-02-15

    In this study, a lycopene-content-based discriminant analysis was performed using a portable near-infrared-excited Raman spectrometer. In the vegetable-juice Raman spectra, the peak intensity of the lycopene band increased with increasing lycopene concentration, but scattering decreased the repeatability of the peak intensity. Consequently, developing a lycopene-concentration regression model using peak intensity is not straightforward. Therefore, a new method known as the product of mean intensity ratio (PMIR) analysis was developed to rapidly identify lycopene-rich samples on-site. In the PMIR analysis, Raman spectra are measured with short exposure times, confirming only the peaks of carotenoids with high concentrations, and thus the lycopene concentrations of vegetable juice samples could be determined successfully. Exposure times of 20ms and 100ms could detect lycopene concentrations of ≥5mg/100g and ≥2mg/100g with 93.2% and 97.7% accuracy, respectively; thus, lycopene-content-based discriminant analysis using the PMIR and a portable Raman spectrometer is feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biosynthesis of highly enriched 13C-lycopene for human metabolic studies using repeated batch tomato cell culturing with 13C-glucose

    PubMed Central

    Moran, Nancy E.; Rogers, Randy B.; Lu, Chi-Hua; Conlon, Lauren E.; Lila, Mary Ann; Clinton, Steven K.; Erdman, John W.

    2013-01-01

    While putative disease-preventing lycopene metabolites are found in both tomato (Solanum lycopersicum) products and in their consumers, mammalian lycopene metabolism is poorly understood. Advances in tomato cell culturing techniques offer an economical tool for generation of highly-enriched 13C-lycopene for human bioavailability and metabolism studies. To enhance the 13C-enrichment and yields of labeled lycopene from the hp-1 tomato cell line, cultures were first grown in 13C-glucose media for three serial batches and produced increasing proportions of uniformly labeled lycopene (14.3 +/− 1.2 %, 39.6 +/− 0.5 %, and 48.9 +/− 1.5% with consistent yields (from 5.8 to 9 mg/L). An optimized 9-day-long 13C-loading and 18-day-long labeling strategy developed based on glucose utilization and lycopene yields, yielded 13C-lycopene with 93% 13C isotopic purity, and 55% of isotopomers were uniformly labeled. Furthermore, an optimized acetone and hexane extraction led to a four-fold increase in lycopene recovery from cultures compared to a standard extraction. PMID:23561155

  18. A Review About Lycopene-Induced Nuclear Hormone Receptor Signalling in Inflammation and Lipid Metabolism via still Unknown Endogenous Apo-10´-Lycopenoids.

    PubMed

    Caris-Veyrat, Catherine; Garcia, Ada L; Reynaud, Eric; Lucas, Renata; Aydemir, Gamze; Rühl, Ralph

    2017-10-20

    Lycopene is the red pigment in tomatoes and tomato products and is an important dietary carotenoid found in the human organism. Lycopene-isomers, oxidative lycopene metabolites and apo-lycopenoids are found in the food matrix. Lycopene intake derived from tomato consumption is associated with alteration of lipid metabolism and a lower incidence of cardiovascular diseases (CVD). Lycopene is mainly described as a potent antioxidant but novel studies are shifting towards its metabolites and their capacity to mediate nuclear receptor signalling. Di-/tetra-hydro-derivatives of apo-10´-lycopenoic acid and apo-15´-lycopenoic acids are potential novel endogenous mammalian lycopene metabolites which may act as ligands for nuclear hormone mediated activation and signalling. In this review, we postulate that complex lycopene metabolism results in various lycopene metabolites which have the ability to mediate transactivation of various nuclear hormone receptors like RARs, RXRs and PPARs. A new mechanistic explanation of how tomato consumption could positively modulate inflammation and lipid metabolism is discussed.

  19. Lycopene inhibits the cell proliferation and invasion of human head and neck squamous cell carcinoma.

    PubMed

    Ye, Min; Wu, Qundan; Zhang, Min; Huang, Jinbei

    2016-10-01

    Lycopene has been shown to be associated with anticancer effects in numerous tumor types. However, the underlying mechanisms of lycopene in human head and neck squamous cell carcinoma (HNSCC) remain to be determined. The present study aimed to investigate the involvement of lycopene overload and the cytotoxic effects of lycopene on HNSCC cells, and to determine the possible mechanisms involved. Treatment with lycopene at a dose of >10 µM for >24 h inhibited the growth of FaDu and Cal27 cells in a time‑ and dose‑dependent manner. The clearest increase in growth inhibition was due to the apoptotic population being significantly increased. The invasion abilities decreased with 25 µM lycopene exerting significant inhibitory effects (P<0.01). Mechanistic studies revealed that lycopene induced the upregulation of the pro‑apoptotic protein, B‑cell lymphoma‑associated X protein, and therefore, resulted in the inhibition of the protein kinase B and mitogen‑activated protein kinase signaling pathway. These data provided insights into the antitumor activity of lycopene in HNSCC cells.

  20. Generation and Application of Monoclonal Antibody Against Lycopene.

    PubMed

    Tsibezov, Valeriy V; Bashmakov, Yuriy K; Pristenskiy, Dmitry V; Zigangirova, Naylia A; Kostina, Ludmila V; Chalyk, Natalya E; Kozlov, Alexey Y; Morgunova, Elena Y; Chernyshova, Marina P; Lozbiakova, Marina V; Kyle, Nigel H; Petyaev, Ivan M

    2017-04-01

    A monoclonal antibody (Mab) against lycopene was developed from hybridoma clones obtained from BALB/c mice immunized with trans-isomer of lycopene (t-lycopene, t-LC) conjugated with colloidal gold particles. An alternating immunization schedule which included injection of both formulations of immunogen (without and with Freund's adjuvant) was most effective in the elucidation of a measurable immune response to the t-Lycopene conjugate. Selected hybridoma clones were able to produce an Mab positive in competition assay. In particular, preincubation of 6B9 Mabs with t-LC abolished the ability of 6B9 Mabs to bind LC in the competition assay. Mabs produced by other clones (4F10, 4A3, and 3B12) worked similarly. Analysis of antigen specificity showed that 6B9 Mab raised against t-LC did not recognize other carotenoids such as lutein and carotene. Mab 6B9 was shown to recognize lycopene on a glass surface and in the settings of indirect immunofluorescence experiments performed in cultured hepatocytes and alveolar macrophages incubated with and without lycopene, as well as in sebum and corneocyte specimens from the skin of volunteers supplemented with nutraceutical formulation of lycopene. Newly generated Mabs against lycopene may provide a valuable tool for different analytical assays of lycopene content in various biological, agricultural, and food products.

  1. Purified low-density lipoprotein and bovine serum albumin efficiency to internalise lycopene into adipocytes.

    PubMed

    Gouranton, Erwan; Yazidi, Claire El; Cardinault, Nicolas; Amiot, Marie Josèphe; Borel, Patrick; Landrier, Jean-François

    2008-12-01

    Epidemiological studies have suggested that lycopene has protective effects against various diseases including cardiovascular diseases. However, mechanistic studies to understand these effects are difficult due to the insolubility of lycopene in aqueous culture medium. The objective of the present study was to use LDL or BSA as physiological vehicles for lycopene and to compare them with various classical vehicles. Among tested vehicles, only LDL, BSA, THF/BHT, beadlets, and liposomes were able to solubilise lycopene. No cytotoxicity was observed with these vehicles. LDL and BSA allowed good stability of lycopene during incubation (52% and 43% for 2microM lycopene solutions), but remained less efficient than THF/BHT or beadlets (67% and 62%). Incubation of adipocytes (3T3-L1) with the different vehicles for 24 and 48h showed that beadlets best delivered lycopene to cells. Finally, whatever the vehicle used, intracellular localization of lycopene was the same: lipid droplets (32-51%), plasma membrane (32-37%) and nuclear membrane (19-29%). As a conclusion, LDL or BSA display comparable properties to THF/BHT or beadlets. It is the first time that lycopene carried by physiological vehicles is shown to reach different subcellular compartments supporting molecular effects in adipocyte, such as cell signaling or nuclear receptor interacting.

  2. A Common Variant in the SETD7 Gene Predicts Serum Lycopene Concentrations.

    PubMed

    D'Adamo, Christopher R; D'Urso, Antonietta; Ryan, Kathleen A; Yerges-Armstrong, Laura M; Semba, Richard D; Steinle, Nanette I; Mitchell, Braxton D; Shuldiner, Alan R; McArdle, Patrick F

    2016-02-06

    Dietary intake and higher serum concentrations of lycopene have been associated with lower incidence of prostate cancer and other chronic diseases. Identifying determinants of serum lycopene concentrations may thus have important public health implications. Prior studies have suggested that serum lycopene concentrations are under partial genetic control. The goal of this research was to identify genetic predictors of serum lycopene concentrations using the genome-wide association study (GWAS) approach among a sample of 441 Old Order Amish adults that consumed a controlled diet. Linear regression models were utilized to evaluate associations between genetic variants and serum concentrations of lycopene. Variant rs7680948 on chromosome 4, located in the intron region of the SETD7 gene, was significantly associated with serum lycopene concentrations (p = 3.41 × 10(-9)). Our findings also provided nominal support for the association previously noted between SCARB1 and serum lycopene concentrations, although with a different SNP (rs11057841) in the region. This study identified a novel locus associated with serum lycopene concentrations and our results raise a number of intriguing possibilities regarding the nature of the relationship between SETD7 and lycopene, both of which have been independently associated with prostate cancer. Further investigation into this relationship might help provide greater mechanistic understanding of these associations.

  3. Dietary and circulating lycopene and stroke risk: a meta-analysis of prospective studies

    PubMed Central

    LI, Xinli; XU, Jiuhong

    2014-01-01

    Epidemiological studies support a protective role of lycopene against stroke occurrence or mortality, but the results have been conflicting. We conducted a meta-analysis to assess the relationship between dietary or circulating lycopene and stroke risk (including stroke occurrence or mortality). Relevant papers were collected by screening the PubMed database through October 2013. Only prospective studies providing relative risk estimates with 95% confidence intervals for the association between lycopene and stroke were included. A random-effects model was used to calculate the pooled estimate. Subgroup analysis was conducted to investigate the effects of various factors on the final results. The pooled analysis of seven prospective studies, with 116,127 participants and 1,989 cases, demonstrated that lycopene decreased stroke risk by 19.3% (RR = 0.807, 95% CI = 0.680–0.957) after adjusting for confounding factors. No heterogeneity was observed (p = 0.234, I2 = 25.5%). Circulating lycopene, not dietary lycopene, was associated with a statistically significant decrease in stroke risk (RR = 0.693, 95% CI = 0.503–0.954). Lycopene could protect European, or males against stroke risk. Duration of follow-up had no effect on the final results. There was no evidence of publication bias. Lycopene, especially circulating lycopene, is negatively associated with stroke risk. PMID:24848940

  4. A Common Variant in the SETD7 Gene Predicts Serum Lycopene Concentrations

    PubMed Central

    D’Adamo, Christopher R.; D’Urso, Antonietta; Ryan, Kathleen A.; Yerges-Armstrong, Laura M.; Semba, Richard D.; Steinle, Nanette I.; Mitchell, Braxton D.; Shuldiner, Alan R.; McArdle, Patrick F.

    2016-01-01

    Dietary intake and higher serum concentrations of lycopene have been associated with lower incidence of prostate cancer and other chronic diseases. Identifying determinants of serum lycopene concentrations may thus have important public health implications. Prior studies have suggested that serum lycopene concentrations are under partial genetic control. The goal of this research was to identify genetic predictors of serum lycopene concentrations using the genome-wide association study (GWAS) approach among a sample of 441 Old Order Amish adults that consumed a controlled diet. Linear regression models were utilized to evaluate associations between genetic variants and serum concentrations of lycopene. Variant rs7680948 on chromosome 4, located in the intron region of the SETD7 gene, was significantly associated with serum lycopene concentrations (p = 3.41 × 10−9). Our findings also provided nominal support for the association previously noted between SCARB1 and serum lycopene concentrations, although with a different SNP (rs11057841) in the region. This study identified a novel locus associated with serum lycopene concentrations and our results raise a number of intriguing possibilities regarding the nature of the relationship between SETD7 and lycopene, both of which have been independently associated with prostate cancer. Further investigation into this relationship might help provide greater mechanistic understanding of these associations. PMID:26861389

  5. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR

    PubMed Central

    Fujisawa, Masaki; Ito, Yasuhiro

    2013-01-01

    The developmental process of ripening is unique to fleshy fruits and a key factor in fruit quality. The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN), one of the earliest-acting ripening regulators, is required for broad aspects of ripening, including ethylene-dependent and -independent pathways. However, our knowledge of direct RIN target genes has been limited, considering the broad effects of RIN on ripening. In a recent work published in The Plant Cell, we identified 241 direct RIN target genes by chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) and transcriptome analysis. Functional classification of the targets revealed that RIN participates in the regulation of many biological processes including well-known ripening processes such as climacteric ethylene production and lycopene accumulation. In addition, we found that ethylene is required for the full expression of RIN and several RIN-targeting transcription factor genes at the ripening stage. Here, based on our recently published findings and additional data, we discuss the ripening processes regulated by RIN and the interplay between RIN and ethylene. PMID:23518588

  6. Lycopene Protects Against Spontaneous Ovarian Cancer Formation in Laying Hens.

    PubMed

    Sahin, Kazim; Yenice, Engin; Tuzcu, Mehmet; Orhan, Cemal; Mizrak, Cengizhan; Ozercan, Ibrahim H; Sahin, Nurhan; Yilmaz, Bahiddin; Bilir, Birdal; Ozpolat, Bulent; Kucuk, Omer

    2018-03-01

    Dietary intake of lycopene has been associated with a reduced risk of ovarian cancer, suggesting its chemopreventive potential against ovarian carcinogenesis. Lycopene's molecular mechanisms of action in ovarian cancer have not been fully understood. Therefore, in the present study, we investigated the effects of lycopene on the ovarian cancer formation using the laying hen model, a biologically relevant animal model of spontaneous ovarian carcinogenesis due to high incidence rates similar to humans. In this study, a total of 150 laying hens at age of 102 weeks were randomized into groups of 50: a control group (0 mg of lycopene per kg of diet) and two treatment groups (200 mg or 400 mg of lycopene per kg of diet, or ~26 and 52 mg/d/hen, respectively). At the end of 12 months, blood, ovarian tissues and tumors were collected. We observed that lycopene supplementation significantly reduced the overall ovarian tumor incidence ( P < 0.01) as well as the number and the size of the tumors ( P < 0.004 and P < 0.005, respectively). Lycopene also significantly decreased the rate of adenocarcinoma, including serous and mucinous subtypes ( P < 0.006). Moreover, we also found that the serum level of oxidative stress marker malondialdehyde was significantly lower in lycopene-fed hens compared to control birds ( P < 0.001). Molecular analysis of the ovarian tumors revealed that lycopene reduced the expression of NF-κB while increasing the expression of nuclear factor erythroid 2 and its major target protein, heme oxygenase 1. In addition, lycopene supplementation decreased the expression of STAT3 by inducing the protein inhibitor of activated STAT3 expression in the ovarian tissues. Taken together, our findings strongly support the potential of lycopene in the chemoprevention of ovarian cancer through antioxidant and anti-inflammatory mechanisms.

  7. Improvement of NADPH bioavailability in Escherichia coli through the use of phosphofructokinase deficient strains.

    PubMed

    Wang, Yipeng; San, Ka-Yiu; Bennett, George N

    2013-08-01

    NADPH-dependent reactions play important roles in production of industrially valuable compounds. In this study, we used phosphofructokinase (PFK)-deficient strains to direct fructose-6-phosphate to be oxidized through the pentose phosphate pathway (PPP) to increase NADPH generation. pfkA or pfkB single deletion and double-deletion strains were tested for their ability to produce lycopene. Since lycopene biosynthesis requires many NADPH, levels of lycopene were compared in a set of isogenic strains, with the pfkA single deletion strain showing the highest lycopene yield. Using another NADPH-requiring process, a one-step reduction reaction of 2-chloroacrylate to 2-chloropropionic acid by 2-haloacrylate reductase, the pfkA pfkB double-deletion strain showed the highest yield of 2-chloropropionic acid product. The combined effect of glucose-6-phosphate dehydrogenase overexpression or lactate dehydrogenase deletion with PFK deficiency on NADPH bioavailability was also studied. The results indicated that the flux distribution of fructose-6-phosphate between glycolysis and the pentose phosphate pathway determines the amount of NAPDH available for reductive biosynthesis.

  8. Non-invasive in-vivo Raman spectroscopic measurement of the dynamics of the antioxidant substance lycopene in the human skin after a dietary supplementation

    NASA Astrophysics Data System (ADS)

    Darvin, M. E.; Gersonde, I.; Albrecht, H.; Sterry, W.; Lademann, J.

    2007-05-01

    A non-invasive optical method based on resonance Raman spectroscopy was used for the in vivo detection of the concentration of the carotenoid antioxidant substance lycopene in the human skin. The physiological variation of the level of lycopene in the skin during a 6 month period was measured daily in 7 volunteers. It was shown that all volunteers had a different individual level of lycopene in the skin, depending on the lifestyle of volunteers. It was shown that the supplementation of the foodstuffs containing lycopene, such as tomato products and some fruits, increases the level of lycopene in the skin. The increase in the lycopene level can be usually observed on the next day after the supplementation. The present results demonstrate that a diet rich in products containing a high amount of carotenoids, such as lycopene, can be an efficient strategy to increase the carotenoid level of the skin.

  9. Serum Lycopene Concentrations and Associations with Clinical Outcomes in a Cohort of Maternal-Infant Dyads.

    PubMed

    Hanson, Corrine; Lyden, Elizabeth; Furtado, Jeremy; Van Ormer, Matthew; White, Kimberly; Overby, Nina; Anderson-Berry, Ann

    2018-02-13

    Oxidative stress has been associated with adverse neonatal outcomes, and many carotenoids, including lycopene, potentially have antioxidant properties. The objective of this analysis was to explore the associations between serum lycopene concentrations, including lycopene isomers, and maternal-newborn outcomes. Maternal and cord blood samples were collected in 180 mother-infant pairs. Serum of total lycopene as well as the cis - and trans -isomers concentrations were measured using HPLC (High Performance Liquid Chromatography). Descriptive statistics were calculated; Spearman coefficients were used to assess correlations between maternal and cord concentrations. The relationship between lycopene concentration and outcomes were evaluated with linear and logistic regression models, with adjustment for relevant confounders. A p ≤ 0.05 was considered statistically significant. Maternal and cord serum lycopene concentrations were positively correlated for total lycopene ( r = 0.30, p < 0.0001), cis -lycopene ( r = 0.29, p = 0.0002); and trans -lycopene ( r = 0.32, p < 0.0001). Maternal concentrations of cis -lycopene were significantly lower in mothers whose infants developed respiratory distress syndrome compared to those who did not (0.336 ± 0.171 vs. 0.445 ± 0.238 µmol/L, p = 0.04) and also in mothers whose babies were admitted to the newborn intensive care unit compared to those who were not (0.380 ± 0.202 vs. 0.458 ± 0.244 µmol/L, p = 0.04). Conversely, cord concentrations of trans -lycopene were significantly higher in infants who developed RDS (Respiratory Distress Syndrome) (0.023 ± 0.012 vs. 0.016 ± 0.012, p = 0.007 for RDS vs. no RDS), and a similar pattern was seen NICU admission (0.023 ± 0.016 vs. 0.015 ± 0.009 µmol/L for NICU (Newborn Intensive Care Unit) admission vs. no NICU admission, p = 0.007). Maternal concentrations of total and cis -lycopene were positively associated with infant birth weight, length and head circumference after adjustment for relevant confounders. As serum carotenoids, including lycopene, are modifiable by diet, future research determining the clinical impact of these compounds is warranted.

  10. Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening.

    PubMed

    Wang, Rui-Heng; Yuan, Xin-Yu; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level.

  11. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial

    PubMed Central

    Cooperstone, Jessica L.; Ralston, Robin A.; Riedl, Ken M.; Haufe, Thomas C.; Schweiggert, Ralf M.; King, Samantha A.; Timmers, Cynthia D.; Francis, David M.; Lesinski, Gregory B.; Clinton, Steven K.; Schwartz, Steven J.

    2015-01-01

    Scope Tangerine tomatoes (Solanum lycopersicum) are rich in tetra-cis-lycopene resulting from natural variation in carotenoid isomerase. Our objective was to compare the bioavailability of lycopene from tangerine to red tomato juice, and elucidate physical deposition forms of these isomers in tomatoes by light and electron microscopy. Methods and results Following a randomized crossover design, subjects (n=11, 6M/5F) consumed two meals delivering 10 mg lycopene from tangerine (94% cis) or red tomato juice (10% cis). Blood was sampled over 12 hours and triglyceride-rich lipoprotein fractions of plasma (TRLs) were isolated and analyzed using HPLC-DAD-MS/MS. Lycopene was crystalline in red tomato chromoplasts and globular in tangerine tomatoes. With tangerine tomato juice we observed a marked 8.5-fold increase in lycopene bioavailability compared to red tomato juice (P<0.001). Fractional absorption was 47.70 ± 8.81% from tangerine and 4.98 ± 1.92% from red tomato juices. Large heterogeneity was observed among subjects. Conclusions Lycopene is markedly more bioavailable from tangerine than from red tomato juice, consistent with a predominance of cis-lycopene isomers and presence in chromoplasts in a lipid dissolved globular state. These results justify using tangerine tomatoes as a lycopene source in studies examining the potential health benefits of lycopene-rich foods. PMID:25620547

  12. Enhanced bioavailability of lycopene when consumed as cis-isomers from tangerine compared to red tomato juice, a randomized, cross-over clinical trial.

    PubMed

    Cooperstone, Jessica L; Ralston, Robin A; Riedl, Ken M; Haufe, Thomas C; Schweiggert, Ralf M; King, Samantha A; Timmers, Cynthia D; Francis, David M; Lesinski, Gregory B; Clinton, Steven K; Schwartz, Steven J

    2015-04-01

    Tangerine tomatoes (Solanum lycopersicum) are rich in tetra-cis-lycopene resulting from natural variation in carotenoid isomerase. Our objective was to compare the bioavailability of lycopene from tangerine to red tomato juice, and elucidate physical deposition forms of these isomers in tomatoes by light and electron microscopy. Following a randomized cross-over design, subjects (n = 11, 6 M/5 F) consumed two meals delivering 10 mg lycopene from tangerine (94% cis) or red tomato juice (10% cis). Blood was sampled over 12 h and triglyceride-rich lipoprotein fractions of plasma were isolated and analyzed using HPLC-DAD-MS/MS. Lycopene was crystalline in red tomato chromoplasts and globular in tangerine tomatoes. With tangerine tomato juice we observed a marked 8.5-fold increase in lycopene bioavailability compared to red tomato juice (p < 0.001). Fractional absorption was 47.70 ± 8.81% from tangerine and 4.98 ± 1.92% from red tomato juices. Large heterogeneity was observed among subjects. Lycopene is markedly more bioavailable from tangerine than from red tomato juice, consistent with a predominance of cis-lycopene isomers and presence in chromoplasts in a lipid dissolved globular state. These results justify using tangerine tomatoes as a lycopene source in studies examining the potential health benefits of lycopene-rich foods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Lycopene inhibits NF-κB activation and adhesion molecule expression through Nrf2-mediated heme oxygenase-1 in endothelial cells.

    PubMed

    Yang, Po-Min; Chen, Huang-Zhi; Huang, Yu-Ting; Hsieh, Chia-Wen; Wung, Being-Sun

    2017-06-01

    The endothelial expression of cell adhesion molecules plays a leading role in atherosclerosis. Lycopene, a carotenoid with 11 conjugated double bonds, has been shown to have anti-inflammatory properties. In the present study, we demonstrate a putative mechanism for the anti-inflammatory effects of lycopene. We demonstrate that lycopene inhibits the adhesion of tumor necrosis factor α (TNFα)-stimulated monocytes to endothelial cells and suppresses the expression of intercellular cell adhesion molecule-1 (ICAM-1) at the transcriptional level. Moreover, lycopene was found to exert its inhibitory effects by blocking the degradation of the inhibitory protein, IκBα, following 6 h of pre-treatment. In TNFα-stimulated endothelial cells, nuclear factor-κB (NF-κB) nuclear translocation and transcriptional activity were abolished by up to 12 h of lycopene pre-treatment. We also found that lycopene increased the intracellular glutathione (GSH) level and glutamate-cysteine ligase expression. Subsequently, lycopene induced nuclear factor-erythroid 2 related factor 2 (Nrf2) activation, leading to the increased expression of downstream of heme oxygenase-1 (HO-1). The use of siRNA targeting HO-1 blocked the inhibitory effects of lycopene on IκB degradation and ICAM-1 expression. The inhibitory effects of lycopene thus appear to be mediated through its induction of Nrf2-mediated HO-1 expression. Therefore, the findings of the present study indicate that lycopene suppresses the activation of TNFα-induced signaling pathways through the upregulation of Nrf2-mediated HO-1 expression.

  14. 21 CFR 73.585 - Tomato lycopene extract; tomato lycopene concentrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.585 Tomato lycopene... suitable for use in color additive mixtures for coloring food. (b) Specifications. (1) Tomato lycopene... manufacturing practice, except that they may not be used to color foods for which standards of identity have...

  15. 21 CFR 73.585 - Tomato lycopene extract; tomato lycopene concentrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.585 Tomato lycopene... suitable for use in color additive mixtures for coloring food. (b) Specifications. (1) Tomato lycopene... manufacturing practice, except that they may not be used to color foods for which standards of identity have...

  16. 21 CFR 73.585 - Tomato lycopene extract; tomato lycopene concentrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.585 Tomato lycopene... suitable for use in color additive mixtures for coloring food. (b) Specifications. (1) Tomato lycopene... manufacturing practice, except that they may not be used to color foods for which standards of identity have...

  17. 21 CFR 73.585 - Tomato lycopene extract; tomato lycopene concentrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.585 Tomato lycopene... suitable for use in color additive mixtures for coloring food. (b) Specifications. (1) Tomato lycopene... manufacturing practice, except that they may not be used to color foods for which standards of identity have...

  18. 21 CFR 73.585 - Tomato lycopene extract; tomato lycopene concentrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.585 Tomato lycopene... suitable for use in color additive mixtures for coloring food. (b) Specifications. (1) Tomato lycopene... manufacturing practice, except that they may not be used to color foods for which standards of identity have...

  19. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model

    USDA-ARS?s Scientific Manuscript database

    A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene cou...

  20. Precise precursor rebalancing for isoprenoids production by fine control of gapA expression in Escherichia coli.

    PubMed

    Jung, Juyoung; Lim, Jae Hyung; Kim, Se Yeon; Im, Dae-Kyun; Seok, Joo Yeon; Lee, Seung-Jae V; Oh, Min-Kyu; Jung, Gyoo Yeol

    2016-11-01

    Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5'-untranslated regions (5'-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. AtPDS over-expression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content

    USDA-ARS?s Scientific Manuscript database

    The regulation of plant carotenogenesis is an active research area for both biological discovery and practical implementation. In tomato, we demonstrate additional bottlenecks exist in the poly-cis-transformation of phytoene to lycopene in the context of ripening-induced PSY1 expression and activity...

  2. Expression of lycopene biosynthesis genes fused in line with Shine-Dalgarno sequences improves the stress-tolerance of Lactococcus lactis.

    PubMed

    Dong, Xiangrong; Wang, Yanping; Yang, Fengyuan; Zhao, Shanshan; Tian, Bing; Li, Tao

    2017-01-01

    Lycopene biosynthetic genes from Deinococcus radiodurans were co-expressed in Lactococcus lactis to produce lycopene and improve its tolerance to stress. Lycopene-related genes from D. radiodurans, DR1395 (crtE), DR0862 (crtB), and DR0861 (crtI), were fused in line with S hine-Dalgarno (SD) sequences and co-expressed in L. lactis. The recombinant strain produced 0.36 mg lycopene g -1  dry cell wt after 48 h fermentation. The survival rate to UV irradiation of the recombinant strain was higher than that of the non-transformed strain. The L. lactis with co-expressed genes responsible for lycopene biosynthesis from D. radiodurans produced lycopene and exhibited increased resistance to UV stress, suggesting that the recombinant strain has important application potential in food industry.

  3. Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Tong, Chao; Peng, Chuan; Wang, Lianlian; Zhang, Li; Yang, Xiaotao; Xu, Ping; Li, Jinjin; Delplancke, Thibaut; Zhang, Hua; Qi, Hongbo

    2016-01-01

    Background: Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. Methods: In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Results: Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Conclusion: Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice. PMID:26950150

  4. Intravenous Administration of Lycopene, a Tomato Extract, Protects against Myocardial Ischemia-Reperfusion Injury.

    PubMed

    Tong, Chao; Peng, Chuan; Wang, Lianlian; Zhang, Li; Yang, Xiaotao; Xu, Ping; Li, Jinjin; Delplancke, Thibaut; Zhang, Hua; Qi, Hongbo

    2016-03-03

    Oral uptake of lycopene has been shown to be beneficial for preventing myocardial ischemia-reperfusion (I/R) injury. However, the strong first-pass metabolism of lycopene influences its bioavailability and impedes its clinic application. In this study, we determined an intravenous (IV) administration dose of lycopene protects against myocardial infarction (MI) in a mouse model, and investigated the effects of acute lycopene administration on reactive oxygen species (ROS) production and related signaling pathways during myocardial I/R. In this study, we established both in vitro hypoxia/reoxygenation (H/R) cell model and in vivo regional myocardial I/R mouse model by ligating left anterior artery descending. TTC dual staining was used to assess I/R induced MI in the absence and presence of acute lycopene administration via tail vein injection. Lycopene treatment (1 μM) before reoxygenation significantly reduced cardiomyocyte death induced by H/R. Intravenous administration of lycopene to achieve 1 μM concentration in circulating blood significantly suppressed MI, ROS production, and JNK phosphorylation in the cardiac tissue of mice during in vivo regional I/R. Elevating circulating lycopene to 1 μM via IV injection protects against myocardial I/R injury through inhibition of ROS accumulation and consequent inflammation in mice.

  5. Lycopene Prevents Amyloid [Beta]-Induced Mitochondrial Oxidative Stress and Dysfunctions in Cultured Rat Cortical Neurons.

    PubMed

    Qu, Mingyue; Jiang, Zheng; Liao, Yuanxiang; Song, Zhenyao; Nan, Xinzhong

    2016-06-01

    Brains affected by Alzheimer's disease (AD) show a large spectrum of mitochondrial alterations at both morphological and genetic level. The causal link between β-amyloid (Aβ) and mitochondrial dysfunction has been established in cellular models of AD. We observed previously that lycopene, a member of the carotenoid family of phytochemicals, could counteract neuronal apoptosis and cell damage induced by Aβ and other neurotoxic substances, and that this neuroprotective action somehow involved the mitochondria. The present study aims to investigate the effects of lycopene on mitochondria in cultured rat cortical neurons exposed to Aβ. It was found that lycopene attenuated Aβ-induced oxidative stress, as evidenced by the decreased intracellular reactive oxygen species generation and mitochondria-derived superoxide production. Additionally, lycopene ameliorated Aβ-induced mitochondrial morphological alteration, opening of the mitochondrial permeability transition pores and the consequent cytochrome c release. Lycopene also improved mitochondrial complex activities and restored ATP levels in Aβ-treated neuron. Furthermore, lycopene prevented mitochondrial DNA damages and improved the protein level of mitochondrial transcription factor A in mitochondria. Those results indicate that lycopene protects mitochondria against Aβ-induced damages, at least in part by inhibiting mitochondrial oxidative stress and improving mitochondrial function. These beneficial effects of lycopene may account for its protection against Aβ-induced neurotoxicity.

  6. Lycopene and Its Antioxidant Role in the Prevention of Cardiovascular Diseases-A Critical Review.

    PubMed

    Müller, Lars; Caris-Veyrat, Catherine; Lowe, Gordon; Böhm, Volker

    2016-08-17

    The present review is based mainly on papers published between 2000 and 2011 and gives information about the properties of the carotenoid lycopene in chemical and biological systems and its possible role in preventing cardiovascular diseases (CVD). The main aim of this report is to highlight its role as an antioxidant, also reported are bioactive properties that may influence the development of foam cells and protection against endothelial cell damage. The paper will also examine recent observations that lycopene may improve blood flow and reduce inflammatory responses. Lycopene possesses antioxidant properties in vitro, and some epidemiological studies have reported protective effects against the progression of CVD. The oxidation of human low density lipoproteins (LDL) is a fundamental mechanism in the initiation of atherosclerosis. A beneficial role of lycopene as antioxidant in the prevention of CVD is suggested but the data are still controversial. Lycopene is believed to be the most potent carotenoid antioxidant in vitro. Tissue culture experiments and animal studies support potential cardioprotective effects for lycopene and other carotenoids in the blood. Most studies showed beneficial effects of lycopene to individuals who are antioxidant-deficient like elderly patients, or humans exposed to higher levels of oxidative stress like smokers, diabetics, hemodialysis patients and acute myocardial infarction patients. By defining the right population and combining antioxidant potentials of lycopene with vitamins and other bioactive plant compounds, the beneficial role of lycopene in CVD can be clarified in future studies.

  7. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression.

    PubMed

    Jhou, Bo-Yi; Song, Tuzz-Ying; Lee, Inn; Hu, Miao-Lin; Yang, Nae-Cherng

    2017-08-16

    NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P < 0.05) at 2.5 μM lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.

  8. The effects of lycopene on DNA damage and oxidative stress on indomethacin-induced gastric ulcer in rats.

    PubMed

    Boyacioglu, Murat; Kum, Cavit; Sekkin, Selim; Yalinkilinc, Hande Sultan; Avci, Hamdi; Epikmen, Erkmen Tugrul; Karademir, Umit

    2016-04-01

    Lycopene, the main antioxidant compound present in tomatoes, has high singlet oxygen- and peroxyl radicals-quenching ability, resulting in protection against oxidative damage in aerobic cell. Indomethacin is a nonsteroidal anti-inflammatory drug, and can promote oxidative damage in gastric tissue. The aim of this study was to investigate the protective effects of lycopene on an indomethacin-induced gastric ulcer model. A total of 42 adult male Wistar rats were divided into six groups of seven animals as follows: control, indomethacin, lansoprazole, lycopene 10 mg/kg, lycopene 50 mg/kg and lycopene 100 mg/kg. Gastric ulcers were induced by oral administration of indomethacin, after which the differing doses of lycopene were administered by oral gavage. The efficacy of lycopene was compared with lansoprazole. DNA damage of lymphocytes was measured by comet assay. Activities of superoxide dismutase, catalase and myeloperoxidase, as well as malondialdehyde and glutathione levels were determined in stomach tissue. This tissue was also taken for pathological investigations. The TUNEL method was used to detect apoptotic cells in paraffin sections. The results showed that 100 mg/kg lycopene administration significantly decreased % Tail DNA and Mean Tail Moment in the gastric ulcer group, compared with the other treatment groups. This same dose of lycopene also significantly decreased high malondialdehyde level and myeloperoxidase activity, and increased the activity of antioxidant enzymes (with the exception of catalase) in tissue. Apoptosis rates in the stomachs of the rats correlated with the biochemical and histopathological findings. These results indicated that lycopene might have a protective effect against indomethacin-induced gastric ulcer and oxidative stress in rats. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Precise control of lycopene production to enable a fast-responding, minimal-equipment biosensor.

    PubMed

    McNerney, Monica P; Styczynski, Mark P

    2017-09-01

    Pigmented metabolites have great potential for use in biosensors that target low-resource areas, since sensor output can be interpreted without any equipment. However, full repression of pigment production when undesired is challenging, as even small amounts of enzyme can catalyze the production of large, visible amounts of pigment. The red pigment lycopene could be particularly useful because of its position in the multi-pigment carotenoid pathway, but commonly used inducible promoter systems cannot repress lycopene production. In this paper, we designed a system that could fully repress lycopene production in the absence of an inducer and produce visible lycopene within two hours of induction. We engineered Lac, Ara, and T7 systems to be up to 10 times more repressible, but these improved systems could still not fully repress lycopene. Translational modifications proved much more effective in controlling lycopene. By decreasing the strength of the ribosomal binding sites on the crtEBI genes, we enabled full repression of lycopene and production of visible lycopene in 3-4h of induction. Finally, we added the mevalonate pathway enzymes to increase the rate of lycopene production upon induction and demonstrated that supplementation of metabolic precursors could decrease the time to coloration to about 1.5h. In total, this represents over an order of magnitude reduction in response time compared to the previously reported strategy. The approaches used here demonstrate the disconnect between fluorescent and metabolite reporters, help enable the use of lycopene as a reporter, and are likely generalizable to other systems that require precise control of metabolite production. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  10. Self-assembly of green tea catechin derivatives in nanoparticles for oral lycopene delivery.

    PubMed

    Li, Weikun; Yalcin, Murat; Lin, Qishan; Ardawi, Mohammed-Salleh M; Mousa, Shaker A

    2017-02-28

    Lycopene is a natural anti-oxidant that has attracted much attention due to its varied applications such as protection against loss of bone mass, chronic diseases, skin cancer, prostate cancer, and cardiovascular disease. However, high instability and extremely low oral bioavailability limit its further clinical development. We selected a green tea catechin derivative, oligomerized (-)-epigallocatechin-3-O-gallate (OEGCG) as a carrier for oral lycopene delivery. Lycopene-loaded OEGCG nanoparticles (NPs) were prepared by a nano-precipitation method, followed by coating with chitosan to form a shell. This method not only can easily control the size of the NP to be around 200nm to improve its bioavailability, but also can effectively protect the lycopene against degradation due to EGCG's anti-oxidant property. OEGCG was carefully characterized with nuclear magnetic resonance spectroscopy and mass spectrometry. Lycopene-loaded polylactic-co-glycolic acid (PLGA) NPs were prepared by the same method. Chitosan-coated OEGCG/lycopene NPs had a diameter of 152±32nm and a ζ-potential of 58.3±4.2mv as characterized with transmission electron microscopy and dynamic light scattering. The loading capacity of lycopene was 9% and encapsulation efficiency was 89%. FT-IR spectral analysis revealed electrostatic interaction between OEGCG and chitosan. Freeze drying of the NPs was also evaluated as a means to improve shelf life. Dynamic light scattering data showed that no aggregation occurred, and the size of the NP increased 1.2 times (S f /S i ratio) in the presence of 10% sucrose after freeze drying. The in vitro release study showed slow release of lycopene in simulated gastric fluid at acidic pH and faster release in simulated intestinal fluid. In an in vivo study in mice, lycopene pharmacokinetic parameters were improved by lycopene/OEGCG/chitosan NPs, but not improved by lycopene/PLGA/chitosan NPs. The self-assembled nanostructure of OEGCG combined with lycopene may be a promising application in oral drug delivery in various indications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Estimation of antioxidant components of tomato using VIS-NIR reflectance data by handheld portable spectrometer

    NASA Astrophysics Data System (ADS)

    Szuvandzsiev, Péter; Helyes, Lajos; Lugasi, Andrea; Szántó, Csongor; Baranowski, Piotr; Pék, Zoltán

    2014-10-01

    Processing tomato production represents an important part of the total production of processed vegetables in the world. The quality characteristics of processing tomato, important for the food industry, are soluble solids content and antioxidant content (such as lycopene and polyphenols) of the fruit. Analytical quantification of these components is destructive, time and labour consuming. That is why researchers try to develop a non-destructive and rapid method to assess those quality parameters. The present study reports the suitability of a portable handheld visible near infrared spectrometer to predict soluble solids, lycopene and polyphenol content of tomato fruit puree. Spectral ranges of 500-1000 nm were directly acquired on fruit puree of five different tomato varieties using a FieldSpec HandHeld 2™ Portable Spectroradiometer. Immediately after spectral measurement, each fruit sample was analysed to determine soluble solids, lycopene and polyphenol content. Partial least square regressions were carried out to create models of prediction between spectral data and the values obtained from the analytical results. The accuracy of the predictions was analysed according to the coefficient of determination value (R2), the root mean square error of calibration/ cross-validation.

  12. Home processing of tomatoes (Solanum lycopersicum): effects on in vitro bioaccessibility of total lycopene, phenolics, flavonoids, and antioxidant capacity.

    PubMed

    Kamiloglu, Senem; Demirci, Melek; Selen, Saniye; Toydemir, Gamze; Boyacioglu, Dilek; Capanoglu, Esra

    2014-08-01

    In order to investigate the effect of home processing on the bioaccessibility of health-related constituents of tomatoes, total lycopene, phenolics, flavonoids and antioxidant capacity were determined from seven different tomato products using an in vitro gastrointestinal digestion model. Additionally, the changes in the contents of the major tomato phenolics were determined and compared for these different tomato products using HPLC. The results revealed that paste processing and drying significantly increased the bioaccessible total lycopene content (2.2- and 3.8-fold, respectively), total phenolic content (2.3- and 2.0-fold, respectively), total flavonoid content (9.0- and 2.5-fold, respectively) and total antioxidant capacity (6.3- and 8.0-fold for the DPPH assay, 26- and 33-fold for the CUPRAC assay, respectively) (P < 0.05) compared to fresh tomatoes. HPLC analysis revealed significantly lower (P < 0.05) rutin content in puree and juice. The loss of naringenin chalcone in some tomato products, as well as its conversion into naringenin in heat-treated products was observed. The current study provided valuable insights into the changes in the content and bioaccessibility of tomato antioxidants as a result of home processing. © 2013 Society of Chemical Industry.

  13. A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.

    PubMed

    Cuperus, Josh T; Lo, Russell S; Shumaker, Lucia; Proctor, Julia; Fields, Stanley

    2015-07-17

    Strategies to optimize a metabolic pathway often involve building a large collection of strains, each containing different versions of sequences that regulate the expression of pathway genes. Here, we develop reagents and methods to carry out this process at high efficiency in the yeast Saccharomyces cerevisiae. We identify variants of the Escherichia coli tet operator (tetO) sequence that bind a TetR-VP16 activator with differential affinity and therefore result in different TetR-VP16 activator-driven expression. By recombining these variants upstream of the genes of a pathway, we generate unique combinations of expression levels. Here, we built a tetO toolkit, which includes the I-OnuI homing endonuclease to create double-strand breaks, which increases homologous recombination by 10(5); a plasmid carrying six variant tetO sequences flanked by I-OnuI sites, uncoupling transformation and recombination steps; an S. cerevisiae-optimized TetR-VP16 activator; and a vector to integrate constructs into the yeast genome. We introduce into the S. cerevisiae genome the three crt genes from Erwinia herbicola required for yeast to synthesize lycopene and carry out the recombination process to produce a population of cells with permutations of tetO variants regulating the three genes. We identify 0.7% of this population as making detectable lycopene, of which the vast majority have undergone recombination at all three crt genes. We estimate a rate of ∼20% recombination per targeted site, much higher than that obtained in other studies. Application of this toolkit to medically or industrially important end products could reduce the time and labor required to optimize the expression of a set of metabolic genes.

  14. Effect of beta-cyclodextrin in improving the correlation between lycopene concentration and ORAC values.

    PubMed

    Bangalore, Dharmendra V; McGlynn, William; Scott, Darren D

    2005-03-23

    Lycopene, a lipophilic antioxidant, plays a crucial role in biological systems. It may play an important role in human biological systems by providing protection against cardiovascular disease and some cancers and by boosting the immune system. The oxygen radical absorbance capacity (ORAC) has been validated as an index of antioxidant activity for many hydrophilic antioxidants but not for lycopene. This study validates the ORAC assay for different concentrations of lycopene in the presence of beta-cyclodextrin, a water-solubility enhancer. Lyc-O-Mato 6% extract was used as a source of lycopene for these experiments. Lycopene was extracted according to a standard spectrophotometric assay procedure in the presence of beta-cyclodextrin at concentrations of 0, 0.4, 0.8, and 1.6%, and the antioxidant activity of lycopene was measured with the ORAC assay. Experiments were conducted in quadruplicate and statistical pooled correlations analyzed. Statistical analysis showed a very high correlation (R2 = 0.99) between ORAC and ascorbic acid concentrations, validating this method. Lycopene concentration correlated poorly with ORAC (R2 = 0.33) in the absence of beta-cyclodextrin. Correlations improved with increasing levels of beta-cyclodextrin (R2 = 0.58 and 0.91 for 0.4 and 0.8% beta-cyclodextrin, respectively). A very high beta-cyclodextrin concentration (1.6%) decreased the correlation between ORAC and lycopene concentration. Inclusion of beta-cyclodextrin in the ORAC assay improves correlation between ORAC and lycopene concentration, thus expanding the scope of the ORAC assay to include an additional fat-soluble antioxidant.

  15. Immune Responses of Female BALB/c and C57BL/6 Neonatal Mice to Vaccination or Intestinal Infection Are Unaltered by Exposure to Breast Milk Lycopene123

    PubMed Central

    Adkins, Becky; Contractor, Nikhat

    2011-01-01

    Lycopene, a carotenoid produced by some commonly consumed plants such as tomatoes, is not synthesized by animals. Thus, the levels of lycopene found in the breast milk of lactating females reflect the dietary lycopene supply. Lycopene has potent antioxidant activity but has also been implicated in modulating immune function. Therefore, lycopene in breast milk has the potential to affect the development and/or function of the immune system in the suckling pups. Here, we have investigated the impact of breast milk lycopene on systemic and mucosal immunity in mouse neonates. Diets containing 0.3 g/kg lycopene (Lyc) or control (Con) diets were fed to mouse dams beginning at late gestation and continuing throughout lactation. Seven-day-old female BALB/c pups were parenterally immunized with a model vaccine antigen dinitrophenyl-keyhole limpet hemocyanin (DNP-KLH) and then reimmunized as adults. The levels of DNP-KLH–specific IgG in the sera as well as keyhole limpet hemocyanin-specific IFNγ and IL-4 production by splenic CD4+ cells were similar in the Lyc and Con pups. In addition, female neonatal (d7) C57BL/6 Lyc and Con pups were infected orally with the enteropathogen Yersinia enterocolitica. Breast milk lycopene had no effect on the recruitment of neutrophils to intestinal lymphoid tissues or on bacterial tissue colonization of the intestines, spleens, and livers. Thus, suckling pups exposed to lycopene in breast milk appear to develop normal innate and adaptive responses both systemically and at intestinal mucosal surfaces. PMID:21593356

  16. Effect of lycopene on the blood-spinal cord barrier after spinal cord injury in mice.

    PubMed

    Zhang, Qian; Wang, Jianbo; Gu, Zhengsong; Zhang, Qing; Zheng, Hong

    2016-09-05

    The current study aimed to investigate the effect of lycopene on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a mouse model. Lycopene inhibited lipid peroxidation and oxidative DNA damage as a highly efficient antioxidant and free radical scavenger. Lycopene (4 mg/kg/d) was administrated immediately following SCI. The permeability of the BSCB and water content in the spinal cord tissue were evaluated. Additionally, levels of expression of tight junction proteins and heme oxygenase-1 (HO-1) were determined with Western blotting. An enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 48 h after SCI to evaluate the expression of inflammation-related cytokines. In addition, recovery of motor function was assessed 1 d, 2 d, 5 d, 10 d, and 15 d after SCI using the Basso Mouse Scale to score locomotion. Compared to the group with an untreated SCI, mice with an SCI treated with lycopene had significantly reduced spinal cord tissue water content and BSCB permeability. Furthermore, motor function of mice with an SCI was also greatly improved by lycopene administration. The expression of the proinflammatory factors TNF-α and NF-kB increased markedly 48 h after SCI, and their upregulation was significantly attenuated by lycopene treatment. The expression of molecules that protect tight junctions, zonula occluden-1 and claudin-5, was upregulated by lycopene treatment after SCI. Taken together, these results clearly indicate that lycopene attenuated SCI by promoting repair of the damaged BSCB, so lycopene is a novel and promising treatment for SCI in humans.

  17. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders.

    PubMed

    Fenni, Soumia; Hammou, Habib; Astier, Julien; Bonnet, Lauriane; Karkeni, Esma; Couturier, Charlène; Tourniaire, Franck; Landrier, Jean-François

    2017-09-01

    Several studies have linked the high intake of lycopene or tomatoes products with lower risk for metabolic diseases. The aim of the present study was to evaluate and to compare the effect of lycopene and tomato powder on obesity-associated disorders. Male C57BL/J6 mice were assigned into four groups to receive: control diet (CD), high fat diet (HFD), high fat diet supplemented with lycopene or with tomato powder (TP) for 12 weeks. In HFD condition, lycopene and TP supplementation significantly reduced adiposity index, organ, and relative organ weights, serum triglycerides, free fatty acids, 8-iso-prostaglandin GF2α and improved glucose homeostasis, but did not affect total body weight. Lycopene and TP supplementation prevented HFD-induced hepatosteatosis and hypertrophy of adipocytes. Lycopene and TP decreased HFD-induced proinflammatory cytokine mRNA expression in the liver and in the epididymal adipose tissue. The anti-inflammatory effect of lycopene and TP was related to a reduction in the phosphorylation levels of IκB, and p65, and resulted in a decrease of inflammatory proteins in adipose tissue. These results suggest that lycopene or TP supplementation display similar beneficial health effects that could be particularly relevant in the context of nutritional approaches to fight obesity-associated pathologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study.

    PubMed

    Sawardekar, Swapna B; Patel, Tejal C; Uchil, Dinesh

    2016-01-01

    The objective was to compare antiplatelet effect of lycopene with aspirin and to study effect of combination of the two on platelet aggregation in vitro, using platelets from healthy volunteers. Platelets were harvested; platelet count of platelet-rich plasma adjusted to 2.5 Χ 10(5)/μL. Aspirin (140 μmol/L) and lycopene (4, 6, 8, 10, and 12 μmol/L) were studied in vitro against adenosine-5'- diphosphate (ADP) (2.5 μM/L) and collagen. All the concentrations of lycopene (4-12 μmol/L) exhibited reduction in maximum platelet aggregation induced by aggregating agents ADP and collagen (P < 0.01 vs. vehicle) and were comparable with aspirin. Lycopene at concentration 10 μmol/L showed maximum platelet inhibition (47.05% ± 19.56%) against ADP, whereas lycopene at concentration 8 μmol/L showed maximum platelet inhibition (54.26% ± 30.71%) against collagen. Four μmol/L of lycopene combined with 140 μmol/L and 70 μmol/L aspirin showed greater inhibition of platelets as compared to aspirin 140 μmol/L alone, against both ADP and collagen. The study favorably compares lycopene and aspirin with respect to their antiplatelet activities against ADP and collagen. Lycopene can be considered as a potential target for modifying the thrombotic and pro-inflammatory events associated with platelet activation.

  19. Effect of Lycopene Supplementation on Oxidative Stress: An Exploratory Systematic Review and Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Chen, Jinyao; Song, Yang

    2013-01-01

    Abstract Lycopene is a potentially useful compound for preventing and treating cardiovascular diseases and cancers. Studies on the effects of lycopene on oxidative stress offer insights into its mechanism of action and provide evidence-based rationale for its supplementation. In this analysis, randomized controlled trials of the effects of oral lycopene supplementation on any valid outcomes of oxidative stress were identified and pooled through a search of international journal databases and reference lists of relevant publications. Two reviewers extracted data from each of the identified studies. Only studies of sufficient quality were included. Twelve parallel trials and one crossover trial were included in the systematic review, and six trials provided data for quantitative meta-analysis. Our results indicate that lycopene supplementation significantly decreases the DNA tail length, as determined using comet assays, with a mean difference (MD) of −6.27 [95% confidence interval (CI) −10.74, −1.90] (P=.006) between the lycopene intervention groups and the control groups. Lycopene supplementation does not significantly prolong the lag time of low-density lipoprotein (MD 3.76 [95% CI −2.48, 10.01]; P=.24). Lycopene possibly alleviates oxidative stress; however, biomarker research for oxidative stress needs be more consistent with the outcomes in lycopene intervention trials for disease prevention. PMID:23631493

  20. Lycopene Enhances Docetaxel's Effect in Castration-Resistant Prostate Cancer Associated with Insulin-like Growth Factor I Receptor Levels1

    PubMed Central

    Tang, Yaxiong; Parmakhtiar, Basmina; Simoneau, Anne R; Xie, Jun; Fruehauf, John; Lilly, Michael; Zi, Xiaolin

    2011-01-01

    Docetaxel is currently the most effective drug for the treatment of castration-resistant prostate cancer (CRPC), but it only extends life by an average of 2 months. Lycopene, an antioxidant phytochemical, has antitumor activity against prostate cancer (PCa) in several models and is generally safe. We present data on the interaction between docetaxel and lycopene in CRPC models. The growth-inhibitory effect of lycopene on PCa cell lines was positively associated with insulin-like growth factor I receptor (IGF-IR) levels. In addition, lycopene treatment enhanced the growth-inhibitory effect of docetaxel more effectively on DU145 cells with IGF-IR high expression than on those PCa cell lines with IGF-IR low expression. In a DU145 xenograft tumor model, docetaxel plus lycopene caused tumor regression, with a 38% increase in antitumor efficacy (P = .047) when compared with docetaxel alone. Lycopene inhibited IGF-IR activation through inhibiting IGF-I stimulation and by increasing the expression and secretion of IGF-BP3. Downstream effects include inhibition of AKT kinase activity and survivin expression, followed by apoptosis. Together, the enhancement of docetaxel's antitumor efficacy by lycopene supplementation justifies further clinical investigation of lycopene and docetaxel combination for CRPC patients. CRPC patients with IGF-IR-overexpressing tumors may be most likely to benefit from this combination. PMID:21403837

  1. Furan-induced hepatotoxic and hematologic changes in diabetic rats: the protective role of lycopene.

    PubMed

    Baş, Hatice; Pandır, Dilek; Kalender, Suna

    2016-09-01

    Furan forms as a result of thermal treatment of food and induces harmful effects on organisms. In our work, lycopene, furan, and a combination of the two were given to diabetic male rats for 28 days. Hematological changes, total protein and cholesterol, triglyceride, and albumin levels, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase activities of the serum, malondialdehyde levels, glutathione peroxidase, catalase, glutathione-S-transferase, superoxide dismutase activities, DNA damage in liver tissues and hepatic histopathological alterations were compared to a control group. There were significant changes in the liver function tests, DNA damage, activities of antioxidant enzymes, and malondialdehyde levels between diabetic control and non-diabetic control groups, between diabetic control and diabetic lycopene groups, and also between diabetic furan and diabetic control groups. In diabetic lycopene and diabetic furan + lycopene treated groups we designated the preventive effects of lycopene against diabetes and furan, however, on the analysed parameters only. In spite of some pathological alterations designated in diabetic furan treated group's liver, fewer pathological alterations were observed in furan+lycopene treated groups at the end of week 4. Consequently, lycopene significantly reduced furan- and diabetes-induced toxicity in rat liver.

  2. Lycopene Consumption and Risk of Colorectal Cancer: A Meta-Analysis of Observational Studies.

    PubMed

    Wang, Xin; Yang, Hui-Hui; Liu, Yan; Zhou, Quan; Chen, Zi-Hua

    2016-10-01

    A number of epidemiological studies have explored the association between lycopene or lycopene-rich food intake and the risk of colorectal cancer, but the results of these studies have not been consistent. We conducted a systematic review and meta-analysis of studies published in the PubMed and EMBASE databases to quantitatively assess the association between lycopene consumption and the risk of colorectal cancer. A total of 15 studies were included in the meta-analysis, and the summary relative risk (RR) for highest versus lowest category indicated no significant association between lycopene consumption and the risk of colorectal cancer [RR = 0.94, 95% confidence interval (CI): 0.80-1.10]. However, a significant inverse association was observed between lycopene consumption and the site of cancer in the colon (RR = 0.88, 95% CI: 0.81-0.96). We also found that the incidence of colon cancer and lycopene intake did not exhibit dose-response relationships. The Grades of Recommendations Assessment, Development and Evaluation (GRADE) quality in our study was very low. In conclusion, this meta-analysis indicates that lycopene consumption is not associated with the risk of colorectal cancer. Further research will be needed in this area to provide conclusive evidence.

  3. The Potential Role of Lycopene for the Prevention and Therapy of Prostate Cancer: From Molecular Mechanisms to Clinical Evidence

    PubMed Central

    Holzapfel, Nina Pauline; Holzapfel, Boris Michael; Champ, Simon; Feldthusen, Jesper; Clements, Judith; Hutmacher, Dietmar Werner

    2013-01-01

    Lycopene is a phytochemical that belongs to a group of pigments known as carotenoids. It is red, lipophilic and naturally occurring in many fruits and vegetables, with tomatoes and tomato-based products containing the highest concentrations of bioavailable lycopene. Several epidemiological studies have linked increased lycopene consumption with decreased prostate cancer risk. These findings are supported by in vitro and in vivo experiments showing that lycopene not only enhances the antioxidant response of prostate cells, but that it is even able to inhibit proliferation, induce apoptosis and decrease the metastatic capacity of prostate cancer cells. However, there is still no clearly proven clinical evidence supporting the use of lycopene in the prevention or treatment of prostate cancer, due to the only limited number of published randomized clinical trials and the varying quality of existing studies. The scope of this article is to discuss the potential impact of lycopene on prostate cancer by giving an overview about its molecular mechanisms and clinical effects. PMID:23857058

  4. Correlation of lycopene measured by HPLC with the L, a, b color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content

    NASA Technical Reports Server (NTRS)

    Arias, R.; Lee, T. C.; Logendra, L.; Janes, H.

    2000-01-01

    Tomatoes (Lycopersicon esculentum cv. Laura) were separated, according to the ripening stage, by a sensory panel into seven groups, and color was measured on the tomato surface with a Minolta Chroma meter. The L, a, b, hue, chroma, and lycopene content were plotted against the maturity stages of the tomatoes, and several good correlations were found. The a/b ratio and the lycopene content were the parameters that allowed six of seven maturity groups in the tomato to be statistically distinguished. The lycopene content, measured by HPLC, was also correlated with the color measurements, and the a, a/b, and (a/b)(2) color factors produced the best regressions. An estimation of the lycopene content in tomatoes can be achieved by using a portable chroma meter, with a possible field usage application. Equations to calculate the lycopene content of tomatoes based on the color readings are reported.

  5. Lycopene

    MedlinePlus

    ... specific lycopene supplement by mouth (LycoRed, Jagsonpal Pharmaceuticals, India) for 2 weeks or receiving a single injection ... taking a specific lycopene supplement (LycoRed, Jagsonpal Pharmaceuticals, India) by mouth daily for 6 months lowers total ...

  6. [Fungal lycopene: the biotechnology of its production and prospects for its application in medicine].

    PubMed

    Feofilova, E P; Tereshina, V M; Memorskaia, A S; Dul'kin, L M; Goncharov, N G

    2006-01-01

    This article deals with the lycopene of mycelial fungi. It pays special attention to its physical and chemical properties, occurrence in nature, biological functions, and the biotechnology of lycopene production. Data are presented concerning the medically important properties of lycopene and the drug Mycolycopene prepared on its basis. Its prospective use in the therapy of prostate cancers is discussed.

  7. Plasma Lycopene Is Associated with Pizza and Pasta Consumption in Middle-Aged and Older African American and White Adults in the Southeastern USA in a Cross-Sectional Study.

    PubMed

    Zhou, Yuan E; Buchowski, Maciej S; Liu, Jianguo; Schlundt, David G; Ukoli, Flora A M; Blot, William J; Hargreaves, Margaret K

    2016-01-01

    The role of dietary lycopene in chronic disease prevention is not well known. This study examined intake of lycopene and other antioxidants from lycopene-rich foods (e.g., pizza and pasta) simultaneously with plasma levels of lycopene and other antioxidants in a representative cross-sectional sample (187 Blacks, 182 Whites, 40-79 years old) from the Southern Community Cohort Study (SCCS). The SCCS is an ongoing study conducted in populations at high risk for chronic diseases living in Southeastern United States. Dietary intake was assessed using a validated food frequency questionnaire (FFQ), and plasma levels of lycopene and other antioxidants were measured at baseline (2002-2005). The participants were classified into tertiles according to consumption of pizza and pasta food groups. Lycopene dietary intake and plasma lycopene concentrations were significantly higher in the highest (tertile 3) compared to tertiles 1 and 2 (both P < 0.01). Total energy intake ranged from 1964.3 ± 117.1 kcal/day (tertile 1) to 3277.7 ± 115.8 kcal/day (tertile 3) (P<0.0001). After adjusting for age and energy intake, total dietary fat, saturated fatty acids, trans-fatty acids, and sodium intakes were significantly higher in tertile 3 than tertiles 2 and 1 (all P <0.01). Vitamin C intake was significantly lower in tertile 3 than tertiles 1 and 2 (P = 0.003). Except for γ-tocopherol being higher in tertile 3 than tertiles 1 and 2 (P = 0.015), the plasma concentrations of antioxidants were lower in tertile 3 than tertiles 1 and 2 (β-carotene, α-carotene, lutein and zeaxanthin, all P<0.05). In the SCCS population, pizza and pasta were the main sources of dietary lycopene and their intake was associated with plasma lycopene concentration. Diets with frequent pizza and pasta consumption were high in energy, saturated fatty acids, trans-fatty acids, sodium and low in other antioxidants. Future studies of lycopene as a protective dietary factor against chronic disease should consider the overall nutritional quality of lycopene-containing foods.

  8. Plasma Lycopene Is Associated with Pizza and Pasta Consumption in Middle-Aged and Older African American and White Adults in the Southeastern USA in a Cross-Sectional Study

    PubMed Central

    Zhou, Yuan E.; Buchowski, Maciej S.; Liu, Jianguo; Schlundt, David G.; Ukoli, Flora A. M.; Blot, William J.; Hargreaves, Margaret K.

    2016-01-01

    Background The role of dietary lycopene in chronic disease prevention is not well known. Methods This study examined intake of lycopene and other antioxidants from lycopene-rich foods (e.g., pizza and pasta) simultaneously with plasma levels of lycopene and other antioxidants in a representative cross-sectional sample (187 Blacks, 182 Whites, 40–79 years old) from the Southern Community Cohort Study (SCCS). The SCCS is an ongoing study conducted in populations at high risk for chronic diseases living in Southeastern United States. Dietary intake was assessed using a validated food frequency questionnaire (FFQ), and plasma levels of lycopene and other antioxidants were measured at baseline (2002–2005). The participants were classified into tertiles according to consumption of pizza and pasta food groups. Results Lycopene dietary intake and plasma lycopene concentrations were significantly higher in the highest (tertile 3) compared to tertiles 1 and 2 (both P < 0.01). Total energy intake ranged from 1964.3 ± 117.1 kcal/day (tertile 1) to 3277.7 ± 115.8 kcal/day (tertile 3) (P<0.0001). After adjusting for age and energy intake, total dietary fat, saturated fatty acids, trans-fatty acids, and sodium intakes were significantly higher in tertile 3 than tertiles 2 and 1 (all P <0.01). Vitamin C intake was significantly lower in tertile 3 than tertiles 1 and 2 (P = 0.003). Except for γ-tocopherol being higher in tertile 3 than tertiles 1 and 2 (P = 0.015), the plasma concentrations of antioxidants were lower in tertile 3 than tertiles 1 and 2 (β-carotene, α-carotene, lutein and zeaxanthin, all P<0.05). Conclusions In the SCCS population, pizza and pasta were the main sources of dietary lycopene and their intake was associated with plasma lycopene concentration. Diets with frequent pizza and pasta consumption were high in energy, saturated fatty acids, trans-fatty acids, sodium and low in other antioxidants. Future studies of lycopene as a protective dietary factor against chronic disease should consider the overall nutritional quality of lycopene-containing foods. PMID:27583358

  9. Metabolomics Analysis of the Toxic Effects of the Production of Lycopene and Its Precursors.

    PubMed

    Miguez, April M; McNerney, Monica P; Styczynski, Mark P

    2018-01-01

    Using cells as microbial factories enables highly specific production of chemicals with many advantages over chemical syntheses. A number of exciting new applications of this approach are in the area of precision metabolic engineering, which focuses on improving the specificity of target production. In recent work, we have used precision metabolic engineering to design lycopene-producing Escherichia coli for use as a low-cost diagnostic biosensor. To increase precursor availability and thus the rate of lycopene production, we heterologously expressed the mevalonate pathway. We found that simultaneous induction of these pathways increases lycopene production, but induction of the mevalonate pathway before induction of the lycopene pathway decreases both lycopene production and growth rate. Here, we aim to characterize the metabolic changes the cells may be undergoing during expression of either or both of these heterologous pathways. After establishing an improved method for quenching E. coli for metabolomics analysis, we used two-dimensional gas chromatography coupled to mass spectrometry (GCxGC-MS) to characterize the metabolomic profile of our lycopene-producing strains in growth conditions characteristic of our biosensor application. We found that the metabolic impacts of producing low, non-toxic levels of lycopene are of much smaller magnitude than the typical metabolic changes inherent to batch growth. We then used metabolomics to study differences in metabolism caused by the time of mevalonate pathway induction and the presence of the lycopene biosynthesis genes. We found that overnight induction of the mevalonate pathway was toxic to cells, but that the cells could recover if the lycopene pathway was not also heterologously expressed. The two pathways appeared to have an antagonistic metabolic effect that was clearly reflected in the cells' metabolic profiles. The metabolites homocysteine and homoserine exhibited particularly interesting behaviors and may be linked to the growth inhibition seen when the mevalonate pathway is induced overnight, suggesting potential future work that may be useful in engineering increased lycopene biosynthesis.

  10. Lycopene Protects Against Spontaneous Ovarian Cancer Formation in Laying Hens

    PubMed Central

    Sahin, Kazim; Yenice, Engin; Tuzcu, Mehmet; Orhan, Cemal; Mizrak, Cengizhan; Ozercan, Ibrahim H.; Sahin, Nurhan; Yilmaz, Bahiddin; Bilir, Birdal; Ozpolat, Bulent

    2018-01-01

    Background Dietary intake of lycopene has been associated with a reduced risk of ovarian cancer, suggesting its chemopreventive potential against ovarian carcinogenesis. Lycopene’s molecular mechanisms of action in ovarian cancer have not been fully understood. Therefore, in the present study, we investigated the effects of lycopene on the ovarian cancer formation using the laying hen model, a biologically relevant animal model of spontaneous ovarian carcinogenesis due to high incidence rates similar to humans. Methods In this study, a total of 150 laying hens at age of 102 weeks were randomized into groups of 50: a control group (0 mg of lycopene per kg of diet) and two treatment groups (200 mg or 400 mg of lycopene per kg of diet, or ~26 and 52 mg/d/hen, respectively). At the end of 12 months, blood, ovarian tissues and tumors were collected. Results We observed that lycopene supplementation significantly reduced the overall ovarian tumor incidence (P < 0.01) as well as the number and the size of the tumors (P < 0.004 and P < 0.005, respectively). Lycopene also significantly decreased the rate of adenocarcinoma, including serous and mucinous subtypes (P < 0.006). Moreover, we also found that the serum level of oxidative stress marker malondialdehyde was significantly lower in lycopene-fed hens compared to control birds (P < 0.001). Molecular analysis of the ovarian tumors revealed that lycopene reduced the expression of NF-κB while increasing the expression of nuclear factor erythroid 2 and its major target protein, heme oxygenase 1. In addition, lycopene supplementation decreased the expression of STAT3 by inducing the protein inhibitor of activated STAT3 expression in the ovarian tissues. Conclusions Taken together, our findings strongly support the potential of lycopene in the chemoprevention of ovarian cancer through antioxidant and anti-inflammatory mechanisms. PMID:29629346

  11. Efficacy of lycopene in the treatment of gingivitis: a randomised, placebo-controlled clinical trial.

    PubMed

    Chandra, Rampalli Viswa; Prabhuji, M L Venkatesh; Roopa, D Adinarayana; Ravirajan, Sandhya; Kishore, Hadal C

    2007-01-01

    The aim of the present study was to compare the effect of systemically administered lycopene (LycoRed) as a monotherapy and as an adjunct to scaling and root planing in gingivitis patients. Twenty systemically healthy patients showing clinical signs of gingivitis were involved in a randomised, double-blind, parallel, split-mouth study. The subjects were randomly distributed between the two treatment groups: experimental group (n = 10), 8 mg lycopene/day for 2 weeks; and controls (n = 10), placebo for 2 weeks. Quadrant allocation within each group was randomised with two quadrants treated with oral prophylaxis (OP) and two quadrants not receiving any form of treatment (non-OP). Bleeding index (SBI) and non-invasive measures of plaque (PI) and gingivitis (GI) were assessed at baseline, 1 and 2 weeks. Salivary uric acid levels were also measured. All the treatment groups demonstrated statistically significant reductions in the GI, SBI and PI. Treatment with OP-lycopene resulted in a statistically significant decrease in GI when compared with OP-placebo (p < 0.05) and non-OP-placebo (p < 0.01). Treatment with non-OP-lycopene resulted in a statistically significant decrease in GI when compared with non-OP-placebo (p < 0.01). The OP-lycopene group showed a statistically significant reduction in SBI values when compared with the non-OP-lycopene group (p < 0.05) and the non-OP-placebo group (p < 0.001). There was a strong negative correlation between the salivary uric acid levels and the percentage reduction in GI at 1 and 2 weeks in the OP-lycopene group (r = -0.852 and -0.802 respectively) and in the non-OP-lycopene group (r = -0.640 and -0.580 respectively). The results presented in this study suggest that lycopene shows great promise as a treatment modality in gingivitis. The possibility of obtaining an additive effect by combining routine oral prophylaxis with lycopene is also an exciting possibility, which deserves further study.

  12. Morphological observation, RNA-Seq quantification, and expression profiling: novel insight into grafting-responsive carotenoid biosynthesis in watermelon grafted onto pumpkin rootstock.

    PubMed

    Liu, Guang; Yang, Xingping; Xu, Jinhua; Zhang, Man; Hou, Qian; Zhu, Lingli; Huang, Ying; Xiong, Aisheng

    2017-03-01

    Watermelon is an important and economical horticultural crop in China, where ~20% of the plants are grafted. The development of grafted watermelon fruit involves a diverse range of gene interactions that results in dynamic changes in fruit. However, the molecular mechanisms underlying grafting-induced fruit quality change are unclear. In the present study, we measured the lycopene content by high-performance liquid chromatography and used RNA-Seq (quantification) to perform a genome-wide transcript analysis of fruits from watermelon grafted onto pumpkin rootstock (pumpkin-grafted watermelon, PGW), self-grafted watermelon (SGW), and non-grafted watermelon (NGW). The results showed variation in the lycopene content in the flesh of PGW fruits, first increasing and then decreasing in the four stages, which was different from the trend in the flesh of NGW and SGW fruits. The transcriptome profiling data provided new information on the grafting-induced gene regulation of lycopene biosynthesis during fruit growth and development. The expression levels of 33 genes from 8 gene families (GGPS, PSY, PDS, ZDS, CRTISO, LCYb, LCYe, and CHY) related to lycopene biosynthesis, which play critical roles in fruit coloration and contribute significantly to fruit phytonutrient values, were monitored during the four periods of fruit development in watermelon. Compared with those of NGW and SGW, 14 genes were differentially expressed in PGW during fruit development, suggesting that these genes possibly help to mediate lycopene biosynthesis in grafted watermelon fruit. Our work provides some novel insights into grafting-responsive carotenoid metabolism and its potential roles during PGW fruit development and ripening. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Why is golden rice golden (yellow) instead of red?

    PubMed

    Schaub, Patrick; Al-Babili, Salim; Drake, Rachel; Beyer, Peter

    2005-05-01

    The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of beta-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the transgenic end point and thus that the endogenous pathway must also be acting. By using TaqMan real-time PCR, we show in wild-type rice endosperm the mRNA expression of the relevant carotenoid biosynthetic enzymes encoding phytoene desaturase, zeta-carotene desaturase, carotene cis-trans-isomerase, beta-lycopene cyclase, and beta-carotene hydroxylase; only PSY mRNA was virtually absent. We show that the transgenic phenotype is not due to up-regulation of expression of the endogenous rice pathway in response to the transgenes, as was suggested to be the case in tomato (Lycopersicon esculentum) fruit, where CRTI expression resulted in a similar carotenoid phenomenon. This means that beta-carotene and xanthophyll formation in Golden Rice relies on the activity of constitutively expressed intrinsic rice genes (carotene cis-trans-isomerase, alpha/beta-lycopene cyclase, beta-carotene hydroxylase). PSY needs to be supplemented and the need for the CrtI transgene in Golden Rice is presumably due to insufficient activity of the phytoene desaturase and/or zeta-carotene desaturase enzyme in endosperm. The effect of CRTI expression was also investigated in leaves of transgenic rice and Arabidopsis (Arabidopsis thaliana). Here, again, the mRNA levels of intrinsic carotenogenic enzymes remained unaffected; nevertheless, the carotenoid pattern changed, showing a decrease in lutein, while the beta-carotene-derived xanthophylls increased. This shift correlated with CRTI-expression and is most likely governed at the enzyme level by lycopene-cis-trans-isomerism. Possible implications are discussed.

  14. Why Is Golden Rice Golden (Yellow) Instead of Red?1[w

    PubMed Central

    Schaub, Patrick; Al-Babili, Salim; Drake, Rachel; Beyer, Peter

    2005-01-01

    The endosperm of Golden Rice (Oryza sativa) is yellow due to the accumulation of β-carotene (provitamin A) and xanthophylls. The product of the two carotenoid biosynthesis transgenes used in Golden Rice, phytoene synthase (PSY) and the bacterial carotene desaturase (CRTI), is lycopene, which has a red color. The absence of lycopene in Golden Rice shows that the pathway proceeds beyond the transgenic end point and thus that the endogenous pathway must also be acting. By using TaqMan real-time PCR, we show in wild-type rice endosperm the mRNA expression of the relevant carotenoid biosynthetic enzymes encoding phytoene desaturase, ζ-carotene desaturase, carotene cis-trans-isomerase, β-lycopene cyclase, and β-carotene hydroxylase; only PSY mRNA was virtually absent. We show that the transgenic phenotype is not due to up-regulation of expression of the endogenous rice pathway in response to the transgenes, as was suggested to be the case in tomato (Lycopersicon esculentum) fruit, where CRTI expression resulted in a similar carotenoid phenomenon. This means that β-carotene and xanthophyll formation in Golden Rice relies on the activity of constitutively expressed intrinsic rice genes (carotene cis-trans-isomerase, α/β-lycopene cyclase, β-carotene hydroxylase). PSY needs to be supplemented and the need for the CrtI transgene in Golden Rice is presumably due to insufficient activity of the phytoene desaturase and/or ζ-carotene desaturase enzyme in endosperm. The effect of CRTI expression was also investigated in leaves of transgenic rice and Arabidopsis (Arabidopsis thaliana). Here, again, the mRNA levels of intrinsic carotenogenic enzymes remained unaffected; nevertheless, the carotenoid pattern changed, showing a decrease in lutein, while the β-carotene-derived xanthophylls increased. This shift correlated with CRTI-expression and is most likely governed at the enzyme level by lycopene-cis-trans-isomerism. Possible implications are discussed. PMID:15821145

  15. Changes on the Pancreas in Experimental Diabetes and the Effect of Lycopene on These Changes: Pdx-1, Ngn-3, and Nestin Expressions.

    PubMed

    Sandikci, Mustafa; Karagenc, Levent; Yildiz, Mustafa

    2017-12-01

    The aim of the present study was to investigate changes occurring in the number of beta cells, as well as the expressions of Ngn-3, nestin and Pdx-1 of pancreatic progenitor cells in the pancreas of experimentally-induced adult diabetic rats and to determine the effect of orally-administered lycopene on these changes. Following the administration of 50 mg/kg streptozotocin to rats, four groups of animals were established: control + corn oil, control + lycopene, diabetic + corn oil and diabetic + lycopene. The animals in the control + lycopene and diabetic + lycopene groups received 4 mg/kg lycopene for a period of four weeks. The expressions of insulin, Ngn-3, nestin, and Pdx-1 were determined through immunohistochemistry in sections taken from pancreas tissue samples at the end of the experiment. The number of insulin-positive cells was found to be significantly low in the diabetic groups compared to the control groups. In addition, the presence of Ngn-3 and nestin-positive cells within the exocrine pancreas surrounding the islands was noted in the diabetic groups. Lycopene, in general did not have any effect in any of the parameters analyzed in the present study. It is suggested that these cells would function as stem cells to replace the lost beta-cell population. It is also suggested that it is possible to demonstrate the antioxidant effects of lycopene in the pancreas of diabetic rats by increasing the dose and duration of lycopene administration. Anat Rec, 300:2200-2207, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Higher levels of serum lycopene are associated with reduced mortality in individuals with metabolic syndrome.

    PubMed

    Han, Guang-Ming; Meza, Jane L; Soliman, Ghada A; Islam, K M Monirul; Watanabe-Galloway, Shinobu

    2016-05-01

    Metabolic syndrome increases the risk of mortality. Increased oxidative stress and inflammation may play an important role in the high mortality of individuals with metabolic syndrome. Previous studies have suggested that lycopene intake might be related to the reduced oxidative stress and decreased inflammation. Using data from the National Health and Nutrition Examination Survey, we examined the hypothesis that lycopene is associated with mortality among individuals with metabolic syndrome. A total of 2499 participants 20 years and older with metabolic syndrome were divided into 3 groups based on their serum concentration of lycopene using the tertile rank method. The National Health and Nutrition Examination Survey from years 2001 to 2006 was linked to the mortality file for mortality follow-up data through December 31, 2011, to determine the mortality rate and hazard ratios (HR) for the 3 serum lycopene concentration groups. The mean survival time was significantly higher in the group with the highest serum lycopene concentration (120.6 months; 95% confidence interval [CI], 118.8-122.3) and the medium group (116.3 months; 95% CI, 115.2-117.4), compared with the group with lowest serum lycopene concentration (107.4 months; 95% CI, 106.5-108.3). After adjusting for possible confounding factors, participants in the highest (HR, 0.61; P = .0113) and in the second highest (HR, 0.67; P = .0497) serum lycopene concentration groups showed significantly lower HRs of mortality when compared with participants in the lower serum lycopene concentration. The data suggest that higher serum lycopene concentration has a significant association with the reduced risk of mortality among individuals with metabolic syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Lycopene inhibits the isomerization of β-carotene during quenching of singlet oxygen and free radicals.

    PubMed

    Heymann, Thomas; Heinz, Philipp; Glomb, Marcus A

    2015-04-01

    The present study aimed to investigate the influence of singlet oxygen and radical species on the isomerization of carotenoids. On the one hand, lycopene and β-carotene standards were incubated with 1,4-dimethylnaphthalene-1,4-endoperoxide that produced singlet oxygen in situ. (13Z)- and (15Z)-β-carotene were preferentially generated at low concentrations of singlet oxygen, while high concentrations resulted in formation of (9Z)-β-carotene. The addition of different concentrations of lycopene led to the same isomerization progress of β-carotene, but resulted in a decreased formation of (9Z)-β-carotene and retarded degradation of (all-E)-β-carotene. On the other hand, isomerization of β-carotene and lycopene was induced by ABTS-radicals, too. As expected from the literature, chemical quenching was observed especially for lycopene, while physical quenching was preferred for β-carotene. Mixtures of β-carotene and lycopene resulted in a different isomerization progress compared to the separate β-carotene model. As long as lycopene was present, almost no isomerization of β-carotene was triggered; after that, strong formation of (13Z)-, (9Z)-, and (15Z)-β-carotene was initiated. In summary, lycopene protected β-carotene against isomerization during reactions with singlet oxygen and radicals. These findings can explain the pattern of carotenoid isomers analyzed in fruits and vegetables, where lycopene containing samples showed higher (all-E)/(9Z)-β-carotene ratios, and also in in vivo samples such as human blood plasma.

  18. Anti-proliferative and apoptosis-inducing activity of lycopene against three subtypes of human breast cancer cell lines

    PubMed Central

    Takeshima, Mikako; Ono, Misaki; Higuchi, Takako; Chen, Chen; Hara, Takayuki; Nakano, Shuji

    2014-01-01

    Although lycopene, a major carotenoid component of tomatoes, has been suggested to attenuate the risk of breast cancer, the underlying preventive mechanism remains to be determined. Moreover, it is not known whether there are any differences in lycopene activity among different subtypes of human breast cancer cells. Using ER/PR positive MCF-7, HER2-positive SK-BR-3 and triple-negative MDA-MB-468 cell lines, we investigated the cellular and molecular mechanism of the anticancer activity of lycopene. Lycopene treatment for 168 consecutive hours exhibited a time-dependent and dose-dependent anti-proliferative activity against these cell lines by arresting the cell cycle at the G0/G1 phase at physiologically achievable concentrations found in human plasma. The greatest growth inhibition was observed in MDA-MB-468 where the sub-G0/G1 apoptotic population was significantly increased, with demonstrable cleavage of PARP. Lycopene induced strong and sustained activation of the ERK1/2, with concomitant cyclin D1 suppression and p21 upregulation in these three cell lines. In triple negative cells, lycopene inhibited the phosphorylation of Akt and its downstream molecule mTOR, followed by subsequent upregulation of proapoptotic Bax without affecting anti-apoptotic Bcl-xL. Taken together, these data indicate that the predominant anticancer activity of lycopene in MDA-MB-468 cells suggests a potential role of lycopene for the prevention of triple negative breast cancer. PMID:24397737

  19. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study

    PubMed Central

    Sawardekar, Swapna B.; Patel, Tejal C.; Uchil, Dinesh

    2016-01-01

    Introduction: The objective was to compare antiplatelet effect of lycopene with aspirin and to study effect of combination of the two on platelet aggregation in vitro, using platelets from healthy volunteers. Materials and Methods: Platelets were harvested; platelet count of platelet-rich plasma adjusted to 2.5 Χ 105/μL. Aspirin (140 μmol/L) and lycopene (4, 6, 8, 10, and 12 μmol/L) were studied in vitro against adenosine-5’- diphosphate (ADP) (2.5 μM/L) and collagen Results: All the concentrations of lycopene (4–12 μmol/L) exhibited reduction in maximum platelet aggregation induced by aggregating agents ADP and collagen (P < 0.01 vs. vehicle) and were comparable with aspirin. Lycopene at concentration 10 μmol/L showed maximum platelet inhibition (47.05% ± 19.56%) against ADP, whereas lycopene at concentration 8 μmol/L showed maximum platelet inhibition (54.26% ± 30.71%) against collagen. Four μmol/L of lycopene combined with 140 μmol/L and 70 μmol/L aspirin showed greater inhibition of platelets as compared to aspirin 140 μmol/L alone, against both ADP and collagen. Conclusion: The study favorably compares lycopene and aspirin with respect to their antiplatelet activities against ADP and collagen. Lycopene can be considered as a potential target for modifying the thrombotic and pro-inflammatory events associated with platelet activation. PMID:26997718

  20. The Effects of Lycopene and Insulin on Histological Changes and the Expression Level of Bcl-2 Family Genes in the Hippocampus of Streptozotocin-Induced Diabetic Rats.

    PubMed

    Soleymaninejad, Masoume; Joursaraei, Seyed Gholamali; Feizi, Farideh; Jafari Anarkooli, Iraj

    2017-01-01

    The aim of this study was to evaluate the effects of antioxidants lycopene and insulin on histological changes and expression of Bcl-2 family genes in the hippocampus of streptozotocin-induced type 1 diabetic rats. Forty-eight Wistar rats were divided into six groups of control (C), control treated with lycopene (CL), diabetic (D), diabetic treated with insulin (DI), diabetic treated with lycopene (DL), and diabetic treated with insulin and lycopene (DIL). Diabetes was induced by an injection of streptozotocin (60 mg/kg, IP), lycopene (4 mg/kg/day) was given to the lycopene treated groups as gavages, and insulin (Sc, 1-2 U/kg/day) was injected to the groups treated with insulin. The number of hippocampus neurons undergoing cell death in group D had significant differences with groups C and DIL ( p < 0.001). Furthermore, insulin and lycopene alone or together reduced the expression of Bax , but increased Bcl-2 and Bcl-x L levels in DI, DL, and DIL rats, especially when compared to group D ( p < 0.001). The ratios of Bax/Bcl-2 and Bax/Bcl-xL in DI, DL, and DIL rats were also reduced ( p < 0.001). Our results indicate that treatment with insulin and/or lycopene contribute to the prevention of cell death by reducing the expression of proapoptotic genes and increasing the expression of antiapoptotic genes in the hippocampus.

  1. Lycopene pretreatment improves hepatotoxicity induced by acetaminophen in C57BL/6 mice.

    PubMed

    Bandeira, Ana Carla Balthar; da Silva, Rafaella Cecília; Rossoni, Joamyr Victor; Figueiredo, Vivian Paulino; Talvani, André; Cangussú, Silvia Dantas; Bezerra, Frank Silva; Costa, Daniela Caldeira

    2017-02-01

    Acetaminophen (APAP) is an antipyretic and analgesic drug that, in high doses, leads to severe liver injury and potentially death. Oxidative stress is an important event in APAP overdose. Researchers are looking for natural antioxidants with the potential to mitigate the harmful effects of reactive oxygen species in different models. Lycopene has been widely studied for its antioxidant properties. The aim of this study was to evaluate the antioxidant potential of lycopene pretreatment in APAP-induced liver injury in C57BL/6 mice. C57BL/6 male mice were divided into the following groups: control (C); sunflower oil (CO); acetaminophen 500mg/kg (APAP); acetaminophen 500mg/kg+lycopene 10mg/kg (APAP+L10), and acetaminophen 500mg/kg+lycopene 100mg/kg (APAP+L100). Mice were pretreated with lycopene for 14 consecutive days prior to APAP overdose. Analyses of blood serum and livers were performed. Lycopene was able to improve redox imbalance, decrease thiobarbituric acid reactive species level, and increase CAT and GSH levels. In addition, it decreased the IL-1β expression and the activity of MMP-2. This study revealed that preventive lycopene consumption in C57BL/6 mice can attenuate the effects of APAP-induced liver injury. Furthermore, by improving the redox state, and thus indicating its potential antioxidant effect, lycopene was also shown to have an influence on inflammatory events. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Apo-10'-lycopenoic acid, a lycopene 1 metabolite, increases sirtuin 1 mRNA and protein levels and decreases hepatic fat accumulation in ob/ob mice

    USDA-ARS?s Scientific Manuscript database

    Lycopene has been shown to be beneficial in protecting against high-fat diet-induced fatty liver. The recent demonstration that lycopene can be converted by carotene 99,10’-oxygenase into a biologically active metabolite, ALA, led us to propose that the function of lycopene can be mediated by ALA. I...

  3. Isolation and characterization of (15Z)-lycopene thermally generated from a natural source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takehara, Munenori, E-mail: takehara@mat.usp.ac.jp; Kuwa, Takahiro; Inoue, Yoshinori

    (15Z)-Lycopene was prepared by thermal isomerization of (all-E)-lycopene derived from tomatoes, and isolated by using a series of chromatographies. The fine red crystalline powder of (15Z)-lycopene was obtained from 556 mg of (all-E)-lycopene with a yield of 0.6 mg (purity: reversed-phase HPLC, 97.2%; normal-phase HPLC, ≥99.9%), and {sup 1}H and {sup 13}C NMR spectra of the isomer were fully assigned. More refined computational analyses that considered differences in the energy levels of the conformers involved in isomerization have also determined the stabilities of (15Z)-lycopene and other geometric isomers, along with the activation energies during isomerization from the all-E form. The fine controlmore » of conditions for HPLC separation and an advanced theoretical insight into geometric isomerization have led to the discovery of the 15Z-isomer generated from a natural source. - Highlights: • (15Z)-lycopene, isomerized from the all-E form of a natural source, was purified. • The obtained (15Z)-lycopene was structurally identified by an NMR analysis. • A modified theoretical study accounted for the generation of the 15Z-isomer. • This study demonstrated the occurrence of the isomer from a natural origin.« less

  4. Production and characterization of nanostructured lipid carriers and solid lipid nanoparticles containing lycopene for food fortification.

    PubMed

    Akhoond Zardini, Ali; Mohebbi, Mohebbat; Farhoosh, Reza; Bolurian, Shadi

    2018-01-01

    In this study, lycopene, was loaded on nanostructured lipid carrier and solid lipid nanoparticles using combination of high shear homogenization and ultrasonication method. Effect of applied lipids types, nanocarrier's type and lycopene loading on physicochemical properties of developed nanocarriers were studied. Particle sizes of developed nanocarriers were between 74.93 and 183.40 nm. Encapsulation efficiency of nanostructured lipid carrier was significantly higher than solid lipid nanoparticles. Morphological study of developed nanocarriers using scanning electron microscopy showed spherical nanoparticles with smooth surface. Lycopene was entrapped in nanocarriers without any chemical interaction with coating material according to Fourier transform infrared spectroscopy spectrum and differential scanning calorimetry thermogram. Glycerol monostearate containing nanoparticles showed phase separation after 30 days in 6 and 25 °C, whereas this event was not observed in nanosuspensions that produced by glycerol distearate. Lycopene release in gastrointestinal condition was studied by the dialysis bag method. To evaluate nanocarrier's potential for food fortification, developed lycopene-loaded nanocarriers were added to orange drink. Results of sensory analysis indicated that nanoencapsulation could obviate the poor solubility and tomato after taste of lycopene. Fortified sample with lycopene nanocarriers didn't show significant difference with blank orange drink sample except in orange odor.

  5. The effect of lycopene on cytochrome P450 isoenzymes and P-glycoprotein by using human liver microsomes and Caco-2 cell monolayer model.

    PubMed

    Kong, Lingti; Song, Chunli; Ye, Linhu; Xu, Jian; Guo, Daohua; Shi, Qingping

    2018-01-11

    Lycopene is widely used as a dietary supplement. However, the effects of lycopene on cytochrome P450 (CYP) enzymes or P-glycoprotein (P-gp) are not comprehensive. The present study was performed to investigate the effects of lycopene on the CYP enzymes and P-gp activity. A cocktail method was used to evaluate the activities of CYP3A4, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. Caco-2 cell monolayer model was carried out to assay lycopene on P-gp activity. The results indicated that lycopene had a moderate inhibitory effect on CYP2E1, with IC50 value of 43.65 μM, whereas no inhibitory effects on CYP3A4, CYP2C19, CYP2D6 and CYP2E1, with IC50 values all over 100 μM. In addition, lycopene showed almost no inhibitory effect on rhodamine-123 efflux and uptake (p > .05), indicated no effects on P-gp activity. In conclusion, there should be required attention when lycopene are coadministered with other drugs that are metabolised by CYP2E1.

  6. The Effect of Lycopene Preexposure on UV-B-Irradiated Human Keratinocytes

    PubMed Central

    Ascenso, Andreia; Pedrosa, Tiago; Pinho, Sónia; Pinho, Francisco; de Oliveira, José Miguel P. Ferreira; Cabral Marques, Helena; Oliveira, Helena; Simões, Sandra; Santos, Conceição

    2016-01-01

    Lycopene has been reported as the antioxidant most quickly depleted in skin upon UV irradiation, and thus it might play a protective role. Our goal was to investigate the effects of preexposure to lycopene on UV-B-irradiated skin cells. Cells were exposed for 24 h to 10 M lycopene, and subsequently irradiated and left to recover for another 24 h period. Thereafter, several parameters were analyzed by FCM and RT-PCR: genotoxicity/clastogenicity by assessing the cell cycle distribution; apoptosis by performing the Annexin-V assay and analyzing gene expression of apoptosis biomarkers; and oxidative stress by ROS quantification. Lycopene did not significantly affect the profile of apoptotic, necrotic and viable cells in nonirradiated cells neither showed cytostatic effects. However, irradiated cells previously treated with lycopene showed an increase in both dead and viable subpopulations compared to nonexposed irradiated cells. In irradiated cells, lycopene preexposure resulted in overexpression of BAX gene compared to nonexposed irradiated cells. This was accompanied by a cell cycle delay at S-phase transition and consequent decrease of cells in G0/G1 phase. Thus, lycopene seems to play a corrective role in irradiated cells depending on the level of photodamage. Thus, our findings may have implications for the management of skin cancer. PMID:26664697

  7. Cloning and Functional Characterization of a Lycopene β-Cyclase from Macrophytic Red Alga Bangia fuscopurpurea.

    PubMed

    Cao, Tian-Jun; Huang, Xing-Qi; Qu, Yuan-Yuan; Zhuang, Zhong; Deng, Yin-Yin; Lu, Shan

    2017-04-11

    Lycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene) into β- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, β-carotene (β,β-carotene) is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene β-cyclase activity in these organisms. In this work, we isolated a gene ( BfLCYB ) encoding a lycopene β-cyclase from Bangia fuscopurpurea , a red alga that is considered to be one of the primitive multicellular eukaryotic photosynthetic organisms and accumulates carotenoid constituents with both β- and ε-rings, including β-carotene, zeaxanthin, α-carotene (β,ε-carotene) and lutein. Functional complementation in Escherichia coli demonstrated that BfLCYB is able to catalyze cyclization of lycopene into monocyclic γ-carotene (β,ψ-carotene) and bicyclic β-carotene, and cyclization of the open end of monocyclic δ-carotene (ε,ψ-carotene) to produce α-carotene. No ε-cyclization activity was identified for BfLCYB. Sequence comparison showed that BfLCYB shares conserved domains with other functionally characterized lycopene cyclases from different organisms and belongs to a group of ancient lycopene cyclases. Although B. fuscopurpurea also synthesizes α-carotene and lutein, its enzyme-catalyzing ε-cyclization is still unknown.

  8. Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum).

    PubMed

    Namitha, Kanakapura Krishnamurthy; Archana, Surya Narayana; Negi, Pradeep Singh

    2011-04-01

    To study the expression pattern of carotenoid biosynthetic pathway genes, changes in their expression at different stages of maturity in tomato fruit (cv. Arka Ahuti) were investigated. The genes regulating carotenoid production were quantified by a dot blot method using a DIG (dioxigenin) labelling and detection kit. The results revealed that there was an increase in the levels of upstream genes of the carotenoid biosynthetic pathway such as 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), 4-hydroxy-3-methyl-but-2-enyl diphosphate reductase (Lyt B), phytoene synthase (PSY), phytoene desaturase (PDS) and ζ-carotene desaturase (ZDS) by 2-4 fold at the breaker stage as compared to leaf. The lycopene and β-carotene content was analyzed by HPLC at different stages of maturity. The lycopene (15.33 ± 0.24 mg per 100 g) and β-carotene (10.37 ± 0.46 mg per 100 g) content were found to be highest at 5 days post-breaker and 10 days post-breaker stage, respectively. The lycopene accumulation pattern also coincided with the color values at different stages of maturity. These studies may provide insight into devising gene-based strategies for enhancing carotenoid accumulation in tomato fruits.

  9. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria

    PubMed Central

    Maresca, Julia A.; Graham, Joel E.; Wu, Martin; Eisen, Jonathan A.; Bryant, Donald A.

    2007-01-01

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechococcus sp. PCC 7002 has two homologs of CruA, denoted CruA and CruP, and both were shown to have lycopene cyclase activity. Although all characterized lycopene cyclases in plants are CrtL-type proteins, genes orthologous to cruP also occur in plant genomes. The CruA- and CruP-type carotenoid cyclases are members of the FixC dehydrogenase superfamily and are distantly related to CrtL- and CrtY-type lycopene cyclases. Identification of these cyclases fills a major gap in the carotenoid biosynthetic pathways of green sulfur bacteria and cyanobacteria. PMID:17606904

  10. Identification of a fourth family of lycopene cyclases in photosynthetic bacteria.

    PubMed

    Maresca, Julia A; Graham, Joel E; Wu, Martin; Eisen, Jonathan A; Bryant, Donald A

    2007-07-10

    A fourth and large family of lycopene cyclases was identified in photosynthetic prokaryotes. The first member of this family, encoded by the cruA gene of the green sulfur bacterium Chlorobium tepidum, was identified in a complementation assay with a lycopene-producing strain of Escherichia coli. Orthologs of cruA are found in all available green sulfur bacterial genomes and in all cyanobacterial genomes that lack genes encoding CrtL- or CrtY-type lycopene cyclases. The cyanobacterium Synechococcus sp. PCC 7002 has two homologs of CruA, denoted CruA and CruP, and both were shown to have lycopene cyclase activity. Although all characterized lycopene cyclases in plants are CrtL-type proteins, genes orthologous to cruP also occur in plant genomes. The CruA- and CruP-type carotenoid cyclases are members of the FixC dehydrogenase superfamily and are distantly related to CrtL- and CrtY-type lycopene cyclases. Identification of these cyclases fills a major gap in the carotenoid biosynthetic pathways of green sulfur bacteria and cyanobacteria.

  11. Lycopene depresses glutamate release through inhibition of voltage-dependent Ca2+ entry and protein kinase C in rat cerebrocortical nerve terminals.

    PubMed

    Lu, Cheng-Wei; Hung, Chi-Feng; Jean, Wei-Horng; Lin, Tzu-Yu; Huang, Shu-Kuei; Wang, Su-Jane

    2018-05-01

    Lycopene is a natural dietary carotenoid that was reported to exhibit a neuroprotective profile. Considering that excitotoxicity and cell death induced by glutamate are involved in many brain disorders, the effect of lycopene on glutamate release in rat cerebrocortical nerve terminals and the possible mechanism involved in such effect was investigated. We observed here that lycopene inhibited 4-aminopyridine (4-AP)-evoked glutamate release and intrasynaptosomal Ca 2+ concentration elevation. The inhibitory effect of lycopene on 4-AP-evoked glutamate release was markedly reduced in the presence of the Ca v 2.2 (N-type) and Ca v 2.1 (P/Q-type) channel blocker ω-conotoxin MVIIC, but was insensitive to the intracellular Ca 2+ -release inhibitors dantrolene and CGP37157. Furthermore, in the presence of the protein kinase C inhibitors GF109203X and Go6976, the action of lycopene on evoked glutamate release was prevented. These results are the first to suggest that lycopene inhibits glutamate release from rat cortical synaptosomes by suppressing presynaptic Ca 2+ entry and protein kinase C activity.

  12. Furan induced ovarian damage in non-diabetic and diabetic rats and cellular protective role of lycopene.

    PubMed

    Uçar, Semra; Pandir, Dilek

    2017-11-01

    In our work, furan, lycopene, and furan + lycopene treatments were applied to non-diabetic and diabetic female rats via gavage. Ovarian tissue alterations with histopathology, immunohistochemistry, malondialdehyde levels, oxidative stress parameters such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase and harmful effect on ovarian tissue DNA were evaluated in all groups for 28 days. Furan caused the changes histological, ovarian cell's DNA structure, malondialdehyde levels, antioxidant enzymes activities as in a statistically significant manner in each group. Useful effect of lycopene was determined both in non-diabetic and diabetic treatment groups against furan according to the used experimental parameters. Although some histopathological alterations were seen in diabetic and non-diabetic/diabetic plus furan-treated group's ovarians, lycopene restored these variations near to normal levels in furan + lycopene treated groups for in 28 days. Additionally, the results of our immunohistochemical analysis and alterations of the oxidative stress parameters results also supported these findings. Our result confirms that lycopene has protective effect and significantly altered diabetes and furan-induced toxicity in the rat ovarian tissue.

  13. Production of Lycopene in the Non-Carotenoid-Producing Yeast Yarrowia lipolytica

    PubMed Central

    Ketelhot, Markus; Gatter, Michael; Barth, Gerold

    2014-01-01

    The codon-optimized genes crtB and crtI of Pantoea ananatis were expressed in Yarrowia lipolytica under the control of the TEF1 promoter of Y. lipolytica. Additionally, the rate-limiting genes for isoprenoid biosynthesis in Y. lipolytica, GGS1 and HMG1, were overexpressed to increase the production of lycopene. All of the genes were also expressed in a Y. lipolytica strain with POX1 to POX6 and GUT2 deleted, which led to an increase in the size of lipid bodies and a further increase in lycopene production. Lycopene is located mainly within lipid bodies, and increased lipid body formation leads to an increase in the lycopene storage capacity of Y. lipolytica. Growth-limiting conditions increase the specific lycopene content. Finally, a yield of 16 mg g−1 (dry cell weight) was reached in fed-batch cultures, which is the highest value reported so far for a eukaryotic host. PMID:24375130

  14. [Construction of high-yield strain by optimizing lycopene cyclase for β-carotene production].

    PubMed

    Jin, Yingfu; Han, Li; Zhang, Shasha; Li, Shizhong; Liu, Weifeng; Tao, Yong

    2017-11-25

    To optimize key enzymes, such as to explore the gene resources and to modify the expression level, can maximize metabolic pathways of target products. β-carotene is a terpenoid compound with important application value. Lycopene cyclase (CrtY) is the key enzyme in β-carotene biosynthesis pathway, catalyzing flavin adenine dinucleotide (FAD)-dependent cyclization reaction and β-carotene synthesis from lycopene precursor. We optimized lycopene cyclase (CrtY) to improve the synthesis of β-carotene and determined the effect of CrtY expression on metabolic pathways. Frist, we developed a β-carotene synthesis module by coexpressing the lycopene β-cyclase gene crtY with crtEBI module in Escherichia coli. Then we simultaneously optimized the ribosome-binding site (RBS) intensity and the species of crtY using oligo-linker mediated DNA assembly method (OLMA). Five strains with high β-carotene production capacity were screened out from the OLMA library. The β-carotene yields of these strains were up to 15.79-18.90 mg/g DCW (Dry cell weight), 65% higher than that of the original strain at shake flask level. The optimal strain CP12 was further identified and evaluated for β-carotene production at 5 L fermentation level. After process optimization, the final β-carotene yield could reach to 1.9 g/L. The results of RBS strength and metabolic intermediate analysis indicated that an appropriate expression level of CrtY could be beneficial for the function of the β-carotene synthesis module. The results of this study provide important insight into the optimization of β-carotene synthesis pathway in metabolic engineering.

  15. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    PubMed

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-07-11

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO₂ and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO₂ leading to a faster extraction with a higher recovery of the carotenoid.

  16. Lycopene modulates cholinergic dysfunction, Bcl-2/Bax balance, and antioxidant enzymes gene transcripts in monosodium glutamate (E621) induced neurotoxicity in a rat model.

    PubMed

    Sadek, Kadry; Abouzed, Tarek; Nasr, Sherif

    2016-04-01

    The effect of monosodium glutamate (MSG) on brain tissue and the relative ability of lycopene to avert these neurotoxic effects were investigated. Thirty-two male Wistar rats were distributed into 4 groups: group I, untreated (placebo); group II, injected with MSG (5 mg·kg(-1)) s.c.; group III, gastrogavaged with lycopene (10 mg·kg(-1)) p.o.; and group IV received MSG with lycopene with the same mentioned doses for 30 days. The results showed that MSG induced elevation in lipid peroxidation marker and perturbation in the antioxidant homeostasis and increased the levels of brain and serum cholinesterase (ChE), total creatine phosphokinase (CPK), creatine phosphokinase isoenzymes BB (CPK-BB), and lactate dehydrogenase (LDH). Glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) activities and gene expression were increased and glutathione content was reduced in the MSG-challenged rats, and these effects were ameliorated by lycopene. Furthermore, MSG induced apoptosis in brain tissues reflected in upregulation of pro-apoptotic Bax while lycopene upregulated the anti-apoptotic Bcl-2. Our results indicate that lycopene appears to be highly effective in relieving the toxic effects of MSG by inhibiting lipid peroxidation and inducing modifications in the activity of cholinesterase and antioxidant pathways. Interestingly, lycopene protects brain tissue by inhibiting apoptosis signaling induced by MSG.

  17. Rancidity development of refrigerated rainbow trout (Oncorhynchus mykiss) fillets: comparative effects of in vivo and in vitro lycopene.

    PubMed

    Ehsani, Ali; Jasour, Mohammad Sedigh; Agh, Naser; Hashemi, Mohammad; Khodadadi, Mahdi

    2018-01-01

    The problem of lipid oxidation in fish during storage is well known and is related to both temperature and storage time. Antioxidants could have a main role in limiting the deteriorative effects of lipid oxidation in fish. The present study aimed to investigate the effect of dietary supplement against postmortem addition of lycopene on the deterioration of trout fillets during storage at 4 ± 1 °C for 12 days. At the end of the feeding trial, no significant differences were observed with respect to the fatty acid composition of different dietary groups. However, a strong positive correlation (r = 0.96) was observed between fillet and diet lycopene levels. Lower indices of lipid oxidation (peroxide value and thiobarbituric acid) and lipid hydrolysis (free fatty acids) were observed in fillets that received lycopene (P < 0.05). Although exogenous lycopene was more effective (P < 0.05) than endogenous lycopene in delaying lipid oxidation, the fatty acid composition of fillets that received dietary lycopene supplement showed a higher stability (P < 0.05) during refrigeration storage. Accordingly, based on the time of appearance of off-odors and discoloration in fish fillets, exogenous lycopene, especially at higher levels, was more effective in terms of quality parameters. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Lycopene reduces cholesterol absorption through the downregulation of Niemann-Pick C1-like 1 in Caco-2 cells.

    PubMed

    Zou, Jun; Feng, Dan

    2015-11-01

    Elevated blood cholesterol is an important risk factor associated with atherosclerosis and coronary heart disease. Tomato lycopene has been found to have a hypocholesterolemic effect, and the effect was considered to be related to inhibition of cholesterol synthesis. However, since plasma cholesterol levels are also influenced by the absorption of cholesterol in the gut, the present study is to investigate whether lycopene affects cholesterol absorption in the intestinal Caco-2 cells. The Caco-2 cells were pretreated with lycopene at different concentrations for 24 h and then incubated with radioactive micellar cholesterol for 2 h. The absorption of radioactive cholesterol was quantified by liquid scintillation. The expression of Niemann-Pick C1-like 1 (NPC1L1) and liver X receptor α (LXRα) was analyzed by Western blot and qPCR. We found that lycopene dose dependently inhibited cholesterol absorption and the expression of NPC1L1 protein and NPC1L1 mRNA. The inhibitory effects of lycopene on cholesterol absorption and NPC1L1 expression could be prevented by blockade of the LXRα pathway. This study provides the first evidence that lycopene inhibits cholesterol absorption in the intestinal cells and this inhibitory effect of lycopene is mediated, at least in part, by LXRα-NPC1L1 signaling pathway. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Lycopene and risk of cardiovascular diseases: A meta-analysis of observational studies.

    PubMed

    Song, Bo; Liu, Kai; Gao, Yuan; Zhao, Lu; Fang, Hui; Li, Yusheng; Pei, Lulu; Xu, Yuming

    2017-09-01

    The aim of current meta-analysis was to investigate the relation between lycopene and risk of cardiovascular diseases (CVD). Studies concerning about the association between lycopene and risk of CVD were searched on Pubmed, Embase, and Web of Science from inception to October 2016. A total of 14 eligible studies were identified. A significantly inverse association with a pooled risk ratio (RR) of 0.83 (95% CI: 0.76-0.90) was shown between lycopene exposure and risk of CVD. Findings were similar restricting to dietary studies (RR = 0.87, 95% CI = 0.79-0.96) and biomarker studies (RR = 0.74, 95% CI = 0. 62-0.87).Dietary lycopene intake was statistically significant for coronary heart disease (CHD) (RR: 0.87; 95% CI: 0.76-0.98) and stroke (RR: 0.83; 95% CI: 0.69-0.96).The pooled risk estimate was generally similar for lycopene biomarker concentrations, but the association was only statistically significant for stroke (RR: 0.65; 95% CI: 0.42-0.87). Subgroup analyses showed that retrospective and low quality studies were statistically significant sources of heterogeneity. Higher lycopene exposure is inversely associated with a lower risk of CVD. Further well-designed randomized clinical trials are required to assess the role of lycopene on CVD. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Modulation of human osteoclastogenesis and osteoblastogenesis by lycopene.

    PubMed

    Costa-Rodrigues, João; Fernandes, Maria Helena; Pinho, Olívia; Monteiro, Pedro Ribeiro Rocha

    2018-03-15

    Lycopene is a lipid-soluble pigment that is mainly found in tomato. It is the carotenoid that presents the highest antioxidant potential, and due to that, it has been implicated in a decrease of the risk of several oxidative-stress-related disorders, such as cancer, inflammatory diseases and osteoporosis. Nevertheless, at the present, there is no detailed information about how lycopene affects bone metabolism. The aim of the present work was to characterize the cellular and molecular effects of lycopene on human osteoclast and osteoblast differentiation and function. It was observed that lycopene, at levels found in plasma after the ingestion of lycopene-containing products, decreased osteoclast differentiation but did not affect cell density/survival; calcium-phosphate resorbing ability was also decreased. On the other hand, osteoblast proliferation (via a decrease on apoptosis) and differentiation were increased in the presence of lycopene. The observed effects in both cell types appeared to be related to significant changes in MEK signaling pathway, but also in protein kinase C pathway in osteoclasts and NFkB signaling in osteoblasts. In conclusion, lycopene appears to promote an anabolic state of bone metabolism, stimulating osteoblastogenesis and inhibiting osteoclastogenesis, which may contribute to the promotion of a proper health status of bone tissue. This information might be relevant for the prevention and delay in the progression of osteolytic bone conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effects of Oral Lycopene Supplementation on Vascular Function in Patients with Cardiovascular Disease and Healthy Volunteers: A Randomised Controlled Trial

    PubMed Central

    Gajendragadkar, Parag R.; Hubsch, Annette; Mäki-Petäjä, Kaisa M.; Serg, Martin; Wilkinson, Ian B.; Cheriyan, Joseph

    2014-01-01

    Aims The mechanisms by which a ‘Mediterranean diet’ reduces cardiovascular disease (CVD) burden remain poorly understood. Lycopene is a potent antioxidant found in such diets with evidence suggesting beneficial effects. We wished to investigate the effects of lycopene on the vasculature in CVD patients and separately, in healthy volunteers (HV). Methods and Results We randomised 36 statin treated CVD patients and 36 healthy volunteers in a 2∶1 treatment allocation ratio to either 7 mg lycopene or placebo daily for 2 months in a double-blind trial. Forearm responses to intra-arterial infusions of acetylcholine (endothelium-dependent vasodilatation; EDV), sodium nitroprusside (endothelium-independent vasodilatation; EIDV), and NG-monomethyl-L-arginine (basal nitric oxide (NO) synthase activity) were measured using venous plethysmography. A range of vascular and biochemical secondary endpoints were also explored. EDV in CVD patients post-lycopene improved by 53% (95% CI: +9% to +93%, P = 0.03 vs. placebo) without changes to EIDV, or basal NO responses. HVs did not show changes in EDV after lycopene treatment. Blood pressure, arterial stiffness, lipids and hsCRP levels were unchanged for lycopene vs. placebo treatment groups in the CVD arm as well as the HV arm. At baseline, CVD patients had impaired EDV compared with HV (30% lower; 95% CI: −45% to −10%, P = 0.008), despite lower LDL cholesterol (1.2 mmol/L lower, 95% CI: −1.6 to −0.9 mmol/L, P<0.001). Post-therapy EDV responses for lycopene-treated CVD patients were similar to HVs at baseline (2% lower, 95% CI: −30% to +30%, P = 0.85), also suggesting lycopene improved endothelial function. Conclusions Lycopene supplementation improves endothelial function in CVD patients on optimal secondary prevention, but not in HVs. Trial Registration ClinicalTrials.gov NCT01100385 PMID:24911964

  2. Modulation of aflatoxin toxicity and biomarkers by lycopene in F344 rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Lili; Southern Yangtze University, Wuxi; Guan Hongxia

    Modulation by lycopene of aflatoxin B{sub 1} (AFB{sub 1})-induced toxic effects, metabolism, and metabolic activations was studied in young F344 rats. Animals were pretreated orally with either corn oil (control group) or lycopene [100 mg/kg body weight (b.w.), intervention group] 5 days/week for 2 weeks. Control animals were then treated daily with AFB{sub 1} (250 {mu}g/kg b.w) alone. Intervention animals were administered lycopene (100 mg/kg b.w.) at 1 h following a daily treatment with AFB{sub 1} (250 {mu}g/kg b.w.). Pretreatment and intervention with lycopene significantly reduced the toxic effect caused by AFB{sub 1} and greatly modulated AFB{sub 1} metabolism andmore » metabolic activation. Urinary excretion of AFB{sub 1} phase 1 metabolites, AFM{sub 1}, AFQ{sub 1}, and AFP{sub 1}, was significantly decreased in lycopene-treated animals. Formation of serum AFB{sub 1}-albumin adducts was also significantly reduced. The rate of reduction was from approximately 30% on day 1 (p < 0.05) to 67.7% on day 15 (p < 0.001). Lycopene intervention also significantly reduced formation of AFB{sub 1}-DNA adducts in liver compared to control animals, with the highest reduction (52.7%) occurring on day 3 (p < 0.05). Levels of AFB{sub 1}-N {sup 7}-guanine excreted in urine were also significantly decreased. Urinary excretion of the phase 2 detoxification metabolite, AFB{sub 1}-mecapturic acid, was significantly increased in lycopene-intervened animals. AFB{sub 1}-induced urinary excretion of 8-hydroxydeoxyguanosine was also reduced to 50% on day 7 after lycopene intervention. Collectively, these results suggest that inhibition of phase 1 metabolism and metabolic activation, as well as induction of phase 2 detoxification enzyme activity are the potential mechanisms for the chemopreventive effects of lycopene.« less

  3. β-carotene 9’,10’ oxygenase Modulates the Anticancer Activity of Dietary Tomato or Lycopene on Prostate Carcinogenesis in the TRAMP Model

    PubMed Central

    Tan, Hsueh-Li; Thomas-Ahner, Jennifer M.; Moran, Nancy E.; Cooperstone, Jessica L.; Erdman, John W.; Young, Gregory S.; Clinton, Steven K.

    2017-01-01

    The hypothesis that dietary tomato consumption or the intake of the carotenoid lycopene inhibits prostate cancer arose from epidemiologic studies and is supported by preclinical rodent experiments and in vitro mechanistic studies. We hypothesize that variation in activity of carotenoid cleavage enzymes, such as β-carotene 9’,10’-oxygenase (BCO2), may alter the impact of dietary tomato and lycopene on prostate carcinogenesis and therefore examined this relationship in the TRAMP model. Starting at three weeks of age, TRAMP:Bco2+/+ and TRAMP:Bco2−/− mice were fed either AIN-93G control, or semi-purified diets containing 10% tomato powder or 0.25% lycopene beadlets until 18 weeks of age. Both tomato- and lycopene-fed TRAMP:Bco2−/− mice had significantly greater serum concentrations of total, 5-cis, other cis, and all-trans lycopene than TRAMP:Bco2+/+ mice. Tomato- and lycopene-fed mice had a lower incidence of prostate cancer compared to the control-fed mice. While Bco2 genotype alone did not significantly change prostate cancer outcome in the control AIN-93G-fed mice, the abilities of lycopene and tomato feeding to inhibit prostate carcinogenesis were significantly attenuated by the loss of Bco2 (interaction p=0.0004 and p=0.0383, respectively). Overall, dietary tomato and lycopene inhibited the progression of prostate cancer in TRAMP in a Bco2 genotype-specific manner, potentially implicating the anticancer activity of lycopene cleavage products. This study suggests that genetic variables impacting carotenoid metabolism and accumulation can impact anti-cancer activity and that future efforts devoted to understanding the interface between tomato carotenoid intake, host genetics, and metabolism will be necessary to clearly elucidate their interactive roles in human prostate carcinogenesis. PMID:27807077

  4. β-Carotene 9',10' Oxygenase Modulates the Anticancer Activity of Dietary Tomato or Lycopene on Prostate Carcinogenesis in the TRAMP Model.

    PubMed

    Tan, Hsueh-Li; Thomas-Ahner, Jennifer M; Moran, Nancy E; Cooperstone, Jessica L; Erdman, John W; Young, Gregory S; Clinton, Steven K

    2017-02-01

    The hypothesis that dietary tomato consumption or the intake of the carotenoid lycopene inhibits prostate cancer arose from epidemiologic studies and is supported by preclinical rodent experiments and in vitro mechanistic studies. We hypothesize that variation in activity of carotenoid cleavage enzymes, such as β-carotene 9',10'-oxygenase (BCO2), may alter the impact of dietary tomato and lycopene on prostate carcinogenesis and therefore examined this relationship in the TRAMP model. Starting at 3 weeks of age, TRAMP:Bco2 +/+ and TRAMP:Bco2 -/- mice were fed either AIN-93G control, or semipurified diets containing 10% tomato powder or 0.25% lycopene beadlets until 18 weeks of age. Both tomato- and lycopene-fed TRAMP:Bco2 -/- mice had significantly greater serum concentrations of total, 5-cis, other cis, and all-trans lycopene than TRAMP:Bco2 +/+ mice. Tomato- and lycopene-fed mice had a lower incidence of prostate cancer compared with the control-fed mice. Although Bco2 genotype alone did not significantly change prostate cancer outcome in the control AIN-93G-fed mice, the abilities of lycopene and tomato feeding to inhibit prostate carcinogenesis were significantly attenuated by the loss of Bco2 (P interaction = 0.0004 and 0.0383, respectively). Overall, dietary tomato and lycopene inhibited the progression of prostate cancer in TRAMP in a Bco2 genotype-specific manner, potentially implicating the anticancer activity of lycopene cleavage products. This study suggests that genetic variables impacting carotenoid metabolism and accumulation can impact anticancer activity and that future efforts devoted to understanding the interface between tomato carotenoid intake, host genetics, and metabolism will be necessary to clearly elucidate their interactive roles in human prostate carcinogenesis. Cancer Prev Res; 10(2); 161-9. ©2016 AACR. ©2016 American Association for Cancer Research.

  5. A lycopene-enriched virgin olive oil enhances antioxidant status in humans.

    PubMed

    Garrido, María; González-Flores, David; Marchena, Ana M; Prior, Estrella; García-Parra, Jesús; Barriga, Carmen; Rodríguez Moratinos, Ana B

    2013-06-01

    Lycopene, a bioactive red pigment, represents the most potent in vitro antioxidant among carotenoids. Virgin olive oil contains trace amounts of a wide variety of phytochemicals, which have proven to exert beneficial effects on oxidative stress. Since the ingestion of lycopene together with oil reportedly increases its bioavailability, we evaluated urinary antioxidant capacity after the consumption of a lycopene-enriched virgin olive oil (7 mg lycopene day(-1)) compared with the antioxidant effect produced after the ingestion of a virgin olive oil and a sunflower oil during 5 days, in young (25-30 years of age), middle-aged (35-55 years of age) and elderly (65-85 years of age) subjects. The results showed that the consumption of virgin olive oil increased urinary antioxidant capacity in middle-aged and elderly volunteers, whereas the administration of a lycopene-enriched virgin olive oil produced higher antioxidant effects in all of the three age groups assayed. The incorporation of the lycopene-enriched virgin olive oil into the diet may enhance the health-promoting effects of the virgin olive oil, contributing as a functional tool against several disorders where oxidative stress plays an important role. © 2012 Society of Chemical Industry.

  6. Lycopene ameliorates atrazine-induced oxidative damage in adrenal cortex of male rats by activation of the Nrf2/HO-1 pathway.

    PubMed

    Abass, Marwa Ahmed; Elkhateeb, Shereen Ahmed; Abd El-Baset, Samia Adel; Kattaia, Asmaa Alhosiny; Mohamed, Eman Mosallam; Atteia, Hebatallah Husseini

    2016-08-01

    Atrazine (ATZ) is one of the most commonly used herbicides contaminating plants, soil and water resources. Several strategies have been used to counteract ATZ toxicity. Here, we tested the hypothesis that lycopene could ameliorate ATZ-induced toxicity in the adrenal cortex. For this purpose, 35 adult male albino rats were randomized into five equal groups: untreated control, vehicle control (received 0.5 mL corn oil/day), lycopene (treated with lycopene dissolved in 0.5 mL corn oil, 10 mg/kg b.w./day), ATZ (received ATZ dissolved in 0.5 mL corn oil 300 mg/kg b.w./day), and ATZ + lycopene (treated with ATZ and lycopene at the same previously mentioned doses). All treatments were given by oral gavage for 4 weeks. We found that ATZ exposure significantly increased relative adrenal weight, plasma ACTH levels, and adrenal oxidative stress as manifested by elevated malondialdehyde levels, decreased reduced glutathione content and depressed antioxidant enzyme activities in adrenal cortex tissues with respect to control groups. Furthermore, the transcription of adrenal cortex nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), nuclear factor kappa B, and caspase-3 genes was increased significantly compared with the control groups. This was accompanied with DNA fragmentation and structural and ultrastructural changes in zona glomerulosa and zona fasiculata of the adrenal cortex. Notably, all these changes were partially ameliorated in rats treated concomitantly with ATZ and lycopene. Our results showed that lycopene exerts protective effects against ATZ-induced toxicity in rat adrenal cortex. These effects may be attributed to the antioxidative property of lycopene and its ability to activate the Nrf2/HO-1 pathway.

  7. Whole Food versus Supplement: Comparing the Clinical Evidence of Tomato Intake and Lycopene Supplementation on Cardiovascular Risk Factors12

    PubMed Central

    Burton-Freeman, Britt M.; Sesso, Howard D.

    2014-01-01

    Cardiovascular disease (CVD) is a major contributor to morbidity and mortality in the United States and worldwide. A link between diet and CVD is well established, with dietary modification a foundational component of CVD prevention and management. With the discovery of bioactive components beyond the essential nutrients of foods, a new era of nutritional, medical, botanical, physiologic, and analytical sciences has unfolded. The ability to identify, isolate, purify, and deliver single components has expanded the dietary supplement business and health opportunity for consumers. Lycopene is an example of a food component that has attracted attention from scientists as well as food, agriculture, and dietary supplement industries. A major question, however, is whether delivering lycopene through a supplement source is as effective as or more effective than consuming lycopene through whole food sources, specifically the tomato, which is the richest source of lycopene in the Western diet. In this review, we examined clinical trials comparing the efficacy of lycopene supplements with tomato products on intermediate CVD risk factors including oxidative stress, inflammation, endothelial function, blood pressure, and lipid metabolism. Overall, the present review highlights the need for more targeted research; however, at present, the available clinical research supports consuming tomato-based foods as a first-line approach to cardiovascular health. With the exception of blood pressure management where lycopene supplementation was favored, tomato intake provided more favorable results on cardiovascular risk endpoints than did lycopene supplementation. Indeed, future research that is well designed, clinically focused, mechanistically revealing, and relevant to human intake will undoubtedly add to the growing body of knowledge unveiling the promise of tomatoes and/or lycopene supplementation as an integral component of a heart-healthy diet. PMID:25469376

  8. Dietary Lycopene, Angiogenesis, and Prostate Cancer: A Prospective Study in the Prostate-Specific Antigen Era

    PubMed Central

    2014-01-01

    Background The role of lycopene in prostate cancer prevention remains controversial. We examined the associations between dietary lycopene intake and prostate cancer, paying particular attention to the influence of prostate-specific antigen screening, and evaluated tissue biomarkers in prostate cancers in relation to lycopene intake. Methods Among 49898 male health professionals, we obtained dietary information through questionnaires and ascertained total and lethal prostate cancer cases from 1986 through January 31, 2010. Cox regression was used to estimate multivariable hazard ratios (HRs) and 95% confidence intervals (CIs). Tissue microarrays and immunohistochemistry were used to assess tumor biomarker expression in a subset of men. Two-sided χ2 tests were used to calculate the P values. Results Higher lycopene intake was inversely associated with total prostate cancer and more strongly with lethal prostate cancer (top vs bottom quintile: HR = 0.72; 95% CI = 0.56 to 0.94; P trend = .04). In a restricted population of screened participants, the inverse associations became markedly stronger (for lethal prostate cancer: HR = 0.47; 95% CI = 0.29 to 0.75; P trend = .009). Comparing different measures of dietary lycopene, early intake, but not recent intake, was inversely associated with prostate cancer. Higher lycopene intake was associated with biomarkers in the cancer indicative of less angiogenic potential. Conclusions Dietary intake of lycopene was associated with reduced risk of lethal prostate cancer and with a lesser degree of angiogenesis in the tumor. Because angiogenesis is a strong progression factor, an endpoint of lethal prostate cancer may be more relevant than an endpoint of indolent prostate cancer for lycopene in the era of highly prevalent prostate-specific antigen screening. PMID:24463248

  9. Neuroprotective effects of lycopene in spinal cord injury in rats via antioxidative and anti-apoptotic pathway.

    PubMed

    Hu, Wei; Wang, Hongbo; Liu, Zhenfeng; Liu, Yanlu; Wang, Rong; Luo, Xiao; Huang, Yifei

    2017-03-06

    Oxidative damage induced-mitochondrial dysfunction and apoptosis has been widely studied in spinal cord injury (SCI). Lycopene, a polyunsaturated hydrocarbon, has the highest antioxidant capacity compared to the other carotenoids. However, the role of lycopene in SCI is unknown. In the present study, we evaluated the antioxidant effects of lycopene on mitochondrial dysfunction and apoptosis following T10 contusion SCI in rats. The rats were randomized into 5 groups: the sham group, the SCI group and the SCI pre-treated with lycopene (5, 10, or 20mg/kg) group. The SCI group showed increased malondialdehyde (MDA) content, decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) ability, which indicated that SCI could induce oxidative damage. What's more, the SCI group showed decreased mRNA expression of cytochrome b and mitochondrial transcription factor A (Tfam), and decreased mitochondrial membrane potential (ΔYm), which indicated that SCI could induce mitochondrial dysfunction. Besides, the SCI group showed decreased protein expression of bcl-2 and mitochondrial cytochrome C, increased protein expression of cytosolic cytochrome C, cleaved caspase-9, cleaved caspase-3 and bax, and increased TUNEL-positive cell numbers, which indicated that SCI could induce cell apoptosis. Fortunately, the lycopene treatment significantly ameliorated oxidative damage, mitochondrial dysfunction and cell apoptosis via the reversion of those parameters described above in the dose of lycopene of 10 and 20mg/kg. In addition, lycopene significantly ameliorated the hind limb motor disturbances in the SCI+lyco10 group and the SCI+lyco20 group compared with the SCI group. These results suggested that lycopene administration could improve total antioxidant status and might have neuroprotective effects on SCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dietary Lycopene Supplementation Improves Cognitive Performances in Tau Transgenic Mice Expressing P301L Mutation via Inhibiting Oxidative Stress and Tau Hyperphosphorylation.

    PubMed

    Yu, Lixia; Wang, Weiguang; Pang, Wei; Xiao, Zhonghai; Jiang, Yugang; Hong, Yan

    2017-01-01

    Oxidative stress is implicated in the pathogenesis of Alzheimer's disease (AD) and other tauopathies and participates in their development by promoting hyperphosphorylation of microtubule-associated protein tau. Lycopene, as an effective antioxidant, combined with vitamin E seemed to be additive against oxidative stress. The present study was undertaken to examine whether lycopene or lycopene/vitamin E could exert protective effects on memory deficit and oxidative stress in tau transgenic mice expressing P301L mutation. P301L transgenic mice were assigned to three groups: P301L group (P301L), P301L+lycopene (Lyc), and P301L+lycopene/vitamin E (Lyc+VE). Age-matched C57BL/6J mice as wild type controls (Con) were used in the present study. Spatial memory was assessed by radial arm while passive memories were evaluated by step-down and step-through tests. Levels of tau phosphorylation were detected by western blot. Oxidative stress biomarkers were measured in the serum using biochemical assay kits. Compared with the control group, P301L mice displayed significant spatial and passive memory impairments, elevated malondialdehyde (MDA) levels and decreased glutathione peroxidase (GSH-Px) activities in serum, and increased tau phosphorylation at Thr231/Ser235, Ser262, and Ser396 in brain. Supplementations of lycopene or lycopene/vitamin E could significantly ameliorate the memory deficits, observably decreased MDA concentrations and increased GSH-Px activities, and markedly attenuated tau hyperphosphorylation at multiple AD-related sites. Our findings indicated that the combination of lycopene and vitamin E antioxidants acted in a synergistic fashion to bring significant effects against oxidative stress in tauopathies.

  11. Effect of Pressure on Absorption Spectra of Lycopene in n-Hexane and CS2 Solvents

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Liu, Wei-Long; Zheng, Zhi-Ren; Huo, Ming-Ming; Li, Ai-Hua; Yang, Bin

    2010-01-01

    The absorption spectra of lycopene in n-hexane and CS2 are measured under high pressure and the results are compared with β-carotene. In the lower pressure range, the deviation from the linear dependence on the Bayliss parameter (BP) for β-carotene is more visible than that for lycopene. With the further increase of the solvent BP, the 0-0 bands of lycopene and β-carotene red shift at almost the same rate in n-hexane; however, the 0-0 band of lycopene red shifts slower than that of β-carotene in CS2. The origins of these diversities are discussed taking into account the dispersion interactions and structures of solute and solvent molecules.

  12. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression.

    PubMed

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Fujii, Shiori; Miyauchi, Kazuki; Nakamura, Yoki; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-06-15

    Peripheral nerve injury upregulates tumor necrosis factor (TNF) expression. In turn, connexin 43 (Cx43) expression in spinal astrocytes is downregulated by TNF. Therefore, restoration of spinal astrocyte Cx43 expression to normal level could lead to the reduction of nerve injury-induced pain. While the non-provitaminic carotenoid lycopene reverses thermal hyperalgesia in mice with painful diabetic neuropathy, the antinociceptive mechanism is not entirely clear. The current study evaluated whether the antinociceptive effect of lycopene is mediated through the modulation of Cx43 expression in spinal astrocytes. The effect of lycopene on Cx43 expression was examined in cultured rat spinal astrocytes. The effect of intrathecal lycopene on Cx43 expression and neuropathic pain were evaluated in mice with partial sciatic nerve ligation (PSNL). Treatment of cultured rat spinal astrocytes with lycopene reversed TNF-induced downregulation of Cx43 protein expression through a transcription-independent mechanism. By contrast, treatment of cultured spinal astrocytes with either pro-vitamin A carotenoid β-carotene or antioxidant N-acetyl cysteine had no effect on TNF-induced downregulation of Cx43 protein expression. In addition, repeated, but not single, intrathecal treatment with lycopene of mice with a partial sciatic nerve ligation significantly prevented not only the downregulation of Cx43 expression in spinal dorsal horn but mechanical hypersensitivity as well. The current findings suggest a significant spinal mechanism that mediates the analgesic effect of lycopene, through the restoration of normal spinal Cx43 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Heritability and genetic variance for citrulline, arginine and lycopene content in a diverse set of watermelon cultigens

    USDA-ARS?s Scientific Manuscript database

    Citrulline, arginine, and lycopene are naturally occurring compounds found in watermelon, Citrullus lanatus (Thumb) Matsum & Nakai, with beneficial effects on plant growth and human health. This study evaluated seven commercial cultivars and one breeding line for citrulline, arginine, and lycopene c...

  14. Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults

    USDA-ARS?s Scientific Manuscript database

    Lycopene is a red carotenoid found in tomatoes hypothesized to mediate disease preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, while human plasma and tissues demonstrate greater proportions of cis isomers. The objecti...

  15. Effects of beta-glucuronidase-deficient and lycopene-producing Escherichia coli strains on formation of azoxymethane-induced aberrant crypt foci in the rat colon.

    PubMed

    Arimochi, H; Kataoka, K; Kuwahara, T; Nakayama, H; Misawa, N; Ohnishi, Y

    1999-08-27

    We tried to inhibit the formation of azoxymethane-induced aberrant crypt foci (ACF) in the rat intestine by feeding a culture of a beta-glucuronidase-deficient Escherichia coli strain or a cell suspension of a lycopene-producing E. coli strain. Feeding of the former culture to F344 rats did not decrease fecal beta-glucuronidase activity or the number of ACF compared with the control beta-glucuronidase-proficient groups. However, a significant positive correlation between the fecal beta-glucuronidase activity and the ACF number was observed among groups treated with cultures of beta-glucuronidase-proficient and -deficient strains. In the group treated with lycopene-producing cells, the number of ACF was significantly lower than that in the control group. A vegetable juice containing a larger amount of lycopene than a cell suspension of the lycopene-producing E. coli also decreased the number of ACF to the same extent as a cell suspension of the lycopene-producing bacteria. These results suggest that feeding of the beta-glucuronidase-deficient E. coli is not very effective in preventing colon carcinogenesis, although activity of the fecal beta-glucuronidase is associated with AOM-induced ACF formation, and that lycopene-producing intestinal bacteria can effectively prevent colon carcinogenesis. Copyright 1999 Academic Press.

  16. Effects of Dietary Lycopene Supplementation on Plasma Lipid Profile, Lipid Peroxidation and Antioxidant Defense System in Feedlot Bamei Lamb.

    PubMed

    Jiang, Hongqin; Wang, Zhenzhen; Ma, Yong; Qu, Yanghua; Lu, Xiaonan; Luo, Hailing

    2015-07-01

    Lycopene, a red non-provitamin A carotenoid, mainly presenting in tomato and tomato byproducts, has the highest antioxidant activity among carotenoids because of its high number of conjugated double bonds. The objective of this study was to investigate the effect of lycopene supplementation in the diet on plasma lipid profile, lipid peroxidation and antioxidant defense system in feedlot lamb. Twenty-eight Bamei male lambs (90 days old) were divided into four groups and fed a basal diet (LP0, 40:60 roughage: concentrate) or the basal diet supplemented with 50, 100, and 200 mg/kg lycopene. After 120 days of feeding, all lambs were slaughtered and sampled. Dietary lycopene supplementation significantly reduced the levels of plasma total cholesterol (p<0.05, linearly), total triglycerides (TG, p<0.05) and low-density lipoprotein cholesterol (LDL-C, p<0.05), as well as atherogenic index (p<0.001), whereas no change was observed in high-density lipoprotein cholesterol (p>0.05). The levels of TG (p<0.001) and LDL-C (p<0.001) were decreased with the feeding time extension, and both showed a linear trend (p<0.01). Malondialdehyde level in plasma and liver decreased linearly with the increase of lycopene inclusion levels (p<0.01). Dietary lycopene intake linearly increased the plasma antioxidant vitamin E level (p<0.001), total antioxidant capacity (T-AOC, p<0.05), and activities of catalase (CAT, p<0.01), glutathione peroxidase (GSH-Px, p<0.05) and superoxide dismutase (SOD, p<0.05). The plasma T-AOC and activities of GSH-Px and SOD decreased with the extension of the feeding time. In liver, dietary lycopene inclusion showed similar antioxidant effects with respect to activities of CAT (p<0.05, linearly) and SOD (p<0.001, linearly). Therefore, it was concluded that lycopene supplementation improved the antioxidant status of the lamb and optimized the plasma lipid profile, the dosage of 200 mg lycopene/kg feed might be desirable for growing lambs to prevent environment stress and maintain normal physiological metabolism.

  17. Antioxidants and reduced functional capacity in the elderly: findings from the Nun Study.

    PubMed

    Snowdon, D A; Gross, M D; Butler, S M

    1996-01-01

    This study investigated the relationship of plasma antioxidants to reduced functional capacity in the elderly. A hallmark of reduced functional capacity in the elderly is dependence in self-care (i.e., requiring assistance with bathing, walking, dressing, standing, toileting, and feeding). This relationship was assessed in a cross-sectional study of 88 Catholic sisters (nuns). These 77- to 98-year-old women lived in the same building, ate food prepared in the same kitchen, and had all nursing services provided by the same staff. In 1993, ability to perform self-care was assessed, and blood was drawn to determine plasma carotenoids (lycopene, beta carotene, alpha carotene, zeaxanthin and lutein combined, and beta cryptoxanthin) and alpha tocopherol. Dependence in self-care had a strong negative association with lycopene, but was not clearly related to other carotenoids or alpha tocopherol. Results from age-adjusted least squares regression indicated that a 30 micrograms/dl decrease in lycopene was associated with 2.4 additional dependencies in self-care (95% confidence interval = 1.5, 3.3; p < .001). Lycopene's relationship to dependence was modified by plasma LDL-cholesterol, the predominant carrier of lycopene in the blood. Women with low lycopene and low LDL-cholesterol had 3.6 dependencies (95% confidence interval = 3.1, 4.2; p < .001), compared to 1.0 dependency (95% confidence interval = 0.3, 1.8) in those with high lycopene and low LDL-cholesterol. This is the first study to report an association between lycopene and functional status. This finding needs to be replicated in other human and animal studies before the association is accepted as real.

  18. Lycopene loaded whey protein isolate nanoparticles: An innovative endeavor for enhanced bioavailability of lycopene and anti-cancer activity.

    PubMed

    Jain, Ashay; Sharma, Gajanand; Ghoshal, Gargi; Kesharwani, Prashant; Singh, Bhupinder; Shivhare, U S; Katare, O P

    2018-04-30

    The work entails a novel strategy of formulating the lycopene loaded whey protein isolate nanoparticles (LYC-WPI-NPs) solely using the rational blend of biomacromolecule without using equipment-intensive techniques. The LYC-WPI-NPs were fabricated as a substantial drug delivery platform, with maximum entrapment, spatial and controlled release manners, exceptional plasma concentration, and perspective for discrepancy delivery of therapeutics. Prepared nano-formulations were measured in ultra-fine size (100-350 nm) with sphere-shaped. The percent lycopene entrapment of prepared LYC-WPI-NPs was estimated in the range to 50 and 65%. In vitro percent cumulative release study demonstrated deaden and extended release i.e. approximately 75% following 16th h. The in vitro percent cell survival (cytotoxicity study) of prepared nanoparticles was evaluated against MCF-7 breast cancer cells by MTT based colorimetric assay. Sub-cellular localization of lycopene when delivered by LYC-WPI-NPs was assessed by HPLC (high performance liquid chromatography). The WPI-NPs enhance the oral bioavailability of lycopene by controlling its release from nano-formulation and facilitating its absorption through lymphatic pathways. Prophylactic anticancer efficacy of LYC-WPI-NPs was evaluated thereafter on experimentally induced breast cancer animal model. Conclusively, it may quite reasonable that lycopene loaded protein nanoparticles are competent to improve the biopharmaceutical attributes of lycopene and demonstrated prophylactic anticancer activity, decrease tumor proliferation and increase the survival rate of treated animals, thus signifying their feasible usefulness in cancer therapeutic and intervention. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Evaluating carotenoid changes in tomatoes during postharvest ripening using Raman chemical imaging

    NASA Astrophysics Data System (ADS)

    Qin, Jianwei; Chao, Kuanglin; Kim, Moon S.

    2011-06-01

    Lycopene is a major carotenoid in tomatoes and its content varies considerably during postharvest ripening. Hence evaluating lycopene changes can be used to monitor the ripening of tomatoes. Raman chemical imaging technique is promising for mapping constituents of interest in complex food matrices. In this study, a benchtop point-scanning Raman chemical imaging system was developed to evaluate lycopene content in tomatoes at different maturity stages. The system consists of a 785 nm laser, a fiber optic probe, a dispersive imaging spectrometer, a spectroscopic CCD camera, and a two-axis positioning table. Tomato samples at different ripeness stages (i.e., green, breaker, turning, pink, light red, and red) were selected and cut before imaging. Hyperspectral Raman images were acquired from cross sections of the fruits in the wavenumber range of 200 to 2500 cm-1 with a spatial resolution of 1 mm. The Raman spectrum of pure lycopene was measured as reference for spectral matching. A polynomial curve-fitting method was used to correct for the underlying fluorescence background in the Raman spectra of the tomatoes. A hyperspectral image classification method was developed based on spectral information divergence to identify lycopene in the tomatoes. Raman chemical images were created to visualize quantity and spatial distribution of the lycopene at different ripeness stages. The lycopene patterns revealed the mechanism of lycopene generation during the postharvest development of the tomatoes. The method and findings of this study form a basis for the future development of a Raman-based nondestructive approach for monitoring internal maturity of the tomatoes.

  20. Concomitant consumption of lycopene and fish oil inhibits tumor growth and progression in a mouse xenograft model of colon cancer

    USDA-ARS?s Scientific Manuscript database

    Our previous report showed that concomitant supplementation of lycopene and eicosa-pentaenoic acid synergistically inhibited the proliferation of human colon cancer HT-29 cells in vitro. To validate our findings, the present study investigated whether consumption of lycopene and fish oil would help ...

  1. Investigation of Raman chemical imaging for detection of Lycopene changes in tomatoes during postharvest ripening

    USDA-ARS?s Scientific Manuscript database

    Lycopene is a major carotenoid in tomatoes and detecting changes in lycopene content can be used to monitor the ripening of tomatoes. Raman chemical imaging is a new technique that shows promise for mapping constituents of interest in complex food matrices. In this study, a benchtop point-scanning...

  2. Effect of Echinophora platyloba DC. essential oil and lycopene on the stability of pasteurized cream obtained from cow milk

    PubMed Central

    Ehsani, Ali; Hashemi, Mohammad; Hosseini Jazani, Nima; Aliakbarlu, Javad; Shokri, Sajad; Naghibi, Seyedeh Samane

    2016-01-01

    The present study was carried out to enhance shelf life of pasteurized cream using Echinophora platyloba essential oil (EEO) and lycopene. For this purpose, two concentrations of EEO (0.10% and 0.50%) and lycopene (20 and 50 ppm) alone and together as combinations were added in pasteurized creams and analyzed for microbial characteristics, sensorial properties and lipid stability during storage at 4 ˚C and 25 ˚C for 14 days. Results of microbial and chemical analyses of experimental pasteurized creams showed that pasteurized creams treated with combinations of the EEO and lycopene in their higher concentrations had the best microbial and chemical properties and the most stability than control during storage (p < 0.05). Results of sensorial evaluation demonstrated that all treatments had favorable overall acceptability, even though, the best sensorial properties were observed in creams with combinations of EEO and lycopene in their lower concentrations. Therefore, based on the results of the present study, application of EEO and lycopene as natural preservatives is especially recommend in high fat dairy products such as butter and cream. PMID:27482359

  3. Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide induced acute lung injury via reducing inflammatory response.

    PubMed

    Liu, Tian-Yin; Chen, Shi-Biao

    2016-12-01

    Sarcandra glabra (Chinese name, Zhongjiefeng) is an important herb widely used in traditional Chinese medicine. Lycopene has been shown to be a powerful antioxidant. This study aims to test the hypothesis that Sarcandra glabra combined with lycopene protect rats from lipopolysaccharide (LPS) induced acute lung injury (ALI). Metabolomics approach combined with pathological inspection, serum biochemistry examination, enzyme-linked immunosorbent assay and western blotting were used to explore the protective effects of Sarcandra glabra and lycopene on LPS-induced ALI, and to elucidate the underlying mechanisms. Results showed that Sarcandra glabra and lycopene could significantly ameliorate LPS-induced histopathological injuries, improve the anti-oxidative activities of rats, decrease the levels of TNF-α and IL-6, suppress the activations of MAPK and transcription factor NF-κB and reverse the disturbed metabolism towards the normal status. Taken together, this integrated study revealed that Sarcandra glabra combined with lycopene had great potential in protecting rats from LPS-induced ALI, which would be helpful to guide the clinical medication. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Isolation and spectral characterization of thermally generated multi-Z-isomers of lycopene and the theoretically preferred pathway to di-Z-isomers.

    PubMed

    Honda, Masaki; Kudo, Tatsuya; Kuwa, Takahiro; Higashiura, Takuma; Fukaya, Tetsuya; Inoue, Yoshinori; Kitamura, Chitoshi; Takehara, Munenori

    2017-02-01

    Lycopene has a large number of geometric isomers caused by E/Z isomerization at arbitrary sites within the 11 conjugated double bonds, offering varying characteristics related to features such as antioxidant capacity and bioavailability. However, the geometric structures of only a few lycopene Z-isomers have been thoroughly identified from natural sources. In this study, seven multi-Z-isomers of lycopene, (9Z,13'Z)-, (5Z,13Z,9'Z)-, (9Z,9'Z)-, (5Z,13'Z)-, (5Z,9'Z)-, (5Z,9Z,5'Z)-, and (5Z,9Z)-lycopene, were obtained from tomato samples by thermal isomerization, and then isolated by elaborate chromatography, and fully assigned using proton nuclear magnetic resonance. Moreover, the theoretically preferred pathway from (all-E)-lycopene to di-Z-isomers was examined with a computational approach using a Gaussian program. Fine-tuning of the HPLC separation conditions led to the discovery of novel multi-Z-isomers, and whose formation was supported by advanced theoretical calculations.

  5. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice

    PubMed Central

    Ip, Blanche C.; Liu, Chun; Ausman, Lynne M.; von Lintig, Johannes; Wang, Xiang-Dong

    2014-01-01

    Obesity is associated with increased liver cancer risks and mortality. We recently showed that apo-10’-lycopenoic acid, a lycopene metabolite generated by beta-carotene-9’,10’-oxygenase (BCO2), inhibited carcinogen-initiated, high-fat diet (HFD)-promoted liver inflammation and hepatic tumorigenesis development. The present investigation examined the outstanding question of whether the lycopene could suppress HFD-promoted hepatocellular carcinoma (HCC) progression, and if BCO2 is important in BCO2-knockout (BCO2-KO) and wild-type male mice. Results showed that lycopene supplementation (100 mg/kg diet) for 24 weeks resulted in comparable accumulation of hepatic lycopene (19.4 vs 18.2 nmol/g) and had similar effects on suppressing HFD-promoted HCC incidence (19% vs 20%) and multiplicity (58% vs 62%) in wild-type and BCO2-KO mice, respectively. Intriguingly, lycopene chemopreventive effects in wild-type mice were associated with reduced hepatic pro-inflammatory signaling (phosphorylation of nuclear factor-κB p65 and signal transducer and activator of transcription 3; interleukin-6 protein) and inflammatory foci. In contrast, the protective effects of lycopene in BCO2-KO but not in wild-type mice were associated with reduced hepatic endoplasmic reticulum stress-mediated unfolded protein response (ERUPR), through decreasing ERUPR-mediated protein kinase RNA-activated like kinase– eukaryotic initiation factor 2α activation, and inositol requiring 1α–X-box binding protein 1 signaling. Lycopene supplementation in BCO2-KO mice suppressed oncogenic signals including Met mRNA, β-catenin protein, and mammalian target of rapamycin (mTOR) complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR-214 levels. These results provided novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression. PMID:25293877

  6. Effects of tomato juice consumption on plasma and lipoprotein carotenoid concentrations and the susceptibility of low density lipoprotein to oxidative modification.

    PubMed

    Maruyama, C; Imamura, K; Oshima, S; Suzukawa, M; Egami, S; Tonomoto, M; Baba, N; Harada, M; Ayaori, M; Inakuma, T; Ishikawa, T

    2001-06-01

    Effects of tomato juice supplementation on the carotenoid concentration in lipoprotein fractions and the oxidative susceptibility of LDL were investigated in 31 healthy Japanese female students. These subjects were randomized to one of three treatment groups; Control, Low and High. The Control, Low and High groups consumed 480 g of a control drink, 160 g of tomato juice plus 320 g of the control drink, and 480 g of tomato juice, providing 0, 15 and 45 mg of lycopene, respectively, for one menstrual cycle. The ingestion of tomato juice, rich in lycopene but having little beta-carotene, increased both lycopene and beta-carotene. Sixty-nine percent of lycopene in plasma was distributed in the LDL fraction and 24% in the HDL fraction. In the Low group, the lycopene concentration increased 160% each in the VLDL+IDL, LDL and HDL fractions (p<0.01). In the High group, the lycopene concentration increased 270% each in the VLDL+IDL and LDL fractions, and 330% in the HDL fraction (p<0.01). Beta-carotene also increased 120% and 180% in LDL fractions of the Low and the High groups, respectively. Despite these carotenoid increases in LDL, the lag time before oxidation was not prolonged as compared with that of the Control group. The propagation rate decreased significantly after consumption in the High group. Multiple regression analysis showed a positive correlation between lag time changes and changes in the alpha-tocopherol concentration per triglyceride in LDL, and a negative correlation between propagation rate changes and changes in the lycopene concentration per phospholipid in LDL. These data suggest that alpha-tocopherol is a major determinant in protecting LDL from oxidation, while lycopene from tomato juice supplementaion may contribute to protect phospholipid in LDI, from oxidation. Thus, oral intake of lycopene might be beneficial for ameliorating atherosclerosis.

  7. Serum concentrations of micronutrient antioxidants in an adult Arab population.

    PubMed

    Abiaka, Clifford; Olusi, Samuel; Simbeye, Amos

    2002-01-01

    Serum concentrations of retinol, alpha-tocopherol, beta-carotene and lycopene were measured by reversed-phase high-performance liquid chromatography (r-P HPLC) in 260 randomly selected healthy adult Kuwaitis (159 men and 101 women) aged 18-63 years (mean 33.3 years) to established reference ranges of the micronutrient antioxidants. Total cholesterol concentrations were assayed by an enzymatic method to determine alpha-tocopherol: cholesterol ratios. The mean +/- SEM (micromol/L) for retinol, alpha-tocopherol, beta-carotene and lycopene were 1.76+/-0.02, 20.0+/-0.5, 0.52+/-0.03, 0.95+/-0.05, respectively. Compared to other populations, these data showed, on the whole, ordinary concentrations of beta-carotene, comparatively low concentrations of retinol and alpha-tocopherol and high concentrations of lycopene. Retinol concentrations were similar for both sexes, whereas alpha-tocopherol concentration was significantly (P < 0.0001) lower and the carotenoid levels (beta-carotene and lycopene) significantly higher (P < 0.0001) in women. Of the micronutrient antioxidants, alpha-tocopherol was most correlated with cholesterol (r = 0.492, P < 0.0001). beta-Carotene and lycopene were highly correlated with each other (r =0.744, P< 0.0001). Age was positively associated with beta-carotene (r = 0.214, P = 0.001) and lycopene (r = 239, P< 0.0001). Our data enabled us to establish a gender non-specific reference range for retinol and gender-specific reference ranges for alpha-tocopherol, beta-carotene and lycopene.

  8. Non-invasive in vivo determination of the carotenoids beta-carotene and lycopene concentrations in the human skin using the Raman spectroscopic method

    NASA Astrophysics Data System (ADS)

    Darvin, M. E.; Gersonde, I.; Meinke, M.; Sterry, W.; Lademann, J.

    2005-08-01

    Resonance Raman spectroscopy was used as a fast and non-invasive optical method of measuring the absolute concentrations of beta-carotene and lycopene in living human skin. Beta-carotene and lycopene have different absorption values at 488 and 514.5 nm and, consequently, the Raman lines for beta-carotene and lycopene have different scattering efficiencies at 488 and 514.5 nm excitations. These differences were used for the determination of the concentrations of beta-carotene and lycopene. Using multiline Ar+ laser excitation, clearly distinguishable carotenoid Raman spectra can be obtained which are superimposed on a large fluorescence background. The Raman signals are characterized by two prominent Stokes lines at 1160 and 1525 cm-1, which have nearly identical relative intensities. Both substances were detected simultaneously. The Raman spectra are obtained rapidly, i.e. within about 10 s, and the required laser light exposure level is well within safety standards. The disturbance of the measurements by non-homogeneous skin pigmentation was avoided by using a relatively large measuring area of 35 mm2. It was shown that beta-carotene and lycopene distribution in human skin strongly depends upon the skin region studied and drastically changed inter-individually. Skin beta-carotene and lycopene concentrations are lower in smokers than in non-smokers and higher in the vegetarian group.

  9. Orally administered lycopene attenuates diethylnitrosamine-induced hepatocarcinogenesis in rats by modulating Nrf-2/HO-1 and Akt/mTOR pathways.

    PubMed

    Sahin, Kazim; Orhan, Cemal; Tuzcu, Mehmet; Sahin, Nurhan; Ali, Shakir; Bahcecioglu, Ibrahim H; Guler, Osman; Ozercan, Ibrahim; Ilhan, Necip; Kucuk, Omer

    2014-01-01

    Hepatocarcinogenesis is one of the most prevalent and lethal cancers. We studied the mechanisms underlying the inhibition of diethylnitrosamine (DEN)-induced hepatocarcinogenesis by lycopene in rats. Hepatocarcinogenesis was induced by an intraperitoneal injection of DEN followed by promotion with phenobarbital for 24 successive wk. The rats were given lycopene (20 mg/kg body weight) 3 times a week orally for 4 wk prior to initiation, and the treatment was continued for 24 consecutive wk. Lycopene reduced incidence, number, size, and volume of hepatic nodules. Serum alanine transaminase, aspartate aminotransferase, total bilirubin, and malondialdehyde (MDA) considerably increased and hepatic antioxidant enzymes (catalase, superoxide dismutase, glutathione peroxidase) and glutathione decreased in DEN-treated rats when compared with the control group. Lycopene significantly reversed these biochemical changes and increased the expression of NF-E-2-related factor-2)/heme oxygenase-1, and it decreased NF-κB/cyclooxygenase-2, inhibiting the inflammatory cascade and activating antioxidant signaling (P < 0.05). Lycopene also decreased DEN-induced increases in phosphorylated mammalian target of rapamycin (p-mTOR), phosphorylated p70 ribosomal protein S6 kinase 1, phosphorylated 4E-binding protein 1, and protein kinase B (P < 0.05). Lycopene is an active chemopreventive agent that offers protection against DEN-induced hepatocarcinogenesis by inhibiting NF-κB and mTOR pathways.

  10. ß-Carotene from Red Carrot Maintains Vitamin A Status, but Lycopene Bioavailability Is Lower Relative to Tomato Paste in Mongolian Gerbils

    USDA-ARS?s Scientific Manuscript database

    Red carrots contain lycopene in addition to ß-Carotene. The utility of red carrot as a functional food depends in part on the bioavailability of its constituent carotenoids. Lycopene bioavailability was compared in Mongolian gerbils (Meriones unguiculatus) fed freeze-dried red carrot and tomato pa...

  11. Lycopene attenuates dichlorvos-induced oxidative damage and hepatotoxicity in rats.

    PubMed

    El-Saad, Am Abu; Ibrahim, M M; Hazani, A A; El-Gaaly, G A

    2016-06-01

    Because of the widespread use of dichlorvos (DDVP) for domestic applications, evaluation of their toxic effects is of major concern to public health. Lycopene may lower oxidative stress by a mechanism that is not fully elucidated. The present study was undertaken to evaluate the protective efficacy of lycopene in terms of normalization of altered biochemical parameters following DDVP treatment in rats. Animals were divided into four groups. The first group was used as control, while groups 2, 3, and 4 were orally treated with lycopene (10 mg kg(-1) body weight (b.w.)), DDVP (1.6 mg kg(-1) b.w.), and DDVP plus lycopene, respectively. Results showed that oral administration of DDVP for 30 days increased the levels of lipid peroxidation markers such as malondialdehyde, 4-hydroxynonanal, and protein carbonyl content in liver. Also, a decrease in levels of vitamin C, vitamin E, and reduced glutathione was detected due to DDVP administration. These were accompanied by a decrease in the activities of antioxidant enzymes superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase in the liver tissue. Moreover, DDVP increased the activities of serum transaminases, alkaline phosphatase, lactate dehydrogenase, and lipoxygenase, and the levels of bilirubin, total cholesterol, low-density lipoprotein cholesterol, triglyceride and DNA-protein crosslinks, and 8-hydroxy-2-deoxyguanosine, while decreased the level of high-density lipoprotein cholesterol. Our results provide new insights into the biochemical studies of relation between DDVP hepatotoxicity and lycopene treatment. Administration of lycopene to DDVP-treated rats reverted the status of hepatic markers to near-normal levels. These data suggest that lycopene can protect against the liver damage induced by DDVP. © The Author(s) 2015.

  12. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence.

    PubMed

    Cheng, Ho M; Koutsidis, Georgios; Lodge, John K; Ashor, Ammar W; Siervo, Mario; Lara, Jose

    2017-08-11

    Worldwide, cardiovascular diseases (CVDs) remains as the main cause of mortality. Observational studies supports an association between intake of tomato products or lycopene with a reduced CVDs risk. Our aim was to undertake a systematic review and meta-analysis of the evidence on the topic. Medline, Web of Science, and Scopus were searched from inception until July 2017. We included longitudinal and cross-sectional studies reporting associations between lycopene and tomato consumption and cardiovascular morbidity and mortality among adult subjects. Random-effects models were used to determine the pooled effect sizes. Twenty-eight publications met our inclusion criteria and 25 studies provided quantitative data for meta-analysis. Results showed that individuals in the highest consumption category of, or with the highest serum concentration of, lycopene had significantly lower risk of stroke (hazard ratio (HR) 0.74, 0.62-0.89, p = 0.02; I 2 = 32) and CVDs (HR 0.86, 0.77-0.95, p = 0.003; I 2 = 0). In addition, individuals categorised in the highest serum concentration of lycopene also had significantly lower risk of mortality (HR 0.63, 0.49-0.81, p<0.001; I 2 = 46). Lycopene was not significantly associated with myocardial infarction, while scarce evidence on the association of lycopene with atherosclerosis, congestive heart failure, or atrial fibrillation was evident. Evidence from three studies suggested that higher intakes of tomato were associated with non-significantly lower stroke, CVDs and CHD. This comprehensive meta-analysis suggests that high-intakes or high-serum concentration of lycopene are associated with significant reductions in the risk of stroke (26%), mortality (37%) and CVDs (14%).

  13. Unveiling the Aggregation of Lycopene in Vitro and in Vivo: UV-Vis, Resonance Raman, and Raman Imaging Studies.

    PubMed

    Ishigaki, Mika; Meksiarun, Phiranuphon; Kitahama, Yasutaka; Zhang, Leilei; Hashimoto, Hideki; Genkawa, Takuma; Ozaki, Yukihiro

    2017-08-31

    The present study investigates the structure of lycopene aggregates both in vitro and in vivo using ultraviolet-visible (UV-vis) and Raman spectroscopies. The electronic absorption bands of the J- and H-aggregates in vitro shift to lower and higher energies, respectively, compared to that of the lycopene monomer. Along with these results, the frequencies of the ν 1 Raman bands were shifted to lower and higher frequencies, respectively. By plotting the frequencies of the ν 1 Raman band against the S 0 → S 2 transition energy, a linear relationship between the data set with different aggregation conformations can be obtained. Therefore, the band positions depending on the different conformations can be explained based on the idea that the effective conjugated C═C chain lengths within lycopene molecules are different due to the environmental effect (site-shift effect) caused by the aggregation conformation. Applying this knowledge to the in vivo measurement of a tomato fruit sample, the relationship between the aggregation conformation of lycopene and the spectral patterns observed in the UV-vis as well as Raman spectra in different parts of tomato fruits was discussed in detail. The results showed that the concentration of lycopene (particularly that of the J-aggregate) specifically increased, whereas that of chlorophyll decreased, with ripening. Furthermore, Raman imaging indicated that lycopene with different aggregate conformations was distributed inhomogeneously, even within one sample. The layer formation in tomato tissues with high concentrations of J- and H-aggregates was successfully visualized. In this manner, the presence of lycopene distributions with different aggregate conformations was unveiled in vivo.

  14. Lycopene as A Carotenoid Provides Radioprotectant and Antioxidant Effects by Quenching Radiation-Induced Free Radical Singlet Oxygen: An Overview

    PubMed Central

    Pirayesh Islamian, Jalil; Mehrali, Habib

    2015-01-01

    Radio-protectors are agents that protect human cells and tissues from undesirable effects of ionizing radiation by mainly scavenging radiation-induced free radicals. Although chemical radio-protectors diminish these deleterious side effects they induce a number of unwanted effects on humans such as blood pressure modifications, vomiting, nausea, and both local and generalized cutaneous reactions. These disadvantages have led to emphasis on the use of some botanical radio-protectants as alternatives. This review has collected and organized studies on a plant-derived radio-protector, lycopene. Lycopene protects normal tissues and cells by scavenging free radicals. Therefore, treatment of cells with lycopene prior to exposure to an oxidative stress, oxidative molecules or ionizing radiation may be an effective approach in diminishing undesirable effects of radiation byproducts. Studies have designated lycopene to be an effective radio-protector with negligible side effects. PMID:25685729

  15. Effect of lycopene-enriched olive and argan oils upon lipid serum parameters in Wistar rats.

    PubMed

    Aidoud, Aziouz; Ammouche, Ali; Garrido, María; Rodriguez, Ana B

    2014-11-01

    Lycopene has the highest antioxidant activity within carotenoids and is an effective free radical scavenger. Virgin olive oil (VOO) and argan oil (AO) contain trace amounts of a wide variety of phytochemicals which have desirable nutritional properties. The present study intended to assess the effect of various dietary VOO and AO in combination with lycopene consumption on serum biochemical parameters, including total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), triglycerides (TGs) and phospholipids, as well as on hepatosomatic index (HSI) of rats. Results showed that ingestion of VOO and AO diminished TC, LDL-C, TGs and phospholipid levels, whereas the HDL-C levels augmented in all the groups assayed. The enrichment of VOO and AO with lycopene improved the beneficial effects derived from the consumption of both oils on serum biochemical parameters. A decrease in body weight gain and HSI was detected after the consumption of lycopene-enriched oils. These findings suggest that the inclusion of lycopene in VOO and AO may be used as a natural tool to fight against hyperlipidaemic and hypercholesterolaemic-derived disorders. © 2014 Society of Chemical Industry.

  16. Antioxidant Effects of Lycopene and Ubiquinol-10 on the Oxidative Stress in Rat Hepatocytes Induced by Tert-Buthyl Hydroperoxide.

    PubMed

    Safari, Mohammad-Reza

    2010-03-01

    Free radicals especially reactive oxygen metabolites can damage DNA, protein, enzymes, and membrane lipids. Lipid peroxidation in hepatocyte membrane may be involved in hepatic diseases. Antioxidants may inhibit this reaction. Due to oxidant-antioxidant imbalance, free radicals may cause destructive effects. For several years, scientists tried to find antioxidant compounds. In this study, the effects of lycopene and ubiquinol-10 on the oxidative stress in rat hepatocytes induced by t-buthyl hydroperoxide was determined. First, rat hepatocytes were isolated and then incubated in the presence of tert-buthyl hydroperoxide and the amount of malondialdehyde, as a marker of lipid peroxidation, was determined. Then, this reaction was performed in the presence of various concentrations of each lycopene and ubiquinol-10, and the malondialdehyde level was determined. The results of this study showed that in the presence of various concentrations of lycopene and ubiquinol-10 the levels of lipid peroxidation products significantly decreased (P<0.05). Thus, lycopene and ubiquinol-10 have inhibitory effects on lipid peroxidation reaction. This study showed the potential utility of lycopene and ubiquinol-10 in prevention of hepatic dysfunction.

  17. Isolation and functional characterization of a lycopene β-cyclase gene that controls fruit colour of papaya (Carica papaya L.)

    PubMed Central

    Devitt, Luke C.; Fanning, Kent; Dietzgen, Ralf G.; Holton, Timothy A.

    2010-01-01

    The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to β-carotene (yellow) is catalysed by lycopene β-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene β-cyclases (lcy-β1 and lcy-β2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-β2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-β1 and lcy-β2 genes is similar and low in leaves, but lcy-β2 expression increases markedly in ripe fruit. Isolation of the lcy-β2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties. PMID:19887502

  18. Silencing of the SlNAP7 gene influences plastid development and lycopene accumulation in tomato

    NASA Astrophysics Data System (ADS)

    Fu, Da-Qi; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Yan, Hua-Xue; Luo, Yun-Bo

    2016-12-01

    Ripening is an important stage of fruit development. To screen the genes associated with pigment formation in tomato fruit, a suppression subtractive hybridization (SSH) cDNA library was constructed by using tomato fruit in the green ripe and break ripe stages, and 129 differential genes were obtained. Using redness as a screening marker, virus-induced gene silencing (VIGS) of the differential genes was performed with a sprout vacuum-infiltration system (SVI). The results showed that silencing the SlNAP7 gene affected the chloroplast development of tomato leaves, manifesting as a photo-bleaching phenotype, and silenced fruit significantly affected the accumulation of lycopene, manifested as a yellow phenotype. In our study, we found that silencing the SlNAP7 gene downregulates the expression of the POR and PORA genes and destroys the normal development of the chloroplast. The expression of related genes included in the lycopene biosynthesis pathway was not significantly changed, but lycopene accumulation was significantly reduced in tomato fruit. Perhaps it was caused by the destruction of the chromoplast, which leads to the oxidation of lycopene. The results show that the SlNAP7 gene influences chloroplast development and lycopene accumulation in tomato.

  19. Antioxidant Effects of Lycopene and Ubiquinol-10 on the Oxidative Stress in Rat Hepatocytes Induced by Tert-Buthyl Hydroperoxide

    PubMed Central

    2010-01-01

    Free radicals especially reactive oxygen metabolites can damage DNA, protein, enzymes, and membrane lipids. Lipid peroxidation in hepatocyte membrane may be involved in hepatic diseases. Antioxidants may inhibit this reaction. Due to oxidant-antioxidant imbalance, free radicals may cause destructive effects. For several years, scientists tried to find antioxidant compounds. In this study, the effects of lycopene and ubiquinol-10 on the oxidative stress in rat hepatocytes induced by t-buthyl hydroperoxide was determined. First, rat hepatocytes were isolated and then incubated in the presence of tert-buthyl hydroperoxide and the amount of malondialdehyde, as a marker of lipid peroxidation, was determined. Then, this reaction was performed in the presence of various concentrations of each lycopene and ubiquinol-10, and the malondialdehyde level was determined. The results of this study showed that in the presence of various concentrations of lycopene and ubiquinol-10 the levels of lipid peroxidation products significantly decreased (P<0.05). Thus, lycopene and ubiquinol-10 have inhibitory effects on lipid peroxidation reaction. This study showed the potential utility of lycopene and ubiquinol-10 in prevention of hepatic dysfunction. PMID:27683352

  20. Isolation and functional characterization of a lycopene beta-cyclase gene that controls fruit colour of papaya (Carica papaya L.).

    PubMed

    Devitt, Luke C; Fanning, Kent; Dietzgen, Ralf G; Holton, Timothy A

    2010-01-01

    The colour of papaya fruit flesh is determined largely by the presence of carotenoid pigments. Red-fleshed papaya fruit contain lycopene, whilst this pigment is absent from yellow-fleshed fruit. The conversion of lycopene (red) to beta-carotene (yellow) is catalysed by lycopene beta-cyclase. This present study describes the cloning and functional characterization of two different genes encoding lycopene beta-cyclases (lcy-beta1 and lcy-beta2) from red (Tainung) and yellow (Hybrid 1B) papaya cultivars. A mutation in the lcy-beta2 gene, which inactivates enzyme activity, controls lycopene production in fruit and is responsible for the difference in carotenoid production between red and yellow-fleshed papaya fruit. The expression level of both lcy-beta1 and lcy-beta2 genes is similar and low in leaves, but lcy-beta2 expression increases markedly in ripe fruit. Isolation of the lcy-beta2 gene from papaya, that is preferentially expressed in fruit and is correlated with fruit colour, will facilitate marker-assisted breeding for fruit colour in papaya and should create possibilities for metabolic engineering of carotenoid production in papaya fruit to alter both colour and nutritional properties.

  1. Silencing of the SlNAP7 gene influences plastid development and lycopene accumulation in tomato

    PubMed Central

    Fu, Da-Qi; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Yan, Hua-Xue; Luo, Yun-Bo

    2016-01-01

    Ripening is an important stage of fruit development. To screen the genes associated with pigment formation in tomato fruit, a suppression subtractive hybridization (SSH) cDNA library was constructed by using tomato fruit in the green ripe and break ripe stages, and 129 differential genes were obtained. Using redness as a screening marker, virus-induced gene silencing (VIGS) of the differential genes was performed with a sprout vacuum-infiltration system (SVI). The results showed that silencing the SlNAP7 gene affected the chloroplast development of tomato leaves, manifesting as a photo-bleaching phenotype, and silenced fruit significantly affected the accumulation of lycopene, manifested as a yellow phenotype. In our study, we found that silencing the SlNAP7 gene downregulates the expression of the POR and PORA genes and destroys the normal development of the chloroplast. The expression of related genes included in the lycopene biosynthesis pathway was not significantly changed, but lycopene accumulation was significantly reduced in tomato fruit. Perhaps it was caused by the destruction of the chromoplast, which leads to the oxidation of lycopene. The results show that the SlNAP7 gene influences chloroplast development and lycopene accumulation in tomato. PMID:27929131

  2. Effect of lycopene against cisplatin-induced acute renal injury in rats: organic anion and cation transporters evaluation.

    PubMed

    Erman, Fazilet; Tuzcu, Mehmet; Orhan, Cemal; Sahin, Nurhan; Sahin, Kazim

    2014-04-01

    In the present study, we investigated the effects of lycopene on the expression of organic anion transporters (OATs), organic cation transporters (OCTs), and multidrug resistance-associated proteins (MRPs) of cisplatin-induced nephrotoxicity in rats. Twenty-eight 8-week-old Wistar rats were divided into four groups: control, lycopene-treated (6 mg/kg BW by oral gavage), cisplatin-treated (7 mg/kg BW, IP), and lycopene in combination with cisplatin-treated groups. In the presence of cisplatin, serum urea nitrogen (urea-N) (48.5 vs. 124.3 mg/dl) and creatinine (0.29 vs. 1.37 mg/dl) levels and the kidney efflux transporters MRP2 and MRP4 levels were significantly increased, whereas OAT1, OAT3, OCT1, and OCT2 levels in kidney were decreased in the treated rats compared with normal control rats. However, administration of lycopene in combination with cisplatin resulted in a reduction in the serum urea-N (124.3 vs. 62.4) and creatinine (1.37 vs. 0.40) levels and the kidney efflux transporters MRP2 and MRP4 proteins in the kidneys. Administration of lycopene to acute renal injury-induced rats largely upregulated the organic anion transporters (OAT1 and 3) and organic cation transporters (OCT1 and 2) to decrease the side effects of cisplatin. The present study suggests that lycopene synergizes with its nephroprotective effect against cisplatin-induced acute kidney injury in rats.

  3. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    PubMed

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (P<0.001), working memory (P<0.01), and object recognition memory (P<0.01), decreased the dendritic spine density (P<0.001), damaged pyramidal neurons in the CA1 subfield (P<0.001) compared with the CD group. However, lycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (P<0.001). Thus, this study indicated that lycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  4. Non-Alcoholic Steatohepatitis and Hepatocellular Carcinoma: Implications for Lycopene Intervention

    PubMed Central

    Ip, Blanche C.; Wang, Xiang-Dong

    2013-01-01

    Increased prevalence of non-alcoholic fatty liver disease (NAFLD) is one of the consequences of the current obesity epidemic. NAFLD is a major form of chronic liver disease that is highly prevalent in obese and overweight adults and children. Nonalcoholic steatohepatitis (NASH) is the severe form of NAFLD, and uncontrolled inflammation as displayed in NASH has been identified as one of the key events in enhancing hepatic carcinogenesis. Lycopene is a non-provitamin A carotenoid and the pigment principally responsible for the characteristic deep-red color of ripe tomato and tomato products, as well as some fruits and vegetables. Lycopene’s innate antioxidant and anti-inflammatory properties have generated research interests on its capacity to protect against human diseases that are associated with oxidative stress and inflammation. In addition, differential mechanisms of lycopene metabolism including endogenous cleavage by carotenoid cleavage oxygenases (BCOs), generate lycopene metabolites that may also have significant impact on human disease development. However, it remains to be elucidated as to whether lycopene or its metabolites apolycopenoids have protective effects against obesity-related complications including inflammation and tumorigenesis. This article summarizes the in vivo experiments that elucidated molecular mechanisms associated with obesity-related hepatic inflammation and carcinogenesis. This review also provides an overview of lycopene metabolism, and the molecular pathways involved in the potential beneficial properties of lycopene and apolycopenoids. More research is clearly needed to fully unravel the importance of BCOs in tomato carotenoid metabolism and the consequence on human health and diseases. PMID:24379011

  5. Singlet internal conversion processes in the order of 1Bu+→3Ag-→1Bu-→2Ag-→1Ag- in all- trans-spheroidene and lycopene as revealed by subpicosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Rondonuwu, Ferdy S.; Kakitani, Yoshinori; Tamura, Hiroshi; Koyama, Yasushi

    2006-09-01

    Key Raman lines ascribable to the 1Bu+, 3Ag-, 1Bu- and 2Ag- states were identified in the subpicosecond time-resolved Raman spectra of spheroidene and lycopene having 10 and 11 conjugated double bonds, respectively. The sequential rise-and-decay of the key Raman lines showed the internal conversion processes of 1Bu+→3Ag-→1Bu-→2Ag-→1Ag- (ground). The time constant in each step of internal conversion reflects the energy gap between the relevant states that had been determined by measurement of resonance - Raman excitation profiles [K. Furuichi, T. Sashima, Y. Koyama, Chem. Phys. Lett. 356 (2002) 547].

  6. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression

    PubMed Central

    Moreno, J.C.; Cerda, A.; Simpson, K.; Lopez-Diaz, I.; Carrera, E; Handford, M.; Stange, C.

    2016-01-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  7. Levels of Lycopene β-Cyclase 1 Modulate Carotenoid Gene Expression and Accumulation in Daucus carota

    PubMed Central

    Moreno, Juan Camilo; Pizarro, Lorena; Fuentes, Paulina; Handford, Michael; Cifuentes, Victor; Stange, Claudia

    2013-01-01

    Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of lycopene. Carotenoids are produced in both carrot (Daucus carota) leaves and reserve roots, and high amounts of α-carotene and β-carotene accumulate in the latter. In some plant models, the presence of different isoforms of carotenogenic genes is associated with an organ-specific function. D. carota harbors two Lcyb genes, of which DcLcyb1 is expressed in leaves and storage roots during carrot development, correlating with an increase in carotenoid levels. In this work, we show that DcLCYB1 is localized in the plastid and that it is a functional enzyme, as demonstrated by heterologous complementation in Escherichia coli and over expression and post transcriptional gene silencing in carrot. Transgenic plants with higher or reduced levels of DcLcyb1 had incremented or reduced levels of chlorophyll, total carotenoids and β-carotene in leaves and in the storage roots, respectively. In addition, changes in the expression of DcLcyb1 are accompanied by a modulation in the expression of key endogenous carotenogenic genes. Our results indicate that DcLcyb1 does not possess an organ specific function and modulate carotenoid gene expression and accumulation in carrot leaves and storage roots. PMID:23555569

  8. Lycopene activates antioxidant enzymes and nuclear transcription factor systems in heat-stressed broilers.

    PubMed

    Sahin, K; Orhan, C; Tuzcu, M; Sahin, N; Hayirli, A; Bilgili, S; Kucuk, O

    2016-05-01

    This study was conducted to evaluate the effects of dietary lycopene supplementation on growth performance, antioxidant status, and muscle nuclear transcription factor [Kelch like-ECH-associated protein 1 (Keap1) and (erythroid-derived 2)-like 2 (Nrf2)] expressions in broiler chickens exposed to heat stress (HS). A total of 180 one-day-old male broiler chicks (Ross 308) were assigned randomly to one of 2×3 factorially arranged treatments: two housing temperatures (22°C for 24 h/d; thermoneutral, TN or 34°C for 8 h/d HS) and three dietary lycopene levels (0, 200, or 400 mg/kg). Each treatment consisted of three replicates of 10 birds. Birds were reared to 42 d of age. Heat stress caused reductions in feed intake and weight gain by 12.2 and 20.7% and increased feed efficiency by 10.8% (P<0.0001 for all). Increasing dietary lycopene level improved performance in both environments. Birds reared under the HS environment had lower serum and muscle lycopene concentration (0.34 vs. 0.50 μg/mL and 2.80 vs. 2.13 μg/g), activities of superoxide dismutase (151 vs. 126 U/mL and 131 vs. 155 U/mg protein), glutathione peroxidase (184 vs. 154 U/mL and 1.39 vs. 1.74 U/mg protein), and higher malondialdehyde (MDA) concentration (0.53 vs. 0.83 μg/mL and 0.78 vs. 0.45 μg/ mg protein) than birds reared under the TN environment. Changes in levels of lycopene and MDA and activities of enzymes in serum and muscle varied by the environmental temperature as dietary lycopene level increased. Moreover, increasing dietary lycopene level suppressed muscle Keap1 expression and enhanced muscle Nrf2 expression, which had increased by 150% and decreased by 40%, respectively in response to HS. In conclusion, lycopene supplementation alleviates adverse effects of HS on performance through modulating expressions of stress-related nuclear transcription factors. © 2016 Poultry Science Association Inc.

  9. The antioxidant and anti-inflammatory properties of lycopene in mice lungs exposed to cigarette smoke.

    PubMed

    Campos, Keila Karine Duarte; Araújo, Glaucy Rodrigues; Martins, Thais Lourenço; Bandeira, Ana Carla Balthar; Costa, Guilherme de Paula; Talvani, André; Garcia, Camila Carrião Machado; Oliveira, Laser Antônio Machado; Costa, Daniela Caldeira; Bezerra, Frank Silva

    2017-10-01

    Lycopene is a carotenoid with known antioxidant and anti-inflammatory properties. We aimed to evaluate the in vitro and in vivo effects of lycopene on reducing the redox imbalance and inflammation induced by cigarette smoke (CS). For the in vitro study, J774A.1 (macrophages) cells were incubated in the presence of 0.5, 1.0, 2.0, 4.0, 8.0, 10.0 and 25 μM of lycopene for 3, 6 and 24 h or in the presence of 0.1%, 0.25%, 0.5%, 0.625%, 1.25%, 2.25%, 5% and 10% cigarette smoke extract (CSE) for 3, 6 and 24 h to assess cell viability and measurement of intracellular reactive oxygen species (ROS). For the in vivo study, 40 mice were divided into 5 groups: a control exposed to ambient air (CG), a vehicle-control group that received 200 μl of sunflower oil by orogastric gavage, a group exposed to CS and two groups administered lycopene (diluted in sunflower oil) at doses of either 25 or 50 mg/kg/day prior to exposure to CS (LY25+CS and LY50+CS). The total treatment time lasted 5 days. A cell viability decrease was observed at 10- and 25-μM concentrations of lycopene in 3, 6 and 24 h compared with CG. There was an increase of ROS production in 24 h in CS compared with CG. Lycopene concentrations of 1 μM and 2 μM were able to reduce the production of ROS in 24 h compared with CS. In the bronchoalveolar lavage fluid, the total number of leukocytes increased in the CS group compared with the control groups (CG). Administration with lycopene at the highest dose suppressed this CS-induced increase in leukocytes. Lipid peroxidation and DNA damage increased in the CS group compared with that in the controls, and this increase was suppressed by lycopene at the highest dose. In contrast, superoxide dismutase activity decreased in the CS group compared with that in the controls. Catalase activity also increased in the CS group compared with that in both control groups, and this increase was suppressed in LY25+CS and LY50+CS. There was an increase in the levels of tumor necrosis factor-α, interferon-γ and interleukin-10 after exposure to CS, and these effects were suppressed by both doses of lycopene. These data elucidate the role of lycopene as an antioxidant and anti-inflammatory agent in these two models of short-term exposure to CS. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mechanisms of multiple neurotransmitters in the effects of Lycopene on brain injury induced by Hyperlipidemia.

    PubMed

    Yang, Weichun; Shen, Ziyi; Wen, Sixian; Wang, Wei; Hu, Minyu

    2018-02-07

    Lycopene is a kind of carotenoid, with a strong capacity of antioxidation and regulating the bloodlipid. There has been some evidence that lycopene has protective effects on the central nervous system, but few studies have rigorously explored the role of neurotransmitters in it. Therefore, the present study was designed to investigate the effects of several neurotransmitters as lycopene exerts anti-injury effects induced by hyperlipidemia. Eighty adult SD rats, half male and half female, were randomly divided into eight groups on the basis of serum total cholesterol (TC) levels and body weight. There was a control group containing rats fed a standard laboratory rodent chow diet (CD); a hypercholesterolemic diet (rat chow supplemented with 4% cholesterol, 1% cholic acid and 0.5% thiouracil - this is also called a CCT diet) group; a positive group (CCT + F) fed CCT, supplemented with 10 mg·kg·bw - 1 ·d - 1 fluvastatin sodium by gastric perfusion; and lycopene groups at five dose levels (CCT + LYCO) fed with CCT and supplied lycopene at doses of 5, 25, 45, 65, and 85 mg·kg·bw - 1 ·d - 1 . The levels of TC, triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), interleukin-1 (IL-1), tumor necrosis factor alpha (TNF-α), oxidized low density lipoprotein (ox-LDL), low-density lipoprotein receptor (LDLR), nerve growth factor (NGF), glutamic acid (Glu), Gamma aminobutyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT), N-methyl-D-aspartate (NMDA1R), GABA A , 5-HT 1 , D 1 , and apoptosis-related proteins Caspase3, bax, and bcl-2 were measured after the experiment. Nissl staining was adopted to observe the morphological changes in neurons. At the end of the experiment, the levels of TC, TG, LDL-C, IL-1, TNF-α, and ox-LDL in the serum and brain as well as the content of Glu, DA, NMDA, and D 1 in the brain of rats in the CCT group were higher than those in the control group (P<0.05); the levels of LDLR, NGF, GABA, 5-HT, GABA A , 5-HT 1 , and neuron quantities in the hippocampal CA1 and CA3 areas were lower than those in the control group (P<0.05). Compared to the CCT group, levels of TC, TG, LDL-C, IL-1, TNF-α, and ox-LDL in the serum and brain, as well as the content of Glu, DA and the expression of pro-apoptotic Caspase3 in the brain decreased in the rats with lycopene (25 mg to 85 mg) added to the diet (P<0.05); the levels of LDLR, NGF, GABA, 5-HT, GABA A , and 5-HT 1 as well as the expression of anti-apoptotic bcl-2 and the neuron quantity in hippocampal CA1 and CA3 areas increased (P<0.05); further, the hippocampal cells were closely arranged. Lycopene dose was negatively correlated with the levels of TC, TG, and LDL-C in the serum and brain as well as levels of IL-1, TNF-α, ox-LDL, Glu/GABA, NMDA1R, and Caspase3 (P<0.05); it was positively correlated with the levels of LDLR, NGF, 5-HT, 5-HT 1 , GABA A , bcl-2, and the neuron quantity in hippocampal CA1 and CA3 areas (P<0.05). Lycopene exerts anti-injury effects in the brain as-induced by hyperlipidemia. It can inhibit the elevation of serum TC, TG, and LDL-C in rats with hyperlipidemia while indirectly affecting the levels of TC, TG, and LDL-C in the brain, leading to a reduction in ox-LDL, IL-1, and TNF-α in the brain. This inhibits the release of Glu, which weakens nerve toxicity and downregulates pro-apoptotic Caspase3. Lycopene also plays an anti-injury role by promoting the release of the inhibitory neurotransmitter GABA and 5-HT, which enhances the protective effect, and by upregulating the anti-apoptotic bcl-2.

  11. Lycopene intake facilitates the increase of bone mineral density in growing female rats.

    PubMed

    Iimura, Yuki; Agata, Umon; Takeda, Satoko; Kobayashi, Yuki; Yoshida, Shigeki; Ezawa, Ikuko; Omi, Naomi

    2014-01-01

    Intake of the antioxidant lycopene has been reported to decrease oxidative stress and have beneficial effects on bone health. However, few in vivo studies have addressed these beneficial effects in growing female rodents or young women. The aim of this study was to investigate the effect of lycopene intake on bone metabolism through circulating oxidative stress in growing female rats. Six-week-old Sprague-Dawley female rats were randomly divided into 3 groups according to the lycopene content in their diet: 0, 50, and 100 ppm. The bone mineral density (BMD) of the lumbar spine and the tibial proximal metaphysis increased with lycopene content in a dose-dependent manner; the BMD in 100 ppm group was significantly higher than in the 0 ppm group. The urine deoxypyridinoline concentrations were significantly lower in the 50 and 100 ppm groups than in the 0 ppm group, and the serum bone-type alkaline phosphatase activity was significantly higher in 100 ppm group than in the 0 ppm group. No difference in systemic oxidative stress level was observed; however, the oxidative stress level inversely correlated with the tibial BMD. Our findings suggested that lycopene intake facilitates bone formation and inhibits bone resorption, leading to an increase of BMD in growing female rats.

  12. A physiological pharmacokinetic model describing the disposition of lycopene in healthy men.

    PubMed

    Diwadkar-Navsariwala, Veda; Novotny, Janet A; Gustin, David M; Sosman, Jeffery A; Rodvold, Keith A; Crowell, James A; Stacewicz-Sapuntzakis, Maria; Bowen, Phyllis E

    2003-10-01

    A physiological pharmacokinetic model was developed to describe the disposition of lycopene, delivered as a tomato beverage formulation in five graded doses (10, 30, 60, 90, or 120 mg), for a phase I study in healthy male subjects (five per dose). Blood was collected before dose administration (0 h) and at scheduled intervals until 672 h. Serum concentrations of carotenoids and vitamins were measured by high performance liquid chromatography analysis. The model was comprised of seven compartments: gastrointestinal tract, enterocytes, chylomicrons, plasma lipoproteins, fast-turnover liver, slow-turnover tissues, and a delay compartment before the enterocytes. As predicted, the percent absorption at the 10 mg dose (33.9 +/- 8.1%) was significantly greater than at the higher doses; however, the amount of lycopene absorbed (mg) was not statistically different (mean: 4.69 +/- 0.55 mg) between doses, suggesting a possible saturation of absorptive mechanisms. The slow-turnover tissue compartment served as a slow-depleting reservoir for lycopene, and the liver represented the fast-turnover pool. Independent of dose, 80% of the subjects absorbed less than 6 mg of lycopene. This may have important implications for planning clinical trials with pharmacological doses of lycopene in cancer control and prevention if absorption saturation occurs at levels that are already being consumed in the population.

  13. Efficacy of lycopene on modulation of renal antioxidant enzymes, ACE and ACE gene expression in hyperlipidaemic rats.

    PubMed

    Khan, Nazish Iqbal; Noori, Shafaq; Mahboob, Tabassum

    2016-07-01

    We aimed to evaluate the efficacy of lycopene on renal tissue antioxidant enzymes and angiotensin converting enzyme (ACE) gene expression and serum activity in diet-induced hyperlipidaemia. Thirty-two female Wistar albino rats (200-250 g weight), 5-6 months of age, were randomly selected and divided into four groups. Group I received normal diet; group II received 24 g high fat diet/100 g of daily diet; group III received 24 g high fat diet/100 g daily diet and 200 ml of lycopene extract (twice a week) for 8 weeks; and group IV received 200 ml oral lycopene extract twice a week for 8 weeks. A marked increase was observed in plasma urea and creatinine levels, serum C-reactive protein, kidney weight, tissue renal malonyldialdehyde level, ACE gene expression and serum level, while a decrease catalase level among hyperlipidaemic rats was observed. Histologically, interstitial inflammation and proliferation was seen. Lycopene supplementation significantly decreased plasma urea and creatinine, serum ACE, renal tissue malonyldialdehyde level and C-reactive protein level, while it increased tissue antioxidant enzymes level and total protein. Tissue inflammation and proliferation was improved. This finding suggests that supplementation of lycopene is effective for renal antioxidant enzymes, ACE gene expression and ACE serum level in hyperlipidaemic rats. © The Author(s) 2016.

  14. Antioxidant capacity of lycopene-containing foods.

    PubMed

    Djuric, Z; Powell, L C

    2001-03-01

    Increased consumption of tomatoes and tomato products has been associated with decreased cancer risks. One fat-soluble compound identified in tomatoes which may be responsible for this association is lycopene. There may, however, be other antioxidants present in tomato-based foods, and total antioxidant capacity may be another way to rate the health benefits of these foods. In this work, we examined the Trolox-equivalent antioxidant capacity (TEAC) of aqueous and organic extracts of lycopene-containing foods: ketchup, fresh tomatoes, tomato paste, tomato sauce, tomato soup, tomato juice, vegetable juice, canned tomatoes and watermelon. Antioxidant activity in these food extracts was greater in the aqueous versus organic fractions, except for watermelon and tomato sauce where the levels were similar in the two fractions. Lycopene levels in the food samples tested, however, were relatively greater in the organic fractions, with the exception of the two juices, which had similar levels in the two fractions, and two highly concentrated tomato products, tomato paste and ketchup, which had relatively higher lycopene levels in the aqueous fractions. The foods with the highest antioxidant capacity per serving overall (tomato soup was highest) did not have the highest lycopene levels. This indicates that it may be important to consume a variety of tomato-containing products in order to obtain the largest variety of dietary antioxidants possible.

  15. Interaction of sodium dodecyl sulfate with watermelon chromoplasts and examination of the organization of lycopene within the chromoplasts.

    PubMed

    Fish, Wayne W

    2006-10-18

    The properties of plant-derived precipitates of watermelon lycopene were examined in aqueous sodium dodecyl sulfate (SDS) as part of an ongoing effort to develop simpler, more economical ways to quantify carotenoids in melon fruit. Levels of SDS >0.2% were found to increase the water solubility of lycopene in the state in which it was isolated from watermelon. Electron microscopy and chemical analyses suggested that the watermelon lycopene as isolated is packaged inside a membrane to form a chromoplast. Spectral peaks in the visible region of the watermelon chromoplasts in SDS exhibited a bathochromic shift from those in organic solvent. Watermelon chromoplasts in SDS exhibited pronounced circular dichroic activity in the visible region. Binding measurements indicated that about 120 molecules of SDS were bound per molecule of lycopene inside the chromoplast; likely, the detergent molecules are bound to the chromoplast membrane. Around 80% of the chromoplast-SDS complexes were retained on a 0.45 mum membrane filter. Together, these observations are consistent with lycopene in a J-type chiral arrangement inside a membrane to form a chromoplast. The binding of SDS molecules to the chromoplast membrane form a complex that is extensively more water-soluble than the chromoplast alone.

  16. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae.

    PubMed

    Pan, Shuo; Jia, Bin; Liu, Hong; Wang, Zhen; Chai, Meng-Zhe; Ding, Ming-Zhu; Zhou, Xiao; Li, Xia; Li, Chun; Li, Bing-Zhi; Yuan, Ying-Jin

    2018-01-01

    Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae . Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae . We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively   puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.

  17. Stability of fruit quality traits in diverse watermelon cultivars tested in multiple environments

    PubMed Central

    Dia, Mahendra; Wehner, Todd C; Perkins-Veazie, Penelope; Hassell, Richard; Price, Daniel S; Boyhan, George E; Olson, Stephen M; King, Stephen R; Davis, Angela R; Tolla, Gregory E; Bernier, Jerome; Juarez, Benito

    2016-01-01

    Lycopene is a naturally occurring red carotenoid compound that is found in watermelon. Lycopene has antioxidant properties. Lycopene content, sugar content and hollowheart resistance are subject to significant genotype×environment interaction (G×E), which makes breeding for these fruit quality traits difficult. The objectives of this study were to (i) evaluate the influence of years and locations on lycopene content, sugar content and hollowheart resistance for a set of watermelon genotypes, and (ii) identify genotypes with high stability for lycopene, sugar, and hollowheart resistance. A diverse set of 40 genotypes was tested over 3 years and 8 locations across the southern United States in replicated, multi-harvest trials. Lycopene was tested in a subset of 10 genotypes. Data were analyzed using univariate and multivariate stability statistics (BLUP-GGE biplot) using SASGxE and RGxE programs. There were strong effects of environment as well as G×E interaction on watermelon quality traits. On the basis of stability measures, genotypes were classified as stable or unstable for each quality trait. 'Crimson Sweet' is an inbred line with high quality trait performance as well as trait stability. 'Stone Mountain', 'Tom Watson', 'Crimson Sweet' and 'Minilee' were among the best genotypes for lycopene content, sugar content and hollowheart resistance. We developed a stability chart based on marketable yield and average ranking generated from different stability measures for yield attributes and quality traits. The chart will assist in choosing parents for improvement of watermelon cultivars. See http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmelonmain.html. PMID:28066557

  18. Quantification of Lycopene, β-Carotene, and Total Soluble Solids in Intact Red-Flesh Watermelon (Citrullus lanatus) Using On-Line Near-Infrared Spectroscopy.

    PubMed

    Tamburini, Elena; Costa, Stefania; Rugiero, Irene; Pedrini, Paola; Marchetti, Maria Gabriella

    2017-04-11

    A great interest has recently been focused on lycopene and β-carotene, because of their antioxidant action in the organism. Red-flesh watermelon is one of the main sources of lycopene as the most abundant carotenoid. The use of near-infrared spectroscopy (NIRS) in post-harvesting has permitted us to rapidly quantify lycopene, β-carotene, and total soluble solids (TSS) on single intact fruits. Watermelons, harvested in 2013-2015, were submitted to near-infrared (NIR) radiation while being transported along a conveyor belt system, stationary and in movement, and at different positions on the belt. Eight hundred spectra from 100 samples were collected as calibration set in the 900-1700 nm interval. Calibration models were performed using partial least squares (PLS) regression on pre-treated spectra (derivatives and SNV) in the ranges 2.65-151.75 mg/kg (lycopene), 0.19-9.39 mg/kg (β-carotene), and 5.3%-13.7% (TSS). External validation was carried out with 35 new samples and on 35 spectra. The PLS models for intact watermelon could predict lycopene with R² = 0.877 and SECV = 15.68 mg/kg, β-carotene with R² = 0.822 and SECV = 0.81 mg/kg, and TSS with R² = 0.836 and SECV = 0.8%. External validation has confirmed predictive ability with R² = 0.805 and RMSEP = 16.19 mg/kg for lycopene, R2 = 0.737 and RMSEP = 0.96 mg/kg for β-carotene, and R² = 0.707 and RMSEP = 1.4% for TSS. The results allow for the market valorization of fruits.

  19. Anti-inflammatory effect of lycopene on endotoxin-induced uveitis in rats.

    PubMed

    Göncü, Tuğba; Oğuz, Elif; Sezen, Hatice; Koçarslan, Sezen; Oğuz, Halit; Akal, Ali; Adıbelli, Fatih Mehmet; Çakmak, Sevim; Aksoy, Nurten

    2016-01-01

    We evaluated the efficacy of lycopene, a dietary carotenoid and potent antioxidant, against ocular inflammation and oxidative stress in an experimental uveitis model. Endotoxin-induced uveitis (EIU) was induced in Sprague-Dawley rats by a single subcutaneous injection of 200 μg lipopolysaccharide (LPS). Induction of EIU was preceded by daily intraperitoneal injection of 10 mg/kg lycopene for three consecutive days (Lycopene + LPS group) or equivolume vehicle (Vehicle + LPS group). A positive control group received 1 mg/kg dexamethasone pretreatment (DEX + LPS), and a negative control group received daily vehicle injection but no LPS (Vehicle Control). Twenty-four hours after LPS or final vehicle administration, eyes were enucleated, and aqueous humor was collected for measurement of the number of infiltrating cells, total protein concentration, and levels of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and oxidative stress markers. Inflammatory response severity was compared among groups clinically and histopathologically. Infiltrating cell number, total protein concentration, and NO, TNF-α, and IL-6 levels were significantly elevated in the aqueous humor of Vehicle + LPS group rats compared to Vehicle Controls. Compared to the Vehicle + LPS group, lycopene pretreatment significantly reduced aqueous humor concentrations of oxidative stress markers, NO (0.29 ± 0.1 μM vs. 0.19 ± 0.1 μM, p=0.003), TNF-α (71.0 ± 22.3 ng/ml vs. 50.1 ± 2.1 ng/ml, p=0.043), and IL-6 (121.6 ± 3.0 pg/ml vs. 111.1 ± 5.6 pg/ml, p=0.008). Inflammatory score was also reduced (2.0 ± 0.0 vs. 0.4 ± 0.5, p=0.001). Lycopene reduced the infiltrating cell count and protein concentration, but differences did not reach significance. Most lycopene effects were equivalent to dexamethasone. Lycopene may aid in the clinical management of uveitis by suppressing inflammation and oxidative stress.

  20. Spectrophotometric analysis of tomato plants produced from seeds exposed under space flight conditions for a long time

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Yurov, S.; Cojocaru, A.; Revin, A.

    The analysis of the lycopene and other carotenoids in tomatoes produced from seeds exposed under space flight conditions at the orbital station MIR for six years is presented in this work. Our previous experiments with tomato plants showed the germination of seeds to be 32%Genetic investigations revealed 18%in the experiment and 8%experiments were conducted to study the capacity of various stimulating factors to increase germination of seeds exposed for a long time to the action of space flight factors. An increase of 20%achieved but at the same time mutants having no analogues in the control variants were detected. For the present investigations of the third generation of plants produced from seeds stored for a long time under space flight conditions 80 tomatoes from forty plants were selected. The concentration of lycopene in the experimental specimens was 2.5-3 times higher than in the control variants. The spectrophotometric analysis of ripe tomatoes revealed typical three-peaked carotenoid spectra with a high maximum of lycopene (a medium maximum at 474 nm), a moderate maximum of its predecessor, phytoin, (a medium maximum at 267 nm) and a low maximum of carotenes. In green tomatoes, on the contrary, a high maximum of phytoin, a moderate maximum of lycopene and a low maximum of carotenes were observed. The results of the spectral analysis point to the retardation of biosynthesis of carotenes while the production of lycopene is increased and to the synthesis of lycopene from phytoin. Electric conduction of tomato juice in the experimental samples is increased thus suggesting higher amounts of carotenoids, including lycopene and electrolytes. The higher is the value of electric conduction of a specimen, the higher are the spectral maxima of lycopene. The hydrogen ion exponent of the juice of ripe tomatoes increases due to which the efficiency of ATP biosynthesis in cell mitochondria is likely to increase, too. The results demonstrating an increase in the content of lycopene correlate with the data about increased biological activities of cell cultures of ginseng, stevia and saffron during a space flight aboard the orbital station MIR. The data obtained indicate that the space flight factors (heavy charged particles, high-energy adrons and weightlessness) have a nonspecific effect on living organisms.

  1. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering.

    PubMed

    Xie, Wenping; Lv, Xiaomei; Ye, Lidan; Zhou, Pingping; Yu, Hongwei

    2015-07-01

    Improved supply of farnesyl diphosphate (FPP) is often considered as a typical strategy for engineering Saccharomyces cerevisiae towards efficient terpenoid production. However, in the engineered strains with enhanced precursor supply, the production of the target metabolite is often impeded by insufficient capacity of the heterologous terpenoid pathways, which limits further conversion of FPP. Here, we tried to assemble an unimpeded biosynthesis pathway by combining directed evolution and metabolic engineering in S. cerevisiae for lycopene-overproduction. First, the catalytic ability of phytoene syntheses from different sources was investigated based on lycopene accumulation. Particularly, the lycopene cyclase function of the bifunctional enzyme CrtYB from Xanthophyllomyces dendrorhous was inactivated by deletion of functional domain and directed evolution to obtain mutants with solely phytoene synthase function. Coexpression of the resulting CrtYB11M mutant along with the CrtE and CrtI genes from X. dendrorhous, and the tHMG1 gene from S. cerevisiae led to production of 4.47 mg/g DCW (Dry cell weight) of lycopene and 25.66 mg/g DCW of the by-product squalene. To further increase the FPP competitiveness of the lycopene synthesis pathway, we tried to enhance the catalytic performance of CrtE by directed evolution and created a series of pathway variants by varying the copy number of Crt genes. Finally, fed-batch fermentation was conducted for the diploid strain YXWPD-14 resulting in accumulation of 1.61 g/L (24.41 mg/g DCW) of lycopene, meanwhile, the by-production of squalene was reduced to below 1 mg/g DCW. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  2. Synechocystis sp. PCC 6803 CruA (sll0147) encodes lycopene cyclase and requires bound chlorophyll a for activity.

    PubMed

    Xiong, Wei; Shen, Gaozhong; Bryant, Donald A

    2017-03-01

    The genome of the model cyanobacterium, Synechococcus sp. PCC 7002, encodes two paralogs of CruA-type lycopene cyclases, SynPCC7002_A2153 and SynPCC7002_A0043, which are denoted cruA and cruP, respectively. Unlike the wild-type strain, a cruA deletion mutant is light-sensitive, grows slowly, and accumulates lycopene, γ-carotene, and 1-OH-lycopene; however, this strain still produces β-carotene and other carotenoids derived from it. Expression of cruA from Synechocystis sp. PCC 6803 (cruA 6803 ) in Escherichia coli strains that synthesize either lycopene or γ-carotene did not lead to the synthesis of either γ-carotene or β-carotene, respectively. However, expression of this orthologous cruA 6803 gene (sll0147) in the Synechococcus sp. PCC 7002 cruA deletion mutant produced strains with phenotypic properties identical to the wild type. CruA 6803 was purified from Synechococcus sp. PCC 7002 by affinity chromatography, and the purified protein was pale yellow-green due to the presence of bound chlorophyll (Chl) a and β-carotene. Native polyacrylamide gel electrophoresis of the partly purified protein in the presence of lithium dodecylsulfate at 4 °C confirmed that the protein was yellow-green in color. When purified CruA 6803 was assayed in vitro with either lycopene or γ-carotene as substrate, β-carotene was synthesized. These data establish that CruA 6803 is a lycopene cyclase and that it requires a bound Chl a molecule for activity. Possible binding sites for Chl a and the potential regulatory role of the Chl a in coordination of Chl and carotenoid biosynthesis are discussed.

  3. Lycopene, tomato products and prostate cancer-specific mortality among men diagnosed with nonmetastatic prostate cancer in the Cancer Prevention Study II Nutrition Cohort.

    PubMed

    Wang, Ying; Jacobs, Eric J; Newton, Christina C; McCullough, Marjorie L

    2016-06-15

    While dietary lycopene and tomato products have been inversely associated with prostate cancer incidence, there is limited evidence for an association between consumption of lycopene and tomato products and prostate-cancer specific mortality (PCSM). We examined the associations of prediagnosis and postdiagnosis dietary lycopene and tomato product intake with PCSM in a large prospective cohort. This analysis included men diagnosed with nonmetastatic prostate cancer between enrollment in the Cancer Prevention Study II Nutrition Cohort in 1992 or 1993 and June 2011. Prediagnosis dietary data, collected at baseline, were available for 8,898 men, of whom 526 died of prostate cancer through 2012. Postdiagnosis dietary data, collected on follow-up surveys in 1999 and/or 2003, were available for 5,643 men, of whom 363 died of prostate cancer through 2012. Cox proportional hazards regression was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for PCSM. Neither prediagnosis nor postdiagnosis dietary lycopene intake was associated with PCSM (fourth vs. first quartile HR = 1.00, 95% CI 0.78-1.28; HR = 1.22, 95% CI 0.91-1.64, respectively). Similarly, neither prediagnosis nor postdiagnosis consumption of tomato products was associated with PCSM. Among men with high-risk cancers (T3-T4 or Gleason score 8-10, or nodal involvement), consistently reporting lycopene intake ≥ median on both postdiagnosis surveys was associated with lower PCSM (HR = 0.41, 95% CI 0.17-0.99, based on ten PCSM cases consistently ≥ median intake) compared to consistently reporting intake < median. Future studies are needed to confirm the potential inverse association of consistently high lycopene intake with PCSM among men with high-risk prostate cancers. © 2016 UICC.

  4. Consumption of canned citrus fruit meals increases human plasma β-cryptoxanthin concentration, whereas lycopene and β-carotene concentrations did not change in healthy adults.

    PubMed

    Zhu, Chenghao H; Gertz, Erik R; Cai, Yimeng; Burri, Betty J

    2016-07-01

    Several studies suggest that β-cryptoxanthin has a greater plasma response from its common food sources than other carotenoids such as β-carotene and lycopene. The hypothesis of this study is that changes in plasma β-cryptoxanthin concentrations will be greater than changes in plasma β-carotene or lycopene concentrations even if these carotenoids are fed in a similar food matrix, such as citrus fruit. We tested this hypothesis by measuring changes in plasma concentrations of β-cryptoxanthin, lycopene, and β-carotene after feeding measured amounts of canned tangerines and pink grapefruit to healthy nonsmoking adult humans. Volunteers served as their own controls and received both citrus fruit treatments randomly. In the first study, 8 subjects ate single meals of 234-304g of tangerines or 60-540g of pink grapefruit. The second study compared changes in plasma carotenoid concentration caused by feeding 234g of tangerines or 540g of pink grapefruit to 11 subjects. Blood was collected 5 times within 24hours after each citrus meal. Carotenoid concentrations were analyzed by reversed-phase high-performance liquid chromatography. Plasma β-cryptoxanthin concentrations increased within 5hours and then stabilized, remaining high throughout the 24hours measured. Plasma concentrations of lycopene and β-carotene did not change. These results show that β-cryptoxanthin concentrations increased after a citrus fruit meal, but lycopene and β-carotene concentrations did not change after a similar citrus fruit meal. These results support our hypothesis that changes in plasma β-cryptoxanthin are greater than changes in plasma lycopene or β-carotene, even when these carotenoids are fed in a similar food matrix. Published by Elsevier Inc.

  5. Protective Effects of Lepidium meyenii (Maca) Aqueous Extract and Lycopene on Testosterone Propionate-Induced Prostatic Hyperplasia in Mice.

    PubMed

    Zou, Ying; Aboshora, Waleed; Li, Jing; Xiao, Tiancun; Zhang, Lianfu

    2017-08-01

    The inhibitory effect of maca extractant, lycopene, and their combination was evaluated in benign prostatic hyperplasia (BPH) mice induced by testosterone propionate. Mice were divided into a saline group, solvent control group and testosterone propionate-induced BPH mice [BPH model group, solvent BPH model group, benzyl glucosinolate group (1.44 mg/kg), maca group (60 mg/kg), lycopene treated (15, 5, and 2.5 mg/kg), maca (30 mg/kg) combine lycopene treated (7.5, 2.5, and 1.25 mg/kg), and finasteride treated]. Benzyl glucosinolate was used in order to evaluate its pharmacological activity on BPH to find out whether it is the major active component of maca aqueous extract. Finasteride was used as positive control. The compounds were administered once for 30 successive days. Compared with solvent BPH model group, BPH mice fed with maca (30 mg/kg) and lycopene (7.5 mg/kg) combination exhibited significant reductions in the prostatic index, prostatic acid phospatase, estradiol, testosterone, and dihydrotestosterone levels in serum. They also had similar histological compared with those aspects observed in the mice in the solvent control group. The results indicated that combination of maca and lycopene synergistically inhibits BPH in mice. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways

    PubMed Central

    FENG, CHUNSHENG; LUO, TIANFEI; ZHANG, SHUYAN; LIU, KAI; ZHANG, YANHONG; LUO, YINAN; GE, PENGFEI

    2016-01-01

    Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death. PMID:27035331

  7. Molecular rationale delineating the role of lycopene as a potent HMG-CoA reductase inhibitor: in vitro and in silico study.

    PubMed

    Alvi, Sahir Sultan; Iqbal, Danish; Ahmad, Saheem; Khan, M Salman

    2016-09-01

    This study initially aimed to depict the molecular rationale evolving the role of lycopene in inhibiting the enzymatic activity of β-hydroxy-β-methylglutaryl-CoA (HMG-CoA) reductase via in vitro and in silico analysis. Our results illustrated that lycopene exhibited strong HMG-CoA reductase inhibitory activity (IC50 value of 36 ng/ml) quite better than pravastatin (IC50 = 42 ng/ml) and strong DPPH free radical scavenging activity (IC50 value = 4.57 ± 0.23 μg/ml) as compared to ascorbic acid (IC50 value = 9.82 ± 0.42 μg/ml). Moreover, the Ki value of lycopene (36 ng/ml) depicted via Dixon plot was well concurred with an IC50 value of 36 ± 1.8 ng/ml. Moreover, molecular informatics study showed that lycopene exhibited binding energy of -5.62 kcal/mol indicating high affinity for HMG-CoA reductase than HMG-CoA (ΔG: -5.34 kcal/mol). Thus, in silico data clearly demonstrate and support the in vitro results that lycopene competitively inhibit HMG-CoA reductase activity by binding at the hydrophobic portion of HMG-CoA reductase.

  8. Inhibitory Effect of Lycopene on Amyloid-β-Induced Apoptosis in Neuronal Cells.

    PubMed

    Hwang, Sinwoo; Lim, Joo Weon; Kim, Hyeyoung

    2017-08-16

    Alzheimer's disease (AD) is a fatal neurodegenerative disease. Brain amyloid-β deposition is a crucial feature of AD, causing neuronal cell death by inducing oxidative damage. Reactive oxygen species (ROS) activate NF-κB, which induces expression of Nucling. Nucling is a pro-apoptotic factor recruiting the apoptosome complex. Lycopene is an antioxidant protecting from oxidative stress-induced cell damage. We investigated whether lycopene inhibits amyloid-β-stimulated apoptosis through reducing ROS and inhibiting mitochondrial dysfunction and NF-κB-mediated Nucling expression in neuronal SH-SY5Y cells. We prepared cells transfected with siRNA for Nucling or nontargeting control siRNA to determine the role of Nucling in amyloid-β-induced apoptosis. The amyloid-β increased intracellular and mitochondrial ROS levels, apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), NF-kB activation and Nucling expression, while cell viability, mitochondrial membrane potential, and oxygen consumption rate decreased in SH-SY5Y cells. Lycopene inhibited these amyloid-β-induced alterations. However, amyloid-β did not induce apoptosis, determined by cell viability and apoptotic indices (p53, Bax/Bcl-2 ratio, caspase-3 cleavage), in the cells transfected with siRNA for Nucling. Lycopene inhibited apoptosis by reducing ROS, and by inhibiting mitochondrial dysfunction and NF-κB-target gene Nucling expression in neuronal cells. Lycopene may be beneficial for preventing oxidative stress-mediated neuronal death in patients with neurodegeneration.

  9. Attenuation of the cyproterone acetate-induced testicular hypofunction by a novel nutraceutical lycopene: a genomic approach.

    PubMed

    Tripathy, A; Ghosh, A; Dey, A; Pakhira, B P; Ghosh, D

    2017-10-01

    This study was designed to explore the cyproterone acetate (CPA)-induced andrological hypofunction and its correction by oral administration of lycopene. In this concern, spermatogenic, biochemical, histological and genomic profiles were studied. Cyproterone acetate administration for 1 month helped to develop infertile model rats. A significant recovery was noted in sperm motility, sperm count, sperm viability, hypo-osmotic swelling tail-coiled spermatozoa; activities of testicular ∆ 5 , 3β-hydroxysteroid dehydrogenase (HSD), 17β-HSD, catalase (CAT) and superoxide dismutase (SOD); and levels of conjugated diene (CD), malondialdehyde (MDA), testicular cholesterol and serum testosterone after the administration of lycopene at 1.5 mg/0.5 ml Tween-80/100 g body weight/day for last 1 month to infertile model rats. Simultaneously, qRT-PCR study of Bax, Bcl-2, caspase-3, ∆ 5 , 3β-HSD and 17β-HSD genes in testicular tissue showed a significant rectification towards the control in CPA-pre-treated cum CPA-lycopene-cotreated rats. Side-by-side histological and histometric studies showed a significant correction in qualitative analysis of spermatogenesis and seminiferous tubular diameter (STD) in CPA-pre-treated cum CPA-lycopene-cotreated rats. Lycopene showed outstanding efficacy in the management of CPA-induced testicular hypofunction with special reference to correction in oxidative stress-induced testicular apoptosis at genomic level. © 2016 Blackwell Verlag GmbH.

  10. Hepatoprotective effects of lycopene on liver enzymes involved in methionine and xenobiotic metabolism in hyperhomocysteinemic rats.

    PubMed

    Yefsah-Idres, Aicha; Benazzoug, Yasmina; Otman, Amel; Latour, Alizée; Middendorp, Sandrine; Janel, Nathalie

    2016-06-15

    Hyperhomocysteinemia, defined by an increased plasma homocysteine level, is commonly associated with chronic liver diseases. A link between the elevated homocysteine level and oxidative stress has been demonstrated. Indeed the pathogenesis of liver diseases in the case of hyperhomocysteinemia could be due to this production of oxidative stress. Many studies have demonstrated the antioxidative properties of lycopene, a carotenoid. Therefore, the present study was designed to induce hyperhomocysteinemia in male Wistar rats in order to analyze the effect of lycopene supplementation on homocysteine metabolism, on phase I and phase II xenobiotic-metabolizing enzyme activities, and on liver injury by histological examination and analysis of biochemical markers. We found that rats with a high methionine diet showed abnormal histological features, with an increase of serum homocysteine, alanine aminotransferase and aspartate aminotransferase levels, decreased hepatic cystathionine beta synthase and S-adenosyl-homocysteine hydrolase activities and an increased hepatic malondialdehyde level. We demonstrated the reversal effect of lycopene supplementation on hyperhomocysteinemia. Taken together, these findings provide additional clues on the hepatoprotective effects of lycopene.

  11. Assessment of dietary lutein, zeaxanthin and lycopene intakes and sources in the Spanish survey of dietary intake (2009-2010).

    PubMed

    Estévez-Santiago, Rocío; Beltrán-de-Miguel, Beatriz; Olmedilla-Alonso, Begoña

    2016-01-01

    We assessed the intake and major dietary sources of lutein, zeaxanthin and lycopene (non-provitamin A carotenoids) in Spain using food consumption data from the Spanish National Dietary Intake Survey (2009-2010). Three-day diaries and one 24-h recall were used to collect dietary data and a software application that includes HPLC data was used. Average intake of those carotenoids was 4290.8 μg/d (67.1% total carotenoid intake), mainly from vegetables (3414.0 μg/d), followed by fruits (393.5 μg/d), oils/fats (204.0 μg/d) and eggs/egg products (170.0 μg/d). Main sources of lutein and zeaxanthin were vegetables (62.9% total diet, 1235.2 μg/person/d). Lycopene intake was 3055.6 μg/d (71.2% of non-provitamin A carotenoids), mainly from tomato and by-products (86.3%) and watermelon. Red- and orange-colored fruits and vegetables were the major contributors of non-provitamin carotenoids (3219.0 μg/person/d). Balanced diets should favor fruits and vegetables over other dietary sources (oils, eggs, processed foods) that contain components to be consumed with moderation.

  12. Lycopene control of benzophenone-sensitized lipid peroxidation

    NASA Astrophysics Data System (ADS)

    Cvetković, Dragan; Marković, Dejan

    2012-05-01

    Lycopene antioxidant activity in the presence of two different mixtures of phospholipids in hexane solution, under continuous regime of UV-irradiation from three different ranges (UV-A, UV-B, and UV-C) has been evaluated in this work. Lycopene expected role was to control lipid peroxidation, by scavenging free radicals generated by UV-irradiation, in the presence and in the absence of selected photosensitizer, benzophenone. This work shows that lycopene undergoes to UV-induced destruction (bleaching), highly dependent on the incident photons energy input, more expressed in the presence than in the absence of benzophenone. The further increase ("excess") of its bleaching is undoubtedly related to the further increase of its antioxidant activity in the presence of benzophenone, having the same cause: increase of (phospholipids peroxidation) chain-breaking activities.

  13. Raman spectroscopic measurements of beta-carotene and lycopene in human skin

    NASA Astrophysics Data System (ADS)

    Darvin, M. E.; Gerzonde, I.; Ey, S.; Brandt, Nikolai N.; Albrecht, Hansjoerg; Gonchukov, Sergei A.; Sterry, Wolfram; Lademann, Juergen

    2004-08-01

    The antioxidant β-carotene and lycopene substances were detected non-invasively, in vivo in human skin using resonance Raman spectroscopy. Both substances were detected simultaneously. To distinguish between the substances, the Raman signals were excited at 488 nm and 514,5 nm simultaneously using a multilane Ar+ laser. The application of a fiber based optical imaging system allowed the detection of β-carotene and lycopene on any skin area. The disturbance of the measurements because of non-homogeneous skin pigmentation was avoided by using a measuring area of 28 mm2. The minimum power density for registration of the Raman signals and their optimum relation was determined. The Raman spectroscopic method is well suited for the evaluation of the efficacy of topically or systematically applied amounts of β-carotene and lycopene.

  14. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression.

    PubMed

    Moreno, J C; Cerda, A; Simpson, K; Lopez-Diaz, I; Carrera, E; Handford, M; Stange, C

    2016-04-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    PubMed

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-03

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change.

  16. Lycopene and Apo-10′-lycopenoic Acid Have Differential Mechanisms of Protection against Hepatic Steatosis in β-Carotene-9′,10′-oxygenase Knockout Male Mice123

    PubMed Central

    Ip, Blanche C; Liu, Chun; Lichtenstein, Alice H; von Lintig, Johannes; Wang, Xiang-Dong

    2015-01-01

    Background: Nonalcoholic fatty liver disease is positively associated with obesity and cardiovascular disease risk. Apo-10′-lycopenoic acid (APO10LA), a potential oxidation product of apo-10′-lycopenal that is generated endogenously by β-carotene-9′,10′-oxygenase (BCO2) cleavage of lycopene, inhibited hepatic steatosis in BCO2-expressing mice. Objective: The present study evaluated lycopene and APO10LA effects on hepatic steatosis in mice without BCO2 expression. Methods: Male and female BCO2-knockout (BCO2-KO) mice were fed a high saturated fat diet (HSFD) with or without APO10LA (10 mg/kg diet) or lycopene (100 mg/kg diet) for 12 wk. Results: Lycopene or APO10LA supplementation reduced hepatic steatosis incidence (78% and 72%, respectively) and severity in BCO2-KO male mice. Female mice did not develop steatosis, had greater hepatic total cholesterol (3.06 vs. 2.31 mg/g tissue) and cholesteryl ester (1.58 vs. 0.86 mg/g tissue), but had lower plasma triglyceride (TG) (229 vs. 282 mg/dL) and cholesterol (97.1 vs. 119 mg/dL) than male mice. APO10LA-mitigated steatosis in males was associated with reduced hepatic total cholesterol (18%) and activated sirtuin 1 signaling, which resulted in reduced fatty acids (FAs) and TG synthesis markers [stearoyl-coenzyme A (CoA) desaturase protein, 71%; acetyl-CoA carboxylase phosphorylation, 79%; AMP-activated protein kinase phosphorylation, 67%], and elevated cholesterol efflux genes (cytochrome P450 family 7A1, 65%; ATP-binding cassette transporter G5/8, 11%). These APO10LA-mediated effects were not mimicked by lycopene supplementation. Intriguingly, steatosis inhibition by lycopene induced peroxisome proliferator–activated receptor (PPAR)α- and PPARγ-related genes in mesenteric adipose tissue (MAT) that increases mitochondrial uncoupling [cell death–inducing DNA fragmentation factor, α subunit-like effector a, 55%; PR domain-containing 16, 47%; uncoupling protein 3 (Ucp3), 55%], FA β-oxidation (PPARα, 53%; very long chain acyl-CoA dehydrogenase, 38%), and uptake (FA transport protein 4, 29%; lipoprotein lipase 43%). Expressions of 10 MAT PPAR-related genes were inversely correlated with steatosis score, suggesting that lycopene reduced steatosis by increasing MAT FA utilization. Conclusions: Our data suggest that lycopene and APO10LA inhibit HSFD-induced steatosis in BCO2-KO male mice through differential mechanisms. Sex disparity of BCO2-KO mice was observed in the outcomes of HSFD-induced liver steatosis and plasma lipids. PMID:25644347

  17. Development and Provision of Functional Foods to Promote Health on Long-Duration Space Missions

    NASA Technical Reports Server (NTRS)

    Bermudez-Aguirre, D.; Cooper, M. R.; Douglas, G.; Smith, S.

    2016-01-01

    During long-duration NASA space missions, such as proposed missions to Mars, astronauts may experience negative physiological effects such as bone loss. Functional foods such as high-lycopene, high-flavonoids and high-omega-3 products and fruits and vegetables may mitigate the negative effects of spaceflight on physiological factors including the bone health of crewmembers. Previous studies showed that current ISS provisions provide high-lycopene and high-omega-3 food items but the variety is limited, which could promote menu fatigue. Bioactive compounds can degrade like other chemical compounds and lose functionality. The native concentrations and stability of bioactive compounds have never been determined in spaceflight foods, and adequate information is not available for commercial products for the storage durations required for space exploration (5 years). The purpose of this task is to develop new spaceflight foods that are high in omega-3 fatty acids, lycopene, or flavonoids, identify commercial products with these bioactive compounds that meet spaceflight requirements, and define the stability of these nutrients in storage to enable purposeful functional food incorporation into the space food system. The impact of storage temperature on the stability of lutein, lycopene, beta-carotene, omega-3 fatty acids, phenolics, anthocyanins and sterols is being studied in 12 ISS menu items stored at three different temperatures (4, 21, 35 degree C) over 2 years. Additionally, nutrient and quality stability are being assessed on a larger food set stored at 21 degree C over 2 years that contains twelve newly developed foods, 10 commercial products repackaged to spaceflight requirements, and another 5 current ISS menu items expected to be good sources of omega-3 fatty acids, lycopene, or flavonoids. All items were shipped overnight to the Linus Pauling Institute at Oregon State University (Corvalis, OR) after processing and 1-year of storage and analyzed for bioactive compound concentrations. Sensory evaluation was conducted on the newly developed functional foods and commercial products with untrained panelists (n is greater than or equal to 25) using a 9-point Hedonic scale to test sensory attributes and overall acceptability after processing and 1-year of storage (21 degree C). Repeat nutritional and sensory analyses will be conducted in the same foods after the 2-year storage period is completed. The stability of bioactive compounds in the selected foods was dependent on storage temperature and food matrix. Omega-3 showed excellent stability in the analyzed products after 1-year of storage, regardless of the storage temperature; phenolic compounds also showed good stability. Lycopene was more stable in oil-based products rather than water-based products because of the protection that lipids offer to lycopene molecules. Also, lycopene was more stable in freeze-dried products than in high moisture foods. The 12 newly developed functional foods showed good overall acceptability in sensory attributes after processing (average score 7.2 out of 9.0) and maintained sensory quality through 1-year (21 degree C); the overall acceptability was on average 7.1 after storage. Similar behavior was observed for the 10 commercial products after 1 year. The developed products are good sources of omega-3 (both plant and marine), vegetables (7 vegetable-based products), and good sources of carotenoids, such as the Curry Pumpkin Soup and the Sweet and Savory Kale. Nine of the new products, such as Mango Salad, Pickled Beets, and Braised Red Cabbage, are rich in phenolic compounds. Stability of most of the studied nutrients seems to be adequate after 1-year of storage in most of the tested foods. However, storage temperature of the food must be considered during long-duration space missions to achieve stability of all nutrients. Likewise, more information is needed regarding nutrient retention after 2-years of storage to identify nutritional gaps that may be expected over the 5-year shelf life required for a Mars mission. New developed products will be filling a gap in the current space food system to minimize menu fatigue, provide specific nutrients to reduce the negative effects of long-duration space missions and maintain crew members' health. Information about bioactive compounds in developed products after 1-year and 2-year of storage will provide the knowledge base for further product development.

  18. Biorefinery cascade processing for creating added value on tomato industrial by-products from Tunisia.

    PubMed

    Kehili, Mouna; Schmidt, Lisa Marie; Reynolds, Wienke; Zammel, Ayachi; Zetzl, Carsten; Smirnova, Irina; Allouche, Noureddine; Sayadi, Sami

    2016-01-01

    In today's consumer perception of industrial processes and food production, aspects like food quality, human health, environmental safety, and energy security have become the keywords. Therefore, much effort has been extended toward adding value to biowastes of agri-food industries through biorefinery processing approaches. This study focused, for the first time, on the valorization of tomato by-products of a Tunisian industry for the recovery of value-added compounds using biorefinery cascade processing. The process integrated supercritical CO 2 extraction of carotenoids within the oil fractions from tomato seeds (TS) and tomato peels (TP), followed by a batch isolation of protein from the residues. The remaining lignocellulosic matter from both fractions was then submitted to a liquid hot water (LHW) hydrolysis. Supercritical CO 2 experiments extracted 5.79% oleoresin, 410.53 mg lycopene/kg, and 31.38 mg β-carotene/kg from TP and 26.29% oil, 27.84 mg lycopene/kg, and 5.25 mg β-carotene/kg from TS, on dry weights. Protein extraction yields, nearing 30% of the initial protein contents equal to 13.28% in TP and 39.26% in TS, revealed that TP and TS are a rich source of essential amino acids. LHW treatment run at 120-200 °C, 50 bar for 30 min showed that a temperature of 160 °C was the most convenient for cellulose and hemicellulose hydrolysis from TP and TS, while keeping the degradation products low. Results indicated that tomato by-products are not only a green source of lycopene-rich oleoresin and tomato seed oil (TSO) and of protein with good nutritional quality but also a source of lignocellulosic matter with potential for bioethanol production. This study would provide an important reference for the concept and the feasibility of the cascade fractionation of valuable compounds from tomato industrial by-products.Graphical abstractSchema of biorefinery cascade processing of tomato industrial by-products toward isolation of valuable fractions.

  19. Dynamics of energy transfer from lycopene to bacteriochlorophyll in genetically-modified LH2 complexes of Rhodobacter sphaeroides.

    PubMed

    Hörvin Billsten, H; Herek, J L; Garcia-Asua, G; Hashøj, L; Polívka, T; Hunter, C N; Sundström, V

    2002-03-26

    LH2 complexes from Rb. sphaeroides were modified genetically so that lycopene, with 11 saturated double bonds, replaced the native carotenoids which contain 10 saturated double bonds. Tuning the S1 level of the carotenoid in LH2 in this way affected the dynamics of energy transfer within LH2, which were investigated using both steady-state and time-resolved techniques. The S1 energy of lycopene in n-hexane was determined to be approximately 12 500 +/- 150 cm(-1), by direct measurement of the S1-S2 transient absorption spectrum using a femtosecond IR-probing technique, thus placing an upper limit on the S1 energy of lycopene in the LH2 complex. Fluorescence emission and excitation spectra demonstrated that energy can be transferred from lycopene to the bacteriochlorophyll molecules within this LH2 complex. The energy-transfer dynamics within the mutant complex were compared to wild-type LH2 from Rb. sphaeroides containing the carotenoid spheroidene and from Rs. molischianum, in which lycopene is the native carotenoid. The results show that the overall efficiency for Crt --> B850 energy transfer is approximately 80% in lyco-LH2 and approximately 95% in WT-LH2 of Rb. sphaeroides. The difference in overall Crt --> BChl transfer efficiency of lyco-LH2 and WT-LH2 mainly relates to the low efficiency of the Crt S(1) --> BChl pathway for complexes containing lycopene, which was 20% in lyco-LH2. These results show that in an LH2 complex where the Crt S1 energy is sufficiently high to provide efficient spectral overlap with both B800 and B850 Q(y) states, energy transfer via the Crt S1 state occurs to both pigments. However, the introduction of lycopene into the Rb. sphaeroides LH2 complex lowers the S1 level of the carotenoid sufficiently to prevent efficient transfer of energy to the B800 Q(y) state, leaving only the Crt S1 --> B850 channel, strongly suggesting that Crt S1 --> BChl energy transfer is controlled by the relative Crt S1 and BChl Q(y) energies.

  20. The effect of pomelo citrus (Citrus maxima var. Nambangan), vitamin C and lycopene towards the number reduction of mice (Mus musculus) apoptotic hepatocyte caused of ochratoxin A

    NASA Astrophysics Data System (ADS)

    Badriyah, Hastuti, Utami Sri

    2017-06-01

    Foods can contaminated by some mycotoxin produced by molds. Ochratoxin A is a sort of mycotoxin that cause structural damage on hepatocytes. Pomelo citrus (Citrus maxima var. Nambangan) contain vitamin C and lycopene that have antioxidant character. This research is done to: 1)examine the effect of pomelo citrus juice, vitamin C, and lycopene treatment towards the number reduction of mice apoptotic hepatocytes caused by ochratoxin A exposure, 2)examine the effect of vitamin C mixed with lycopene treatment towards the number reduction of mice apoptotic hepatocytes caused by ochratoxin A exposure. The experimental group used male mice strain BALB-C in the age of three month and bodyweight 20-30 grams devided in 4 experiment group and control group. The experiment group I were administered pomelo citrus juice 0,5 ml/30 grams BW/day orally during 2 weeks and then administered with ochratoxin in the dose of 1 mg/kg BW during 1 week. The experiment group II were administered with vitamin C in the dose of 5,85 µg/30g BW with the same methods. The experiment group III were administered with lycopene in the dose of 0,1025 µg/30 g BW with the same methods. The experiment group IV were administered with vitamin C mixed with lycopene with the same methods. The control group were administered with ochratoxin A in the dose of 1 mg/kg BW per oral during 1 week. The apoptotic hepatocyte number were count by microscopic observation of hepatocyte slides from experiment group as well as control group with cytochemical staining. The research result shows that: 1) the pomelo citrus juice, vitamin C as well as lycopene administration could reduce the mice apoptotic hepatocyte number caused by ochratoxin A exposure, compared with the mice apoptotic hepatocyte number caused by ochratoxin A exposure only; 2) the vitamin C mixed with lycopene could reduce the mice apoptotic hepatocyte number caused by ochratoxin A exposure compared with the mice apoptotic hepatocyte number caused by ochratoxin exposure only.

  1. Combination treatment of lycopene and hesperidin protect experimentally induced ulcer in laboratory rats.

    PubMed

    Jain, Dilpesh; Katti, Neha

    2015-01-01

    Lycopene, a carotenoid and hesperidin, a flavonoid are naturally occurring in vegetables and fruits. Synergistic effect of a combination of carotenoid and flavonoid has been reported due to its antioxidant activity. Therefore, the present study was aimed to evaluate the protective effect of this combination on pylorus ligation induced ulcers in rats. Thirty Wistar albino rats were divided into five groups (n = 6). Rats were fasted for 24 h before pylorus ligation. After 24 h of fasting the rats were treated with hesperidin (100 mg/kg) and lycopene (2 mg/kg) and their combination 1h prior to surgery. After an hour under ether anesthesia pylorus ligation was performed, after 5 h the animals were sacrificed, stomach was dissected, and gastric contents were collected and measured. Total acidity and pH of gastric content was estimated. Ulcer index was calculated, and macroscopic examination of the stomach was carried out. The sham operated rats showed a significant increase in pH, volume of gastric content and total acidity and ulcer index. The rats pretreated with lycopene and hesperidin showed significant improvement in the ulcer conditions. However, rats treated with a combination of lycopene and hesperidin showed more significant restoration of gastric function as compared to sham operated rats. Moreover, a significant difference was also noted in rats treated with a combination as compared to lycopene and hesperidin treatment alone. Thus experimentally the combination was seen to treat ulcers by anti-secretory, neutralizing, cytoprotective and mainly due to its antioxidant property.

  2. Isolation and functional characterization of Lycopene β-cyclase (CYC-B) promoter from Solanum habrochaites

    PubMed Central

    2010-01-01

    Background Carotenoids are a group of C40 isoprenoid molecules that play diverse biological and ecological roles in plants. Tomato is an important vegetable in human diet and provides the vitamin A precursor β-carotene. Genes encoding enzymes involved in carotenoid biosynthetic pathway have been cloned. However, regulation of genes involved in carotenoid biosynthetic pathway and accumulation of specific carotenoid in chromoplasts are not well understood. One of the approaches to understand regulation of carotenoid metabolism is to characterize the promoters of genes encoding proteins involved in carotenoid metabolism. Lycopene β-cyclase is one of the crucial enzymes in carotenoid biosynthesis pathway in plants. Its activity is required for synthesis of both α-and β-carotenes that are further converted into other carotenoids such as lutein, zeaxanthin, etc. This study describes the isolation and characterization of chromoplast-specific Lycopene β-cyclase (CYC-B) promoter from a green fruited S. habrochaites genotype EC520061. Results A 908 bp region upstream to the initiation codon of the Lycopene β-cyclase gene was cloned and identified as full-length promoter. To identify promoter region necessary for regulating developmental expression of the ShCYC-B gene, the full-length promoter and its three different 5' truncated fragments were cloned upstream to the initiation codon of GUS reporter cDNA in binary vectors. These four plant transformation vectors were separately transformed in to Agrobacterium. Agrobacterium-mediated transient and stable expression systems were used to study the GUS expression driven by the full-length promoter and its 5' deletion fragments in tomato. The full-length promoter showed a basal level activity in leaves, and its expression was upregulated > 5-fold in flowers and fruits in transgenic tomato plants. Deletion of -908 to -577 bp 5' to ATG decreases the ShCYC-B promoter strength, while deletion of -908 to -437 bp 5' to ATG led to significant increase in the activity of GUS in the transgenic plants. Promoter deletion analysis led to the identification of a short promoter region (-436 bp to ATG) that exhibited a higher promoter strength but similar developmental expression pattern as compared with the full-length ShCYC-B promoter. Conclusion Functional characterization of the full-length ShCYC-B promoter and its deletion fragments in transient expression system in fruto as well as in stable transgenic tomato revealed that the promoter is developmentally regulated and its expression is upregulated in chromoplast-rich flowers and fruits. Our study identified a short promoter region with functional activity and developmental expression pattern similar to that of the full-length ShCYC-B promoter. This 436 bp promoter region can be used in promoter::reporter fusion molecular genetic screens to identify mutants impaired in CYC-B expression, and thus can be a valuable tool in understanding carotenoid metabolism in tomato. Moreover, this short promoter region of ShCYC-B may be useful in genetic engineering of carotenoid content and other agronomic traits in tomato fruits. PMID:20380705

  3. Effectiveness of lycopene on experimental testicular torsion.

    PubMed

    Güzel, Mahmut; Sönmez, Mehmet Fatih; Baştuğ, Osman; Aras, Necip Fazıl; Öztürk, Ayşe Betül; Küçükaydın, Mustafa; Turan, Cüneyt

    2016-07-01

    We aimed to demonstrate the long term effectiveness of lycopene, a precursor of vitamin A, on the testes for ischemia-reperfusion injury. Seventy male Wistar albino rats were used for this experiment. The rats were divided into seven groups. Group 1 served as the control group; group 2 was sham-operated; group 3 received 20mg/kg/day lycopene (intraperitoneally); in group 4, the right testes of rats were kept torted for 2hours and then were detorted and the animals lived for three days; in group 5, the right testes of rats were kept torted for 2hours and then were detorted and the animals lived for ten days; in group 6, the right testes of the rats were kept torted for 2hours and then detorted and the animals received 20mg/kg/day lycopene (intraperitoneally) for three days; in group 7, the right testes of the rats were kept torted for 2hours and then were detorted and the animals received 20mg/kg/day lycopene (intraperitoneally) for ten days. Lycopene was used intraperitoneally. Some of the testes tissues were used for biochemical analyses and the other tissues were used for histological procedures. The Johnsen's score was used for seminiferous tubule deterioration. The TUNEL method was utilized to show apoptosis of testicular tissue. Testosterone levels were measured from blood samples and SOD, MDA, TNF-α, IL-1β and IL-6 measurements were recorded from tissue samples. The results were analyzed statistically. In groups 1, 2 and 3 there was normal testicular structure. Rats in groups 4 and 5 had damaged testicular tissues. In groups 6 and 7, in which we used lycopene, the testes were not better than those in groups 4 and 5. The MSTD and JTBS values were better in group 6, but not in group 7 among the torsion groups. As a result, MDA, SOD, TNF-α and IL-1β were increased and serum testosterone and IL-6 levels were decreased in groups 4 and 5 compared to group 1. There was no improvement in the groups treated with lycopene for therapeutic purposes. It was shown that lycopene, as an antioxidant agent, is not effective for testicular torsion in the long term. This study can be considered as a preliminary study showing the need for further researches using different antioxidant agents to determine their long term effects in ischemia-reperfusion injuries in an appropriate experimental design. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Functional Lycopene Cyclase (CruA) in Cyanobacterium, Arthrospira platensis NIES-39, and its Role in Carotenoid Synthesis.

    PubMed

    Sugiyama, Kenjiro; Ebisawa, Masashi; Yamada, Masaharu; Nagashima, Yoshiki; Suzuki, Hideyuki; Maoka, Takashi; Takaichi, Shinichi

    2017-04-01

    The genus Arthrospira is filamentous, non-nitrogen-fixing cyanobacteria that is commercially important. We identified the molecular structures of carotenoids in Arthrospira platensis NIES-39. The major carotenoid identified was β-carotene. In addition, the hydroxyl derivatives of β-cryptoxanthin and (3R,3'R)-zeaxanthin were also found to be present. The carotenoid glycosides were identified as (3R,2'S)-myxol 2'-methylpentoside and oscillol 2,2'-dimethylpentoside. The methylpentoside moiety was a mixture of fucoside and chinovoside in an approximate ratio of 1 : 4. Trace amounts of the ketocarotenoid 3'-hydroxyechinenone were also found. Three types of lycopene cyclases have been functionally confirmed in carotenogenesis organisms. In cyanobacteria, the functional lycopene cyclases (CrtL, CruA and CruP) have only been found in four species. In this study, we found that CruA exhibited lycopene cyclase activity in transformed Escherichia coli, which contains lycopene, but CruP exhibited no lycopene cyclase activity and crtL was absent. This is the third cyanobacterial species in which CruA activity has been confirmed. Neurosporene was not a substrate of CruA in E. coli, whereas lycopene cyclases of CrtY (bacteria), CrtL (plants) and CrtYB (fungi) have been reported to convert neurosporene to 7,8-dihydro-β-carotene. β-Carotene hydroxylase (CrtR) was found to convert β-carotene to zeaxanthin in transformed E. coli, which contains β-carotene. Among the β-carotene hydroxylases, bacterial CrtZ and eukaryotic CrtR and BCH have similarities, whereas cyanobacterial CrtR appears to belong to another clade. Based on the identification of the carotenoids and the completion of the entire nucleotide sequence of the A. platensis NIES-39 genome, we propose a biosynthetic pathway for the carotenoids as well as the corresponding genes and enzymes. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Tomato and lycopene supplementation and cardiovascular risk factors: A systematic review and meta-analysis.

    PubMed

    Cheng, Ho Ming; Koutsidis, Georgios; Lodge, John K; Ashor, Ammar; Siervo, Mario; Lara, José

    2017-02-01

    Epidemiological evidence suggests an association between consumption of tomato products or lycopene and lower risk for cardiovascular diseases (CVD). Our aim was to evaluate the state of the evidence from intervention trials on the effect of consuming tomato products and lycopene on markers of cardiovascular (CV) function. We undertook a systematic review and meta-analysis on the effect of supplementing tomato and lycopene on CV risk factors. Three databases including Medline, Web of science, and Scopus were searched from inception to August 2016. Inclusion criteria were: intervention trials reporting effects of tomato products and lycopene supplementation on CV risk factors among adult subjects >18 years of age. The outcomes of interest included blood lipids (total-, HDL-, LDL-cholesterol, triglycerides, oxidised-LDL), endothelial function (flow-mediated dilation (FMD), pulse wave velocity (PWV)) and blood pressure (BP) inflammatory factors (CRP, IL-6) and adhesion molecules (ICAM-1). Random-effects models were used to determine the pooled effect sizes. Out of 1189 publications identified, 21 fulfilled inclusion criteria and were meta-analysed. Overall, interventions supplementing tomato were associated with significant reductions in LDL-cholesterol (-0.22 mmol/L; p = 0.006), IL-6 (standardised mean difference -0.25; p = 0.03), and improvements in FMD (2.53%; p = 0.01); while lycopene supplementation reduced systolic-BP (-5.66 mmHg; p = 0.002). No other outcome was significantly affected by these interventions. The available evidence on the effects of tomato products and lycopene supplementation on CV risk factors supports the view that increasing the intake of these has positive effects on blood lipids, blood pressure and endothelial function. These results support the development of promising individualised nutritional strategies involving tomatoes to tackle CVD. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Carotenoid Profile, Antioxidant Capacity, and Chromoplasts of Pink Guava (Psidium guajava L. Cv. 'Criolla') during Fruit Ripening.

    PubMed

    Rojas-Garbanzo, Carolina; Gleichenhagen, Maike; Heller, Annerose; Esquivel, Patricia; Schulze-Kaysers, Nadine; Schieber, Andreas

    2017-05-10

    Pigments of pericarp and pulp of pink guava (Psidium guajava L. cv. 'Criolla') were investigated to elucidate the profile and the accumulation of main carotenoids during four stages of fruit ripening by using HPLC-DAD and APCI-MS/MS analysis. Seventeen carotenoids were identified, and changes in their profile during fruit ripening were observed. The carotenoids all-trans-β-carotene, 15-cis-lycopene, and all-trans-lycopene were present in all ripening stages, but all-trans-lycopene was found to be predominant (from 63% to 92% of total carotenoids) and responsible for the high lipophilic antioxidant capacity determined by spectrophotometric assays. By using light and transmission electron microscopy, the development of chromoplasts in pericarp and pulp was demonstrated. The accumulation of all-trans-lycopene and all-trans-β-carotene coincided with the development of large crystals; the chromoplasts of pink guava belong, therefore, to the crystalline type.

  7. Optimization of the IPP Precursor Supply for the Production of Lycopene, Decaprenoxanthin and Astaxanthin by Corynebacterium glutamicum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heider, Sabine A. E.; Wolf, Natalie; Hofemeier, Arne

    The biotechnologically relevant bacterium Corynebacterium glutamicum, currently used for the million ton-scale production of amino acids for the food and feed industries, is pigmented due to synthesis of the rare cyclic C50 carotenoid decaprenoxanthin and its glucosides. The precursors of carotenoid biosynthesis, isopenthenyl pyrophosphate (IPP) and its isomer dimethylallyl pyrophosphate, are synthesized in this organism via the methylerythritol phosphate (MEP) or non-mevalonate pathway. Terminal pathway engineering in recombinant C. glutamicum permitted the production of various non-native C50 and C40 carotenoids. Here, the role of engineering isoprenoid precursor supply for lycopene production by C. glutamicum was characterized. Overexpression of dxs encodingmore » the enzyme that catalyzes the first committed step of the MEP-pathway by chromosomal promoter exchange in a prophage-cured, genome-reduced C. glutamicum strain improved lycopene formation. Similarly, an increased IPP supply was achieved by chromosomal integration of two artificial operons comprising MEP pathway genes under the control of a constitutive promoter. Combined overexpression of dxs and the other six MEP pathways genes in C. glutamicum strain LYC3-MEP was not synergistic with respect to improving lycopene accumulation. Based on C. glutamicum strain LYC3-MEP, astaxanthin could be produced in the milligrams per gram cell dry weight range when the endogenous genes crtE, crtB, and crtI for conversion of geranylgeranyl pyrophosphate to lycopene were coexpressed with the genes for lycopene cyclase and β-carotene hydroxylase from Pantoea ananatis and carotene C(4) oxygenase from Brevundimonas aurantiaca.« less

  8. One ring or two? Determination of ring number in carotenoids by lycopene epsilon-cyclases.

    PubMed

    Cunningham, F X; Gantt, E

    2001-02-27

    Carotenoids in the photosynthetic membranes of plants typically contain two beta-rings (e.g., beta-carotene and zeaxanthin) or one epsilon- and one beta-ring (e.g., lutein). Carotenoids with two epsilon-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene epsilon-cyclase (LCYe) adds one epsilon-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene beta-cyclase (LCYb) adds two beta-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two epsilon-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic epsilon-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis epsilon-cyclases involved in the determination of ring number were mapped by analysis of chimeric epsilon-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one epsilon-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two epsilon-rings. An R residue in this position also yields a bi-epsilon-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures.

  9. One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases

    PubMed Central

    Cunningham, Francis X.; Gantt, Elisabeth

    2001-01-01

    Carotenoids in the photosynthetic membranes of plants typically contain two β-rings (e.g., β-carotene and zeaxanthin) or one ɛ- and one β-ring (e.g., lutein). Carotenoids with two ɛ-rings are uncommon. We reported earlier that the Arabidopsis thaliana lycopene ɛ-cyclase (LCYe) adds one ɛ-ring to the symmetrical linear substrate lycopene, whereas the structurally related lycopene β-cyclase (LCYb) adds two β-rings. Here we describe a cDNA encoding LCYe in romaine lettuce (Lactuca sativa var. romaine), one of the few plant species known to accumulate substantial quantities of a carotenoid with two ɛ-rings: lactucaxanthin. The product of the lettuce cDNA, similar in sequence to the Arabidopsis LCYe (77% amino acid identity), efficiently converted lycopene into the bicyclic ɛ-carotene in a heterologous Escherichia coli system. Regions of the lettuce and Arabidopsis ɛ-cyclases involved in the determination of ring number were mapped by analysis of chimeric ɛ-cyclases constructed by using an inverse PCR approach. A single amino acid was found to act as a molecular switch: lettuce LCYe mutant H457L added only one ɛ-ring to lycopene, whereas the complementary Arabidopsis LCYe mutant, L448H, added two ɛ-rings. An R residue in this position also yields a bi-ɛ-cyclase for both the lettuce and Arabidopsis enzymes. Construction and analysis of chimera of related enzymes with differing catalytic activities provide an informative approach that may be of particular utility for studying membrane-associated enzymes that cannot easily be crystallized or modeled to existing crystal structures. PMID:11226339

  10. Formation and functional attributes of electrostatic complexes involving casein and anionic polysaccharides: An approach to enhance oral absorption of lycopene in rats in vivo.

    PubMed

    Jain, Ashay; Thakur, Deepika; Ghoshal, Gargi; Katare, O P; Singh, Bhupinder; Shivhare, U S

    2016-12-01

    The current work entails a novel strategy of formulating the microparticles of lycopene solely using rational blends of biopolymers without using equipment-intensive techniques. The study is intended to enhance oral bioavailability of lycopene by controlling its release from micro-formulation and facilitating its absorption though lymphatic pathways. Considering the minimum particle size, maximum entrapment efficiency and loading capacity, the amounts of casein (i.e., protein) and gum tragacanth (i.e., polysaccharide) were selected as the critical factors for formulation of microparticles. Complex formation and electrostatic interaction was confirmed by Fourier transform infra red (FTIR) spectra. Size and surface properties of microparticles were studied using scanning electron microscopy (SEM). The optimized formulation (mean particle size: ∼130μm; % entrapment efficiency: ∼67% and loading capacity: ∼71%) designated noticeable improvement in lycopene release profile (over 80% in 24h). Increment in the values of C max (2.22-fold) and AUC (1.97-fold) further indicated noteworthy augmentation in the rate and extent of bioavailability by the microparticles formulation compared to plain lycopene. The resulting formulation was found to be quite stable all through two months of study episode. The resultant microparticles formulation was evaluated for antioxidant activity and tested for their effectiveness in self life enhancement of vegetable oil by calculating peroxide value under temperature and storage condition. Encapsulation strongly increased the stability of micronutrients. The current investigations, therefore, report the successful development of biopolymeric microparticles with improved bioavailability potential of lycopene. Copyright © 2016. Published by Elsevier B.V.

  11. Solvent tuning configurational conversion of lycopene aggregates in organic-aqueous mixing solvent

    NASA Astrophysics Data System (ADS)

    Dong, Jia; Zhang, Di; Wang, Xin-Yue; Wang, Peng

    2018-06-01

    In general cases, carotenoid aggregates are prepared in organic-water mixing solvent depending on its hydrophobic character. It is well-known that one of carotenoids, lycopene, is more likely to form typical H-aggregates. In this study, new type lycopene J-aggregates were prepared in DMSO-water mixing solvent with small amount of toluene, which was observed for the first time. We proposed a potential structure model combining with exciton model to interpret the mechanism of spectra changes. Our finding has provided new methods and novel ideas for controlling carotenoid aggregates formation.

  12. Effects of a hydrodynamic process on extraction of carotenoids from tomato

    USDA-ARS?s Scientific Manuscript database

    We evaluated a proprietary sonoporation method that was introduced with the hope of increasing accessibility of phytonutrients in fruits and vegetables. Two important commodities were selected: tomato, a major source of carotenoids, notably lycopene, in the diet of the Western world; and Citrus, o...

  13. Tobacco carcinogen induces both lung cancer and non-alcoholic steatohepatitis and hepatocellular carcinomas in ferrets which can be attenuated by lycopene supplementation.

    PubMed

    Aizawa, Koichi; Liu, Chun; Tang, Sanyuan; Veeramachaneni, Sudipta; Hu, Kang-Quan; Smith, Donald E; Wang, Xiang-Dong

    2016-09-01

    Early epidemiologic studies have reported that tobacco smoking, which is causally associated with liver cancer, is an independent risk factor for non-alcoholic fatty liver diseases (NAFLD). Lycopene from tomatoes has been shown to be a potential preventive agent against NAFLD and hepatocellular carcinoma (HCC). In the present study, we investigated whether the tobacco carcinogen 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces lesions in both lungs and livers of ferrets with or without lycopene intervention. Male ferrets (6 groups, n = 8-10) were treated either with NNK (50 mg/kg BW, i.p., once a month for four consecutive months) or saline with or without dietary lycopene supplementation (2.2 and 6.6 mg/kg BW/day, respectively) for 26 weeks. Results demonstrate that NNK exposure results in higher incidences of lung tumors, HCC and steatohepatitis (which is characterized by severe inflammatory cell infiltration with concurrent fat accumulation in liver, hepatocellular ballooning degeneration and increased NF-κB expression), as well as elevations in bilirubin and AST levels in ferrets. Lycopene supplementation at two doses prevented NNK-induced expressions of α7 nicotinic acetylcholine receptor in the lung and NF-κB and CYP2E1 in the liver and attenuated the NNK-induced mortality and pathological lesions in both the lungs and livers of ferrets. The present study provided strong experimental evidence that the tobacco carcinogen NNK can induce both HCC and steatohepatitis in the ferrets and can be a useful model for studying tobacco carcinogen-associated NAFLD and liver cancer. Furthermore, lycopene could provide potential benefits against smoke carcinogen-induced pulmonary and hepatic injury. © 2016 UICC.

  14. Tomato juice supplementation in young women reduces inflammatory adipokine levels independently of body fat reduction.

    PubMed

    Li, Yu-Fen; Chang, Ya-Yuan; Huang, Hui-Chi; Wu, Yi-Chen; Yang, Mei-Due; Chao, Pei-Min

    2015-05-01

    Lycopene is a carotene and phytochemical known to protect against metabolic diseases. It is found in red fruits and vegetables, predominantly tomatoes. This study aimed to show the supplementation effect of tomato juice on indices associated with metabolic health and adipokine profiles in generally healthy people. A total of 30 young females (20- to 30-years-old) with a body mass index (BMI) ≥ 20 were recruited, of whom 25 completed the entire study. The subjects continued with their normal diet and exercise schedule, but were given 280 mL of tomato juice (containing 32.5 mg of lycopene) daily for 2 mo. Metabolic indices, including anthropometric data and serum levels of glucose, lipids, adipokines, lycopene, and antioxidants, were compared pre- and postintervention. Tomato juice supplementation significantly reduced body weight, body fat, waist circumference, BMI, and serum levels of cholesterol, monocyte chemoattractant protein-1 (MCP-1), and thiobarbituric reactive substances, while significantly increasing serum levels of adiponectin, triglyceride, and lycopene. When subjects were stratified by body fat change, i.e., reduction or non-reduction (including increase or no change), the tomato juice-induced reduction in waist circumference, serum cholesterol, and MCP-1 levels and increase in adiponectin and lycopene levels were seen in both subgroups. The changes in waist circumference, cholesterol, MCP-1, and adiponectin levels remained significant after adjusting for each covariable individually, with the exception of lycopene. These results show that daily tomato juice supplementation reduces waist circumference, as well as serum cholesterol and inflammatory adipokine levels in young healthy women and that these effects are unrelated to body fat changes. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study

    PubMed Central

    Schweiggert, Ralf M.; Kopec, Rachel E.; Villalobos-Gutierrez, Maria G.; Högel, Josef; Quesada, Silvia; Esquivel, Patricia; Schwartz, Steven J.; Carle, Reinhold

    2014-01-01

    Carrot, tomato and papaya represent important dietary sources of β-carotene and lycopene. The main objective of the present study was to compare the bioavailability of carotenoids from these food sources in healthy human subjects. A total of sixteen participants were recruited for a randomised cross-over study. Test meals containing raw carrots, tomatoes and papayas were adjusted to deliver an equal amount of β-carotene and lycopene. For the evaluation of bioavailability, TAG-rich lipoprotein (TRL) fractions containing newly absorbed carotenoids were analysed over 9.5 h after test meal consumption. The bioavailability of β-carotene from papayas was approximately three times higher than that from carrots and tomatoes, whereas differences in the bioavailability of β-carotene from carrots and tomatoes were insignificant. Retinyl esters appeared in the TRL fractions at a significantly higher concentration after the consumption of the papaya test meal. Similarly, lycopene was approximately 2.6 times more bioavailable from papayas than from tomatoes. Furthermore, the bioavailability of β-cryptoxanthin from papayas was shown to be 2.9 and 2.3 times higher than that of the other papaya carotenoids β-carotene and lycopene, respectively. The morphology of chromoplasts and the physical deposition form of carotenoids were hypothesised to play a major role in the differences observed in the bioavailability of carotenoids from the foods investigated. Particularly, the liquid-crystalline deposition of β-carotene and the storage of lycopene in very small crystalloids in papayas were found to be associated with their high bioavailability. In conclusion, papaya was shown to provide highly bioavailable β-carotene, β-cryptoxanthin and lycopene and may represent a readily available dietary source of provitamin A for reducing the incidence of vitamin A deficiencies in many subtropical and tropical developing countries. PMID:23931131

  16. Tobacco carcinogen (NNK) induces both lung cancer and non-alcoholic steatohepatitis and hepatocellular carcinomas in ferrets which can be attenuated by lycopene supplementation

    PubMed Central

    Aizawa, Koichi; Liu, Chun; Tang, Sanyuan; Veeramachaneni, Sudipta; Hu, Kang-Quan; Smith, Donald E.; Wang, Xiang-Dong

    2016-01-01

    Early epidemiologic studies have reported that tobacco smoking, which is causally associated with liver cancer, is an independent risk factor for non-alcoholic fatty liver diseases (NAFLD). Lycopene from tomatoes has been shown to be a potential preventive agent against NAFLD and hepatocellular carcinoma (HCC). In the present study, we investigated whether the tobacco carcinogen 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces lesions in both lungs and livers of ferrets with or without lycopene intervention. Male ferrets (6 groups, n = 8-10) were treated either with NNK (50 mg/kg BW, i.p., once a month for four consecutive months) or saline with or without dietary lycopene supplementation (2.2 and 6.6 mg/kg BW/day, respectively) for 26 weeks. Results demonstrate that NNK exposure results in higher incidences of lung tumors, HCC and steatohepatitis (which is characterized by severe inflammatory cell infiltration with concurrent fat accumulation in liver, hepatocellular ballooning degeneration and increased NF-κB expression), as well as elevations in bilirubin and AST levels in ferrets. Lycopene supplementation at two doses prevented NNK-induced expressions of α7 nicotinic acetylcholine receptor in the lung and NF-κB and CYP2E1 in the liver and attenuated the NNK-induced mortality and pathological lesions in both the lungs and livers of ferrets. The present study provided strong experimental evidence that the tobacco carcinogen NNK can induce both HCC and steatohepatitis in the ferrets and can be a useful model for studying tobacco carcinogen-associated NAFLD and liver cancer. Furthermore, lycopene could provide potential benefits against smoke carcinogen-induced pulmonary and hepatic injury. PMID:27116542

  17. Effect of tomato juice consumption on the plasmatic lipid profile, hepatic HMGCR activity, and fecal short chain fatty acid content of rats.

    PubMed

    Periago, María Jesús; Martín-Pozuelo, Gala; González-Barrio, Rocío; Santaella, Marina; Gómez, Victoria; Vázquez, Nuria; Navarro-González, Inmaculada; García-Alonso, Javier

    2016-10-12

    The aims of the present study were to ascertain, indirectly, the prebiotic role of tomato juice, by analyzing its effect on the content of short chain fatty acids (SCFA) in feces of rats, and to determine the plausible mechanisms related to the hypocholesterolemic effects of tomato juice and lycopene, evaluating the activity of hepatic HMGCR and the formation of propionic acid. Two commercially available tomato juices with differing contents of lycopene (low and high lycopene contents: Llyc and Hlyc tomato juices) were used. Sprague-Dawley male rats were randomly divided into three experimental groups (n = 8): control group, normal diet and water; group 1, normal diet and Llyc tomato juice; and group 2, normal diet and Hlyc tomato juice, which were fed ad libitum for three weeks. Feces were collected at the beginning and the end of the study to determine SCFA, and blood and liver were obtained (after sacrificing the animals) to analyze the lipid plasmatic parameters and the HMGCR activity and total cholesterol, respectively. No significant differences were observed in the plasmatic parameters, except that HDL-cholesterol increased significantly after consumption of both tomato juices. Lycopene was accumulated in the liver in proportion to the amount ingested, and was observed to have an inhibitory effect on the HMGCR enzyme, according to the amount of lycopene in the liver. In relation to the SCFA in feces, no differences were observed in acetate and propionate after the consumption of tomato juice, but a significant increase in butyrate was observed in group 2 after the intake of Hlyc tomato juice. The content of this carboxylic acid together with excreted lycopene in feces could have a beneficial effect on colonic cells.

  18. Lipid biomarkers and metabolic effects of lycopene from tomato juice on liver of rats with induced hepatic steatosis.

    PubMed

    Bernal, Cristina; Martín-Pozuelo, Gala; Lozano, Ana B; Sevilla, Angel; García-Alonso, Javier; Canovas, Manuel; Periago, María J

    2013-11-01

    Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver disorders, covering steatosis to nonalcoholic steatohepatitis (NASH). Dietary factors may modulate its evolution, and antioxidants have been proposed as therapeutic agents. Among them, lycopene has been demonstrated to prevent the development of steatohepatitis and even to inhibit NASH-promoted early hepatocarcinogenesis induced by a high-fat diet in rats. These conclusions have been related to its antioxidant activity; however, NAFLD is more complex than a simple redox imbalance state since it disturbs several metabolic systems in the liver. In consequence, there is a lack of information related to the action of lycopene beyond antioxidant biomarkers. In this work, NAFLD was induced in rats using a hypercholesterolemic and high-fat diet to evaluate the effect of lycopene consumption from tomato juice on liver metabolism. Several classical antioxidant biomarkers related to NAFLD were measured to check the state of this disease after 7 weeks of the controlled diet. Moreover, a metabolomics platform was applied to measure more than 70 metabolites. Results showed clear differences in the classical antioxidant biomarkers as well as in the metabolic pattern, attending not only to the diet but also to the intake of lycopene from tomato juice. Interestingly, tomato juice administration partially reverted the metabolic pattern from a high-fat diet to a normal diet even in metabolites not related to the redox state, which could lead to new targets for therapeutic agents against NAFLD and to achieving a better understanding of the role of lycopene in liver metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Watermelon juice: A promising feedstock supplement, diluent, and nitrogen supplement for ethanol biofuel production

    USDA-ARS?s Scientific Manuscript database

    Processing of watermelons to produce the neutraceuticals lycopene and citrulline yields a waste stream of watermelon juice at the rate of over 500 L/Mt of watermelons. Since watermelon juice contains 7-10% readily fermentable sugars, its potential as feedstock, diluent, and nitrogen supplement was ...

  20. Qualitative Aspects of UV-Vis Spectrophotometry of Beta-Carotene and Lycopene.

    ERIC Educational Resources Information Center

    Tan, Barrie; Soderstrom, David N.

    1989-01-01

    Explores the structural behavior of polyenic pi systems such as isomerization and conjugation. Uses the simultaneous spectrophotometric analysis of a beta-carotene and lycopene mixture. Presents an empirical method to determine the number of double bonds in the polyenic carotenoid. (MVL)

  1. Effect of reciprocating agitation thermal processing (RA-TP) on quality of canned tomato (Solanum lycopersicum) puree.

    PubMed

    Pratap Singh, Anubhav; Singh, Anika; Ramaswamy, Hosahalli S

    2017-06-01

    Reciprocating agitation thermal processing (RA-TP) is a recent innovation in the field of canning for obtaining high-quality canned food. The objective of this study was to compare RA-TP processing with conventional non-agitated (still) processing with respect to the impact on quality (color, antioxidant capacity, total phenols, carotenoid and lycopene contents) of canned tomato (Solanum lycopersicum) puree. Owing to a 63-81% reduction in process times as compared with still processing, tomato puree with a brighter red color (closer to fresh) was obtained during RA-TP. At 3 Hz reciprocation frequency, the loss of antioxidant, lycopene and carotenoid contents could be reduced to 34, 8 and 8% respectively as compared with 96, 41 and 52% respectively during still processing. In fact, the phenolic content for RA-TP at 3 Hz was 5% higher than in fresh puree. Quality retention generally increased with an increase in frequency, although the differences were less significant at higher reciprocation frequencies (between 2 and 3 Hz). Research findings indicate that RA-TP can be effective to obtain thermally processed foods with high-quality attribute retention. It can also be concluded that a very high reciprocation frequency (>3 Hz) is not necessarily needed and significant quality improvement can be obtained at lower frequencies (∼2 Hz). © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Antioxidant capacity and antimutagenic activity of natural oleoresin from greenhouse grown tomatoes (Lycopersicon esculentum).

    PubMed

    Rodríguez-Muñoz, Eustolia; Herrera-Ruiz, Gilberto; Pedraza-Aboytes, Gustavo; Loarca-Piña, Guadalupe

    2009-03-01

    Natural oleoresins rich in lycopene were obtained from two varieties of tomato (Zedona and Gironda) and their nutraceutical potential (antioxidant and antimutagenic capacity) was evaluated. Both oleoresins had a high content of lycopene, 58.33+/-1.67 mg/g (Zedona) and 63.97+/-0.80 mg/g (Gironda). The antioxidant activity (AA) of the oleoresins by beta-carotene method were 56.4-74.5% (Zedona) and 51-72.8% (Gironda), while when using the free radical stable 2,2-diphenyl-picryl-hydrazyl (DPPH) method, the antiradical activity (ARA) was determined to be 18.2-32.7% (Zedona) and 16.6-26.7% (Gironda) for the concentrations tested that of 200-400 microM equivalents of lycopene. The antimutagenic activity of the oleoresins was tested against aflatoxin B1 (AFB1) using the microsuspension assay, both varieties had a very high antimutagenic potential against AFB1 (60-66%).These results suggest the NCRT can be taken advantage to obtaining rich oleoresin in lycopene with a nutraceutical value.

  3. Effect of solution concentration on the structured order and optical properties of short-chain polyene biomolecules

    NASA Astrophysics Data System (ADS)

    Ouyang, Shunli; Sun, Chenglin; Zhou, Mi; Li, Dongfei; Wang, Weiwei; Qu, Guannan; Li, Zuowei; Gao, Shuqin; Yang, Jiange

    2010-09-01

    We have measured the Raman spectra and UV-Vis absorption spectra of linear polyene biomolecules (β-carotene and lycopene) in CS2 at low concentrations (10-6-10-10 mol/L). With decreasing concentration, all the carbon-carbon vibrations form a coherent mode in ordered β-carotene and lycopene due to extended π-conjugation that gives strong electron-phonon coupling, which leads to an anomalous experimental phenomenon. We observed an extremely high Raman scattering cross section( RSCS) and the Raman activities in β-carotene and lycopene are characterized by intensive overtones and combinations. Further, the UV-Vis absorption bands become narrower.

  4. Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats

    USDA-ARS?s Scientific Manuscript database

    Epidemiological and experimental studies provide supportive evidence that lycopene (LY), a major carotenoid from tomatoes and tomato products, may act as a chemopreventive agent against certain types of cancers. We recently showed that high-fat diet (HFD)-induced nonalcoholic steatohepatitis (NASH) ...

  5. Breeding for phytonutrient content; new strategies, pitfalls, and benefits

    USDA-ARS?s Scientific Manuscript database

    Visible phytonutrient compounds and compounds which are simple to quantify can be easily selected for in breeding populations. Lycopene in tomatoes and watermelon is one such compound, since the amount of red corresponds well with the quantity of lycopene produced. Because of this, breeders have d...

  6. Watermelon, phytochemicals and health

    USDA-ARS?s Scientific Manuscript database

    Watermelon fruit contains lycopene, a carotenoid pigment, and citrulline, an amino acid. These plant compounds may be helpful in preventing some chronic diseases. The amount of lycopene in watermelon ranges from 35 to 125 mg per kg of edible portion, and there is 2 to 4 mg per kg citrulline presen...

  7. Tomato lycopene attenuates myocardial infarction induced by isoproterenol: electrocardiographic, biochemical and anti-apoptotic study.

    PubMed

    Aman, Upaganlawar; Vaibhav, Patel; Balaraman, R

    2012-05-01

    To assess the protective effects of lycopene on electrocardiographic, hemodynamic, biochemical and apoptotic changes in isoproterenol induced myocardial infarction. Myocardial infarction was induced in rats by subcutaneous injection of isoproterenol (200 mg/kg) for two consecutive days at an interval of 24 h. Rats were treated with lycopene (10 mg/kg/day, p.o.) for a period of 30 days and isoproterenol (ISO) was injected on the 29th and 30th day. At the end of experiment i.e. on the 31st day electrocardiographic, hemodynamic, biochemical and apoptotic changes were monitored from control and experimental groups. ISO injected rats showed a significant alteration in electrocardiograph pattern and hemodynamic changes (i.e. systolic, diastolic and mean arterial pressure). It also showed significant increase in C-reactive protein, myeloperoxidase, nitrite levels and Caspase-3 protease activity. In addition, it also exhibited alteration in the levels of electrolytes (Na(+), K(+) and Ca(2+)), vitamin E, uric acid and serum protein. Gel electrophoresis of ISO injected rats showed increase in DNA fragmentation. Triphenyl tetrazolium chloride staining of the heart section shows increase area of infarction in ISO injected rats. Pre-co-treatment with lycopene significantly prevented the ISO induced alteration in ECG, haemodynamic, biochemical and apoptotic changes. The present result shows that treatment of lycopene in ISO injected rats significantly attenuates induced myocardial infarction.

  8. Interdisciplinary Chemistry Experiment: An Environmentally Friendly Extraction of Lycopene

    ERIC Educational Resources Information Center

    Zhu, Jie; Zhang, Mingjie; Liu, Qingwei

    2008-01-01

    A novel experiment for the extraction of lycopene from tomato paste without the use of an organic solvent is described. The experiment employs polymer, green, and analytical chemistry. This environmentally friendly extraction is more efficient and requires less time than the traditional approach using an organic solvent. The extraction is…

  9. Biologic Activity of Lycopene Metabolites: Implications for Cancer Prevention

    USDA-ARS?s Scientific Manuscript database

    While early studies focused on the potential roles in health and disease of provitamin A carotenoids, such as beta-carotene, research over the past decade has provided a framework for our understanding of the functions of non-provitamin A carotenoids such as lycopene, especially in regards to its as...

  10. Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste.

    PubMed

    Nour, Violeta; Ionica, Mira Elena; Trandafir, Ion

    2015-12-01

    The tomato processing industry generates high amounts of waste, mainly tomato skins and seeds, which create environmental problems. These residues are attractive sources of valuable bioactive components and pigments. A relatively simple recovery technology could consist of production of powders to be directly incorporated into foods. Tomato waste coming from a Romanian tomato processing unit were analyzed for the content of several bioactive compounds like ascorbic acid, β-carotene, lycopene, total phenolics, mineral and trace elements. In addition, its antioxidant capacity was assayed. Results revealed that tomato waste (skins and seeds) could be successfully utilized as functional ingredient for the formulation of antioxidant rich functional foods. Dry tomato processing waste were used to supplement wheat flour at 6 and 10 % levels (w/w flour basis) and the effects on the bread's physicochemical, baking and sensorial characteristics were studied. The following changes were observed: increase in moisture content, titratable acidity and bread crumb elasticity, reduction in specific volume and bread crumb porosity. The addition of dry tomato waste at 6 % resulted in bread with good sensory characteristics and overall acceptability but as the amount of dry tomato waste increased to 10 %, bread was less acceptable.

  11. Characterization and developmental expression of genes encoding the early carotenoid biosynthetic enzymes in Citrus paradisi Macf.

    PubMed

    Costa, Marcio G C; Moreira, Cristina D; Melton, John R; Otoni, Wagner C; Moore, Gloria A

    2012-02-01

    In the present study, the full-length cDNA sequences of PSY, PDS, and ZDS, encoding the early carotenoid biosynthetic enzymes in the carotenoid pathway of grapefruit (Citrus paradisi), were isolated and characterized for the first time. CpPSY contained a 1311-bp open reading frame (ORF) encoding a polypeptide of 436 amino acids, CpPDS contained a 1659-bp ORF encoding a polypeptide of 552 amino acids, and CpZDS contained a 1713-bp ORF encoding a polypeptide of 570 amino acids. Phylogenetic analysis indicated that CpPSY shares homology with PSYs from Citrus, tomato, pepper, Arabidopsis, and the monocot PSY1 group, while CpPDS and CpZDS are most closely related to orthologs from Citrus and tomato. Expression analysis revealed fluctuations in CpPSY, CpPDS, and CpZDS transcript abundance and a non-coordinated regulation between the former and the two latter genes during fruit development in albedo and juice vesicles of white ('Duncan') and red ('Flame') grapefruits. A 3× higher upregulation of CpPSY expression in juice vesicles of red-fleshed 'Flame' as compared to white-fruited 'Duncan' was observed in the middle stages of fruit development, which correlates with the well documented accumulation pattern of lycopene in red grapefruit. Together with previous data, our results suggest that the primary mechanism controlling lycopene accumulation in red grapefruit involves the transcriptional upregulation of CpPSY, which controls the flux into the carotenoid pathway, and the downregulated expression of CpLCYB2, which controls the step of cyclization of lycopene in chromoplasts during fruit ripening. A correlation between CpPSY expression and fruit color evolution in red grapefruit is demonstrated.

  12. Resonance Raman Spectroscopy of Beta-Carotene and Lycopene: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Hoskins, L. C.

    1984-01-01

    Discusses the theory of resonance Raman (RR) spectroscopy as it applies to beta-carotene and lycopene pigments (found in tomatoes and carrots, respectively). Also discusses an experiment which demonstrates the theoretical principles involved. The experiment has been tested over a three-year period and has received excellent acceptance by physical…

  13. Chemical and morphological characterization of Costa Rican papaya (Carica papaya L.) hybrids and lines with particular focus on their genuine carotenoid profiles.

    PubMed

    Schweiggert, Ralf M; Steingass, Christof B; Esquivel, Patricia; Carle, Reinhold

    2012-03-14

    Papaya (Carica papaya L.) F1 hybrids and inbred lines grown in Costa Rica were screened for morphological and nutritionally relevant fruit traits. The qualitative composition of carotenoids showed great similarity, being mostly composed of free and esterified β-cryptoxanthins accompanied by β-carotene, lycopene, and biosynthetic precursors. High levels of (all-E)-lycopene and its isomers were distinctive for red-fleshed hybrids, whereas yellow-fleshed fruits were virtually devoid of lycopenes. Because carotenoid levels among the investigated hybrids and lines differed significantly, this study supports the hypothesis of an exploitable genetic variability, and a potential heterotic effect regarding carotenoid expression may be instrumental in papaya-breeding programs. Due to significantly higher levels of provitamin A carotenoids and coinciding high levels of total lycopene, particularly red-fleshed hybrids might represent prospective sources of these compounds. Furthermore, the nutritional value of some genotypes was boosted by substantial amounts of ascorbic acid (up to 73 mg/100 g of fresh weight), which correlated to total soluble solids (R(2) = 0.86).

  14. Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [13C]-carotenoid production.

    PubMed

    Engelmann, Nancy J; Campbell, Jessica K; Rogers, Randy B; Rupassara, S Indumathie; Garlick, Peter J; Lila, Mary Ann; Erdman, John W

    2010-09-22

    Isotopically labeled tomato carotenoids, phytoene, phytofluene, and lycopene, are needed for mammalian bioavailability and metabolism research but are currently commercially unavailable. The goals of this work were to establish and screen multiple in vitro tomato cell lines for carotenoid production, test the best producers with or without the bleaching herbicides, norflurazon and 2-(4-chlorophenyl-thio)triethylamine (CPTA), and to use the greatest carotenoid accumulator for in vitro 13C-labeling. Different Solanum lycopersicum allelic variants for high lycopene and varying herbicide treatments were compared for carotenoid accumulation in callus and suspension culture, and cell suspension cultures of the hp-1 line were chosen for isotopic labeling. When grown with [U]-13C-glucose and treated with CPTA, hp-1 suspensions yielded highly enriched 13C-lycopene with 45% of lycopene in the M+40 form and 88% in the M+35 to M+40 isotopomer range. To the authors' knowledge this is the first report of highly enriched 13C-carotenoid production from in vitro plant cell culture.

  15. Oxidative stability of refined olive and sunflower oils supplemented with lycopene-rich oleoresin from tomato peels industrial by-product, during accelerated shelf-life storage.

    PubMed

    Kehili, Mouna; Choura, Sirine; Zammel, Ayachi; Allouche, Noureddine; Sayadi, Sami

    2018-04-25

    Tomato peels by-product from a Tunisian industry was used for the extraction of lycopene-rich oleoresin using hexane solvent maceration. Tomato peels oleoresin, TPO, exhibited competitive free radicals scavenging activity with synthetic antioxidants. The efficacy of TPO in stabilizing refined olive (ROO) and sunflower (RSO) oils was investigated for five months, under accelerated shelf-life, compared to the synthetic antioxidant, butylated hydroxytoluene (BHT). TPO was added to ROO and RSO at four different concentrations, namely 250, 500, 1000 and 2000 µg/g and BHT standard at 200 µg/g. Lipid oxidation was tracked by measuring the peroxide value, acidity, conjugated dienes and trienes. Results suggested the highest efficiency of 250 µg/g and 2000 µg/g of TPO, referring to 5 µg/g and 40 µg/g of lycopene, for the oxidative stabilization of ROO and RSO, respectively. The protective effect of TPO against the primary oxidation of these refined oils was significantly correlated to their lycopene contents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Formulating orange oil-in-water beverage emulsions for effective delivery of bioactives: Improvements in chemical stability, antioxidant activity and gastrointestinal fate of lycopene using carrier oils.

    PubMed

    Meroni, Erika; Raikos, Vassilios

    2018-04-01

    The influence of carrier oil type on the chemical stability, antioxidant properties and bioaccessibility of lycopene in orange oil-in-water beverage emulsions was investigated. The emulsions were formulated with orange oil (A), which was partially (50%) replaced with tributyrin (B) or corn oil (C) because of their distinctively different fatty acid composition. The addition of corn oil enhanced the physical stability of the beverage during chilled storage by inhibiting Ostwald ripening. The formation of oxidation products was insignificant after storage for 28 days at 4 °C, regardless the type of added oil. Lycopene was more susceptible to chemical degradation in the presence of unsaturated, long chain triglycerides and the retention followed the order: A (87.94%), B (64.41%) and C (57.39%). Interestingly, bioaccessibility of lycopene was significantly lower for emulsions formulated with 50% corn oil as opposed to 100% orange oil as indicated by the simulated in vitro gastric digestion model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Lycopene and Beta-Carotene Induce Growth Inhibition and Proapoptotic Effects on ACTH-Secreting Pituitary Adenoma Cells

    PubMed Central

    Leite de Oliveira, Felipe; Soares, Nathália; de Mattos, Rômulo Medina; Hecht, Fábio; Dezonne, Rômulo Sperduto; Vairo, Leandro; Goldenberg, Regina Coeli dos Santos; Gomes, Flávia Carvalho Alcântara; de Carvalho, Denise Pires; Gadelha, Mônica R.; Nasciutti, Luiz Eurico; Miranda-Alves, Leandro

    2013-01-01

    Pituitary adenomas comprise approximately 10–15% of intracranial tumors and result in morbidity associated with altered hormonal patterns, therapy and compression of adjacent sella turcica structures. The use of functional foods containing carotenoids contributes to reduce the risk of chronic diseases such as cancer and vascular disorders. In this study, we evaluated the influence of different concentrations of beta-carotene and lycopene on cell viability, colony formation, cell cycle, apoptosis, hormone secretion, intercellular communication and expression of connexin 43, Skp2 and p27kip1 in ACTH-secreting pituitary adenoma cells, the AtT20 cells, incubated for 48 and 96 h with these carotenoids. We observed a decrease in cell viability caused by the lycopene and beta-carotene treatments; in these conditions, the clonogenic ability of the cells was also significantly decreased. Cell cycle analysis revealed that beta-carotene induced an increase of the cells in S and G2/M phases; furthermore, lycopene increased the proportion of these cells in G0/G1 while decreasing the S and G2/M phases. Also, carotenoids induced apoptosis after 96 h. Lycopene and beta-carotene decreased the secretion of ACTH in AtT20 cells in a dose-dependent manner. Carotenoids blocked the gap junction intercellular communication. In addition, the treatments increased the expression of phosphorylated connexin43. Finally, we also demonstrate decreased expression of S-phase kinase-associated protein 2 (Skp2) and increased expression of p27kip1 in carotenoid-treated cells. These results show that lycopene and beta-carotene were able to negatively modulate events related to the malignant phenotype of AtT-20 cells, through a mechanism that could involve changes in the expression of connexin 43, Skp2 and p27kip1; and suggest that these compounds might provide a novel pharmacological approach to the treatment of Cushing’s disease. PMID:23667519

  18. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    PubMed Central

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  19. Tomato powder inhibits hepatic steatosis and inflammation potentially through restoring SIRT1 activity and adiponectin function independent of carotenoid cleavage enzymes in mice

    USDA-ARS?s Scientific Manuscript database

    Scope: Beta-carotene-15,15'-oxygenase (BCO1) and beta-carotene-9',10'-oxygenase (BCO2) metabolize lycopene to biologically active metabolites, which can ameliorate nonalcoholic fatty liver disease (NAFLD). We investigated the effects of tomato powder (TP), a whole food containing substantial lycopen...

  20. Protein, free amino acid, phenloic, ß-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 greenhouse-grown commercial cherry tomato varieties

    USDA-ARS?s Scientific Manuscript database

    The content of water, free amino acids, amino acid metabolites, crude protein, the carotene pigments ß-carotene and lycopene, and 9 characterized and 2 incompletely characterized individual phenolic (flavonoid) compounds of 12 greenhouse-grown cherry tomato varieties of various colors (green, yellow...

  1. Tobacco carcinogen (NNK) induces both lung cancer and non-alcoholic steatohepatitis and hepatocellular carcinomas in ferrets which can be attenuated by lycopene supplementation

    USDA-ARS?s Scientific Manuscript database

    Early epidemiologic studies have reported that tobacco smoking, which is causally associated with liver cancer, is an independent risk factor for non-alcoholic fatty liver diseases (NAFLD). Lycopene from tomatoes has been shown to be a potential preventive agent against NAFLD and hepatocellular carc...

  2. Characterization of color fade during frozen storage of red grapefruit juice concentrates.

    PubMed

    Lee, Hyoung S; Coates, Gary A

    2002-07-03

    Color changes in red grapefruit juice concentrates during storage at -23 degrees C for 12 months were studied. Concentrate (38 degrees Brix) was packed in both plastic (16 oz) and metal (6 oz) cans. Decrease in red intensity (CIE a) in juice color and slight increases in CIE L*, b*, and hue values from analysis of reconstituted juices were the characteristic color changes in concentrate during frozen storage. With respect to fresh concentrate, juice color in stored concentrate shifted toward the direction between negative DeltaC* and positive DeltaL*, indicating the color became slightly paler. A color difference seems to exist between the two containers, especially for the magnitude of DeltaE*; color changes were more pronounced in concentrates packed in plastic. There are significant changes (P < 0.05) in major carotenoid pigments (beta-carotene and lycopene) in the concentrates. More than 20% loss of lycopene and about 7% loss of beta-carotene occurred with plastic containers after a 12-month period. Regression analysis showed that the rate of decline was about 0.291 ppm per month (r = 0.990) for lycopene compared to 0.045 ppm (r = 0.817) for beta-carotene in concentrate stored in plastic. In the metal can, the same trends were observed but pigment losses were slightly smaller than those with plastic. An estimated shelf life for lycopene was 26.1 months in the metal can compared to 18 months in plastic. Shelf life for beta-carotene was more than 39 months, more than twice that of lycopene in plastic container.

  3. Beneficial effects of lycopene against haloperidol induced orofacial dyskinesia in rats: Possible neurotransmitters and neuroinflammation modulation.

    PubMed

    Datta, Swati; Jamwal, Sumit; Deshmukh, Rahul; Kumar, Puneet

    2016-01-15

    Tardive Dyskinesia is a severe side effect of chronic neuroleptic treatment consisting of abnormal involuntary movements, characterized by orofacial dyskinesia. The study was designed to investigate the protective effect of lycopene against haloperidol induced orofacial dyskinesia possibly by neurochemical and neuroinflammatory modulation in rats. Rats were administered with haloperidol (1mg/kg, i.p for 21 days) to induce orofacial dyskinesia. Lycopene (5 and 10mg/kg, p.o) was given daily 1hour before haloperidol treatment for 21 days. Behavioral observations (vacuous chewing movements, tongue protrusions, facial jerking, rotarod activity, grip strength, narrow beam walking) were assessed on 0th, 7th(,) 14th(,) 21st day after haloperidol treatment. On 22nd day, animals were killed and striatum was excised for estimation of biochemical parameters (malondialdehyde, nitrite and endogenous enzyme (GSH), pro-inflammatory cytokines [Tumor necrosis factor, Interleukin 1β, Interleukin 6] and neurotransmitters level (dopamine, serotonin, nor epinephrine, 5-Hydroxyindole acetic acid (5-HIAA), Homovanillic acid, 3,4- dihydroxyphenylacetic acid. Haloperidol treatment for 21 days impaired muscle co-ordination, motor activity and grip strength with an increased in orofacial dyskinetic movements. Further free radical generation increases MDA and nitrite levels, decreasing GSH levels in striatum. Neuroinflammatory markers were significantly increased with decrease in neurotransmitters levels. Lycopene (5 and 10mg/kg, p.o) treatment along with haloperidol significantly attenuated impairment in behavioral, biochemical, neurochemical and neuroinflammatory markers. Results of the present study attributed the therapeutic potential of lycopene in the treatment (prevented or delayed) of typical antipsychotic induced orofacial dyskinesia. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Lycopene Attenuates Tulathromycin and Diclofenac Sodium-Induced Cardiotoxicity in Mice.

    PubMed

    Abdel-Daim, Mohamed M; Eltaysh, Rasha; Hassan, Azza; Mousa, Shaker A

    2018-01-24

    Recent experiments showed a potential cardiotoxic effect of the macrolide antibiotic (tulathromycin). This study was performed to investigate whether diclofenac sodium (DFS) potentiates the cardiotoxicity of tulathromycin and increases the cardioprotective effects of lycopene against DFS and tulathromycin. Seven groups (eight per group) of adult Swiss albino mice received saline (control), tulathromycin (a single subcutaneous dose of 28 mg/kg/bw on day 14), DFS (a single oral dose of 100 mg/kg/bw on day 14), tulathromycin plus DFS, or lycopene (oral, 10 mg/kg/bw daily for 15 d) combined with tulathromycin, DFS, or both. Compared to the control group, the administration of tulathromycin or DFS (individually or in combination) caused significantly elevated ( p < 0.05) serum levels of Creatine kinase-myocardial B fraction (CK-MB), lactate dehydrogenase, and cardiac-specific troponin-T and tissue levels of nitric oxide and malondialdehyde that were accompanied by significantly decreased tissue reduced glutathione content and glutathione peroxidase, superoxide dismutase, and catalase antioxidant enzyme activity. Upon histopathological and immunohistochemical examination, the mean pathology scores and the percentages of caspase-3-, Bax-, and CK-positive regions were significantly higher in the tulathromycin- and/or DFS-treated groups than in control mice. For all these parameters, the pathological changes were more significant in the tulathromycin-DFS combination group than in mice treated with either drug individually. Interestingly, co-administration of lycopene with tulathromycin and/or DFS significantly ameliorated the changes described above. In conclusion, DFS could potentiate the cardiotoxic effects of tulathromycin, whereas lycopene can serve as a cardioprotective agent against DFS and tulathromycin.

  5. Non-invasive laser Raman detection of lycopene and ž-carotene antioxidants in skin

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2003-07-01

    The predominant long-chain carotenoids found in the human skin are lycopene and β-carotene. They are powerful antioxidants and thought to act as scavengers for free radicals and single oxygen that are formed by excessive exposure of skin to sunlight. However the role of the particular representatives of the carotenoid antioxidants family in the skin defense mechanism is still unclear and has to be clarified. We demonstrate the opportunity for fast non-invasive selective quantitative detection of β-carotene and lycopene in human skin employing Raman spectroscopy. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the molecules under blue and green laser excitation we were able to characterize quantitativly the concentrations of each carotenoid in alive human skin. In this method we take an advantage of different Raman cross-section spectral profile for β-carotene and lycopene molecules. This novel technique allows the quantitative assessment of individual carotenoid species in the skin rather then the cumulative level of long-chain carotenoids mixture as we could measure in our previous works. The required laser light exposure levels are well within safety standards. Prelimininary dichoromatic Raman measurements reveal significant differences in the carotenoid composition of different volunteer's skin: even in statistically small group of seven subjects the ratio of β-carotene-to-lycopene in their skin vary from 0.5 to 1.6. This technique holds promise as a method of rapid screening of carotenoids composition of human skin in large populations and suitable in clinical studies for assessing the risk for cutaneous diseases.

  6. Refinements of the attending equations for several spectral methods that provide improved quantification of B-carotene and/or lycopene in selected foods

    USDA-ARS?s Scientific Manuscript database

    Developing and maintaining maximal levels of carotenoids in fruits and vegetables that contain them is a concern of the produce industry. Toward this end, reliable methods for quantifying lycopene and B-carotene, two of the major health-enhancing carotenoids, are necessary. The goal of this resear...

  7. Induction of lycopene and lycopene precursors in germinating cottonseedwith the substituted triethylamine compound MPTA

    USDA-ARS?s Scientific Manuscript database

    Treatment of dark germinating cottonseed (Gossypium hirsutum Acala cultivar) with 0.72 mM 2(4-methylphenoxy) triethylamine (MPTA) resulted in a 18-fold increase in carotenoid biosynthesis. In comparison to H2O treated control seed germinating in the dark that formed 8.4 ug/g fr wt of lutein and 1.6 ...

  8. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content

    PubMed Central

    Efthimiadou, Aspasia; Katsenios, Nikolaos; Papastylianou, Panayiota; Triantafyllidis, Vassilios; Travlos, Ilias; Bilalis, Dimitrios J.

    2014-01-01

    The use of magnetic field as a presowing treatment has been adopted by researchers as a new environmental friendly technique. The aim of this study was to determine the effect of magnetic field exposure on tomato seeds covering a range of parameters such as transplanting percentage, plant height, shoot diameter, number of leaves per plant, fresh weight, dry weight, number of flowers, yield, and lycopene content. Pulsed electromagnetic field was used for 0, 5, 10, and 15 minutes as a presowing treatment of tomato seeds in a field experiment for two years. Papimi device (amplitude on the order of 12.5 mT) has been used. The use of pulsed electromagnetic field as a presowing treatment was found to enhance plant growth in tomato plants at certain duration of exposure. Magnetic field treatments and especially the exposure of 10 and 15 minutes gave the best results in all measurements, except plant height and lycopene content. Yield per plant was higher in magnetic field treatments, compared to control. MF-15 treatment yield was 80.93% higher than control treatment. Lycopene content was higher in magnetic field treatments, although values showed no statistically significant differences. PMID:25097875

  9. Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats

    PubMed Central

    Anusha, M.; Venkateswarlu, M.; Prabhakaran, V.; Taj, S. Shareen; Kumari, B. Pushpa; Ranganayakulu, D.

    2011-01-01

    Objective: To investigate the hepatoprotective activity of the aqueous extract of the aerial parts of Portulaca oleracea (P. oleracea) in combination with lycopene against carbon tetrachloride induced hepatotoxicity in rats. Materials and Methods: Hepatotoxicity was induced in male Wistar rats by intraperitoneal injection of carbon tetrachloride (0.1 ml/kg b.w for 14 days). The aqueous extract of P. oleracea in combination with lycopene (50 mg/kg b.w) was administered to the experimental animals at two selected doses for 14 days. The hepatoprotective activity of the combination was evaluated by the liver function marker enzymes in the serum [aspartate transaminases (AST), alanine transaminases (ALT), alkaline phosphatase (Alk.P), total bilirubin (TB), total protein (TP) and total cholesterol (TC)], pentobarbitone induced sleeping time (PST) and histopathological studies of liver. Results: Both the treatment groups showed hepatoprotective effect against carbon tetrachloride induced hepatotoxicity by significantly restoring the levels of serum enzymes to normal which was comparable to that of silymarin group. Besides, the results obtained from PST and histopathological results also support the study. Conclusions: The oral administration of P. oleracea in combination with lycopene significantly ameliorates CCl4 hepatotoxicity in rats. PMID:22022001

  10. Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus

    PubMed Central

    Xu, Jidi; Wang, Xia; Cao, Hongbo; Xu, Haidan; Xu, Qiang

    2017-01-01

    Abstract DNA methylation is known to play an important role in various developmental processes in plants. However, there is a general lack of understanding about the possible functions of DNA methylation in fruit trees. Using callus as a model, methylome, transcriptome and metabolite changes were assessed after treatment with the DNA methyltransferase inhibitor 5-azacytidine (5azaC). Genome-wide methylome analysis revealed the demethylation of a diverse of genes, including many genes encoding transcription factors (TFs), genes involved in biological processes, and the up-regulation of a wide range of transposable elements (TEs). Combined with the RNA-seq data, we observed no obvious genome-wide correlation between the changes in methylation status and expression levels. Furthermore, 5azaC treatment induced carotenoid degradation along with strong activation of carotenoid cleavage dioxygenases 1 (CpCCD1). Functional complementation analysis in bacterial system showed that CpCCD1 exhibited strong catalytic activities toward zeaxanthin, β-carotene and lycopene. In summary, 5azaC treatments induced carotenoid degradation by CpCCD1 activation and led to a genome-wide demethylation effect. PMID:28575160

  11. Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids.

    PubMed

    Heider, Sabine A E; Peters-Wendisch, Petra; Wendisch, Volker F; Beekwilder, Jules; Brautaset, Trygve

    2014-05-01

    Carotenoids, a subfamily of terpenoids, are yellow- to red-colored pigments synthesized by plants, fungi, algae, and bacteria. They are ubiquitous in nature and take over crucial roles in many biological processes as for example photosynthesis, vision, and the quenching of free radicals and singlet oxygen. Due to their color and their potential beneficial effects on human health, carotenoids receive increasing attention. Carotenoids can be classified due to the length of their carbon backbone. Most carotenoids have a C40 backbone, but also C30 and C50 carotenoids are known. All carotenoids are derived from isopentenyl pyrophosphate (IPP) as a common precursor. Pathways leading to IPP as well as metabolic engineering of IPP synthesis and C40 carotenoid production have been reviewed expertly elsewhere. Since C50 carotenoids are synthesized from the C40 carotenoid lycopene, we will summarize common strategies for optimizing lycopene production and we will focus our review on the characteristics, biosynthesis, glycosylation, and overproduction of C50 carotenoids.

  12. Bioavailability of Phytochemical Constituents From a Novel Soy Fortified Lycopene Rich Tomato Juice Developed for Targeted Cancer Prevention Trials

    PubMed Central

    Bohn, Torsten; Blackwood, Michelle; Francis, David; Tian, Qingguo; Schwartz, Steven J.; Clinton, Steven K.

    2013-01-01

    Studies suggest that tomato and soy foods may contribute to a lower risk of certain cancers. We developed a novel soy germ tomato juice to be used in controlled cancer prevention trials. This study describes an initial test of compliance, phytochemical bioavailability, and effects on biomarkers of blood lipids. Healthy men and women (n = 18) consumed a soy germ-fortified juice daily (300 mL supplying 66 mg isoflavones and 22 mg lycopene) for 8 wk. A single-dose bioavailability study was completed on day 1 and isoflavones in plasma and urine, and lycopene in the plasma, were measured. All subjects completed the trial, with 97.7% ± 3.5% (mean ± SD) of the scheduled juice consumed. No adverse effects were documented. The postprandial study indicated that 3.1% ± 2.3% of lycopene was absorbed and that 49.3% ± 12.1% isoflavones ingested were recovered in 24-h urines. Lycopene plasma concentration changed from 0.60 ± 0.22 to 1.24 ± 0.30 μmol/L during 8 wk of consumption. Juice consumption significantly improved resistance of LDL+VLDL-C to Cu2+-mediated oxidation (P = 0.039), HDL-C (47.3 ± 15.8 to 51.7 ± 14.8 mg/dL, P < 0.001), and the ratio of total-C/HDL-C (4.25 ± 1.59 to 3.63 ± 1.16, P < 0.001) at 8 wk. A well-characterized soy-fortified tomato juice can be produced in large scale for multiinstitutional long-term cancer prevention trials and showed excellent compliance with no toxicity, while demonstrating absorption of biologically active phytochemicals. PMID:22098224

  13. Carotenoid stability during production and storage of tomato juice made from tomatoes with diverse pigment profiles measured by infrared spectroscopy.

    PubMed

    Rubio-Diaz, Daniel E; Santos, Alejandra; Francis, David M; Rodriguez-Saona, Luis E

    2010-08-11

    Chemical changes in carotenoids and lipids were studied during production and storage of canned tomato juice using ATR infrared spectroscopy and HPLC. Samples from 10 groups of tomatoes with different carotenoid profiles were analyzed fresh, after hot-break and screening, after canning, and at five different time points during 1 year of storage. An apparent increase of carotenoids was observed after hot-break due to improved extraction efficiency. This increase was accompanied by some degree of lipid oxidation and carotenoid isomerization. Canning produced the most intense changes in the lipid profile with breakdown of triglycerides ( approximately 1743 cm(-1)), formation of fatty acids ( approximately 1712 cm(-1)), and degradation and isomerization of trans-carotenoids ( approximately 960 and approximately 3006 cm(-1)). Isomerization was corroborated by the relative increase of HPLC areas corresponding to carotenoid cis isomers. Canning reduced trans-lycopene, trans-delta-carotene, trans-beta-carotene, and trans-lutein by 30, 34, 43, and 67%, respectively. HPLC data indicate that canning causes a drastic reduction of tetra-cis-lycopene and promotes its isomerization to other geometric forms, including all-trans-lycopene. Infrared spectra of tomato juice lipid fractions correlated well with the number of days in storage (SECV < 11 days, r values > 0.99), demonstrating continuous degradation of lipids. Results demonstrated that individual carotenoids and their isomeric forms behave differently during production and storage of canned tomato juice. Information collected by infrared spectroscopy complemented well that of HPLC, providing marker bands to further the understanding of chemical changes taking place during processing and storage of tomato juice.

  14. Tomato and tomato byproducts. Human health benefits of lycopene and its application to meat products: a review.

    PubMed

    Viuda-Martos, M; Sanchez-Zapata, E; Sayas-Barberá, E; Sendra, E; Pérez-Álvarez, J A; Fernández-López, J

    2014-01-01

    During recent decades, the food industry, consumers, and regulatory authorities have developed a significant interest in functional foods because of their potential benefits for human health over and above their basic nutritional value. Tomato is the second most important vegetable crop in the world. The amount of the related wastes is estimated at up to 50,000 tons per year, representing a serious disposal problem with a consequent negative impact on the environment. Tomato byproducts contain a great variety of biologically active substances, principally lycopene, which have been demonstrated by in vitro and in vivo studies to possess antioxidant, hypolipidemic, and anticarcinogenic activities. The aim of this review is to present an overview of the functional and physiological properties of the principal bioactive compound present in tomato and tomato byproducts, lycopene, its addition to meat, and meat products.

  15. The effect of pulsed electric fields on carotenoids bioaccessibility: The role of tomato matrix.

    PubMed

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-02-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and lycopene bioaccessibility were found upon combined and individual pulsed electric fields and heating, except in the following cases: (i) in tissue, a significant decrease in lycopene bioaccessibility upon combined pulsed electric fields and heating and heating only was observed; (ii) in chromoplasts, both β-carotene and lycopene bioaccessibility significantly decreased upon combined pulsed electric fields and heating and pulsed electric fields only. The reduction in carotenoids bioaccessibility was attributed to modification in chromoplasts membrane and carotenoids-protein complexes. Differences in the effects of pulsed electric fields on bioaccessibility among different tomato fractions were related to tomato structure complexity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Ultratraces of carotenes in tomato purées: HPLC-TLS study

    NASA Astrophysics Data System (ADS)

    Luterotti, S.; Marković, K.; Franko, M.; Bicanic, D.; Vahčić, N.; Doka, O.

    2003-01-01

    The present study was designed to provide information about (i) the profile of carotene pigments and (ii) trace quantities of lycopene and β-carotene left in tomato purées. The ultrasensitive method comprising HPLC and thermal lens spectrometric (TLS) detection enabled us to detect as low as 0.3 and 1.1 ng ml-1 lycopene and β-carotene in purée extracts, respectively. Total concentration of β-carotene and lycopene (varying from 3 to 170 ng g-1) in the examined tomato purées may serve as an indicator of the carotene-specific antioxidative capacity of these products. Although conventional spectrophotometry can be used to rapidly assess the quality of products derived from tomatoes, a highly sensitive and selective method such as HPLC-TLS is needed for reliable analyses of samples such as, for example, those subjected to inappropriate storage and/or handling.

  17. Fleshy Fruit Expansion and Ripening Are Regulated by the Tomato SHATTERPROOF Gene TAGL1[W][OA

    PubMed Central

    Vrebalov, Julia; Pan, Irvin L.; Arroyo, Antonio Javier Matas; McQuinn, Ryan; Chung, MiYoung; Poole, Mervin; Rose, Jocelyn; Seymour, Graham; Grandillo, Silvana; Giovannoni, James; Irish, Vivian F.

    2009-01-01

    The maturation and ripening of fleshy fruits is a developmental program that synchronizes seed maturation with metabolism, rendering fruit tissues desirable to seed dispersing organisms. Through RNA interference repression, we show that Tomato AGAMOUS-LIKE1 (TAGL1), the tomato (Solanum lycopersicum) ortholog of the duplicated SHATTERPROOF (SHP) MADS box genes of Arabidopsis thaliana, is necessary for fruit ripening. Tomato plants with reduced TAGL1 mRNA produced yellow-orange fruit with reduced carotenoids and thin pericarps. These fruit are also decreased in ethylene, indicating a comprehensive inhibition of maturation mediated through reduced ACC Synthase 2 expression. Furthermore, ectopic expression of TAGL1 in tomato resulted in expansion of sepals and accumulation of lycopene, supporting the role of TAGL1 in ripening. In Arabidopsis, the duplicate SHP1 and SHP2 MADS box genes regulate the development of separation layers essential for pod shatter. Expression of TAGL1 in Arabidopsis failed to completely rescue the shp1 shp2 mutant phenotypes, indicating that TAGL1 has evolved distinct molecular functions compared with its Arabidopsis counterparts. These analyses demonstrate that TAGL1 plays an important role in regulating both fleshy fruit expansion and the ripening process that together are necessary to promote seed dispersal of fleshy fruit. From this broad perspective, SHP1/2 and TAGL1, while distinct in molecular function, regulate similar activities via their necessity for seed dispersal in Arabidopsis and tomato, respectively. PMID:19880793

  18. Similarities of Fruit and Vegetable Consumption, Lutein/Zeaxanthin and Lycopene Intakes between Hispanic-American College Students and Their Respective Parents: A Two Generation and Gender Study

    ERIC Educational Resources Information Center

    Tam, Chick; Janeke, Emilia; Chan, Oi Ling; Xi, Emily; Sarkissian-Pakachet, Ivet; Banchi, Waka

    2017-01-01

    The purpose of this study was to assess the effects of age and gender on the consumption of fruits and vegetables, lutein/zeaxanthin (lut+zea) and lycopene (lyc) in Hispanic-American college students living in the same household with their respective parents. There were 160 subjects (42 males and 118 females) including 80 young (ages 18-49) and 80…

  19. Antioxidant Prophylaxis in the Prevention of Prostatic Epithelial Neoplasia

    DTIC Science & Technology

    2007-02-01

    additional year until the end of March 2008. 105Co-enzyme Q10 105Grape seed extract 31.5Alpha Lipoic acid 10.5Lutein 10.5Lycopene...antioxidants used in the study. Ascorbic acid is a potent antioxidant that interacts synergistically with Lipoic acid to destroy many types of free radicals...co-enzyme Q10. Lycopene and lutein are fat soluble carotenoids that work synergistically and possess very high antioxidant activity. Lipoic acid not

  20. Transform analysis of the resonance Raman excitation profile of lycopene

    NASA Astrophysics Data System (ADS)

    Hoskins, L. C.

    1992-10-01

    The resonance Raman excitation profiles (RREPs) of the ν 1, ν 2 and ν 3 vibrations of lycopene in acetone, ethyl alcohol, toluene and carbon disulphide solvents have been analyzed using the transform method for calculating resonance Raman excitation profiles. The tests show excellent agreement between the calculated and observed profiles for the ν 2 and ν 3 RREPs, but greater difference between experiment and theory occurs for the ν 1 RREP, especially in carbon disulphide solvent.

  1. Influence of IR radiation on the carotenoid content in human skin

    NASA Astrophysics Data System (ADS)

    Darvin, M. E.; Zastrov, L.; Gonchukov, S. A.; Lademann, J.

    2009-12-01

    It is shown that the infrared irradiation decreases the content of β-carotene and lycopene carotenoids in human skin. A decrease in the content of β-carotene and lycopene may indicate that the IR radiation, as well as the UV radiation, is capable of forming free radicals in human skin. The investigations were performed in vivo using the technique of resonance Raman scattering developed by us for the noninvasive determination of antioxidant potential in skin.

  2. Prolonged tomato juice consumption has no effect on cell-mediated immunity of well-nourished elderly men and women.

    PubMed

    Watzl, B; Bub, A; Blockhaus, M; Herbert, B M; Lührmann, P M; Neuhäuser-Berthold, M; Rechkemmer, G

    2000-07-01

    The immunomodulatory potential of carotenoids has been investigated thoroughly only for beta-carotene. Data on the immunomodulatory activity of other carotenoids such as lycopene are scarce. The objective of this study was to investigate the effects of prolonged tomato juice consumption on cell-mediated immunity of well-nourished healthy elderly persons. In an intervention study, 33 female and 20 male subjects (aged 63-86 y) consumed 330 mL/d tomato juice (47.1 mg/d lycopene) or mineral water for 8 wk. Immune status was assessed by measuring number and lytic activity of natural killer (NK) cells, secretion of cytokines [interleukin (IL)-2, IL-4, tumor necrosis factor-alpha (TNF-alpha)] by activated peripheral blood mononuclear cells (PBMC), lymphocyte proliferation, and delayed-type hypersensitivity (DTH) skin responses. Tomato juice consumption resulted in significantly increased plasma lycopene and beta-carotene concentrations over time. In both treatment groups, TNF-alpha and IL-4 secretion were increased at the end of the intervention period, whereas IL-2 secretion was decreased. Tomato juice consumption had no effect on lymphocyte proliferation, DTH or the number of NK cells. Lytic activity of NK cells was increased in both groups at the end of the intervention period. In conclusion, these results show that prolonged tomato juice consumption increased plasma lycopene concentrations without significantly affecting cell-mediated immunity in well-nourished elderly subjects.

  3. Serum carotenoids and colorectal cancer risk: A case-control study in Guangdong, China.

    PubMed

    Huang, Jing; Lu, Min-Shan; Fang, Yu-Jing; Xu, Ming; Huang, Wu-Qing; Pan, Zhi-Zhong; Chen, Yu-Ming; Zhang, Cai-Xia

    2017-10-01

    Previous epidemiological studies on the association between circulating carotenoids and the risk of colorectal cancer drew inconclusive conclusions. This study aimed to examine serum carotenoids in relation to colorectal cancer risk in a Chinese population. One case-control study beginning from July 2010, consecutively recruited 538 eligible colorectal cancer cases and 564 age (5-year interval) and sex frequency-matched controls. Serum levels of α-carotene, β-carotene, β-cryptoxanthin, lycopene and lutein/zeaxanthin were detected by HPLC. Unconditional logistic regression was used to estimate the odds ratio (OR) and 95% confidence internal (CI) after adjusting for various confounders. Serum levels of α-carotene, β-cryptoxanthin and lycopene were found to be inversely associated with colorectal cancer risk. The adjusted ORs of the highest quartile relative to the lowest quartile serum level were 0.49 (95% CIs 0.33-0.72) for α-carotene, 0.44 (95% CIs 0.29-0.66) for β-cryptoxanthin, and 0.36 (95% CIs 0.24-0.54) for lycopene, respectively. The association between serum β-carotene, lutein/zeaxanthin and colorectal cancer risk was not statistically significant. The results indicated that the incidence of colorectal cancer was associated with lower serum levels of α-carotene, β-cryptoxanthin and lycopene among Chinese population residing in Guangdong. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Characterization of chromoplasts and carotenoids of red- and yellow-fleshed papaya (Carica papaya L.).

    PubMed

    Schweiggert, Ralf M; Steingass, Christof B; Heller, Annerose; Esquivel, Patricia; Carle, Reinhold

    2011-11-01

    Chromoplast morphology and ultrastructure of red- and yellow-fleshed papaya (Carica papaya L.) were investigated by light and transmission electron microscopy. Carotenoid analyses by LC-MS revealed striking similarity of nutritionally relevant carotenoid profiles in both the red and yellow varieties. However, while yellow fruits contained only trace amounts of lycopene, the latter was found to be predominant in red papaya (51% of total carotenoids). Comparison of the pigment-loaded chromoplast ultrastructures disclosed tubular plastids to be abundant in yellow papaya, whereas larger crystalloid substructures characterized most frequent red papaya chromoplasts. Exclusively existent in red papaya, such crystalloid structures were associated with lycopene accumulation. Non-globular carotenoid deposition was derived from simple solubility calculations based on carotenoid and lipid contents of the differently colored fruit pulps. Since the physical state of carotenoid deposition may be decisive regarding their bioavailability, chromoplasts from lycopene-rich tomato fruit (Lycopersicon esculentum L.) were also assessed and compared to red papaya. Besides interesting analogies, various distinctions were ascertained resulting in the prediction of enhanced lycopene bioavailability from red papaya. In addition, the developmental pathway of red papaya chromoplasts was investigated during fruit ripening and carotenogenesis. In the early maturation stage of white-fleshed papaya, undifferentiated proplastids and globular plastids were predominant, corresponding to incipient carotenoid biosynthesis. Since intermediate plastids, e.g., amyloplasts or chloroplasts, were absent, chromoplasts are likely to emerge directly from proplastids.

  5. Carotenoid Intake and Adipose Tissue Carotenoid Levels in Relation to Prostate Cancer Aggressiveness among African-American and European-American Men in the North Carolina-Louisiana Prostate Cancer Project (PCaP)

    PubMed Central

    Antwi, Samuel O.; Steck, Susan E.; Su, L. Joseph; Hebert, James R.; Zhang, Hongmei; Craft, Neal E.; Fontham, Elizabeth T. H.; Smith, Gary J.; Bensen, Jeannette T.; Mohler, James L.; Arab, Lenore

    2016-01-01

    Background Associations between carotenoid intake and prostate cancer (CaP) incidence have varied across studies. This may be due to combining indolent with aggressive disease in most studies. This study examined whether carotenoid intake and adipose tissue carotenoid levels were inversely associated with CaP aggressiveness. Methods Data on African-American (AA, n=1,023) and European-American (EA, n=1,079) men with incident CaP from North Carolina and Louisiana were analyzed. Dietary carotenoid intake was assessed using a detailed food frequency questionnaire, and abdominal adipose tissue samples were analyzed for carotenoid concentrations using high-performance liquid chromatography. Multivariable logistic regression was used in race-stratified analysis to calculate odds ratios (ORs) and 95% confidence intervals (95%CI) comparing high aggressive CaP with low/intermediate aggressive CaP. Results Carotenoid intake differed significantly between AAs and EAs, which included higher intake of lycopene among EAs and higher β–cryptoxanthin intake among AAs. Comparing the highest and lowest tertiles, dietary lycopene was associated inversely with high aggressive CaP among EAs (OR=0.55, 95%CI: 0.34–0.89, Ptrend=0.02), while an inverse association was observed between dietary β–cryptoxanthin intake and high aggressive CaP among AAs (OR=0.56, 95%CI: 0.36–0.87, Ptrend=0.01). Adipose tissue α–carotene and lycopene (cis + trans) concentrations were higher among EAs than AAs, and marginally significant inverse linear trends were observed for adipose α–carotene (Ptrend=0.07) and lycopene (Ptrend=0.11), and CaP aggressiveness among EAs only. Conclusions These results suggest that diets high in lycopene and β–cryptoxanthin may protect against aggressive CaP among EAs and AAs, respectively. Differences in dietary behaviors may explain the racial differences in associations. PMID:27271547

  6. Metabolism of cyclic carotenoids: a model for the alteration of this biosynthetic pathway in Capsicum annuum chromoplasts.

    PubMed

    Hugueney, P; Badillo, A; Chen, H C; Klein, A; Hirschberg, J; Camara, B; Kuntz, M

    1995-09-01

    The biosynthetic pathway of cyclic carotenoid is known to be quantitatively and qualitatively different in the non-green plastids of Capsicum annuum fruits compared with chloroplasts. Here, the cloning is described of a novel cDNA from this organism, which encodes an enzyme catalyzing the cyclization of lycopene to beta-carotene when expressed in Escherichia coli. The corresponding gene is constitutively expressed during fruit development. Significant amino acid sequence identity was observed between this enzyme and capsanthin/capsorubin synthase which is involved in the synthesis of the species-specific red carotenoids of C. annuum fruits. The latter enzyme was found also to possess a lycopene beta-cyclase activity when expressed in E. coli. A model is proposed for the origin of the capsanthin/capsorubin synthase gene and the role of this enzyme, together with the newly cloned lycopene cyclase, in the specific re-channeling of linear carotenoids into beta-cyclic carotenoids in C. annuum ripening fruits.

  7. Plasma lipophilic antioxidants and malondialdehyde in congestive heart failure patients: relationship to disease severity.

    PubMed

    Polidori, Maria Cristina; Savino, Ketty; Alunni, Gianfranco; Freddio, Michela; Senin, Umberto; Sies, Helmut; Stahl, Wilhelm; Mecocci, Patrizia

    2002-01-15

    Plasma levels of malondialdehyde (MDA), vitamin A, and of antioxidant micronutrients including vitamin E, lutein, zeaxanthin, beta-cryptoxanthin, lycopene, and alpha- and beta-carotene were measured in 30 patients with class II and III congestive heart failure (CHF) according to the New York Heart Association (NYHA) classification and in 55 controls. Ejection fraction was evaluated by echocardiography in all patients as a measure of the emptying capacity of the heart. Plasma levels of all measured compounds were significantly lower and MDA significantly higher in patients compared to controls (p <.001). Class II NYHA patients showed significantly lower MDA levels and significantly higher levels of vitamin A, vitamin E, lutein, and lycopene than class III patients. Ejection fraction was inversely correlated with MDA levels and directly correlated with vitamin A, vitamin E, lutein, and lycopene levels in patients. The present study supports the concept that an increased consumption of vitamin-rich fruits and vegetables might help in achieving cardiovascular health.

  8. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit.

    PubMed

    Liu, Changhong; Liu, Wei; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2015-04-15

    Tomato is an important health-stimulating fruit because of the antioxidant properties of its main bioactive compounds, dominantly lycopene and phenolic compounds. Nowadays, product differentiation in the fruit market requires an accurate evaluation of these value-added compounds. An experiment was conducted to simultaneously and non-destructively measure lycopene and phenolic compounds content in intact tomatoes using multispectral imaging combined with chemometric methods. Partial least squares (PLS), least squares-support vector machines (LS-SVM) and back propagation neural network (BPNN) were applied to develop quantitative models. Compared with PLS and LS-SVM, BPNN model considerably improved the performance with coefficient of determination in prediction (RP(2))=0.938 and 0.965, residual predictive deviation (RPD)=4.590 and 9.335 for lycopene and total phenolics content prediction, respectively. It is concluded that multispectral imaging is an attractive alternative to the standard methods for determination of bioactive compounds content in intact tomatoes, providing a useful platform for infield fruit sorting/grading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. In Vitro Bioaccessibility of Colored Carotenoids in Tomato Derivatives as Affected by Ripeness Stage and the Addition of Different Types of Oil.

    PubMed

    González-Casado, Sandra; Martín-Belloso, Olga; Elez-Martínez, Pedro; Soliva-Fortuny, Robert

    2018-05-01

    The simultaneous effect of tomato ripeness stage (mature green, pink, and red-ripe), mechanical processing (dicing and grinding), and oil addition (coconut, sunflower, and olive oils) on the amount and bioaccessible fraction of carotenoids were evaluated. Tomato products obtained from fruits at the most advanced ripeness stage exhibited the greatest values of both concentration and bioaccessible fraction of total carotenoids and lycopene. The type of processing also exerted an important influence on carotenoids content, as well as on its bioaccessibility. Thus, despite the concentration of carotenoids in tomato puree significantly decreased (36% to 59%), their bioaccessibility was greater (up to 2.54-fold increase) than in tomato cubes. Moreover, the addition of oil significantly improved the carotenoid bioaccessibility, especially when olive oil was added, reaching up to 21-fold increase with respect to samples without oil. The results obtained clearly indicate that carotenoids bioaccessibility of tomato derivatives was strongly influenced by the ripeness stage of the fruit, processing and the addition of oil. Bioaccessibility of carotenoids is known to be affected by different factors. This study provides useful information about the synergic effect of different factors affecting the amount and the bioaccessible fraction of carotenoids, especially lycopene, in two common tomato derivatives. The findings of this work may contribute to develop tomato derivatives with high content of bioaccessible carotenoids, leading to the enhancement of their health-promoting properties. © 2018 Institute of Food Technologists®.

  10. Chronic Exposure to Rhodobacter Sphaeroides Extract Lycogen™ Prevents UVA-Induced Malondialdehyde Accumulation and Procollagen I Down-Regulation in Human Dermal Fibroblasts

    PubMed Central

    Yang, Tsai-Hsiu; Lai, Ying-Hsiu; Lin, Tsuey-Pin; Liu, Wen-Sheng; Kuan, Li-Chun; Liu, Chia-Chyuan

    2014-01-01

    UVA contributes to the pathogenesis of skin aging by downregulation of procollagen I content and induction of matrix metalloproteinase (MMP)-associated responses. Application of antioxidants such as lycopene has been demonstrated as a convenient way to achieve protection against skin aging. Lycogen™, derived from the extracts of Rhodobacter sphaeroides, exerts several biological effects similar to that of lycopene whereas most of its anti-aging efficacy remains uncertain. In this study, we attempted to examine whether Lycogen™ could suppress malondialdehyde (MDA) accumulation and restore downregulated procollagen I expression induced by UVA exposure. In human dermal fibroblasts Hs68 cells, UVA repressed cell viability and decreased procollagen I protein content accompanied with the induction of MMP-1 and MDA accumulation. Remarkably, incubation with 50 μM Lycogen™ for 24 h ameliorated UVA-induced cell death and restored UVA-induced downregulation of procollagen in a dose-related manner. Lycogen™ treatment also prevented the UVA-induced MMP-1 upregulation and intracellular MDA generation in Hs68 cells. Activation of NFκB levels, one of the downstream events induced by UVA irradiation and MMP-1 induction, were also prevented by Lycogen™ administration. Taken together, our findings demonstrate that Lycogen™ may be an alternative agent that prevents UVA-induced skin aging and could be used in cosmetic and pharmaceutical applications. PMID:24463291

  11. Carotenoid intake and adipose tissue carotenoid levels in relation to prostate cancer aggressiveness among African-American and European-American men in the North Carolina-Louisiana prostate cancer project (PCaP).

    PubMed

    Antwi, Samuel O; Steck, Susan E; Su, L Joseph; Hebert, James R; Zhang, Hongmei; Craft, Neal E; Fontham, Elizabeth T H; Smith, Gary J; Bensen, Jeannette T; Mohler, James L; Arab, Lenore

    2016-09-01

    Associations between carotenoid intake and prostate cancer (CaP) incidence have varied across studies. This may result from combining indolent with aggressive disease in most studies. This study examined whether carotenoid intake and adipose tissue carotenoid levels were inversely associated with CaP aggressiveness. Data on African-American (AA, n = 1,023) and European-American (EA, n = 1,079) men with incident CaP from North Carolina and Louisiana were analyzed. Dietary carotenoid intake was assessed using a detailed-food frequency questionnaire (FFQ), and abdominal adipose tissue samples were analyzed for carotenoid concentrations using high-performance liquid chromatography. Multivariable logistic regression was used in race-stratified analyses to calculate odds ratios (ORs) and 95% confidence intervals (95%CI) comparing high aggressive CaP with low/intermediate aggressive CaP. Carotenoid intake differed significantly between AAs and EAs, which included higher intake of lycopene among EAs and higher β-cryptoxanthin intake among AAs. Comparing the highest and lowest tertiles, dietary lycopene was associated inversely with high aggressive CaP among EAs (OR = 0.55, 95%CI: 0.34-0.89, Ptrend  = 0.02), while an inverse association was observed between dietary β-cryptoxanthin intake and high aggressive CaP among AAs (OR = 0.56, 95%CI: 0.36-0.87, Ptrend  = 0.01). Adipose tissue α-carotene and lycopene (cis + trans) concentrations were higher among EAs than AAs, and marginally significant inverse linear trends were observed for adipose α-carotene (Ptrend  = 0.07) and lycopene (Ptrend  = 0.11), and CaP aggressiveness among EAs only. These results suggest that diets high in lycopene and β-cryptoxanthin may protect against aggressive CaP among EAs and AAs, respectively. Differences in dietary behaviors may explain the observed racial differences in associations. Prostate 76:1053-1066, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Efficacy of lycopene-enriched virgin olive oil for treating burning mouth syndrome: a double-blind randomised.

    PubMed

    Cano-Carrillo, P; Pons-Fuster, A; López-Jornet, P

    2014-04-01

    Burning mouth syndrome (BMS) is an intensive chronic oral mucosal pain condition of unknown aetiology. The aim of this study was to evaluate the clinical performance of lycopene-enriched virgin olive oil used to treat the condition, comparing this with a placebo. This study took the form of a double-bind, randomised clinical trial. A total of 60 patients with BMS were randomly divided into two groups: Group I (n = 30) treated with lycopene-enriched virgin olive oil (300 ppm) (1.5 mL three times a day) and Group II (n=treated with a placebo (1.5 mL three times a day). Evaluations were made before and after 12 weeks of product/placebo application. Symptoms were evaluated by VAS, whilst patient psychological profiles were assessed using the HAD scale and patient quality of life using the Oral Health Impact Profile-14 (OHIP-14) and the Medical Outcome Short Form Health Survey questionnaire (SF36). Fifty patients completed the 12-week treatment (26 in Group I and 24 in Group II). Visual analogue scale pain values improved in both groups but without statistically significant differences between the groups (P = 0.57). Oral quality of life also improved. Four patients in Group I (treatment) left the study and six left Group II (placebo). No patients experienced any adverse effects resulting from treatment at any of the evaluation times. Patients were lost from the sample due to lack of compliance. It was found that the lipid profile did not change during the 3-month study period as a result of the application of lycopene-enriched olive oil (Group I); nor did any change occur in the placebo group (Group II). In this way, the placebo effect was seen to be strong. The topical lycopene-enriched virgin olive oil is a very safe and an effective similar way that the placebo for treating patients with BMS. However, future studies are required to establish the treatment for patients with chronic and painful syndrome.

  13. Lycopene-rich extract from red guava (Psidium guajava L.) displays cytotoxic effect against human breast adenocarcinoma cell line MCF-7 via an apoptotic-like pathway.

    PubMed

    Dos Santos, Raimunda C; Ombredane, Alicia S; Souza, Jéssica Maria T; Vasconcelos, Andreanne G; Plácido, Alexandra; Amorim, Adriany das G N; Barbosa, Eder Alves; Lima, Filipe C D A; Ropke, Cristina D; Alves, Michel M M; Arcanjo, Daniel D R; Carvalho, Fernando A A; Delerue-Matos, Cristina; Joanitti, Graziella A; Leite, José Roberto de S A

    2018-03-01

    This study investigated a lycopene-rich extract from red guava (LEG) for its chemical composition using spectrophotometry, mass spectrometry, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), and computational studies. The cytotoxic activity of LEG and the underlying mechanism was studied in human breast adenocarcinoma cells (MCF-7), murine fibroblast cells (NIH-3T3), BALB/c murine peritoneal macrophages, and sheep blood erythrocytes by evaluating the cell viability with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and flow cytometry. Spectrophotometry analysis showed that LEG contained 20% of lycopene per extract dry weight. Experimental and theoretical ATR-FTIR suggests the presence of lycopene, whereas MS/MS spectra obtained after fragmentation of the molecular ion [M] +• of 536.4364 show fragment ions at m/z 269.2259, 375.3034, 444.3788, and 467.3658, corroborating the presence of lycopene mostly related to all-trans configuration. Treatment with LEG (1600 to 6.25μg/mL) for 24 and 72h significantly affected the viability of MCF-7 cells (mean half maximal inhibitory concentration [IC 50 ]=29.85 and 5.964μg/mL, respectively) but not NIH-3T3 cells (IC 50 =1579 and 911.5μg/mL, respectively). Furthermore LEG at concentrations from 800 to 6.25μg/mL presented low cytotoxicity against BALB/c peritoneal macrophages (IC 50 ≥800μg/mL) and no hemolytic activity. LEG (400 and 800μg/mL) caused reduction in the cell proliferation and induced cell cycle arrest, DNA fragmentation, modifications in the mitochondrial membrane potential, and morphologic changes related to granularity and size in MCF-7 cells; however, it failed to cause any significant damage to the cell membrane or display necrosis or traditional apoptosis. In conclusion, LEG was able to induce cytostatic and cytotoxic effects on breast cancer cells probably via induction of an apoptotic-like pathway. Copyright © 2017. Published by Elsevier Ltd.

  14. Reduction in blood pressure and serum lipids by lycosome formulation of dark chocolate and lycopene in prehypertension.

    PubMed

    Petyaev, Ivan M; Dovgalevsky, Pavel Y; Chalyk, Natalia E; Klochkov, Victor; Kyle, Nigel H

    2014-11-01

    Twenty-nine healthy volunteers aged 47-69 years old were randomly assigned to a 28-day oral intake of different dark chocolate (DC) formulations. The main group received daily 30 g of proprietary lycopene-containing (L-tug) lycosome formulation of DC with enhanced bioavailability of cocoa flavanols. Two control groups daily consumed either 30 g of regular DC alone or along with 7 mg of lycopene, which corresponds to the amount of lycopene ingested with L-tug formulation. It was found that L-tug was more efficient in reducing diastolic blood pressure (mean value of -6.22 mmHg, 95% CI: 5.00, 8.00) when compared with the regular DC group (-3.00 mmHg, P < 0.05) or the group which ingested the DC and lycopene as two separate formulations (mean reduction of -4 mmHg, 95% CI: 2.47, 6.00, P = 0.0262). Only marginal superiority for L-tug formulation in the reduction in systolic blood pressure was seen. However, the L-tug formulation was the only formulation of DC which affected serum lipids. There was a reduction in total cholesterol (from median 228.00 mg/dL [95% CI: 206.2, 242.5] to 187.00 mg/dL [95% CI: 166.2, 202.2, P < 0.05]) with corresponding decline of low-density lipoprotein (LDL) cholesterol (from a median of 166.00 mg/dL [95% CI: 130.8, 177.0] to 151.00 mg/dL [95% CI: 122.8, 167.4; P < 0.05]) at the end of the intervention period. Similar decline was seen in serum triglycerides (P < 0.05). Serum high-density lipoprotein (HDL) cholesterol, glucose levels, and C-reactive protein (CRP) values remained statistically unchanged in all study groups throughout the intervention period. A superior biological activity of the L-tug lycosome formulation of DC extending beyond its antihypertensive effect to lipid-lowering ability opens up new possibilities for the use of DC for health purposes helping to reduce daily caloric intake without compromising on the health benefits of DC consumption.

  15. Associations between circulating carotenoids, genomic instability and the risk of high-grade prostate cancer.

    PubMed

    Nordström, Tobias; Van Blarigan, Erin L; Ngo, Vy; Roy, Ritu; Weinberg, Vivian; Song, Xiaoling; Simko, Jeffry; Carroll, Peter R; Chan, June M; Paris, Pamela L

    2016-03-01

    Carotenoids are a class of nutrients with antioxidant properties that have been purported to protect against cancer. However, the reported associations between carotenoids and prostate cancer have been heterogeneous and lacking data on interactions with nucleotide sequence variations and genomic biomarkers. To examine the associations between carotenoid levels and the risk of high-grade prostate cancer, also considering antioxidant-related genes and tumor instability. We measured plasma levels of carotenoids and genotyped 20 single nucleotide polymorphisms (SNP) in SOD1, SOD2, SOD3, XRCC1, and OGG1 among 559 men with non-metastatic prostate cancer undergoing radical prostatectomy. We performed copy number analysis in a subset of these men (n = 67) to study tumor instability assessed as Fraction of the Genome Altered (FGA). We examined associations between carotenoids, genotypes, tumor instability and risk of high-grade prostate cancer (Gleason grade ≥ 4 + 3) using logistic and linear regression. Circulating carotenoid levels were inversely associated with the risk of high-grade prostate cancer; odds ratios (OR) and 95% confidence intervals (CI) comparing highest versus lowest quartiles were: 0.34 (95% CI: 0.18-0.66) for α-carotene, 0.31 (95% CI: 0.15-0.63) for β-carotene, 0.55 (0.28-1.08) for lycopene and 0.37 (0.18-0.75) for total carotenoids. SNPs rs25489 in XRCC1, rs699473 in SOD3 and rs1052133 in OGG1 modified these associations for α-carotene, β-carotene and lycopene, respectively (P ≤ 0.05). The proportion of men with a high degree of FGA increased with Gleason Score (P < 0.001). Among men with Gleason score ≤ 3 + 4, higher lycopene levels were associated with lower FGA (P = 0.04). Circulating carotenoids at diagnosis, particularly among men carrying specific somatic variations, were inversely associated with risk of high-grade prostate cancer. In exploratory analyses, higher lycopene level was associated with less genomic instability among men with low-grade disease which is novel and supports the hypothesis that lycopene may inhibit progression of prostate cancer early in its natural history. © 2015 Wiley Periodicals, Inc.

  16. Carotenoid Biosynthesis in the Primitive Red Alga Cyanidioschyzon merolae▿

    PubMed Central

    Cunningham, Francis X.; Lee, Hansel; Gantt, Elisabeth

    2007-01-01

    Cyanidioschyzon merolae is considered to be one of the most primitive of eukaryotic photosynthetic organisms. To obtain insights into the origin and evolution of the pathway of carotenoid biosynthesis in eukaryotic plants, the carotenoid content of C. merolae was ascertained, genes encoding enzymes of carotenoid biosynthesis in this unicellular red alga were identified, and the activities of two candidate pathway enzymes of particular interest, lycopene cyclase and β-carotene hydroxylase, were examined. C. merolae contains perhaps the simplest assortment of chlorophylls and carotenoids found in any eukaryotic photosynthetic organism: chlorophyll a, β-carotene, and zeaxanthin. Carotenoids with ɛ-rings (e.g., lutein), found in many other red algae and in green algae and land plants, were not detected, and the lycopene cyclase of C. merolae quite specifically produced only β-ringed carotenoids when provided with lycopene as the substrate in Escherichia coli. Lycopene β-ring cyclases from several bacteria, cyanobacteria, and land plants also proved to be high-fidelity enzymes, whereas the structurally related ɛ-ring cyclases from several plant species were found to be less specific, yielding products with β-rings as well as ɛ-rings. C. merolae lacks orthologs of genes that encode the two types of β-carotene hydroxylase found in land plants, one a nonheme diiron oxygenase and the other a cytochrome P450. A C. merolae chloroplast gene specifies a polypeptide similar to members of a third class of β-carotene hydroxylases, common in cyanobacteria, but this gene did not produce an active enzyme when expressed in E. coli. The identity of the C. merolae β-carotene hydroxylase therefore remains uncertain. PMID:17085635

  17. Longitudinal Survey of Carotenoids in Human Milk from Urban Cohorts in China, Mexico, and the USA

    PubMed Central

    Lipkie, Tristan E.; Morrow, Ardythe L.; Jouni, Zeina E.; McMahon, Robert J.; Ferruzzi, Mario G.

    2015-01-01

    Emerging evidence indicates that carotenoids may have particular roles in infant nutrition and development, yet data on the profile and bioavailability of carotenoids from human milk remain sparse. Milk was longitudinally collected at 2, 4, 13, and 26 weeks postpartum from twenty mothers each in China, Mexico, and the USA in the Global Exploration of Human Milk Study (n = 60 donors, n = 240 samples). Maternal and neonatal plasma was analyzed for carotenoids from the USA cohort at 4 weeks postpartum. Carotenoids were analyzed by HPLC and total lipids by Creamatocrit. Across all countries and lactation stages, the top four carotenoids were lutein (median 114.4 nmol/L), β-carotene (49.4 nmol/L), β-cryptoxanthin (33.8 nmol/L), and lycopene (33.7 nmol/L). Non-provitamin A carotenoids (nmol/L) and total lipids (g/L) decreased (p<0.05) with increasing lactation stage, except the provitamin A carotenoids α- and β-cryptoxanthin and β-carotene did not significantly change (p>0.05) with lactation stage. Total carotenoid content and lutein content were greatest from China, yet lycopene was lowest from China (p<0.0001). Lutein, β-cryptoxanthin, and β-carotene, and lycopene concentrations in milk were significantly correlated to maternal plasma and neonatal plasma concentrations (p<0.05), with the exception that lycopene was not significantly associated between human milk and neonatal plasma (p>0.3). This enhanced understanding of neonatal exposure to carotenoids during development may help guide dietary recommendations and design of human milk mimetics. PMID:26061885

  18. Plasma Carotenoids, Tocopherols, and Retinol in the Age-Stratified (35-74 Years) General Population: A Cross-Sectional Study in Six European Countries.

    PubMed

    Stuetz, Wolfgang; Weber, Daniela; Dollé, Martijn E T; Jansen, Eugène; Grubeck-Loebenstein, Beatrix; Fiegl, Simone; Toussaint, Olivier; Bernhardt, Juergen; Gonos, Efstathios S; Franceschi, Claudio; Sikora, Ewa; Moreno-Villanueva, María; Breusing, Nicolle; Grune, Tilman; Bürkle, Alexander

    2016-09-30

    Blood micronutrient status may change with age. We analyzed plasma carotenoids, α-/γ-tocopherol, and retinol and their associations with age, demographic characteristics, and dietary habits (assessed by a short food frequency questionnaire) in a cross-sectional study of 2118 women and men (age-stratified from 35 to 74 years) of the general population from six European countries. Higher age was associated with lower lycopene and α-/β-carotene and higher β-cryptoxanthin, lutein, zeaxanthin, α-/γ-tocopherol, and retinol levels. Significant correlations with age were observed for lycopene ( r = -0.248), α-tocopherol ( r = 0.208), α-carotene ( r = -0.112), and β-cryptoxanthin ( r = 0.125; all p < 0.001). Age was inversely associated with lycopene (-6.5% per five-year age increase) and this association remained in the multiple regression model with the significant predictors (covariables) being country, season, cholesterol, gender, smoking status, body mass index (BMI (kg/m²)), and dietary habits. The positive association of α-tocopherol with age remained when all covariates including cholesterol and use of vitamin supplements were included (1.7% vs. 2.4% per five-year age increase). The association of higher β-cryptoxanthin with higher age was no longer statistically significant after adjustment for fruit consumption, whereas the inverse association of α-carotene with age remained in the fully adjusted multivariable model (-4.8% vs. -3.8% per five-year age increase). We conclude from our study that age is an independent predictor of plasma lycopene, α-tocopherol, and α-carotene.

  19. The Use of Tomato Powder Fermented with Pediococcus pentosaceus and Lactobacillus sakei for the Ready-to-Cook Minced Meat Quality Improvement

    PubMed Central

    Juodeikiene, Grazina; Zadeike, Daiva; Viskelis, Pranas; Urbonaviciene, Dalia

    2015-01-01

    Summary In this study, the influence of lactic acid fermentation on the quality of tomato powder was evaluated. The effect of adding fermented tomato powder to ready-to-cook minced pork meat to improve its nutritional value and sensory characteristics was also analysed. The cell growth of Lactobacillus sakei (7.53 log CFU/g) was more intense in the medium containing tomato powder, compared to the growth of Pediococcus pentosaceus (6.35 log CFU/g) during 24 h of fermentation; however, higher acidity (pH=4.1) was observed in the tomato powder samples fermented with Pediococcus pentosaceus. The spontaneous fermentation of tomato powder reduced cell growth by 38% and pH values slightly increased to 4.17, compared to the fermentation with pure LAB. The lactofermentation of tomato powder increased the average β-carotene and lycopene mass fractions by 43.9 and 50.2%, respectively, compared with the nonfermented samples. Lycopene and β-carotene contents in the ready-to-cook minced pork meat were proportional to the added tomato powder (10 and 30%). After cooking, β-carotene and lycopene contents decreased, on average, by 24.2 and 41.2%, respectively. The highest loss (up to 49.2%) of carotenoids was found in samples with 30% nonfermented tomato powder. Tomato powder fermented with 10% Lactobacillus sakei KTU05-6 can be recommended as both a colouring agent and a source of lycopene in the preparation of ready-to-cook minced pork meat. PMID:27904345

  20. Chemical composition, at consuming ripeness level of tomatoes irradiated at mature green and greenish yellow stages of maturity

    NASA Astrophysics Data System (ADS)

    Al-Wandawi, H. K.; Abdul-Rahman, M. H.; Al-Shaickley, K. A.

    Tomatoes (Lycopersicon esculentum L.,var.Monte carlo) have been Y-irradiated (100-400Krad) and left to ripen to consuming ripeness. The results revealed that in fruits irradiated with 100,200 and 300 krad at mature-green, 48 hour after harvesting and at greenish yellow stages of maturity, 24 hours after harvesting, the levels of ascorbic acid were accounted to 62, 51, 27% and 84, 59, 34% of control samples respectively. In fruits irradiated with 200 krad at mature-green stage and 48 hours after harvesting and in fruits irradiated with 400 krad at greenish yellow stage and 48 hours after harvesting, the levels of lycopene were 279 and 246% of that of control samples; while the lowest levels of lycopene were in fruits irradiated with 400 krad and at mature-green and greenish yellow stages and 48 hours after harvesting where lycopene accounted to 11 and 24% respectively when compared to control samples . on the other hand, radiation had no significant effect on PH, titrable acidity and °Brix of tomatoes.

  1. Raman measurement of carotenoid composition in human skin

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2004-07-01

    The carotenoids lycopene and beta-carotene are powerful antioxidants in skin and are thought to act as scavengers for free radicals and singlet oxygen. The role of carotenoid species in skin health is of strong current interest. We demonstrate the possibility to use Resonance Raman spectroscopy for fast, non-invasive, highly specific, and quantitative detection of beta-carotene and lycopene in human skin. Analyzing Raman signals originating from the carbon-carbon double bond stretch vibrations of the carotenoid molecules under blue and green laser excitation, we were able to characterize quantitatively the relative concentrations of each carotenoid species in-vivo. In the selective detection, we take advantage of different Raman cross-section spectral profiles for beta-carotene and lycopene molecules, and obtain a quantitative assessment of individual long-chain carotenoid species in the skin rather than their cumulative levels. Preliminary dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects. The technique holds promise for rapid screening of carotenoid compositions in human skin in large populations and may be suitable in clinical studies for assessing the risk for cutaneous diseases.

  2. Mediterranean diet and colorectal cancer: A systematic review.

    PubMed

    Farinetti, Alberto; Zurlo, Valeria; Manenti, Antonio; Coppi, Francesca; Mattioli, Anna Vittoria

    Colorectal cancer is the third most common cancer worldwide, especially in developed countries where an estimated 60% of all cases occur. There is evidence of a higher risk for CRC in Western society, where people tend to eat more red and processed meat than those living along the Mediterranean coast, who have a decreased overall cancer mortality, which is correlated to their eating habits, such as Mediterranean diet. The aim of this review was to evaluate the correlation between three components of the Mediterranean diet (olive oil, red wine, and tomatoes) and incidence and progression of colorectal cancer. As such, we conducted a literature search using keywords "colorectal cancer," "dietary pattern," "Mediterranean diet," "olive oil," "protective effects," "resveratrol," and "lycopene." Olive oil polyphenols, red wine resveratrol, and tomato lycopene showed several characteristics in vitro that interfere with molecular cancer pathways. At the same time, many clinical studies have reported an association of these components with a reduction in cancer initiation and progression. More clinical studies are needed to identify the precise dose and administration of single agents or their combination to produce a coadjutant treatment to those already applied in chemoprevention and oncologic treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Lycopene loaded gelatin nanoparticles induces internucleosmal DNA fragmentation and apoptosis in human breast adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Preetha, K. Mary Anne; Devasena, T.

    2018-06-01

    The complex disease, cancer is caused by genetic uncertainty and various molecular alterations. Due to the present ineffective diagnostic and prognostic classifications, the complete heterogeneity of a tumor is not revealed which in turn affects the selection of suitable treatment and patient outcome. Cancer nanotechnology is an emerging interdisciplinary research field that covers important aspects of chemistry, engineering, biology and medicine, leading to the advancement of cancer diagnosis and treatment. Hence the main aim of this study is to develop lycopene loaded gelatin nanoparticles and evaluate its in vitro anticancer activity using breast adenocarcinoma cells.

  4. In situ nondestructive imaging of functional pigments in Micro-Tom tomato fruits by multi spectral imaging based on Wiener estimation method

    NASA Astrophysics Data System (ADS)

    Nishidate, Izumi; Ooe, Shintaro; Todoroki, Shinsuke; Asamizu, Erika

    2013-05-01

    To evaluate the functional pigments in the tomato fruits nondestructively, we propose a method based on the multispectral diffuse reflectance images estimated by the Wiener estimation for a digital RGB image. Each pixel of the multispectral image is converted to the absorbance spectrum and then analyzed by the multiple regression analysis to visualize the contents of chlorophyll a, lycopene and β-carotene. The result confirms the feasibility of the method for in situ imaging of chlorophyll a, β-carotene and lycopene in the tomato fruits.

  5. Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based entrees as a whole-food intervention.

    PubMed

    Chen, L; Stacewicz-Sapuntzakis, M; Duncan, C; Sharifi, R; Ghosh, L; van Breemen, R; Ashton, D; Bowen, P E

    2001-12-19

    Human prostate tissues are vulnerable to oxidative DNA damage. The risk of prostate cancer is lower in men reporting higher consumption of tomato products, which contain high levels of the antioxidant lycopene. We examined the effects of consumption of tomato sauce-based pasta dishes on lycopene uptake, oxidative DNA damage, and prostate-specific antigen (PSA) levels in patients already diagnosed with prostate cancer. Thirty-two patients with localized prostate adenocarcinoma consumed tomato sauce-based pasta dishes for the 3 weeks (30 mg of lycopene per day) preceding their scheduled radical prostatectomy. Serum and prostate lycopene concentrations, serum PSA levels, and leukocyte DNA oxidative damage (ratio of 8-hydroxy-2'-deoxyguanosine [8-OHdG] to 2'-deoxyguanosine [dG]) were assessed before and after the dietary intervention. DNA oxidative damage was assessed in resected prostate tissue from study participants and from seven randomly selected prostate cancer patients. All statistical tests were two-sided. After the dietary intervention, serum and prostate lycopene concentrations were statistically significantly increased, from 638 nM (95% confidence interval [CI] = 512 to 764 nM) to 1258 nM (95% CI = 1061 to 1455 nM) (P<.001) and from 0.28 nmol/g (95% CI = 0.18 to 0.37 nmol/g) to 0.82 nmol/g (95% CI = 0.57 to 1.11 nmol/g) (P <.001), respectively. Compared with preintervention levels, leukocyte oxidative DNA damage was statistically significantly reduced after the intervention, from 0.61 8-OHdG/10(5) dG (95% CI = 0.45 to 0.77 8-OHdG/10(5) dG) to 0.48 8-OHdG/ 10(5) dG (95% CI = 0.41 to 0.56 8-OHdG/10(5) dG) (P =.005). Furthermore, prostate tissue oxidative DNA damage was also statistically significantly lower in men who had the intervention (0.76 8-OHdG/10(5) dG [95% CI = 0.55 to 0.96 8-OHdG/10(5) dG]) than in the randomly selected patients (1.06 8-OHdG/10(5) dG [95% CI = 0.62 to 1.51 8-OHdG/10(5) dG]; P =.03). Serum PSA levels decreased after the intervention, from 10.9 ng/mL (95% CI = 8.7 to 13.2 ng/mL) to 8.7 ng/mL (95% CI = 6.8 to 10.6 ng/mL) (P<.001). These data indicate a possible role for a tomato sauce constituent, possibly lycopene, in the treatment of prostate cancer and warrant further testing with a larger sample of patients, including a control group.

  6. Protective effect of lycopene on fluoride-induced ameloblasts apoptosis and dental fluorosis through oxidative stress-mediated Caspase pathways.

    PubMed

    Li, Weishan; Jiang, Binghua; Cao, Xianglin; Xie, Yongjiang; Huang, Ting

    2017-01-05

    Fluoride is an environmental toxicant and induces dental fluorosis and oxidative stress. Lycopene (LYC) is an effective antioxidant that is reported to attenuate fluoride toxicity. To determine the effects of LYC on sodium fluoride (NaF) -induced teeth and ameloblasts toxicity, rats were treated with NaF (10 mg/kg) and/or LYC (10 mg/kg) by orally administration for 5 weeks; ameloblasts were treated with NaF (5 mM) and/or LYC (2 μM) for 6 h. We found that the concentrations of fluoride, malondialdehyde (MDA) and reactive oxygen species (ROS), gene expressions and activities of Caspase-9 and Caspase-3, and the gene expressions of Bax were significantly decreased, while the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX), the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated rats group; concentrations of MDA and ROS, gene expressions and activities of Caspase-9 and Caspase-3, and the gene expression of Bax, and ameloblasts apoptosis rate were significantly decreased, while the activities of SOD and GPX, the gene expression of Bcl-2 were significantly increased in the LYC + NaF-treated ameloblasts group. These results suggest that LYC significantly combated NaF-induced ameloblasts apoptosis and dental fluorosis by attenuation oxidative stress and down-regulation Caspase pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Effect of beta-carotene-rich tomato lycopene beta-cyclase ( tlcy-b) on cell growth inhibition in HT-29 colon adenocarcinoma cells.

    PubMed

    Palozza, Paola; Bellovino, Diana; Simone, Rossella; Boninsegna, Alma; Cellini, Francesco; Monastra, Giovanni; Gaetani, Sancia

    2009-07-01

    Lycopene beta-cyclase (tlcy-b) tomatoes, obtained by modulating carotenogenesis via genetic engineering, contain a large amount of beta-carotene, as clearly visible by their intense orange colour. In the present study we have subjected tlcy-b tomatoes to an in vitro simulated digestion and analysed the effects of digestate on cell proliferation. To this aim we used HT-29 human colon adenocarcinoma cells, grown in monolayers, as a model. Digested tomatoes were diluted (20 ml, 50 ml and 100 ml/l) in culture medium and added to the cells for different incubation times (24 h, 48 h and 72 h). Inhibition of cell growth by tomato digestate was dose-dependent and resulted from an arrest of cell cycle progression at the G0/G1 and G2/M phase and by apoptosis induction. A down-regulation of cyclin D1, Bcl-2 and Bcl-xl expression was observed. We also found that heat treatment of samples before digestion enhanced beta-carotene release and therefore cell growth inhibition. To induce with purified beta-carotene solubilised in tetrahydrofuran the same cell growth inhibition obtained with the tomato digestate, a higher amount of the carotenoid was necessary, suggesting that beta-carotene micellarised during digestion is utilised more efficiently by the cells, but also that other tomato molecules, reasonably made available during digestion, may be present and cooperate with beta-carotene in promoting cell growth arrest.

  8. Supplementation of lycopene attenuates lipopolysaccharide-induced amyloidogenesis and cognitive impairments via mediating neuroinflammation and oxidative stress.

    PubMed

    Wang, Jia; Li, Lixia; Wang, Zhuo; Cui, Yifan; Tan, Xintong; Yuan, Tian; Liu, Qian; Liu, Zhigang; Liu, Xuebo

    2018-06-01

    Neuroinflammation is documented to be the major culprit of Alzheimer's disease. Lycopene (LYC), a fat soluble carotenoid, exhibits neuroprotective function in several neurodegenerative disorders. However, the effects of LYC to countering systemic inflammation-induced amyloidogenesis and memory deficiency remain to be elucidated. In current study, 3-month-old male C57BL/6J mice were treated with 0.03% LYC (w/w, mixed into normal chow) for 5 weeks. The mice were then treated by intraperitoneal injection of LPS (0.25mg/kg) for 9 days. It was found that LYC inhibited LPS-induced memory loss by behavior tests including Y-maze test and Morris water test. Meanwhile, LYC prevented LPS-induced accumulation of Aβ, levels of amyloid precursor protein (APP), and suppressed neuronal β-secretase BACE1 and elevated the expressions of α-secretase ADAM10. Furthermore, LYC down-regulated the expression of IBA-1 (a marker of microglia activation), reduced the levels of inflammatory mediators and inhibited oxidative stress in LPS-treated mice. Moreover, LYC suppressed the phosphorylation of MAPKs, NFκB, and activated Nrf2 signaling pathways in LPS-treated BV2 microglial cells. Therefore, our study indicated that LYC could ameliorate LPS-induced neuroinflammation, oxidative stress, amyloidogenesis and cognitive impairments possibly through mediating MAPKs, NFκB and Nrf2 signaling pathways, indicating that LYC might be a nutritional preventive strategy in neuroinflammation-related diseases such as AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Evidence for antioxidant nutrients-induced pigmentation in skin: results of a clinical trial.

    PubMed

    Postaire, E; Jungmann, H; Bejot, M; Heinrich, U; Tronnier, H

    1997-08-01

    The aim of this study was to demonstrate that modification of the cellular redox-equilibrium occurs as a consequence of antioxidant nutrients intake (carotenoids, vitamine E and vitamine C) and that these nutrients play a role in the pigmentation of the skin without any UV exposure. We conducted a randomized, double-blind study in 20 healthy subjects to evaluate and to compare the efficacy of two mixtures of dietary antioxidants with regard to direct determination of melanin and carotenes by chromametry at selected skin sites and multiple reflection spectrometry from a 1 cm2 region of skin of different parts of the body. Efficacy was assessed by a significant improvement of these parameters, in comparison with measurements performed on the day of randomization, before dietary supplement intake. The formulations per capsule of study dietary supplements are: 13 mg of beta-carotene, 2 mg of lycopene, 5 mg of vitamine E and 30 mg of vitamine C (B13/L2) or 3 mg of beta-carotene, 3 mg of lycopene, 5 mg of vitamine E and 30 mg of vitamine C (B3/L3). A 8-week B13/L2-supplementation lead to a detectable carotenodermia whereas the B3/L3-supplementation not. Signicative increase of melanin concentrations in skin were found after 4, 5, 6 and 8 weeks of dietary antioxidant intake in both groups (p < 0.05). These results are discussed with regard to the redox control theory of melanocytes which regulates the tyrosinase activity.

  10. Plasma Carotenoids, Tocopherols, and Retinol in the Age-Stratified (35–74 Years) General Population: A Cross-Sectional Study in Six European Countries

    PubMed Central

    Stuetz, Wolfgang; Weber, Daniela; Dollé, Martijn E. T.; Jansen, Eugène; Grubeck-Loebenstein, Beatrix; Fiegl, Simone; Toussaint, Olivier; Bernhardt, Juergen; Gonos, Efstathios S.; Franceschi, Claudio; Sikora, Ewa; Moreno-Villanueva, María; Breusing, Nicolle; Grune, Tilman; Bürkle, Alexander

    2016-01-01

    Blood micronutrient status may change with age. We analyzed plasma carotenoids, α-/γ-tocopherol, and retinol and their associations with age, demographic characteristics, and dietary habits (assessed by a short food frequency questionnaire) in a cross-sectional study of 2118 women and men (age-stratified from 35 to 74 years) of the general population from six European countries. Higher age was associated with lower lycopene and α-/β-carotene and higher β-cryptoxanthin, lutein, zeaxanthin, α-/γ-tocopherol, and retinol levels. Significant correlations with age were observed for lycopene (r = −0.248), α-tocopherol (r = 0.208), α-carotene (r = −0.112), and β-cryptoxanthin (r = 0.125; all p < 0.001). Age was inversely associated with lycopene (−6.5% per five-year age increase) and this association remained in the multiple regression model with the significant predictors (covariables) being country, season, cholesterol, gender, smoking status, body mass index (BMI (kg/m2)), and dietary habits. The positive association of α-tocopherol with age remained when all covariates including cholesterol and use of vitamin supplements were included (1.7% vs. 2.4% per five-year age increase). The association of higher β-cryptoxanthin with higher age was no longer statistically significant after adjustment for fruit consumption, whereas the inverse association of α-carotene with age remained in the fully adjusted multivariable model (−4.8% vs. −3.8% per five-year age increase). We conclude from our study that age is an independent predictor of plasma lycopene, α-tocopherol, and α-carotene. PMID:27706032

  11. A comprehensive review on the colorless carotenoids phytoene and phytofluene.

    PubMed

    Meléndez-Martínez, Antonio J; Mapelli-Brahm, Paula; Benítez-González, Ana; Stinco, Carla M

    2015-04-15

    Carotenoids and their derivatives are versatile isoprenoids involved in many varied actions, hence their importance in the agri-food industry, nutrition, health and other fields. All carotenoids are derived from the colorless carotenes phytoene and phytofluene, which are oddities among carotenoids due to their distinct chemical structure. They occur together with lycopene in tomato and other lycopene-containing foods. Furthermore, they are also present in frequently consumed products like oranges and carrots, among others. The intake of phytoene plus phytofluene has been shown to be higher than that of lycopene and other carotenoids in Luxembourg. This is likely to be common in other countries. However, they are not included in food carotenoid databases, hence they have not been linked to health benefits in epidemiological studies. Interestingly, there are evidences in vitro, animal models and humans indicating that they may provide health benefits. In this sense, the study of these colorless carotenes in the context of food science, nutrition and health should be further encouraged. In this work, we review much of the existing knowledge concerning their chemical characteristics, physico-chemical properties, analysis, distribution in foods, bioavailability and likely biological activities. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Silymarin and lycopene administration in periparturient dairy cows: effects on milk production and oxidative status.

    PubMed

    Garavaglia, L; Galletti, S; Tedesco, D

    2015-11-01

    To establish during late gestation and early lactation the effects of supplementing silymarin, a natural hepatoprotective substance, combined with a powerful antioxidant, lycopene, on milk production and on serum biomarkers of oxidative status. Italian Friesian dairy cows were given individually a supplement containing a mixture of silymarin (7.77 g/day/cow) and lycopene (1.27 g/day/cow) (n=10) or no supplement (control; n=10). Treatment was administered from 7 days before the expected calving date to the first 14 days in milk. At 7 days before the expected calving date, at calving, and 7 days postpartum, body condition score (BCS) and concentrations in serum of reactive oxygen metabolites (ROM), total antioxidant capacity (OXY) and thiobarbituric acid reactive substances (TBARS) were evaluated. Bodyweight, milk production, and somatic cell count (SCC) were determined at 7, 14 and 21 days postpartum. The mean time of treatment prior to calving was 6.3 (min 4, max 11) days. Compared with control cows, treatment increased energy corrected milk yield (33.3 vs. 37.8 (SEM 1.10) kg/day; p=0.006) and milk fat yield (1.14 vs. 1.32 (SEM 0.06) kg/day; p=0.05) over the first 21 days of lactation. Treated cows had lower mean log10 SCC compared to control cows (4.9 vs. 5.24 (SEM 0.11) log10 cells/mL) and had lower overall concentration of TBARS (1.47 vs. 1.59 (SEM 0.016) nM/mL; p<0.001), but similar concentrations of ROM and OXY in serum. However there was a treatment by time interaction (p=0.09) for OXY, and at calving mean OXY was higher in treated cows compared with pre-calving values (p<0.001). Despite the acknowledged limitation of the study, i.e. the small number of animals, our results suggest that silymarin and lycopene, as health-beneficial feed supplements, may help dairy cows in metabolic adaptation during the first stages of lactation. During the peripartum period dairy cows suffer moderate-to-severe fatty liver and from an overproduction of free radicals. The supplementation of a mixture of silymarin and lycopene during these stressful days may be useful to mitigate these metabolic disorders with beneficial effects on the subsequent lactation.

  13. Reduction in blood pressure and serum lipids by lycosome formulation of dark chocolate and lycopene in prehypertension

    PubMed Central

    Petyaev, Ivan M; Dovgalevsky, Pavel Y; Chalyk, Natalia E; Klochkov, Victor; Kyle, Nigel H

    2014-01-01

    Twenty-nine healthy volunteers aged 47–69 years old were randomly assigned to a 28-day oral intake of different dark chocolate (DC) formulations. The main group received daily 30 g of proprietary lycopene-containing (L-tug) lycosome formulation of DC with enhanced bioavailability of cocoa flavanols. Two control groups daily consumed either 30 g of regular DC alone or along with 7 mg of lycopene, which corresponds to the amount of lycopene ingested with L-tug formulation. It was found that L-tug was more efficient in reducing diastolic blood pressure (mean value of −6.22 mmHg, 95% CI: 5.00, 8.00) when compared with the regular DC group (−3.00 mmHg, P < 0.05) or the group which ingested the DC and lycopene as two separate formulations (mean reduction of −4 mmHg, 95% CI: 2.47, 6.00, P = 0.0262). Only marginal superiority for L-tug formulation in the reduction in systolic blood pressure was seen. However, the L-tug formulation was the only formulation of DC which affected serum lipids. There was a reduction in total cholesterol (from median 228.00 mg/dL [95% CI: 206.2, 242.5] to 187.00 mg/dL [95% CI: 166.2, 202.2, P < 0.05]) with corresponding decline of low-density lipoprotein (LDL) cholesterol (from a median of 166.00 mg/dL [95% CI: 130.8, 177.0] to 151.00 mg/dL [95% CI: 122.8, 167.4; P < 0.05]) at the end of the intervention period. Similar decline was seen in serum triglycerides (P < 0.05). Serum high-density lipoprotein (HDL) cholesterol, glucose levels, and C-reactive protein (CRP) values remained statistically unchanged in all study groups throughout the intervention period. A superior biological activity of the L-tug lycosome formulation of DC extending beyond its antihypertensive effect to lipid-lowering ability opens up new possibilities for the use of DC for health purposes helping to reduce daily caloric intake without compromising on the health benefits of DC consumption. PMID:25493193

  14. Effect of the consumption of a fruit and vegetable soup with high in vitro carotenoid bioaccessibility on serum carotenoid concentrations and markers of oxidative stress in young men.

    PubMed

    Martínez-Tomás, Rebeca; Larqué, Elvira; González-Silvera, Daniel; Sánchez-Campillo, María; Burgos, María Isabel; Wellner, Anna; Parra, Soledad; Bialek, Lucy; Alminger, Marie; Pérez-Llamas, Francisca

    2012-03-01

    To evaluate the effect of the daily intake of a fruit & vegetable soup with high in vitro bioaccessibility of carotenoids on β-carotene and lycopene serum concentrations. Fourteen healthy young men (24 ± 1 years) received 300 mL/day of a carrot, tomato, and broccoli soup, containing 3.9 mg β-carotene and 4 mg lycopene, for 4 weeks followed by a 4-week washout period. The serum carotenoid response and oxidative markers were analyzed after 3 and 4 weeks of soup consumption and after a 4-week washout. The in vitro bioaccessibility of β-carotene and lycopene was 55 and 43%, respectively, in the soup. Serum β-carotene concentrations were significantly higher than baseline (0.33 ± 0.05 μmol/L) after 3 weeks (0.69 ± 0.06 μmol/L) and 4 weeks (0.78 ± 0.10 μmol/L) of soup consumption (P < 0.001). Serum lycopene was also significantly higher compared with baseline levels (0.26 ± 0.08-0.56 ± 0.04 μmol/L and 0.60 ± 0.04 μmol/L, after 3 and 4 weeks, respectively) (P < 0.001). Although the highest concentration of both carotenoids was found after 4 weeks, the levels were not statistically different from the levels at 3 weeks. A 4-week washout significantly decreased serum carotenoid concentrations, although only β-carotene returned to baseline. Glutathione peroxidase (GPx) increased significantly after soup supplementation compared with baseline, while superoxide dismutase was significantly lower only after 3 weeks. Glutathione reductase, lipid, protein, and DNA oxidative markers remained unchanged. The soup contributed to increasing the concentration of each carotenoid by more than 100% after 3 and 4 weeks of consumption, the maximum increase being observed after 4 weeks. Oxidative markers did not show any variation except for GPx. Serum lycopene half-life was longer than that of β-carotene, which may be important for studies evaluating both carotenoids.

  15. Influence of acidification, pasteurization, centrifugation and storage time and temperature on watermelon juice quality.

    PubMed

    Tarazona-Díaz, Martha Patricia; Aguayo, Encarna

    2013-12-01

    Watermelon juice has gained increasing popularity among consumers as a rich natural source of functional compounds such as lycopene and citrulline. However, the final quality of the juice depends significantly on its acidification, pasteurization, centrifugation and storage time and temperature. In this study, these characteristics were assessed in watermelon juice pasteurized at 87.7 °C for 20 s and stored for up to 30 days at 4 or 8 °C. The acidifier citric acid provided an adequate sensory quality, similar to natural watermelon juice. Centrifugation and pasteurization significantly reduced the red color, bioactive compounds (lycopene, antioxidant capacity and total polyphenols) and sensory quality of the juice, particularly when the storage time was extended and a temperature of 8 °C was used (P ≤ 0.05). All treated juices were microbiologically safe for up to 30 days when stored at 4 or 8 °C. In terms of sensory acceptability, only non-centrifuged juices stored for up to 20 days at 4 °C remained above the commercial limit. The present results suggest that using a non-centrifugation process and a storage temperature of 4 °C yields a watermelon juice that better retains its sensory and functional qualities. © 2013 Society of Chemical Industry.

  16. Nutraceuticals for prostate cancer chemoprevention: from molecular mechanisms to clinical application.

    PubMed

    Wang, Zhijun; Fan, Jeffery; Liu, Mandy; Yeung, Steven; Chang, Andy; Chow, Moses S S; Pon, Doreen; Huang, Ying

    2013-12-01

    Nutraceutical is a food, or part of a food, used for the prevention and/or treatment of diseases. A number of nutraceuticals serve as candidates for development of prostate cancer chemopreventive agents because of promising epidemiological, preclinical and pilot clinical findings. Their mechanisms of action may involve an ability to target multiple molecular pathways in carcinogenesis without eliciting toxic side effects. This review provides an overview of several nutraceuticals, including green tea polyphenol, omega-3 fatty acids, vitamin D, lycopene, genistein, quercetin, resveratrol and sulforaphane, for the clinical relevance to chemoprevention of prostate cancer. Their mechanisms of action on regulating key processes of carcinogenesis are also discussed. For each of these agents, a brief summary of completed or currently ongoing clinical trials related to the chemopreventive efficacy on prostate cancer is given. Even though a few clinical trials have been conducted, review of these results indicate that further studies are required to confirm the clinical efficacy and safety, and to provide a guidance on how to use nutraceuticals for optimal effect. Future cancer prevention clinical trials for the nutraceuticals should recruit men with an increased risk of prostate cancer.

  17. Comparative transcriptomic analysis reveals phenol tolerance mechanism of evolved Chlorella strain.

    PubMed

    Zhou, Lin; Cheng, Dujia; Wang, Liang; Gao, Juan; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2017-03-01

    The growth of microalgae is inhibited by high concentration phenol due to reactive oxygen species. An evolved strain tolerated to 500mg/L phenol, Chlorella sp. L5, was obtained in previous study. In this study, comparative transcriptomic analysis was performed for Chlorella sp. L5 and its original strain (Chlorella sp. L3). The tolerance mechanism of Chlorella sp. L5 for high concentration phenol was explored on genome scale. It was identified that the up-regulations of the related genes according to antioxidant enzymes (SOD, APX, CAT and GR) and carotenoids (astaxanthin, lutein and lycopene) biosynthesis had critical roles to tolerate high concentration phenol. In addition, most of genes of PS I, PS II, photosynthetic electron transport chain and starch biosynthesis were also up-regulated. It was consistent to the experimental results of total carbohydrate contents of Chlorella sp. L3 and Chlorella sp. L5 under 0mg/L and 500mg/L phenol. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer

    PubMed Central

    Li, Yiwei; Wang, Zhiwei; Kong, Dejuan

    2010-01-01

    Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3′-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies. PMID:20711635

  19. Comparison of effectiveness of Calendula officinalis extract gel with lycopene gel for treatment of tobacco-induced homogeneous leukoplakia: A randomized clinical trial

    PubMed Central

    Singh, Manisha; Bagewadi, Anjana

    2017-01-01

    Aim: The aim of the study is to assess the efficacy of Calendula officinalis gel as cost-effective treatment modality in comparison to lycopene gel in the treatment of leukoplakia. Materials and Methods: The study comprised of sixty patients of clinically diagnosed and histopathologically confirmed cases of homogeneous leukoplakia which were divided into Group I and Group II with thirty patients each. Group I patients were dispensed C. officinalis extract gel whereas Group II patients were given lycopene gel. The therapy was instituted for 1 month to assess the change in the size of the lesion at the baseline and posttreatment. Results: The results revealed a statistically significant difference in both Group I and Group II when the pre- and post-treatment results were compared in the same group. The mean difference in the reduction in size before and after treatment for Group I was 2.0% ±1.0 cm while for the Group II, it was 1.57% ±0.87 cm. The intergroup comparison for the evaluation of reduction in the size of the lesion did not reveal statistically significant results. Conclusion: C. officinalis extract gel can be effectively used as an alternative to conventional treatment modality. PMID:28929051

  20. Serum Carotenoid Concentrations in Postmenopausal Women from the United States with and without Osteoporosis

    PubMed Central

    Yang, Zhifang; Zhang, Zhumin; Penniston, Kristina L.; Binkley, Neil; Tanumihardjo, Sherry A.

    2009-01-01

    Antioxidant defenses may be compromised in osteoporotic women. Little is known about fruit and vegetable or carotenoid consumption among postmenopausal women. The primary carotenoids in human serum are α- and β-carotene, lycopene, β-cryptoxanthin, lutein, and zeaxanthin. This study investigated the interrelationships among serum carotenoid concentrations, fruit and vegetable intake, and osteoporosis in postmenopausal women (n = 59, 62.7 ± 8.8 y). Bone density was assessed by dual energy x-ray absorptiometry and osteoporosis diagnosis was based upon T-scores. Serum samples (n = 53) and 3-day diet records (n = 49) were analyzed. Logistic regression analyzed differences between carotenoids after adjusting for serum retinol; supplement usage; milk, yogurt, fruit, and vegetable intake; and BMI. Pearson statistics correlated carotenoids with specific fruit or vegetable intake. Serum lycopene concentrations were lower in the osteoporosis group than controls (p = 0.03). β-Cryptoxanthin intake was higher in the osteoporosis group (p = 0.0046). Total fruit and vegetable intakes were correlated with serum lycopene and β-cryptoxanthin (p = 0.03, 0.006, respectively). Serum α-carotene concentration was associated with carrot intake, and zeaxanthin and β-cryptoxanthin with lettuce intake. Carotenoids that may have beneficial skeletal effects are lower in women with osteoporosis. Research is needed to identify potential protective mechanisms or utilization of carotenoids during osteoporosis. PMID:19003732

  1. Coconut oil enhances tomato carotenoid tissue accumulation compared to safflower oil in the Mongolian gerbil ( Meriones unguiculatus ).

    PubMed

    Conlon, Lauren E; King, Ryan D; Moran, Nancy E; Erdman, John W

    2012-08-29

    Evidence suggests that monounsaturated and polyunsaturated fats facilitate greater absorption of carotenoids than saturated fats. However, the comparison of consuming a polyunsaturated fat source versus a saturated fat source on tomato carotenoid bioaccumulation has not been examined. The goal of this study was to determine the influence of coconut oil and safflower oil on tomato carotenoid tissue accumulation in Mongolian gerbils ( Meriones unguiculatus ) fed a 20% fat diet. Coconut oil feeding increased carotenoid concentrations among many compartments including total carotenoids in the serum (p = 0.0003), adrenal glandular phytoene (p = 0.04), hepatic phytofluene (p = 0.0001), testicular all-trans-lycopene (p = 0.01), and cis-lycopene (p = 0.006) in the prostate-seminal vesicle complex compared to safflower oil. Safflower oil-fed gerbils had greater splenic lycopene concentrations (p = 0.006) compared to coconut oil-fed gerbils. Coconut oil feeding increased serum cholesterol (p = 0.0001) and decreased hepatic cholesterol (p = 0.0003) compared to safflower oil. In summary, coconut oil enhanced tissue uptake of tomato carotenoids to a greater degree than safflower oil. These results may have been due to the large proportion of medium-chain fatty acids in coconut oil, which might have caused a shift in cholesterol flux to favor extrahepatic carotenoid tissue deposition.

  2. Golden Rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency.

    PubMed

    Beyer, Peter; Al-Babili, Salim; Ye, Xudong; Lucca, Paola; Schaub, Patrick; Welsch, Ralf; Potrykus, Ingo

    2002-03-01

    To obtain a functioning provitamin A (beta-carotene) biosynthetic pathway in rice endosperm, we introduced in a single, combined transformation effort the cDNA coding for phytoene synthase (psy) and lycopene beta-cyclase (beta-lcy) both from Narcissus pseudonarcissus and both under the control of the endosperm-specific glutelin promoter together with a bacterial phytoene desaturase (crtI, from Erwinia uredovora under constitutive 35S promoter control). This combination covers the requirements for beta-carotene synthesis and, as hoped, yellow beta-carotene-bearing rice endosperm was obtained in the T(0)-generation. Additional experiments revealed that the presence of beta-lcy was not necessary, because psy and crtI alone were able to drive beta-carotene synthesis as well as the formation of further downstream xanthophylls. Plausible explanations for this finding are that these downstream enzymes are constitutively expressed in rice endosperm or are induced by the transformation, e.g., by enzymatically formed products. Results using N. pseudonarcissus as a model system led to the development of a hypothesis, our present working model, that trans-lycopene or a trans-lycopene derivative acts as an inductor in a kind of feedback mechanism stimulating endogenous carotenogenic genes. Various institutional arrangements for disseminating Golden Rice to research institutes in developing countries also are discussed.

  3. Stability of bacterial carotenoids in the presence of iron in a model of the gastric compartment - comparison with dietary reference carotenoids.

    PubMed

    Sy, Charlotte; Dangles, Olivier; Borel, Patrick; Caris-Veyrat, Catherine

    2015-04-15

    Recently isolated spore-forming pigmented marine bacteria, Bacillus indicus HU36 and Bacillus firmus GB1 are sources of carotenoids (∼fifteen distinct yellow and orange pigments and ∼thirteen distinct pink pigments, respectively). They are glycosides of oxygenated lycopene derivatives (apo-lycopenoids) and are assumed to be more heat- and gastric-stable than common carotenoids. In this study, the oxidation by O2 of the bacterial carotenoids was initiated by free iron (Fe(II) and Fe(III)) or by heme iron (metmyoglobin) in a mildly acidic aqueous solution mimicking the gastro-intestinal compartment and compared to the oxidation of the common dietary carotenoids β-carotene, lycopene and astaxanthin. Under these conditions, all bacterial carotenoids appear more stable in the presence of heme iron vs. free iron. Carotenoid autoxidation initiated by Fe(II) is relatively fast and likely involves reactive oxygen-iron species derived from Fe(II) and O2. By contrast, the corresponding reaction with Fe(III) is kinetically blocked by the slow preliminary reduction of Fe(III) into Fe(II) by the carotenoids. The stability of carotenoids toward autoxidation increases as follows: β-carotene

  4. Lipid-dissolved γ-carotene, β-carotene, and lycopene in globular chromoplasts of peach palm (Bactris gasipaes Kunth) fruits.

    PubMed

    Hempel, Judith; Amrehn, Evelyn; Quesada, Silvia; Esquivel, Patricia; Jiménez, Víctor M; Heller, Annerose; Carle, Reinhold; Schweiggert, Ralf M

    2014-11-01

    High levels of β-carotene, lycopene, and the rare γ-carotene occur predominantly lipid-dissolved in the chromoplasts of peach palm fruits. First proof of their absorption from these fruits is reported. The structural diversity, the physical deposition state in planta, and the human bioavailability of carotenoids from the edible fruits of diverse orange and yellow-colored peach palm (Bactris gasipaes Kunth) varieties were investigated. HPLC-PDA-MS(n) revealed a broad range of carotenes, reaching total carotenoid levels from 0.7 to 13.9 mg/100 g FW. Besides the predominant (all-E)-β-carotene (0.4-5.4 mg/100 g FW), two (Z)-isomers of γ-carotene (0.1-3.9 mg/100 g FW), and one (Z)-lycopene isomer (0.04-0.83 mg/100 g FW) prevailed. Approximately 89-94 % of total carotenoid content pertained to provitamin A carotenoids with retinol activity equivalents ranging from 37 to 609 µg/100 g FW. The physical deposition state of these carotenoids in planta was investigated using light, transmission electron, and scanning electron microscopy. The plastids found in both orange and yellow-colored fruit mesocarps were amylo-chromoplasts of the globular type, containing carotenoids predominantly in a lipid-dissolved form. The hypothesis of lipid-dissolved carotenoids was supported by simple solubility estimations based on carotenoid and lipid contents of the fruit mesocarp. In our study, we report first results on the human bioavailability of γ-carotene, β-carotene, and lycopene from peach palm fruit, particularly proving the post-prandial absorption of the rarely occurring γ-carotene. Since the physical state of carotenoid deposition has been shown to be decisive for carotenoid bioavailability, lipid-dissolved carotenoids in peach palm fruits are expected to be highly bioavailable, however, further studies are required.

  5. Confocal laser scanning microscopy detection of chlorophylls and carotenoids in chloroplasts and chromoplasts of tomato fruit.

    PubMed

    D'Andrea, Lucio; Amenós, Montse; Rodríguez-Concepción, Manuel

    2014-01-01

    Plant cells are unique among eukaryotic cells because of the presence of plastids, including chloroplasts and chromoplasts. Chloroplasts are found in green tissues and harbor the photosynthetic machinery (including chlorophyll molecules), while chromoplasts are present in non-photosynthetic tissues and accumulate large amounts of carotenoids. During tomato fruit development, chloroplasts are converted into chromoplasts that accumulate high levels of lycopene, a linear carotenoid responsible for the characteristic red color of ripe fruit. Here, we describe a simple and fast method to detect both types of fully differentiated plastids (chloroplasts and chromoplasts), as well as intermediate stages, in fresh tomato fruits. The method is based on the differential autofluorescence of chlorophylls and carotenoids (lycopene) detected by Confocal Laser Scanning Microscopy.

  6. The Stability of Bioactive Compounds in Spaceflight Foods

    NASA Technical Reports Server (NTRS)

    Cooper, M. R.; Douglas, G. L.

    2017-01-01

    The status and stability of bioactive compounds in the processed and shelf-stable spaceflight food system have not previously been investigated though the presence of such compounds in aged space foods could have health significance for crews on long duration exploration missions. Over forty foods - either existing International Space Station (ISS) food provisioning items, newly developed foods for spaceflight, or commercially-available ready-to-eat foods - that were predicted to have a relatively high concentrations of one or more bioactive compounds (lycopene, lutein, omega-3 fatty acids, phenolics, sterols, and/or flavonoids) were selected for the study. Food samples were sent overnight to the Food Composition Laboratory of the Linus Pauling Institute at Oregon State University (Corvallis, OR) for bioactive compound analysis. Three packages of each product were blended together for the analysis to reduce package-to-package variability. All ISS food items and commercial foods were analyzed initially and after 12 and 24 months of 21degC storage. Food development occurred in a staggered fashion, so data collection for the newly developed foods continues. Lastly, sensory evaluation and additional temperature storage data (4degC, 35degC) for select foods were collected to establish additional stability parameters. Efficacious concentrations of lycopene, lutein, and omega-3 fatty acids were measured in limited spaceflight foods; two grams of sterols a day may be difficult to achieve with the current space diet. Total polyphenol delivery appears stable and adequate, but individual phenolic compounds vary in stability and were not specifically evaluated in this study. The data suggests that some bioactive compounds, like lycopene and lutein, degrade and then plateau at some equilibrium concentration. The anthocyanin stability appears to be related to storage temperature and food matrix, and lutein stability in leafy vegetables may be impacted by storage temperature. Because of the limited number of foods with high concentrations of the bioactive compounds, additional menu variety, formulation optimization, and reduced temperature storage will be required to ensure delivery of several bioactive compounds in the space food system. Validation of stability to five years will enable provisioning of these functional foods within the space food system for a mission to Mars.

  7. A novel two-step ultrasound post-assisted lye peeling regime for tomatoes: Reducing pollution while improving product yield and quality.

    PubMed

    Gao, Ruiping; Ye, Fayin; Lu, Zhiqiang; Wang, Jiajia; Li Shen, Xiao; Zhao, Guohua

    2018-07-01

    In this paper, the effects and mechanisms of a novel two-step tomato peeling method, hot lye with a post-assistance of ultrasound, were investigated. The present work aims to improve the environmental friendliness of the conventional hot lye tomato peeling method (10% w/v, 97 °C, 45 s). The results showed that 4% (w/v) lye treatment at 97 °C for 30 s with a post-assistance of a 31.97 W/L ultrasound treatment at 70 °C for 50 s achieved a 100% peelability. In this scenario, the peeling yield and lycopene content in the peeled product were significantly higher than the peeling yield and lycopene content with the conventional hot lye peeling method. The present two-step peeling method was concluded with a mechanism of chemico-mechanical synergism, in which the hot lye functions mainly in a chemical way while the ultrasound is a mechanical process. Especially from the lye side, this work first demonstrated that the lye penetrated across the tomato skin via a pitting model rather than evenly. The findings reported in this paper not only provide a novel tomato peeling method with significant environmental benefits but also discover new clues to the peeling mechanism using hot lye. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Chemistry and biotechnology of carotenoids.

    PubMed

    Namitha, K K; Negi, P S

    2010-09-01

    Carotenoids are one of the most widespread groups of pigments in nature and more than 600 of these have been identified. Beside provitamin A activity, carotenoids are important as antioxidants and protective agents against various diseases. They are isoprenoids with a long polyene chain containing 3 to 15 conjugated double bonds, which determines their absorption spectrum. Cyclization at one or both ends occurs in hydrocarbon carotene, while xanthophylls are formed by the introduction of oxygen. In addition, modifications involving chain elongation, isomerization, or degradation are also found. The composition of carotenoids in food may vary depending upon production practices, post-harvest handling, processing, and storage. In higher plants they are synthesized in the plastid. Both mevalonate dependent and independent pathway for the formation of isopentenyl diphosphate are known. Isopentenyl diphosphate undergoes a series of addition and condensation reactions to form phytoene, which gets converted to lycopene. Cyclization of lycopene either leads to the formation of β-carotene and its derivative xanthophylls, β-cryptoxanthin, zeaxanthin, antheraxanthin, and violaxanthin or α-carotene and lutein. Even though most of the carotenoid biosynthetic genes have been cloned and identified, some aspects of carotenoid formation and manipulation in higher plants especially remain poorly understood. In order to enhance the carotenoid content of crop plants to a level that will be required for the prevention of diseases, there is a need for research in both the basic and the applied aspects.

  9. Consumer acceptability of low-sugar watermelon sweetened with non-calorie sweetener by a Native American community.

    PubMed

    Collins, Julie K; Davis, Angela R; Adams, Arin; Manness, Niels; Perkins-Veazie, Penelope M

    2006-01-01

    Watermelons are a good source of lycopene, a carotenoid that exhibits antioxidant activity and may protect against some cancers. However, intake of watermelon may be restricted for individuals who have diabetes or those who limit carbohydrate intake. A low-sugar watermelon was developed at Lane, Oklahoma using traditional plant breeding techniques. The objective of this study was to determine whether the artificially sweetened low-sugar watermelon was acceptable with Native Americans, a group with a high incidence of diabetes. The red flesh from a low-sugar watermelon and a commercial variety of watermelon was removed and cut into cubes. Low and high levels of artificial sweetener were added to the low-sugar watermelon. Students at a Native American school (Grades 1-12) and adults at a Native American Feeding Center were asked to rate how much they liked or disliked the watermelon using a seven-point hedonic scale. Sugar composition, pH, lycopene and other carotenoids were analyzed from samples using established methods. The pH, lycopene, beta-carotene and total carotenoid levels were similar among fruit. Artificially sweetened fruit were rated slightly more acceptable in taste than the commercial control watermelons by both age groups. The low-sugar watermelons were lower in sugar composition but were comparable with conventional melons in all other quality factors and were found acceptable in taste by a broad age group of Native American consumers.

  10. Carotenoids as Potential Antioxidant Agents in Stroke Prevention: A Systematic Review

    PubMed Central

    Bahonar, Ahmad; Saadatnia, Mohammad; Khorvash, Fariborz; Maracy, Mohammadreza; Khosravi, Alireza

    2017-01-01

    Stroke and other cerebrovascular diseases are among the most common causes of death worldwide. Prevention of modifiable risk factors is a cost-effective approach to decrease the risk of stroke. Oxidative stress is regarded as the major flexible operative agent in ischemic brain damage. This review presents recent scientific advances in understanding the role of carotenoids as antioxidants in lowering stroke risk based on observational studies. We searched Medline using the following terms: (Carotenoids [MeSH] OR Carotenes [tiab] OR Carotene [tiab] OR “lycopene [Supplementary Concept]” [MeSH] OR lycopene [tiab] OR beta-Carotene [tiab]) AND (stroke [MeSH] OR stroke [tiab] OR “Cerebrovascular Accident” [tiab] OR “Cerebrovascular Apoplexy” [tiab] OR “Brain Vascular Accident” [tiab] OR “Cerebrovascular Stroke” [tiab]) AND (“oxidative stress” [MeSH] OR “oxidative stress”[tiab]). This search considered papers that had been published between 2000 and 2017. Recent studies indicated that high dietary intake of six main carotenoids (i.e., lycopene, <- and®-carotene, lutein, zeaxanthin, and astaxanthin) was associated with reduced risk of stroke and other cardiovascular outcomes. However, the main mechanism of the action of these nutrients was not identified, and multiple mechanisms except antioxidant activity were suggested to be involved in the observed beneficial effects. The dietary intake of six major carotenoids should be promoted as this may have a substantial positive effect on stroke prevention and stroke mortality reduction. PMID:28983399

  11. Integrated analysis of multiomic data reveals the role of the antioxidant network in the quality of sea buckthorn berry.

    PubMed

    He, Caiyun; Zhang, Guoyun; Zhang, Jianguo; Zeng, Yanfei; Liu, Juanjuan

    2017-05-01

    Berries of sea buckthorn, known as the "king of vitamin C," are abundant in antioxidants, have attractive colors, and are an excellent material with which to study the relationships between berry color, antioxidants, and berry quality. No study has yet determined the molecular basis of the relationship between sea buckhorn berries and their color and antioxidant levels. By using RNA-seq, LC-MS/MS, and LC/GC-MS technology and selecting red (darkest colored) and yellow (lightest colored) sea buckthorn berries at different development stages, this study showed that the red and yellow berry resulted from a higher ratio of lycopene to β-carotene and of β-carotene to lycopene content, respectively. The uronic acid pathway-a known animal pathway-in ascorbic acid synthesis was found in sea buckthorn berries, and the higher expression of UDP-glucuronosyltransferase in red berries was consistent with the higher content of ascorbic acid. In summary, multiomic data showed that the color of sea buckthorn berries is mainly determined by β-carotene and lycopene; red sea buckthorn berries were richer than yellow berries in antioxidants, such as carotenoids, flavonoids, and ascorbic acid; and the animal pathway might be operating in sea buckthorn.-He, C., Zhang, G., Zhang, J., Zeng, Y., Liu, J. Integrated analysis of multiomic data reveals the role of the antioxidant network in the quality of sea buckthorn berry. © FASEB.

  12. Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse.

    PubMed

    Leyva, Rocío; Constán-Aguilar, Christian; Blasco, Begoña; Sánchez-Rodríguez, Eva; Romero, Luis; Soriano, Teresa; Ruíz, Juan M

    2014-01-15

    The quality of vegetables for fresh consumption is a complex issue. In this study the yield and quality of cherry tomato fruits were assessed under different environmental control conditions, namely in a screenhouse (S), in a screenhouse equipped with a fogging system (SF) and in a screenhouse with complements such as plastic sheeting to maintain the microclimate created by the fogging system (SFS), as well as under open field (OF) cultivation. Levels of vitamin C, carotenoids (lycopene, β-carotene and lutein), phenolic compounds (flavonoids and phenolic acids), sugars (fructose, glucose and sucrose), organic acids (citric acid and malic acid) and flavour indices were measured. The aim of the study was to determine how different environmental control technologies could influence production and quality traits in tomato cherry fruits cultivated in a Mediterranean area. The results showed that the fogging system treatment's decline in maximum vapour pressure deficit (by 0.7 kPa compared with OF cultivation), increase in mean fruit weight (by about 4 g per fruit) and low radiation and temperature values may exert a positive effect on lycopene accumulation. For the production and nutritional parameters measured, it is postulated that the fogging system treatment offers a better balance between production and nutritional quality. This treatment proved to be best in terms of productivity, vitamin C and lycopene contents and antioxidant capacity. © 2013 Society of Chemical Industry.

  13. The Tomato FRUITFULL Homologs TDR4/FUL1 and MBP7/FUL2 Regulate Ethylene-Independent Aspects of Fruit Ripening[W

    PubMed Central

    Bemer, Marian; Karlova, Rumyana; Ballester, Ana Rosa; Tikunov, Yury M.; Bovy, Arnaud G.; Wolters-Arts, Mieke; Rossetto, Priscilla de Barros; Angenent, Gerco C.; de Maagd, Ruud A.

    2012-01-01

    Tomato (Solanum lycopersicum) contains two close homologs of the Arabidopsis thaliana MADS domain transcription factor FRUITFULL (FUL), FUL1 (previously called TDR4) and FUL2 (previously MBP7). Both proteins interact with the ripening regulator RIPENING INHIBITOR (RIN) and are expressed during fruit ripening. To elucidate their function in tomato, we characterized single and double FUL1 and FUL2 knockdown lines. Whereas the single lines only showed very mild alterations in fruit pigmentation, the double silenced lines exhibited an orange-ripe fruit phenotype due to highly reduced lycopene levels, suggesting that FUL1 and FUL2 have a redundant function in fruit ripening. More detailed analyses of the phenotype, transcriptome, and metabolome of the fruits silenced for both FUL1 and FUL2 suggest that the genes are involved in cell wall modification, the production of cuticle components and volatiles, and glutamic acid (Glu) accumulation. Glu is responsible for the characteristic umami taste of the present-day cultivated tomato fruit. In contrast with previously identified ripening regulators, FUL1 and FUL2 do not regulate ethylene biosynthesis but influence ripening in an ethylene-independent manner. Our data combined with those of others suggest that FUL1/2 and TOMATO AGAMOUS-LIKE1 regulate different subsets of the known RIN targets, probably in a protein complex with the latter. PMID:23136376

  14. Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization.

    PubMed

    Spernath, Aviram; Yaghmur, Anan; Aserin, Abraham; Hoffman, Roy E; Garti, Nissim

    2002-11-06

    Water-dilutable food-grade microemulsions consisting of ethoxylated sorbitan esters, and in some cases blended with other emulsifiers, water, (R)-(+)-limonene, ethanol, and propylene glycol, have been prepared. These microemulsions are of growing interest to the food industry as vehicles for delivering and enhancing solubilization of natural food supplements with nutritional and health benefits. Lycopene, an active natural lipophilic antioxidant from tomato, has solubilized in water-in-oil, bicontinuous, and oil-in-water types of microemulsions up to 10 times the oil [(R)-(+)-limonene] dissolution capacity. The effects of aqueous-phase dilution, nature of surfactant (hydrophilic-lypophilic balance), and mixed surfactant on solubilization capacity and solubilization efficiency were studied. Structural aspects studied by self-diffusion NMR were correlated to the solubilization capacity, and transformational structural changes were identified.

  15. Antioxidants

    MedlinePlus

    ... carotene Lutein Lycopene Selenium Vitamin A Vitamin C Vitamin E Vegetables and fruits are rich sources of antioxidants. ... of lung cancer in smokers. High doses of vitamin E may increase risks of prostate cancer and one ...

  16. Comparison of high-performance liquid chromatography/tandem mass spectrometry and high-performance liquid chromatography/photo-diode array detection for the quantitation of carotenoids, retinyl esters, α-tocopherol and phylloquinone in chylomicron-rich fractions of human plasma.

    PubMed

    Kopec, Rachel E; Schweiggert, Ralf M; Riedl, Ken M; Carle, Reinhold; Schwartz, Steven J

    2013-06-30

    Bioavailability of essential lipophilic micronutrients and carotenoids is of utmost interest for human health, as the consumption of these compounds may help alleviate major nutritional deficiencies, cardiovascular disease, and cancer. High-performance liquid chromatography/photo-diode array detection (HPLC-PDA) and high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) were compared for the quantitative analysis of α- and β-carotene, β-cryptoxanthin, lutein, lycopene, α-tocopherol, phylloquinone, and several retinyl esters from chylomicron-containing triglyceride rich lipoprotein (TRL) fractions of human plasma obtained from two clinical trials. After selecting an efficient extraction method for the analytes, both the HPLC/PDA and the HPLC/MS/MS methods were developed and several parameters validated using an HP 1200 series HPLC system interfaced with a HP 1200 series diode-array detector (Agilent Technologies, Santa Clara, CA, USA) and a QTRAP 5500 (AB Sciex, Foster City, CA, USA) via an atmospheric pressure chemical ionization (APCI) probe operated in positive ion mode. For lycopene, α- and β-carotene, HPLC/MS/MS was up to 37 times more sensitive than HPLC-PDA. PDA detection was shown to be up to 8 times more sensitive for lutein. MS/MS signals were enhanced by matrix components for lutein and β-cryptoxanthin, as determined by referencing to the matrix-independent PDA signal. In contrast, matrix suppression was observed for retinyl palmitate, α-carotene, and β-carotene. Both detectors showed similar suitability for α-tocopherol, lycopene and retinyl palmitate (representing ~73% of total retinyl esters). MS/MS exclusively allowed the quantitation of minor retinyl esters, phylloquinone, and (Z)-lycopene isomers. HPLC/MS/MS was more sensitive than HPLC-PDA for six of the eight analytes and represents a powerful tool for the analysis of chylomicron samples and potentially other biological samples of limited sample size. When internal standards are available for the target carotenoid, employing MS/MS detection may reduce the necessary blood sample volume, which is particularly advantageous for minimizing risk and discomfort to human subjects during clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Comparison of high-performance liquid chromatography/tandem mass spectrometry and high-performance liquid chromatography/photo-diode array detection for the quantitation of carotenoids, retinyl esters, α-tocopherol and phylloquinone in chylomicron-rich fractions of human plasma

    PubMed Central

    Kopec, Rachel E.; Schweiggert, Ralf M.; Riedl, Ken M.; Carle, Reinhold; Schwartz, Steven J.

    2013-01-01

    Rationale Bioavailability of essential lipophilic micronutrients and carotenoids is of utmost interest for human health, as the consumption of these compounds may help alleviate major nutritional deficiencies, cardiovascular disease, and cancer. High-performance liquid chromatography/photo-diode array detection (HPLC-PDA) and high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) were compared for the quantitative analysis of α- and β-carotene, β-cryptoxanthin, lutein, lycopene, α-tocopherol, phylloquinone, and several retinyl esters from chylomicron-containing triglyceride rich lipoprotein (TRL) fractions of human plasma obtained from two clinical trials. Methods After selecting an efficient extraction method for the analytes, both the HPLC/PDA and the HPLC/MS/MS methods were developed and several parameters validated using an HP 1200 series HPLC system interfaced with a HP 1200 series diode-array detector (Agilent Technologies, Santa Clara, CA, USA) and a QTRAP 5500 (AB Sciex, Foster City, CA, USA) via an atmospheric pressure chemical ionization (APCI) probe operated in positive ion mode. Results For lycopene, α- and β-carotene, HPLC/MS/MS was up to 37 times more sensitive than HPLC-PDA. PDA detection was shown to be up to 8 times more sensitive for lutein. MS/MS signals were enhanced by matrix components for lutein and β-cryptoxanthin, as determined by referencing to the matrix-independent PDA signal. In contrast, matrix suppression was observed for retinyl palmitate, α-carotene, and β-carotene. Both detectors showed similar suitability for α-tocopherol, lycopene and retinyl palmitate (representing ~73% of total retinyl esters). MS/MS exclusively allowed the quantitation of minor retinyl esters, phylloquinone, and (Z)-lycopene isomers. Conclusions HPLC/MS/MS was more sensitive than HPLC-PDA for six of the eight analytes and represents a powerful tool for the analysis of chylomicron samples and potentially other biological samples of limited sample size. When internal standards are available for the target carotenoid, employing MS/MS detection may reduce the necessary blood sample volume, which is particularly advantageous for minimizing risk and discomfort to human subjects during clinical studies. PMID:23681818

  18. Chemical and antioxidant properties of snake tomato (Trichosanthes cucumerina) juice and Pineapple (Ananas comosus) juice blends and their changes during storage.

    PubMed

    Bamidele, Oluwaseun P; Fasogbon, Mofoluwaso B

    2017-04-01

    Juice blends made from the mixture of snake tomato (Trichosanthes cucumerina) and Pineapple (Ananas comosus) fruits were analyzed for pH, antioxidant properties, total titratable acidity, vitamin C, lycopene and total phenolic contents after different blend ratios were made. The addition of snake tomato juice increased the vitamin C, total carotene, lycopene and antioxidant properties of the juice blends. The radical scavenging properties of juice blends containing a higher ratio of snake tomato were higher and samples stored at room temperature (29°C) showed an increase in antioxidant properties compared to samples stored at 4°C. In conclusion, snake tomato juice up to 50% may be added to Pineapple juice to make a healthy juice blend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The energies and kinetics of triplet carotenoids in the LH2 antenna complexes as determined by phosphorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Rondonuwu, Ferdy S.; Taguchi, Tokio; Fujii, Ritsuko; Yokoyama, Kyosuke; Koyama, Yasushi; Watanabe, Yasutaka

    2004-01-01

    The triplet (T 1) states of carotenoids (Cars) and bacteriochlorophyll a (BChl) in the LH2 antenna complexes from Rhodobacter sphaeroides G1C, Rba. sphaeroides 2.4.1 and Rhodospirillum molischianum, containing neurosporene, spheroidene and lycopene, respectively, were examined by stationary-state and time-resolved phosphorescence spectroscopy. The T 1 energies of Cars were determined, irrespective of the Car or BChl excitation, to be 7030 cm -1 (neurosporene), 6920 cm -1 (spheroidene) and 6870 cm -1 (lycopene), respectively, whereas that of BChl to be 7590 cm -1. In the Rba. sphaeroides G1C, the Car and BChl triplet states decayed in similar time constant as the BChl Q y state, a fact which indicates that the pair of triplet states decays through the triplet-triplet annihilation mechanism.

  20. Biochemical validation of food frequency questionnaire-estimated carotenoid, alpha-tocopherol, and folate intakes among African Americans and non-Hispanic Whites in the Southern Community Cohort Study.

    PubMed

    Signorello, Lisa B; Buchowski, Maciej S; Cai, Qiuyin; Munro, Heather M; Hargreaves, Margaret K; Blot, William J

    2010-02-15

    Few food frequency questionnaires (FFQs) have been developed specifically for use among African Americans, and reports of FFQ performance among African Americans or low-income groups assessed using biochemical indicators are scarce. The authors conducted a validation study within the Southern Community Cohort Study to evaluate FFQ-estimated intakes of alpha-carotene, beta-carotene, beta-cryptoxanthin, lutein/zeaxanthin, lycopene, folate, and alpha-tocopherol in relation to blood levels of these nutrients. Included were 255 nonsmoking participants (125 African Americans, 130 non-Hispanic whites) who provided a blood sample at the time of study enrollment and FFQ administration in 2002-2004. Levels of biochemical indicators of each micronutrient (alpha-tocopherol among women only) significantly increased with increasing FFQ-estimated intake (adjusted correlation coefficients: alpha-carotene, 0.35; beta-carotene, 0.28; beta-cryptoxanthin, 0.35; lutein/zeaxanthin, 0.28; lycopene, 0.15; folate, 0.26; alpha-tocopherol, 0.26 among women; all P's < 0.05). Subjects in the top decile of FFQ intake had blood levels that were 27% (lycopene) to 178% (beta-cryptoxanthin) higher than those of subjects in the lowest decile. Satisfactory FFQ performance was noted even for participants with less than a high school education. Some variation was noted in the FFQ's ability to predict blood levels for subgroups defined by race, sex, and other characteristics, but overall the Southern Community Cohort Study FFQ appears to generate useful dietary exposure rankings in the cohort.

  1. Lycopene, Lutein and Zeaxanthin May Reduce Faecal Blood, Mucus and Pus but not Abdominal Pain in Individuals with Ulcerative Colitis.

    PubMed

    Głąbska, Dominika; Guzek, Dominika; Zakrzewska, Paulina; Włodarek, Dariusz; Lech, Gustaw

    2016-09-30

    The main symptom of ulcerative colitis is diarrhoea, which is often accompanied by painful tenesmus and faecal blood and mucus. It sometimes co-occurs with abdominal pain, fever, feeling of fatigue, loss of appetite and weight loss. Some dietary factors have been indicated as important in the treatment of ulcerative colitis. The aim of the study was to analyse the association between retinoid intake (total vitamin A, retinol, β-carotene, α-carotene, β-cryptoxanthin, lycopene, lutein and zeaxanthin) and ulcerative colitis symptoms (abdominal pain, faecal blood, faecal mucus, faecal pus) in individuals with ulcerative colitis in remission. Assessment of diet was based on self-reported data from each patient's dietary records taken over a period of three typical, random days (2 weekdays and 1 day of the weekend). A total of 56 individuals with ulcerative colitis in remission (19 males and 37 females) were recruited for the study. One in every four individuals with ulcerative colitis in remission was characterised as having inadequate vitamin A intake. Higher lycopene, lutein and zeaxanthin intakes in individuals with ulcerative colitis in remission were associated with lower faecal blood, mucus and pus but not with lower incidence of abdominal pain. Higher carotene intake in individuals with ulcerative colitis in remission may contribute to higher incidence of faecal mucus. Optimising intake of specific retinoids may enhance disease control in individuals with ulcerative colitis. Prospective studies, including patient reported and objective outcomes, are required to confirm this.

  2. Programming cells by multiplex genome engineering and accelerated evolution.

    PubMed

    Wang, Harris H; Isaacs, Farren J; Carr, Peter A; Sun, Zachary Z; Xu, George; Forest, Craig R; Church, George M

    2009-08-13

    The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.

  3. Carotene Degradation and Isomerization during Thermal Processing: A Review on the Kinetic Aspects.

    PubMed

    Colle, Ines J P; Lemmens, Lien; Knockaert, Griet; Van Loey, Ann; Hendrickx, Marc

    2016-08-17

    Kinetic models are important tools for process design and optimization to balance desired and undesired reactions taking place in complex food systems during food processing and preservation. This review covers the state of the art on kinetic models available to describe heat-induced conversion of carotenoids, in particular lycopene and β-carotene. First, relevant properties of these carotenoids are discussed. Second, some general aspects of kinetic modeling are introduced, including both empirical single-response modeling and mechanism-based multi-response modeling. The merits of multi-response modeling to simultaneously describe carotene degradation and isomerization are demonstrated. The future challenge in this research field lies in the extension of the current multi-response models to better approach the real reaction pathway and in the integration of kinetic models with mass transfer models in case of reaction in multi-phase food systems.

  4. Comparative study of flavonoid production in lycopene-accumulated and blonde-flesh sweet oranges (Citrus sinensis) during fruit development.

    PubMed

    Chen, Jiajing; Zhang, Hongyan; Pang, Yibo; Cheng, Yunjiang; Deng, Xiuxin; Xu, Juan

    2015-10-01

    Four main flavanone glycosides (FGs) and four main polymethoxylated flavones (PMFs) were determined in fruits of 'Cara Cara' navel orange, 'Seike' navel orange, 'Anliu' and 'Honganliu' sweet orange (Citrus sinensis). No bitter neohesperidosides were detected in the FG profiles, indicating the functional inability of 1,2-rhamnosyltransferase, though relatively high transcription levels were detected in the fruit tissues of 'Anliu' and 'Honganliu' sweet oranges. Different to the FGs, the PMFs only exist abundantly in the peel and decreased gradually throughout fruit development of sweet oranges, suggesting the expression of methylation-related genes accounting for PMF biosynthesis have tissue-specificity. Significant changes in production of the eight flavonoids were found between red-flesh and blonde-flesh sweet oranges, indicating that lycopene accumulation might have direct or indirect effects on the modification of flavonoid biosynthesis in these citrus fruits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Diet and dietary supplement intervention trials for the prevention of prostate cancer recurrence: a review of the randomized controlled trial evidence.

    PubMed

    Van Patten, Cheri L; de Boer, Johan G; Tomlinson Guns, Emma S

    2008-12-01

    We review the effect of diet and dietary supplement interventions on prostate cancer progression, recurrence and survival. A literature search was conducted in MEDLINE, EMBASE and CINAHL to identify diet and dietary supplement intervention studies in men with prostate cancer using prostate specific antigen or prostate specific antigen doubling time as a surrogate serum biomarker of prostate cancer recurrence and/or survival. Of the 32 studies identified 9 (28%) were randomized controlled trials and the focus of this review. In these studies men had confirmed prostate cancer and elevated or increasing prostate specific antigen. Only 1 trial included men with metastatic disease. When body mass index was reported, men were overweight or obese. A significant decrease in prostate specific antigen was observed in some studies using a low fat vegan diet, soy beverage or lycopene supplement. While not often reported as an end point, a significant increase in prostate specific antigen doubling time was observed in a study on lycopene supplementation. In only 1 randomized controlled trial in men undergoing orchiectomy was a survival end point of fewer deaths with lycopene supplementation reported. A limited number of randomized controlled trials were identified in which diet and dietary supplement interventions appeared to slow disease progression in men with prostate cancer, although results vary. Studies were limited by reliance on the surrogate biomarker prostate specific antigen, sample size and study duration. Well designed trials are warranted to expand knowledge, replicate findings and further assess the impact of diet and dietary supplement interventions on recurrence and treatment associated morbidities.

  6. Lycopene, Lutein and Zeaxanthin May Reduce Faecal Blood, Mucus and Pus but not Abdominal Pain in Individuals with Ulcerative Colitis

    PubMed Central

    Głąbska, Dominika; Guzek, Dominika; Zakrzewska, Paulina; Włodarek, Dariusz; Lech, Gustaw

    2016-01-01

    Background: The main symptom of ulcerative colitis is diarrhoea, which is often accompanied by painful tenesmus and faecal blood and mucus. It sometimes co-occurs with abdominal pain, fever, feeling of fatigue, loss of appetite and weight loss. Some dietary factors have been indicated as important in the treatment of ulcerative colitis. The aim of the study was to analyse the association between retinoid intake (total vitamin A, retinol, β-carotene, α-carotene, β-cryptoxanthin, lycopene, lutein and zeaxanthin) and ulcerative colitis symptoms (abdominal pain, faecal blood, faecal mucus, faecal pus) in individuals with ulcerative colitis in remission. Methods: Assessment of diet was based on self-reported data from each patient’s dietary records taken over a period of three typical, random days (2 weekdays and 1 day of the weekend). Results: A total of 56 individuals with ulcerative colitis in remission (19 males and 37 females) were recruited for the study. One in every four individuals with ulcerative colitis in remission was characterised as having inadequate vitamin A intake. Higher lycopene, lutein and zeaxanthin intakes in individuals with ulcerative colitis in remission were associated with lower faecal blood, mucus and pus but not with lower incidence of abdominal pain. Higher carotene intake in individuals with ulcerative colitis in remission may contribute to higher incidence of faecal mucus. Conclusions: Optimising intake of specific retinoids may enhance disease control in individuals with ulcerative colitis. Prospective studies, including patient reported and objective outcomes, are required to confirm this. PMID:27706028

  7. Antioxidant nutrients in plasma of Japanese patients with chronic obstructive pulmonary disease, asthma-COPD overlap syndrome and bronchial asthma.

    PubMed

    Kodama, Yuzo; Kishimoto, Yuki; Muramatsu, Yoko; Tatebe, Junko; Yamamoto, Yu; Hirota, Nao; Itoigawa, Yukinari; Atsuta, Ryo; Koike, Kengo; Sato, Tadashi; Aizawa, Koich; Takahashi, Kazuhisa; Morita, Toshisuke; Homma, Sakae; Seyama, Kuniaki; Ishigami, Akihito

    2017-11-01

    Few studies to date have investigated the antioxidant nutrients such as vitamin C (ascorbic acid), vitamin E (α-tocopherol), retinol and carotenoids in plasma from patients with pulmonary disease in Japan. To clarify the role of antioxidant nutrients such as vitamin C, vitamin E, retinol and various carotenoids in plasma of Japanese patients with chronic obstructive lung diseases (COPD), asthma-COPD overlap syndrome (ACOS) and/or bronchial asthma (BA), we compared to healthy elderly controls. Ascorbic acid (AA), carotenoids (lutein, zeaxanthin, β-cryptoxanthin, α-carotene, β-carotene and lycopene), retinol and α-tocopherol levels in plasma were determined by using a high performance liquid chromatography. Reduced glutathione (GSH), oxidised glutathione (GSSG) in whole blood and urinary 8-OHdG were also determined. Plasma AA level of COPD subjects was significantly lower than that of healthy elderly people. Conversely, ACOS and BA subjects showed no significant difference from healthy elderly people. Moreover, plasma lycopene and total carotenoid levels and GSH content in blood were significantly lower in COPD subjects than these in healthy elderly people. However, other redox markers such as GSSG, GSH/GSSG ratio and urinary 8-OHdG found no significant differences between COPD, ACOS and BA compared to healthy elderly people. These results suggested that COPD of Japanese patients may develop partly because of oxidative stress derived from a shortage of antioxidant nutrients, especially of AA and lycopene, as well as GSH while this may not be the case in both ACOS and BA. © 2016 John Wiley & Sons Ltd.

  8. Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm.

    PubMed

    Roselló, Salvador; Adalid, Ana Maria; Cebolla-Cornejo, Jaime; Nuez, Fernando

    2011-04-01

    Tomatoes are an important source of antioxidants (carotenoids, vitamin C, etc.) owing to their high level of consumption. There is great interest in developing cultivars with increased levels of lycopene, β-carotene or L-ascorbic acid. There is necessary to survey new sources of variation. In this study, the potential of improvement for each character in tomato breeding programmes, in a single or joint approach, and the nature of genotype (G), environment (E) and G × E interaction effects in the expression of these characters were investigated. The content of lycopene, β-carotene and ascorbic acid determined was very high in some phenotypes (up to 281, 35 and 346 mg kg(-1) respectively). The important differences in the three environments studied (with some stressing conditions in several situations) had a remarkable influence in the phenotypic expression of the functional characters evaluated. Nevertheless, the major contribution came from the genotypic effect along with a considerable G × E interaction. The joint accumulation of lycopene and β-carotene has a high genetic component. It is possible to select elite genotypes with high content of both carotenoids in tomato breeding programmes but multi-environment trials are recommended. The improvement of ascorbic acid content is more difficult because the interference of uncontrolled factors mask the real genetic potential. Among the accessions evaluated, there are four accessions with an amazing genetic potential for functional properties that can be used as donor parents in tomato breeding programmes or for direct consumption in quality markets. Copyright © 2011 Society of Chemical Industry.

  9. Nutrition Updates "Carotenoids and Health"

    USDA-ARS?s Scientific Manuscript database

    This symposium covered current topics in carotenoids and health, with special emphasis on healthy aging. The carotenoids covered were beta-carotene, lycopene, lutein, and beta-cryptoxanthin. Topics included the best food sources of these carotenoids, the importance of carotenoids as antioxidants an...

  10. Dynamics of Carotenoids Probed by Femtosecond Absorption, Fluorescence, and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yoshizawa, M.; Kosumi, D.; Komukai, M.; Yanagi, K.; Hashimoto, H.

    Ultrafast optical responses in β-carotene and lycopene depend on the pump wavelength. Excess vibrational energy induced by the photoexcitation remains longer than several picoseconds in the excited states and slows down the relaxation kinetics.

  11. In vivo and in vitro evidences that carotenoids could modulate the neutrophil respiratory burst during dietary manipulation.

    PubMed

    Walrand, Stéphane; Farges, Marie-Chantal; Dehaese, Olivier; Cardinault, Nicolas; Minet-Quinard, Régine; Grolier, Pascal; Bouteloup-Demange, Corinne; Ribalta, Josep; Winklhofer-Roob, Brigitte M; Rock, Edmond; Vasson, Marie-Paule

    2005-03-01

    The primary role of polymorphonuclear neutrophils (PMNs) is to destroy pathogenic microorganisms after phagocytosis by producing reactive oxygen species (ROS) and toxic molecules. However, PMNs produce sufficient amounts of ROS during an oxidative burst to be autotoxic and detrimental to their own functions and to possibly cause DNA damage, protein and lipid oxidation and cell membrane destructuration. The aim of this study was to investigate in vivo the role of the antioxidant capacities of carotenoids in modulating ROS content in PMNs during oxidative burst. Moreover to investigate the direct or indirect effect of carotenoids, the modification of PMN ROS content was explored after in vitro supplementation with beta-carotene or lycopene, chosen taking account of their vitamin A and no vitamin A precursor effect, respectively. In vivo study: Venous blood was collected from 10 healthy male volunteers and ROS production from phorbol myristate acetate (PMA)-stimulated PMNs was determined, by flow cytometry using the fluorescent dye dihydrorhodamine 123, at baseline, after 3 weeks of carotenoid depletion (carotenoid intake limited to 25% of usual intake) and after 5 weeks of carotenoid repletion (30 mg beta-carotene, 15 mg lycopene and 9 mg lutein per day). In vitro study: ROS content in PMA-stimulated PMNs isolated from carotenoid depleted subjects and controls was quantified after an in vitro enrichment with beta-carotene (1 micromol/L) or lycopene (0.3 micromol/L). In vivo carotenoid depletion increased PMN H2O2 content after PMA activation by 38% (p < 0.05 vs baseline),while supplementation for 5 weeks restored basal H2O2 generation (p < 0.05 vs depletion). Although H2O2 measurement in PMNs from non-depleted subjects was not affected by an in vitro supply with beta-carotene or lycopene, a significant decrease in H2O2 content by 78.9 % and 81.2%, respectively, was observed in PMNs from carotenoid depleted subjects (p < 0.01 vs depleted control subjects). The carotenoid ROS quenching capacities control both in vivo and in vitro the PMNs ROS generation and probably protect these cells against DNA, membrane lipid and protein damages during oxidative burst. Moreover, these effects appear independent from the metabolic conversion of carotenoids to vitamin A.

  12. Serenoa repens associated with selenium and lycopene extract and bromelain and methylsulfonylmethane extract are able to improve the efficacy of levofloxacin in chronic bacterial prostatitis patients.

    PubMed

    Cai, Tommaso; Tiscione, Daniele; Gallelli, Luca; Verze, Paolo; Palmieri, Alessandro; Mirone, Vincenzo; Bartoletti, Riccardo; Malossini, Gianni

    2016-10-05

    To date, the management of patients with chronic bacterial prostatitis (CBP) is not satisfactory, especially in terms of symptoms relief. Here, we evaluated the efficacy and the safety of a combination of serenoa repens, selenium and lycopene extract + bromelain and methylsulfonylmethane extract associated with levofloxacin in patients with CBP. All patients with clinical and instrumental diagnosis of CBP, admitted to a single Urological Institution from March to June 2015 were enrolled in this phase III study. All enrolled patients were randomized into two groups: Group A received levofloxacin 500 mg o.d. for 14 days associated with lycopene and methylsulfonylmethane; Group B received levofloxacin (500 mg o.d. for 14 days) only. Clinical and microbiological analyses were carried out at the time of admission (T0) and during the followups at 1 month (T1) and 6 months (T2) from the end of the treatment. NIH Chronic Prostatitis Symptom Index (CPSI), International Prostatic Symptom Score (IPSS) and Quality of Well-Being (QoL) questionnaires were used. The main outcome measures were the rate of microbiological cure and the improvement in questionnaire results from baseline at the end of the follow-ups period. Forty patients were enrolled in Group A and 39 in Group B. During the follow-up (T1), we recorded a significant changes in terms of NIH-CPSI and IPSS in Group A (mean difference: 17.6 ± 2.65; 12.2 ± 2.33; p < 0.01; p < 0.05, respectively) and versus Group B at the intergroup analysis (mean difference: -9 ± 1.82; -8.33 ± 1.71; p < 0.05; p < 0.05, respectively). No differences were reported in terms of microbiological findings between the two groups. At the second follow-up visit (T2), questionnaire results demonstrated statistically significant differences between groups (p < 0.001). One patient in Group A (2.5%) and 7 patients (17.9%) in Group B showed a symptomatic and microbiological recurrence (p = 0.02). The combination of serenoa repens, selenium, lycopene + bromelain and methylsulfonylmethane extracts improved the clinical efficacy of levofloxacin in patients affected by CBP without the development of side effects.

  13. Hepatoprotective and antioxidant effects of lycopene on non-alcoholic fatty liver disease in rat.

    PubMed

    Jiang, Wei; Guo, Mei-Hua; Hai, Xin

    2016-12-14

    To evaluate the hepatoprotective effect of lycopene (Ly) on non-alcoholic fatty liver disease (NAFLD) in rat. A rat model of NAFLD was first established by feeding a high-fat diet for 14 wk. Sixty-five rats were randomly divided into normal group, model group and Ly treatment groups. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglycerides (TG), total cholesterol (TC) in serum and low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), free fatty acid (FFA), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) in liver tissue were evaluated, respectively. While the hepatoprotective effect was also confirmed by histopathological analysis, the expression levels of TNF-α and cytochrome P 450 (CYP) 2E1 in rat liver were determined by immunohistochemistry analysis. A significant decrease was observed in the levels of serum AST (2.07-fold), ALT (2.95-fold), and the blood lipid TG (2.34-fold) and TC (1.66-fold) in the dose of 20 mg/kg Ly-treated rats ( P < 0.01), compared to the model group. Pretreatment with 5, 10 and 20 mg/kg of Ly significantly raised the levels of antioxidant enzyme SOD in a dose-dependent manner, to 90.95 ± 9.56, 109.52 ± 11.34 and 121.25 ± 10.68 ( P < 0.05, P < 0.01), as compared with the model group. Similarly, the levels of GSH were significantly increased ( P < 0.05, P < 0.01) after the Ly treatment. Meanwhile, pretreatment with 5, 10 and 20 mg/kg of Ly significantly reduced MDA amount by 30.87, 45.51 and 54.49% in the liver homogenates, respectively ( P < 0.01). The Ly treatment group showed significantly decreased levels of lipid products LDL-C ( P < 0.05, P < 0.01), improved HDL-C level and significantly decreased content of FFA, compared to the model group ( P < 0.05, P < 0.01). Furthermore, the Ly-treated group also exhibited a down-regulated TNF-α and CYP2E1 expression, decreased infiltration of liver fats and reversed histopathological changes, all in a dose-dependent manner ( P < 0.05, P < 0.01). This study suggests that Ly has a protective effect on NAFLD, down-regulates expression of TNF-α, and that CYP2E1 may be one of the action mechanisms for Ly.

  14. Environmental risk factors for chronic pancreatitis and pancreatic cancer.

    PubMed

    Nitsche, Claudia; Simon, Peter; Weiss, F Ulrich; Fluhr, Gabriele; Weber, Eckhard; Gärtner, Simone; Behn, Claas O; Kraft, Matthias; Ringel, Jörg; Aghdassi, Ali; Mayerle, Julia; Lerch, Markus M

    2011-01-01

    Chronic pancreatitis has long been thought to be mainly associated with immoderate alcohol consumption. The observation that only ∼10% of heavy drinkers develop chronic pancreatitis not only suggests that other environmental factors, such as tobacco smoke, are potent additional risk factors, but also that the genetic component of pancreatitis is more common than previously presumed. Either disease-causing or protective traits have been indentified for mutations in different trypsinogen genes, the gene for the trypsin inhibitor SPINK1, chymotrypsinogen C, and the cystic fibrosis transmembane conductance regulator (CFTR). Other factors that have been proposed to contribute to pancreatitis are obesity, diets high in animal protein and fat, as well as antioxidant deficiencies. For the development of pancreatic cancer, preexisting chronic pancreatitis, more prominently hereditary pancreatitis, is a risk factor. The data on environmental risk factors for pancreatic cancer are, with the notable exception of tobacco smoke, either sparse, unconfirmed or controversial. Obesity appears to increase the risk of pancreatic cancer in the West but not in Japan. Diets high in processed or red meat, diets low in fruits and vegetables, phytochemicals such as lycopene and flavonols, have been proposed and refuted as risk or protective factors in different trials. The best established and single most important risk factor for cancer as well as pancreatitis and the one to clearly avoid is tobacco smoke. Copyright © 2011 S. Karger AG, Basel.

  15. Production system and storage temperature influence grapefruit vitamin C, limonoids, and carotenoids.

    PubMed

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2012-07-25

    Concentrations of grapefruit (cv. 'Rio Red'; Citrus paradisi Macf.) bioactives grown under organic and conventional production systems were evaluated after storage at various temperatures. The first experiment was conducted in November 2008 and the second experiment was conducted in February 2011 using commercial production, processing, and packing procedures. The harvested grapefruits were stored at 23 °C (room temperature) or 9 °C for 4 weeks and analyzed for vitamin C, limonoids, and carotenoids at the end of each week using HPLC. Vitamin C levels were higher in organically grown grapefruits (41.8 mg/100 g) compared to conventionally grown grapefruits (39.2 mg/100 g) at 0 days after harvest in the first experiment. However, production system did not significantly affect vitamin C levels in the second experiment. During storage at room temperature, vitamin C degradation losses ranged from 0.5 to 7% for organically produced grapefruits and from 3 to 18% for conventional grapefruits in both experiments. In the first experiment at harvest, organically produced grapefruits had 77% higher (p ≤ 0.05) nomilin than conventionally produced grapefruits, whereas grapefruits grown under the conventional production system had 2-fold higher lycopene levels compared to organic grapefruits. In the second experiment, both β-carotene and lycopene levels were significantly (p ≤ 0.05) higher in conventionally produced grapefruits than in organic grapefruits. Overall, conventional production significantly increased grapefruit carotenoid levels in both experiments. In general, storage temperature (room temperature and 9 °C) had minimal effects on vitamin C degradation but significant effects on the degradation of carotenoids in the first experiment.

  16. Purple is the new Orange

    USDA-ARS?s Scientific Manuscript database

    Blood orange and Cara cara-like citrus varieties with purple or red fruit color, increased antioxidants and modified flavor could be the next generation of cultivars produced via genetic engineering. These varieties are being developed by enhancing the presence of anthocyanin and lycopene pigments...

  17. Evolution of an atypical de-epoxidase for photoprotection in the green lineage

    PubMed Central

    Li, Zhirong; Peers, Graham; Dent, Rachel M.; Bai, Yong; Yang, Scarlett Y.; Apel, Wiebke; Leonelli, Lauriebeth; Niyogi, Krishna K.

    2016-01-01

    Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a tradeoff between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress, and adaptation to different light conditions1,2. Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here we show that the CVDE gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria3. Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage. PMID:27618685

  18. Evolution of an atypical de-epoxidase for photoprotection in the green lineage.

    PubMed

    Li, Zhirong; Peers, Graham; Dent, Rachel M; Bai, Yong; Yang, Scarlett Y; Apel, Wiebke; Leonelli, Lauriebeth; Niyogi, Krishna K

    2016-09-12

    Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a trade-off between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress and adaptation to different light conditions(1,2). Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here we show that the Chlorophycean VDE (CVDE) gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria(3). Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage.

  19. Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid.

    PubMed

    Farré, Gemma; Perez-Fons, Laura; Decourcelle, Mathilde; Breitenbach, Jürgen; Hem, Sonia; Zhu, Changfu; Capell, Teresa; Christou, Paul; Fraser, Paul D; Sandmann, Gerhard

    2016-08-01

    Maize was genetically engineered for the biosynthesis of the high value carotenoid astaxanthin in the kernel endosperm. Introduction of a β-carotene hydroxylase and a β-carotene ketolase into a white maize genetic background extended the carotenoid pathway to astaxanthin. Simultaneously, phytoene synthase, the controlling enzyme of carotenogenesis, was over-expressed for enhanced carotenoid production and lycopene ε-cyclase was knocked-down to direct more precursors into the β-branch of the extended ketocarotenoid pathway which ends with astaxanthin. This astaxanthin-accumulating transgenic line was crossed into a high oil- maize genotype in order to increase the storage capacity for lipophilic astaxanthin. The high oil astaxanthin hybrid was compared to its astaxanthin producing parent. We report an in depth metabolomic and proteomic analysis which revealed major up- or down- regulation of genes involved in primary metabolism. Specifically, amino acid biosynthesis and the citric acid cycle which compete with the synthesis or utilization of pyruvate and glyceraldehyde 3-phosphate, the precursors for carotenogenesis, were down-regulated. Nevertheless, principal component analysis demonstrated that this compositional change is within the range of the two wild type parents used to generate the high oil producing astaxanthin hybrid.

  20. Molecular Cloning and Functional Characterization of the Lycopene ε-Cyclase Gene via Virus-Induced Gene Silencing and Its Expression Pattern in Nicotiana tabacum

    PubMed Central

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-01-01

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses. PMID:25153631

  1. Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum.

    PubMed

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-08-22

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses.

  2. Alteration of flower color in Iris germanica L. 'Fire Bride' through ectopic expression of phytoene synthase gene (crtB) from Pantoea agglomerans.

    PubMed

    Jeknić, Zoran; Jeknić, Stevan; Jevremović, Slađana; Subotić, Angelina; Chen, Tony H H

    2014-08-01

    Genetic modulation of the carotenogenesis in I. germanica 'Fire Bride' by ectopic expression of a crtB gene causes several flower parts to develop novel orange and pink colors. Flower color in tall bearded irises (Iris germanica L.) is determined by two distinct biochemical pathways; the carotenoid pathway, which imparts yellow, orange and pink hues and the anthocyanin pathway, which produces blue, violet and maroon flowers. Red-flowered I. germanica do not exist in nature and conventional breeding methods have thus far failed to produce them. With a goal of developing iris cultivars with red flowers, we transformed a pink iris I. germanica, 'Fire Bride', with a bacterial phytoene synthase gene (crtB) from Pantoea agglomerans under the control of the promoter region of a gene for capsanthin-capsorubin synthase from Lilium lancifolium (Llccs). This approach aimed to increase the flux of metabolites into the carotenoid biosynthetic pathway and lead to elevated levels of lycopene and darker pink or red flowers. Iris callus tissue ectopically expressing the crtB gene exhibited a color change from yellow to pink-orange and red, due to accumulation of lycopene. Transgenic iris plants, regenerated from the crtB-transgenic calli, showed prominent color changes in the ovaries (green to orange), flower stalk (green to orange), and anthers (white to pink), while the standards and falls showed no significant differences in color when compared to control plants. HPLC and UHPLC analysis confirmed that the color changes were primarily due to the accumulation of lycopene. In this study, we showed that ectopic expression of a crtB can be used to successfully alter the color of certain flower parts in I. germanica 'Fire Bride' and produce new flower traits.

  3. The effects of tomato powder supplementation on performance and lipid peroxidation in quail.

    PubMed

    Sahin, N; Orhan, C; Tuzcu, M; Sahin, K; Kucuk, O

    2008-02-01

    Recent studies have suggested a protective role for lycopene, an antioxidant carotenoid, in the prevention of stress including environmental stress. Tomatoes and tomato products are the major dietary source of lycopene. The objective of the present study was to investigate the effect of dietary tomato powder supplementation on the performance and lipid peroxidation of meat in Japanese quail (Coturnix coturnix japonica) exposed to a high ambient temperature of 34 degrees C. A total of 180 ten-day-old male quails were randomly allocated into 6 groups consisting of 10 replicates of 3 birds. Birds were kept in wire cages in a temperature-controlled room at either 22 degrees C (thermoneutral) or 34 degrees C (heat stress) for 8 h/ d (0900 to 1700 h during the study). Birds were fed either a basal diet or the basal diet supplemented with 2.5 or 5.0% of tomato powder. Tomato powder supplementation linearly increased feed intake, live weight gain, and feed conversion (P = 0.01) under heat stress conditions but did not show the same effect at thermoneutral conditions (P > 0.05). Heat stress significantly increased malondialdehyde concentration and decreased vitamin concentrations in the serum, liver, and muscles of quail. Serum lycopene and vitamin C, E, and A (P = 0.01) concentrations increased linearly in birds at all groups. Malondialdehyde levels in serum, liver (P = 0.001), and muscles linearly decreased in all birds of both thermoneutral and heat stress groups as dietary tomato powder supplementation increased. The results of the study indicate that tomato powder modulates the oxidation-antioxidation system of the muscles in Japanese quail exposed to high ambient temperature.

  4. Metabolic engineering of monoterpene biosynthesis in tomato fruits via introduction of the non-canonical substrate neryl diphosphate.

    PubMed

    Gutensohn, Michael; Nguyen, Thuong T H; McMahon, Richard D; Kaplan, Ian; Pichersky, Eran; Dudareva, Natalia

    2014-07-01

    Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  5. Precise metabolic engineering of carotenoid biosynthesis in Escherichia coli towards a low-cost biosensor.

    PubMed

    Watstein, Daniel M; McNerney, Monica P; Styczynski, Mark P

    2015-09-01

    Micronutrient deficiencies, including zinc deficiency, are responsible for hundreds of thousands of deaths annually. A key obstacle to allocating scarce treatment resources is the ability to measure population blood micronutrient status inexpensively and quickly enough to identify those who most need treatment. This paper develops a metabolically engineered strain of Escherichia coli to produce different colored pigments (violacein, lycopene, and β-carotene) in response to different extracellular zinc levels, for eventual use in an inexpensive blood zinc diagnostic test. However, obtaining discrete color states in the carotenoid pathway required precise engineering of metabolism to prevent reaction at low zinc concentrations but allow complete reaction at higher concentrations, and all under the constraints of natural regulator limitations. Hence, the metabolic engineering challenge was not to improve titer, but to enable precise control of pathway state. A combination of gene dosage, post-transcriptional, and post-translational regulation was necessary to allow visible color change over physiologically relevant ranges representing a small fraction of the regulator's dynamic response range, with further tuning possible by modulation of precursor availability. As metabolic engineering expands its applications and develops more complex systems, tight control of system components will likely become increasingly necessary, and the approach presented here can be generalized to other natural sensing systems for precise control of pathway state. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  6. Nature’s packaging and organization of carotenoids in watermelon and cantaloupe chromoplasts

    USDA-ARS?s Scientific Manuscript database

    As a means to better understand factors influencing the bioavailability of carotenoids from natural sources, the properties of plant-derived precipitates of watermelon lycopene and cantaloupe B-carotene were examined in an aqueous environment. Electron microscopy and chemical analyses revealed that...

  7. Breeding for phytonutrient content; examples from watermelon

    USDA-ARS?s Scientific Manuscript database

    Breeding for high phytonutrient fruits and vegetables can be a fairly straightforward endeavor when the compounds of interest produce a visible effect or the methods for quantifying the compounds simple and inexpensive. Lycopene in tomatoes and watermelon is one such compound, since the amount of r...

  8. Optimized, Fast-Throughput UHPLC-DAD Based Method for Carotenoid Quantification in Spinach, Serum, Chylomicrons, and Feces.

    PubMed

    Eriksen, Jane N; Madsen, Pia L; Dragsted, Lars O; Arrigoni, Eva

    2017-02-01

    An improved UHPLC-DAD-based method was developed and validated for quantification of major carotenoids present in spinach, serum, chylomicrons, and feces. Separation was achieved with gradient elution within 12.5 min for six dietary carotenoids and the internal standard, echinenone. The proposed method provides, for all standard components, resolution > 1.1, linearity covering the target range (R > 0.99), LOQ < 0.035 mg/L, and intraday and interday RSDs < 2 and 10%, respectively. Suitability of the method was tested on biological matrices. Method precision (RSD%) for carotenoid quantification in serum, chylomicrons, and feces was below 10% for intra- and interday analysis, except for lycopene. Method accuracy was consistent with mean recoveries ranging from 78.8 to 96.9% and from 57.2 to 96.9% for all carotenoids, except for lycopene, in serum and feces, respectively. Additionally, an interlaboratory validation study on spinach at two institutions showed no significant differences in lutein or β-carotene content, when evaluated on four occasions.

  9. Quality comparison of hydroponic tomatoes (Lycopersicon esculentum) ripened on and off vine

    NASA Technical Reports Server (NTRS)

    Arias, R.; Lee, T. C.; Specca, D.; Janes, H.

    2000-01-01

    There is a general belief that the quality of tomatoes ripened on vine is better than tomatoes ripened off the vine, influencing among other parameters, the price of this commodity. We compared the quality of hydroponic tomatoes ripened on and off vine by chemical, physical, and sensory evaluation to find what attributes are affected and to what extent. Lycopene, beta-carotene, total and soluble solids, moisture content, ascorbic acid, acidity, pH, texture, and color were analyzed. Tomatoes ripened on vine had significantly more lycopene, beta-carotene, soluble and total solids, higher a* and lower L*, and were firmer. However, a 100-judge panel rated only the color and overall liking of the vine-ripened tomatoes as more intense than the fruit ripened off vine. Therefore, the chemical and physical differences were mostly not large enough to influence the panelist's perception. The characterization of tomatoes ripened on and off vine may help to guide post-harvest handling and treatment and to improve the quality of tomatoes ripened off vine.

  10. Development of lycopene-loaded lipid-core nanocapsules: physicochemical characterization and stability study

    NASA Astrophysics Data System (ADS)

    dos Santos, Priscilla Pereira; Paese, Karina; Guterres, Silvia Stanisçuaski; Pohlmann, Adriana Raffin; Costa, Tania Hass; Jablonski, André; Flôres, Simone Hickmann; Rios, Alessandro de Oliveira

    2015-02-01

    The objective of this study was to develop lycopene-loaded lipid-core nanocapsules (Lyc-LNCs) by the interfacial deposition of preformed poly(ɛ-caprolactone) (PCL). Lyc extract (93.9 %) was obtained from tomatoes, and the organic phase was prepared with polymer (PCL), caprylic/capric triglycerides, sorbitan monostearate, and Lyc in a mixture of acetone and ethanol under magnetic stirring at 40 °C. The organic phase was injected into an aqueous phase containing polysorbate 80, and the suspension was concentrated under reduced pressure. The formulation with a Lyc concentration of 85 µg/mL was characterized in terms of size distribution, zeta potential, encapsulation efficiency, pH, viscosity, and color. The Lyc-LNC formulation presented stable values for the z-average (193 ± 4.7 nm) and zeta potential (-11.5 ± 0.40 mV). Despite the lower pH, Lyc content, and color change of the suspension, the nanocapsules showed satisfactory stability, presenting around 50 % Lyc content after 14 days of storage at room temperature (25 °C).

  11. Magnitude of genotype x environment interactions affecting tomato fruit quality

    USDA-ARS?s Scientific Manuscript database

    There is a growing interest by consumers to purchase fresh tomato with improved quality traits including lycopene, total soluble solids (TSS), vitamin C and titratable acid (TA) content. Therefore, there are considerable efforts by tomato breeders to improve tomato for these traits. However, suitabl...

  12. Phenotypic and molecular variation in 44 vintage tomato varieties

    USDA-ARS?s Scientific Manuscript database

    An important goal of tomato breeding is to create varieties that will provide high quality product for fresh consumption. Traits such as lycopene, total soluble solids (TSS), vitamin C and titratable acidity (TA) are major components of fruit flavor and quality. Although several-thousand genotypes a...

  13. Antioxidant Prophylaxis in the Prevention of Prostatic Epithelial Neoplasia

    DTIC Science & Technology

    2009-02-01

    of antioxidants such as selenium, tocopherols , lycopene, β-carotene etc. have been found to be effective in lowering prostate cancer risk. Although...3ng/ml; 2). The α- tocopherol , β-carotene (ATBC) cancer prevention trial in Finland found that consumption of vitamin E reduced clinical prostate

  14. Skin toxicity from external beam radiation therapy in breast cancer patients: protective effects of Resveratrol, Lycopene, Vitamin C and anthocianin (Ixor®).

    PubMed

    Di Franco, Rossella; Calvanese, MariaGrazia; Murino, Paola; Manzo, Roberto; Guida, Cesare; Di Gennaro, Davide; Anania, Caterina; Ravo, Vincenzo

    2012-01-30

    This is an observational study and the aim is to evaluate the effect of dietary supplements based on Resveratrol, Lycopene, Vitamin C and Anthocyanins (Ixor®) in reducing skin toxicity due to external beam radiotherapy in patients affected by breast cancer. 71 patients were enrolled and they were divided in two different groups: a control group (CG) of 41 patients treated with prophylactic topical therapy based on hyaluronic acid and topical steroid therapy in case of occurrence of radiodermatitis, and a Ixor-Group (IG) of 30 patients treated also with an oral therapy based on Resveratrol, Lycopene, Vitamin C and Anthocyanin (Ixor®) at a dose of 2 tablets/day, starting from 10 days before the radiation treatment until 10 days after the end of treatment. Skin toxicity has been related to PTV, to breast volume that received a radiation dose equal or lower than 107%, included between 107% and 110%, or greater than 110% of the prescribed dose. Moreover it's been studied the relationship between skin toxicity and the chemotherapy schedule used before treatment. We calculated in both groups the percentage of patients who had a skin toxicity of grade 2 or 3 (according to RTOG scale). Absolute risk reduction (ARR), relative risk (RR) and odds ratio (OR) have been calculated for each relationship. Control Group (CG) patients with a PTV > 500 ml presented skin toxicity G2 + G3 in 30% of cases, versus 25% of Ixor-Group (IG) [OR 0.77]. In patients with a PTV < 500 ml G2 + G3 toxicity was 0% in the IG compared to 18% in CG (OR 0.23). When Dmax was less than or equal to 107% of the prescribed dose skin toxicity was G2 + G3 in 12.5% in CG, versus 0% in IG (OR 0.73), instead when Dmax was included between 107 and 110% of the prescribed dose, G2 + G3 skin toxicity was 35% in CG and 21% in IG (OR 0.50). In patients undergoing chemotherapy with anthracyclines and taxanes, G2 + G3 toxicity was 27% in CG, against 20% in IG (OR 0.68). The protective effect of Resveratrol, Lycopene, Vitamin C and Anthocyanin (Ixor®) is more detected in patients with PTV < 500 ml, when Dmax reaches values lower or equal to 107%, but not exceeding 110% of the prescribed dose, and in patients undergoing adjuvant chemotherapy with anthracyclines and taxanes.

  15. A wild origin of the loss-of-function lycopene beta cyclase (CYC-b) allele in cultivated, red-fleshed papaya (Carica papaya).

    PubMed

    Wu, Meng; Lewis, Jamicia; Moore, Richard C

    2017-01-01

    The red flesh of some papaya cultivars is caused by a recessive loss-of-function mutation in the coding region of the chromoplast-specific lycopene beta cyclase gene (CYC-b). We performed an evolutionary genetic analysis of the CYC-b locus in wild and cultivated papaya to uncover the origin of this loss-of-function allele in cultivated papaya. We analyzed the levels and patterns of genetic diversity at the CYC-b locus and six loci in a 100-kb region flanking CYC-b and compared these to genetic diversity levels at neutral autosomal loci. The evolutionary relationships of CYC-b haplotypes were assessed using haplotype network analysis of the CYC-b locus and the 100-kb CYC-b region. Genetic diversity at the recessive CYC-b allele (y) was much lower relative to the dominant Y allele found in yellow-fleshed wild and cultivated papaya due to a strong selective sweep. Haplotype network analyses suggest the y allele most likely arose in the wild and was introduced into domesticated varieties after the first papaya domestication event. The shared haplotype structure between some wild, feral, and cultivated haplotypes around the y allele supports subsequent escape of this allele from red cultivars back into wild populations through feral intermediates. Our study supports a protracted domestication process of papaya through the introgression of wild-derived traits and gene flow from cultivars to wild populations. Evidence of gene flow from cultivars to wild populations through feral intermediates has implications for the introduction of transgenic papaya into Central American countries. © 2017 Botanical Society of America.

  16. Influence of Paclobutrazol (PP333) and Sridiamin (Human hair-derived aminoacid mixture) on growth and quality of Tomato PKM-1

    NASA Astrophysics Data System (ADS)

    Suja, S.; Anusuya, N.

    2018-03-01

    Tomato is one of the most popular vegetable in subtropics and tropics. Plant growth regulators have potential for manipulating growth of many agricultural crops. Among the plant growth retardants, paclobutrazol (PP333) has been reported to exert profound effects on improving the yield of certain vegetables. Aminoacids are essential prerequisite for plant growth. Sridiamin a natural blend of 17 essential L-aminoacids, fortified with vitamins ensuring better crop growth and higher productivity. Therefore the present study was designed with 5mg and 10 mg concentration of PP333 as soil drench and a foliar spray of sridiamin of 0.5% and 1% concentration as individual and as combined treatment improved the yield and quality of tomato PKM1. Various biometric parameters, along with chlorophyll, starch, aminoacid and protein content were analysed in the leaves. In fruit analysis like titrable acidity, total soluble solids, ascorbic acid, lycopene, total sugars, macronutrients and micronutrients were analysed.

  17. Ubiquinone and carotene production in the Mucorales Blakeslea and Phycomyces.

    PubMed

    Kuzina, Vera; Cerdá-Olmedo, Enrique

    2007-10-01

    The filamentous fungi Phycomyces blakesleeanus and Blakeslea trispora (Zygomycota, Mucorales) are actual or potential industrial sources of beta-carotene and lycopene. These chemicals and the large terpenoid moiety of ubiquinone derive from geranylgeranyl pyrophosphate. We measured the ubiquinone and carotene contents of wild-type and genetically modified strains under various conditions. Light slightly increased the ubiquinone content of Blakeslea and had no effect on that of Phycomyces. Oxidative stress modified ubiquinone production in Phycomyces and carotene production in both fungi. Sexual interaction and mutations in both organisms made the carotene content vary from traces to 23 mg/g dry mass, while the ubiquinone content remained unchanged at 0.3 mg/g dry mass. We concluded that the biosyntheses of ubiquinone and carotene are not coregulated. The specific regulation for carotene biosynthesis does not affect even indirectly the production of ubiquinone, as would be expected if terpenoids were synthesized through a branched pathway that could divert precursor flows from one branch to another.

  18. Scanning genomic areas under selection sweep and association mapping as tools to identify horticultural important genes in watermelon

    USDA-ARS?s Scientific Manuscript database

    Watermelon (Citrullus lanatus var. lanatus) contains 88% water, sugars, and several important health-related compounds, including lycopene, citrulline, arginine, and glutathione. The current genetic diversity study uses microsatellites with known map positions to identify genomic regions that under...

  19. The next generation of carotenoid studies in carrot (Daucus carota L.)

    USDA-ARS?s Scientific Manuscript database

    Orange carrot (Daucus carota L.) is one of the richest sources of naturally occurring ß-carotene while red and yellow carrot varieties contain large quantities of lycopene and lutein. The human body utilizes carotenoids, particularly ß-carotene (provitamin A) as a precursor for the production of ret...

  20. Prostate Cancer, Nutrition, and Dietary Supplements (PDQ®)—Health Professional Version

    Cancer.gov

    Nutrition methods and dietary supplements have been studied for prostate cancer prevention or treatment. Read about the history of research, laboratory, and human studies on various prostate supplements, such as calcium, green tea, lycopene, pomegranate, selenium, soy, and vitamin E in this expert-reviewed summary.

  1. Understanding the carotenoid biosynthetic pathway through observation of four color variants of developing watermelon (Citrullus lanatus (Thunb.) Matsum. & Nanai)

    USDA-ARS?s Scientific Manuscript database

    The carotenoid biosynthetic pathway regulatory mechanisms leading to lycopene accumulation are well defined in the model fruit, tomato (Lycopersicon esculentum L.). The regulatory mechanisms leading to accumulation of other carotenoids and flesh colors, however, are poorly understood. The variety ...

  2. Effect of tomato extract supplementation against high-fat diet-induced hepatic lesions

    USDA-ARS?s Scientific Manuscript database

    Higher intake of tomatoes or tomato-based products has been associated with lower risk for liver cancer. In this study, we investigated the effects of supplementing tomato extract (TE), which contains mainly lycopene (LY) and less amounts of its precursors, phytoene (PT) and phytofluene (PTF) agains...

  3. Roles of diet, lifetime physical activity and oxidative DNA damage in the occurrence of prostate cancer among men in Klang Valley, Malaysia.

    PubMed

    Shahar, Suzana; Shafurah, Siti; Hasan Shaari, Nur Suraiya Abu; Rajikan, Roslee; Rajab, Nor Fadilah; Golkhalkhali, Babak; Zainuddin, Zulkifli Md

    2011-01-01

    There is a paucity of information on risk factors of prostate cancer, especially those related to dietary and lifestyle among Asian populations. This study aimed to determine the relationship between dietary intake (macronutrients, fruits, vegetables and lycopene), lifetime physical activity and oxidative DNA damage with prostate cancer. A case control study was carried out among 105 subjects (case n=35, control n=70), matched for age and ethnicity. Data on sociodemographic, medical, dietary intake, consumption of lycopene rich food and lifetime physical activity were obtained through an interview based questionnaire. Anthropometric measurements including weight, height and waist hip circumferences were also carried out on subjects. A total of 3 mL fasting venous blood was drawn to assess lymphocyte oxidative DNA damage using the alkaline comet assay. Cases had a significantly higher intake of fat (27.7 ± 5.5%) as compared to controls (25.1 ± 5.9%) (p < 0.05). Mean intakes of fruits and vegetables (3.11 ± 1.01 servings/d)(p < 0.05), fruits (1.23 ± 0.59 servings/d) (p<0.05) and vegetables (1.97 ± 0.94 servings/d) were higher in controls than cases (2.53 ± 1.01, 0.91 ∓ 0.69, 1.62 ± 0.82 servings/d). A total of 71% of cases did not met the recommendation of a minimum of three servings of fruits and vegetables daily, as compared to 34% of controls (p < 0.05) (adjusted OR 6.52 (95% CI 2.3-17.8)) (p < 0.05). Estimated lycopene intake among cases (2,339 ∓ 1,312 mcg/d) were lower than controls (3881 ∓ 3120 mcg/d) (p< 0.01). Estimated lycopene intake of less than 2,498 mcg/day (50th percentile) increased risk of prostate cancer by double [Adjusted OR 2.5 (95%CI 0.99-6.31)]. Intake of tomatoes, watermelon, guava, pomelo, papaya, mango, oranges, dragon fruit, carrot, tomato sauce and barbeque sauce were higher in controls compared to cases. Intake of tomato sauce of more than 2.24 g/d (25th percentile), papaya more than 22.7 g/d (50th percentile) and oranges more than 19.1g/h (50th percentile) reduced prostate cancer risk by 7.4 (Adjusted OR 7.4 (95% CI 1.17-46.8)), 2.7 (adjusted OR 2.75 (95% CI 1.03-7.39)) and 2.6 times (adjusted OR = 2.6 (95% CI=1.01-6.67)), respectively (p < 0.05 for all parameters). No oxidative damage was observed among subjects. Past history of not engaging with any physical activities at the age of 45 to 54 years old increased risk of prostate cancer by approximately three folds (Adjusted OR 2.9(95% CI = 0.8-10.8)) (p < 0.05). In conclusion, low fat diet, high intake of fruits, vegetables and lycopene rich foods and being physical active at middle age were found to be protective. Thus, it is essential for Malaysian men to consume adequate fruits and vegetables, reduce fat intake and engage in physical activity in order to reduce prostate cancer risk.

  4. Isoprenoid Pyrophosphate-Dependent Transcriptional Regulation of Carotenogenesis in Corynebacterium glutamicum

    PubMed Central

    Henke, Nadja A.; Heider, Sabine A. E.; Hannibal, Silvin; Wendisch, Volker F.; Peters-Wendisch, Petra

    2017-01-01

    Corynebacterium glutamicum is a natural producer of the C50 carotenoid decaprenoxanthin. The crtEcg0722crtBIYEb operon comprises most of its genes for terpenoid biosynthesis. The MarR-type regulator encoded upstream and in divergent orientation of the carotenoid biosynthesis operon has not yet been characterized. This regulator, named CrtR in this study, is encoded in many actinobacterial genomes co-occurring with terpenoid biosynthesis genes. CrtR was shown to repress the crt operon of C. glutamicum since DNA microarray experiments revealed that transcript levels of crt operon genes were increased 10 to 70-fold in its absence. Transcriptional fusions of a promoter-less gfp gene with the crt operon and crtR promoters confirmed that CrtR represses its own gene and the crt operon. Gel mobility shift assays with purified His-tagged CrtR showed that CrtR binds to a region overlapping with the −10 and −35 promoter sequences of the crt operon. Isoprenoid pyrophosphates interfered with binding of CrtR to its target DNA, a so far unknown mechanism for regulation of carotenogenesis. The molecular details of protein-ligand interactions remain to be studied. Decaprenoxanthin synthesis by C. glutamicum wild type was enhanced 10 to 30-fold upon deletion of crtR and was decreased 5 to 6-fold as result of crtR overexpression. Moreover, deletion of crtR was shown as metabolic engineering strategy to improve production of native and non-native carotenoids including lycopene, β-carotene, C.p. 450 and sarcinaxanthin. PMID:28484430

  5. Evolution of an atypical de-epoxidase for photoprotection in the green lineage

    DOE PAGES

    Li, Zhirong; Peers, Graham; Dent, Rachel M.; ...

    2016-09-12

    Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a trade-off between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress and adaptation to different light conditions. Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here in this paper, we show that themore » Chlorophycean VDE (CVDE) gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria. Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage.« less

  6. Evolution of an atypical de-epoxidase for photoprotection in the green lineage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhirong; Peers, Graham; Dent, Rachel M.

    Plants, algae and cyanobacteria need to regulate photosynthetic light harvesting in response to the constantly changing light environment. Rapid adjustments are required to maintain fitness because of a trade-off between efficient solar energy conversion and photoprotection. The xanthophyll cycle, in which the carotenoid pigment violaxanthin is reversibly converted into zeaxanthin, is ubiquitous among green algae and plants and is necessary for the regulation of light harvesting, protection from oxidative stress and adaptation to different light conditions. Violaxanthin de-epoxidase (VDE) is the key enzyme responsible for zeaxanthin synthesis from violaxanthin under excess light. Here in this paper, we show that themore » Chlorophycean VDE (CVDE) gene from the model green alga Chlamydomonas reinhardtii encodes an atypical VDE. This protein is not homologous to the VDE found in plants and is instead related to a lycopene cyclase from photosynthetic bacteria. Unlike the plant-type VDE that is located in the thylakoid lumen, the Chlamydomonas CVDE protein is located on the stromal side of the thylakoid membrane. Phylogenetic analysis suggests that CVDE evolved from an ancient de-epoxidase that was present in the common ancestor of green algae and plants, providing evidence of unexpected diversity in photoprotection in the green lineage.« less

  7. Absorption and distribution kinetics of the 13C-labeled tomato carotenoid phytoene in healthy adults

    USDA-ARS?s Scientific Manuscript database

    Phytoene is a tomato carotenoid which may contribute to the apparent health benefits of tomato consumption. While phytoene is a less prominent tomato carotenoid than lycopene, it is a major carotenoid in various human tissues. Phytoene distribution to plasma lipoproteins and tissues differs from lyc...

  8. Genotype and environmental interaction for fruit quality traits in vintage tomato varieties

    USDA-ARS?s Scientific Manuscript database

    Tomato (Solanum lycopersicum L.) is the second most commonly consumed vegetable after in the world, after potato. There is a growing demand for quality tomato in the market place. Traits such as lycopene, total soluble solids (TSS), vitamin C and titratable acid (TA) content contribute to the overal...

  9. Genetic mapping of a major co-dominant QTL associated with beta-carotene accumulation in watermelon

    USDA-ARS?s Scientific Manuscript database

    The common flesh color of commercially grown watermelon is red due to the accumulation of lycopene. However, natural variation in carotenoid composition that exists among heirloom and exotic accessions, results in a wide spectrum of flesh colors. We previously identified a unique orange-flesh waterm...

  10. Apo-10'-lycopenoic acid inhibits cancer cell migration and angiogenesis and induces peroxisome proliferator-activated receptor gamma

    USDA-ARS?s Scientific Manuscript database

    Scope: We have previously shown that apo-10'-lycopenoic acid (ALA), a derivative of lycopene through cleavage by carotene-9',10'-oxygenase, inhibits tumor progression and metastasis in both liver and lung cancer animal models. The underlying mechanism remains unknown. We hypothesized that ALA inhibi...

  11. Evaluating carotenoid changes in tomatoes during postharvest ripening using Raman chemical imaging.

    USDA-ARS?s Scientific Manuscript database

    During the postharvest ripening of tomato fruits, the increasing presence of lycopene in the tomatoe samples spanning a range of fruit maturity. In this study, Raman chemical images were acquired of tomato samples spanning a range of fruit maturity stages, and were evaluated for the presence and di...

  12. Identification and translocation of metabolites from powdery mildew resistant rootstocks to susceptible watermelon scions using nuclear magnetic resonance spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Watermelon (Citrullus lanatus), an important commercial crop, and nutritious fruit, is high in antioxidants, vitamins, and lycopene. Powdery mildew (PM) is a serious disease caused by Podosphaera xanthii, which significantly reduces watermelon production in the U.S. and other parts of the world. C...

  13. Optimization of tomato pomace separation using air aspirator system by response surface methodology

    USDA-ARS?s Scientific Manuscript database

    Tomato pomace contains seeds and peels which are rich in protein and fat, and dietary fiber and lycopene, respectively. It is important to develop a suitable method to separate seeds and peel in tomato pomace for achieving value-added utilization of tomato pomace. The objectives of this research wer...

  14. Lycopene metabolite, apo-10'-lycopenoic acid, inhibits diethylnitrosamine-initiated, high fat diet-promoted hepatic inflammation and tumorigenesis in mice

    USDA-ARS?s Scientific Manuscript database

    Obesity is associated with increased risk in hepatocellular carcinoma (HCC) development and mortality. An important disease control strategy is the prevention of obesity-related hepatic inflammation and tumorigenesis by dietary means. Here, we report that apo-10'-lycopenoic acid (APO10LA), a cleavag...

  15. Functional analysis of multiple carotenogenic genes from Lycium barbarum and Gentiana lutea L. for their effects on beta-carotene production in transgenic tobacco.

    PubMed

    Ji, Jing; Wang, Gang; Wang, Jiehua; Wang, Ping

    2009-02-01

    Carotenoids are red, yellow and orange pigments, which are widely distributed in nature and are especially abundant in yellow-orange fruits and vegetables and dark green leafy vegetables. Carotenoids are essential for photosynthesis and photoprotection in plant life and also have different beneficial effects in humans and animals (van den Berg et al. 2000). For example, beta-carotene plays an essential role as the main dietary source of vitamin A. To obtain further insight into beta-carotene biosynthesis in two important economic plant species, Lycium barbarum and Gentiana lutea L., and to investigate and prioritize potential genetic engineering targets in the pathway, the effects of five carotenogenic genes from these two species, encoding proteins including geranylgeranyl diphosphate synthase, phytoene synthase and delta-carotene desaturase gene, lycopene beta-cyclase, lycopene epsilon-cyclase were functionally analyzed in transgenic tobacco (Nicotiana tabacum) plants. All transgenic tobacco plants constitutively expressing these genes showed enhanced beta-carotene contents in their leaves and flowers to different extents. The addictive effects of co-ordinate expression of double transgenes have also been investigated.

  16. Two-wavelength Raman detector for noninvasive measurements of carotenes and lycopene in human skin

    NASA Astrophysics Data System (ADS)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2005-04-01

    Carotenoids are an important part of the antioxidant system in human skin. Carotenoid molecules, provided by fruits and vegetables, are potent free radical quenchers that accumulate in the body. If not balanced by carotenoids and other antioxidants, free radicals may cause premature skin aging, oxidative cell damage, and even skin cancers. As carotenoids depletion may predispose a person to cancer or other disease, rapid and noninvasive measurement of carotenoid level in skin may be of preventive or diagnostic help. At the very least, such measurement can be used to obtain a biomarker for healthy levels of fruit and vegetable consumption. Recently we have developed noninvasive optical technique based on Raman spectroscopy. In this paper we describe compact optical detector for clinical applications that utilizes two-wavelength excitation. It selectively measures the two most prominent skin carotenoids found in the human skin, lycopene and carotenes. According to the medical literature, these two compounds may play different roles in the human body and be part of different tissue defense mechanisms. Dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects.

  17. Effects of storage time and temperature on lipid oxidation of egg powders enriched with natural antioxidants.

    PubMed

    Matumoto-Pintro, Paula Toshimi; Murakami, Alice Eiko; Vital, Ana Carolina Pelaes; Croge, Camila; da Silva, Denise Felix; Ospina-Roja, Ivan Camilo; Guerra, Ana Flávia Quiles Garcia

    2017-08-01

    The lipid fraction of egg powder may be affected by storage conditions due to the development of oxidative rancidity caused by polyunsaturated fatty acids. This study evaluated egg powders enriched with antioxidants [tocopherol, catechin, lycopene, and butylated hydroxyanisole (BHA)] for conjugated dienes (during a 90-day period) and for malonaldehydes (during a 210-day period) at 25±2 and 4±1°C. The presence of lycopene and BHA increases the total phenolic compounds in the enriched egg powders, and BHA exhibits the most antioxidant activity, as quantified by an ABTS assay. Egg powders enriched with antioxidants do not show any reduction in conjugate diene production compared to controls, and no effect of storage temperature is observed; however, in the production of malonaldehyde, greater stability is observed at 4°C, and catechin is more effective in reducing oxidation during storage. The results show that natural antioxidants can be used in egg powder instead of synthetic compounds to reduce malonaldehyde production during storage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Relation between plasma antioxidant vitamin levels, adiposity and cardio-metabolic profile in adolescents: Effects of a multidisciplinary obesity programme.

    PubMed

    Guerendiain, Marcela; Mayneris-Perxachs, Jordi; Montes, Rosa; López-Belmonte, Gemma; Martín-Matillas, Miguel; Castellote, Ana I; Martín-Bautista, Elena; Martí, Amelia; Martínez, J Alfredo; Moreno, Luis; Garagorri, Jesús Mª; Wärnberg, Julia; Caballero, Javier; Marcos, Ascensión; López-Sabater, M Carmen; Campoy, Cristina

    2017-02-01

    In vivo and in vitro evidence suggests that antioxidant vitamins and carotenoids may be key factors in the treatment and prevention of obesity and obesity-associated disorders. Hence, the objective of the present study was to determine the relationship between plasma lipid-soluble antioxidant vitamin and carotenoid levels and adiposity and cardio-metabolic risk markers in overweight and obese adolescents participating in a multidisciplinary weight loss programme. A therapeutic programme was conducted with 103 adolescents aged 12-17 years old and diagnosed with overweight or obesity. Plasma concentrations of α-tocopherol, retinol, β-carotene and lycopene, anthropometric indicators of general and central adiposity, blood pressure and biochemical parameters were analysed at baseline and at 2 and 6 months of treatment. Lipid-corrected retinol (P < 0.05), β-carotene (P = 0.001) and α-tocopherol (P < 0.001) plasma levels increased significantly, whereas lipid-corrected lycopene levels remained unaltered during the treatment. Anthropometric indicators of adiposity (P < 0.001), blood pressure (P < 0.01) and biochemical parameters (P < 0.05) decreased significantly, whereas fat free mass increased significantly (P < 0.001). These clinical and biochemical improvements were related to changes in plasma lipid-corrected antioxidant vitamin and carotenoid levels. The adolescents who experienced the greatest weight loss also showed the largest decrease in anthropometric indicators of adiposity and biochemical parameters and the highest increase in fat free mass. Weight loss in these adolescents was related to an increase in plasma levels of lipid-corrected α-tocopherol (P = 0.001), β-carotene (P = 0.034) and lycopene (P = 0.019). Plasma lipid-soluble antioxidant vitamin and carotenoid levels are associated with reduced adiposity, greater weight loss and an improved cardio-metabolic profile in overweight and obese adolescents. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  19. Molecular evidence that oral supplementation with lycopene or lutein protects human skin against ultraviolet radiation: results from a double-blinded, placebo-controlled, crossover study.

    PubMed

    Grether-Beck, S; Marini, A; Jaenicke, T; Stahl, W; Krutmann, J

    2017-05-01

    Increasing evidence suggests photoprotection by oral supplementation with β-carotene and lycopene. To examine the capacity of lycopene-rich tomato nutrient complex (TNC) and lutein, to protect against ultraviolet (UV)A/B and UVA1 radiation at a molecular level. In a placebo-controlled, double-blinded, randomized, crossover study two active treatments containing either TNC or lutein were assessed for their capacity to decrease the expression of UVA1 the radiation-inducible genes HO1, ICAM1 and MMP1. Sixty-five healthy volunteers were allocated to four treatment groups and subjected to a 2-week washout phase, followed by two 12-week treatment phases separated by another 2 weeks of washout. Volunteers started either with active treatment and were then switched to placebo, or vice versa. At the beginning and at the end of each treatment phase skin was irradiated and 24 h later biopsies were taken from untreated, UVA/B- and UVA1-irradiated skin for subsequent reverse transcriptase polymerase chain reaction analysis of gene expression. Moreover, blood samples were taken after the washout and the treatment phases for assessment of carotenoids. TNC completely inhibited UVA1- and UVA/B-induced upregulation of heme-oxygenase 1, intercellular adhesion molecule 1 and matrix metallopeptidase 1 mRNA, no matter the sequence (anova, P < 0·05). In contrast, lutein provided complete protection if it was taken in the first period but showed significantly smaller effects in the second sequence compared with TNC. Assuming the role of these genes as indicators of oxidative stress, photodermatoses and photoageing, these results might indicate that TNC and lutein could protect against solar radiation-induced health damage. © 2016 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

  20. Longitudinal study of serum carotenoid, retinol, and tocopherol concentrations in relation to breast cancer risk among postmenopausal women12

    PubMed Central

    Kim, Mimi; Adams-Campbell, Lucile L; Caan, Bette J; Chlebowski, Rowan T; Neuhouser, Marian L; Shikany, James M; Rohan, Thomas E

    2009-01-01

    Background: Prospective studies have examined the association of serum and plasma carotenoids and micronutrients and breast cancer; however, to date, studies have only assessed exposure at one point in time. Objective: This study analyzed baseline and repeated serum measurements of carotenoids, retinol, and tocopherols to assess their associations with postmenopausal breast cancer risk. Design: Serum concentrations of α-carotene, β-carotene, β-cryptoxanthin, lycopene, lutein + zeaxanthin, retinol, α-tocopherol, and γ-tocopherol were measured in a 6% sample of women in the Women's Health Initiative clinical trials at baseline and at years 1, 3, and 6 and in a 1% sample of women in the observational study at baseline and at year 3. The association of baseline compounds and breast cancer risk was estimated by Cox proportional hazards models. In addition, repeated measurements were analyzed as time-dependent covariates. Of 5450 women with baseline measurements, 190 incident cases of breast cancer were ascertained over a median of 8.0 y of follow-up. Results: After multivariable adjustment, risk of invasive breast cancer was inversely associated with baseline serum α-carotene concentrations (hazard ratio for highest compared with the lowest tertile: 0.55; 95% CI: 0.34, 0.90; P = 0.02) and positively associated with baseline lycopene (hazard ratio: 1.47; 95% CI: 0.98, 2.22; P = 0.06). Analysis of repeated measurements indicated that α-carotene and β-carotene were inversely associated with breast cancer and that γ-tocopherol was associated with increased risk. Conclusions: The present study, which was the first to assess repeated measurements of serum carotenoids and micronutrients in relation to breast cancer, adds to the evidence of an inverse association of specific carotenoids with breast cancer. The positive associations observed for lycopene and γ-tocopherol require confirmation. This trial was registered at clinicaltrials.gov as NCT00000611. PMID:19474140

  1. Medically important carotenoids from Momordica charantia and their gene expressions in different organs.

    PubMed

    Cuong, Do Manh; Arasu, Mariadhas Valan; Jeon, Jin; Park, Yun Ji; Kwon, Soon-Jae; Al-Dhabi, Naif Abdullah; Park, Sang Un

    2017-12-01

    Carotenoids, found in the fruit and different organs of bitter melon ( Momordica charantia ), have attracted great attention for their potential health benefits in treating several major chronic diseases. Therefore, study related to the identification and quantification of the medically important carotenoid metabolites is highly important for the treatment of various disorderes. The present study involved in the identification and quantification of the various carotenoids present in the different organs of M. charantia and the identification of the genes responsible for the accumulation of the carotenoids with respect to the transcriptome levels were investigated. In this study, using the transcriptome database of bitter melon, a partial-length cDNA clone encoding geranylgeranyl pyrophosphate synthase ( McGGPPS2 ), and several full-length cDNA clones encoding geranylgeranyl pyrophosphate synthase ( McGGPPS1 ), zeta-carotene desaturase ( McZDS ), lycopene beta-cyclase ( McLCYB ), lycopene epsilon cyclases ( McLCYE1 and McLCYE2 ), beta-carotene hydroxylase ( McCHXB ), and zeaxanthin epoxidase ( McZEP ) were identified in bitter melon . The expression levels of the mRNAs encoding these eight putative biosynthetic enzymes, as well as the accumulation of lycopene, α-carotene, lutein, 13Z-β-carotene, E-β-carotene, 9Z-β-carotene, β-cryptoxanthin, zeaxanthin, antheraxanthin, and violaxanthin were investigated in different organs from M. charantia as well as in the four different stages of its fruit maturation. Transcripts were found to be constitutively expressed at high levels in the leaves where carotenoids were also found at the highest levels . Collectively, these results indicate that the putative McGGPPS2, McZDS, McLCYB, McLCYE1, McLCYE2, and McCHXB enzymes might be key factors in controlling carotenoid content in bitter melon . In conclusion, the over expression of the carotenoid biosynthetic genes from M. charantia crops to increase the yield of these medically important carotenoids.

  2. Raman spectroscopy as a tool in differentiating conjugated polyenes from synthetic and natural sources.

    PubMed

    Fernandes, Rafaella F; Maia, Lenize F; Couri, Mara R C; Costa, Luiz Antonio S; de Oliveira, Luiz Fernando C

    2015-01-05

    This work presents the Raman spectroscopic characterization of synthetic analogs of natural conjugated polyenals found in octocorals, focusing the unequivocal identification of the chemical species present in these systems. The synthetic material was produced by the autocondensation reaction of crotonaldehyde, generating a demethylated conjugated polyene containing 11 carbon-carbon double bonds, with just a methyl group on the end of the carbon chain. The resonance Raman spectra of such pigment has shown the existence of enhanced modes assigned to ν₁(CC) and ν₂(CC) modes of the main chain. For the resonance Raman spectra of natural pigments from octocorals collected in the Brazilian coast, besides the previously cited bands, it could be also observed the presence of the ν₄(CCH₃), related to the vibrational mode who describes the vibration of the methyl group of the central carbon chain of carotenoids. Other interesting point is the observation of overtones and combination bands, which for carotenoids involves the presence of the ν₄ mode, whereas for the synthetic polyene this band, besides be seen at a slightly different wavenumber position, does not appear as an enhanced mode and also as a combination, such as for the natural carotenoids. Theoretical molecular orbital analysis of polyenal-11 and lycopene has shown the structural differences which are also responsible for the resonance Raman data, based on the appearance of the (CH3) vibrational mode in the resonant transition only for lycopene. At last, the Raman band at ca. 1010 cm(-1), assigned to the (CH₃) vibrational mode, can be used for attributing the presence of each one of the conjugated polyenes: the resonance Raman spectrum containing the band at ca. 1010 cm(-1) refers to the carotenoid (in this case lycopene), and the absence of such band in resonance conditions refers to the polyenal (in this case the polyenal-11). Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Raman spectroscopy as a tool in differentiating conjugated polyenes from synthetic and natural sources

    NASA Astrophysics Data System (ADS)

    Fernandes, Rafaella F.; Maia, Lenize F.; Couri, Mara R. C.; Costa, Luiz Antonio S.; de Oliveira, Luiz Fernando C.

    2015-01-01

    This work presents the Raman spectroscopic characterization of synthetic analogs of natural conjugated polyenals found in octocorals, focusing the unequivocal identification of the chemical species present in these systems. The synthetic material was produced by the autocondensation reaction of crotonaldehyde, generating a demethylated conjugated polyene containing 11 carbon-carbon double bonds, with just a methyl group on the end of the carbon chain. The resonance Raman spectra of such pigment has shown the existence of enhanced modes assigned to ν1(Cdbnd C) and ν2(Csbnd C) modes of the main chain. For the resonance Raman spectra of natural pigments from octocorals collected in the Brazilian coast, besides the previously cited bands, it could be also observed the presence of the ν4(Csbnd CH3), related to the vibrational mode who describes the vibration of the methyl group of the central carbon chain of carotenoids. Other interesting point is the observation of overtones and combination bands, which for carotenoids involves the presence of the ν4 mode, whereas for the synthetic polyene this band, besides be seen at a slightly different wavenumber position, does not appear as an enhanced mode and also as a combination, such as for the natural carotenoids. Theoretical molecular orbital analysis of polyenal-11 and lycopene has shown the structural differences which are also responsible for the resonance Raman data, based on the appearance of the (sbnd CH3) vibrational mode in the resonant transition only for lycopene. At last, the Raman band at ca. 1010 cm-1, assigned to the (sbnd CH3) vibrational mode, can be used for attributing the presence of each one of the conjugated polyenes: the resonance Raman spectrum containing the band at ca. 1010 cm-1 refers to the carotenoid (in this case lycopene), and the absence of such band in resonance conditions refers to the polyenal (in this case the polyenal-11).

  4. The effect of high-pressure processing on colour, bioactive compounds, and antioxidant activity in smoothies during refrigerated storage.

    PubMed

    Andrés, Víctor; Villanueva, María J; Tenorio, María D

    2016-02-01

    The effects of high-pressure processing--HPP--(450 and 600 MPa/3 min/20 °C) on the colour, carotenoids, ascorbic acid, polyphenols and antioxidant activity (FRAP and DPPH) of a smoothie were compared to thermal processing (80 °C/3 min). Stability during 45 days at 4 °C was also evaluated. HPP samples showed slight differences (p < 0.05) in colour compared to untreated smoothies. Both HPP significantly increased the extractability of lycopene, β-carotene and polyphenols compared to untreated samples. After HPP, ascorbic acid was retained by more than 92% of the initial content. The best results for antioxidant activity were obtained when HPP was applied at 600 MPa. FRAP and DPPH showed a high correlation with ascorbic acid (R(2) = 0.7135 and 0.8107, respectively) and polyphenolic compounds (R(2) = 0.6819 and 0.6935, respectively), but not with total carotenoids. Changes in bioactive compounds during the storage period were lower in the HPP smoothie than in the thermal-treated sample. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Carotene location in processed food samples measured by cryo In-SEM Raman.

    PubMed

    Lopez-Sanchez, Patricia; Schumm, Stephan; Pudney, Paul D A; Hazekamp, Johan

    2011-09-21

    Cryo In-SEM Raman has been used for the first time to localise carotene compounds in a food matrix. Raman spectra of lycopene and β-carotene have been obtained from sampling oil droplets and plant cell structures visualised with cryo-SEM in tomato and carrot based emulsions containing 5% oil. It was possible to identify the carotenoids in both the oil droplets and the cell walls. Furthermore our results gave some indication that the carotenoids were in the non-crystalline state. It has been suggested that a higher amount of carotenes solubilised into the oil phase of the food matrix would lead to a higher bioaccessibility, thus understanding the effect of processing conditions on micronutrients distribution in a food matrix might help the design of plant based food products with a better nutritional quality. This shows improved structural characterisation of the cryo-SEM with the molecular sensitivity of Raman spectroscopy as a promising approach for complex biological problems.

  6. Implication of processing and differential blending on quality characteristics in nutritionally enriched ketchup (Nutri-Ketchup) from acerola and tomato.

    PubMed

    Prakash, Anand; Prabhudev, S H; Vijayalakshmi, M R; Prakash, Maya; Baskaran, Revathy

    2016-08-01

    The present study was focused on the development of nutritionally enriched ketchup (Nutri-ketchup) from acerola and tomato and evaluation of the effect of blending and processing on physicochemical characteristics, phytonutrients retention, antioxidant activity and sensorial quality. Acerola and tomato pulps blended in various ratios viz. 100:0, 75:25, 50:50, 25:75 and 0:100 were used for the preparation of five formulations of ketchup and compared with commercially available tomato ketchup. The retention of phytonutrients varied among formulations viz. ascorbic acid- ~18-29 %, anthocyanins- ~17-25 %, phenolics- ~11-70 %, flavonoids- ~24-42 %, lycopene- ~24-33 % and carotenoids- ~23-34 %. Antioxidant capacity of 80 % methanol extract and ascorbic acid fraction of the formulations evaluated using DPPH and ABTS assays showed higher activity than the commercial sample. Ketchup prepared from acerola and tomato blend of 75:25 showed the best overall quality, while all the other formulations were also sensorily acceptable.

  7. Accumulation of Carotenoids and Expression of Carotenoid Biosynthetic Genes during Maturation in Citrus Fruit1

    PubMed Central

    Kato, Masaya; Ikoma, Yoshinori; Matsumoto, Hikaru; Sugiura, Minoru; Hyodo, Hiroshi; Yano, Masamichi

    2004-01-01

    The relationship between carotenoid accumulation and the expression of carotenoid biosynthetic genes during fruit maturation was investigated in three citrus varieties, Satsuma mandarin (Citrus unshiu Marc.), Valencia orange (Citrus sinensis Osbeck), and Lisbon lemon (Citrus limon Burm.f.). We cloned the cDNAs for phytoene synthase (CitPSY), phytoene desaturase (CitPDS), ζ-carotene (car) desaturase (CitZDS), carotenoid isomerase (CitCRTISO), lycopene β-cyclase (CitLCYb), β-ring hydroxylase (CitHYb), zeaxanthin (zea) epoxidase (CitZEP), and lycopene ε-cyclase (CitLCYe) from Satsuma mandarin, which shared high identities in nucleotide sequences with Valencia orange, Lisbon lemon, and other plant species. With the transition of peel color from green to orange, the change from β,ε-carotenoid (α-car and lutein) accumulation to β,β-carotenoid (β-car, β-cryptoxanthin, zea, and violaxanthin) accumulation was observed in the flavedos of Satsuma mandarin and Valencia orange, accompanying the disappearance of CitLCYe transcripts and the increase in CitLCYb transcripts. Even in green fruit, high levels of β,ε-carotenoids and CitLCYe transcripts were not observed in the juice sacs. As fruit maturation progressed in Satsuma mandarin and Valencia orange, a simultaneous increase in the expression of genes (CitPSY, CitPDS, CitZDS, CitLCYb, CitHYb, and CitZEP) led to massive β,β-xanthophyll (β-cryptoxanthin, zea, and violaxanthin) accumulation in both the flavedo and juice sacs. The gene expression of CitCRTISO was kept low or decreased in the flavedo during massive β,β-xanthophyll accumulation. In the flavedo of Lisbon lemon and Satsuma mandarin, massive accumulation of phytoene was observed with a decrease in the transcript level for CitPDS. Thus, the carotenoid accumulation during citrus fruit maturation was highly regulated by the coordination of the expression among carotenoid biosynthetic genes. In this paper, the mechanism leading to diversity in β,β-xanthophyll compositions between Satsuma mandarin and Valencia orange was also discussed on the basis of the substrate specificity of β-ring hydroxylase and the balance of expression between upstream synthesis genes (CitPSY, CitPDS, CitZDS, and CitLCYb) and downstream synthesis genes (CitHYb and CitZEP). PMID:14739348

  8. What We Learned from a Tomato: Partnering with a Content Expert Plants New Ideas for Instruction

    ERIC Educational Resources Information Center

    Ermeling, Bradley A.

    2014-01-01

    The interactions described in this article represent an example of teachers expanding horizons of instructional plans as a direct result of outside expert contributions. After alerting teachers to oversimplified claims about the benefits of lycopene, the research fellow presented the team with a wider range of instructional options to consider…

  9. DIFFERENTIAL EXPRESSION OF CAROTENE-15, 15'-OXYGENASE AND CAROTENE-9', 10'-OXYGENASE IN SELECTED FERRET TISSUES AFTER BETA-CRYPTOXANTHIN SUPPLEMENTATION

    USDA-ARS?s Scientific Manuscript database

    Dietary intake of foods rich in carotenoids, including beta-carotene, beta-cryptoxanthin and lycopene, continue to be associated with a decreased risk of several chronic diseases. While this association continues to persist, the metabolic fate of many carotenoids continues to be elucidated. The car...

  10. Comparative Proteomics of Oxalate Downregulated Tomatoes Points toward Cross Talk of Signal Components and Metabolic Consequences during Post-harvest Storage

    PubMed Central

    Narula, Kanika; Ghosh, Sudip; Aggarwal, Pooja R.; Sinha, Arunima; Chakraborty, Niranjan; Chakraborty, Subhra

    2016-01-01

    Fruits of angiosperms evolved intricate regulatory machinery for sensorial attributes and storage quality after harvesting. Organic acid composition of storage organs forms the molecular and biochemical basis of organoleptic and nutritional qualities with metabolic specialization. Of these, oxalic acid (OA), determines the post-harvest quality in fruits. Tomato (Solanum lycopersicum) fruit has distinctive feature to undergo a shift from heterotrophic metabolism to carbon assimilation partitioning during storage. We have earlier shown that decarboxylative degradation of OA by FvOXDC leads to acid homeostasis besides increased fungal tolerance in E8.2-OXDC tomato. Here, we elucidate the metabolic consequences of oxalate down-regulation and molecular mechanisms that determine organoleptic features, signaling and hormonal regulation in E8.2-OXDC fruit during post-harvest storage. A comparative proteomics approach has been applied between wild-type and E8.2-OXDC tomato in temporal manner. The MS/MS analyses led to the identification of 32 and 39 differentially abundant proteins associated with primary and secondary metabolism, assimilation, biogenesis, and development in wild-type and E8.2-OXDC tomatoes, respectively. Next, we interrogated the proteome data using correlation network analysis that identified significant functional hubs pointing toward storage related coinciding processes through a common mechanism of function and modulation. Furthermore, physiochemical analyses exhibited reduced oxalic acid content with concomitant increase in citric acid, lycopene and marginal decrease in malic acid in E8.2-OXDC fruit. Nevertheless, E8.2-OXDC fruit maintained an optimal pH and a steady state acid pool. These might contribute to reorganization of pectin constituent, reduced membrane leakage and improved fruit firmness in E8.2-OXDC fruit with that of wild-type tomato during storage. Collectively, our study provides insights into kinetically controlled protein network, identified regulatory module for pathway formulation and provide basis toward understanding the context of storage quality maintenance as a consequence of oxalate downregulation in the sink organ. PMID:27555852

  11. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review

    PubMed Central

    Truscott, T. George

    2018-01-01

    We report on studies of reactions of singlet oxygen with carotenoids and retinoids and a range of free radical studies on carotenoids and retinoids with emphasis on recent work, dietary carotenoids and the role of oxygen in biological processes. Many previous reviews are cited and updated together with new data not previously reviewed. The review does not deal with computational studies but the emphasis is on laboratory-based results. We contrast the ease of study of both singlet oxygen and polyene radical cations compared to neutral radicals. Of particular interest is the switch from anti- to pro-oxidant behavior of a carotenoid with change of oxygen concentration: results for lycopene in a cellular model system show total protection of the human cells studied at zero oxygen concentration, but zero protection at 100% oxygen concentration. PMID:29301252

  12. A Study on the Expression of Genes Involved in Carotenoids and Anthocyanins During Ripening in Fruit Peel of Green, Yellow, and Red Colored Mango Cultivars.

    PubMed

    Karanjalker, G R; Ravishankar, K V; Shivashankara, K S; Dinesh, M R; Roy, T K; Sudhakar Rao, D V

    2018-01-01

    Mango (Mangiferaindica L.) fruits are generally classified based on peel color into green, yellow, and red types. Mango peel turns from green to yellow or red or retain green colors during ripening. The carotenoids and anthocyanins are the important pigments responsible for the colors of fruits. In the present study, peels of different colored cultivars at three ripening stages were characterized for pigments, colors, and gene expression analysis. The yellow colored cultivar "Arka Anmol" showed higher carotenoid content, wherein β-carotene followed by violaxanthin were the major carotenoid compounds that increased during ripening. The red colored cultivars were characterized with higher anthocyanins with cyanidin-3-O-monoglucosides and peonidin-3-O-glucosides as the major anthocyanins. The gene expression analysis by qRT-PCR showed the higher expression of carotenoid biosynthetic genes viz. lycopene-β-cyclase and violaxanthin-de-epoxidase in yellow colored cv. Arka Anmol, and the expression was found to increase during ripening. However, in red colored cv. "Janardhan Pasand," there is increased regulation of all anthocyanin biosynthetic genes including transcription factors MYB and basic helix loop. This indicated the regulation of the anthocyanins by these genes in red mango peel. The results showed that the accumulation pattern of particular pigments and higher expression of specific biosynthetic genes in mango peel impart different colors.

  13. Lycopene Supplementation in the Complementary Management of PSA Failure: A Randomized Placebo-Controlled Trial for Prostate Cancer Survivors

    DTIC Science & Technology

    2007-01-01

    Morris JC, Hulette C, Schmechel D, Reiman EM, Rogers J, Stephan DA. (2005). Gene expression correlates of neurofibrillary tangles in Alzheimer’s...Walker DG, Lafleur BJ, Coon KD, Brown KM, Caselli R, Kukull W, Higdon R, McKeel D, Morris JC, Hulette C, Schmechel D, Reiman EM, Rogers J, Stephan

  14. Excited Electronic States, Photochemistry and Photophysics of Carotenoids

    NASA Astrophysics Data System (ADS)

    Frank, Harry A.; Christensen, Ronald L.

    The most striking characteristic of carotenoids is their palette of colours. Absorption of light in the visible region of the electromagnetic spectrum by molecules such as β-carotene (3) and lycopene (31) not only readily accounts for their colours but also signals the ability of these long-chain polyenes to serve as antenna pigments in diverse photosynthetic systems [1-4].

  15. Nutritional aspects of phytoene and phytofluene, carotenoid precursors to lycopene.

    PubMed

    Engelmann, Nancy J; Clinton, Steven K; Erdman, John W

    2011-01-01

    Epidemiological studies suggest an inverse relationship between tomato consumption and serum and tissue lycopene (LYC) levels with risk of some chronic diseases, including several cancers and cardiovascular disease. LYC, the red carotenoid found in tomatoes, is often considered to be the primary bioactive carotenoid in tomatoes that mediates health benefits, but other colorless precursor carotenoids, phytoene (PE) and phytofluene (PF), are also present in substantial quantities. PE and PF are readily absorbed from tomato foods and tomato extracts by humans. Animal models of carotenoid absorption suggest preferential accumulation of PE and PF in some tissues. The reasonably high concentrations of PE and PF detected in serum and tissues relative to the concentrations in foods suggest that absorption or metabolism of these compounds may be different from that of LYC. Experimental studies, both in vitro and in vivo, suggest that PE and PF exhibit bioactivity but little is known about their impact in humans. Methods for producing isotopically labeled PE, PF, and LYC tracers from tomato plant cell culture offer a unique tool for further understanding the differential bioavailability and metabolism of these 3 prominent tomato carotenoids and how they may affect health.

  16. Isolation of Streptomyces globisporus and Blakeslea trispora mutants with increased carotenoid content.

    PubMed

    Matselyukh, B P; Matselyukh, D Ya; Golembiovska, S L; Polishchuk, L V; Lavrinchuk, V Ya

    2013-01-01

    Hyperpigmented mutants of Streptomyces globisporus 1912-Hp7 and Blakeslea trispora 18(+), 184(-) were isolated by action of hydrogen peroxide and nitrosoguanidine, correspondingly, from initial strains S. globisporus 1912-4Lcp and B. trispora 72(-), 198(+). The carotenoids of dry biomass of obtained strains, rubbed thoroughly with glass powder by a pestle in porcelain mortar were extracted by acetone and purified by TLC. Identification of the individual carotenoids was performed by means of HPLC and LC/MS spectrometry. It was shown that strain S. globisporus 1912-4Crt produced beta-carotene/lycopene (6.91/3.24 mg/L), mutants 1912-4Lcp and 1912-7Hp synthesized only lycopene (26.05 and 50.9 mg/L, respectively), and strains B. trispora 18(+) and 184(-)-beta-carotene (6.2% in dry biomass or more 2.5 g/L) without illumination in shake flasks. It is the first example of high constitutive production of the carotenoids by the representative of genus Streptomyces without photoinduction or increased synthesis of sigma factor The improved strains of B. trispora 18(+) and 184(-) can be used for biotechnological production of beta-carotene in industrial conditions.

  17. Acute phase response and plasma carotenoid concentrations in older women: findings from the nun study.

    PubMed

    Boosalis, M G; Snowdon, D A; Tully, C L; Gross, M D

    1996-01-01

    This cross-sectional study investigated whether the acute phase response was associated with suppressed circulating levels of antioxidants in a population of 85 Catholic sisters (nuns) ages 77-99 y. Fasting blood was drawn to determine the presence of an acute phase response, as defined by an elevation in the serum concentration of C-reactive protein. Serum concentrations of albumin, thyroxine-binding prealbumin, zinc, copper, and fibrinogen were determined as were plasma concentrations of carotenoids and alpha tocopherol. Results showed that the presence of an acute phase response was associated with (1) an expected significant decrease in the serum concentrations of albumin (p < 0.001) and thyroxine-binding prealbumin (p < 0.001); (2) an expected significant increase in copper (p < 0.001) and fibrinogen (p = 0.003); and (3) a significant decrease in the plasma concentrations of lycopene (p = 0.03), alpha carotene (p = 0.02), beta carotene (p = 0.02), and total carotenoids (p = 0.01). The acute phase response was associated with decreased plasma levels of the antioxidants lycopene, alpha carotene, and beta carotene. This decrease in circulating antioxidants may further compromise antioxidant status and increase oxidative stress and damage in elders.

  18. Ultra-performance liquid chromatographic separation of geometric isomers of carotenoids and antioxidant activities of 20 tomato cultivars and breeding lines.

    PubMed

    Li, Hongyan; Deng, Zeyuan; Liu, Ronghua; Loewen, Steven; Tsao, Rong

    2012-05-01

    All-trans-lutein, lycopene, β-carotene and their 22 cis-isomers in 20 tomato breeding were separated and identified by a rapid and sensitive UPLC method using a 1.7μm C18 column and a new gradient mobile phase based on methanol-MTBE-water in 15 min. All-trans-carotenoids were predominant, but 9-cis, 13-cis-lutein, 5-cis, 9-cis, 13-cis, 15-cis, di-cis-lycopene, 9-cis, 13-cis, 15-cis and di-cis-β-carotene were also found. The cis-isomers were identified using absorption around 330nm and the Q-ratio. The total antioxidant activities as evaluated by PCL and DPPH assays were found to correlate well with the total carotenoid content, but not with the individual carotenoid or its different isomers. This paper provides an efficient analytical method for obtaining a complete picture of carotenoids in tomatoes. It can be a valuable tool for plant breeders, food processors and researchers in developing designer tomatoes and tomato-products with unique carotenoid compositions, and functional properties. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Intensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering

    NASA Astrophysics Data System (ADS)

    Shimada, Rintaro; Kano, Hideaki; Hamaguchi, Hiro-o.

    2008-07-01

    A new molecular phenomenon associated with resonance hyper-Raman (HR) scattering in solution has been discovered. Resonance HR spectra of all-trans-β-carotene and all-trans-lycopene in various solvents exhibited several extra bands that were not assignable to the solute but were unequivocally assigned to the solvents. Neat solvents did not show detectable HR signals under the same experimental conditions. Similar experiments with all-trans-retinal did not exhibit such enhancement either. All-trans-β-carotene and all-trans-lycopene have thus been shown to induce enhanced HR scattering of solvent molecules through a novel molecular effect that is not associated with all-trans-retinal. We call this new effect the "molecular near-field effect." In order to explain this newly found effect, an extended vibronic theory of resonance HR scattering is developed where the vibronic interaction including the proximate solvent molecule (intermolecular vibronic coupling) is explicitly introduced in the solute hyperpolarizability tensor. The potential of "molecular near-field HR spectroscopy," which selectively detects molecules existing in the close vicinity of a HR probe in complex chemical or biological systems, is discussed.

  20. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery.

    PubMed

    Chen, Han-Sen; Chen, Xi; Li, Wen-Ting; Shen, Jian-Gang

    2018-05-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO - ), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment.

  1. The Integrated Impact of Diet On Human Immune Response, the Gut Microbiota, and Nutritional Status During Adaptation to a Spaceflight Analog

    NASA Technical Reports Server (NTRS)

    Douglas, G. L.; Zwart, S. R.; Young, M.; Kloeris, V.; Crucian, B.; Smith, S. M.; Lorenzi, H.

    2017-01-01

    Spaceflight impacts human physiology, including well documented immune system dysregulation. Diet, immune function, and the microbiome are interlinked, but diet is the only one of these factors that we have the ability to easily, and significantly, alter on Earth or during flight. As we understand dietary impacts on physiology more thoroughly, we may then improve the spaceflight diet to improve crew health and potentially reduce flight-associated physiological alterations. It is expected that increasing the consumption of fruits and vegetables and bioactive compounds (e.g.,omega-3 fatty acids, lycopene, flavonoids) and therefore enhancing overall nutritional intake from the nominal shelf-stable, fully-processed space food system could serve as a countermeasure to improve human immunological profiles, the taxonomic profile of the gut microbiota, and nutritional status, especially where currently dysregulated during spaceflight. This interdisciplinary study will determine the effect of the current shelf-stable spaceflight diet compared to an "enhanced" shelf-stable spaceflight diet (25% more foods rich in omega-3 fatty acids, lycopene, flavonoids, fruits, and vegetables). The NASA Human Exploration Research Analog (HERA) 2017 missions, consisting of closed chamber confinement, realistic mission simulation, in a high-fidelity mock space vehicle, will serve as a platform to replicate mission stressors and the dysregulated physiology observed in astronauts. Biosampling of crew members will occur at selected intervals, with complete dietary tracking. Outcome measures will include immune markers (e.g., peripheral leukocyte distribution, inflammatory cytokine profiles, T cell function), the taxonomic and metatranscriptomic profile of the gut microbiome, and nutritional status biomarkers and metabolites. Data collection will also include complete dietary tracking. Statistical evaluations will determine physiological and biochemical shifts in relation to nutrient in take and study phase. Beneficial improvements will provide evidence of the impact of diet on crew health and adaptation to this spaceflight analog, and will aid in the design and development of more-efficient targeted dietary interventions.

  2. The induction of lycopene in germinating cottonseed with 2-(4-Methylphenoxy)Triethylamine (MPTA)

    USDA-ARS?s Scientific Manuscript database

    Cottonseed (Gossypium hirsutum Acala cultivar) were imbibed in H2O for 6 hr and seed coats removed. The seeds were imbibed for an additional 3 hr in H2O or 7.2x10**-4M 2-(4-methylphenoxy) triethylamine (MPTA) and germinated in the dark for 72 hr. The carotenoids were extracted and analyzed by HPLC...

  3. Noninterferometric Two-Dimensional Fourier-Transform Spectroscopy of Multilevel Systems

    NASA Astrophysics Data System (ADS)

    Davis, J. A.; Dao, L. V.; Do, M. T.; Hannaford, P.; Nugent, K. A.; Quiney, H. M.

    2008-06-01

    We demonstrate a technique that determines the phase of the photon-echo emission from spectrally resolved intensity data without requiring phase-stabilized input pulses. The full complex polarization of the emission is determined from spectral intensity measurements. The validity of this technique is demonstrated using simulated data, and is then applied to the analysis of two-color data obtained from the light-harvesting molecule lycopene.

  4. Resonance Raman detection of carotenoid antioxidants in living human tissue

    PubMed Central

    Ermakov, Igor V.; Sharifzadeh, M.; Ermakova, Maia; Gellermann, W.

    2011-01-01

    Increasing evidence points to the beneficial effects of carotenoid antioxidants in the human body. Several studies, for example, support the protective role of lutein and zeaxanthin in the prevention of age-related eye diseases. If present in high concentrations in the macular region of the retina, lutein and zeaxanthin provide pigmentation in this most light sensitive retinal spot, and as a result of light filtering and/or antioxidant action, delay the onset of macular degeneration with increasing age. Other carotenoids, such as lycopene and beta-carotene, play an important role as well in the protection of skin from UV and short-wavelength visible radiation. Lutein and lycopene may also have protective function for cardiovascular health, and lycopene may play a role in the prevention of prostate cancer. Motivated by the growing importance of carotenoids in health and disease, and recognizing the lack of any accepted noninvasive technology for the detection of carotenoids in living human tissue, we explore resonance Raman spectroscopy as a novel approach for noninvasive, laser optical carotenoid detection. We review the main results achieved recently with the Raman detection approach. Initially we applied the method to the detection of macular carotenoid pigments, and more recently to the detection of carotenoids in human skin and mucosal tissues. Using skin carotenoid Raman instruments, we measure the carotenoid response from the stratum corneum layer of the palm of the hand for a population of 1375 subjects and develope a portable skin Raman scanner for field studies. These experiments reveal that carotenoids are a good indicator of antioxidant status. They show that people with high oxidative stress, like smokers, and subjects with high sunlight exposure, in general, have reduced skin carotenoid levels, independent of their dietary carotenoid consumption. We find the Raman technique to be precise, specific, sensitive, and well suitable for clinical as well as field studies. The noninvasive laser technique may become a useful method for the correlation between tissue carotenoid levels and risk for malignancies or other degenerative diseases associated with oxidative stress. PMID:16409093

  5. Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids.

    PubMed

    Huo, Tianyao; Ferruzzi, Mario G; Schwartz, Steven J; Failla, Mark L

    2007-10-31

    A carotenoid-rich salad meal with varying amounts and types of triglycerides (TG) was digested using simulated gastric and small intestinal conditions. Xanthophylls (lutein and zeaxanthin) and carotenes (alpha-carotene, beta-carotene, and lycopene) in chyme and micelle fraction were quantified to determine digestive stability and efficiency of micellarization (bioaccessibility). Micellarization of lutein (+zeaxanthin) exceeded that of alpha- and beta-carotenes, which was greater than that of lycopene for all test conditions. Micellarization of carotenes, but not lutein (+zeaxanthin), was enhanced (P < 0.05) by addition of TG (2.5% v/w) to the meal and was dependent on fatty acyl chain length in structured TG (c18:1 > c8:0 > c4:0). The degree of unsaturation of c18 fatty acyl chains in TG added to the salad purée did not significantly alter the efficiency of micellarization of carotenoids. Relatively low amounts of triolein and canola oil (0.5-1%) were required for maximum micellarization of carotenes, but more oil (approximately 2.5%) was required when TG with medium chain saturated fatty acyl groups (e.g., trioctanoin and coconut oil) was added to the salad. Uptake of lutein and beta-carotene by Caco-2 cells also was examined by exposing cells to micelles generated during the simulated digestion of salad purée with either triolein or trioctanoin. Cell accumulation of beta-carotene was independent of fatty acyl composition of micelles, whereas lutein uptake was slightly, but significantly, increased from samples with digested triolein compared to trioctanoin. The results show that the in vitro transfer of alpha-carotene, beta-carotene, and lycopene from chyme to mixed micelles during digestion requires minimal (0.5-1%) lipid content in the meal and is affected by the length of fatty acyl chains but not the degree of unsaturation in TG. In contrast, fatty acyl chain length has limited if any impact on carotenoid uptake by small intestinal epithelial cells. These data suggest that the amount of TG in a typical meal does not limit the bioaccessibility of carotenoids.

  6. Active packaging from chitosan-titanium dioxide nanocomposite film for prolonging storage life of tomato fruit.

    PubMed

    Kaewklin, Patinya; Siripatrawan, Ubonrat; Suwanagul, Anawat; Lee, Youn Suk

    2018-06-01

    The feasibility of active packaging from chitosan (CS) and chitosan containing nanosized titanium dioxide (CT) to maintain quality and extend storage life of climacteric fruit was investigated. The CT nanocomposite film and CS film were fabricated using a solution casting method and used as active packaging to delay ripening process of cherry tomatoes. Changes in firmness, weight loss, a*/b* color, lycopene content, total soluble solid, ascorbic acid, and concentration of ethylene and carbon dioxide of the tomatoes packaged in CT film, CS film, and control (without CT or CS films) were monitored during storage at 20°C. Classification of fruit quality as a function of different packaging treatments was visualized using linear discriminant analysis. Tomatoes packaged in the CT film evolved lower quality changes than those in the CS film and control. The results suggested that the CT film exhibited ethylene photodegradation activity when exposed to UV light and consequently delayed the ripening process and changes in the quality of the tomatoes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A critical review on the spray drying of fruit extract: effect of additives on physicochemical properties.

    PubMed

    Krishnaiah, Duduku; Nithyanandam, Rajesh; Sarbatly, Rosalam

    2014-01-01

    Spray drying accomplishes drying while particles are suspended in the air and is one method in the family of suspended particle processing systems, along with fluid-bed drying, flash drying, spray granulation, spray agglomeration, spray reaction, spray cooling, and spray absorption. This drying process is unique because it involves both particle formation and drying. The present paper reviews spray drying of fruit extracts, such as acai, acerola pomace, gac, mango, orange, cactus pear, opuntia stricta fruit, watermelon, and durian, and the effects of additives on physicochemical properties such as antioxidant activity, total carotenoid content, lycopene and β-carotene content, hygroscopy, moisture content, volatile retention, stickiness, color, solubility, glass transition temperature, bulk density, rehydration, caking, appearance under electron microscopy, and X-ray powder diffraction. The literature clearly demonstrates that the effect of additives and encapsulation play a vital role in determining the physicochemical properties of fruit extract powder. The technical difficulties in spray drying of fruit extracts can be overcome by modifying the spray dryer design. It also reveals that spray drying is a novel technology for converting fruit extract into powder form.

  8. Storage stability of traditional Tunisian butter enriched with antioxidant extract from tomato processing by-products.

    PubMed

    Abid, Yousra; Azabou, Samia; Jridi, Mourad; Khemakhem, Ibtihel; Bouaziz, Mohamed; Attia, Hamadi

    2017-10-15

    Traditional Tunisian butter (TTB) is one of the most appreciated dairy products in Tunisia. Herein, the storage stability of TTB enriched with antioxidants from tomato processing by-products (TPB) was evaluated during 60days of storage at 4°C. TPB extract contains significant amounts of lycopene and phenolics. TTB enriched with 400mg of TPB extract/kg of TTB revealed the lowest peroxide values at all the determination intervals. Adding 400mg of TPB extract/kg of TTB did not exhibit any undesired effect on lactic bacteria which are necessary for development of aroma and chemical properties of TTB. However, raw TTB and highly enriched TTB (800mg of TPB extract/kg of TTB) displayed higher lipid peroxidation. The detrimental effect of high antioxidant amounts on TTB stability could be due to a possible pro-oxidant character. Thus, appropriate supplementation of TPB extract could be used in TTB as a protective agent against lipid peroxidation to extend its shelf-life up to two months. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Microwave flow and conventional heating effects on the physicochemical properties, bioactive compounds and enzymatic activity of tomato puree.

    PubMed

    Arjmandi, Mitra; Otón, Mariano; Artés, Francisco; Artés-Hernández, Francisco; Gómez, Perla A; Aguayo, Encarna

    2017-02-01

    Thermal processing causes a number of undesirable changes in physicochemical and bioactive properties of tomato products. Microwave (MW) technology is an emergent thermal industrial process that offers a rapid and uniform heating, high energy efficiency and high overall quality of the final product. The main quality changes of tomato puree after pasteurization at 96 ± 2 °C for 35 s, provided by a semi-industrial continuous microwave oven (MWP) under different doses (low power/long time to high power/short time) or by conventional method (CP) were studied. All heat treatments reduced colour quality, total antioxidant capacity and vitamin C, with a greater reduction in CP than in MWP. On the other hand, use of an MWP, in particular high power/short time (1900 W/180 s, 2700 W/160 s and 3150 W/150 s) enhanced the viscosity and lycopene extraction and decreased the enzyme residual activity better than with CP samples. For tomato puree, polygalacturonase was the more thermo-resistant enzyme, and could be used as an indicator of pasteurization efficiency. MWP was an excellent pasteurization technique that provided tomato puree with improved nutritional quality, reducing process times compared to the standard pasteurization process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Carotenoids microencapsulation by spray drying method and supercritical micronization.

    PubMed

    Janiszewska-Turak, Emilia

    2017-09-01

    Carotenoids are used as natural food colourants in the food industry. As unstable natural pigments they need protection. This protection can involve the microencapsulation process. There are numerous techniques that can be used for carotenoid protection, but two of them -spray drying and supercritical micronization - are currently the most commonly used. The objective of this paper is to describe these two techniques for carotenoid microencapsulation. In this review information from articles from the last five years was taken into consideration. Pigments described in the review are all carotenoids. Short summary of carotenoids sources was presented. For the spray drying technique, a review of carrier material and process conditions was made. Moreover, a short description of some of the most suitable processes involving supercritical fluids for carotenoids (astaxanthin, β-carotene, lutein and lycopene) encapsulation was given. These include the Supercritical Antisolvent process (SAS), Particles from Gas-Saturated Solutions (PGSS), Supercritical Fluid Extraction From an Emulsion (SFEE) and Solution Enhanced Dispersion by Supercritical fluids (SEDS). In most cases the studies, independently of the described method, were conducted on the laboratory scale. In some a scale-up was also tested. In the review a critical assessment of the used methods was made. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Interaction Between Dietary Factors and Inflammation in Prostate Carcinogenesis

    DTIC Science & Technology

    2007-12-01

    Adding weight to the argument for a link between inflammation and prostate cancer are data indicating that users of anti - inflammatory agents have a...preventative agents can prevent cancer in this model. BODY The aims of this proposal were to: Aim (1) Evaluation of candidate dietary prostate...cancer chemopreventive agents (broccoli tea, soy protein, vitamin E, lycopene) for their ability to alter DNA mutagenesis and chronic prostate

  12. Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under greenhouse conditions.

    PubMed

    Lee, Kang-Hyeong; Koh, Rae-Hyun; Song, Hong-Gyu

    2008-12-01

    A greenhouse test was carried out to examine the effects on tomato growth of application of purple non-sulfur bacterium Rhodopseudomonas sp. which had enhanced germination and growth of tomato seed under axenic conditions. The shoot length of tomato plant inoculated by Rhodopseudomonas sp. KL9 increased by 34.6% compared to that of control in 8 weeks of cultivation. During the same period, this strain increased 120.6 and 78.6% of dry weight of shoot and root of tomato plants, respectively. The formation ratio of tomato fruit from flower was also raised by inoculation of KL9. In addition, Rhodopseudomonas sp. KL9 treatment enhanced the fresh weight and lycopene content in the harvested tomato fruits by 98.3 and 48.3%, respectively compared to those of the uninoculated control. When the effect on the indigenous bacterial community and fate of the inoculated Rhodopseudomonas sp. KL9 were monitored by denaturing gradient gel electrophoresis analysis, its application did not affect the native bacterial community in tomato rhizosphere soil, but should be repeated to maintain its population size. This bacterial capability may be applied as an environment-friendly biofertilizer to cultivation of high quality tomato and other crops including lycopene-containing vegetables and fruits.

  13. Effect of addition of lycopene to calcium hydroxide and chlorhexidine as intracanal medicament on fracture resistance of radicular dentin at two different time intervals: An in vitro study.

    PubMed

    Madhusudhana, Koppolu; Archanagupta, Kasamsetty; Suneelkumar, Chinni; Lavanya, Anumula; Deepthi, Mandava

    2015-01-01

    Long-term use of intracanal medicaments such as calcium hydroxide (CH) reduces the fracture resistance of dentin. The present study was undertaken to evaluate the fracture resistance of radicular dentin on long-term use of CH, chlorhexidine (CHX) with lycopene (LP). To compare the fracture resistance of radicular dentin when intracanal medicaments such as CH, CHX with LP were used for 1-week and 1-month time interval. Sixty single-rooted extracted human permanent premolars were collected, and complete instrumentation was done. Samples were divided into three groups based on intracanal medicament used. Group 1 - no medicament was placed (CON), group 2 - mixture of 1.5 g of CH and 1 ml of 2% CHX (CHCHX), group 3 - mixture of 1.5 g of CH, 1 ml of CHX and 1 ml of 5% LP solution (CHCHXLP). After storage period of each group for 1-week and 1-month, middle 8 mm root cylinder was sectioned and tested for fracture resistance. Results were analyzed using paired t-test. At 1-month time interval, there was a statistically significant difference in fracture resistance between CHCHX and CHCHXLP groups. Addition of LP has not decreased the fracture resistance of radicular dentin after 1-month.

  14. Synergistic effect of lycopene and tocopherol against oxidative stress and mammary tumorigenesis induced by 7,12-dimethyl[a]benzanthracene in female rats.

    PubMed

    Al-Malki, Abdulrahman L; Moselhy, Said S; Refai, Mohammed Y

    2012-07-01

    Breast cancer is one of the most serious problems in oncology. We investigated the antitumor potential of lycopene (Lyco) alone or combined with tocopherol (Lyco + Toco) for 90 days against a single oral dose of (50 mg/kg body weight) 7,12-dimethyl[a]benzanthracene (DMBA)-induced oxidative stress and mammary carcinogenesis in female rats. The treatment protocol started from the day immediately after DMBA administration. Results obtained indicated that there was a significant elevation in the levels of malondialdehyde (MDA) and nitric oxide (NO) in serum and breast tissues of DMBA-injected rats. The combined treatment (Lyco + Toco) group showed a potential reduction of these parameters more than Lyco alone group. The activities of superoxide dismutase, catalase, and glutathione peroxidase were found to be significantly higher when compared to rats treated with Lyco alone. In DMBA group, a positive significant correlation between NO and MDA (r = 0.92) was observed. Histopathological examination revealed the formation of tumor and angiogenesis in DMBA-induced rats and these abnormal changes were ameliorated by combined treatment with Lyco + Toco. In conclusion, these results suggested that supplementation of diet with Lyco and Toco provided antioxidant defense, with strong chemopreventive activity against DMBA-induced mammary tumors.

  15. Supplementation with Red Palm Oil Increases β-Carotene and Vitamin A Blood Levels in Patients with Cystic Fibrosis

    PubMed Central

    Sommerburg, Olaf; De Spirt, Silke; Mattern, Annett; Joachim, Cornelia; Langhans, Claus-Dieter; Nesaretnam, Kalanithi; Siems, Werner; Stahl, Wilhelm; Mall, Marcus A.

    2015-01-01

    Patients with cystic fibrosis (CF) show decreased plasma concentrations of antioxidants due to malabsorption of lipid soluble vitamins and consumption by chronic pulmonary inflammation. β-Carotene is a major source of retinol and therefore is of particular significance in CF. The aim of this study was to investigate the effect of daily intake of red palm oil (RPO) containing high amounts of β-carotene on the antioxidant levels in CF patients. Sixteen subjects were recruited and instructed to enrich their food with 2 to 3 tablespoons of RPO (~1.5 mg of β-carotene) daily over 8 weeks. Carotenoids, retinol, and α-tocopherol were measured in plasma at baseline and after intervention. In addition β-carotene, lycopene, α-tocopherol, and vitamin C were measured in buccal mucosa cells (BMC) to determine the influence of RPO on antioxidant tissue levels. Eleven subjects completed the study properly. Plasma β-carotene, retinol, and α-carotene of these patients increased, but plasma concentrations of other carotenoids and α-tocopherol as well as concentrations of β-carotene, lycopene, α-tocopherol, and vitamin C in BMC remained unchanged. Since RPO on a daily basis did not show negative side effects the data suggest that RPO may be used to elevate plasma β-carotene in CF. PMID:25688177

  16. Associations between reported intakes of carotenoid-rich foods and concentrations of carotenoids in plasma: a validation study of a web-based food recall for children and adolescents.

    PubMed

    Medin, Anine Christine; Carlsen, Monica Hauger; Andersen, Lene Frost

    2016-12-01

    To validate estimated intakes of carotenoid-rich foods from a web-based food recall (WebFR) using carotenoids in blood as an objective reference method. Cross-sectional validation study using carotenoids in plasma to evaluate estimated intakes of selected carotenoid-rich foods. Participants recorded their food intake in the WebFR and plasma concentrations of β-carotene, α-carotene, β-cryptoxanthin, lycopene, lutein and zeaxanthin were measured. Schools and homes of families in a suburb of the capital of Norway. A total of 261 participants in the age groups 8-9 and 12-14 years. Spearman's rank correlation coefficients ranged from 0·30 to 0·44, and cross-classification showed that 71·6-76·6 % of the participants were correctly classified, when comparing the reported intakes of carotenoid-rich foods and concentrations of the corresponding carotenoids in plasma, not including lutein and zeaxanthin. Correlations were acceptable and cross-classification analyses demonstrated that the WebFR was able to rank participants according to their reported intake of foods rich in α-carotene, β-carotene, β-cryptoxanthin and lycopene. The WebFR is a promising tool for dietary assessment among children and adolescents.

  17. Evaluation of certain food additives. Seventy-first report of the Joint FAO/WHO Expert Committee on Food Additives.

    PubMed

    2010-01-01

    This report represents the conclusions of a Joint FAO/WHO Expert Committee convened to evaluate the safety of various food additives, with a view to recommending acceptable daily intakes (ADIs) and to preparing specifications for identity and purity. The first part of the report contains a general discussion of the principles governing the toxicological evaluation and assessment of intake of food additives. A summary follows of the Committee's evaluations of technical, toxicological and intake data for certain food additives: branching glycosyltransferase from Rhodothermus obamensis expressed in Bacillus subtilis, cassia gum, cyclamic acid and its salts (dietary exposure assessment), cyclotetraglucose and cyclotetraglucose syrup, ferrous ammonium phosphate, glycerol ester of gum rosin, glycerol ester of tall oil rosin, lycopene from all sources, lycopene extract from tomato, mineral oil (low and medium viscosity) class II and class III, octenyl succinic acid modified gum arabic, sodium hydrogen sulfate and sucrose oligoesters type I and type II. Specifications for the following food additives were revised: diacetyltartaric acid and fatty acid esters of glycerol, ethyl lauroyl arginate, glycerol ester of wood rosin, nisin preparation, nitrous oxide, pectins, starch sodium octenyl succinate, tannic acid, titanium dioxide and triethyl citrate. Annexed to the report are tables summarizing the Committee's recommendations for intakes and toxicological evaluations of the food additives considered.

  18. Cytochrome P450 induction properties of food and herbal-derived compounds using a novel multiplex RT-qPCR in vitro assay, a drug–food interaction prediction tool

    PubMed Central

    Koe, Xue Fen; Tengku Muhammad, Tengku Sifzizul; Chong, Alexander Shu-Chien; Wahab, Habibah Abdul; Tan, Mei Lan

    2014-01-01

    A multiplex RT-qPCR was developed to examine CYP1A2, CYP2D6, and CYP3A4 induction properties of compounds from food and herbal sources. The induction of drug metabolizing enzymes is an important pharmacokinetic interaction with unique features in comparison with inhibition of metabolizing enzymes. Cytochrome induction can lead to serious drug–drug or drug–food interactions, especially if the coadministered drug plasma level is critical as it can reduce therapeutic effects and cause complications. Using this optimized multiplex RT-qPCR, cytochrome induction properties of andrographolide, curcumin, lycopene, bergamottin, and resveratrol were determined. Andrographolide, curcumin, and lycopene produced no significant induction effects on CYP1A2, CYP2D6, and CYP3A4. However, bergamottin appeared to be a significant in vitro CYP1A2 inducer starting from 5 to 50 μmol/L with induction ranging from 60 to 100-fold changes. On the other hand, resveratrol is a weak in vitro CYP1A2 inducer. Examining the cytochrome induction properties of food and herbal compounds help complement CYP inhibition studies and provide labeling and safety caution for such products. PMID:25473508

  19. Performance of Different Natural Antioxidant Compounds
in Frying Oil

    PubMed Central

    Aydenız, Buket

    2016-01-01

    Summary In this study, the natural green tea extract, purified lycopene, purified resveratrol and purified γ-oryzanol were added into peanut oil and their antioxidant performances were evaluated during frying. Moreover, the sensory properties of fried dough were evaluated to determine the consumption feasibility. All natural antioxidants led to significant increase in the stability of the oil samples. The ranges of measurements in the treatment groups were as follows: free acidity 0.1–2.9 g of oleic acid per 100 g of oil, conjugated dienes 0.01–0.40 g per 100 g of oil, total polar material 8.8–73.8 g per 100 g of oil, total phenolics 0.1–4.2 mg of gallic acid equivalents per 100 g of oil, and antioxidant capacity 0.5–11.0 mM of Trolox equivalents per 100 g of oil. The fatty acid and sterol compositions indicated that antioxidant supplementation could slow the oxidative degradation of unsaturated fatty acids and reduce trans-acid formation. Frying oil enriched with purified γ-oryzanol had higher sterol levels than the other enriched oil samples. The obtained quality of oil protection was in descending order: purified γ-oryzanol, green tea extract and purified lycopene. PMID:27904389

  20. Natural variation in expression of genes associated with carotenoid biosynthesis and accumulation in cassava (Manihot esculenta Crantz) storage root.

    PubMed

    Carvalho, Luiz Jcb; Agustini, Marco Av; Anderson, James V; Vieira, Eduardo A; de Souza, Claudia Rb; Chen, Songbi; Schaal, Barbara A; Silva, Joseane P

    2016-06-10

    Cassava (Manihot esculenta Crantz) storage root provides a staple food source for millions of people worldwide. Increasing the carotenoid content in storage root of cassava could provide improved nutritional and health benefits. Because carotenoid accumulation has been associated with storage root color, this study characterized carotenoid profiles, and abundance of key transcripts associated with carotenoid biosynthesis, from 23 landraces of cassava storage root ranging in color from white-to-yellow-to-pink. This study provides important information to plant breeding programs aimed at improving cassava storage root nutritional quality. Among the 23 landraces, five carotenoid types were detected in storage root with white color, while carotenoid types ranged from 1 to 21 in storage root with pink and yellow color. The majority of storage root in these landraces ranged in color from pale-to-intense yellow. In this color group, total β-carotene, containing all-E-, 9-Z-, and 13-Z-β-carotene isomers, was the major carotenoid type detected, varying from 26.13 to 76.72 %. Although no α-carotene was observed, variable amounts of a α-ring derived xanthophyll, lutein, was detected; with greater accumulation of α-ring xanthophylls than of β-ring xanthophyll. Lycopene was detected in a landrace (Cas51) with pink color storage root, but it was not detected in storage root with yellow color. Based on microarray and qRT-PCR analyses, abundance of transcripts coding for enzymes involved in carotenoid biosynthesis were consistent with carotenoid composition determined by contrasting HPLC-Diode Array profiles from storage root of landraces IAC12, Cas64, and Cas51. Abundance of transcripts encoding for proteins regulating plastid division were also consistent with the observed differences in total β-carotene accumulation. Among the 23 cassava landraces with varying storage root color and diverse carotenoid types and profiles, landrace Cas51 (pink color storage root) had low LYCb transcript abundance, whereas landrace Cas64 (intense yellow storage root) had decreased HYb transcript abundance. These results may explain the increased amounts of lycopene and total β-carotene observed in landraces Cas51 and Cas64, respectively. Overall, total carotenoid content in cassava storage root of color class representatives were associated with spatial patterns of secondary growth, color, and abundance of transcripts linked to plastid division. Finally, a partial carotenoid biosynthesis pathway is proposed.

  1. Targeting RNS/caveolin-1/MMP signaling cascades to protect against cerebral ischemia-reperfusion injuries: potential application for drug discovery

    PubMed Central

    Chen, Han-sen; Chen, Xi; Li, Wen-ting; Shen, Jian-gang

    2018-01-01

    Reactive nitrogen species (RNS) play important roles in mediating cerebral ischemia-reperfusion injury. RNS activate multiple signaling pathways and participate in different cellular events in cerebral ischemia-reperfusion injury. Recent studies have indicated that caveolin-1 and matrix metalloproteinase (MMP) are important signaling molecules in the pathological process of ischemic brain injury. During cerebral ischemia-reperfusion, the production of nitric oxide (NO) and peroxynitrite (ONOO−), two representative RNS, down-regulates the expression of caveolin-1 (Cav-1) and, in turn, further activates nitric oxide synthase (NOS) to promote RNS generation. The increased RNS further induce MMP activation and mediate disruption of the blood-brain barrier (BBB), aggravating the brain damage in cerebral ischemia-reperfusion injury. Therefore, the feedback interaction among RNS/Cav-1/MMPs provides an amplified mechanism for aggravating ischemic brain damage during cerebral ischemia-reperfusion injury. Targeting the RNS/Cav-1/MMP pathway could be a promising therapeutic strategy for protecting against cerebral ischemia-reperfusion injury. In this mini-review article, we highlight the important role of the RNS/Cav-1/MMP signaling cascades in ischemic stroke injury and review the current progress of studies seeking therapeutic compounds targeting the RNS/Cav-1/MMP signaling cascades to attenuate cerebral ischemia-reperfusion injury. Several representative natural compounds, including calycosin-7-O-β-D-glucoside, baicalin, Momordica charantia polysaccharide (MCP), chlorogenic acid, lutein and lycopene, have shown potential for targeting the RNS/Cav-1/MMP signaling pathway to protect the brain in ischemic stroke. Therefore, the RNS/Cav-1/MMP pathway is an important therapeutic target in ischemic stroke treatment. PMID:29595191

  2. Changes in carotenoid profiles and in the expression pattern of the genes in carotenoid metabolisms during fruit development and ripening in four watermelon cultivars.

    PubMed

    Lv, Pin; Li, Na; Liu, Hui; Gu, Huihui; Zhao, Wen-En

    2015-05-01

    Changes in carotenoid profiles during fruit ripening were investigated in four watermelon cultivars: red-fleshed "CN66", pink-fleshed "CN62", yellow-fleshed "ZXG381" and white-fleshed "ZXG507". The expression pattern of twelve genes (GGPS, PSY, PSY-A, PDS, ZDS, CRTISO, LCYB, CHYB, ZEP, NCED1, NCED2 and NCED3) was analysed. In "CN66" and "CN62", lycopene appeared at 12 DAP and became a main carotenoid increased at the later stages. The transcript levels of carotenogenic genes in "CN66" sharply increased during 18-30 DAP, and concomitantly, fruit accumulated the massive amounts of carotenoids. In "ZXG381", violaxanthin and lutein contents were positively correlated, respectively, with CHYB and ZEP transcript levels during fruit ripening. The trace amounts of carotenoids in "ZXG507" were accompanied with the low transcript levels of most biosynthetic genes. The results suggest that differential transcriptional regulation of carotenoid metabolic genes is very important in determining the amount and type of specific carotenoids accumulated during fruit development and ripening. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. The role of alternative oxidase in tomato fruit ripening and its regulatory interaction with ethylene

    PubMed Central

    Lin, Hong-Hui

    2012-01-01

    Although the alternative oxidase (AOX) has been proposed to play a role in fruit development, the function of AOX in fruit ripening is unclear. To gain further insight into the role of AOX in tomato fruit ripening, transgenic tomato plants 35S-AOX1a and 35S-AOX-RNAi were generated. Tomato plants with reduced LeAOX levels exhibited retarded ripening; reduced carotenoids, respiration, and ethylene production; and the down-regulation of ripening-associated genes. Moreover, no apparent respiratory climacteric occurred in the AOX-reduced tomato fruit, indicating that AOX might play an important role in climacteric respiration. In contrast, the fruit that overexpressed LeAOX1a accumulated more lycopene, though they displayed a similar pattern of ripening to wild-type fruit. Ethylene application promoted fruit ripening and anticipated ethylene production and respiration, including the alternative pathway respiration. Interestingly, the transgenic plants with reduced LeAOX levels failed to ripen after 1-methylcyclopropene (1-MCP) treatment, while such inhibition was notably less effective in 35S-AOX1a fruit. These findings indicate that AOX is involved in respiratory climacteric and ethylene-mediated fruit ripening of tomato. PMID:22915749

  4. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production.

    PubMed

    Peters-Wendisch, P; Götker, S; Heider, S A E; Komati Reddy, G; Nguyen, A Q; Stansen, K C; Wendisch, V F

    2014-12-20

    The Gram-positive Corynebacterium glutamicum is auxotrophic for biotin. Besides the biotin uptake system BioYMN and the transcriptional regulator BioQ, this bacterium possesses functional enzymes for the last three reactions of biotin synthesis starting from pimeloyl-CoA. Heterologous expression of bioF from the Gram-negative Escherichia coli enabled biotin synthesis from pimelic acid added to the medium, but expression of bioF together with bioC and bioH from E. coli did not entail biotin prototrophy. Heterologous expression of bioWAFDBI from Bacillus subtilis encoding another biotin synthesis pathway in C. glutamicum allowed for growth in biotin-depleted media. Stable growth of the recombinant was observed without biotin addition for eight transfers to biotin-depleted medium while the empty vector control stopped growth after the first transfer. Expression of bioWAFDBI from B. subtilis in C. glutamicum strains overproducing the amino acids l-lysine and l-arginine, the diamine putrescine, and the carotenoid lycopene, respectively, enabled formation of these products under biotin-depleted conditions. Thus, biotin-prototrophic growth and production by recombinant C. glutamicum were achieved. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Excitation energy dependence of excited states dynamics in all- trans-carotenes determined by femtosecond absorption and fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Kosumi, Daisuke; Yanagi, Kazuhiro; Nishio, Tomohiro; Hashimoto, Hideki; Yoshizawa, Masayuki

    2005-06-01

    Ultrafast relaxation kinetics in β-carotene and lycopene has been investigated by femtosecond absorption and fluorescence spectroscopies using tunable excitation pulses. The transient signals induced by the photoexcitation with larger excess energy have broader bands and longer lifetimes both in the 11Bu+and21Ag- excited states. The excess vibrational energy remains longer than several picoseconds and slows the relaxation kinetics in carotenoids.

  6. Possible benefits of tomato juice consumption: a pilot study on irradiated human lymphocytes from healthy donors.

    PubMed

    Nakamura, Ayumi; Itaki, Chieko; Saito, Ayako; Yonezawa, Toko; Aizawa, Koichi; Hirai, Ayumi; Suganuma, Hiroyuki; Miura, Tomisato; Mariya, Yasushi; Haghdoost, Siamak

    2017-05-12

    Reactive oxygen species (ROS) mediate much of the DNA damage caused by ionizing radiation. Among carotenoids, lycopene and β-carotene, present in tomato juice, are known to be strong radical scavengers. The aim of the study was to investigate the effect of tomato juice intake on the levels of DNA damage and oxidative stress in human whole blood induced by in vitro exposure to X-rays. Ten healthy adults were asked to drink 190 g of tomato juice, containing 17 mg lycopene and 0.25 mg β-carotene, per day for 3 weeks and then refrain from drinking it for 3 weeks. Peripheral whole blood samples were collected before and after the intake period of tomato juice and after the washout period. The blood samples were exposed in vitro to X-ray doses of 0, 0.1, 0.5, and 2 Gy. Cytogenetic damage was measured using the cytokinesis-block micronucleus (CBMN) assay and the dicentrics (DIC) assay. The level of oxidative stress was determined using serum 8-oxo-7, 8-dihydro-2-deoxyguanosine (8-oxo-dG) and plasma reactive oxygen metabolite-derived compounds (d-ROMs). The concentration of carotenoids in plasma was measured at the three time points. The levels of 8-oxo-dG tended to decrease during the intake period and increase during the washout period. A non-significant inverse correlation was noted between the plasma concentration of lycopene plus β-carotene and the level of 8-oxo-dG (P = 0.064). The radiation-induced MN and DIC frequencies increased in a dose-dependent manner, and when compared at the same dose, the MN and DIC frequencies decreased during the intake period compared with those at baseline and then increased during the washout period. The results suggest that continuous tomato juice consumption non-significantly decreases extracellular 8-oxo-dG, d-ROMs, and MN. Tomato juice intake had minimal or no effect on radiation-induced 8-oxo-dG and d-ROMs. For most radiation doses, continuously tomato juice intake lowered the levels of MN and DIC. Tomato juice consumption may suppress human lymphocyte DNA damage caused by radiation, but further examination is required. 2014-001 and 2014-R06.

  7. Optimization and development of a high-performance liquid chromatography method for the simultaneous determination of vitamin E and carotenoids in tomato fruits.

    PubMed

    Irakli, Maria; Chatzopoulou, Paschalina; Kadoglidou, Kalliopi; Tsivelika, Nektaria

    2016-09-01

    A simple and reliable high-performance liquid chromatography method was developed and validated for the simultaneous determination of lipophilic antioxidants in tomato fruits using C30 column operated at 15°C and a gradient mobile phase based on acetonitrile/methanol/dichloromethane in a total run time of 30 min. Diode array and fluorescence detectors were used respectively for the detection of carotenoids (lutein, zeaxanthin, cryptoxanthin, lycopene, and β-carotene) and vitamin E analogs (α-, β-, γ-, and δ-tocopherols, and tocotrienols). The best extraction yield of analytes in tomato fruits was achieved by employing ethyl acetate/hexane (1:1, v/v) after several treatments with various solvents. In addition, low extraction yields were obtained for carotenoids compared to tocopherols by adopting solid-phase extraction as a second clean-up step. The method was validated on the basis of recovery, precision, linearity, and limit of detection and quantification using spiked tomato samples. The method was applied to cherry and medium-sized tomato fruits. Lycopene was found to be present in largest amount in tomato pulp, followed by β-carotene and lutein. Due to its simplicity, rapidity, and efficiency, the method is suitable for routine analysis of lipophilic antioxidants in tomato fruits, and may also be applied to other vegetables of similar phytochemical profiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. IN-VITRO evidence for the protective properties of the main components of the Mediterranean diet against colorectal cancer: A systematic review.

    PubMed

    Rotelli, M T; Bocale, D; De Fazio, M; Ancona, P; Scalera, I; Memeo, R; Travaglio, E; Zbar, A P; Altomare, D F

    2015-09-01

    Epidemiological studies have shown that the incidence and mortality rates of colorectal cancer (CRC) vary over 10-fold worldwide where within Westernized societies lower rates are observed amongst populations living within the Mediterranean basin, suggesting a significant influence of environment and dietary style in CRC carcinogenesis. Interpretation of the data concerning the benefits of mediterranean (MD) diet is difficult in vivo because of the variability of alimentary regimens used, the differing compliance with dietary supplementation and because of the non-uniform duration of patient cohort observation. Therefore, the aim of this review is to evaluate the in-vitro effects on colorectal cancer cell lines. the literature concerning the in-vitro effects of 4 of the principal components symbolizing the MD such as olive oil (polyphenol), red chili (capsaicin), tomato (lycopene) and red grapes (resveratrol) have been systematically reviewed. Several studies have demonstrated that polyphenols form olive oil, lycopene, resveratrol and capsaicin have multiple anticancer properties affecting several metabolic pathways involved in cancerogenesis, apoptosis, and metastasis in CRC cell lines. This review summarizes some of the most recent data potentially supportive of the use of MD in CRC chemoprevention, analyzing the in vitro effects of individual components of the MD on CRC cell development, progression, metastasis and apoptosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer' varieties in Northeastern Portugal homegardens.

    PubMed

    Pinela, José; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2012-03-01

    The nutritional and antioxidant composition of four tomato Portuguese farmer' varieties widely cultivated in homegardens was determined. The analysed components included macronutrients, individual profiles of sugars and fatty acids by chromatographic techniques, hydrophilic antioxidants such as vitamin C, phenolics, flavonols and anthocyanins, and lipophilic antioxidants such as tocopherols, β-carotene and lycopene. Furthermore, the antioxidant activity was evaluated through DPPH scavenging activity, reducing power, β-carotene bleaching inhibition and TBARS formation inhibition. One of the four varieties, which is locally known as round tomato or potato tomato, proved to be the most powerful in antioxidant activity (EC50 values≤1.63 mg/ml), phenolic compounds (phenolics 31.23 mg ClAE/g extract, flavonols 6.36 mg QE/g extract and anthocyanins 3.45 mg ME/g extract) and carotenoids (β-carotene 0.51 mg/100 g and lycopene 9.49 mg/100 g), while the so-called yellow tomato variety revealed interesting nutritional composition, including higher fructose (3.42 g/100 g), glucose (3.18 g/100 g), α-linolenic acid (15.53%) and total tocopherols (1.44 mg/100 g) levels. Overall, these farmer' varieties of garden tomato cultivated in the Northeastern Portuguese region could contribute as sources of important antioxidants related to the prevention of chronic diseases associated to oxidative stress, such as cancer and coronary artery disease. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Carotenoids from Foods of Plant, Animal and Marine Origin: An Efficient HPLC-DAD Separation Method.

    PubMed

    Strati, Irini F; Sinanoglou, Vassilia J; Kora, Lintita; Miniadis-Meimaroglou, Sofia; Oreopoulou, Vassiliki

    2012-12-19

    Carotenoids are important antioxidant compounds, present in many foods of plant, animal and marine origin. The aim of the present study was to describe the carotenoid composition of tomato waste, prawn muscle and cephalothorax and avian (duck and goose) egg yolks through the use of a modified gradient elution HPLC method with a C 30 reversed-phase column for the efficient separation and analysis of carotenoids and their cis -isomers. Elution time was reduced from 60 to 45 min without affecting the separation efficiency. All- trans lycopene predominated in tomato waste, followed by all- trans -β-carotene, 13- cis -lutein and all- trans lutein, while minor amounts of 9- cis -lutein, 13- cis -β-carotene and 9- cis -β-carotene were also detected. Considering the above findings, tomato waste is confirmed to be an excellent source of recovering carotenoids, especially all- trans lycopene, for commercial use. Xanthophylls were the major carotenoids of avian egg yolks, all- trans lutein and all- trans zeaxanthin in duck and goose egg yolk, respectively. In the Penaeus kerathurus prawn, several carotenoids (zeaxanthin, all- trans -lutein, canthaxanthin, cryptoxanthin, optical and geometrical astaxanthin isomers) were identified in considerable amounts by the same method. A major advantage of this HPLC method was the efficient separation of carotenoids and their cis -isomers, originating from a wide range of matrices.

  11. Molecular Cloning and Characterization of DXS and DXR Genes in the Terpenoid Biosynthetic Pathway of Tripterygium wilfordii

    PubMed Central

    Tong, Yuru; Su, Ping; Zhao, Yujun; Zhang, Meng; Wang, Xiujuan; Liu, Yujia; Zhang, Xianan; Gao, Wei; Huang, Luqi

    2015-01-01

    1-Deoxy-d-xylulose-5-phosphate synthase (DXS) and 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) genes are the key enzyme genes of terpenoid biosynthesis but still unknown in Tripterygium wilfordii Hook. f. Here, three full-length cDNA encoding DXS1, DXS2 and DXR were cloned from suspension cells of T. wilfordii with ORF sizes of 2154 bp (TwDXS1, GenBank accession no.KM879187), 2148 bp (TwDXS2, GenBank accession no.KM879186), 1410 bp (TwDXR, GenBank accession no.KM879185). And, the TwDXS1, TwDXS2 and TwDXR were characterized by color complementation in lycopene accumulating strains of Escherichia coli, which indicated that they encoded functional proteins and promoted lycopene pathway flux. TwDXS1 and TwDXS2 are constitutively expressed in the roots, stems and leaves and the expression level showed an order of roots > stems > leaves. After the suspension cells were induced by methyl jasmonate, the mRNA expression level of TwDXS1, TwDXS2, and TwDXR increased, and triptophenolide was rapidly accumulated to 149.52 µg·g−1, a 5.88-fold increase compared with the control. So the TwDXS1, TwDXS2, and TwDXR could be important genes involved in terpenoid biosynthesis in Tripterygium wilfordii Hook. f. PMID:26512659

  12. Isoprenoid, lipid, and protein contents in intact plastids isolated from mesocarp cells of traditional and high-pigment tomato cultivars at different ripening stages.

    PubMed

    Lenucci, Marcello S; Serrone, Lucia; De Caroli, Monica; Fraser, Paul D; Bramley, Peter M; Piro, Gabriella; Dalessandro, Giuseppe

    2012-02-22

    This study reports quali-quantitative analyses on isoprenoids, phospholipids, neutral lipids, phytosterols, and proteins in purified plastids isolated from fresh fruits of traditional (Donald and Incas) and high-pigment (Kalvert and HLY-18) tomato cultivars at four ripening stages. In all of the investigated cultivars, lycopene, β-catotene, lutein, and total carotenoids varied significantly during ripening. Chromoplasts of red-ripe tomato fruits of high-pigment cultivars accumulated twice as much as lycopene (307.6 and 319.2 μg/mg of plastid proteins in Kalvert and HLY-18, respectively) than ordinary cultivars (178.6 and 151.7 μg/mg of plastid proteins in Donald and Incas, respectively); differences in chlorophyll and α-tocopherol contents were also evidenced. Phospholipids and phytosterols increased during ripening, whereas triglycerides showed a general decrease. Regardless of the stage of ripening, palmitic acid was the major fatty acid in all cultivars (ranging from 35 to 52% of the total fatty acids), followed by stearic, oleic, linoleic, linolenic, and myristic acids, but their relative percentage was affected by ripening. Most of the bands detected on the SDS-PAGEs of plastid proteins were constantly present during chloroplast-to-chromoplast conversion, some others disappeared, and only one, with a molecular weight of ~41.6 kDa, was found to increase in intensity.

  13. Yields and Nutritional of Greenhouse Tomato in Response to Different Soil Aeration Volume at two depths of Subsurface drip irrigation

    PubMed Central

    Li, Yuan; Niu, Wenquan; Dyck, Miles; Wang, Jingwei; Zou, Xiaoyang

    2016-01-01

    This study investigated the effects of 4 aeration levels (varied by injection of air to the soil through subsurface irrigation lines) at two subsurface irrigation line depths (15 and 40 cm) on plant growth, yield and nutritional quality of greenhouse tomato. In all experiments, fruit number, width and length, yield, vitamin C, lycopene and sugar/acid ratio of tomato markedly increased in response to the aeration treatments. Vitamin C, lycopene, and sugar/acid ratio increased by 41%, 2%, and 43%, respectively, in the 1.5 times standard aeration volume compared with the no-aeration treatment. An interaction between aeration level and depth of irrigation line was also observed with yield, fruit number, fruit length, vitamin C and sugar/acid ratio of greenhouse tomato increasing at each aeration level when irrigation lines were placed at 40 cm depth. However, when the irrigation lines were 15 cm deep, the trend of total fruit yields, fruit width, fruit length and sugar/acid ratio first increased and then decreased with increasing aeration level. Total soluble solids and titrable acid decreased with increasing aeration level both at 15 and 40 cm irrigation line placement. When all of the quality factors, yields and economic benefit are considered together, the combination of 40 cm line depth and “standard” aeration level was the optimum combination. PMID:27995970

  14. Culinary practices mimicking a polysaccharide-rich recipe enhance the bioaccessibility of fat-soluble micronutrients.

    PubMed

    Dhuique-Mayer, Claudie; Servent, Adrien; Descalzo, Adriana; Mouquet-Rivier, Claire; Amiot, Marie-Josèphe; Achir, Nawel

    2016-11-01

    This study was carried out to assess the impact of heat processing of a complex emulsion on the behavior of fat soluble micronutrients (FSM) in a traditional Tunisian dish. A simplified recipe involved, dried mucilage-rich jute leaves, tomato paste and olive oil, followed by a cooking treatment (150min). Hydrothermal pattern and viscosity were monitored along with the changes of FSM content and the bioaccessibility (called micellarization, using an in vitro digestion model). Partitioning of carotenoids differed according to their lipophilicity: lycopene, β-carotene and lutein diffused to the oil phase (100%, 70% and 10% respectively). In contrast with the poor carotenes/tocopherol bioaccessibility (0.9-1%), the highest micellarization was observed for lutein (57%) and it increased with heating time and viscosity change. Domestic culinary cooking practices probably increase the bioavailability of carotenes mainly by their diffusion to the oil phase, facilitating their in vivo transfer into micelles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil.

    PubMed

    Ribeiro da Silva, Larissa Morais; Teixeira de Figueiredo, Evania Altina; Silva Ricardo, Nagila Maria Pontes; Pinto Vieira, Icaro Gusmao; Wilane de Figueiredo, Raimundo; Brasil, Isabella Montenegro; Gomes, Carmen L

    2014-01-15

    This study aimed to quantify the levels of resveratrol, coumarin, and other bioactives in pulps and by-products of twelve tropical fruits from Brazil obtained during pulp production process. Pineapple, acerola, monbin, cashew apple, guava, soursop, papaya, mango, passion fruit, surinam cherry, sapodilla, and tamarind pulps were evaluated as well as their by-products (peel, pulp's leftovers, and seed). Total phenolic, anthocyanins, yellow flavonoids, β-carotene and lycopene levels were also determined. Resveratrol was identified in guava and surinam cherry by-products and coumarin in passion fruit, guava and surinam cherry by-products and mango pulp. These fruit pulp and by-products could be considered a new natural source of both compounds. Overall, fruit by-products presented higher (P<0.05) bioactive content than their respective fruit pulps. This study provides novel information about tropical fruits and their by-products bioactive composition, which is essential for the understanding of their nutraceutical potential and future application in the food industry. Published by Elsevier Ltd.

  16. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts.

    PubMed

    Ye, Victor M; Bhatia, Sujata K

    2012-08-01

    Carotenoids, such as lycopene, β-carotene, zeaxanthin, canthaxanthin and astaxanthin have many benefits for human health. In addition to the functional role of carotenoids as vitamin A precursors, adequate consumption of carotenoids prevents the development of a variety of serious diseases. Biosynthesis of carotenoids is a complex process and it starts with the common isoprene precursors. Condensation of these precursors and subsequent modifications, by introducing hydroxyl- and keto-groups, leads to the generation of diversified carotenoid structures. To improve carotenoid production, metabolic engineering has been explored in bacteria, yeast, and algae. The success of the pathway engineering effort depends on the host metabolism, specific enzymes used, the enzyme expression levels, and the strategies employed. Despite the difficulty of pathway engineering for carotenoid production, great progress has been made over the past decade. We review metabolic engineering approaches used in a variety of microbial hosts for carotenoid biosynthesis. These advances will greatly expedite our efforts to bring the health benefits of carotenoids and other nutritional compounds to our diet.

  17. Antioxidant activity and bioactive compound contents before and after in vitro digestion of new tomato hybrids.

    PubMed

    Tommonaro, Giuseppina; Speranza, Giovanna; De Prisco, Rocco; Iodice, Carmine; Crudele, Egle; Abbamondi, Gennaro Roberto; Nicolaus, Barbara

    2017-12-01

    The antioxidant properties and bioactive compound contents of fresh new tomato hybrids before and after in vitro digestion were investigated. To this aim, the antioxidant activities of lipophilic, hydrophilic and polyphenolic extracts of tomato hybrids were determined by ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), DMPD (N,N-dimethyl-p-phenylenediamine dihydrochloride) and DPPH (2,2-diphenyl-1-picrylhydrazyl) methods respectively, while the bioactive compound contents were estimated via Folin-Ciocalteu (polyphenols), pH differential (anthocyanins) and high-performance liquid chromatography (lycopene and β-carotene) methods. After the digestion process, a marked loss (ranging from 37 to 77%) of antioxidant capacity linked to the hydrophilic fraction was observed. In contrast, the lipophilic and methanolic fractions showed an increase in antioxidant activity (ranging from 9 to 40%) after gastric digestion, and a rapid decrease was observed after total digestion. Moreover, the presence of anthocyanins and carotenoids after simulated digestion was a notable result. The bioavailability of bioactive metabolites from nutraceutical food and their healthful properties in humans are strictly dependent on the digestion process. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Increasing Early Detection of Prostate Cancer in African American Men Through a Culturally Targeted Print Intervention

    DTIC Science & Technology

    2006-03-01

    of a protein called prostate-specific antigen (PSA). Normally, PSA is found in the blood at very low levels. Elevated PSA readings can be a sign of...cancer. ♦ Prostate Specific Antigen test (also called PSA test) - This simple blood test measures the level of a protein called prostate- specific...meat ♦ Lycopene, a compound in cooked tomato products and watermelon . 9 A number of Black men say they have problems with their

  19. Photoacoustic and optothermal studies of tomato ketchup adulterated by the red beet (Beta vulgaris)

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Westra, E.; Seters, J.; van Houten, S.; Huberts, D.; Colić-Barić, I.; Cozijnsen, J.; Boshoven, H.

    2005-06-01

    Photoacoustic (PA) spectroscopy and optothermal window (OW) technique were used to explore their potential to detect red beet added as a colorant to tomato ketchup. The associated changes of colour resulting in the changes of absorbance (and hence of PA and OT signals) were monitored in the 500 nm region corresponding to the absorption maximum of lycopene. Both methods were shown capable of quantifying about 1% of red beet (by mass) in the mixture of ketchup and red beet.

  20. A Possible Trifunctional β-Carotene Synthase Gene Identified in the Draft Genome of Aurantiochytrium sp. Strain KH105

    PubMed Central

    Iwasaka, Hiroaki; Satoh, Ryota; Nagano, Akiko; Watanabe, Kenshi; Hisata, Kanako; Satoh, Noriyuki

    2018-01-01

    Labyrinthulomycetes have been regarded as a promising industrial source of xanthophylls, including astaxanthin and canthaxanthin, polyunsaturated fatty acids such as docosahexaenoic acid and docosapentaenoic acid, ω-3 oils, and terpenic hydrocarbons, such as sterols and squalene. A Thraustochytrid, Aurantiochytrium sp. KH105 produces carotenoids, including astaxanthin, with strong antioxidant activity. To gain genomic insights into this capacity, we decoded its 97-Mbp genome and characterized genes for enzymes involved in carotenoid biosynthesis. Interestingly, all carotenogenic genes, as well as other eukaryotic genes, appeared duplicated, suggesting that this strain is diploid. In addition, among the five genes involved in the pathway from geranylgeranyl pyrophosphate to astaxanthin, geranylgeranyl phytoene synthase (crtB), phytoene desaturase (crtI) and lycopene cyclase (crtY) were fused into single gene (crtIBY) with no internal stop codons. Functionality of the trifunctional enzyme, CrtIBY, to catalyze the reaction from geranylgeranyl diphosphate to β-carotene was confirmed using a yeast assay system and mass spectrometry. Furthermore, analyses of differential gene expression showed characteristic up-regulation of carotenoid biosynthetic genes during stationary and starvation phases under these culture conditions. This suggests genetic engineering events to promote more efficient production of carotenoids. We also showed an occurrence of crtIBY in other Thraustochytrid species. PMID:29642531

Top