Sample records for processes utilizing radiation

  1. An intermetallic forming steel under radiation for nuclear applications

    NASA Astrophysics Data System (ADS)

    Hofer, C.; Stergar, E.; Maloy, S. A.; Wang, Y. Q.; Hosemann, P.

    2015-03-01

    In this work we investigated the formation and stability of intermetallics formed in a maraging steel PH 13-8 Mo under proton radiation up to 2 dpa utilizing nanoindentation, microcompression testing and atom probe tomography. A comprehensive discussion analyzing the findings utilizing rate theory is introduced, comparing the aging process to radiation induced diffusion. New findings of radiation induced segregation of undersize solute atoms (Si) towards the precipitates are considered.

  2. ALARA radiation considerations for the AP600 reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, F.L.

    1995-03-01

    The radiation design of the AP600 reactor plant is based on an average annual occupational radiation exposure (ORE) of 100 man-rem. As a design goal we have established a lower value of 70 man-rem per year. And, with our current design process, we expect to achieve annual exposures which are well below this goal. To accomplish our goal we have established a process that provides criteria, guidelines and customer involvement to achieve the desired result. The criteria and guidelines provide the shield designer, as well as the systems and plant layout designers with information that will lead to an integratedmore » plant design that minimizes personnel exposure and yet is not burdened with complicated shielding or unnecessary component access limitations. Customer involvement is provided in the form of utility input, design reviews and information exchange. Cooperative programs with utilities in the development of specific systems or processes also provides for an ALARA design. The results are features which include ALARA radiation considerations as an integral part of the plant design and a lower plant ORE. It is anticipated that a further reduction in plant personnel exposures will result through good radiological practices by the plant operators. The information in place to support and direct the plant designers includes the Utility Requirements Document (URD), Federal Regulations, ALARA guidelines, radiation design information and radiation and shielding design criteria. This information, along with the utility input, design reviews and information feedback, will contribute to the reduction of plant radiation exposure levels such that they will be less than the stated goals.« less

  3. Fabrication process scale-up and optimization for a boron-aluminum composite radiator

    NASA Technical Reports Server (NTRS)

    Okelly, K. P.

    1973-01-01

    Design approaches to a practical utilization of a boron-aluminum radiator for the space shuttle orbiter are presented. The program includes studies of laboratory composite material processes to determine the feasibility of a structural and functional composite radiator panel, and to estimate the cost of its fabrication. The objective is the incorporation of boron-aluminum modulator radiator on the space shuttle.

  4. Progress in radiation processing of polymers

    NASA Astrophysics Data System (ADS)

    Chmielewski, Andrzej G.; Haji-Saeid, Mohammad; Ahmed, Shamshad

    2005-07-01

    Modification in polymeric structure of plastic material can be brought either by conventional chemical means or by exposure to ionization radiation from ether radioactive sources or highly accelerated electrons. The prominent drawbacks of chemical cross-linking typically involve the generation of noxious fumes and by products of peroxide degradation. Both the irradiation sources have their merits and limitations. Increased utilization of electron beams for modification and enhancement of polymer materials has been in particular witnessed over the past 40 years. The paper highlights several recent cases of EB utilization to improve key properties of selected plastic products. In paper is provided a survey of radiation processing methods of industrial interest, encompassing technologies which are already commercially well established, through developments in the active R&D stage which show pronounced promise for future commercial use. Radiation cross-linking technologies discussed include: application in cable and wire, application in rubber tyres, radiation vulcanization of rubber latex, development of radiation crosslinked SiC fiber, polymer recycling, development of gamma compatible pp, hydrogels etc. Over the years, remarkable advancement has been achieved in radiation processing of natural polymers. Role of radiation in improving the processing of temperature of PCL for use as biodegradable polymer, in accelerated breakdown of cellulose into viscose and enhancement in yields of chitin/chitosan from sea-food waste, is described.

  5. Radiofrequency and microwave radiation in the microelectronics industry.

    PubMed

    Cohen, R

    1986-01-01

    The microscopic precision required to produce minute integrated circuits is dependent on several processes utilizing radiofrequency and microwave radiation. This article provides a review of radiofrequency and microwave exposures in microelectronics and of the physical and biologic properties of these types of radiation; summarizes the existing, relevant medical literature; and provides the clinician with guidelines for diagnosis and treatment of excessive exposures to microwave and radiofrequency radiation.

  6. A biotechnological project with a gamma radiation source of 100,000 Ci

    NASA Astrophysics Data System (ADS)

    Lombardo, J. H.; Smolko, E. E.

    A project for the production of radiovaccines and other bio-medical products is presented which includes a radiation facility provided with a gamma ray source equivalent to 100,000 Ci of Co-60. The whole process incorporates novel basic features in virus production and inactivation steps. The former is carried out in animals previously subjected to immunodepression through electromagnetic radiation. The later is obtained at low temperatures by using either electromagnetic or particle radiations. A vaccine manufacture process is shown to illustrate the utilization of ionizing radiations to obtain a foot and mouth disease virus (FMDV) vaccine with good antigenic quality and low cost.

  7. Processing circuitry for single channel radiation detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  8. An Implicit Finite Difference Solution to the Viscous Radiating Shock Layer with Strong Blowing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.

    1971-01-01

    An implicit finite difference scheme is developed for the fully coupled solution of the viscous radiating stagnation line equations, including strong blowing. Solutions are presented for both air injection and carbon phenolic ablation products injection into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized.

  9. CT Dose Optimization in Pediatric Radiology: A Multiyear Effort to Preserve the Benefits of Imaging While Reducing the Risks.

    PubMed

    Greenwood, Taylor J; Lopez-Costa, Rodrigo I; Rhoades, Patrick D; Ramírez-Giraldo, Juan C; Starr, Matthew; Street, Mandie; Duncan, James; McKinstry, Robert C

    2015-01-01

    The marked increase in radiation exposure from medical imaging, especially in children, has caused considerable alarm and spurred efforts to preserve the benefits but reduce the risks of imaging. Applying the principles of the Image Gently campaign, data-driven process and quality improvement techniques such as process mapping and flowcharting, cause-and-effect diagrams, Pareto analysis, statistical process control (control charts), failure mode and effects analysis, "lean" or Six Sigma methodology, and closed feedback loops led to a multiyear program that has reduced overall computed tomographic (CT) examination volume by more than fourfold and concurrently decreased radiation exposure per CT study without compromising diagnostic utility. This systematic approach involving education, streamlining access to magnetic resonance imaging and ultrasonography, auditing with comparison with benchmarks, applying modern CT technology, and revising CT protocols has led to a more than twofold reduction in CT radiation exposure between 2005 and 2012 for patients at the authors' institution while maintaining diagnostic utility. (©)RSNA, 2015.

  10. Geostationary earth climate sensor: Scientific utility and feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Campbell, G. Garrett; Vonderharr, T. H.; Evert, T.; Kidder, Stanley Q.; Purdom, James F. W.

    1991-01-01

    The possibility of accurate broad band radiation budget measurements from a GEO platform will provide a unique opportunity for viewing radiation processes in the atmosphere-ocean system. The CSU/TRW team has prepared a Phase 1 instrument design study demonstrating that measurements of radiation budget are practical from geosynchronous orbit with proven technology. This instrument concept is the Geostationary Earth Climate Sensor (GECS). A range of resolutions down to 20 km at the top of the atmosphere are possible, depending upon the scientific goals of the experiment. These tradeoffs of resolution and measurement repeat cycles are examined for scientific utility. The design of a flexible instrument is shown to be possible to meet the two goals: long-term, systematic monitoring of the diurnal cycles of radiation budget; and high time and space resolution studies of regional radiation features.

  11. Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Donald J (Inventor)

    2011-01-01

    A computer implemented process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. Utilizing interactive software the process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.

  12. BYSTANDER EFFECTS, GENOMIC INSTABILITY, ADAPTIVE RESPONSE AND CANCER RISK ASSESSMENT FOR RADIATION AND CHEMICAL EXPOSURES

    EPA Science Inventory

    There is an increased interest in utilizing mechanistic data in support of the cancer risk assessment process for ionizing radiation and environmental chemical exposures. In this regard the use of biologically based dose-response models is particularly advocated. The aim is to pr...

  13. Radiation Effects and Hardening Techniques for Spacecraft Microelectronics

    NASA Astrophysics Data System (ADS)

    Gambles, J. W.; Maki, G. K.

    2002-01-01

    The natural radiation from the Van Allen belts, solar flares, and cosmic rays found outside of the protection of the earth's atmosphere can produce deleterious effects on microelectronics used in space systems. Historically civil space agencies and the commercial satellite industry have been able to utilize components produced in special radiation hardened fabrication process foundries that were developed during the 1970s and 1980s under sponsorship of the Departments of Defense (DoD) and Energy (DoE). In the post--cold war world the DoD and DoE push to advance the rad--hard processes has waned. Today the available rad--hard components lag two-plus technology node generations behind state- of-the-art commercial technologies. As a result space craft designers face a large performance gap when trying to utilize available rad--hard components. Compounding the performance gap problems, rad--hard components are becoming increasingly harder to get. Faced with the economic pitfalls associated with low demand versus the ever increasing investment required for integrated circuit manufacturing equipment most sources of rad--hard parts have simply exited this market in recent years, leaving only two domestic US suppliers of digital rad--hard components. This paper summarizes the radiation induced mechanisms that can cause digital microelectronics to fail in space, techniques that can be applied to mitigate these failure mechanisms, and ground based testing used to validate radiation hardness/tolerance. The radiation hardening techniques can be broken down into two classes, Hardness By Process (HBP) and Hardness By Design (HBD). Fortunately many HBD techniques can be applied to commercial fabrication processes providing space craft designer with radiation tolerant Application Specific Integrated Circuits (ASICs) that can bridge the performance gap between the special HBP foundries and the commercial state-of-the-art performance.

  14. Two-dimensional simulation of a two-phase, regenerative pumped radiator loop utilizing direct contact heat transfer with phase change

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Begg, Lester L.; Wetch, Joseph R.; Jang, Jong H.; Juhasz, Albert J.

    An innovative pumped loop concept for 600 K space power system radiators utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup, is under development. The heat transfer process with melting/freezing of Li in an NaK flow was studied through two-dimensional time-dependent numerical simulations to characterize and predict the Li/NaK radiator performance during startup (thawing) and shutdown (cold-trapping). Effects of system parameters and the criteria for the plugging domain are presented together with temperature distribution patterns in solid Li and subsequent melting surface profile variations in time.

  15. Post-processing of 3D-printed parts using femtosecond and picosecond laser radiation

    NASA Astrophysics Data System (ADS)

    Mingareev, Ilya; Gehlich, Nils; Bonhoff, Tobias; Meiners, Wilhelm; Kelbassa, Ingomar; Biermann, Tim; Richardson, Martin C.

    2014-03-01

    Additive manufacturing, also known as 3D-printing, is a near-net shape manufacturing approach, delivering part geometry that can be considerably affected by various process conditions, heat-induced distortions, solidified melt droplets, partially fused powders, and surface modifications induced by the manufacturing tool motion and processing strategy. High-repetition rate femtosecond and picosecond laser radiation was utilized to improve surface quality of metal parts manufactured by laser additive techniques. Different laser scanning approaches were utilized to increase the ablation efficiency and to reduce the surface roughness while preserving the initial part geometry. We studied post-processing of 3D-shaped parts made of Nickel- and Titanium-base alloys by utilizing Selective Laser Melting (SLM) and Laser Metal Deposition (LMD) as additive manufacturing techniques. Process parameters such as the pulse energy, the number of layers and their spatial separation were varied. Surface processing in several layers was necessary to remove the excessive material, such as individual powder particles, and to reduce the average surface roughness from asdeposited 22-45 μm to a few microns. Due to the ultrafast laser-processing regime and the small heat-affected zone induced in materials, this novel integrated manufacturing approach can be used to post-process parts made of thermally and mechanically sensitive materials, and to attain complex designed shapes with micrometer precision.

  16. Radiation safety in the cardiac catheterization lab: A time series quality improvement initiative.

    PubMed

    Abuzeid, Wael; Abunassar, Joseph; Leis, Jerome A; Tang, Vicky; Wong, Brian; Ko, Dennis T; Wijeysundera, Harindra C

    Interventional cardiologists have one of the highest annual radiation exposures yet systems of care that promote radiation safety in cardiac catheterization labs are lacking. This study sought to reduce the frequency of radiation exposure, for PCI procedures, above 1.5Gy in labs utilizing a Phillips system at our local institution by 40%, over a 12-month period. We performed a time series study to assess the impact of different interventions on the frequency of radiation exposure above 1.5Gy. Process measures were percent of procedures where collimation and magnification were used and percent of completion of online educational modules. Balancing measures were the mean number of cases performed and mean fluoroscopy time. Information sessions, online modules, policies and posters were implemented followed by the introduction of a new lab with a novel software (AlluraClarity©) to reduce radiation dose. There was a significant reduction (91%, p<0.05) in the frequency of radiation exposure above 1.5Gy after utilizing a novel software (AlluraClarity©) in a new Phillips lab. Process measures of use of collimation (95.0% to 98.0%), use of magnification (20.0% to 14.0%) and completion of online modules (62%) helped track implementation. The mean number of cases performed and mean fluoroscopy time did not change significantly. While educational strategies had limited impact on reducing radiation exposure, implementing a novel software system provided the most effective means of reducing radiation exposure. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  17. Choice of the laser wavelength for a herpetic keratitis treatment

    NASA Astrophysics Data System (ADS)

    Razhev, Alexander M.; Bagayev, Sergei N.; Chernikh, Valery V.; Kargapoltsev, Evgeny S.; Trunov, Alexander; Zhupikov, Andrey A.

    2002-06-01

    For the first time the effect of the UV laser radiation to human eye cornea with herpetic keratitis was experimentally investigated. In experiments the UV radiation of ArF (193 nm), KrCl (223 nm), KrF (248 nm) excimer lasers were used. Optimal laser radiation parameters for the treatment of the herpetic keratitis were determined. The immuno-biochemical investigations were carried out and the results of clinical trials are presented. The maximum ablation rate was obtained for the 248 nm radiation wavelength. The process of healing was successful but in some cases the haze on the surface of the cornea was observed. When used the 193 nm radiation wavelength the corneal surface was clear without any hazes but the epithelization process was slower than for 248 nm wavelength and in some cases the relapse was occurred. The best results for herpetic keratitis treatment have been achieved by utilizing the 223 nm radiation wavelength of the KrCl excimer laser. The use of the 223 nm radiation wavelength allows treating the herpetic keratitis with low traumatic process of ablation and provides high quality of corneal surface.

  18. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields, volume 3

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1991-01-01

    The computer programs developed to calculate the shock wave precursor and the method of using them are described. This method calculated the precursor flow field in a nitrogen gas including the effects of emission and absorption of radiation on the energy and composition of gas. The radiative transfer is calculated including the effects of absorption and emission through the line as well as the continuum process in the shock layer and through the continuum processes only in the precursor. The effects of local thermodynamic nonequilibrium in the shock layer and precursor regions are also included in the radiative transfer calculations. Three computer programs utilized by this computational scheme to calculate the precursor flow field solution for a given shock layer flow field are discussed.

  19. Advanced radiator concepts feasibility demonstration

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Begg, Lester; Wetch, Joseph R.; Juhasz, Albert J.

    1991-01-01

    An innovative pumped loop concept for 600 K space power system radiators is under development utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup. The melting/freezing process of Li in a NaK flow was studied experimentally to demonstrate the Li/NaK radiator feasibility during startup (thawing) and shutdown (cold-trapping). Results of the vapor grown carbon fiber/composite thermal conductivity measurements are also presented.

  20. Advanced radiator concepts feasibility demonstration

    NASA Astrophysics Data System (ADS)

    Rhee, Hyop S.; Begg, Lester; Wetch, Joseph R.; Juhasz, Albert J.

    An innovative pumped loop concept for 600 K space power system radiators is under development utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup. The melting/freezing process of Li in a NaK flow was studied experimentally to demonstrate the Li/NaK radiator feasibility during startup (thawing) and shutdown (cold-trapping). Results of the vapor grown carbon fiber/composite thermal conductivity measurements are also presented.

  1. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  2. On the development of radiation tolerant surveillance camera from consumer-grade components

    NASA Astrophysics Data System (ADS)

    Klemen, Ambrožič; Luka, Snoj; Lars, Öhlin; Jan, Gunnarsson; Niklas, Barringer

    2017-09-01

    In this paper an overview on the process of designing a radiation tolerant surveillance camera from consumer grade components and commercially available particle shielding materials is given. This involves utilization of Monte-Carlo particle transport code MCNP6 and ENDF/B-VII.0 nuclear data libraries, as well as testing the physical electrical systems against γ radiation, utilizing JSI TRIGA mk. II fuel elements as a γ-ray sources. A new, aluminum, 20 cm × 20 cm × 30 cm irradiation facility with electrical power and signal wire guide-tube to the reactor platform, was designed and constructed and used for irradiation of large electronic and optical components assemblies with activated fuel elements. Electronic components to be used in the camera were tested against γ-radiation in an independent manner, to determine their radiation tolerance. Several camera designs were proposed and simulated using MCNP, to determine incident particle and dose attenuation factors. Data obtained from the measurements and MCNP simulations will be used to finalize the design of 3 surveillance camera models, with different radiation tolerances.

  3. Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

  4. Radiation Entropy and Near-Field Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuomin M.

    2008-08-01

    Radiation entropy was key to the original derivation of Planck's law of blackbody radiation, in 1900. This discovery opened the door to quantum mechanical theory and Planck was awarded the Nobel Prize in Physics in 1918. Thermal radiation plays an important role in incandescent lamps, solar energy utilization, temperature measurements, materials processing, remote sensing for astronomy and space exploration, combustion and furnace design, food processing, cryogenic engineering, as well as numerous agricultural, health, and military applications. While Planck's law has been fruitfully applied to a large number of engineering problems for over 100 years, questions have been raised about its limitation in micro/nano systems, especially at subwavelength distances or in the near field. When two objects are located closer than the characteristic wavelength, wave interference and photon tunneling occurs that can result in significant enhancement of the radiative transfer. Recent studies have shown that the near-field effects can realize emerging technologies, such as superlens, sub-wavelength light source, polariton-assisted nanolithography, thermophotovoltaic (TPV) systems, scanning tunneling thermal microscopy, etc. The concept of entropy has also been applied to explain laser cooling of solids as well as the second law efficiency of devices that utilize thermal radiation to produce electricity. However, little is known as regards the nature of entropy in near-field radiation. Some history and recent advances are reviewed in this presentation with a call for research of radiation entropy in the near field, due to the important applications in the optimization of thermophotovoltaic converters and in the design of practical systems that can harvest photon energies efficiently.

  5. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Poster, Dianne L.; Vládar, András E.; Driscoll, Mark S.; LaVerne, Jay A.; Tsinas, Zois; Al-Sheikhly, Mohamad I.

    2018-02-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining by-products, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

  6. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing.

    PubMed

    Postek, Michael T; Poster, Dianne L; Vládar, András E; Driscoll, Mark S; LaVerne, Jay A; Tsinas, Zois; Al-Sheikhly, Mohamad I

    2018-02-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H 2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining byproducts, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

  7. Non-equilibrium radiation nuclear reactor

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T. (Inventor)

    1978-01-01

    An externally moderated thermal nuclear reactor is disclosed which is designed to provide output power in the form of electromagnetic radiation. The reactor is a gaseous fueled nuclear cavity reactor device which can operate over wide ranges of temperature and pressure, and which includes the capability of processing and recycling waste products such as long-lived transuranium actinides. The primary output of the device may be in the form of coherent radiation, so that the reactor may be utilized as a self-critical nuclear pumped laser.

  8. A laboratory investigation of the variability of cloud reflected radiance fields

    NASA Technical Reports Server (NTRS)

    Mckee, T. B.; Cox, S. K.

    1986-01-01

    A method to determine the radiative properties of complex cloud fields was developed. A Cloud field optical simulator (CFOS) was constructed to simulate the interaction of cloud fields with visible radiation. The CFOS was verified by comparing experimental results from it with calculations performed with a Monte Carlo radiative transfer model. A software library was developed to process, reduce, and display CFOS data. The CFSOS was utilized to study the reflected radiane patterns from simulated cloud fields.

  9. Device and method for shortening reactor process tubes

    DOEpatents

    Frantz, C.E.; Alexander, W.K.; Lander, W.E.B.

    A device and method are described for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  10. Material Processing Opportunites Utilizing a Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Todd, Alan

    1996-11-01

    Many properties of photocathode-driven Free Electron Lasers (FEL) are extremely attractive for material processing applications. These include: 1) broad-band tunability across the IR and UV spectra which permits wavelength optimization, depth deposition control and utilization of resonance phenomena; 2) picosecond pulse structure with continuous nanosecond spacing for optimum deposition efficiency and minimal collateral damage; 3) high peak and average radiated power for economic processing in quantity; and 4) high brightness for spatially defined energy deposition and intense energy density in small spots. We discuss five areas: polymer, metal and electronic material processing, micromachining and defense applications; where IR or UV material processing will find application if the economics is favorable. Specific examples in the IR and UV, such as surface texturing of polymers for improved look and feel, and anti-microbial food packaging films, which have been demonstrated using UV excimer lamps and lasers, will be given. Unfortunately, although the process utility is readily proven, the power levels and costs of lamps and lasers do not scale to production margins. However, from these examples, application specific cost targets ranging from 0.1=A2/kJ to 10=A2/kJ of delivered radiation at power levels from 10 kW to 500 kW, have been developed and are used to define strawman FEL processing systems. Since =46EL radiation energy extraction from the generating electron beam is typically a few percent, at these high average power levels, economic considerations dictate the use of a superconducting RF accelerator with energy recovery to minimize cavity and beam dump power loss. Such a 1 kW IR FEL, funded by the US Navy, is presently under construction at the Thomas Jefferson National Accelerator Facility. This dual-use device, scheduled to generate first light in late 1997, will test both the viability of high-power FELs for shipboard self-defense against cruise missiles, and for the first time, provide an industrial testbed capable of processing various materials in market evaluation quantities.

  11. High-energy radiation and polymers: A review of commercial processes and emerging applications

    NASA Astrophysics Data System (ADS)

    Clough, R. L.

    2001-12-01

    Ionizing radiation has been found to be widely applicable in modifying the structure and properties of polymers, and can be used to tailor the performance of either bulk materials or surfaces. Fifty years of research in polymer radiation chemistry has led to numerous applications of commercial and economic importance, and work remains active in the application of radiation to practical uses involving polymeric materials. This paper provides a survey of radiation-processing methods of industrial interest, ranging from technologies already commercially well established, through innovations in the active R&D stage which show exceptional promise for future commercial use. Radiation-processing technologies are discussed under the following categories: cross-linking of plastics and rubbers, curing of coatings and inks, heat-shrink products, fiber-matrix composites, chain-scission for processing control, surface modification, grafting, hydrogels, sterilization, natural product enhancement, plastics recycling, ceramic precursors, electronic property materials, ion-track membranes and lithography for microdevice production. In addition to new technological innovations utilizing conventional gamma and e-beam sources, a number of promising new applications make use of novel radiation types which include ion beams (heavy ions, light ions, highly focused microscopic beams and high-intensity pulses), soft X-rays which are focused, coherent X-rays (from a synchrotron) and e-beams which undergo scattering to generate patterns.

  12. Satellite Cloud and Radiative Property Processing and Distribution System on the NASA Langley ASDC OpenStack and OpenShift Cloud Platform

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Chee, T.; Palikonda, R.; Smith, W. L., Jr.; Bedka, K. M.; Spangenberg, D.; Vakhnin, A.; Lutz, N. E.; Walter, J.; Kusterer, J.

    2017-12-01

    Cloud Computing offers new opportunities for large-scale scientific data producers to utilize Infrastructure-as-a-Service (IaaS) and Platform-as-a-Service (PaaS) IT resources to process and deliver data products in an operational environment where timely delivery, reliability, and availability are critical. The NASA Langley Research Center Atmospheric Science Data Center (ASDC) is building and testing a private and public facing cloud for users in the Science Directorate to utilize as an everyday production environment. The NASA SatCORPS (Satellite ClOud and Radiation Property Retrieval System) team processes and derives near real-time (NRT) global cloud products from operational geostationary (GEO) satellite imager datasets. To deliver these products, we will utilize the public facing cloud and OpenShift to deploy a load-balanced webserver for data storage, access, and dissemination. The OpenStack private cloud will host data ingest and computational capabilities for SatCORPS processing. This paper will discuss the SatCORPS migration towards, and usage of, the ASDC Cloud Services in an operational environment. Detailed lessons learned from use of prior cloud providers, specifically the Amazon Web Services (AWS) GovCloud and the Government Cloud administered by the Langley Managed Cloud Environment (LMCE) will also be discussed.

  13. Forcing and Responses of the Surface Energy Budget at Summit, Greenland

    NASA Astrophysics Data System (ADS)

    Miller, Nathaniel B.

    Energy exchange at the Greenland Ice Sheet surface governs surface temperature variability, a factor critical for representing increasing surface melt extent, which portends a rise in global sea level. A comprehensive set of cloud, tropospheric, near-surface and sub-surface measurements at Summit Station is utilized to determine the driving forces and subsequent responses of the surface energy budget (SEB). This budget includes radiative, turbulent, and ground heat fluxes, and ultimately controls the evolution of surface temperature. At Summit Station, clouds radiatively warm the surface in all months with an annual average cloud radiative forcing value of 33 W m -2, largely driven by the occurrence of liquid-bearing clouds. The magnitude of the surface temperature response is dependent on how turbulent and ground heat fluxes modulate changes to radiative forcing. Relationships between forcing terms and responding surface fluxes show that changes in the upwelling longwave radiation compensate for 65-85% (50- 60%) of the total change in radiative forcing in the winter (summer). The ground heat flux is the second largest response term (16% annually), especially during winter. Throughout the annual cycle, the sensible heat flux response is comparatively constant (9%) and latent heat flux response is only 1.5%, becoming more of a factor in modulating surface temperature responses during the summer. Combining annual cycles of these responses with cloud radiative forcing results, clouds warm the surface by an estimated 7.8°C annually. A reanalysis product (ERA-I), operational model (CFSv2), and climate model (CESM) are evaluated utilizing the comprehensive set of SEB observations and process-based relationships. Annually, surface temperatures in each model are warmer than observed with overall poor representation of the coldest surface temperatures. Process-based relationships between different SEB flux terms offer insight into how well a modeling framework represents physical processes and the ability to distinguish errors in forcing versus those in physical representation. Such relationships convey that all three models underestimate the response of surface temperatures to changes in radiative forcing. These results provide a method to expose model deficiencies and indicate the importance of representing surface, sub-surface and boundary-layer processes when portraying cloud impacts on surface temperature variability.

  14. Solar Pond Potential as A New Renewable Energy in South Sulawesi

    NASA Astrophysics Data System (ADS)

    Fadliah Baso, Nur; Chaerah Gunadin, Indar; Yusran

    2018-03-01

    Renewable energy sources need to be developed to maintain the electric energy availability by utilizing oceanic energy, namely solar pond energy. This energy is highly influenced by several factors including salinity, air temperature and solar radiation. This study was focused on finding the potential of solar pond in South Sulawesi, a region with fairly high solar radiation and abundant salt water raw materials availability. The method used in this study was analyzing the values from the mathematic models of daily horizontal solar radiation, air temperature, wind speed, relative humidity and atmospheric pressure for the last 22 years which were finalized using MATLAB. The findings of this study will show the areas with good potentials to apply solar pond in South Sulawesi that can be utilized in various fields including power generator, industrial heating process, desalination and heating for biomass conversion.

  15. Device and method for shortening reactor process tubes

    DOEpatents

    Frantz, Charles E.; Alexander, William K.; Lander, Walter E. B.

    1980-01-01

    This disclosure describes a device and method for in situ shortening of nuclear reactor zirconium alloy process tubes which have grown as a result of radiation exposure. An upsetting technique is utilized which involves inductively heating a short band of a process tube with simultaneous application of an axial load sufficient to cause upsetting with an attendant decrease in length of the process tube.

  16. Reverberation Chamber Uniformity Validation and Radiated Susceptibility Test Procedures for the NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Nguyen, Truong X.; Mielnik, John J.

    2010-01-01

    The NASA Langley Research Center's High Intensity Radiated Fields Laboratory has developed a capability based on the RTCA/DO-160F Section 20 guidelines for radiated electromagnetic susceptibility testing in reverberation chambers. Phase 1 of the test procedure utilizes mode-tuned stirrer techniques and E-field probe measurements to validate chamber uniformity, determines chamber loading effects, and defines a radiated susceptibility test process. The test procedure is segmented into numbered operations that are largely software controlled. This document is intended as a laboratory test reference and includes diagrams of test setups, equipment lists, as well as test results and analysis. Phase 2 of development is discussed.

  17. Radiation Protection of the Child from Diagnostic Imaging.

    PubMed

    Leung, Rebecca S

    2015-01-01

    In recent years due to the technological advances in imaging techniques, which have undoubtedly improved diagnostic accuracy and resulted in improved patient care, the utilization of ionizing radiation in diagnostic imaging has significantly increased. Computed tomography is the major contributor to the radiation burden, but fluoroscopy continues to be a mainstay in paediatric radiology. The rise in the use of ionizing radiation is of particular concern with regard to the paediatric population, as they are up to 10 times more sensitive to the effects of radiation than adults, due to their increased tissue radiosensitivity, increased cumulative lifetime radiation dose and longer lifetime in which to manifest the effects. This article will review the estimated radiation risk to the child from diagnostic imaging and summarise the various methods through which both the paediatrician and radiologist can practice the ALARA (As Low As Reasonably Achievable) principle, which underpins the safe practice of radiology. Emphasis is on the justification for an examination, i.e. weighing of benefits versus radiation risk, on the appropriate utilization of other, non-ionizing imaging modalities such as ultrasound and magnetic resonance imaging, and on optimisation of a clinically indicated examination. It is essential that the paediatrician and radiologist work together in this decision making process for the mutual benefit of the patient. The appropriate practical application of ALARA in the workplace is crucial to the radiation safety of our paediatric patients.

  18. INJURY TO THE ENERGY METABOLISM IN PLANTS EXPOSED TO GAMMA RAYS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metlitskii, L.V.; Sal'kova, E.G.

    1961-11-11

    To establish whether radiation-induced damage in plants causes primarily a weakening of the oxidation processes or interference with the mechanism of storing energy in a form accessible for biochemical processes, the effect of radiation on the metabolism was examined. Previous tests indicated that irradiation of tubers results in an interference between the respiration and phosphorylase actions, as is the case with animals, microorganisms and certain plants. The problem was studied by exposing garlic bulbs to total gamma -ray doses of 500 and 10,000 r. It was found that the type of tissue had a great effect on the rate ofmore » oxidation of organic acids. The phosphorylase activity is generally reduced by radiation; at 500 r phosphorus is not absorbed but is precipitated in the medium. Complete stoppage of the phosphorylase action by 500 r is due to the fact that garlic does not germinate; this action is depressed to a greater extent by radiation than oxidative processes. It is concluded that one of the chief effects of radiation is interference between oxidation and phosphorylase processes in the tissue because the energy obtained by respiration cannot be utilized completely by the plant cells. (TTT)« less

  19. SU-F-T-486: A Simple Approach to Performing Light Versus Radiation Field Coincidence Quality Assurance Using An Electronic Portal Imaging Device (EPID)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herchko, S; Ding, G

    2016-06-15

    Purpose: To develop an accurate, straightforward, and user-independent method for performing light versus radiation field coincidence quality assurance utilizing EPID images, a simple phantom made of readily-accessible materials, and a free software program. Methods: A simple phantom consisting of a blocking tray, graph paper, and high-density wire was constructed. The phantom was used to accurately set the size of a desired light field and imaged on the electronic portal imaging device (EPID). A macro written for use in ImageJ, a free image processing software, was then use to determine the radiation field size utilizing the high density wires on themore » phantom for a pixel to distance calibration. The macro also performs an analysis on the measured radiation field utilizing the tolerances recommended in the AAPM Task Group #142. To verify the accuracy of this method, radiochromic film was used to qualitatively demonstrate agreement between the film and EPID results, and an additional ImageJ macro was used to quantitatively compare the radiation field sizes measured both with the EPID and film images. Results: The results of this technique were benchmarked against film measurements, which have been the gold standard for testing light versus radiation field coincidence. The agreement between this method and film measurements were within 0.5 mm. Conclusion: Due to the operator dependency associated with tracing light fields and measuring radiation fields by hand when using film, this method allows for a more accurate comparison between the light and radiation fields with minimal operator dependency. Removing the need for radiographic or radiochromic film also eliminates a reoccurring cost and increases procedural efficiency.« less

  20. Influence of cirrus clouds on weather and climate processes A global perspective

    NASA Technical Reports Server (NTRS)

    Liou, K.-N.

    1986-01-01

    Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.

  1. Task-based image quality assessment in radiation therapy: initial characterization and demonstration with CT simulation images

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Anastasio, Mark A.; Yu, Lifeng; Li, Hua

    2017-03-01

    In current radiation therapy practice, image quality is still assessed subjectively or by utilizing physically-based metrics. Recently, a methodology for objective task-based image quality (IQ) assessment in radiation therapy was proposed by Barrett et al.1 In this work, we present a comprehensive implementation and evaluation of this new IQ assessment methodology. A modular simulation framework was designed to perform an automated, computer-simulated end-to-end radiation therapy treatment. A fully simulated framework was created that utilizes new learning-based stochastic object models (SOM) to obtain known organ boundaries, generates a set of images directly from the numerical phantoms created with the SOM, and automates the image segmentation and treatment planning steps of a radiation therapy work ow. By use of this computational framework, therapeutic operating characteristic (TOC) curves can be computed and the area under the TOC curve (AUTOC) can be employed as a figure-of-merit to guide optimization of different components of the treatment planning process. The developed computational framework is employed to optimize X-ray CT pre-treatment imaging. We demonstrate that use of the radiation therapy-based-based IQ measures lead to different imaging parameters than obtained by use of physical-based measures.

  2. Use of Existing CAD Models for Radiation Shielding Analysis

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.

    2015-01-01

    The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.

  3. Optical radiation measurements and instrumentation.

    PubMed

    Andersen, F A; Landry, R J

    1981-07-01

    Accurate measurement of optical radiation is required when sources of optical radiation are used in biological research. Such measurement of broad-band noncoherent optical radiations usually must be performed by a highly trained specialist using sophisticated, complex, and expensive instruments. Presentation of the results of such measurement requires correct use of quantities and units with which many biological researchers are unfamiliar. The measurement process, quantities, units, measurement systems and instruments, and uncertainties associated with optical radiation measurements are reviewed in this paper. A conventional technique for evaluating the potential hazards associated with broad-band sources of optical radiation and a spectroradiometer developed to measure spectral quantities is described. A new prototype ultraviolet radiation hazard monitor which has recently been developed is also presented. This new instrument utilizes a spectrograph and a spectral weighting mechanical mask and provides a direct reading of the effective irradiance for wavelengths less than 315 nm.

  4. Antioxidant power, lipid oxidation, color, and viability of Listeria monocytogenes in beef bologna treated with gamma radiation and containing various levels of glucose.

    PubMed

    Sommers, Christopher H; Fan, Xuetong

    2002-11-01

    Ionizing radiation can be used to pasteurize ready-to-eat (RTE) meat products. Thermal processing of RTE meats that contain dextrose results in the production of antioxidants that may interfere with ionizing radiation pasteurization of RTE meat products. Beef bologna was manufactured with dextrose concentrations of 0, 2, 4, 6, and 8%. Antioxidant activity, as measured by the Ferric Reducing Antioxidant Power assay, increased with dextrose concentration but was unaffected by ionizing radiation. Lipid oxidation increased significantly in irradiated bologna (4 kGy) that contained dextrose. Hunter color analysis indicated that the addition of dextrose reduced the ionizing radiation-induced loss of redness (a-value) but promoted the loss of brightness (L-value). The radiation resistance, D10-value, of Listeria monocytogenes that was surface-inoculated onto bologna slices was not affected by dextrose concentration. L. monocytogenes strains isolated from RTE meats after listeriosis outbreaks were utilized. Increased antioxidant activity generated by thermal processing of dextrose in fine emulsion sausages does not present a barrier to radiation pasteurization of RTE meats. However, a high dextrose concentration in combination with gamma irradiation increases lipid oxidation significantly.

  5. Method for processing silicon solar cells

    DOEpatents

    Tsuo, Y.S.; Landry, M.D.; Pitts, J.R.

    1997-05-06

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystalline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation. 2 figs.

  6. Method for processing silicon solar cells

    DOEpatents

    Tsuo, Y. Simon; Landry, Marc D.; Pitts, John R.

    1997-01-01

    The instant invention teaches a novel method for fabricating silicon solar cells utilizing concentrated solar radiation. The solar radiation is concentrated by use of a solar furnace which is used to form a front surface junction and back-surface field in one processing step. The present invention also provides a method of making multicrystallline silicon from amorphous silicon. The invention also teaches a method of texturing the surface of a wafer by forming a porous silicon layer on the surface of a silicon substrate and a method of gettering impurities. Also contemplated by the invention are methods of surface passivation, forming novel solar cell structures, and hydrogen passivation.

  7. Development and deployment of the Collimated Directional Radiation Detection System

    NASA Astrophysics Data System (ADS)

    Guckes, Amber L.; Barzilov, Alexander

    2017-09-01

    The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.

  8. Spectroscopic Feedback for High Density Data Storage and Micromachining

    DOEpatents

    Carr, Christopher W.; Demos, Stavros; Feit, Michael D.; Rubenchik, Alexander M.

    2008-09-16

    Optical breakdown by predetermined laser pulses in transparent dielectrics produces an ionized region of dense plasma confined within the bulk of the material. Such an ionized region is responsible for broadband radiation that accompanies a desired breakdown process. Spectroscopic monitoring of the accompanying light in real-time is utilized to ascertain the morphology of the radiated interaction volume. Such a method and apparatus as presented herein, provides commercial realization of rapid prototyping of optoelectronic devices, optical three-dimensional data storage devices, and waveguide writing.

  9. Field analysis of the Cerenkov doubling of infrared coherent radiation utilizing an organic crystal core bounded by a glass capillary

    NASA Astrophysics Data System (ADS)

    Hayata, K.; Yanagawa, K.; Koshiba, M.

    1990-12-01

    A mode field analysis is presented of the second-harmonic electromagnetic wave that radiates from a nonlinear core bounded by a dielectric cladding. With this analysis the ultimate performance of the organic crystal-cored single-mode optical fiber waveguide as a guided-wave frequency doubler is evaluated through the solution of nonlinear parametric equations derived from Maxwell's equations under some assumptions. As a phase-matching scheme, a Cerenkov approach is considered because of advantages in actual device applications, in which the phase matching is achievable between the fundamental guided LP01 mode and the second-harmonic radiation (leaky) mode. Calculated results for organic cores made of benzil, 4-(N,N-dimethyl-amino)-3-acetamidonitrobenzen, 2-methyl-4-nitroaniline, and 4'-nitrobenzilidene-3-acetoamino-4-metxianiline provide useful data for designing an efficient fiber-optic wavelength converter utilizing nonlinear parametric processes. A detailed comparison is made between results for infinite and finite cladding thicknesses.

  10. Current Radiation Issues for Programmable Elements and Devices

    NASA Technical Reports Server (NTRS)

    Katz, R.; Wang, J. J.; Koga, R.; LaBel, A.; McCollum, J.; Brown, R.; Reed, R. A.; Cronquist, B.; Crain, S.; Scott, T.; hide

    1998-01-01

    State of the an programmable devices are utilizing advanced processing technologies, non-standard circuit structures, and unique electrical elements in commercial-off-the-shelf (COTS)-based, high-performance devices. This paper will discuss that the above factors, coupled with the systems application environment, have a strong interplay that affect the radiation hardness of programmable devices and have resultant system impacts in (1) reliability of the unprogrammed, biased antifuse for heavy ions (rupture), (2) logic upset manifesting itself as clock upset, and (3) configuration upset. General radiation characteristics of advanced technologies are examined and manufacturers' modifications to their COTS-based and their impact on future programmable devices will be analyzed.

  11. Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center

    PubMed Central

    Santana, Priscila do Carmo; de Oliveira, Paulo Marcio Campos; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila; da Silva, Teógenes Augusto

    2015-01-01

    Objective To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. PMID:25798004

  12. Radiation Tolerant Intelligent Memory Stack (RTIMS)

    NASA Technical Reports Server (NTRS)

    Ng, Tak-kwong; Herath, Jeffrey A.

    2006-01-01

    The Radiation Tolerant Intelligent Memory Stack (RTIMS), suitable for both geostationary and low earth orbit missions, has been developed. The memory module is fully functional and undergoing environmental and radiation characterization. A self-contained flight-like module is expected to be completed in 2006. RTIMS provides reconfigurable circuitry and 2 gigabits of error corrected or 1 gigabit of triple redundant digital memory in a small package. RTIMS utilizes circuit stacking of heterogeneous components and radiation shielding technologies. A reprogrammable field programmable gate array (FPGA), six synchronous dynamic random access memories, linear regulator, and the radiation mitigation circuitries are stacked into a module of 42.7mm x 42.7mm x 13.00mm. Triple module redundancy, current limiting, configuration scrubbing, and single event function interrupt detection are employed to mitigate radiation effects. The mitigation techniques significantly simplify system design. RTIMS is well suited for deployment in real-time data processing, reconfigurable computing, and memory intensive applications.

  13. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    PubMed

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. From scientific understanding to operational utility: New concepts and tools for monitoring space weather effects on satellites

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Rodriguez, J. V.; Denig, W. F.; Redmon, R. J.; Blake, J. B.; Mazur, J. E.; Fennell, J. F.; O'Brien, T. P.; Guild, T. B.; Claudepierre, S. G.; Singer, H. J.; Onsager, T. G.; Wilkinson, D. C.

    2013-12-01

    NOAA space weather sensors have monitored the near Earth space radiation environment for more than three decades providing one of the only long-term records of these energetic particles that can disable satellites and pose a threat to astronauts. These data have demonstrated their value for operations for decades, but they are also invaluable for scientific discovery. Here we describe the development of new NOAA tools for assessing radiation impacts to satellites and astronauts working in space. In particular, we discuss the new system implemented for processing and delivering near real time particle radiation data from the POES/MetOp satellites. We also describe the development of new radiation belt indices from the POES/MetOp data that capture significant global changes in the environment needed for operational decision making. Lastly, we investigate the physical processes responsible for dramatic changes of the inner proton belt region and the potential consequences these new belts may have for satellite operations.

  15. Space Mission Utility and Requirements for a Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Lee, Jeffrey M.

    2016-01-01

    Management of waste on long-duration space missions is both a problem and an opportunity. Uncontained or unprocessed waste is a crew health hazard and a habitat storage problem. A Heat Melt Compactor (HMC) such as NASA has been developing is capable of processing space mission trash and converting it to useful products. The HMC is intended to process space mission trash to achieve a number of objectives including: volume reduction, biological safening and stabilization, water recovery, radiation shielding, and planetary protection. This paper explores the utility of the HMC to future space missions and how this translates into HMC system requirements.

  16. Solution of magnetohydrodynamic flow and heat transfer of radiative viscoelastic fluid with temperature dependent viscosity in wire coating analysis

    PubMed Central

    Khan, Muhammad Altaf; Siddiqui, Nasir; Ullah, Murad; Shah, Qayyum

    2018-01-01

    Wire coating process is a continuous extrusion process for primary insulation of conducting wires with molten polymers for mechanical strength and protection in aggressive environments. In the present study, radiative melt polymer satisfying third grade fluid model is used for wire coating process. The effect of magnetic parameter, thermal radiation parameter and temperature dependent viscosity on wire coating analysis has been investigated. Reynolds model and Vogel’s models have been incorporated for variable viscosity. The governing equations characterizing the flow and heat transfer phenomena are solved analytically by utilizing homotopy analysis method (HAM). The computed results are also verified by ND-Solve method (Numerical technique) and Adomian Decomposition Method (ADM). The effect of pertinent parameters is shown graphically. In addition, the instability of the flow in the flows of the wall of the extrusion die is well marked in the case of the Vogel model as pointed by Nhan-Phan-Thien. PMID:29596448

  17. A direct reading exposure monitor for radiation processing

    NASA Astrophysics Data System (ADS)

    Kantz, A. D.; Humpherys, K. C.

    Various plastic films have been utilized to measure radiation fields. In general such films are rugged, easily handled, small enough to cause neligible perturbation on the radiation fields, and relatively inexpensive. The radiachromic materials have been shown to have advantages over other plastic fabrications in stability, reproducibility, equivalent response to electron and gamma ray processing fields, dose rate independence, and ready availability of calibration standards. Using a nylon matrix radiachromic detector, a system of direct read-out of absorbed dose has been developed to facilitate monitoring in the megarad region. When an exposed detector is inserted into the reader, the optical transmission signal is processed through an analog to digital converter. The digitized signal addresses a memory bank where the standard response curve is stored. The corresponding absorbed dose is displayed on a digital panel meter. The variation of relative sensitivity of detectors, the background of unirradiated detectors, environmental parameters, and the capacity of the memory bank are contributing factors to the total precision of the read-out system.

  18. Radiation tolerant back biased CMOS VLSI

    NASA Technical Reports Server (NTRS)

    Maki, Gary K. (Inventor); Gambles, Jody W. (Inventor); Hass, Kenneth J. (Inventor)

    2003-01-01

    A CMOS circuit formed in a semiconductor substrate having improved immunity to total ionizing dose radiation, improved immunity to radiation induced latch up, and improved immunity to a single event upset. The architecture of the present invention can be utilized with the n-well, p-well, or dual-well processes. For example, a preferred embodiment of the present invention is described relative to a p-well process wherein the p-well is formed in an n-type substrate. A network of NMOS transistors is formed in the p-well, and a network of PMOS transistors is formed in the n-type substrate. A contact is electrically coupled to the p-well region and is coupled to first means for independently controlling the voltage in the p-well region. Another contact is electrically coupled to the n-type substrate and is coupled to second means for independently controlling the voltage in the n-type substrate. By controlling the p-well voltage, the effective threshold voltages of the n-channel transistors both drawn and parasitic can be dynamically tuned. Likewise, by controlling the n-type substrate, the effective threshold voltages of the p-channel transistors both drawn and parasitic can also be dynamically tuned. Preferably, by optimizing the threshold voltages of the n-channel and p-channel transistors, the total ionizing dose radiation effect will be neutralized and lower supply voltages can be utilized for the circuit which would result in the circuit requiring less power.

  19. Radiation/Catalytic Augmented Combustion.

    DTIC Science & Technology

    1982-05-01

    enhanced combustion processes, utilizing pulsed and continuous VUV light- serces . Similarly, the catalytic technique has provided efficient combustion...tures we had a pl /cx LiF lens with a focal length of 200 nm, and a MgF2 window 2 nmn in thickness. Although these materials are considered to be among

  20. Radiation or chemoradiation: initial utility study of selected therapy for local advanced stadium cervical cancer

    NASA Astrophysics Data System (ADS)

    Pramitasari, D. A.; Gondhowiardjo, S.; Nuranna, L.

    2017-08-01

    This study aimed to compare radiation only or chemo radiation treatment of local advanced cervical cancers by examining the initial response of tumors and acute side effects. An initial assessment employed value based medicine (VBM) by obtaining utility values for both types of therapy. The incidences of acute lower gastrointestinal, genitourinary, and hematology side effects in patients undergoing chemoradiation did not differ significantly from those undergoing radiation alone. Utility values for patients who underwent radiation alone were higher compared to those who underwent chemoradiation. It was concluded that the complete response of patients who underwent chemoradiation did not differ significantly from those who underwent radiation alone.

  1. Final science results: Spacelab J

    NASA Technical Reports Server (NTRS)

    Leslie, Fred (Editor)

    1995-01-01

    This report contains a brief summary of the mission science conducted aboard Spacelab J (SL-J), a joint venture between the National Aeronautics and Space Administration (NASA) and the National Space Development Agency (NASDA) of Japan. The scientific objectives of the mission were to conduct a variety of material and life science experiments utilizing the weightlessness and radiation environment of an orbiting Spacelab. All 43 experiments were activated; 24 in microgravity sciences (material processing, crystal growth, fluid physics, and acceleration measurement) and 19 in life sciences (physiology, developmental biology, radiation effects, separation processes, and enzyme crystal growth). In addition, more than a dozen experiments benefited from the extra day through either additional experiment runs or extended growth time.

  2. Radiative Cooling: Principles, Progress, and Potentials

    PubMed Central

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  3. A computational approach for hypersonic nonequilibrium radiation utilizing space partition algorithm and Gauss quadrature

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Andrienko, D. A.; Huang, P. G.; Surzhikov, S. T.

    2014-06-01

    An efficient computational capability for nonequilibrium radiation simulation via the ray tracing technique has been accomplished. The radiative rate equation is iteratively coupled with the aerodynamic conservation laws including nonequilibrium chemical and chemical-physical kinetic models. The spectral properties along tracing rays are determined by a space partition algorithm of the nearest neighbor search process, and the numerical accuracy is further enhanced by a local resolution refinement using the Gauss-Lobatto polynomial. The interdisciplinary governing equations are solved by an implicit delta formulation through the diminishing residual approach. The axisymmetric radiating flow fields over the reentry RAM-CII probe have been simulated and verified with flight data and previous solutions by traditional methods. A computational efficiency gain nearly forty times is realized over that of the existing simulation procedures.

  4. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Emission of charged particles from the surface of a moving target acted on by cw CO2 laser radiation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, S. I.; Petrov, A. L.; Shadrin, A. N.

    1990-06-01

    An experimental investigation was made of the emission of charged particles due to the irradiation of moving steel and graphite targets with cw CO2 laser radiation. The characteristics of the emission current signals were determined for different laser irradiation regimes. The maximum emission current density from the surface of a melt pool ( ~ 1.1 × 10 - 2 A/cm2) and the average temperature of the liquid metal (~ 2040 K) were measured for an incident radiation power density of 550 W and for horizontal and vertical target velocities of respectively ~ 1.5 mm/s and ~ 0.17 mm/s. The authors propose to utilize this phenomenon for monitoring the laser processing of materials.

  5. Monitoring Cosmic Radiation Risk: Comparisons between Observations and Predictive Codes for Naval Aviation

    DTIC Science & Technology

    2009-01-01

    proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and...radiation transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the...same dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6

  6. Utilization of SRNL-developed radiation-resistant polymer in high radiation environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skibo, A.

    The radiation-resistant polymer developed by the Savannah River National Laboratory is adaptable for multiple applications to enhance polymer endurance and effectiveness in radiation environments. SRNL offers to collaborate with TEPCO in evaluation, testing, and utilization of SRNL’s radiation-resistant polymer in the D&D of the Fukushima Daiichi NPS. Refinement of the scope and associated costs will be conducted in consultation with TECPO.

  7. A Rat Body Phantom for Radiation Analysis

    NASA Technical Reports Server (NTRS)

    Qualls, Garry D.; Clowdsley, Martha S.; Slaba, Tony C.; Walker, Steven A.

    2010-01-01

    To reduce the uncertainties associated with estimating the biological effects of ionizing radiation in tissue, researchers rely on laboratory experiments in which mono-energetic, single specie beams are applied to cell cultures, insects, and small animals. To estimate the radiation effects on astronauts in deep space or low Earth orbit, who are exposed to mixed field broad spectrum radiation, these experimental results are extrapolated and combined with other data to produce radiation quality factors, radiation weighting factors, and other risk related quantities for humans. One way to reduce the uncertainty associated with such extrapolations is to utilize analysis tools that are applicable to both laboratory and space environments. The use of physical and computational body phantoms to predict radiation exposure and its effects is well established and a wide range of human and non-human phantoms are in use today. In this paper, a computational rat phantom is presented, as well as a description of the process through which that phantom has been coupled to existing radiation analysis tools. Sample results are presented for two space radiation environments.

  8. Non-destructive testing method and apparatus utilizing phase multiplication holography

    DOEpatents

    Collins, H. Dale; Prince, James M.; Davis, Thomas J.

    1984-01-01

    An apparatus and method for imaging of structural characteristics in test objects using radiation amenable to coherent signal processing methods. Frequency and phase multiplication of received flaw signals is used to simulate a test wavelength at least one to two orders of magnitude smaller than the actual wavelength. The apparent reduction in wavelength between the illumination and recording radiation performs a frequency translation hologram. The hologram constructed with a high synthetic frequency and flaw phase multiplication is similar to a conventional acoustic hologram construction at the high frequency.

  9. Architecture in outer space. [multilayer shell systems filled with gas

    NASA Technical Reports Server (NTRS)

    Pokrovskiy, G. I.

    1974-01-01

    Mulilayer thin film structures consisting of systems of shells filled with gas at some pressure are recommended for outer space structures: Large mirrors to collect light and radio waves, protection against meteoric impact and damage, and for connectors between state space stations in the form of orbital rings. It is projected that individual orbital rings will multiply and completely seal a star trapping its high temperature radiation and transforming it into low temperature infrared and short wave radio emission; this radiation energy could be utilized for technological and biological processes.

  10. Development of a GPU Compatible Version of the Fast Radiation Code RRTMG

    NASA Astrophysics Data System (ADS)

    Iacono, M. J.; Mlawer, E. J.; Berthiaume, D.; Cady-Pereira, K. E.; Suarez, M.; Oreopoulos, L.; Lee, D.

    2012-12-01

    The absorption of solar radiation and emission/absorption of thermal radiation are crucial components of the physics that drive Earth's climate and weather. Therefore, accurate radiative transfer calculations are necessary for realistic climate and weather simulations. Efficient radiation codes have been developed for this purpose, but their accuracy requirements still necessitate that as much as 30% of the computational time of a GCM is spent computing radiative fluxes and heating rates. The overall computational expense constitutes a limitation on a GCM's predictive ability if it becomes an impediment to adding new physics to or increasing the spatial and/or vertical resolution of the model. The emergence of Graphics Processing Unit (GPU) technology, which will allow the parallel computation of multiple independent radiative calculations in a GCM, will lead to a fundamental change in the competition between accuracy and speed. Processing time previously consumed by radiative transfer will now be available for the modeling of other processes, such as physics parameterizations, without any sacrifice in the accuracy of the radiative transfer. Furthermore, fast radiation calculations can be performed much more frequently and will allow the modeling of radiative effects of rapid changes in the atmosphere. The fast radiation code RRTMG, developed at Atmospheric and Environmental Research (AER), is utilized operationally in many dynamical models throughout the world. We will present the results from the first stage of an effort to create a version of the RRTMG radiation code designed to run efficiently in a GPU environment. This effort will focus on the RRTMG implementation in GEOS-5. RRTMG has an internal pseudo-spectral vector of length of order 100 that, when combined with the much greater length of the global horizontal grid vector from which the radiation code is called in GEOS-5, makes RRTMG/GEOS-5 particularly suited to achieving a significant speed improvement through GPU technology. This large number of independent cases will allow us to take full advantage of the computational power of the latest GPUs, ensuring that all thread cores in the GPU remain active, a key criterion for obtaining significant speedup. The CUDA (Compute Unified Device Architecture) Fortran compiler developed by PGI and Nvidia will allow us to construct this parallel implementation on the GPU while remaining in the Fortran language. This implementation will scale very well across various CUDA-supported GPUs such as the recently released Fermi Nvidia cards. We will present the computational speed improvements of the GPU-compatible code relative to the standard CPU-based RRTMG with respect to a very large and diverse suite of atmospheric profiles. This suite will also be utilized to demonstrate the minimal impact of the code restructuring on the accuracy of radiation calculations. The GPU-compatible version of RRTMG will be directly applicable to future versions of GEOS-5, but it is also likely to provide significant associated benefits for other GCMs that employ RRTMG.

  11. Backscatter absorption gas imaging system

    DOEpatents

    McRae, Jr., Thomas G.

    1985-01-01

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  12. Backscatter absorption gas imaging system

    DOEpatents

    McRae, T.G. Jr.

    A video imaging system for detecting hazardous gas leaks. Visual displays of invisible gas clouds are produced by radiation augmentation of the field of view of an imaging device by radiation corresponding to an absorption line of the gas to be detected. The field of view of an imager is irradiated by a laser. The imager receives both backscattered laser light and background radiation. When a detectable gas is present, the backscattered laser light is highly attenuated, producing a region of contrast or shadow on the image. A flying spot imaging system is utilized to synchronously irradiate and scan the area to lower laser power requirements. The imager signal is processed to produce a video display.

  13. In Situ Manufacturing of Plastics and Composites to Support H&R Exploration

    NASA Astrophysics Data System (ADS)

    Carranza, Susana; Makel, Darby B.; Blizman, Brandon

    2006-01-01

    With the new direction of NASA to emphasize the exploration of the Moon, Mars and beyond, quick development and demonstration of efficient systems for In Situ Resources Utilization (ISRU) is more critical and timely than ever before. Beyond the production of life support consumables or propellants, long term missions will require much greater levels of utilization of indigenous resources, including fabrication of habitats, radiation shielding, and replacement parts and tools. This paper reports the development of a reactor system for the synthesis of polyethylene from carbon dioxide and water. One technology commonly found in most NASA In Situ Resources Utilization scenarios is the use of the Sabatier reaction and water electrolysis to produce methane and oxygen. The system presented uses methane and oxygen to produce ethylene, and subsequently ethylene is polymerized to produce polyethylene. The process selected enables the synthesis of high-density polyethylene suitable for the fabrication of many products for space exploration, including sheets, films, channels, etc, which can be used to construct extraterrestrial habitats, tools, replacement parts, etc. Conventional fabrication processes, such as extrusion and injection molding, which are used in the fabrication of polyethylene parts, can be adapted for space operation, making polyethylene a versatile feedstock for future in-situ manufacturing plants. Studies show that polyethylene is a very good radiation shield material, making it very suitable for construction of habitats, as well as incorporation in space suits. For the fabrication of massive structures, polyethylene can be combined with indigenous soil to maximize the use of unprocessed resources, either enclosed in channels, bags, etc., or compounded in varying proportions. The focus of this paper is to present current progress in the development of manufacturing systems and processes for the production of plastics and composites utilizing indigenous resources such as planetary atmosphere and soil.

  14. Spectral and energy characteristics of four-photon parametric scattering in sodium vapor

    NASA Astrophysics Data System (ADS)

    Vaicaitis, V.; Ignatavicius, M.; Kudriashov, V. A.; Pimenov, Iu. N.; Jakyte, R.

    1987-04-01

    Consideration is given to processes of four-photon interaction upon two-photon resonance excitation of the 3d level of sodium by two-frequency radiation from a monopulse picosecond YAG:Nd laser with frequency doubling and an optical parametric oscillator utilizing KDP crystrals. The spatial and frequency spectra of the four-photon parametric scattering (FPS) are recorded and studied at different sodium vapor concentrations (10 to the 15th to 10 to the 17th/cu cm) and upon both collinear and noncollinear excitation. It is shown that the observed conical structure of the FPS radiation can be interpreted from an analysis of the realization of the frequency and spatial phase-matching conditions. The dependences of the FPS radiation intensity on the exciting radiation intensity, the sodium vapor concentration, and the mismatching of the exciting radiation from the two-photon resonance are obtained.

  15. Introductory Tools for Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Feldman, D.; Kuai, L.; Natraj, V.; Yung, Y.

    2006-12-01

    Satellite data are currently so voluminous that, despite their unprecedented quality and potential for scientific application, only a small fraction is analyzed due to two factors: researchers' computational constraints and a relatively small number of researchers actively utilizing the data. Ultimately it is hoped that the terabytes of unanalyzed data being archived can receive scientific scrutiny but this will require a popularization of the methods associated with the analysis. Since a large portion of complexity is associated with the proper implementation of the radiative transfer model, it is reasonable and appropriate to make the model as accessible as possible to general audiences. Unfortunately, the algorithmic and conceptual details that are necessary for state-of-the-art analysis also tend to frustrate the accessibility for those new to remote sensing. Several efforts have been made to have web- based radiative transfer calculations, and these are useful for limited calculations, but analysis of more than a few spectra requires the utilization of home- or server-based computing resources. We present a system that is designed to allow for easier access to radiative transfer models with implementation on a home computing platform in the hopes that this system can be utilized in and expanded upon in advanced high school and introductory college settings. This learning-by-doing process is aided through the use of several powerful tools. The first is a wikipedia-style introduction to the salient features of radiative transfer that references the seminal works in the field and refers to more complicated calculations and algorithms sparingly5. The second feature is a technical forum, commonly referred to as a tiki-wiki, that addresses technical and conceptual questions through public postings, private messages, and a ranked searching routine. Together, these tools may be able to facilitate greater interest in the field of remote sensing.

  16. Radiative energy transfer from MoS2 excitons to surface plasmons

    NASA Astrophysics Data System (ADS)

    Kang, Yimin; Li, Bowen; Fang, Zheyu

    2017-12-01

    In this work, we demonstrated the energy transfer process from few-layer MoS2 to gold dimer arrays via ultrafast pump-probe spectroscopy. With the overlap between the MoS2 exciton and the designed plasmon dipolar modes in the frequency domain, the exciton energy can be radiatively transferred to plasmonic structures, excited the localized surface plasmon resonance, and then enhanced the oscillation of coherent acoustic phonons. Power-dependent differential reflection signals and an analytical model based on the rate equation of exciton density were carried out to quantitatively study the energy transfer process. Our finding explores the energy flow between MoS2 excitons and surface plasmons, and can be contributed to the design of exciton-plasmon structures utilizing ultrathin materials.

  17. The impact of functional imaging on radiation medicine.

    PubMed

    Sharma, Nidhi; Neumann, Donald; Macklis, Roger

    2008-09-15

    Radiation medicine has previously utilized planning methods based primarily on anatomic and volumetric imaging technologies such as CT (Computerized Tomography), ultrasound, and MRI (Magnetic Resonance Imaging). In recent years, it has become apparent that a new dimension of non-invasive imaging studies may hold great promise for expanding the utility and effectiveness of the treatment planning process. Functional imaging such as PET (Positron Emission Tomography) studies and other nuclear medicine based assays are beginning to occupy a larger place in the oncology imaging world. Unlike the previously mentioned anatomic imaging methodologies, functional imaging allows differentiation between metabolically dead and dying cells and those which are actively metabolizing. The ability of functional imaging to reproducibly select viable and active cell populations in a non-invasive manner is now undergoing validation for many types of tumor cells. Many histologic subtypes appear amenable to this approach, with impressive sensitivity and selectivity reported. For clinical radiation medicine, the ability to differentiate between different levels and types of metabolic activity allows the possibility of risk based focal treatments in which the radiation doses and fields are more tightly connected to the perceived risk of recurrence or progression at each location. This review will summarize many of the basic principles involved in the field of functional PET imaging for radiation oncology planning and describe some of the major relevant published data behind this expanding trend.

  18. Isotopic imaging via nuclear resonance fluorescence with laser-based Thomson radiation

    DOEpatents

    Barty, Christopher P. J. [Hayward, CA; Hartemann, Frederic V [San Ramon, CA; McNabb, Dennis P [Alameda, CA; Pruet, Jason A [Brentwood, CA

    2009-07-21

    The present invention utilizes novel laser-based, high-brightness, high-spatial-resolution, pencil-beam sources of spectrally pure hard x-ray and gamma-ray radiation to induce resonant scattering in specific nuclei, i.e., nuclear resonance fluorescence. By monitoring such fluorescence as a function of beam position, it is possible to image in either two dimensions or three dimensions, the position and concentration of individual isotopes in a specific material configuration. Such methods of the present invention material identification, spatial resolution of material location and ability to locate and identify materials shielded by other materials, such as, for example, behind a lead wall. The foundation of the present invention is the generation of quasimonochromatic high-energy x-ray (100's of keV) and gamma-ray (greater than about 1 MeV) radiation via the collision of intense laser pulses from relativistic electrons. Such a process as utilized herein, i.e., Thomson scattering or inverse-Compton scattering, produces beams having diameters from about 1 micron to about 100 microns of high-energy photons with a bandwidth of .DELTA.E/E of approximately 10E.sup.-3.

  19. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  20. Nano material processing with lasers in combination with nearfield technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickmann, K.; Jersch, J.; Demming, F.

    1996-12-31

    Recent research work has shown, that focusing of laser radiation down to a few nanometer can be obtained by using lasers in combination with nearfield technology (known from Scanning Tunneling Microscope STM or Atomic Force Microscope AFM). Lateral external illumination of STM- or AFM-probe tips with laser radiation can cause tremendous intensity enhancement in the nearfield underneath the tip. This effect can be explained by various electrostatic as well as electrodynamic effects known from Surface Enhanced Raman Spectroscopy (SERS). This effect was utilized to concentrate laser radiation with high intensity between a tip and a substrate in the nearfield. FOLANT-techniquemore » (FOcusing of LAser radiation in the Nearfield of a Tip) enables intensity enhancement up to 10{sup 6} in a narrow localized zone underneath the tip. The interaction area with nanometer scale can be applied for material processing even down to atomic dimensions. Using STM-/ laser-combination, hillocks, pits and grooves with lateral dimensions down to 10 nm have been obtained on gold substrates. AFM-/ laser-combination enabled nanostructures down to 20 nm on dielectric materials as for example polycarbonate.« less

  1. Effect of gamma radiation on the stability of UV replicated composite mirrors

    NASA Astrophysics Data System (ADS)

    Zaldivar, Rafael J.; Kim, Hyun I.; Ferrelli, Geena L.

    2018-04-01

    Composite replicated mirrors are gaining increasing attention for space-based applications due to their lower density, tailorable mechanical properties, and rapid manufacturing times over state-of-the-art glass mirrors. Ultraviolet (UV)-cured mirrors provide a route by which high-quality mirrors can be manufactured at relatively low processing temperatures that minimize residual stresses. The successful utilization of these mirrors requires nanometer scale dimensional stability after both thermal cycling and hygrothermal exposure. We investigate the effect of gamma irradiation as a process to improve the stability of UV replicated mirrors. Gamma radiation exposure was shown to increase the cure state of these mirrors as evidenced by an increase in modulus, glass transition temperature, and the thermal degradation behavior with dosage. Gas chromatography-mass spectroscopy also showed evidence of consumption of the primary monomers and initiation of the photosensitive agent with gamma exposure. The gamma-exposed mirrors exhibited significant improvement in stability even after multiple thermal cycling in comparison with nonirradiated composite mirrors. Though improvements in the cure state contribute to the overall stability, the radiation dosage was also shown to reduce the film stress of the mirror by over 80% as evidenced using Stoney replicated specimens. This reduction in residual stress is encouraging considering the utilization of these structures for space applications. This paper shows that replicated composite mirrors are a viable alternative to conventional optical structures.

  2. Are We Ready for Positron Emission Tomography/Computed Tomography-based Target Volume Definition in Lymphoma Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeoh, Kheng-Wei; Mikhaeel, N. George, E-mail: George.Mikhaeel@gstt.nhs.uk

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CTmore » data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.« less

  3. Electron lithography STAR design guidelines. Part 3: The mosaic transistor array applied to custom microprocessors. Part 4: Stores logic arrays, SLAs implemented with clocked CMOS

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.

    1982-01-01

    The Mosaic Transistor Array is an extension of the STAR system developed by NASA which has dedicated field cells designed to be specifically used in semicustom microprocessor applications. The Sandia radiation hard bulk CMOS process is utilized in order to satisfy the requirements of space flights. A design philosophy is developed which utilizes the strengths and recognizes the weaknesses of the Sandia process. A style of circuitry is developed which incorporates the low power and high drive capability of CMOS. In addition the density achieved is better than that for classic CMOS, although not as good as for NMOS. The basic logic functions for a data path are designed with compatible interface to the STAR grid system. In this manner either random logic or PLA type structures can be utilized for the control logic.

  4. Monitoring Cosmic Radiation Risk: Comparisons Between Observations and Predictive Codes for Naval Aviation

    DTIC Science & Technology

    2009-07-05

    proton PARMA PHITS -based Analytical Radiation Model in the Atmosphere PCAIRE Predictive Code for Aircrew Radiation Exposure PHITS Particle and Heavy...transport code utilized is called PARMA ( PHITS based Analytical Radiation Model in the Atmosphere) [36]. The particle fluxes calculated from the input...dose equivalent coefficient regulations from the ICRP-60 regulations. As a result, the transport codes utilized by EXPACS ( PHITS ) and CARI-6 (PARMA

  5. Working group organizational meeting

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Scene radiation and atmospheric effects, mathematical pattern recognition and image analysis, information evaluation and utilization, and electromagnetic measurements and signal handling are considered. Research issues in sensors and signals, including radar (SAR) reflectometry, SAR processing speed, registration, including overlay of SAR and optical imagery, entire system radiance calibration, and lack of requirements for both sensors and systems, etc. were discussed.

  6. [Soft- and hardware support for the setup for computer tracking of radiation teletherapy].

    PubMed

    Tarutin, I G; Piliavets, V I; Strakh, A G; Minenko, V F; Golubovskiĭ, A I

    1983-06-01

    A hard and soft ware computer assisted complex has been worked out for gamma-beam therapy. The complex included all radiotherapeutic units, including a Siemens program controlled betatron with an energy of 42 MEV computer ES-1022, a Medigraf system of the processing of graphic information, a Mars-256 system for control over the homogeneity of distribution of dose rate on the field of irradiation and a package of mathematical programs to select a plan of irradiation of various tumor sites. The prospects of the utilization of such complexes in the dosimetric support of radiation therapy are discussed.

  7. Advanced radiator concepts utilizing honeycomb panel heat pipes (stainless steel)

    NASA Technical Reports Server (NTRS)

    Fleischman, G. L.; Tanzer, H. J.

    1985-01-01

    The feasibility of fabricating and processing moderate temperature range heat pipes in a low mass honeycomb sandwich panel configuration for highly efficient radiator fins for the NASA space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include: type of material, material and panel thicknesses, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. In addition, the overall performance of the honeycomb panel heat pipe was evaluated analytically.

  8. Scintillator assembly for alpha radiation detection and an associated method of making

    DOEpatents

    Lauf, R.J.; McElhaney, S.A.; Bates, J.B.

    1994-07-26

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments. 4 figs.

  9. Scintillator assembly for alpha radiation detection and an associated method of making

    DOEpatents

    Lauf, Robert J.; McElhaney, Stephanie A.; Bates, John B.

    1994-01-01

    A scintillator assembly for use in conjunction with a photomultiplier or the like in the detection of alpha radiation utilizes a substrate or transparent yttrium aluminum garnet and a relatively thin film of cerium-doped yttrium aluminum garnet coated upon the substrate. The film material is applied to the substrate in a sputtering process, and the applied film and substrate are annealed to effect crystallization of the film upon the substrate. The resultant assembly provides relatively high energy resolution during use in a detection instrument and is sufficiently rugged for use in field environments.

  10. SU-F-J-178: A Computer Simulation Model Observer for Task-Based Image Quality Assessment in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolly, S; Mutic, S; Anastasio, M

    Purpose: Traditionally, image quality in radiation therapy is assessed subjectively or by utilizing physically-based metrics. Some model observers exist for task-based medical image quality assessment, but almost exclusively for diagnostic imaging tasks. As opposed to disease diagnosis, the task for image observers in radiation therapy is to utilize the available images to design and deliver a radiation dose which maximizes patient disease control while minimizing normal tissue damage. The purpose of this study was to design and implement a new computer simulation model observer to enable task-based image quality assessment in radiation therapy. Methods: A modular computer simulation framework wasmore » developed to resemble the radiotherapy observer by simulating an end-to-end radiation therapy treatment. Given images and the ground-truth organ boundaries from a numerical phantom as inputs, the framework simulates an external beam radiation therapy treatment and quantifies patient treatment outcomes using the previously defined therapeutic operating characteristic (TOC) curve. As a preliminary demonstration, TOC curves were calculated for various CT acquisition and reconstruction parameters, with the goal of assessing and optimizing simulation CT image quality for radiation therapy. Sources of randomness and bias within the system were analyzed. Results: The relationship between CT imaging dose and patient treatment outcome was objectively quantified in terms of a singular value, the area under the TOC (AUTOC) curve. The AUTOC decreases more rapidly for low-dose imaging protocols. AUTOC variation introduced by the dose optimization algorithm was approximately 0.02%, at the 95% confidence interval. Conclusion: A model observer has been developed and implemented to assess image quality based on radiation therapy treatment efficacy. It enables objective determination of appropriate imaging parameter values (e.g. imaging dose). Framework flexibility allows for incorporation of additional modules to include any aspect of the treatment process, and therefore has great potential for both assessment and optimization within radiation therapy.« less

  11. Image Guided Radiation Therapy (IGRT) Practice Patterns and IGRT's Impact on Workflow and Treatment Planning: Results From a National Survey of American Society for Radiation Oncology Members

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nabavizadeh, Nima, E-mail: nabaviza@ohsu.edu; Elliott, David A.; Chen, Yiyi

    Purpose: To survey image guided radiation therapy (IGRT) practice patterns, as well as IGRT's impact on clinical workflow and planning treatment volumes (PTVs). Methods and Materials: A sample of 5979 treatment site–specific surveys was e-mailed to the membership of the American Society for Radiation Oncology (ASTRO), with questions pertaining to IGRT modality/frequency, PTV expansions, method of image verification, and perceived utility/value of IGRT. On-line image verification was defined as images obtained and reviewed by the physician before treatment. Off-line image verification was defined as images obtained before treatment and then reviewed by the physician before the next treatment. Results: Of 601 evaluablemore » responses, 95% reported IGRT capabilities other than portal imaging. The majority (92%) used volumetric imaging (cone-beam CT [CBCT] or megavoltage CT), with volumetric imaging being the most commonly used modality for all sites except breast. The majority of respondents obtained daily CBCTs for head and neck intensity modulated radiation therapy (IMRT), lung 3-dimensional conformal radiation therapy or IMRT, anus or pelvis IMRT, prostate IMRT, and prostatic fossa IMRT. For all sites, on-line image verification was most frequently performed during the first few fractions only. No association was seen between IGRT frequency or CBCT utilization and clinical treatment volume to PTV expansions. Of the 208 academic radiation oncologists who reported working with residents, only 41% reported trainee involvement in IGRT verification processes. Conclusion: Consensus guidelines, further evidence-based approaches for PTV margin selection, and greater resident involvement are needed for standardized use of IGRT practices.« less

  12. Image Guided Radiation Therapy (IGRT) Practice Patterns and IGRT's Impact on Workflow and Treatment Planning: Results From a National Survey of American Society for Radiation Oncology Members.

    PubMed

    Nabavizadeh, Nima; Elliott, David A; Chen, Yiyi; Kusano, Aaron S; Mitin, Timur; Thomas, Charles R; Holland, John M

    2016-03-15

    To survey image guided radiation therapy (IGRT) practice patterns, as well as IGRT's impact on clinical workflow and planning treatment volumes (PTVs). A sample of 5979 treatment site-specific surveys was e-mailed to the membership of the American Society for Radiation Oncology (ASTRO), with questions pertaining to IGRT modality/frequency, PTV expansions, method of image verification, and perceived utility/value of IGRT. On-line image verification was defined as images obtained and reviewed by the physician before treatment. Off-line image verification was defined as images obtained before treatment and then reviewed by the physician before the next treatment. Of 601 evaluable responses, 95% reported IGRT capabilities other than portal imaging. The majority (92%) used volumetric imaging (cone-beam CT [CBCT] or megavoltage CT), with volumetric imaging being the most commonly used modality for all sites except breast. The majority of respondents obtained daily CBCTs for head and neck intensity modulated radiation therapy (IMRT), lung 3-dimensional conformal radiation therapy or IMRT, anus or pelvis IMRT, prostate IMRT, and prostatic fossa IMRT. For all sites, on-line image verification was most frequently performed during the first few fractions only. No association was seen between IGRT frequency or CBCT utilization and clinical treatment volume to PTV expansions. Of the 208 academic radiation oncologists who reported working with residents, only 41% reported trainee involvement in IGRT verification processes. Consensus guidelines, further evidence-based approaches for PTV margin selection, and greater resident involvement are needed for standardized use of IGRT practices. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Achieving Effective Risk Management Reduction Throughout Decommissioning at the Columbus Closure Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K.D.

    2006-07-01

    Nuclear facility decontamination, dismantlement, and demolition activities provide a myriad of challenges along the path to reaching a safe, effective, and compliant decommissioning. Among the challenges faced during decommissioning, is the constant management and technical effort to eliminate, mitigate, or minimize the potential of risks of radiation exposures and other hazards to the worker, the surrounding community, and the environment. Management strategies to eliminate, mitigate, or minimize risks include incorporating strong safety and As Low As Reasonably Achievable (ALARA) principles into an integrated work planning process. Technical and operational strategies may include utilizing predictive risk analysis tools to establish contaminationmore » limits for demolition and using remote handling equipment to reduce occupational and radiation exposures to workers. ECC and E2 Closure Services, LLC (Closure Services) have effectively utilized these management and technical tools to eliminate, mitigate, and reduce radiation exposures under contract to the U.S. Department of Energy (DOE) for the decontamination and decommissioning Columbus Closure Project (CCP). In particular, Closure Services achieved significant dose reduction during the dismantling, decontamination, and demolition activities for Building JN-1. Management strategies during the interior dismantlement, decontamination, and demolition of the facility demanded an integrated work planning processes that involved project disciplines. Integrated planning processes identified multiple opportunities to incorporate the use of remote handling equipment during the interior dismantling and demolition activities within areas of high radiation. Technical strategies employed predictive risk analysis tools to set upper bounding contamination limits, allowed for the radiological demolition of the building without exceeding administrative dose limits to the worker, general public, and the environment. Adhering to management and technical strategies during the dismantlement, decontamination, and demolition of Building JN-1 enabled Closure Services to achieve strong ALARA performance, maintain absolute compliance under the regulatory requirements and meeting licensing conditions for decommissioning. (authors)« less

  14. Influence of radiation on metastability-based TRNG

    NASA Astrophysics Data System (ADS)

    Wieczorek, Piotr Z.; Wieczorek, Zbigniew

    2017-08-01

    This paper presents a True Random Number Generator (TRNG) based on Flip-Flops with violated timing constraints. The proposed circuit has been implemented in a Xilinx Spartan 6 device. The TRNG circuit utilizes the metastability phenomenon as a source of randomness. Therefore, in the paper the influence of timing constraints on the flip-flop metastability proximity is discussed. The metastable range of operation enhances the noise influence on a Flip-Flop behavior. Therefore, the influence of an external stochastic source on the flip-flop operation is also investigated. For this purpose a radioactive source of radiation was used. According to the results shown in the paper the radiation increases the unpredictability of the metastable process of flip-flops operating as the randomness source in the TRNG. The statistical properties of TRNG operating in an increased radiation conditions were verified with the NIST battery of statistical tests.

  15. Radiative loss and charge exchange in low energy Na - Ca+ collisions

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; McAlpine, K.; McCann, J. F.; Pattillo, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.

    2016-05-01

    Experiments on radiative loss and capture are currently being performed at the University of Connecticut. In response to this experimental effort we have performed detailed calculations for a variety of loss and capture processes. Several low lying states of the NaCa+ cation are used with the accurate potentials energy curves, transition dipole moments and non-adiabatic coupling matrix elements between the states, obtained at the MRCI+Q level of approximation with the MOLPRO suite of quantum chemistry codes. Cross sections and rate coefficients are calculated for radiative charge transfer (RCX), radiative association (RA) and charge exchange in a fully quantum molecular close-coupling (MOCC) approximation at the higher energies. We use a variety of approaches, the optical potential method, semi-classical and MOCC methods to compare and contrast approximations. In addition a kinetic theory recently applied to SiO is utilized which illustrates the dramatic impact resonances have on the radiative association rates. Supported by NASA and HLRS at Stuttgart University.

  16. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation.

    PubMed

    Seo, Yeong Hwan; Cho, Changsoon; Lee, Jung-Yong; Han, Jong-In

    2014-12-01

    Solar radiation has intensity that is too high to inhibit microalgae activity and is composed of wide light spectrum including ultraviolet (UV) range which cannot be utilized for microalgae. For these reasons, the modification of solar radiation is required for effective microalgae cultivation, and to do that, fluorescent paint was used for not only blocking excessive solar energy but also converting UV to visible light. With fluorescent aqueous layer, microalgae was protected from photoinhibition and could grow well, but there was difference in growth and lipid accumulation efficiencies depending on the color; maximum dry weight of 1.7 g/L was achieved in red paint, whereas best lipid content of 30% was obtained in blue one. This phenomenon was due to the different light spectrum made by colors. With simple process using fluorescent paint, modification of light was successfully done and allowing microalgae to grow under strong radiation such as solar radiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation

    PubMed Central

    Park, Jong-Seok; Lim, Youn-Mook; Nho, Young-Chang

    2015-01-01

    Polyurethane (PU) is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA). The PE-g-MA-grafted PU/high density polyethylene (HDPE) composite was prepared by melt-blending at various concentrations (0–10 phr) of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR), and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased. PMID:28788022

  18. Food irradiation—US regulatory considerations

    NASA Astrophysics Data System (ADS)

    Morehouse, Kim M.

    2002-03-01

    The use of ionizing radiation in food processing has received increased interest as a means of reducing the level of foodborne pathogens. This overview discusses the regulatory issues connected with the use of this technology in the United States. Several recent changes in the FDA's review process are discussed. These include the current policy that utilizes an expedited review process for petitions seeking approval of additives and technologies intended to reduce pathogen levels in food, and the recent USDA rule that eliminates the need for a separate rulemaking process by USDA for irradiation of meat and poultry. Recently promulgated rules and pending petitions before the FDA associated with the use of ionizing radiation for the treatment of foods are also discussed along with the current FDA labeling requirements for irradiated foods and the 1999 advanced notice of proposed rule on labeling. Another issue that is presented is the current status of the approval of packaging materials intended for food contact during irradiation treatment of foods.

  19. Using AUTORAD for Cassini File Uplinks: Incorporating Automated Commanding into Mission Operations

    NASA Technical Reports Server (NTRS)

    Goo, Sherwin

    2014-01-01

    As the Cassini spacecraft embarked on the Solstice Mission in October 2010, the flight operations team faced a significant challenge in planning and executing the continuing tour of the Saturnian system. Faced with budget cuts that reduced the science and engineering staff by over a third in size, new and streamlined processes had to be developed to allow the Cassini mission to maintain a high level of science data return with a lower amount of available resources while still minimizing the risk. Automation was deemed an important key in enabling mission operations with reduced workforce and the Cassini flight team has made this goal a priority for the Solstice Mission. The operations team learned about a utility called AUTORAD which would give the flight operations team the ability to program selected command files for radiation up to seven days in advance and help minimize the need for off-shift support that could deplete available staffing during the prime shift hours. This paper will describe how AUTORAD is being utilized by the Cassini flight operations team and the processes that were developed or modified to ensure that proper oversight and verification is maintained in the generation and execution of radiated command files.

  20. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    PubMed

    Kume, Atsushi

    2017-05-01

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO 2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density distribution and leaf anatomical structures.

  1. Novel Approach to Increase the Energy-related Process Efficiency and Performance of Laser Brazing

    NASA Astrophysics Data System (ADS)

    Mittelstädt, C.; Seefeld, T.; Radel, T.; Vollertsen, F.

    Although laser brazing is well established, the energy-related efficiency of this joining method is quite low. That is because of low absorptivity of solid-state laser radiation, especially when copper base braze metals are used. Conventionally the laser beam is set close to the vertical axis and the filler wire is delivered under a flat angle. Therefore, the most of the utilized laser power is reflected and thus left unexploited. To address this situation an alternative processing concept for laser brazing, where the laser beam is leading the filler wire, has been investigated intending to make use of reflected shares of the laser radiation. Process monitoring shows, that the reflection of the laser beam can be used purposefully to preheat the substrate which is supporting the wetting and furthermore increasing the efficiency of the process. Experiments address a standard application from the automotive industry joining zinc coated steels using CuSi3Mn1 filler wire. Feasibility of the alternative processing concept is demonstrated, showing that higher processing speeds can be attained, reducing the required energy per unit length while maintaining joint properties.

  2. Global Metabolomic Identification of Long-Term Dose-Dependent Urinary Biomarkers in Nonhuman Primates Exposed to Ionizing Radiation.

    PubMed

    Pannkuk, Evan L; Laiakis, Evagelia C; Authier, Simon; Wong, Karen; Fornace, Albert J

    2015-08-01

    Due to concerns surrounding potential large-scale radiological events, there is a need to determine robust radiation signatures for the rapid identification of exposed individuals, which can then be used to guide the development of compact field deployable instruments to assess individual dose. Metabolomics provides a technology to process easily accessible biofluids and determine rigorous quantitative radiation biomarkers with mass spectrometry (MS) platforms. While multiple studies have utilized murine models to determine radiation biomarkers, limited studies have profiled nonhuman primate (NHP) metabolic radiation signatures. In addition, these studies have concentrated on short-term biomarkers (i.e., <72 h). The current study addresses the need for biomarkers beyond 72 h using a NHP model. Urine samples were collected at 7 days postirradiation (2, 4, 6, 7 and 10 Gy) and processed with ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight (QTOF) MS, acquiring global metabolomic radiation signatures. Multivariate data analysis revealed clear separation between control and irradiated groups. Thirteen biomarkers exhibiting a dose response were validated with tandem MS. There was significantly higher excretion of l-carnitine, l-acetylcarnitine, xanthine and xanthosine in males versus females. Metabolites validated in this study suggest perturbation of several pathways including fatty acid β oxidation, tryptophan metabolism, purine catabolism, taurine metabolism and steroid hormone biosynthesis. In this novel study we detected long-term biomarkers in a NHP model after exposure to radiation and demonstrate differences between sexes using UPLC-QTOF-MS-based metabolomics technology.

  3. Report on the PWR-radiation protection/ALARA Committee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, D.J.

    1995-03-01

    In 1992, representatives from several utilities with operational Pressurized Water Reactors (PWR) formed the PWR-Radiation Protection/ALARA Committee. The mission of the Committee is to facilitate open communications between member utilities relative to radiation protection and ALARA issues such that cost effective dose reduction and radiation protection measures may be instituted. While industry deregulation appears inevitable and inter-utility competition is on the rise, Committee members are fully committed to sharing both positive and negative experiences for the benefit of the health and safety of the radiation worker. Committee meetings provide current operational experiences through members providing Plant status reports, and informationmore » relative to programmatic improvements through member presentations and topic specific workshops. The most recent Committee workshop was facilitated to provide members with defined experiences that provide cost effective ALARA performance.« less

  4. Using Imaging Methods to Interrogate Radiation-Induced Cell Signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shankaran, Harish; Weber, Thomas J.; Freiin von Neubeck, Claere H.

    2012-04-01

    There is increasing emphasis on the use of systems biology approaches to define radiation induced responses in cells and tissues. Such approaches frequently rely on global screening using various high throughput 'omics' platforms. Although these methods are ideal for obtaining an unbiased overview of cellular responses, they often cannot reflect the inherent heterogeneity of the system or provide detailed spatial information. Additionally, performing such studies with multiple sampling time points can be prohibitively expensive. Imaging provides a complementary method with high spatial and temporal resolution capable of following the dynamics of signaling processes. In this review, we utilize specific examplesmore » to illustrate how imaging approaches have furthered our understanding of radiation induced cellular signaling. Particular emphasis is placed on protein co-localization, and oscillatory and transient signaling dynamics.« less

  5. Py4CAtS - Python tools for line-by-line modelling of infrared atmospheric radiative transfer

    NASA Astrophysics Data System (ADS)

    Schreier, Franz; García, Sebastián Gimeno

    2013-05-01

    Py4CAtS — Python scripts for Computational ATmospheric Spectroscopy is a Python re-implementation of the Fortran infrared radiative transfer code GARLIC, where compute-intensive code sections utilize the Numeric/Scientific Python modules for highly optimized array-processing. The individual steps of an infrared or microwave radiative transfer computation are implemented in separate scripts to extract lines of relevant molecules in the spectral range of interest, to compute line-by-line cross sections for given pressure(s) and temperature(s), to combine cross sections to absorption coefficients and optical depths, and to integrate along the line-of-sight to transmission and radiance/intensity. The basic design of the package, numerical and computational aspects relevant for optimization, and a sketch of the typical workflow are presented.

  6. An implicit finite-difference solution to the viscous shock layer, including the effects of radiation and strong blowing

    NASA Technical Reports Server (NTRS)

    Garrett, L. B.; Smith, G. L.; Perkins, J. N.

    1972-01-01

    An implicit finite-difference scheme is developed for the fully coupled solution of the viscous, radiating stagnation-streamline equations, including strong blowing. Solutions are presented for both air injection and injection of carbon-phenolic ablation products into air at conditions near the peak radiative heating point in an earth entry trajectory from interplanetary return missions. A detailed radiative-transport code that accounts for the important radiative exchange processes for gaseous mixtures in local thermodynamic and chemical equilibrium is utilized in the study. With minimum number of assumptions for the initially unknown parameters and profile distributions, convergent solutions to the full stagnation-line equations are rapidly obtained by a method of successive approximations. Damping of selected profiles is required to aid convergence of the solutions for massive blowing. It is shown that certain finite-difference approximations to the governing differential equations stabilize and improve the solutions. Detailed comparisons are made with the numerical results of previous investigations. Results of the present study indicate lower radiative heat fluxes at the wall for carbonphenolic ablation than previously predicted.

  7. Radiation-Spray Coupling for Realistic Flow Configurations

    NASA Technical Reports Server (NTRS)

    El-Asrag, Hossam; Iannetti, Anthony C.

    2011-01-01

    Three Large Eddy Simulations (LES) for a lean-direct injection (LDI) combustor are performed and compared. In addition to the cold flow simulation, the effect of radiation coupling with the multi-physics reactive flow is analyzed. The flame let progress variable approach is used as a subgrid combustion model combined with a stochastic subgrid model for spray atomization and an optically thin radiation model. For accurate chemistry modeling, a detailed Jet-A surrogate mechanism is utilized. To achieve realistic inflow, a simple recycling technique is performed at the inflow section upstream of the swirler. Good comparison is shown with the experimental data mean and root mean square profiles. The effect of combustion is found to change the shape and size of the central recirculation zone. Radiation is found to change the spray dynamics and atomization by changing the heat release distribution and the local temperature values impacting the evaporation process. The simulation with radiation modeling shows wider range of droplet size distribution by altering the evaporation rate. The current study proves the importance of radiation modeling for accurate prediction in realistic spray combustion configurations, even for low pressure systems.

  8. Effects of Microwave Radiation on Oil Recovery

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdollah

    2011-12-01

    A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

  9. Prostate tumor alignment and continuous, real-time adaptive radiation therapy using electromagnetic fiducials: clinical and cost-utility analyses.

    PubMed

    Quigley, Martin M; Mate, Timothy P; Sylvester, John E

    2009-01-01

    To evaluate the accuracy, utility, and cost effectiveness of a new electromagnetic patient positioning and continuous, real-time monitoring system, which uses permanently implanted resonant transponders in the target (Calypso 4D Localization System and Beacon transponders, Seattle, WA) to continuously monitor tumor location and movement during external beam radiation therapy of the prostate. This clinical trial studied 43 patients at 5 sites. All patients were implanted with 3 transponders each. In 41 patients, the system was used for initial alignment at each therapy session. Thirty-five patients had continuous monitoring during their radiation treatment. Over 1,000 alignment comparisons were made to a commercially available kV X-ray positioning system (BrainLAB ExacTrac, Munich, Germany). Using decision analysis and Markov processes, the outcomes of patients were simulated over a 5-year period and measured in terms of costs from a payer's perspective and quality-adjusted life years (QALYs). All patients had satisfactory transponder implantations for monitoring purposes. In over 75% of the treatment sessions, the correction to conventional positioning (laser and tattoos) directed by an electromagnetic patient positioning and monitoring system was greater than 5 mm. Ninety-seven percent (34/35) of the patients who underwent continuous monitoring had target motion that exceeded preset limits at some point during the course of their radiation therapy. Exceeding preset thresholds resulted in user intervention at least once during the therapy in 80% of the patients (28/35). Compared with localization using ultrasound, electronic portal imaging devices (EPID), or computed tomography (CT), localization with the electromagnetic patient positioning and monitoring system yielded superior gains in QALYs at comparable costs. Most patients positioned with conventional tattoos and lasers for prostate radiation therapy were found by use of the electromagnetic patient positioning and monitoring system to have alignment errors exceeding 5 mm. Almost all patients undergoing external beam radiation of the prostate have been shown to have target organ movement exceeding 3 mm during radiation therapy delivery. The ability of the electromagnetic technology to monitor tumor target location during the same time as radiation therapy is being delivered allows clinicians to provide real time adaptive radiation therapy for prostate cancer. This permits clinicians to intervene when the prostate moves outside the radiation isocenter, which should decrease adverse events and improve patient outcomes. Additionally, a cost-utility analysis has demonstrated that the electromagnetic patient positioning and monitoring system offers patient outcome benefits at a cost that falls well within the payer's customary willingness to pay (WTP) threshold of $50,000 per QALY.

  10. Effect of acoustic field parameters on arc acoustic binding during ultrasonic wave-assisted arc welding.

    PubMed

    Xie, Weifeng; Fan, Chenglei; Yang, Chunli; Lin, Sanbao

    2016-03-01

    As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Modern dosimetric tools for 60Co irradiation at high containment laboratories

    PubMed Central

    Twardoski, Barri; Feldmann, Heinz; Bloom, Marshall E.; Ward, Joe

    2011-01-01

    Purpose To evaluate an innovative photo-fluorescent film as a routine dosimetric tool during 60Co irradiations at a high containment biological research laboratory, and to investigate whether manufacturer-provided chamber exposure rates can be used to accurately administer a prescribed dose to biological specimens. Materials and methods Photo-fluorescent, lithium fluoride film dosimeters and National Institutes of Standards and Technology (NIST) transfer dosimeters were co-located in a self-shielded 60Co irradiator and exposed to γ-radiation with doses ranging from 5–85 kGy. Film dose-response relationships were developed for varying temperatures simulating conditions present when irradiating infectious biological specimens. Dose measurement results from NIST transfer dosimeters were compared to doses predicted using manufacturer-provided irradiator chamber exposure rates. Results The film dosimeter exhibited a photo-fluorescent response signal that was consistent and nearly linear in relationship to γ-radiation exposure over a wide dose range. The dosimeter response also showed negligible effects from dose fractionization and humidity. Significant disparities existed between manufacturer-provided chamber exposure rates and actual doses administered. Conclusion This study demonstrates the merit of utilizing dosimetric tools to validate the process of exposing dangerous and exotic biological agents to γ-radiation at high containment laboratories. The film dosimeter used in this study can be utilized to eliminate potential for improperly administering γ-radiation doses. PMID:21961968

  12. Poster - Thur Eve - 05: Safety systems and failure modes and effects analysis for a magnetic resonance image guided radiation therapy system.

    PubMed

    Lamey, M; Carlone, M; Alasti, H; Bissonnette, J P; Borg, J; Breen, S; Coolens, C; Heaton, R; Islam, M; van Proojen, M; Sharpe, M; Stanescu, T; Jaffray, D

    2012-07-01

    An online Magnetic Resonance guided Radiation Therapy (MRgRT) system is under development. The system is comprised of an MRI with the capability of travel between and into HDR brachytherapy and external beam radiation therapy vaults. The system will provide on-line MR images immediately prior to radiation therapy. The MR images will be registered to a planning image and used for image guidance. With the intention of system safety we have performed a failure modes and effects analysis. A process tree of the facility function was developed. Using the process tree as well as an initial design of the facility as guidelines possible failure modes were identified, for each of these failure modes root causes were identified. For each possible failure the assignment of severity, detectability and occurrence scores was performed. Finally suggestions were developed to reduce the possibility of an event. The process tree consists of nine main inputs and each of these main inputs consisted of 5 - 10 sub inputs and tertiary inputs were also defined. The process tree ensures that the overall safety of the system has been considered. Several possible failure modes were identified and were relevant to the design, construction, commissioning and operating phases of the facility. The utility of the analysis can be seen in that it has spawned projects prior to installation and has lead to suggestions in the design of the facility. © 2012 American Association of Physicists in Medicine.

  13. Determination of the viscous acoustic field for liquid drop positioning/forcing in an acoustic levitation chamber in microgravity

    NASA Technical Reports Server (NTRS)

    Lyell, Margaret J.

    1992-01-01

    The development of acoustic levitation systems has provided a technology with which to undertake droplet studies as well as do containerless processing experiments in a microgravity environment. Acoustic levitation chambers utilize radiation pressure forces to position/manipulate the drop. Oscillations can be induced via frequency modulation of the acoustic wave, with the modulated acoustic radiation vector acting as the driving force. To account for tangential as well as radial forcing, it is necessary that the viscous effects be included in the acoustic field. The method of composite expansions is employed in the determination of the acoustic field with viscous effects.

  14. The use of failure mode and effect analysis in a radiation oncology setting: the Cancer Treatment Centers of America experience.

    PubMed

    Denny, Diane S; Allen, Debra K; Worthington, Nicole; Gupta, Digant

    2014-01-01

    Delivering radiation therapy in an oncology setting is a high-risk process where system failures are more likely to occur because of increasing utilization, complexity, and sophistication of the equipment and related processes. Healthcare failure mode and effect analysis (FMEA) is a method used to proactively detect risks to the patient in a particular healthcare process and correct potential errors before adverse events occur. FMEA is a systematic, multidisciplinary team-based approach to error prevention and enhancing patient safety. We describe our experience of using FMEA as a prospective risk-management technique in radiation oncology at a national network of oncology hospitals in the United States, capitalizing not only on the use of a team-based tool but also creating momentum across a network of collaborative facilities seeking to learn from and share best practices with each other. The major steps of our analysis across 4 sites and collectively were: choosing the process and subprocesses to be studied, assembling a multidisciplinary team at each site responsible for conducting the hazard analysis, and developing and implementing actions related to our findings. We identified 5 areas of performance improvement for which risk-reducing actions were successfully implemented across our enterprise. © 2012 National Association for Healthcare Quality.

  15. Radiosensitization: enhancing the radiation inactivation of foodborne bacteria

    NASA Astrophysics Data System (ADS)

    Borsa, J.; Lacroix, M.; Ouattara, B.; Chiasson, F.

    2004-09-01

    Irradiation of meat products to kill pathogens can be limited by radiation-induced detriment of sensory quality. Since such detriment is directly related to dose, one approach to reduce it is by devising means to lower the dose of radiation required for processing. Increasing the radiation sensitivity of the target microorganisms would lower the dose required for a given level of microbial kill. In this work, the radiation sensitivities of inoculated Escherichia coli and Salmonella typhi in ground beef were examined under a variety of conditions. Results showed that specific manipulations of treatment conditions significantly increased the radiation sensitivity of the test organisms, ranging from a few percent to several-fold reduction in D10. In particular, radiation sensitization could be effected by certain additives, including carvacrol, thymol and trans-cinnamaldehyde, and also by certain compositions of modified atmosphere in the package headspace. A combination of additives and modified atmosphere effected a greater radiosensitization effect than could be achieved by either factor applied alone. Radiosensitization could be demonstrated with irradiation of either fresh or frozen ground meat. The radiosensitization phenomenon may be of practical utility in enhancing the technical effectiveness and feasibility of irradiation of a variety of meat and other food products.

  16. EMERGING TECHNOLOGY BULLETIN: ELECTRON BEAM TREATMENT FOR THE REMOVAL OF BENZENE AND TOULENE FROM AQUEOUS STREAMS AND SLUDGES

    EPA Science Inventory

    The electron accelerator utilized in this treatment process has a potential of 1.5 MeV, rated from 0 to 50 mA, providing radiation doses of 0-850 krad (0-8.5 kGy). The horizontal electron beam is scanned at 200 Hz and impacts the waste stream as it flows over a weir approximately...

  17. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatorymore » Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35 requirements as they relate to the everyday practice of Nuclear Medicine and Radiation Oncology. Understand the nature of available guidance documents (e.g., NUREG 1556). Examine the commonalities between TJC and CMS preparedness.« less

  19. MO-AB-201-02: The RSO and The RSC: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimock, C.

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatorymore » Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35 requirements as they relate to the everyday practice of Nuclear Medicine and Radiation Oncology. Understand the nature of available guidance documents (e.g., NUREG 1556). Examine the commonalities between TJC and CMS preparedness.« less

  20. MO-AB-201-03: The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroger, L.

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatorymore » Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35 requirements as they relate to the everyday practice of Nuclear Medicine and Radiation Oncology. Understand the nature of available guidance documents (e.g., NUREG 1556). Examine the commonalities between TJC and CMS preparedness.« less

  1. Utilization of agro-resources by radiation treatment -production of animal feed and mushroom from oil palm wastes

    NASA Astrophysics Data System (ADS)

    Kume, Tamikazu; Matsuhashi, Shinpei; Hashimoto, Shoji; Awang, Mat Rasol; Hamdini, Hassan; Saitoh, Hideharu

    1993-10-01

    The production of animal feeds and mushrooms from oil palm cellulosic wasres by radiation and fermentation has been investigated in order to utilize the agro-resources and to reduce the smoke pollution. The process is as follows: decontamination of microorganisms in fermentation media of empty fruit bunch of oil palm (EFB) by irradiation, inoculation of useful fungi, and subsequently production of proteins and edible mushrooms. The dose of 25 kGy was required for the sterilization of contaminating bacteria whereas the dose of 10 kGy was enough to eliminate the fungi. Among many kinds of fungi tested, C. cinereus and P. sajor-caju were selected as the most suitable microorganism for the fermentation of EFB. The protein content of the product increased to 13 % and the crude fiber content decreased to 20% after 30 days of incubation with C. cinereus at 30°C in solid state fermentation. P. sajor-caju was suitable for the mushroom production on EFB with rice bran.

  2. Ultrasonic Processing of Materials

    NASA Astrophysics Data System (ADS)

    Han, Qingyou

    2015-08-01

    Irradiation of high-energy ultrasonic vibration in metals and alloys generates oscillating strain and stress fields in solids, and introduces nonlinear effects such as cavitation, acoustic streaming, and radiation pressure in molten materials. These nonlinear effects can be utilized to assist conventional material processing processes. This article describes recent research at Oak Ridge National Labs and Purdue University on using high-intensity ultrasonic vibrations for degassing molten aluminum, processing particulate-reinforced metal matrix composites, refining metals and alloys during solidification process and welding, and producing bulk nanostructures in solid metals and alloys. Research results suggest that high-intensity ultrasonic vibration is capable of degassing and dispersing small particles in molten alloys, reducing grain size during alloy solidification, and inducing nanostructures in solid metals.

  3. MO-F-16A-06: Implementation of a Radiation Exposure Monitoring System for Surveillance of Multi-Modality Radiation Dose Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B; Kanal, K; Dickinson, R

    2014-06-15

    Purpose: We have implemented a commercially available Radiation Exposure Monitoring System (REMS) to enhance the processes of radiation dose data collection, analysis and alerting developed over the past decade at our sites of practice. REMS allows for consolidation of multiple radiation dose information sources and quicker alerting than previously developed processes. Methods: Thirty-nine x-ray producing imaging modalities were interfaced with the REMS: thirteen computed tomography scanners, sixteen angiography/interventional systems, nine digital radiography systems and one mammography system. A number of methodologies were used to provide dose data to the REMS: Modality Performed Procedure Step (MPPS) messages, DICOM Radiation Dose Structuredmore » Reports (RDSR), and DICOM header information. Once interfaced, the dosimetry information from each device underwent validation (first 15–20 exams) before release for viewing by end-users: physicians, medical physicists, technologists and administrators. Results: Before REMS, our diagnostic physics group pulled dosimetry data from seven disparate databases throughout the radiology, radiation oncology, cardiology, electrophysiology, anesthesiology/pain management and vascular surgery departments at two major medical centers and four associated outpatient clinics. With the REMS implementation, we now have one authoritative source of dose information for alerting, longitudinal analysis, dashboard/graphics generation and benchmarking. REMS provides immediate automatic dose alerts utilizing thresholds calculated through daily statistical analysis. This has streamlined our Closing the Loop process for estimated skin exposures in excess of our institutional specific substantial radiation dose level which relied on technologist notification of the diagnostic physics group and daily report from the radiology information system (RIS). REMS also automatically calculates the CT size-specific dose estimate (SSDE) as well as provides two-dimensional angulation dose maps for angiography/interventional procedures. Conclusion: REMS implementation has streamlined and consolidated the dosimetry data collection and analysis process at our institutions while eliminating manual entry error and providing immediate alerting and access to dosimetry data to both physicists and physicians. Brent Stewart has funded research through GE Healthcare.« less

  4. Poster - 27: Incident Learning Practices in Ontario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angers, Crystal; Medlam, Gaylene; Liszewski, Brian

    Purpose: The Radiation Incident and Safety Committee (RISC), established and supported by Cancer Care Ontario (CCO), is responsible for advising the Provincial Head of the Radiation Treatment program on matters relating to provincial reporting of radiation incidents with the goal of improved risk mitigation. Methods: The committee is made up of Radiation Incident Leads (RILs) with representation from each of the 14 radiation medicine programs in the province. RISC routinely meets to review recent critical incidents and to discuss provincial reporting processes and future directions of the committee. Regular face to face meetings have provided an excellent venue for sharingmore » incident learning practices. A summary of the incident learning practices across Ontario has been compiled. Results: Almost all programs in Ontario employ an incident learning committee to review incidents and identify corrective actions or process improvements. Tools used for incident reporting include: paper based reporting, a number of different commercial products and software solutions developed in-house. A wide range of classification schema (data taxonomies) are employed, although most have been influenced by national guidance documents. The majority of clinics perform root cause analyses but utilized methodologies vary significantly. Conclusions: Most programs in Ontario employ a committee approach to incident learning. However, the reporting tools and taxonomies in use vary greatly which represents a significant challenge to provincial reporting. RISC is preparing to adopt the National System for Incident Reporting – Radiation Therapy (NSIR-RT) which will standardize incident reporting and facilitate data analyses aimed at identifying targeted improvement initiatives.« less

  5. Materials Challenges in Space Exploration

    NASA Technical Reports Server (NTRS)

    Vickers, John; Shah, Sandeep

    2005-01-01

    The new vision of space exploration encompasses a broad range of human and robotic missions to the Moon, Mars and beyond. Extended human space travel requires high reliability and high performance systems for propulsion, vehicle structures, thermal and radiation protection, crew habitats and health monitoring. Advanced materials and processing technologies are necessary to meet the exploration mission requirements. Materials and processing technologies must be sufficiently mature before they can be inserted into a development program leading to an exploration mission. Exploration will be more affordable by in-situ utilization of materials on the Moon and Mars.

  6. Radiation risk from CT: implications for cancer screening.

    PubMed

    Albert, Jeffrey M

    2013-07-01

    The cancer risks associated with patient exposure to radiation from medical imaging have become a major topic of debate. The higher doses necessary for technologies such as CT and the increasing utilization of these technologies further increase medical radiation exposure to the population. Furthermore, the use of CT for population-based cancer screening continues to be explored for common malignancies such as lung cancer and colorectal cancer. Given the known carcinogenic effects of ionizing radiation, this warrants evaluation of the balance between the benefit of early cancer detection and the risk of screening-induced malignancy. This report provides a brief review of the process of radiation carcino-genesis and the literature evaluating the risk of malignancy from CT, with a focus on the risks and benefits of CT for cancer screening. The available data suggest a small but real risk of radiation-induced malignancy from CT that could become significant at the population level with widespread use of CT-based screening. However, a growing body of literature suggests that the benefits of CT screening for lung cancer in high-risk patients and CT colonography for colorectal cancer may significantly outweigh the radiation risk. Future studies evaluating the benefits of CT screening should continue to consider potential radiation risks.

  7. Controlled manipulation of elastomers with radiation: Insights from multiquantum nuclear-magnetic-resonance data and mechanical measurements

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Weisgraber, T.; Dinh, L. N.; Gee, R. H.; Wilson, T.; Chinn, S.; Maxwell, R. S.

    2011-03-01

    Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation, thermal, and electrical barriers. External factors such as mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a materials science point of view it is highly desirable to understand, affect, and manipulate such property changes in a controlled manner. Unfortunately, that has not yet been possible due to the lack of experimental characterization of such networks under controlled environments. In this work we expose a known rubber material to controlled dosages of γ radiation and utilize a newly developed multiquantum nuclear-magnetic-resonance technique to characterize the MWD as a function of radiation. We show that such data along with mechanical stress-strain measurements are amenable to accurate analysis by simple network models and yield important insights into radiation-induced molecular-level processes.

  8. Radiation-hardened MRAM-based LUT for non-volatile FPGA soft error mitigation with multi-node upset tolerance

    NASA Astrophysics Data System (ADS)

    Zand, Ramtin; DeMara, Ronald F.

    2017-12-01

    In this paper, we have developed a radiation-hardened non-volatile lookup table (LUT) circuit utilizing spin Hall effect (SHE)-magnetic random access memory (MRAM) devices. The design is motivated by modeling the effect of radiation particles striking hybrid complementary metal oxide semiconductor/spin based circuits, and the resistive behavior of SHE-MRAM devices via established and precise physics equations. The models developed are leveraged in the SPICE circuit simulator to verify the functionality of the proposed design. The proposed hardening technique is based on using feedback transistors, as well as increasing the radiation capacity of the sensitive nodes. Simulation results show that our proposed LUT circuit can achieve multiple node upset (MNU) tolerance with more than 38% and 60% power-delay product improvement as well as 26% and 50% reduction in device count compared to the previous energy-efficient radiation-hardened LUT designs. Finally, we have performed a process variation analysis showing that the MNU immunity of our proposed circuit is realized at the cost of increased susceptibility to transistor and MRAM variations compared to an unprotected LUT design.

  9. Evaluating WRF-Chem multi-scale model in simulating aerosol radiative properties over the tropics – A case study over India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seethala, C.; Pandithurai, G.; Fast, Jerome D.

    We utilized WRF-Chem multi-scale model to simulate the regional distribution of aerosols, optical properties and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers operated by the Indian Meteorological Department. The simulated downward shortwave flux was overestimated when the effect of aerosols on radiation and clouds was neglected. Downward shortwave radiation from a simulation that included aerosol-radiation interaction processes was 5 to 25 Wm{sup -2} closer to the observations, while a simulation that included aerosol-cloud interaction processes were another 1 tomore » 20 Wm{sup -2} closer to the observations. For the few observations available, the model usually underestimated particulate concentration. This is likely due to turbulent mixing, transport errors and the lack of secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as high aerosol optical depth over Indo-Gangetic basin as well as the northwestern and southern part of India. The regional distribution of aerosol optical depth compares well with AVHRR aerosol optical depth and the TOMS aerosol index. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. Differences in surface shortwave radiation between simulations that included and neglected aerosol-radiation interactions were as high as -25 Wm{sup -2}, while differences in surface shortwave radiation between simulations that included and neglect aerosol-radiation-cloud interactions were as high as -30 Wm{sup -2}. The spatial variations of these differences were also compared with AVHRR observation. This study suggests that the model is able to qualitatively simulate the impact of aerosols on radiation over India; however, additional measurements of particulate mass and composition are needed to fully evaluate whether the aerosol precursor emissions are adequate when simulating radiative forcing in the region.« less

  10. Improving Store Separation Six-Degree-of-Freedom Tools (ISSSDF)

    DTIC Science & Technology

    2007-01-01

    the Australian Air Force. NAVAIR is in the process of preparing a flight clearance for the High Speed Anti- radiation Demonstrator ( HSAD ...program. This clearance will be prepared using the conventional tool NAVSEP. The HSAD missile, however, utilizes an autopilot to move four movable...conventional NAVSEP approach to clear the HSAD missile, it would be desirable to test the TGP and STEME codes for the same case. It would be

  11. Comparison of effectiveness of convection-, transpiration-, and film-cooling methods with air as coolant

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Livingood, N B

    1954-01-01

    Various parts of aircraft propulsion engines that are in contact with hot gases often require cooling. Transpiration and film cooling, new methods that supposedly utilize cooling air more effectively than conventional convection cooling, have already been proposed. This report presents material necessary for a comparison of the cooling requirements of these three methods. Correlations that are regarded by the authors as the most reliable today are employed in evaluating each of the cooling processes. Calculations for the special case in which the gas velocity is constant along the cooled wall (flat plate) are presented. The calculations reveal that a comparison of the three cooling processes can be made on quite a general basis. The superiority of transpiration cooling is clearly shown for both laminar and turbulent flow. This superiority is reduced when the effects of radiation are included; for gas-turbine blades, however, there is evidence indicating that radiation may be neglected.

  12. Spacecraft Thermal and Optical Modeling Impacts on Estimation of the GRAIL Lunar Gravity Field

    NASA Technical Reports Server (NTRS)

    Fahnestock, Eugene G.; Park, Ryan S.; Yuan, Dah-Ning; Konopliv, Alex S.

    2012-01-01

    We summarize work performed involving thermo-optical modeling of the two Gravity Recovery And Interior Laboratory (GRAIL) spacecraft. We derived several reconciled spacecraft thermo-optical models having varying detail. We used the simplest in calculating SRP acceleration, and used the most detailed to calculate acceleration due to thermal re-radiation. For the latter, we used both the output of pre-launch finite-element-based thermal simulations and downlinked temperature sensor telemetry. The estimation process to recover the lunar gravity field utilizes both a nominal thermal re-radiation accleration history and an apriori error model derived from that plus an off-nominal history, which bounds parameter uncertainties as informed by sensitivity studies.

  13. Using Discrete-Event Simulation to Promote Quality Improvement and Efficiency in a Radiation Oncology Treatment Center.

    PubMed

    Famiglietti, Robin M; Norboge, Emily C; Boving, Valentine; Langabeer, James R; Buchholz, Thomas A; Mikhail, Osama

    To meet demand for radiation oncology services and ensure patient-centered safe care, management in an academic radiation oncology department initiated quality improvement efforts using discrete-event simulation (DES). Although the long-term goal was testing and deploying solutions, the primary aim at the outset was characterizing and validating a computer simulation model of existing operations to identify targets for improvement. The adoption and validation of a DES model of processes and procedures affecting patient flow and satisfaction, employee experience, and efficiency were undertaken in 2012-2013. Multiple sources were tapped for data, including direct observation, equipment logs, timekeeping, and electronic health records. During their treatment visits, patients averaged 50.4 minutes in the treatment center, of which 38% was spent in the treatment room. Patients with appointments between 10 AM and 2 PM experienced the longest delays before entering the treatment room, and those in the clinic in the day's first and last hours, the shortest (<5 minutes). Despite staffed for 14.5 hours daily, the clinic registered only 20% of patients after 2:30 PM. Utilization of equipment averaged 58%, and utilization of staff, 56%. The DES modeling quantified operations, identifying evidence-based targets for next-phase remediation and providing data to justify initiatives.

  14. An on-chip polarization splitter based on the radiation loss in the bending hybrid plasmonic waveguide structure

    NASA Astrophysics Data System (ADS)

    Sun, Chengwei; Rong, Kexiu; Gan, Fengyuan; Chu, Saisai; Gong, Qihuang; Chen, Jianjun

    2017-09-01

    Polarization beam splitters (PBSs) are one of the key components in the integrated photonic circuits. To increase the integration density, various complex hybrid plasmonic structures have been numerically designed to shrink the footprints of the PBSs. Here, to decrease the complexity of the small hybrid structures and the difficulty of the hybrid micro-nano fabrications, the radiation losses are utilized to experimentally demonstrate an ultra-small, broadband, and efficient PBS in a simple bending hybrid plasmonic waveguide structure. The hybrid plasmonic waveguide comprising a dielectric strip on the metal surface supports both the transverse-magnetic (TM) and transverse-electric (TE) waveguide modes. Because of the different field confinements, the TE waveguide mode has larger radiation loss than the TM waveguide mode in the bending hybrid strip waveguide. Based on the different radiation losses, the two incident waveguide modes of orthogonal polarization states are efficiently split in the proposed structure with a footprint of only about 2.2 × 2.2 μm2 on chips. Since there is no resonance or interference in the splitting process, the operation bandwidth is as broad as Δλ = 70 nm. Moreover, the utilization of the strongly confined waveguide modes instead of the bulk free-space light (with the spot size of at least a few wavelengths) as the incident source considerably increases the coupling efficiency, resulting in a low insertion loss of <3 dB.

  15. Simulation of deleterious processes in a static-cell diode pumped alkali laser

    NASA Astrophysics Data System (ADS)

    Oliker, Benjamin Q.; Haiducek, John D.; Hostutler, David A.; Pitz, Greg A.; Rudolph, Wolfgang; Madden, Timothy J.

    2014-02-01

    The complex interactions in a diode pumped alkali laser (DPAL) gain cell provide opportunities for multiple deleterious processes to occur. Effects that may be attributable to deleterious processes have been observed experimentally in a cesium static-cell DPAL at the United States Air Force Academy [B.V. Zhdanov, J. Sell, R.J. Knize, "Multiple laser diode array pumped Cs laser with 48 W output power," Electronics Letters, 44, 9 (2008)]. The power output in the experiment was seen to go through a "roll-over"; the maximum power output was obtained with about 70 W of pump power, then power output decreased as the pump power was increased beyond this point. Research to determine the deleterious processes that caused this result has been done at the Air Force Research Laboratory utilizing physically detailed simulation. The simulations utilized coupled computational fluid dynamics (CFD) and optics solvers, which were three-dimensional and time-dependent. The CFD code used a cell-centered, conservative, finite-volume discretization of the integral form of the Navier-Stokes equations. It included thermal energy transport and mass conservation, which accounted for chemical reactions and state kinetics. Optical models included pumping, lasing, and fluorescence. The deleterious effects investigated were: alkali number density decrease in high temperature regions, convective flow, pressure broadening and shifting of the absorption lineshape including hyperfine structure, radiative decay, quenching, energy pooling, off-resonant absorption, Penning ionization, photoionization, radiative recombination, three-body recombination due to free electron and buffer gas collisions, ambipolar diffusion, thermal aberration, dissociative recombination, multi-photon ionization, alkali-hydrocarbon reactions, and electron impact ionization.

  16. Monitoring radiation use in cardiac fluoroscopy imaging procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Nathaniel T.; Steiner, Stefan H.; Smith, Ian R.

    2011-01-15

    Purpose: Timely identification of systematic changes in radiation delivery of an imaging system can lead to a reduction in risk for the patients involved. However, existing quality assurance programs involving the routine testing of equipment performance using phantoms are limited in their ability to effectively carry out this task. To address this issue, the authors propose the implementation of an ongoing monitoring process that utilizes procedural data to identify unexpected large or small radiation exposures for individual patients, as well as to detect persistent changes in the radiation output of imaging platforms. Methods: Data used in this study were obtainedmore » from records routinely collected during procedures performed in the cardiac catheterization imaging facility at St. Andrew's War Memorial Hospital, Brisbane, Australia, over the period January 2008-March 2010. A two stage monitoring process employing individual and exponentially weighted moving average (EWMA) control charts was developed and used to identify unexpectedly high or low radiation exposure levels for individual patients, as well as detect persistent changes in the radiation output delivered by the imaging systems. To increase sensitivity of the charts, we account for variation in dose area product (DAP) values due to other measured factors (patient weight, fluoroscopy time, and digital acquisition frame count) using multiple linear regression. Control charts are then constructed using the residual values from this linear regression. The proposed monitoring process was evaluated using simulation to model the performance of the process under known conditions. Results: Retrospective application of this technique to actual clinical data identified a number of cases in which the DAP result could be considered unexpected. Most of these, upon review, were attributed to data entry errors. The charts monitoring the overall system radiation output trends demonstrated changes in equipment performance associated with relocation of the equipment to a new department. When tested under simulated conditions, the EWMA chart was capable of detecting a sustained 15% increase in average radiation output within 60 cases (<1 month of operation), while a 33% increase would be signaled within 20 cases. Conclusions: This technique offers a valuable enhancement to existing quality assurance programs in radiology that rely upon the testing of equipment radiation output at discrete time frames to ensure performance security.« less

  17. A DICOM-RT based ePR radiation therapy information system for managing brain tumor patients

    NASA Astrophysics Data System (ADS)

    Liu, Brent J.; Law, Maria; Huang, H. K.; Zee, C. S.; Chan, Lawrence

    2005-04-01

    The need for comprehensive clinical image data and relevant information in image-guided Radiation Therapy (RT) is becoming steadily apparent. Multiple standalone systems utilizing the most technological advancements in imaging, therapeutic radiation, and computerized treatment planning systems acquire key data during the RT treatment course of a patient. One example are patients treated for brain tumors of greater sizes and irregular shapes that utilize state-of-the-art RT technology to deliver pinpoint accurate radiation doses. One such system, the Cyberknife, is a radiation treatment system that utilizes image-guided information to control a multi-jointed, six degrees of freedom, robotic arm to deliver precise and required radiation dose to the tumor site of a cancer patient. The image-guided system is capable of tracking the lesion orientations with respect to the patient"s position throughout the treatment process. This is done by correlating live radiographic images with pre-operative, CT and MR imaging information to determine relative patient and tumor position repeatedly over the course of the treatment. The disparate and complex data generated by the Cyberknife system along with related data is scattered throughout the RT department compromising an efficient clinical workflow since the data crucial for a clinical decision may be time-consuming to retrieve, temporarily missing, or even lost. To address these shortcomings, the ACR-NEMA Standards Committee extended its DICOM (Digital Imaging & Communications in Medicine) Standard from Radiology to RT by ratifying seven DICOM RT objects starting in 1997. However, they are rarely used by the RT community in daily clinical operations. In the past, the research focus of an RT department has primarily been developing new protocols and devices to improve treatment process and outcomes of cancer patients with minimal effort dedicated to integration of imaging and information systems. Our research, tightly-coupling radiology and RT information systems, represents a new frontier for medical informatics research that has never been previously considered. By combining our past experience in medical imaging informatics, DICOM-RT expertise, and system integration, we propose to test our hypothesis using a brain tumor case model that a DICOM-RT electronic patient record (ePR) system can improve clinical workflow efficiency for treatment and management of patients. This RT ePR system integrated with clinical images and RT data can impact the RT department in a similar fashion as PACS has already successfully done for Radiology. As a first step, the specific treatment case of patients with brain tumors specifically patients treated with the Cyberknife system will be the initial proof of concept for the research design, implementation, evaluation, and clinical relevance.

  18. The Development of Countermeasures for Space Radiation Induced Adverse Health Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The Development of Countermeasures for Space Radiation Induced Adverse Health Effects Ann R. Kennedy Department of Radiation Oncology, University of Pennsylvania School of Medicine, 195 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA, United States 19104-6072 The development of countermeasures for radiation induced adverse health effects is a lengthy process, particularly when the countermeasure/drug has not yet been evaluated in human trials. One example of a drug developed from the bench to the clinic is the soybean-derived Bowman-Birk inhibitor (BBI), which has been developed as a countermeasure for radiation induced cancer. It was originally identified as a compound/drug that could prevent the radiation induced carcinogenic process in an in vitro assay system in 1975. The first observation that BBI could inhibit carcinogenesis in animals was in 1985. BBI received Investigational New Drug (IND) Status with the U.S. Food and Drug Administration (FDA) in 1992 (after several years of negotiation with the FDA about the potential IND status of the drug), and human trials began at that time. Phase I, II and III human trials utilizing BBI have been performed under several INDs with the FDA, and an ongoing Phase III trial will be ending in the very near future. Thus, the drug has been in development for 35 years at this point, and it is still not a prescription drug on the market which is available for human use. A somewhat less time-consuming process is to evaluate compounds that are on the GRAS (Generally Recognized as Safe) list. These compounds would include some over-the-counter medications, such as antioxidant vitamins utilized in human trials at the levels for which Recommended Dietary Allowances (RDAs) have been established. To determine whether GRAS substances are able to have beneficial effects on radiation induced adverse health effects, it is still likely to be a lengthy process involving many years to potentially decades of human trial work. The human trials necessary to demonstrate "efficacy" for a beneficial effect on the long term adverse health effects of radiation, such as the development of cancer, cataracts, etc., is expected to take particularly long periods of time. To avoid the long time delay in the development of new drugs as countermeasures for radiation induced adverse health effects, the NSBRI Center for Acute Radiation Research (CARR) is currently focused on the use of drugs that have already been approved for human use by the FDA. Currently there are no approved countermeasures for external radiation exposure by the US Army or by NASA. The appropriate medications for symptoms of the Acute Radiation Syndrome (ARS) due to exposure to solar particle event (SPE) radiation are unknown, but there are medications appropriate for ARS symptoms caused by exposure to conventional ra-diation. The Armed Forces Radiobiology Research Institute (AFRRI) has medical guidelines for ARS medications (http://www.afrri.usuhs.mil/outreach/guidance.htm#policies), as does the US Dept. of Health and Human Services (the REMM (Radiation Event Medical Manage-ment) site (http://www.remm.nlm.gov). Supportive care when ARS symptoms develop include the administration of antimicrobial agents (which can include systemic antibiotics [especially those directed at gram-negative bacteria]), antiemetic agents, antidiarrheal agents, fluids, elec-trolytes, analgesic agents and topical burn creams (Waselenko, J.K. et al. Ann. Intern. Med. 140: 1037, 2004). For nausea and vomiting, serotonin receptor antagonists (5HT3 receptor antagonists) are very effective prophylaxis. There are two drugs that have been approved by the FDA (Zofran and Kytril) for radiation induced nausea and vomiting. Kytril (granisetron) is preferred by the US Army and is currently maintained in the US National Stockpile. Both of these drugs are known to stop retching and vomiting when given either before or after irradi-ation, even when vomiting and/or retching are occurring. Immune suppression can occur due to declines in white blood cells and infection is a possibility. Of particular importance is the radiation induced decline in neutrophil counts. Methods for controlling infection during the critical neutropenic phase can be used. Investigations of the CARR grant use FDA approved drugs for ARS symptoms in animals exposed to SPE radiations. ACKNOWLEDGEMENTS: The research investigations of the CARR grant are supported by the National Space Biomedical Research Institute (NSBRI) through NASA NCC 9-58.

  19. Factors determining the viability of radiation processing in developing countries

    NASA Astrophysics Data System (ADS)

    van der Linde, HJ; Basson, RA

    In the fifteen years since the introduction of radiation processing to South Africa, four commercial irradiation facilities have been established. These are involved in the processing of a large variety of products, from syringes and prostheses to strawberries and sugar yeast. Three of the facilities are devoted mainly to food irradiation and several thousand tonnes are now processed annually. During this period it was repeatedly experienced that the successful introduction of radiation processing in general, and food radurization in particular, on a commercial scale was critically dependent on the following factors: acceptance by the producer, industry and consumer; initial capital expenditure; running costs and overheads in general; and continous throughput. All of these factors contribute to the processing cost which is the ultimate factor in determing the value/price ratio for the potential entrepreneur and customer of this new technology. After a market survey had identified the need for a new food irradiation facility to cope with the growing interest in commercial food radurization in the Western Cape, the above-mentioned factors were of cardinal importance in the design and manufacture of a new irradiator. The resulting batch-pallet facility which was commisioned in August 1986, is rather inefficient as far as energy utilization is concerned but this shortcoming is compensated for by its low cost, versatility and low hold-up. Although the facility has limitations as far as the processing of really large volumes of produce is concerned, it is particularly suitable not only for developing countries, but for developed countries in the introductory phase of commercial food radurization.

  20. Texturing Carbon-carbon Composite Radiator Surfaces Utilizing Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Raack, Taylor

    2004-01-01

    Future space nuclear power systems will require radiator technology to dissipate excess heat created by a nuclear reactor. Large radiator fins with circulating coolant are in development for this purpose and an investigation of how to make them most efficient is underway. Maximizing the surface area while minimizing the mass of such radiator fins is critical for obtaining the highest efficiency in dissipating heat. Processes to develop surface roughness are under investigation to maximize the effective surface area of a radiator fin. Surface roughness is created through several methods including oxidation and texturing. The effects of atomic oxygen impingement on carbon-carbon surfaces are currently being investigated for texturing a radiator surface. Early studies of atomic oxygen impingement in low Earth orbit indicate significant texturing due to ram atomic oxygen. The surface morphology of the affected surfaces shows many microscopic cones and valleys which have been experimentally shown to increase radiation emittance. Further study of this morphology proceeded in the Long Duration Exposure Facility (LDEF). Atomic oxygen experiments on the LDEF successfully duplicated the results obtained from materials in spaceflight by subjecting samples to 4.5 eV atomic oxygen from a fixed ram angle. These experiments replicated the conical valley morphology that was seen on samples subjected to low Earth orbit.

  1. Reliability analysis and utilization of PEMs in space application

    NASA Astrophysics Data System (ADS)

    Jiang, Xiujie; Wang, Zhihua; Sun, Huixian; Chen, Xiaomin; Zhao, Tianlin; Yu, Guanghua; Zhou, Changyi

    2009-11-01

    More and more plastic encapsulated microcircuits (PEMs) are used in space missions to achieve high performance. Since PEMs are designed for use in terrestrial operating conditions, the successful usage of PEMs in space harsh environment is closely related to reliability issues, which should be considered firstly. However, there is no ready-made methodology for PEMs in space applications. This paper discusses the reliability for the usage of PEMs in space. This reliability analysis can be divided into five categories: radiation test, radiation hardness, screening test, reliability calculation and reliability assessment. One case study is also presented to illuminate the details of the process, in which a PEM part is used in a joint space program Double-Star Project between the European Space Agency (ESA) and China. The influence of environmental constrains including radiation, humidity, temperature and mechanics on the PEM part has been considered. Both Double-Star Project satellites are still running well in space now.

  2. Data acquisition and analysis of range-finding systems for spacing construction

    NASA Technical Reports Server (NTRS)

    Shen, C. N.

    1981-01-01

    For space missions of future, completely autonomous robotic machines will be required to free astronauts from routine chores of equipment maintenance, servicing of faulty systems, etc. and to extend human capabilities in hazardous environments full of cosmic and other harmful radiations. In places of high radiation and uncontrollable ambient illuminations, T.V. camera based vision systems cannot work effectively. However, a vision system utilizing directly measured range information with a time of flight laser rangefinder, can successfully operate under these environments. Such a system will be independent of proper illumination conditions and the interfering effects of intense radiation of all kinds will be eliminated by the tuned input of the laser instrument. Processing the range data according to certain decision, stochastic estimation and heuristic schemes, the laser based vision system will recognize known objects and thus provide sufficient information to the robot's control system which can develop strategies for various objectives.

  3. FIRE Arctic Clouds Experiment

    NASA Technical Reports Server (NTRS)

    Curry, J. A.; Hobbs, P. V.; King, M. D.; Randall, D. A.; Minnis, P.; Issac, G. A.; Pinto, J. O.; Uttal, T.; Bucholtz, A.; Cripe, D. G.; hide

    1998-01-01

    An overview is given of the First ISCCP Regional Experiment (FIRE) Arctic Clouds Experiment that was conducted in the Arctic during April through July, 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud-radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and Barrow, Alaska. In this paper we describe the programmatic and science objectives of the project, the experimental design (including research platforms and instrumentation), conditions that were encountered during the field experiment, and some highlights of preliminary observations, modelling, and satellite remote sensing studies.

  4. Tailoring Thin Film-Lacquer Coatings for Space Application

    NASA Technical Reports Server (NTRS)

    Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John

    1998-01-01

    Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's thermal control requirements, there is often a need for a variation of solar absorptance (Alpha(s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of Alpha(s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.

  5. Tailoring Thin Film-Lacquer Coatings for Space Applications

    NASA Technical Reports Server (NTRS)

    Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John

    1998-01-01

    Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's then-nal control requirements, there is often a need for a variation of solar absorptance (alpha(sub s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of alpha(sub s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.

  6. Nuclear Power and the Environment--Questions and Answers.

    ERIC Educational Resources Information Center

    Campana, Robert J.; Langer, Sidney

    This booklet has been developed to help the layman understand and evaluate the various efforts being undertaken to utilize nuclear power for the benefit of mankind. The question and answer format is utilized. Among the topics discussed are: Our Needs for Electricity; Sources of Radiation; Radiation from Nuclear Power Plants; Biological Effects of…

  7. Method and apparatus for measuring electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  8. Imaging radiation detector with gain

    DOEpatents

    Morris, C.L.; Idzorek, G.C.; Atencio, L.G.

    1982-07-21

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  9. Imaging radiation detector with gain

    DOEpatents

    Morris, Christopher L.; Idzorek, George C.; Atencio, Leroy G.

    1984-01-01

    A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.

  10. Enhanced tagging of light utilizing acoustic radiation force with speckle pattern analysis

    NASA Astrophysics Data System (ADS)

    Vakili, Ali; Hollmann, Joseph L.; Holt, R. Glynn; DiMarzio, Charles A.

    2017-10-01

    In optical imaging, the depth and resolution are limited due to scattering. Unlike light, scattering of ultrasound (US) waves in tissue is negligible. Hybrid imaging methods such as US-modulated optical tomography (UOT) use the advantages of both modalities. UOT tags light by inducing phase change caused by modulating the local index of refraction of the medium. The challenge in UOT is detecting the small signal. The displacement induced by the acoustic radiation force (ARF) is another US effect that can be utilized to tag the light. It induces greater phase change, resulting in a stronger signal. Moreover, the absorbed acoustic energy generates heat, resulting in change in the index of refraction and a strong phase change. The speckle pattern is governed by the phase of the interfering scattered waves; hence, speckle pattern analysis can obtain information about displacement and temperature changes. We have presented a model to simulate the insonation processes. Simulation results based on fixed-particle Monte Carlo and experimental results show that the signal acquired by utilizing ARF is stronger compared to UOT. The introduced mean irradiance change (MIC) signal reveals both thermal and mechanical effects of the focused US beam in different timescales. Simulation results suggest that variation in the MIC signal can be used to generate a displacement image of the medium.

  11. The impact of solar radiation on the use of dissolved organic matter in two Ozark Streams: Possible role of photo-enhanced humification

    NASA Astrophysics Data System (ADS)

    Townsend, S. L.; Ziegler, S. E.

    2005-05-01

    The effect of solar radiation on dissolved organic matter (DOM) utilization was studied in two contrasting streams from June 2002 through October 2004. Moores Creek is an agricultural stream with elevated nutrient and dissolved organic carbon (DOC) concentrations. Huey Hollow is a forested stream with low nutrient and DOC concentrations. A series of experiments were conducted seasonally to assess how solar radiation influenced DOM utilization. Exposure of DOM to solar radiation significantly decreased its utilization during most seasons in both streams. Each stream experienced one seasonal period when exposure of DOM significantly increased bacterial production; during these periods, DOM appeared to be the least bioavailable and most photochemically reactive. Interestingly, in spring when bioavailability of DOM was lowest in Moores Creek solar radiation exposure further reduced DOM bioavailability. Elevated ammonium concentrations during this spring experiment suggest photochemically-enhanced humification may have been an important mechanism influencing DOM cycling. Bioassays using 15N-labeled ammonium indicated no significant effect of elevated ammonium on the utilization of DOM in either stream in fall 2004. Detection of elevated 15N in the DOM fractions, however, would reveal light stimulated humification under elevated ammonium concentrations not detected with the bioassay.

  12. The Utility of SAR to Monitor Ocean Processes.

    DTIC Science & Technology

    1981-11-01

    echo received from ocean waves include the motion of the a horizontally polarized wave will have its E vector parallel to scattering surfaces, the so...radiation is defined by the direction of the electric field intensity, E, vector . For example, a horizontally polarized wave will have its E vector ...Oil Spill Off the East Coast of the United States ................ .... 55 19. L-band Parallel and Cross Polarized SAR Imagery of Ice in the Beaufort

  13. Toward a High-Efficient Utilization of Solar Radiation by Quad-Band Solar Spectral Splitting.

    PubMed

    Cao, Feng; Huang, Yi; Tang, Lu; Sun, Tianyi; Boriskina, Svetlana V; Chen, Gang; Ren, Zhifeng

    2016-12-01

    The promising quad-band solar spectral splitter incorporates the properties of the optical filter and the spectrally selective solar thermal absorber can direct PV band to PV modules and absorb thermal band energy for thermal process with low thermal losses. It provides a new strategy for spectral splitting and offers potential ways for hybrid PVT system design. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Design, Fabrication and Characterization of Indefinite Metamaterials of Nanowires

    DTIC Science & Technology

    2011-01-01

    polymer, nanochannel array glass, radiation track etched mica, block copolymers and anodic aluminium oxide ( AAO ) have been utilized as the mask or the...pores in anodized aluminum oxide . Chem. Mater. 10, 2470–2480. (doi:10.1021/cm980163a) Phil. Trans. R. Soc. A (2011) on August 3...The formation of alumina starts from the surface of the aluminium metal facing the electrolyte. During the anodization process [24,25], oxidation of

  15. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacono, Michael J.

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting eithermore » more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.« less

  16. Food processors requirements met by radiation processing

    NASA Astrophysics Data System (ADS)

    Durante, Raymond W.

    2002-03-01

    Processing food using irradiation provides significant advantages to food producers by destroying harmful pathogens and extending shelf life without any detectable physical or chemical changes. It is expected that through increased public education, food irradiation will emerge as a viable commercial industry. Food production in most countries involves state of the art manufacturing, packaging, labeling, and shipping techniques that provides maximum efficiency and profit. In the United States, food sales are extremely competitive and profit margins small. Most food producers have heavily invested in equipment and are hesitant to modify their equipment. Meat and poultry producers in particular utilize sophisticated production machinery that processes enormous volumes of product on a continuous basis. It is incumbent on the food irradiation equipment suppliers to develop equipment that can easily merge with existing processes without requiring major changes to either the final food product or the process utilized to produce that product. Before a food producer can include irradiation as part of their food production process, they must be certain the available equipment meets their needs. This paper will examine several major requirements of food processors that will most likely have to be provided by the supplier of the irradiation equipment.

  17. Utilization of ICU Data to Improve 30 and 60 Day HENRE Mortality Models, Revision 1

    DTIC Science & Technology

    2017-05-12

    Acute Radiation Syndrome , Mortality, Burn Combined Injury, Lethality, Small Intestine, Ordinary...a large dose of radiation in a short period of time (high dose rate) causes acute radiation syndrome (ARS). Depending on the radiation dose, an...individual may experience the hematopoietic acute radiation syndrome (H-ARS) or the gastrointestinal acute radiation syndrome (GI-ARS) (reviewed in

  18. MO-AB-201-01: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, L.

    2015-06-15

    The role of the Radiation Safety Officer at a medical facility can be complicated. The complexity of the position is based on the breadth of services provided at the institution and the nature of the radioactive materials license. Medical practices are constantly changing and the use of ionizing radiation continues to rise in this area. Some of the newer medical applications involving radiation have unique regulatory and safety issues that must be addressed. Oversight of the uses of radiation start at the local level (radiation safety officer, radiation safety committee) and are heavily impacted by outside agencies (i.e. Nuclear Regulatorymore » Commission, State Radiologic Health, The Joint Commission (TJC), etc). This session will provide both an overview of regulatory oversight and essential compliance practices as well as practical ways to assess and introduce some of the new applications utilizing radioactive materials into your medical facility. Learning Objectives: Regulatory Compliance and Safety with New Radiotherapies: Spheres and Ra-223 (Lance Phillips) Understand the radioactive materials license amendment process to add new radiotherapies (i.e., SIR-Spheres, Therasphere, Xofigo). Understand the AU approval process for microspheres and Xofigo. Examine the training and handling requirements for new procedures. Understand the process involved with protocol development, SOP in order to define roles and responsibilities. The RSO and The RSC: Challenges and Opportunities (Colin Dimock) Understand how to form an effective Committee. Examine what the Committee does for the Program and the RSO. Understand the importance of Committee engagement. Discuss the balance of the complimentary roles of the RSO and the Committee. The Alphabet Soup of Regulatory Compliance: Being Prepared for Inspections (Linda Kroger) Recognize the various regulatory bodies and organizations with oversight or impact in Nuclear Medicine, Radiology and Radiation Oncology. Examine 10CFR35 requirements as they relate to the everyday practice of Nuclear Medicine and Radiation Oncology. Understand the nature of available guidance documents (e.g., NUREG 1556). Examine the commonalities between TJC and CMS preparedness.« less

  19. Computational study of alkali-metal-noble gas collisions in the presence of nonresonant lasers - Na + Xe + h/2/pi/omega sub 1 + h/2/pi/omega sub 2 system

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; Chang, C.; George, T. F.; Laskowski, B.; Stallcop, J. R.

    1980-01-01

    The collision of Na with Xe in the presence of both the rhodamine-110 dye laser and the Nd-glass laser is investigated within a quantum-mechanical close-coupled formalism, utilizing ab initio potential curves and transition dipole matrix elements. Both one- and two-photon processes are investigated; the Na + Xe system is not asymptotically resonant with the radiation fields, so that these processes can only occur in the molecular collision region. The one-photon processes are found to have measurable cross sections at relatively low intensities; even the two-photon process has a significant section for field intensities as low as 10 MW/sq cm.

  20. Studies in Pressurized Oxy-Combustion: Process Development and Control of Radiative Heat Transfer

    NASA Astrophysics Data System (ADS)

    Gopan, Akshay

    Fossil fuels supply over 80% of the world's primary energy and more than two-thirds of the world's electricity. Of this, coal alone accounts for over 41% of the electricity supplied globally. Though coal is globally well-distributed and can provide stable and reliable energy on demand, it emits a large amount of carbon dioxide--a greenhouse gas responsible for global warming. Serious concerns over the implication of the increased global temperature have prompted the investigation into low carbon energy alternatives. The idea of capturing the carbon dioxide emitted from the combustion sources is considered as one of the viable alternatives. This would allow the utilization of vast and widespread fuel resources (coal, oil, gas and biomass) that are capable of delivering power on demand, while mitigating the potentially harmful impact of CO2. Support for carbon capture, utilization and sequestration (CCUS) for power plants is, however, limited due to the high cost of electricity associated with the currently available technologies. The ultimate requirement of high pressure CO2 for either sequestration or utilization has led to the investigation of pressurized oxy-combustion technologies. Since at higher pressure, the dew point of the flue gas is higher than at atmospheric pressure, pressurized oxy-combustion can be utilized to extract the latent heat of condensation of the flue gas moisture, leading to an increase in plant efficiency. A new staged, pressurized oxy-combustion (SPOC) process for power generation with carbon capture is presented in the first part of this dissertation. The proposed staged, pressurized oxy-combustion process not only extracts the latent heat of condensation of the flue gas moisture, but unlike first generation oxy-combustion or even other pressurized oxy-combustion processes, it also minimizes the recycle of flue gas. The net plant efficiency of this proposed process is more than 25% higher than that of first generation oxy-combustion. A detailed analysis of the capital and operating costs shows that the cost of electricity generated from this process would meet the U.S. Dept. of Energy target for power generation with carbon capture. The design of a low-recycle oxy-combustion boiler is not trivial. A number of designs have been proposed, but were deemed unfit for the utility industry due to much higher heat flux than could be safely tolerated by the boiler tubes. In the second part of this dissertation, a new burner and boiler design is proposed that could be utilized in the low-recycle SPOC process. The proposed burner/boiler design 1) accommodates low flue gas recycle without exceeding wall heat flux limits, 2) increases the share of radiative over convective heat transfer in the boiler, 3) significantly reduces ash fouling and slagging, and 4) is flexible in that it is able to operate under various thermal loads. The proposed burner design would also lead to reduced soot, as compared to a normal burner. These aspects of the burner/boiler design are investigated in the dissertation.

  1. MO-G-9A-01: Imaging Refresher for Standard of Care Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labby, Z; Sensakovic, W; Hipp, E

    2014-06-15

    Imaging techniques and technology which were previously the domain of diagnostic medicine are becoming increasingly integrated and utilized in radiation therapy (RT) clinical practice. As such, there are a number of specific imaging topics that are highly applicable to modern radiation therapy physics. As imaging becomes more widely integrated into standard clinical radiation oncology practice, the impetus is on RT physicists to be informed and up-to-date on those imaging modalities relevant to the design and delivery of therapeutic radiation treatments. For example, knowing that, for a given situation, a fluid attenuated inversion recovery (FLAIR) image set is most likely whatmore » the physician would like to import and contour is helpful, but may not be sufficient to providing the best quality of care. Understanding the physics of how that pulse sequence works and why it is used could help assess its utility and determine if it is the optimal sequence for aiding in that specific clinical situation. It is thus important that clinical medical physicists be able to understand and explain the physics behind the imaging techniques used in all aspects of clinical radiation oncology practice. This session will provide the basic physics for a variety of imaging modalities for applications that are highly relevant to radiation oncology practice: computed tomography (CT) (including kV, MV, cone beam CT [CBCT], and 4DCT), positron emission tomography (PET)/CT, magnetic resonance imaging (MRI), and imaging specific to brachytherapy (including ultrasound and some brachytherapy specific topics in MR). For each unique modality, the image formation process will be reviewed, trade-offs between image quality and other factors (e.g. imaging time or radiation dose) will be clarified, and typically used cases for each modality will be introduced. The current and near-future uses of these modalities and techniques in radiation oncology clinical practice will also be discussed. Learning Objectives: To review the basic physical science principles of CT, PET, MR, and ultrasound imaging. To understand how the images are created, and present their specific role in patient management and treatment planning for therapeutic radiation (both external beam and brachytherapy). To discuss when and how each specific imaging modality is currently used in clinical practice, as well as how they may come to be used in the near future.« less

  2. American College of Radiology-American Brachytherapy Society practice parameter for electronically generated low-energy radiation sources.

    PubMed

    Devlin, Phillip M; Gaspar, Laurie E; Buzurovic, Ivan; Demanes, D Jeffrey; Kasper, Michael E; Nag, Subir; Ouhib, Zoubir; Petit, Joshua H; Rosenthal, Seth A; Small, William; Wallner, Paul E; Hartford, Alan C

    This collaborative practice parameter technical standard has been created between the American College of Radiology and American Brachytherapy Society to guide the usage of electronically generated low energy radiation sources (ELSs). It refers to the use of electronic X-ray sources with peak voltages up to 120 kVp to deliver therapeutic radiation therapy. The parameter provides a guideline for utilizing ELS, including patient selection and consent, treatment planning, and delivery processes. The parameter reviews the published clinical data with regard to ELS results in skin, breast, and other cancers. This technical standard recommends appropriate qualifications of the involved personnel. The parameter reviews the technical issues relating to equipment specifications as well as patient and personnel safety. Regarding suggestions for educational programs with regard to this parameter,it is suggested that the training level for clinicians be equivalent to that for other radiation therapies. It also suggests that ELS must be done using the same standards of quality and safety as those in place for other forms of radiation therapy. Copyright © 2017 American Brachytherapy Society and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Creation and utilization of a World Wide Web based space radiation effects code: SIREST

    NASA Technical Reports Server (NTRS)

    Singleterry, R. C. Jr; Wilson, J. W.; Shinn, J. L.; Tripathi, R. K.; Thibeault, S. A.; Noor, A. K.; Cucinotta, F. A.; Badavi, F. F.; Chang, C. K.; Qualls, G. D.; hide

    2001-01-01

    In order for humans and electronics to fully and safely operate in the space environment, codes like HZETRN (High Charge and Energy Transport) must be included in any designer's toolbox for design evaluation with respect to radiation damage. Currently, spacecraft designers do not have easy access to accurate radiation codes like HZETRN to evaluate their design for radiation effects on humans and electronics. Today, the World Wide Web is sophisticated enough to support the entire HZETRN code and all of the associated pre and post processing tools. This package is called SIREST (Space Ionizing Radiation Effects and Shielding Tools). There are many advantages to SIREST. The most important advantage is the instant update capability of the web. Another major advantage is the modularity that the web imposes on the code. Right now, the major disadvantage of SIREST will be its modularity inside the designer's system. This mostly comes from the fact that a consistent interface between the designer and the computer system to evaluate the design is incomplete. This, however, is to be solved in the Intelligent Synthesis Environment (ISE) program currently being funded by NASA.

  4. Method of forming crystalline silicon devices on glass

    DOEpatents

    McCarthy, Anthony M.

    1995-01-01

    A method for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics.

  5. Detection of alpha particles using DNA/Al Schottky junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ta'ii, Hassan Maktuff Jaber, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my; Department of Physics, Faculty of Science, University of Al-Muthana, Al-Muthana 66001; Periasamy, Vengadesh, E-mail: hassankirkukly@gmail.com, E-mail: vengadeshp@um.edu.my

    2015-09-21

    Deoxyribonucleic acid or DNA can be utilized in an organic-metallic rectifying structure to detect radiation, especially alpha particles. This has become much more important in recent years due to crucial environmental detection needs in both peace and war. In this work, we fabricated an aluminum (Al)/DNA/Al structure and generated current–voltage characteristics upon exposure to alpha radiation. Two models were utilized to investigate these current profiles; the standard conventional thermionic emission model and Cheung and Cheung's method. Using these models, the barrier height, Richardson constant, ideality factor and series resistance of the metal-DNA-metal structure were analyzed in real time. The barriermore » height, Φ value calculated using the conventional method for non-radiated structure was 0.7149 eV, increasing to 0.7367 eV after 4 min of radiation. Barrier height values were observed to increase after 20, 30 and 40 min of radiation, except for 6, 8, and 10 min, which registered a decrease of about 0.67 eV. This was in comparison using Cheung and Cheung's method, which registered 0.6983 eV and 0.7528 eV for the non-radiated and 2 min of radiation, respectively. The barrier height values, meanwhile, were observed to decrease after 4 (0.61 eV) to 40 min (0.6945 eV). The study shows that conventional thermionic emission model could be practically utilized for estimating the diode parameters including the effect of series resistance. These changes in the electronic properties of the Al/DNA/Al junctions could therefore be utilized in the manufacture of sensitive alpha particle sensors.« less

  6. Radiation dosimeter utilizing the thermoluminescence of lithium fluoride.

    PubMed

    CAMERON, J R; DANIELS, F; JOHNSON, N; KENNEY, G

    1961-08-04

    A dosimeter, with little wavelength dependence and large useful energy range for electromagnetic radiation, which is simple to use and read, has been developed. It appears to have applications in personnel monitoring as well as radiation research.

  7. 14 CFR 23.1023 - Oil radiators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil radiators. 23.1023 Section 23.1023... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1023 Oil radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...

  8. 14 CFR 23.1023 - Oil radiators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil radiators. 23.1023 Section 23.1023... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1023 Oil radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...

  9. 14 CFR 23.1023 - Oil radiators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil radiators. 23.1023 Section 23.1023... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1023 Oil radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...

  10. 14 CFR 23.1023 - Oil radiators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil radiators. 23.1023 Section 23.1023... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1023 Oil radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...

  11. The Iron Project

    NASA Technical Reports Server (NTRS)

    Pradhan, Anil K.

    2000-01-01

    Recent advances in theoretical atomic physics have enabled large-scale calculation of atomic parameters for a variety of atomic processes with high degree of precision. The development and application of these methods is the aim of the Iron Project. At present the primary focus is on collisional processes for all ions of iron, Fe I - FeXXVI, and other iron-peak elements; new work on radiative processes has also been initiated. Varied applications of the Iron Project work to X-ray astronomy are discussed, and more general applications to other spectral ranges are pointed out. The IP work forms the basis for more specialized projects such as the RmaX Project, and the work on photoionization/recombination, and aims to provide a comprehensive and self-consistent set of accurate collisional and radiative cross sections, and transition probabilities, within the framework of relativistic close coupling formulation using the Breit-Pauli R-Matrix method. An illustrative example is presented of how the IP data may be utilized in the formation of X-ray spectra of the K alpha complex at 6.7 keV from He-like Fe XXV.

  12. Antarctic surface temperature and sea ice biases in coupled climate models linked with cloud and land surface properties

    NASA Astrophysics Data System (ADS)

    Skiles, M.; Painter, T. H.; Marks, D. G.; Hedrick, A. R.

    2014-12-01

    Since 2013 the Airborne Snow Observatory (ASO) has been measuring spatial and temporal distribution of both snow water equivalent and snow albedo, the two most critical properties for understanding snowmelt runoff and timing, across key basins in the Western US. It is generally understood that net solar radiation (as controlled by variations in snow albedo and irradiance) provides the energy available for melt in almost all snow-covered environments. Until now, sparse measurements have restricted the ability to utilize measured net solar radiation in energy balance models, and current process simulations and model prediction of albedo evolution rely on oversimplifications of the processes. Data from ASO offers the unprecedented opportunity to utilize weekly measurements of spatially extensive spectral snow albedo to constrain and update snow albedo in a distributed snowmelt model for the first time. Here, we first investigate the sensitivity of the snow energy balance model SNOBAL to prescribed changes in snow albedo at two instrumented alpine catchments: at the point scale across 10 years at Senator Beck Basin Study Area in the San Juan Mountains, southwestern Colorado, and at the distributed scale across 25 years at Reynolds Creek Experimental Watershed, Idaho. We then compare distributed energy balance and snowmelt results across the ASO measurement record in the Tuolumne Basin in the Sierra Nevada Mountains, California, for model runs with and without integrated snow albedo from ASO.

  13. Effect of whole brain radiation on local cerebral glucose utilization in the rat.

    PubMed

    d'Avella, D; Cicciarello, R; Albiero, F; Mesiti, M; Gagliardi, M E; Russi, E; d'Aquino, A; Princi, P; d'Aquino, S

    1991-04-01

    We assessed, by means of the [14C]-2-deoxy-D-glucose autoradiography method, the effect of whole-brain x-radiation on local cerebral glucose utilization in the rat brain. Animals were exposed to conventional fractionation (200 +/- 4 cGy/day, 5 days/week; total dose, 4000 cGy). Metabolic experiments were made 2 to 3 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased after irradiation. Statistically significant decreases in metabolic activity were observed in 13 of 27 brain regions studied. In general, the brain areas with the highest basal metabolic rates showed the greatest percentage of decrease in glucose utilization. The concept that radiation suppresses glucose utilization before any morphological change takes place in the cell structures was the basis of this study. Metabolic alterations after irradiation may explain the syndrome of early delayed deterioration observed in humans after whole-brain radiotherapy. These studies have applications to observations made with the [18F]-fluorodeoxyglucose method in conjunction with positron emission tomographic scans in patients receiving radiation therapy for intracranial malignancies. The data reported here also have potential clinical implications for the evaluation of a risk/benefit ratio for radiotherapy in patients with benign neurosurgical diseases or children undergoing prophylactic treatment of the central nervous system.

  14. A Novel In Vivo Protocol for Molecular Study of Radiation-Induced Fibrosis in Head and Neck Cancer Patients.

    PubMed

    Krisciunas, Gintas P; Platt, Michael; Trojanowska, Maria; Grillone, Gregory A; Haines, Paul C; Langmore, Susan E

    2016-03-01

    Radiation-induced fibrosis is a common complication for patients following head and neck cancer treatment. This study presents a novel minimally invasive protocol for molecular study of fibrosis in the stromal tissues. Subjects with radiation-induced fibrosis in the head and neck who were at least 6 months post treatment received submental core needle biopsies, followed by molecular processing and quantification of gene expression for 14 select pro-inflammatory and pro-fibrotic genes. Control biopsies from the upper arm were obtained from the same subjects. Patients were followed up at 1 and 2 weeks to monitor for safety and adverse outcomes. Six subjects were enrolled and completed the study. No subjects experienced adverse outcomes or complication. An 18 gauge core biopsy needle with a 10 mm notch inserted for up to 60 seconds was needed. Subcutaneous tissue yielded 3 ng of RNA, amplified to 6 µg of cDNA, allowing for adequately sensitive quantitative polymerase chain reaction (qPCR) analysis of approximately 28 genes. This study demonstrates the safety and utility of a novel technique for the molecular study of fibrosis in head and neck cancer patients. Longitudinal studies of patients undergoing radiation therapy will allow for identification of molecular targets that contribute to the process of fibrosis in the head and neck. © The Author(s) 2015.

  15. Preliminary Radiation Analysis of the Total Ionizing Dose for the Resource Prospector Mission

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; Tylka, Allan J.; Atwell, William

    2015-01-01

    NASA's Resource Prospector (RP) is a collaborative project between multiple centers and institutions to search for volatiles at the polar regions of the Moon as a potential resource for oxygen and propellant production. The mission is rated Class D and will be the first In-Situ Resource Utilization (ISRU) demonstration on the lunar surface and at the lunar poles. Given that this mission is rated Class D, the project is considering using commercial off the shelf (COTS) electronics parts to reduce cost. However, COTS parts can be more susceptible to space radiation than typical aerospace electronic parts and carry some additional risk. Thus, prior to parts selection, having a better understanding of the radiation environment can assist designers in the parts selection process. The focus of this paper is to provide a preliminary analysis of the radiation environment from launch, through landing on the surface, and some surface stay as an initial step in determining worst case mission doses to assist designers in screening out electronic parts that would not meet the potential dose levels experienced on this mission.

  16. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  17. A promising new mechanism of ionizing radiation detection for positron emission tomography: Modulation of optical properties

    PubMed Central

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-01-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5 × 10−6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source. PMID:27716640

  18. Extraordinary electromagnetic transmission by antenna arrays and frequency selective surfaces having compound unit cells with dissimilar elements

    DOEpatents

    Loui, Hung; Strassner, II, Bernd H.

    2018-03-20

    The various embodiments presented herein relate to extraordinary electromagnetic transmission (EEMT) to enable multiple inefficient (un-matched) but coupled radiators and/or apertures to radiate and/or pass electromagnetic waves efficiently. EEMT can be utilized such that signal transmission from a plurality of antennas and/or apertures occurs at a transmission frequency different to transmission frequencies of the individual antennas and/or aperture elements. The plurality of antennas/apertures can comprise first antenna/aperture having a first radiating area and material(s) and second antenna/aperture having a second radiating area and material(s), whereby the first radiating/aperture area and second radiating/aperture area can be co-located in a periodic compound unit cell. Owing to mutual coupling between the respective antennas/apertures in their arrayed configuration, the transmission frequency of the array can be shifted from the transmission frequencies of the individual elements. EEMT can be utilized for an array of evanescent of inefficient radiators connected to a transmission line(s).

  19. Bridging Plant and Human Radiation Response and DNA Repair through an In Silico Approach

    PubMed Central

    Nikitaki, Zacharenia; Pavlopoulou, Athanasia; Holá, Marcela; Donà, Mattia; Michalopoulos, Ioannis; Balestrazzi, Alma; Angelis, Karel J.; Georgakilas, Alexandros G.

    2017-01-01

    The mechanisms of response to radiation exposure are conserved in plants and animals. The DNA damage response (DDR) pathways are the predominant molecular pathways activated upon exposure to radiation, both in plants and animals. The conserved features of DDR in plants and animals might facilitate interdisciplinary studies that cross traditional boundaries between animal and plant biology in order to expand the collection of biomarkers currently used for radiation exposure monitoring (REM) in environmental and biomedical settings. Genes implicated in trans-kingdom conserved DDR networks often triggered by ionizing radiation (IR) and UV light are deposited into biological databases. In this study, we have applied an innovative approach utilizing data pertinent to plant and human genes from publicly available databases towards the design of a ‘plant radiation biodosimeter’, that is, a plant and DDR gene-based platform that could serve as a REM reliable biomarker for assessing environmental radiation exposure and associated risk. From our analysis, in addition to REM biomarkers, a significant number of genes, both in human and Arabidopsis thaliana, not yet characterized as DDR, are suggested as possible DNA repair players. Last but not least, we provide an example on the applicability of an Arabidopsis thaliana—based plant system monitoring the role of cancer-related DNA repair genes BRCA1, BARD1 and PARP1 in processing DNA lesions. PMID:28587301

  20. Bridging Plant and Human Radiation Response and DNA Repair through an In Silico Approach.

    PubMed

    Nikitaki, Zacharenia; Pavlopoulou, Athanasia; Holá, Marcela; Donà, Mattia; Michalopoulos, Ioannis; Balestrazzi, Alma; Angelis, Karel J; Georgakilas, Alexandros G

    2017-06-06

    The mechanisms of response to radiation exposure are conserved in plants and animals. The DNA damage response (DDR) pathways are the predominant molecular pathways activated upon exposure to radiation, both in plants and animals. The conserved features of DDR in plants and animals might facilitate interdisciplinary studies that cross traditional boundaries between animal and plant biology in order to expand the collection of biomarkers currently used for radiation exposure monitoring (REM) in environmental and biomedical settings. Genes implicated in trans-kingdom conserved DDR networks often triggered by ionizing radiation (IR) and UV light are deposited into biological databases. In this study, we have applied an innovative approach utilizing data pertinent to plant and human genes from publicly available databases towards the design of a 'plant radiation biodosimeter', that is, a plant and DDR gene-based platform that could serve as a REM reliable biomarker for assessing environmental radiation exposure and associated risk. From our analysis, in addition to REM biomarkers, a significant number of genes, both in human and Arabidopsis thaliana, not yet characterized as DDR, are suggested as possible DNA repair players. Last but not least, we provide an example on the applicability of an Arabidopsis thaliana- based plant system monitoring the role of cancer-related DNA repair genes BRCA1 , BARD1 and PARP1 in processing DNA lesions.

  1. Radiation-Hard SpaceWire/Gigabit Ethernet-Compatible Transponder

    NASA Technical Reports Server (NTRS)

    Katzman, Vladimir

    2012-01-01

    A radiation-hard transponder was developed utilizing submicron/nanotechnology from IBM. The device consumes low power and has a low fabrication cost. This device utilizes a Plug-and-Play concept, and can be integrated into intra-satellite networks, supporting SpaceWire and Gigabit Ethernet I/O. A space-qualified, 100-pin package also was developed, allowing space-qualified (class K) transponders to be delivered within a six-month time frame. The novel, optical, radiation-tolerant transponder was implemented as a standalone board, containing the transponder ASIC (application specific integrated circuit) and optical module, with an FPGA (field-programmable gate array) friendly parallel interface. It features improved radiation tolerance; high-data-rate, low-power consumption; and advanced functionality. The transponder utilizes a patented current mode logic library of radiation-hardened-by-architecture cells. The transponder was developed, fabricated, and radhard tested up to 1 MRad. It was fabricated using 90-nm CMOS (complementary metal oxide semiconductor) 9 SF process from IBM, and incorporates full BIT circuitry, allowing a loop back test. The low-speed parallel LVCMOS (lowvoltage complementary metal oxide semiconductor) bus is compatible with Actel FPGA. The output LVDS (low-voltage differential signaling) interface operates up to 1.5 Gb/s. Built-in CDR (clock-data recovery) circuitry provides robust synchronization and incorporates two alarm signals such as synch loss and signal loss. The ultra-linear peak detector scheme allows on-line control of the amplitude of the input signal. Power consumption is less than 300 mW. The developed transponder with a 1.25 Gb/s serial data rate incorporates a 10-to-1 serializer with an internal clock multiplication unit and a 10-1 deserializer with internal clock and data recovery block, which can operate with 8B10B encoded signals. Three loop-back test modes are provided to facilitate the built-in-test functionality. The design is based on a proprietary library of differential current switching logic cells implemented in the standard 90-nm CMOS 9SF technology from IBM. The proprietary low-power LVDS physical interface is fully compatible with the SpaceWire standard, and can be directly connected to the SFP MSA (small form factor pluggable Multiple Source Agreement) optical transponder. The low-speed parallel interfaces are fully compatible with the standard 1.8 V CMOS input/output devices. The utilized proprietary annular CMOS layout structures provide TID tolerance above 1.2 MRad. The complete chip consumes less than 150 mW of power from a single 1.8-V positive supply source.

  2. Collaborative Research: Using ARM Observations to Evaluate GCM Cloud Statistics for Development of Stochastic Cloud-Radiation Parameterizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Samuel S. P.

    2013-09-01

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key stepmore » in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been an interdisciplinary collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen). The motivation and long-term goal underlying this work is the utilization of stochastic radiative transfer theory (Lane-Veron and Somerville, 2004; Lane et al., 2002) to develop a new class of parametric representations of cloud-radiation interactions and closely related processes for atmospheric models. The theoretical advantage of the stochastic approach is that it can accurately calculate the radiative heating rates through a broken cloud layer without requiring an exact description of the cloud geometry.« less

  3. DNA Double-Strand Break Repair as Determinant of Cellular Radiosensitivity to Killing and Target in Radiation Therapy

    PubMed Central

    Mladenov, Emil; Magin, Simon; Soni, Aashish; Iliakis, George

    2013-01-01

    Radiation therapy plays an important role in the management of a wide range of cancers. Besides innovations in the physical application of radiation dose, radiation therapy is likely to benefit from novel approaches exploiting differences in radiation response between normal and tumor cells. While ionizing radiation induces a variety of DNA lesions, including base damages and single-strand breaks, the DNA double-strand break (DSB) is widely considered as the lesion responsible not only for the aimed cell killing of tumor cells, but also for the general genomic instability that leads to the development of secondary cancers among normal cells. Homologous recombination repair (HRR), non-homologous end-joining (NHEJ), and alternative NHEJ, operating as a backup, are the major pathways utilized by cells for the processing of DSBs. Therefore, their function represents a major mechanism of radiation resistance in tumor cells. HRR is also required to overcome replication stress – a potent contributor to genomic instability that fuels cancer development. HRR and alternative NHEJ show strong cell-cycle dependency and are likely to benefit from radiation therapy mediated redistribution of tumor cells throughout the cell-cycle. Moreover, the synthetic lethality phenotype documented between HRR deficiency and PARP inhibition has opened new avenues for targeted therapies. These observations make HRR a particularly intriguing target for treatments aiming to improve the efficacy of radiation therapy. Here, we briefly describe the major pathways of DSB repair and review their possible contribution to cancer cell radioresistance. Finally, we discuss promising alternatives for targeting DSB repair to improve radiation therapy and cancer treatment. PMID:23675572

  4. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level, ground simulation method could be utilized to simu-late the space radiation biological effects and such a comparative proteomic work might explain both energy and dose effects of space radiation environment.

  5. Studying mechanism of radical reactions: From radiation to nitroxides as research tools

    NASA Astrophysics Data System (ADS)

    Maimon, Eric; Samuni, Uri; Goldstein, Sara

    2018-02-01

    Radicals are part of the chemistry of life, and ionizing radiation chemistry serves as an indispensable research tool for elucidation of the mechanism(s) underlying their reactions. The ever-increasing understanding of their involvement in diverse physiological and pathological processes has expanded the search for compounds that can diminish radical-induced damage. This review surveys the areas of research focusing on radical reactions and particularly with stable cyclic nitroxide radicals, which demonstrate unique antioxidative activities. Unlike common antioxidants that are progressively depleted under oxidative stress and yield secondary radicals, nitroxides are efficient radical scavengers yielding in most cases their respective oxoammonium cations, which are readily reduced back in the tissue to the nitroxide thus continuously being recycled. Nitroxides, which not only protect enzymes, cells, and laboratory animals from diverse kinds of biological injury, but also modify the catalytic activity of heme enzymes, could be utilized in chemical and biological systems serving as a research tool for elucidating mechanisms underlying complex chemical and biochemical processes.

  6. Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hsin-Chen; Tan, Jun; Dolly, Steven

    2015-02-15

    Purpose: One of the most critical steps in radiation therapy treatment is accurate tumor and critical organ-at-risk (OAR) contouring. Both manual and automated contouring processes are prone to errors and to a large degree of inter- and intraobserver variability. These are often due to the limitations of imaging techniques in visualizing human anatomy as well as to inherent anatomical variability among individuals. Physicians/physicists have to reverify all the radiation therapy contours of every patient before using them for treatment planning, which is tedious, laborious, and still not an error-free process. In this study, the authors developed a general strategy basedmore » on novel geometric attribute distribution (GAD) models to automatically detect radiation therapy OAR contouring errors and facilitate the current clinical workflow. Methods: Considering the radiation therapy structures’ geometric attributes (centroid, volume, and shape), the spatial relationship of neighboring structures, as well as anatomical similarity of individual contours among patients, the authors established GAD models to characterize the interstructural centroid and volume variations, and the intrastructural shape variations of each individual structure. The GAD models are scalable and deformable, and constrained by their respective principal attribute variations calculated from training sets with verified OAR contours. A new iterative weighted GAD model-fitting algorithm was developed for contouring error detection. Receiver operating characteristic (ROC) analysis was employed in a unique way to optimize the model parameters to satisfy clinical requirements. A total of forty-four head-and-neck patient cases, each of which includes nine critical OAR contours, were utilized to demonstrate the proposed strategy. Twenty-nine out of these forty-four patient cases were utilized to train the inter- and intrastructural GAD models. These training data and the remaining fifteen testing data sets were separately employed to test the effectiveness of the proposed contouring error detection strategy. Results: An evaluation tool was implemented to illustrate how the proposed strategy automatically detects the radiation therapy contouring errors for a given patient and provides 3D graphical visualization of error detection results as well. The contouring error detection results were achieved with an average sensitivity of 0.954/0.906 and an average specificity of 0.901/0.909 on the centroid/volume related contouring errors of all the tested samples. As for the detection results on structural shape related contouring errors, an average sensitivity of 0.816 and an average specificity of 0.94 on all the tested samples were obtained. The promising results indicated the feasibility of the proposed strategy for the detection of contouring errors with low false detection rate. Conclusions: The proposed strategy can reliably identify contouring errors based upon inter- and intrastructural constraints derived from clinically approved contours. It holds great potential for improving the radiation therapy workflow. ROC and box plot analyses allow for analytically tuning of the system parameters to satisfy clinical requirements. Future work will focus on the improvement of strategy reliability by utilizing more training sets and additional geometric attribute constraints.« less

  7. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  8. Utilization of ICU Data to Improve 30 and 60 Day Mortality Models

    DTIC Science & Technology

    2017-01-06

    Acute Radiation Syndrome , Mortality, Burn Combined Injury, Lethality, Small Intestine, Ordinary Differential...short period of time (high dose rate) causes acute radiation syndrome (ARS). Depending on the radiation dose, an individual may experience the...hematopoietic acute radiation syndrome (H-ARS) or the gastrointestinal acute radiation syndrome (GI-ARS) (reviewed in Maciàă I Garau et al., 2011). For acute

  9. Emerging trends in surgical and adjuvant radiation therapies among women diagnosed with ductal carcinoma in situ.

    PubMed

    Shiyanbola, Oyewale O; Sprague, Brian L; Hampton, John M; Dittus, Kim; James, Ted A; Herschorn, Sally; Gangnon, Ronald E; Weaver, Donald L; Trentham-Dietz, Amy

    2016-09-15

    The use of surgery and radiation therapy in treating ductal carcinoma in situ (DCIS) is directed by treatment guidelines and evidence from research. This study investigated recent patterns in DCIS treatment by demographic factors. Data for women diagnosed with DCIS between 1998 and 2011 (n = 416,232) in the National Cancer Data Base were assessed for trends in treatment patterns by age group, calendar year, ancestral/ethnic group, and geographic region. The likelihood of receiving specific treatment modalities was analyzed with multivariable logistic regression. DCIS cases were most frequently treated with breast-conserving surgery (BCS) and adjuvant radiation (45.6%). After an initial rise, the use of adjuvant radiation after BCS plateaued at approximately 70% after 2007, with increasing utilization of mastectomy beyond 2005. In addition, there was an increasing trend in postmastectomy reconstruction over time, and women of African ancestry (odds ratio [OR], 0.69; 95% confidence interval [CI], 0.66-0.72) and Hispanic women (OR, 0.83; 95% CI, 0.78-0.89) were less likely to undergo reconstruction in comparison with women of European ancestry. A similar trend was observed in contralateral risk-reducing mastectomy utilization, with women of European ancestry having a more rapid rise in the utilization of contralateral risk-reducing mastectomy in comparison with all other ancestral/ethnic groups. Recent trends demonstrate a plateau in radiation therapy administration after BCS along with increasing utilization of mastectomy, reconstruction, and contralateral risk-reducing mastectomy. There are substantial differences in treatment utilization according to ancestry/ethnicity and geographical region. Further studies examining patient-physician decision making surrounding DCIS treatment are warranted. Cancer 2016. © 2016 American Cancer Society. Cancer 2016;122:2810-2818. © 2016 American Cancer Society. © 2016 American Cancer Society.

  10. Emerging Trends in Surgical and Adjuvant Radiation Therapies among Women Diagnosed with Ductal Carcinoma in Situ

    PubMed Central

    Shiyanbola, Oyewale O.; Sprague, Brian L.; Hampton, John M.; Dittus, Kim; James, Ted A.; Herschorn, Sally; Gangnon, Ronald E.; Weaver, Donald L.; Trentham-Dietz, Amy

    2016-01-01

    BACKGROUND The use of surgery and radiation therapy in treating ductal carcinoma in situ (DCIS) is directed by treatment guidelines and evidence from research. We sought to investigate recent patterns in DCIS treatment by demographic factors. METHODS Data for women diagnosed with DCIS between 1998 and 2011 (n = 416,232) in the National Cancer Data Base were assessed for trends in treatment patterns by age group, calendar year, ancestral/ethnic group and geographic region. The likelihood of receiving specific treatment modalities was analyzed using multivariable logistic regression. RESULTS DCIS cases were most frequently treated with breast conserving surgery (BCS) and adjuvant radiation (45.6%). After an initial rise, the use of adjuvant radiation following BCS plateaued at around 70% after 2007, with increasing utilization of mastectomy beyond 2005. Additionally, there was an increasing trend in post-mastectomy reconstruction over time, and women of African ancestry (odds ratio, 0.69; 95% confidence interval,0.66–0.72) and Hispanic women were less likely to undergo reconstruction (odds ratio, 0.83; 95% confidence interval, 0.78–0.89) compared to women of European ancestry. A similar trend was observed in contralateral risk reducing mastectomy utilization, with women of European ancestry having a more rapid rise in the utilization of contralateral risk reducing mastectomy among all ancestral/ethnic groups. CONCLUSION Recent trends demonstrate a plateau in radiation therapy administration following BCS, with increasing utilization of mastectomy, reconstruction and contralateral risk reducing mastectomy. There are substantial differences in treatment utilization according to ancestry/ethnicity and geographical region. Further studies examining patient-physician decision making surrounding DCIS treatment are warranted. PMID:27244699

  11. Experiences in flip chip production of radiation detectors

    NASA Astrophysics Data System (ADS)

    Savolainen-Pulli, Satu; Salonen, Jaakko; Salmi, Jorma; Vähänen, Sami

    2006-09-01

    Modern imaging devices often require heterogeneous integration of different materials and technologies. Because of yield considerations, material availability, and various technological limitations, an extremely fine pitch is necessary to realize high-resolution images. Thus, there is a need for a hybridization technology that is able to join together readout amplifiers and pixel detectors at a very fine pitch. This paper describes radiation detector flip chip production at VTT. Our flip chip technology utilizes 25-μm diameter tin-lead solder bumps at a 50-μm pitch and is based on flux-free bonding. When preprocessed wafers are used, as is the case here, the total yield is defined only partly by the flip chip process. Wafer preprocessing done by a third-party silicon foundry and the flip chip process create different process defects. Wafer-level yield maps (based on probing) provided by the customer are used to select good readout chips for assembly. Wafer probing is often done outside of a real clean room environment, resulting in particle contamination and/or scratches on the wafers. Factors affecting the total yield of flip chip bonded detectors are discussed, and some yield numbers of the process are given. Ways to improve yield are considered, and finally guidelines for process planning and device design with respect to yield optimization are given.

  12. Satellite Capabilities Mapping - Utilizing Small Satellites

    DTIC Science & Technology

    2010-09-01

    Metrics Definition…………………………..50 Figure 19. System and Requirements Decomposition…………………………………...59 Figure 20. TPS Fuctional Mapping Process...offered by small satellites. “The primary force in our corner of the universe is our sun. The sun is constantly radiating enormous amounts of...weather prediction models, a primary tool for forecasting weather” [19]. The NPOESS was a tri-agency program intended to develop and operate the next

  13. Estimation of surface heat and moisture fluxes over a prairie grassland. I - In situ energy budget measurements incorporating a cooled mirror dew point hygrometer

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Crosson, William L.; Tanner, Bertrand D.

    1992-01-01

    Attention is focused on in situ measurements taken during FIFE required to support the development and validation of a biosphere model. Seasonal time series of surface flux measurements obtained from two surface radiation and energy budget stations utilized to support the FIFE surface flux measurement subprogram are examined. Data collection and processing procedures are discussed along with the measurement analysis for the complete 1987 test period.

  14. Radiation sensitivity of graphene field effect transistors and other thin film architectures

    NASA Astrophysics Data System (ADS)

    Cazalas, Edward

    An important contemporary motivation for advancing radiation detection science and technology is the need for interdiction of nuclear and radiological materials, which may be used to fabricate weapons of mass destruction. The detection of such materials by nuclear techniques relies on achieving high sensitivity and selectivity to X-rays, gamma-rays, and neutrons. To be attractive in field deployable instruments, it is desirable for detectors to be lightweight, inexpensive, operate at low voltage, and consume low power. To address the relatively low particle flux in most passive measurements for nuclear security applications, detectors scalable to large areas that can meet the high absolute detection efficiency requirements are needed. Graphene-based and thin-film-based radiation detectors represent attractive technologies that could meet the need for inexpensive, low-power, size-scalable detection architectures, which are sensitive to X-rays, gamma-rays, and neutrons. The utilization of graphene to detect ionizing radiation relies on the modulation of graphene charge carrier density by changes in local electric field, i.e. the field effect in graphene. Built on the principle of a conventional field effect transistor, the graphene-based field effect transistor (GFET) utilizes graphene as a channel and a semiconducting substrate as an absorber medium with which the ionizing radiation interacts. A radiation interaction event that deposits energy within the substrate creates electron-hole pairs, which modify the electric field and modulate graphene charge carrier density. A detection event in a GFET is therefore measured as a change in graphene resistance or current. Thin (micron-scale) films can also be utilized for radiation detection of thermal neutrons provided nuclides with high neutron absorption cross section are present with appreciable density. Detection in thin-film detectors could be realized through the collection of charge carriers generated within the film by slowing-down of neutron capture reaction products. The objective of this dissertation is to develop, characterize, and optimize novel graphene-based and thin-film radiation detectors. The dissertation includes a review of relevant physics, comprehensive descriptions and discussions of the experimental campaigns that were conducted, computational simulations, and detailed analysis of certain processes occurring in graphene-based and thin-film radiation detectors that significantly affect their response characteristics. Experiments have been conducted to characterize the electrical properties of GFETs and their responsivity to radiation of different types, such as visible, ultraviolet, X-ray, and gamma-ray photons, and alpha particles. The nature of graphene hysteretic effects under operational conditions has been studied. Spatially dependent sensitivity of GFETs to irradiation has been experimentally investigated using both a focused laser beam and focused X-ray microbeam. A model has been developed that deterministically simulates the mechanisms of charge transport within the GFET substrate and explains the experimental finding that the effective area of the GFET significantly exceeds the size of graphene. Monte Carlo simulations were also carried out to examine the efficacy of thin-film radiation detectors based on 10B-enriched boron nitride and Gd2O3 for neutron detection.

  15. New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterials

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Khan, M. Ijaz; Qayyum, Sumaira; Alsaedi, A.; Khan, M. Imran

    2018-03-01

    This research addressed entropy generation for MHD stagnation point flow of viscous nanofluid over a stretching surface. Characteristics of heat transport are analyzed through nonlinear radiation and heat generation/absorption. Nanoliquid features for Brownian moment and thermophoresis have been considered. Fluid in the presence of constant applied inclined magnetic field is considered. Flow problem is mathematically modeled and governing expressions are changed into nonlinear ordinary ones by utilizing appropriate transformations. The effects of pertinent variables on velocity, nanoparticle concentration and temperature are discussed graphically. Furthermore Brownian motion and thermophoresis effects on entropy generation and Bejan number have been examined. Total entropy generation is inspected through various flow variables. Consideration is mainly given to the convergence process. Velocity, temperature and mass gradients at the surface of sheet are calculated numerically.

  16. Carbon fiber manufacturing via plasma technology

    DOEpatents

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  17. Effect of x-radiation to brain on cerebral glucose utilization in the rat.

    PubMed

    D'Aquino, S; Cicciarello, R; D'Avella, D; Mesiti, M; Albiero, F; Princi, P; Gagliardi, M E; Russi, E; D'Aquino, A

    1990-01-01

    We assessed, by means of the [14C]-2-deoxy-D-glucose autoradiography method, the effect of whole-brain x-radiation on local cerebral glucose utilization in the rat brain. Animals were exposed to conventional fractionation (200 +/- cGy/day given 5 days a week) to a total dose of 4000 cGy. Metabolic experiments were made 2 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. Statistically significant decreases in metabolic activity were observed in 13 of 27 brain regions studied. In general, brain areas with the highest basal metabolic rates showed the greatest percentage drop of glucose utilization. Post-irradiation metabolic alterations possibly provide an explanation for the syndrome of early delayed deterioration observed in humans after whole-brain radiotherapy.

  18. Spatio-Temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; Wu, Jin; Wu, Xiaocui; Gioli, Beniamino; Wohlfahrt, Georg; Cescatti, Alessandro; van der Tol, Christiaan; Zhou, Sha; Gough, Christopher M.; Gentine, Pierre; Zhang, Yongguang; Steinbrecher, Rainer; Ardö, Jonas

    2018-04-01

    Light-use efficiency (LUE), which quantifies the plants' efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production estimation. Here we use satellite-based solar-induced chlorophyll fluorescence as a proxy for photosynthetically active radiation absorbed by chlorophyll (APARchl) and derive an estimation of the fraction of APARchl (fPARchl) from four remotely sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (ɛmaxchl), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPARchl, suggesting the corresponding ɛmaxchl to have less seasonal variation. This spatio-temporal convergence of LUE derived from fPARchl can be used to build simple but robust gross primary production models and to better constrain process-based models.

  19. SU-E-T-159: Characteristics of Fiber-Optic Radiation Sensor for Proton Therapeutic Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, J; Kim, M; Hwang, U

    Purpose: A fiber-optic radiation sensor using Cerenkov radiation has been widely studied for use as a dosimeter for proton therapeutic beam. Although the fiber-optic radiation sensor has already been investigated for proton therapeutic, it has been examined relatively little work for clinical therapeutic proton beams. In this study, we evaluated characteristics of a fiber-optic radiation sensor for clinical therapeutic proton beams. We experimentally evaluated dose-rate dependence, dose response and energy dependence for the proton beam. Methods: A fiber-optic radiation sensor was placed in a water phantom. Beams with energies of low, middle and high were used in the passively-scattered protonmore » therapeutic beam at the National Cancer Center in Korea. The sensor consists of two plastic optical fibers (POF). A reference POF and 2 cm longer POF were used to utilize the subtraction method for having sensitive volume. Each POF is optically coupled to the Multi-Anode Photo Multiplier Tube (MAPMT) and the MAPMT signals are processed using National Instruments Data Acquisition System (NI-DAQ). We were investigated dosimetric properties including dose-rate dependence, dose response and energy dependence. Results: We have successfully evaluated characteristics of a fiber optic radiation sensor using Cerenkov radiation. The fiber-optic radiation sensor showed the dose response linearity and low energy dependence. In addition, as the dose-rate was increased, Cerenkov radiation increased linearly. Conclusion: We evaluated the basic characteristics of the fiber optic radiation sensor, the dosimetry tool, to raise the quality of proton therapy. Based on the research, we developed a real time dosimetry system of the optic fiber to confirm the real time beam position and energy for therapeutic proton pencil beam.« less

  20. Sacramento Regional Response Guide to Radiation Emergencies

    DTIC Science & Technology

    2006-09-01

    emergency operations. Additionally, the utilization of thermo luminescence dosimeters ( TLD ) may be beneficial to track long term exposure for...a radiation area. Stakeholder agency emergency response equipment have been issued electronic dosimeters The purpose of the radiation dosimeter is...Incident.............................................................................84 2. Detection/ Dosimeter Equipment

  1. Method of forming crystalline silicon devices on glass

    DOEpatents

    McCarthy, A.M.

    1995-03-21

    A method is disclosed for fabricating single-crystal silicon microelectronic components on a silicon substrate and transferring same to a glass substrate. This is achieved by utilizing conventional silicon processing techniques for fabricating components of electronic circuits and devices on bulk silicon, wherein a bulk silicon surface is prepared with epitaxial layers prior to the conventional processing. The silicon substrate is bonded to a glass substrate and the bulk silicon is removed leaving the components intact on the glass substrate surface. Subsequent standard processing completes the device and circuit manufacturing. This invention is useful in applications requiring a transparent or insulating substrate, particularly for display manufacturing. Other applications include sensors, actuators, optoelectronics, radiation hard electronics, and high temperature electronics. 7 figures.

  2. A Prospective, Multicenter Study of Complementary/Alternative Medicine (CAM) Utilization During Definitive Radiation for Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moran, Meena S., E-mail: meena.moran@yale.edu; Department of Radiation Therapy, William W. Backus Hospital, Norwich, Connecticut; Ma Shuangge

    Purpose: Although complementary and alternative medicine (CAM) utilization in breast cancer patients is reported to be high, there are few data on CAM practices in breast patients specifically during radiation. This prospective, multi-institutional study was conducted to define CAM utilization in breast cancer during definitive radiation. Materials/Methods: A validated CAM instrument with a self-skin assessment was administered to 360 Stage 0-III breast cancer patients from 5 centers during the last week of radiation. All data were analyzed to detect significant differences between users/nonusers. Results: CAM usage was reported in 54% of the study cohort (n=194/360). Of CAM users, 71% reportedmore » activity-based CAM (eg, Reiki, meditation), 26% topical CAM, and 45% oral CAM. Only 16% received advice/counseling from naturopathic/homeopathic/medical professionals before initiating CAM. CAM use significantly correlated with higher education level (P<.001), inversely correlated with concomitant hormone/radiation therapy use (P=.010), with a trend toward greater use in younger patients (P=.066). On multivariate analysis, level of education (OR: 6.821, 95% CI: 2.307-20.168, P<.001) and hormones/radiation therapy (OR: 0.573, 95% CI: 0.347-0.949, P=.031) independently predicted for CAM use. Significantly lower skin toxicity scores were reported in CAM users vs nonusers, respectively (mild: 34% vs 25%, severe: 17% vs 29%, P=.017). Conclusion: This is the first prospective study to assess CAM practices in breast patients during radiation, with definition of these practices as the first step for future investigation of CAM/radiation interactions. These results should alert radiation oncologists that a large percentage of breast cancer patients use CAM during radiation without disclosure or consideration for potential interactions, and should encourage increased awareness, communication, and documentation of CAM practices in patients undergoing radiation treatment for breast cancer.« less

  3. Status of LDEF radiation modeling

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1995-01-01

    The current status of model prediction and comparison with LDEF radiation dosimetry measurements is summarized with emphasis on major results obtained in evaluating the uncertainties of present radiation environment model. The consistency of results and conclusions obtained from model comparison with different sets of LDEF radiation data (dose, activation, fluence, LET spectra) is discussed. Examples where LDEF radiation data and modeling results can be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space Station) are given.

  4. Method and system for determining radiation shielding thickness and gamma-ray energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klann, Raymond T.; Vilim, Richard B.; de la Barrera, Sergio

    2015-12-15

    A system and method for determining the shielding thickness of a detected radiation source. The gamma ray spectrum of a radiation detector is utilized to estimate the shielding between the detector and the radiation source. The determination of the shielding may be used to adjust the information from known source-localization techniques to provide improved performance and accuracy of locating the source of radiation.

  5. Reinforcing the role of the conventional C-arm--a novel method for simplified distal interlocking.

    PubMed

    Windolf, Markus; Schroeder, Josh; Fliri, Ladina; Dicht, Benno; Liebergall, Meir; Richards, R Geoff

    2012-01-25

    The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required.Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses.

  6. Multi-Point Measurements to Characterize Radiation Belt Electron Precipitation Loss

    NASA Astrophysics Data System (ADS)

    Blum, L. W.

    2017-12-01

    Multipoint measurements in the inner magnetosphere allow the spatial and temporal evolution of various particle populations and wave modes to be disentangled. To better characterize and quantify radiation belt precipitation loss, we utilize multi-point measurements both to study precipitating electrons directly as well as the potential drivers of this loss process. Magnetically conjugate CubeSat and balloon measurements are combined to estimate of the temporal and spatial characteristics of dusk-side precipitation features and quantify loss due to these events. To then understand the drivers of precipitation events, and what determines their spatial structure, we utilize measurements from the dual Van Allen Probes to estimate spatial and temporal scales of various wave modes in the inner magnetosphere, and compare these to precipitation characteristics. The structure, timing, and spatial extent of waves are compared to those of MeV electron precipitation during a few individual events to determine when and where EMIC waves cause radiation belt electron precipitation. Magnetically conjugate measurements provide observational support of the theoretical picture of duskside interaction of EMIC waves and MeV electrons leading to radiation belt loss. Finally, understanding the drivers controlling the spatial scales of wave activity in the inner magnetosphere is critical for uncovering the underlying physics behind the wave generation as well as for better predicting where and when waves will be present. Again using multipoint measurements from the Van Allen Probes, we estimate the spatial and temporal extents and evolution of plasma structures and their gradients in the inner magnetosphere, to better understand the drivers of magnetospheric wave characteristic scales. In particular, we focus on EMIC waves and the plasma parameters important for their growth, namely cold plasma density and cool and warm ion density, anisotropy, and composition.

  7. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Monenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used proportional-integral-derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM-based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a DSP (Digital Signal Processor) or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSP) devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  8. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Montenegro, Justino (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of Field Programmable Gate Arrays (FPGA's) in the hardware implementation of fast digital signal processing functions. Such capability also makes an FPGA a suitable platform for the digital implementation of closed loop controllers. Other researchers have implemented a variety of closed-loop digital controllers on FPGA's. Some of these controllers include the widely used Proportional-Integral-Derivative (PID) controller, state space controllers, neural network and fuzzy logic based controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance requirements in a compact form-factor. Generally, a software implementation on a Digital Signal Processor (DSP) device or microcontroller is used to implement digital controllers. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using DSP devices. While small form factor, commercial DSP devices are now available with event capture, data conversion, Pulse Width Modulated (PWM) outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. In general, very few DSP devices are produced that are designed to meet any level of radiation tolerance or hardness. An alternative is required for compact implementation of such functionality to withstand the harsh environment encountered on spacemap. The goal of this effort is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive-control algorithm approaches. Radiation tolerant FPGA's are a feasible option for reaching this goal.

  9. Utilizing the Deep Space Gateway to Characterize DNA Damage Due to Space Radiation and Repair Mechanisms

    NASA Astrophysics Data System (ADS)

    Zea, L.; Niederwieser, T.; Anthony, J.; Stodieck, L.

    2018-02-01

    The radiation environment experienced in the Deep Space Gateway enables the interrogation of DNA damage and repair mechanisms, which may serve to determine the likelihood and consequence of the high radiation risk to prolonged human presence beyond LEO.

  10. Semiconductors Under Ion Radiation: Ultrafast Electron-Ion Dynamics in Perfect Crystals and the Effect of Defects

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Wei; Schleife, André

    Stability and safety issues have been challenging difficulties for materials and devices under radiation such as solar panels in outer space. On the other hand, radiation can be utilized to modify materials and increase their performance via focused-ion beam patterning at nano-scale. In order to grasp the underlying processes, further understanding of the radiation-material and radiation-defect interactions is required and inevitably involves the electron-ion dynamics that was traditionally hard to capture. By applying Ehrenfest dynamics based on time-dependent density functional theory, we have been able to perform real-time simulation of electron-ion dynamics in MgO and InP/GaP. By simulating a high-energy proton penetrating the material, the energy gain of electronic system can be interpreted as electronic stopping power and the result is compared to existing data. We also study electronic stopping in the vicinity of defects: for both oxygen vacancy in MgO and interface of InP/GaP superlattice, electronic stopping shows strong dependence on the velocity of the proton. To study the energy transfer from electronic system to lattice, simulations of about 100 femto-seconds are performed and we analyze the difference between Ehrenfest and Born-Oppenheimer molecular dynamics.

  11. Effects of Ionizing Radiation on DNA Methylation: From Experimental Biology to Clinical Applications

    PubMed Central

    Miousse, Isabelle R.; Kutanzi, Kristy R.; Koturbash, Igor

    2017-01-01

    Purpose Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of LET radiation in medicine. Conclusions In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization. PMID:28134023

  12. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications.

    PubMed

    Miousse, Isabelle R; Kutanzi, Kristy R; Koturbash, Igor

    2017-05-01

    Ionizing radiation (IR) is a ubiquitous environmental stressor with genotoxic and epigenotoxic capabilities. Terrestrial IR, predominantly a low-linear energy transfer (LET) radiation, is being widely utilized in medicine, as well as in multiple industrial applications. Additionally, an interest in understanding the effects of high-LET irradiation is emerging due to the potential of exposure during space missions and the growing utilization of high-LET radiation in medicine. In this review, we summarize the current knowledge of the effects of IR on DNA methylation, a key epigenetic mechanism regulating the expression of genetic information. We discuss global, repetitive elements and gene-specific DNA methylation in light of exposure to high and low doses of high- or low-LET IR, fractionated IR exposure, and bystander effects. Finally, we describe the mechanisms of IR-induced alterations to DNA methylation and discuss ways in which that understanding can be applied clinically, including utilization of DNA methylation as a predictor of response to radiotherapy and in the manipulation of DNA methylation patterns for tumor radiosensitization.

  13. Low-dose CT image reconstruction using gain intervention-based dictionary learning

    NASA Astrophysics Data System (ADS)

    Pathak, Yadunath; Arya, K. V.; Tiwari, Shailendra

    2018-05-01

    Computed tomography (CT) approach is extensively utilized in clinical diagnoses. However, X-ray residue in human body may introduce somatic damage such as cancer. Owing to radiation risk, research has focused on the radiation exposure distributed to patients through CT investigations. Therefore, low-dose CT has become a significant research area. Many researchers have proposed different low-dose CT reconstruction techniques. But, these techniques suffer from various issues such as over smoothing, artifacts, noise, etc. Therefore, in this paper, we have proposed a novel integrated low-dose CT reconstruction technique. The proposed technique utilizes global dictionary-based statistical iterative reconstruction (GDSIR) and adaptive dictionary-based statistical iterative reconstruction (ADSIR)-based reconstruction techniques. In case the dictionary (D) is predetermined, then GDSIR can be used and if D is adaptively defined then ADSIR is appropriate choice. The gain intervention-based filter is also used as a post-processing technique for removing the artifacts from low-dose CT reconstructed images. Experiments have been done by considering the proposed and other low-dose CT reconstruction techniques on well-known benchmark CT images. Extensive experiments have shown that the proposed technique outperforms the available approaches.

  14. Geochemical Cycle of Radon and its Bioremediation Opportunity from Water Environment: A Review.

    PubMed

    Pradhan, Debabrata; Sukla, Lala Behari; Devi, Niharbala; Acharya, Sridhara

    2018-05-01

    The waterborne or airborne radon causes carcinogenesis in the human bodies due to the continuous decay of α- and β- particles. The health risks related to radioactive radon instigate to develop an advanced technology for its removal from the environment. There are two standard tech-niques, such as aeration and activated carbon filtration, available for its removal. However, both of them face different technological drawbacks resulting in the processes either inefficient or inappropriate for the purpose. There are several technologies utilizing either algae or microorganisms that could be useful in the bioremediation of radon. Some of the algae and microorganisms are examined and found to be tolerated and decontaminated various ionization radiations like α-, β-, and γ- radiations. In a US patent, the microalgae Coccomyxa actinabiotis isolated from a nuclear facility showed the properties of biore-mediation towards radionuclides. They overcome the physiological stress in the extreme environment for their growth due to the evolution under the prolonged influence of high energy radiation. Further, they are stimulated by the process of cloning, genetic transformations and adaptations for the purpose of enhancing the tolerance and decontamination power. Therefore, biotechnological researches have lots of prospects to remove radon from the water environment using algae and microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Study of the possibility of thermal utilization of contaminated water in low-power boilers

    NASA Astrophysics Data System (ADS)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.

    2017-09-01

    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  16. Adaptive Controller for Compact Fourier Transform Spectrometer with Space Applications

    NASA Astrophysics Data System (ADS)

    Keymeulen, D.; Yiu, P.; Berisford, D. F.; Hand, K. P.; Carlson, R. W.; Conroy, M.

    2014-12-01

    Here we present noise mitigation techniques developed as part of an adaptive controller for a very compact Compositional InfraRed Interferometric Spectrometer (CIRIS) implemented on a stand-alone field programmable gate array (FPGA) architecture with emphasis on space applications in high radiation environments such as Europa. CIRIS is a novel take on traditional Fourier Transform Spectrometers (FTS) and replaces linearly moving mirrors (characteristic of Michelson interferometers) with a constant-velocity rotating refractor to variably phase shift and alter the path length of incoming light. The design eschews a monochromatic reference laser typically used for sampling clock generation and instead utilizes constant time-sampling via internally generated clocks. This allows for a compact and robust device, making it ideal for spaceborne measurements in the near-IR to thermal-IR band (2-12 µm) on planetary exploration missions. The instrument's embedded microcontroller is implemented on a VIRTEX-5 FPGA and a PowerPC with the aim of sampling the instrument's detector and optical rotary encoder in order to construct interferograms. Subsequent onboard signal processing provides spectral immunity from the noise effects introduced by the compact design's removal of a reference laser and by the radiation encountered during space flight to destinations such as Europa. A variety of signal processing techniques including resampling, radiation peak removal, Fast Fourier Transform (FFT), spectral feature alignment, dispersion correction and calibration processes are applied to compose the sample spectrum in real-time with signal-to-noise-ratio (SNR) performance comparable to laser-based FTS designs in radiation-free environments. The instrument's FPGA controller is demonstrated with the FTS to characterize its noise mitigation techniques and highlight its suitability for implementation in space systems.

  17. Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients.

    PubMed

    Jin, Shuo; Li, Dengwang; Wang, Hongjun; Yin, Yong

    2013-01-07

    Accurate registration of 18F-FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from (18)F-FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information-based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application.

  18. Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients

    PubMed Central

    Jin, Shuo; Li, Dengwang; Yin, Yong

    2013-01-01

    Accurate registration of  18F−FDG PET (positron emission tomography) and CT (computed tomography) images has important clinical significance in radiation oncology. PET and CT images are acquired from  18F−FDG PET/CT scanner, but the two acquisition processes are separate and take a long time. As a result, there are position errors in global and deformable errors in local caused by respiratory movement or organ peristalsis. The purpose of this work was to implement and validate a deformable CT to PET image registration method in esophageal cancer to eventually facilitate accurate positioning the tumor target on CT, and improve the accuracy of radiation therapy. Global registration was firstly utilized to preprocess position errors between PET and CT images, achieving the purpose of aligning these two images on the whole. Demons algorithm, based on optical flow field, has the features of fast process speed and high accuracy, and the gradient of mutual information‐based demons (GMI demons) algorithm adds an additional external force based on the gradient of mutual information (GMI) between two images, which is suitable for multimodality images registration. In this paper, GMI demons algorithm was used to achieve local deformable registration of PET and CT images, which can effectively reduce errors between internal organs. In addition, to speed up the registration process, maintain its robustness, and avoid the local extremum, multiresolution image pyramid structure was used before deformable registration. By quantitatively and qualitatively analyzing cases with esophageal cancer, the registration scheme proposed in this paper can improve registration accuracy and speed, which is helpful for precisely positioning tumor target and developing the radiation treatment planning in clinical radiation therapy application. PACS numbers: 87.57.nj, 87.57.Q‐, 87.57.uk PMID:23318381

  19. A DICOM-RT radiation oncology ePR with decision support utilizing a quantified knowledge base from historical data

    NASA Astrophysics Data System (ADS)

    Documet, Jorge R.; Liu, Brent; Le, Anh; Law, Maria

    2008-03-01

    During the last 2 years we have been working on developing a DICOM-RT (Radiation Therapy) ePR (Electronic Patient Record) with decision support that will allow physicists and radiation oncologists during their decision-making process. This ePR allows offline treatment dose calculations and plan evaluation, while at the same time it compares and quantifies treatment planning algorithms using DICOM-RT objects. The ePR framework permits the addition of visualization, processing, and analysis tools, which combined with the core functionality of reporting, importing and exporting of medical studies, creates a very powerful application that can improve the efficiency while planning cancer treatments. Usually a Radiation Oncology department will have disparate and complex data generated by the RT modalities as well as data scattered in RT Information/Management systems, Record & Verify systems, and Treatment Planning Systems (TPS) which can compromise the efficiency of the clinical workflow since the data crucial for a clinical decision may be time-consuming to retrieve, temporarily missing, or even lost. To address these shortcomings, the ACR-NEMA Standards Committee extended its DICOM (Digital Imaging & Communications in Medicine) standard from Radiology to RT by ratifying seven DICOM RT objects starting in 1997 [1,2]. However, they are not broadly used yet by the RT community in daily clinical operations. In the past, the research focus of an RT department has primarily been developing new protocols and devices to improve treatment process and outcomes of cancer patients with minimal effort dedicated to integration of imaging and information systems. Our attempt is to show a proof-of-concept that a DICOM-RT ePR system can be developed as a foundation to perform medical imaging informatics research in developing decision-support tools and knowledge base for future data mining applications.

  20. Indirect and semi-direct aerosol campaign: The impact of Arctic aerosols on clouds

    DOE PAGES

    McFarquhar, Greg M.; Ghan, Steven; Verlinde, Johannes; ...

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the boundary layer in the vicinity of Barrow, Alaska, was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC). ISDAC's primary aim was to examine the effects of aerosols, including those generated by Asian wildfires, on clouds that contain both liquid and ice. ISDAC utilized the Atmospheric Radiation Measurement Pro- gram's permanent observational facilities at Barrow and specially deployed instruments measuring aerosol, ice fog, precipitation, and radiation. The National Research Council of Canada Convair-580 flew 27 sorties and collected data using an unprecedented 41more » stateof- the-art cloud and aerosol instruments for more than 100 h on 12 different days. Aerosol compositions, including fresh and processed sea salt, biomassburning particles, organics, and sulfates mixed with organics, varied between flights. Observations in a dense arctic haze on 19 April and above, within, and below the single-layer stratocumulus on 8 and 26 April are enabling a process-oriented understanding of how aerosols affect arctic clouds. Inhomogeneities in reflectivity, a close coupling of upward and downward Doppler motion, and a nearly constant ice profile in the single-layer stratocumulus suggests that vertical mixing is responsible for its longevity observed during ISDAC. Data acquired in cirrus on flights between Barrow and Fairbanks, Alaska, are improving the understanding of the performance of cloud probes in ice. Furthermore, ISDAC data will improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and determine the extent to which surface measurements can provide retrievals of aerosols, clouds, precipitation, and radiative heating.« less

  1. Space radiation resistant transparent polymeric materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.

    1977-01-01

    A literature search in the field of ultraviolet and charged particle irradiation of polymers was utilized in an experimental program aimed at the development of radiation stable materials for space applications. The rationale utilized for material selection and the synthesis, characterization and testing performed on several selected materials is described. Among the materials tested for ultraviolet stability in vacuum were: polyethyleneoxide, polyvinylnaphthalene, and the amino resin synthesized by the condensation of o-hydroxybenzoguanamine with formaldehyde. Particularly interesting was the radiation behavior of poly(ethyleneoxide), irradiation did not cause degradation of optical properties but rather an improvement in transparency as indicated by a decrease in solar absorptance with increasing exposure time.

  2. Assessment of the impact of increased solar ultraviolet radiation upon marine ecosystems

    NASA Technical Reports Server (NTRS)

    Vandyke, H.

    1977-01-01

    Specifically, the study has addressed the following: (1) potential for irreversible damage to the productivity, structure and/or functioning of a model estuarine ecosystem by increased UV-B radiation or ecosystems highly stable or amenable to adaptive change, and (2) the sensitivity of key community components (the primary producers, consumers, and decomposers) to increased UV-B radiation. Three areas of study were examined during the past year: (1) a continuation of the study utilizing the two seminatural ecosystem chambers, (2) a pilot study utilizing three flow-through ecosystem tanks enclosed in a small, outdoor greenhouse, and (3) sensitivity studies of representative primary producers and consumers.

  3. Is there a shadow biosphere of silicon utilizing organisms on earth?

    NASA Astrophysics Data System (ADS)

    Das, P.; Das, S.

    2012-12-01

    The idea of shadow biosphere was first visualized by Carol Cleland and Shelley Copley of the University of Colorado in 2005. Since that time many scientists were interested in this subject and the basis of this paper is also correlated with this novel idea. A shadow biosphere essentially consists of self replicating bodies utilizing one or more chemicals which are not exploited to such extent by organisms of the real biosphere. Silicon-utilizing organisms mainly belong to the diatoms, some other algae, sponges, monocotyledon plants in this category are classified by us. They can survive in extremes of temperature, pressure, radiation, pH, salinity and nutrient conditions and this unusual tolerance to stress depends on their silicon biomineralization occurring either as a biologically controlled process or as a biologically induced process. In the control process silicate is sequestered and transferred to the intracellular silica deposition vesicle by energy driven pump mechanism in presence of specific transporter protein. In induced silicon mineralization, initial amorphous nucleation of silicon is gradually transformed to a crystalline phase. Besides these two methods, there are also other processes in which formation of silanol and siloxane can occur from oligomers of silica originating from monomers by Hydrogen bonding, cation bridging and direct electrostatic interactions. The structure of the silica biomineralised cell wall in silicon utilizing organisms is very complex, but this may explain their ability to stress tolerance and their possible coordinating role with other essential bioactive elements in nature. When electropositive elements are less, then polymerization of silicon-oxygen excess may occur easily, particularly in carbon and nitrogen paucity in the environment. Thus all these features indicate possibility of a shadow biosphere of these organisms on earth.

  4. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Matthews, Q.; Jirasek, A.; Lum, J. J.; Brolo, A. G.

    2011-11-01

    This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF2 > 0.6) and the R3 cell lines are radiosensitive (SF2 < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the regulated synthesis and degradation of structured proteins and (2) the expression of anti-apoptosis factors or other survival signals. This study demonstrates the utility of RS for noninvasive radiobiological analysis of tumour cell radiation response, and indicates the potential for future RS studies designed to investigate, monitor or predict radiation response.

  5. Synthesis of europium- or terbium-activated calcium tungstate phosphors

    NASA Astrophysics Data System (ADS)

    Forgaciu, Flavia; Popovici, Elisabeth-Jeanne; Ungur, Laura; Vadan, Maria; Vasilescu, Marilena; Nazarov, Mihail

    2001-06-01

    Utilization of luminescent substances in various optoelectronic devices depends on their luminescent properties and sensitivity to various excitation radiation as well as on particle size distribution and crystalline structure of luminous powders. Calcium tungstate phosphors are well excited with roentgen radiation, so that they are largely used for manufacture of x-ray intensifying screens. Being sensitive to short UV-radiation as well, they could be utilized in Plasma Display Panels or in advertising signs fluorescent tubes. In order to diversify the utilization possibilities of this tungstate class, luminescent powders based on CaWO4:Eu3+ and CaWO4:Tb3+ were synthesized and characterized. As compared with the starting self-activated phosphor, larger excitation wavelength domain and emission colors from blue-to-green-to- yellow-to-red were obtained. The good UV excitability and variable luminescence color recommend these phosphors for optoelectronic device manufacture.

  6. Time encoded radiation imaging

    DOEpatents

    Marleau, Peter; Brubaker, Erik; Kiff, Scott

    2014-10-21

    The various technologies presented herein relate to detecting nuclear material at a large stand-off distance. An imaging system is presented which can detect nuclear material by utilizing time encoded imaging relating to maximum and minimum radiation particle counts rates. The imaging system is integrated with a data acquisition system that can utilize variations in photon pulse shape to discriminate between neutron and gamma-ray interactions. Modulation in the detected neutron count rates as a function of the angular orientation of the detector due to attenuation of neighboring detectors is utilized to reconstruct the neutron source distribution over 360 degrees around the imaging system. Neutrons (e.g., fast neutrons) and/or gamma-rays are incident upon scintillation material in the imager, the photons generated by the scintillation material are converted to electrical energy from which the respective neutrons/gamma rays can be determined and, accordingly, a direction to, and the location of, a radiation source identified.

  7. Radiation detection system

    DOEpatents

    Nelson, Melvin A.; Davies, Terence J.; Morton, III, John R.

    1976-01-01

    A radiation detection system which utilizes the generation of Cerenkov light in and the transmission of that light longitudinally through fiber optic wave guides in order to transmit intelligence relating to the radiation to a remote location. The wave guides are aligned with respect to charged particle radiation so that the Cerenkov light, which is generated at an angle to the radiation, is accepted by the fiber for transmission therethrough. The Cerenkov radiation is detected, recorded, and analyzed at the other end of the fiber.

  8. A radiation detector design mitigating problems related to sawed edges

    NASA Astrophysics Data System (ADS)

    Aurola, A.; Marochkin, V.; Tuuva, T.

    2014-12-01

    In pixelated silicon radiation detectors that are utilized for the detection of UV, visible, and in particular Near Infra-Red (NIR) light it is desirable to utilize a relatively thick fully depleted Back-Side Illuminated (BSI) detector design providing 100% Fill Factor (FF), low Cross-Talk (CT), and high Quantum Efficiency (QE). The optimal thickness of such detectors is typically less than 300μm and above 40μm and thus it is more or less mandatory to thin the detector wafer from the backside after the front side of the detector has been processed and before a conductive layer is formed on the backside. A TAIKO thinning process is optimal for such a thickness range since neither a support substrate on the front side nor lithographic steps on the backside are required. The conductive backside layer should, however, be homogenous throughout the wafer and it should be biased from the front side of the detector. In order to provide good QE for blue and UV light the conductive backside layer should be of opposite doping type than the substrate. The problem with a homogeneous backside layer being of opposite doping type than the substrate is that a lot of leakage current is typically generated at the sawed chip edges, which may increase the dark noise and the power consumption. These problems are substantially mitigated with a proposed detector edge arrangement which 2D simulation results are presented in this paper.

  9. NASA's Black Marble Nighttime Lights Product Suite

    NASA Technical Reports Server (NTRS)

    Wang, Zhuosen; Sun, Qingsong; Seto, Karen C.; Oda, Tomohiro; Wolfe, Robert E.; Sarkar, Sudipta; Stevens, Joshua; Ramos Gonzalez, Olga M.; Detres, Yasmin; Esch, Thomas; hide

    2018-01-01

    NASA's Black Marble nighttime lights product suite (VNP46) is available at 500 meters resolution since January 2012 with data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) onboard the Suomi National Polar-orbiting Platform (SNPP). The retrieval algorithm, developed and implemented for routine global processing at NASA's Land Science Investigator-led Processing System (SIPS), utilizes all high-quality, cloud-free, atmospheric-, terrain-, vegetation-, snow-, lunar-, and stray light-corrected radiances to estimate daily nighttime lights (NTL) and other intrinsic surface optical properties. Key algorithm enhancements include: (1) lunar irradiance modeling to resolve non-linear changes in phase and libration; (2) vector radiative transfer and lunar bidirectional surface anisotropic reflectance modeling to correct for atmospheric and BRDF (Bidirectional Reflectance Distribution Function) effects; (3) geometric-optical and canopy radiative transfer modeling to account for seasonal variations in NTL; and (4) temporal gap-filling to reduce persistent data gaps. Extensive benchmark tests at representative spatial and temporal scales were conducted on the VNP46 time series record to characterize the uncertainties stemming from upstream data sources. Initial validation results are presented together with example case studies illustrating the scientific utility of the products. This includes an evaluation of temporal patterns of NTL dynamics associated with urbanization, socioeconomic variability, cultural characteristics, and displaced populations affected by conflict. Current and planned activities under the Group on Earth Observations (GEO) Human Planet Initiative are aimed at evaluating the products at different geographic locations and time periods representing the full range of retrieval conditions.

  10. Implementation of Adaptive Digital Controllers on Programmable Logic Devices

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; King, Kenneth D.; Smith, Keary J.; Ormsby, John (Technical Monitor)

    2002-01-01

    Much has been made of the capabilities of FPGA's (Field Programmable Gate Arrays) in the hardware implementation of fast digital signal processing (DSP) functions. Such capability also makes and FPGA a suitable platform for the digital implementation of closed loop controllers. There are myriad advantages to utilizing an FPGA for discrete-time control functions which include the capability for reconfiguration when SRAM- based FPGA's are employed, fast parallel implementation of multiple control loops and implementations that can meet space level radiation tolerance in a compact form-factor. Other researchers have presented the notion that a second order digital filter with proportional-integral-derivative (PID) control functionality can be implemented in an FPGA. At Marshall Space Flight Center, the Control Electronics Group has been studying adaptive discrete-time control of motor driven actuator systems using digital signal processor (DSF) devices. Our goal is to create a fully digital, flight ready controller design that utilizes an FPGA for implementation of signal conditioning for control feedback signals, generation of commands to the controlled system, and hardware insertion of adaptive control algorithm approaches. While small form factor, commercial DSP devices are now available with event capture, data conversion, pulse width modulated outputs and communication peripherals, these devices are not currently available in designs and packages which meet space level radiation requirements. Meeting our goals requires alternative compact implementation of such functionality to withstand the harsh environment encountered on spacecraft. Radiation tolerant FPGA's are a feasible option for reaching these goals.

  11. Fetal Implications of Diagnostic Radiation Exposure During Pregnancy: Evidence-based Recommendations.

    PubMed

    Rimawi, Bassam H; Green, Victoria; Lindsay, Michael

    2016-06-01

    The purpose of this article is to review the fetal and long-term implications of diagnostic radiation exposure during pregnancy. Evidence-based recommendations for radiologic imaging modalities utilizing exposure of diagnostic radiation during pregnancy, including conventional screen-film mammography, digital mammography, tomosynthesis, and contrast-enhanced mammography are described.

  12. Smart, passive sun facing surfaces

    DOEpatents

    Hively, Lee M.

    1996-01-01

    An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position.

  13. Smart, passive sun facing surfaces

    DOEpatents

    Hively, L.M.

    1996-04-30

    An article adapted for selectively utilizing solar radiation comprises an absorptive surface and a reflective surface, the absorptive surface and the reflective surface oriented to absorb solar radiation when the sun is in a relatively low position, and to reflect solar radiation when the sun is in a relatively high position. 17 figs.

  14. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  15. Fast method for in-flight estimation of total dose from protons and electrons using RADE Minstrument on JUICE

    NASA Astrophysics Data System (ADS)

    Hajdas, Wojtek; Mrigakshi, Alankrita; Xiao, Hualin

    2017-04-01

    The primary concern of the ESA JUICE mission to Jupiter is the harsh particle radiation environment. Ionizing particles introduce radiation damage by total dose effects, displacement damages or single events effects. Therefore, both the total ionizing dose and the displacement damage equivalent fluence must be assessed to alert spacecraft and its payload as well as to quantify radiation levels for the entire mission lifetime. We present a concept and implementations steps for simplified method used to compute in flight a dose rate and total dose caused by protons. We also provide refinement of the method previously developed for electrons. The dose rates values are given for predefined active volumes located behind layers of materials with known thickness. Both methods are based on the electron and proton flux measurements provided by the Electron and Proton Detectors inside the Radiation Hard Electron Monitor (RADEM) located on-board of JUICE. The trade-off between method accuracy and programming limitations for in-flight computations are discussed. More comprehensive and precise dose rate computations based on detailed analysis of all stack detectors will be made during off-line data processing. It will utilize full spectral unfolding from all RADEM detector subsystems.

  16. An FPGA-Based High-Speed Error Resilient Data Aggregation and Control for High Energy Physics Experiment

    NASA Astrophysics Data System (ADS)

    Mandal, Swagata; Saini, Jogender; Zabołotny, Wojciech M.; Sau, Suman; Chakrabarti, Amlan; Chattopadhyay, Subhasis

    2017-03-01

    Due to the dramatic increase of data volume in modern high energy physics (HEP) experiments, a robust high-speed data acquisition (DAQ) system is very much needed to gather the data generated during different nuclear interactions. As the DAQ works under harsh radiation environment, there is a fair chance of data corruption due to various energetic particles like alpha, beta, or neutron. Hence, a major challenge in the development of DAQ in the HEP experiment is to establish an error resilient communication system between front-end sensors or detectors and back-end data processing computing nodes. Here, we have implemented the DAQ using field-programmable gate array (FPGA) due to some of its inherent advantages over the application-specific integrated circuit. A novel orthogonal concatenated code and cyclic redundancy check (CRC) have been used to mitigate the effects of data corruption in the user data. Scrubbing with a 32-b CRC has been used against error in the configuration memory of FPGA. Data from front-end sensors will reach to the back-end processing nodes through multiple stages that may add an uncertain amount of delay to the different data packets. We have also proposed a novel memory management algorithm that helps to process the data at the back-end computing nodes removing the added path delays. To the best of our knowledge, the proposed FPGA-based DAQ utilizing optical link with channel coding and efficient memory management modules can be considered as first of its kind. Performance estimation of the implemented DAQ system is done based on resource utilization, bit error rate, efficiency, and robustness to radiation.

  17. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain...

  18. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain...

  19. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain...

  20. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain...

  1. 10 CFR 34.71 - Utilization logs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Utilization logs. 34.71 Section 34.71 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Recordkeeping Requirements § 34.71 Utilization logs. (a) Each licensee shall maintain...

  2. Efficient Analysis of Simulations of the Sun's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Scarborough, C. W.; Martínez-Sykora, J.

    2014-12-01

    Dynamics in the solar atmosphere, including solar flares, coronal mass ejections, micro-flares and different types of jets, are powered by the evolution of the sun's intense magnetic field. 3D Radiative Magnetohydrodnamics (MHD) computer simulations have furthered our understanding of the processes involved: When non aligned magnetic field lines reconnect, the alteration of the magnetic topology causes stored magnetic energy to be converted into thermal and kinetic energy. Detailed analysis of this evolution entails tracing magnetic field lines, an operation which is not time-efficient on a single processor. By utilizing a graphics card (GPU) to trace lines in parallel, conducting such analysis is made feasible. We applied our GPU implementation to the most advanced 3D Radiative-MHD simulations (Bifrost, Gudicksen et al. 2011) of the solar atmosphere in order to better understand the evolution of the modeled field lines.

  3. Radiative-emission analysis in charge-exchange collisions of O6 + with argon, water, and methane

    NASA Astrophysics Data System (ADS)

    Leung, Anthony C. K.; Kirchner, Tom

    2017-04-01

    Processes of electron capture followed by Auger and radiative decay were investigated in slow ion-atom and -molecule collisions. A quantum-mechanical analysis which utilizes the basis generator method within an independent electron model was carried out for collisions of O 6 + with Ar, H2O , and CH4 at impact energies of 1.17 and 2.33 keV/amu. At these impact energies, a closure approximation in the spectral representation of the Hamiltonian for molecules was found to be necessary to yield reliable results. Total single-, double-, and triple-electron-capture cross sections obtained show good agreement with previous measurements and calculations using the classical trajectory Monte Carlo method. The corresponding emission spectra from single capture for each collision system are in satisfactory agreement with previous calculations.

  4. Determination of cloud parameters from infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H.-Y. M.

    1984-01-01

    The World Climate Research Programme (WCRP) plan is concerned with the need to develop a uniform global cloud climatology as part of a broad research program on climate processes. The International Satellite Cloud Climatology Project (ISCCP) has been approved as the first project of the WCRP. The ISCCP has the basic objective to collect and analyze satellite radiance data to infer the global distribution of cloud radiative properties in order to improve the modeling of cloud effects on climate. Research is conducted to explore an algorithm for retrieving cloud properties by utilizing the available infrared sounder data from polar-orbiting satellites. A numerical method is developed for computing cloud top heights, amount, and emissivity on the basis of a parameterized infrared radiative transfer equation for cloudy atmospheres. Theoretical studies were carried out by considering a synthetic atmosphere.

  5. Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.

    2011-02-01

    A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmosphericmore » emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.« less

  6. Multiple Scattering in Planetary Regoliths Using Incoherent Interactions

    NASA Astrophysics Data System (ADS)

    Muinonen, K.; Markkanen, J.; Vaisanen, T.; Penttilä, A.

    2017-12-01

    We consider scattering of light by a planetary regolith using novel numerical methods for discrete random media of particles. Understanding the scattering process is of key importance for spectroscopic, photometric, and polarimetric modeling of airless planetary objects, including radar studies. In our modeling, the size of the spherical random medium can range from microscopic to macroscopic sizes, whereas the particles are assumed to be of the order of the wavelength in size. We extend the radiative transfer and coherent backscattering method (RT-CB) to the case of dense packing of particles by adopting the ensemble-averaged first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles as input. In the radiative transfer part, at each absorption and scattering process, we account for absorption with the help of the single-scattering albedo and peel off the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then generate a new scattering direction using the joint probability density for the local polar and azimuthal scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the radiative-transfer path and the reciprocal path. Furthermore, we replace the far-field interactions of the RT-CB method with rigorous interactions facilitated by the Superposition T-matrix method (STMM). This gives rise to a new RT-RT method, radiative transfer with reciprocal interactions. For microscopic random media, we then compare the new results to asymptotically exact results computed using the STMM, succeeding in the numerical validation of the new methods.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.

  7. Simultaneous Position, Velocity, Attitude, Angular Rates, and Surface Parameter Estimation Using Astrometric and Photometric Observations

    DTIC Science & Technology

    2013-07-01

    Additionally, a physically consistent BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed... BRDF and radiation pressure model is utilized thus enabling an accurate physical link between the observed photometric brightness and the attitudinal...source and the observer is ( ) VLVLH ˆˆˆˆˆ ++= (2) with angles α and β from N̂ and is used in many analytic BRDF models . There are many

  8. Thermal Characterization of the Air Force Institute of Technology Solar Simulation Thermal Vacuum Chamber

    DTIC Science & Technology

    2014-03-27

    mass and surface area, Equation 12 demonstrates an energy balance for the material, assuming the rest of the surfaces of the material are isothermal...radiation in order to dissipate heat from 18 the spacecraft [8]. As discussed in the system thermal energy balance defined previously, emission of IR... energy balance calculations will be utilized. The Monte Carlo/Ray Trace Radiation Method The Monte Carlo/Ray Trace method is utilized in order to

  9. Portal radiation monitor

    DOEpatents

    Kruse, Lyle W.

    1985-01-01

    A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  10. Portal radiation monitor

    DOEpatents

    Kruse, L.W.

    1982-03-23

    A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.

  11. A Unique Photon Bombardment System for Space Applications

    NASA Technical Reports Server (NTRS)

    Klein, E. J.

    1993-01-01

    The innovative Electromagnetic Radiation Collection and Concentration System (EMRCCS) described is the foundation for the development of a multiplicity of space and terrestrial system formats. The system capability allows its use in the visual, infrared, and ultraviolet ranges of the spectrum for EM collection, concentration, source/receptor tracking, and targeting. The nonimaging modular optical system uses a physically static position aperture for EM radiation collection. Folded optics provide the concentration of the radiation and source autotracking. The collected and concentrated electromagnetic radiation is utilized in many applications, e.g., solar spectrum in thermal and associative photon bombardment applications for hazardous waste management, water purification, metal hardening, hydrogen generation, photovoltaics, etc., in both space and terrestrial segment utilization. Additionally, at the high end of the concentration capability range, i.e., 60,000+, a solar-pulsed laser system is possible.

  12. Evaluation of Arctic broadband surface radiation measurements

    NASA Astrophysics Data System (ADS)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  13. Evaluation of arctic broadband surface radiation measurements

    NASA Astrophysics Data System (ADS)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Nievergall, O.; Wendell, J.; Albee, R.

    2011-08-01

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  14. GERMcode: A Stochastic Model for Space Radiation Risk Assessment

    NASA Technical Reports Server (NTRS)

    Kim, Myung-Hee Y.; Ponomarev, Artem L.; Cucinotta, Francis A.

    2012-01-01

    A new computer model, the GCR Event-based Risk Model code (GERMcode), was developed to describe biophysical events from high-energy protons and high charge and energy (HZE) particles that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the GERMcode, the biophysical description of the passage of HZE particles in tissue and shielding materials is made with a stochastic approach that includes both particle track structure and nuclear interactions. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections. For NSRL applications, the GERMcode evaluates a set of biophysical properties, such as the Poisson distribution of particles or delta-ray hits for a given cellular area and particle dose, the radial dose on tissue, and the frequency distribution of energy deposition in a DNA volume. By utilizing the ProE/Fishbowl ray-tracing analysis, the GERMcode will be used as a bi-directional radiation transport model for future spacecraft shielding analysis in support of Mars mission risk assessments. Recent radiobiological experiments suggest the need for new approaches to risk assessment that include time-dependent biological events due to the signaling times for activation and relaxation of biological processes in cells and tissue. Thus, the tracking of the temporal and spatial distribution of events in tissue is a major goal of the GERMcode in support of the simulation of biological processes important in GCR risk assessments. In order to validate our approach, basic radiobiological responses such as cell survival curves, mutation, chromosomal aberrations, and representative mouse tumor induction curves are implemented into the GERMcode. Extension of these descriptions to other endpoints related to non-targeted effects and biochemical pathway responses will be discussed.

  15. Developing a national radiation oncology registry: From acorns to oaks.

    PubMed

    Palta, Jatinder R; Efstathiou, Jason A; Bekelman, Justin E; Mutic, Sasa; Bogardus, Carl R; McNutt, Todd R; Gabriel, Peter E; Lawton, Colleen A; Zietman, Anthony L; Rose, Christopher M

    2012-01-01

    The National Radiation Oncology Registry (NROR) is a collaborative initiative of the Radiation Oncology Institute and the American Society of Radiation Oncology, with input and guidance from other major stakeholders in oncology. The overarching mission of the NROR is to improve the care of cancer patients by capturing reliable information on treatment delivery and health outcomes. The NROR will collect patient-specific radiotherapy data electronically to allow for rapid comparison of the many competing treatment modalities and account for effectiveness, outcome, utilization, quality, safety, and cost. It will provide benchmark data and quality improvement tools for individual practitioners. The NROR steering committee has determined that prostate cancer provides an appropriate model to test the concept and the data capturing software in a limited number of sites. The NROR pilot project will begin with this disease-gathering treatment and outcomes data from a limited number of treatment sites across the range of practice; once feasibility is proven, it will scale up to more sites and diseases. When the NROR is fully implemented, all radiotherapy facilities, along with their radiation oncologists, will be solicited to participate in it. With the broader participation of the radiation oncology community, NROR has the potential to serve as a resource for determining national patterns of care, gaps in treatment quality, comparative effectiveness, and hypothesis generation to identify new linkages between therapeutic processes and outcomes. The NROR will benefit radiation oncologists and other care providers, payors, vendors, policy-makers, and, most importantly, cancer patients by capturing reliable information on population-based radiation treatment delivery. Copyright © 2012 (c) 2010 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved. Published by Elsevier Inc. All rights reserved.

  16. Targeted iron oxide nanoparticles for the enhancement of radiation therapy

    PubMed Central

    Hauser, Anastasia K.; Mitov, Mihail I.; Daley, Emily F.; McGarry, Ronald C.; Anderson, Kimberly W.; Hilt, J. Zach

    2017-01-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  17. Integrator Circuitry for Single Channel Radiation Detector

    NASA Technical Reports Server (NTRS)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  18. Reflectometric measurement of plasma imaging and applications

    NASA Astrophysics Data System (ADS)

    Mase, A.; Ito, N.; Oda, M.; Komada, Y.; Nagae, D.; Zhang, D.; Kogi, Y.; Tobimatsu, S.; Maruyama, T.; Shimazu, H.; Sakata, E.; Sakai, F.; Kuwahara, D.; Yoshinaga, T.; Tokuzawa, T.; Nagayama, Y.; Kawahata, K.; Yamaguchi, S.; Tsuji-Iio, S.; Domier, C. W.; Luhmann, N. C., Jr.; Park, H. K.; Yun, G.; Lee, W.; Padhi, S.; Kim, K. W.

    2012-01-01

    Progress in microwave and millimeter-wave technologies has made possible advanced diagnostics for application to various fields, such as, plasma diagnostics, radio astronomy, alien substance detection, airborne and spaceborne imaging radars called as synthetic aperture radars, living body measurements. Transmission, reflection, scattering, and radiation processes of electromagnetic waves are utilized as diagnostic tools. In this report we focus on the reflectometric measurements and applications to biological signals (vital signal detection and breast cancer detection) as well as plasma diagnostics, specifically by use of imaging technique and ultra-wideband radar technique.

  19. Gamma ray spectroscopy with Arduino UNO

    NASA Astrophysics Data System (ADS)

    Lavelle, C. M.

    2018-05-01

    We review a simple gamma ray spectrometer constructed on a solderless breadboard. The spectrometer's detector consists of a CsI(Tl) scintillator and silicon photomultiplier (SiPM) and its readout is facilitated by an Arduino UNO. The system is low cost and utilizes a minimum of components while still achieving satisfactory charge linearity and noise levels. This instrument can be used in instructional laboratories to introduce both radiation detection and analog signal processing concepts. We also expect it will be of interest to those seeking to introduce gamma spectroscopy to the expanding ecosystem of Arduino hardware.

  20. 3D polymer gel dosimetry using a 3D (DESS) and a 2D MultiEcho SE (MESE) sequence

    NASA Astrophysics Data System (ADS)

    Maris, Thomas G.; Pappas, Evangelos; Karolemeas, Kostantinos; Papadakis, Antonios E.; Zacharopoulou, Fotini; Papanikolaou, Nickolas; Gourtsoyiannis, Nicholas

    2006-12-01

    The utilization of 3D techniques in Magnetic Resonance Imaging data aquisition and post-processing analysis is a prerequisite especially when modern radiotherapy techniques (conformal RT, IMRT, Stereotactic RT) are to be used. The aim of this work is to compare a 3D Double Echo Steady State (DESS) and a 2D Multiple Echo Spin Echo (MESE) sequence in 3D MRI radiation dosimetry using two different MRI scanners and utilising N-VInylPyrrolidone (VIPAR) based polymer gels.

  1. Observations of enhanced aerosol longwave radiative forcing over an urban environment

    NASA Astrophysics Data System (ADS)

    Panicker, A. S.; Pandithurai, G.; Safai, P. D.; Kewat, S.

    2008-02-01

    Collocated measurements of sun/sky radiance, aerosol chemical composition and radiative fluxes have been utilized to estimate longwave aerosol radiative forcing over Pune, an Indian urban site during dry winter [Dec2004 to Feb2005] by two methods. Hybrid method which uses observed downwelling and modeled upwelling longwave fluxes for different aerosol loadings yielded a surface forcing of 9.4 Wm-2. Model approach includes utilization of skyradiometer derived spectral aerosol optical properties in the visible and near infra-red wavelengths, modeled aerosol properties in 1.2-40 μm using observed soot and chemical composition data, MODIS water vapor and TOMS column ozone in a radiative transfer model. Estimates from model method showed longwave enhancement of 6.5 and 8.2 Wm-2 at the surface with tropical model atmosphere and temporally varying profiles of temperature and humidity, respectively. Study reveals that about 25% of the aerosol shortwave cooling is being compensated by increase in longwave radiation due to aerosol absorption.

  2. Utilization of prostate brachytherapy for low risk prostate cancer: Is the decline overstated?

    PubMed

    Safdieh, Joseph; Wong, Andrew; Weiner, Joseph P; Schwartz, David; Schreiber, David

    2016-08-01

    Several prior studies have suggested that brachytherapy utilization has markedly decreased, coinciding with the recent increased utilization of intensity modulated radiation therapy, as well as an increase in urologist-owned centers. We sought to investigate the brachytherapy utilization in a large, hospital-based registry. Men with prostate cancer diagnosed between 2004-2012 and treated with either external beam radiation and/or prostate brachytherapy were abstracted from the National Cancer Database. In order to be included, men had to be clinically staged as T1c-T2aNx-0Mx-0, Gleason 6, PSA ≤ 10.0 ng/ml. Descriptive statistics were used to analyze brachytherapy utilization over time and were compared via χ(2). Multivariate logistic regression was used to assess for covariables associated with increased brachytherapy usage. There were 89,413 men included in this study, of which 37,054 (41.6%) received only external beam radiation, and 52,089 (58.4%) received prostate brachytherapy. The use of brachytherapy declined over time from 62.9% in 2004 to 51.3% in 2012 (p < 0.001). This decline was noted in both academic facilities (60.8% in 2004 to 47.0% in 2012, p < 0.001) as well as in non-academic facilities (63.7% in 2004 to 53.0% in 2012, p < 0.001). The decline was more pronounced in patients who lived closer to treatment facilities than those who lived further. The use of intensity modulated radiation therapy increased during this same time period from 18.4% in 2004 to 38.2% in 2012 (p < 0.001). On multivariate analysis, treatment at an academic center, increasing age, decreasing distance from the treatment center, and years of diagnosis from 2006-2012 were significantly associated with reduced brachytherapy usage. In this hospital-based registry, prostate brachytherapy usage has declined for low risk prostate cancer as intensity modulated radiation therapy usage has increased. However, it still remains the treatment of choice for 51.3% of patients as of 2012.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gill, Beant S.; Lin, Jeff F.; Krivak, Thomas C.

    Purpose: To utilize the National Cancer Data Base to evaluate trends in brachytherapy and alternative radiation therapy utilization in the treatment of cervical cancer, to identify associations with outcomes between the various radiation therapy modalities. Methods and Materials: Patients with International Federation of Gynecology and Obstetrics stage IIB-IVA cervical cancer in the National Cancer Data Base who received treatment from January 2004 to December 2011 were analyzed. Overall survival was estimated by the Kaplan-Meier method. Univariate and multivariable analyses were performed to identify factors associated with type of boost radiation modality used and its impact on survival. Results: A totalmore » of 7654 patients had information regarding boost modality. A predominant proportion of patients were Caucasian (76.2%), had stage IIIB (48.9%) disease with squamous (82.0%) histology, were treated at academic/research centers (47.7%) in the South (34.8%), and lived 0 to 5 miles (27.9%) from the treating facility. A majority received brachytherapy (90.3%). From 2004 to 2011, brachytherapy use decreased from 96.7% to 86.1%, whereas intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) use increased from 3.3% to 13.9% in the same period (P<.01). Factors associated with decreased brachytherapy utilization included older age, stage IVA disease, smaller tumor size, later year of diagnosis, lower-volume treatment centers, and facility type. After controlling for significant factors from survival analyses, IMRT or SBRT boost resulted in inferior overall survival (hazard ratio, 1.86; 95% confidence interval, 1.35-2.55; P<.01) as compared with brachytherapy. In fact, the survival detriment associated with IMRT or SBRT boost was stronger than that associated with excluding chemotherapy (hazard ratio, 1.61′ 95% confidence interval, 1.27-2.04′ P<.01). Conclusions: Consolidation brachytherapy is a critical treatment component for locally advanced cervical cancer; however, there has been declining utilization of brachytherapy. Increased use of IMRT and SBRT boost coupled with increased mortality risk should raise concerns about utilizing these approaches over brachytherapy.« less

  4. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    A calculational program utilizing data from radiation dosimetry measurements aboard the Long Duration Exposure Facility (LDEF) satellite to reduce the uncertainties in current models defining the ionizing radiation environment is in progress. Most of the effort to date has been on using LDEF radiation dose measurements to evaluate models defining the geomagnetically trapped radiation, which has provided results applicable to radiation design assessments being performed for Space Station Freedom. Plans for future data comparisons, model evaluations, and assessments using additional LDEF data sets (LET spectra, induced radioactivity, and particle spectra) are discussed.

  5. RADIATION WAVE DETECTOR

    DOEpatents

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  6. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  7. Physical Conditions of Eta Car Complex Environment Revealed From Photoionization Modeling

    NASA Technical Reports Server (NTRS)

    Verner, E. M.; Bruhweiler, F.; Nielsen, K. E.; Gull, T.; Kober, G. Vieira; Corcoran, M.

    2006-01-01

    The very massive star, Eta Carinae, is enshrouded in an unusual complex environment of nebulosities and structures. The circumstellar gas gives rise to distinct absorption and emission components at different velocities and distances from the central source(s). Through photoionization modeling, we find that the radiation field from the more massive B-star companion supports the low ionization structure throughout the 5.54 year period. The radiation field of an evolved O-star is required to produce the higher ionization . emission seen across the broad maximum. Our studies utilize the HST/STIS data and model calculations of various regimes from doubly ionized species (T= 10,000K) to the low temperature (T = 760 K) conditions conductive to molecule formation (CH and OH). Overall analysis suggests the high depletion in C and O and the enrichment in He and N. The sharp molecular and ionic absorptions in this extensively CNO - processed material offers a unique environment for studying the chemistry, dust formation processes, and nucleosynthesis in the ejected layers of a highly evolved massive star.

  8. Modeling and Assimilating Ocean Color Radiances

    NASA Technical Reports Server (NTRS)

    Gregg, Watson

    2012-01-01

    Radiances are the source of information from ocean color sensors to produce estimates of biological and geochemical constituents. They potentially provide information on various other aspects of global biological and chemical systems, and there is considerable work involved in deriving new information from these signals. Each derived product, however, contains errors that are derived from the application of the radiances, above and beyond the radiance errors. A global biogeochemical model with an explicit spectral radiative transfer model is used to investigate the potential of assimilating radiances. The results indicate gaps in our understanding of radiative processes in the oceans and their relationships with biogeochemical variables. Most important, detritus optical properties are not well characterized and produce important effects of the simulated radiances. Specifically, there does not appear to be a relationship between detrital biomass and its optical properties, as there is for chlorophyll. Approximations are necessary to get beyond this problem. In this reprt we will discuss the challenges in modeling and assimilation water-leaving radiances and the prospects for improving our understanding of biogeochemical process by utilizing these signals.

  9. Statistical analysis of radiation dose derived from ingestion of foods

    NASA Astrophysics Data System (ADS)

    Dougherty, Ward L.

    2001-09-01

    This analysis undertook the task of designing and implementing a methodology to determine an individual's probabilistic radiation dose from ingestion of foods utilizing Crystal Ball. A dietary intake model was determined by comparing previous existing models. Two principal radionuclides were considered-Lead210 (Pb-210) and Radium 226 (Ra-226). Samples from three different local grocery stores-Publix, Winn Dixie, and Albertsons-were counted on a gamma spectroscopy system with a GeLi detector. The same food samples were considered as those in the original FIPR database. A statistical analysis, utilizing the Crystal Ball program, was performed on the data to assess the most accurate distribution to use for these data. This allowed a determination of a radiation dose to an individual based on the above-information collected. Based on the analyses performed, radiation dose for grocery store samples was lower for Radium-226 than FIPR debris analyses, 2.7 vs. 5.91 mrem/yr. Lead-210 had a higher dose in the grocery store sample than the FIPR debris analyses, 21.4 vs. 518 mrem/yr. The output radiation dose was higher for all evaluations when an accurate estimation of distributions for each value was considered. Radium-226 radiation dose for FIPR and grocery rose to 9.56 and 4.38 mrem/yr. Radiation dose from ingestion of Pb-210 rose to 34.7 and 854 mrem/yr for FIPR and grocery data, respectively. Lead-210 was higher than initial doses for many reasons: Different peak examined, lower edge of detection limit, and minimum detectable concentration was considered. FIPR did not utilize grocery samples as a control because they calculated radiation dose that appeared unreasonably high. Consideration of distributions with the initial values allowed reevaluation of radiation does and showed a significant difference to original deterministic values. This work shows the value and importance of considering distributions to ensure that a person's radiation dose is accurately calculated. Probabilistic dose methodology was proved to be a more accurate and realistic method of radiation dose determination. This type of methodology provides a visual presentation of dose distribution that can be a vital aid in risk methodology.

  10. Editorial

    NASA Astrophysics Data System (ADS)

    Al-Sheikhly, Mohamad; Varca, Gustavo H. C.

    2018-02-01

    We are very proud and delighted to introduce this special issue of Radiation Physics and Chemistry (RPC). It is indeed the fruit of an outstanding, collective effort by radiation chemists and physicists, as well as radiation processing and nuclear engineers, who presented their research at the 18th International Meeting of Radiation Processing (IMRP) 2016 in Vancouver, Canada. This valuable issue covers a wide range of reported new results in the field of radiation chemistry, physics, and processing. Eminent scientists carefully selected these invited papers, followed by a thorough reviewing process. This issue presents the selected sixteen invited papers. These papers cover fundamental radiation chemistry mechanisms and kinetics, radiation-induced polymerization and kinetics, radiation effects on synthetic and natural polymers, radiation processing control and quality assurances, radiation-induced preservation of food, radiation sterilization, radiation dosimetry, and radiation synthesis of various fabrics for remediation of nuclear isotopes such as cesium.

  11. Radiation response and electrical properties of polymer energy storage capacitors: PVF2, Polysulfone, and Mylar

    NASA Technical Reports Server (NTRS)

    Edwards, L. R.

    1981-01-01

    Efforts were made to develop a polymer film capacitor that is tolerant to radiation. The capacitors are to be utilized in a high voltage pulse discharge application. Radiation response data at high dose/dose rate levels are presented for polyvinylidene fluoride (PVF2), polysulfone, and Mylar. The results show that PVF2 is the most radiation tolerant while Mylar is the least tolerant. The data also show that the radiation response is quite dependent on operating electric stress.

  12. Design considerations for combined radiation effects facilities for twelve year outer planet spacecraft voyages

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1972-01-01

    The design considerations influencing the choice and utility of environmental simulation methods and facilities are described, insofar as they relate to the requirements imposed on outer planet spacecraft because of radiation environments to be expected. Possible means for duplicating the radioisotope thermoelectric generator radiation environment, and for duplicating the effects of the trapped radiation belt environment are described, together with an assessment of radiation levels to be expected in the vicinity of an environmental testing chamber when in use.

  13. Implementing and integrating a clinically driven electronic medical record for radiation oncology in a large medical enterprise.

    PubMed

    Kirkpatrick, John P; Light, Kim L; Walker, Robyn M; Georgas, Debra L; Antoine, Phillip A; Clough, Robert W; Cozart, Heidi B; Yin, Fang-Fang; Yoo, Sua; Willett, Christopher G

    2013-01-01

    While our department is heavily invested in computer-based treatment planning, we historically relied on paper-based charts for management of Radiation Oncology patients. In early 2009, we initiated the process of conversion to an electronic medical record (EMR) eliminating the need for paper charts. Key goals included the ability to readily access information wherever and whenever needed, without compromising safety, treatment quality, confidentiality, or productivity. In February, 2009, we formed a multi-disciplinary team of Radiation Oncology physicians, nurses, therapists, administrators, physicists/dosimetrists, and information technology (IT) specialists, along with staff from the Duke Health System IT department. The team identified all existing processes and associated information/reports, established the framework for the EMR system and generated, tested and implemented specific EMR processes. Two broad classes of information were identified: information which must be readily accessed by anyone in the health system versus that used solely within the Radiation Oncology department. Examples of the former are consultation reports, weekly treatment check notes, and treatment summaries; the latter includes treatment plans, daily therapy records, and quality assurance reports. To manage the former, we utilized the enterprise-wide system, which required an intensive effort to design and implement procedures to export information from Radiation Oncology into that system. To manage "Radiation Oncology" data, we used our existing system (ARIA, Varian Medical Systems.) The ability to access both systems simultaneously from a single workstation (WS) was essential, requiring new WS and modified software. As of January, 2010, all new treatments were managed solely with an EMR. We find that an EMR makes information more widely accessible and does not compromise patient safety, treatment quality, or confidentiality. However, compared to paper charts, time required by clinicians to access/enter patient information has substantially increased. While productivity is improving with experience, substantial growth will require better integration of the system components, decreased access times, and improved user interfaces. $127K was spent on new hardware and software; elimination of paper yields projected savings of $21K/year. One year after conversion to an EMR, more than 90% of department staff favored the EMR over the previous paper charts. Successful implementation of a Radiation Oncology EMR required not only the effort and commitment of all functions of the department, but support from senior health system management, corporate IT, and vendors. Realization of the full benefits of an EMR will require experience, faster/better integrated software, and continual improvement in underlying clinical processes.

  14. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  15. Interaction between cytotoxic effects of gamma-radiation and folate deficiency in relation to choline reserves.

    PubMed

    Batra, Vipen; Devasagayam, Thomas Paul Asir

    2009-01-08

    The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. Recent studies have indicated that bio-molecules such as folate and choline might be of radio-protective value as they are, within broad dose ranges, non-toxic to humans and experimental animals. The objective of the present study was to investigate choline dependent adaptive response to potential synergistic cytotoxic effect of folate deficiency and gamma-radiation. Male Swiss mice maintained on folate sufficient diet (FSD) and folate free diet (FFD) based on AIN-93M formula, were subjected to 1-4Gy total body gamma-irradiation. To investigate liver DNA damage, apurinic/apyrimidinic sites (AP sites) were quantified. A significant increase in liver DNA AP sites with concomitant depletion of liver choline reserves was observed when gamma-radiation was combined with folate deficiency. Further work in this direction suggested that cytotoxic interaction between folate deficiency and gamma radiation might induce utilization of choline and choline containing moieties by modifying levels of key regulatory enzymes dihydrofolate reductase (DHFR) and choline oxidase (ChoOx). Another major finding of these studies is that significant liver damage at higher doses of radiation (3-4Gy), might release considerable amounts of choline reserves to serum. In conclusion, a plausible interpretation of the present studies is that folate deprivation and gamma-radiation interact to mobilize additional choline reserves of hepatic tissue, for redistribution to other organs, which could not be utilized by folate deficiency alone. Present results clearly indicated a distinct choline pool in liver and kidney tissues that could be utilized by folate deficient animals only under radiation stress conditions.

  16. NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies

    NASA Technical Reports Server (NTRS)

    Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.

    2018-01-01

    Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.

  17. Electron Radiation Belts of the Solar System

    NASA Astrophysics Data System (ADS)

    Mauk, Barry; Fox, Nicola

    To address the question of what factors dictate similarities and differences between radiation belts, we present comparisons between the electron radiation belt spectra of all five strongly magnetized planets within the solar system: Earth, Jupiter, Saturn, Uranus, and Neptune. We choose the highest intensity observed electron spectrum within each system (highest specifically near 1 MeV) and compare them against expectations based on the so-called Kennel-Petschek limit (KP; 1966) for each system. For evaluating the KP limit, we begin with the new relativis-tically correct formulation of Summers et al. (2009) but then add several refinements of our own. Specifically, we: 1) utilized a much more flexible analytic spectral shape that allows us to accurately fit observed radiation belt spectra; 2) adopt the point of view that the anisotropy parameter is not a free parameter but must take on a minimal value, as originally proposed by Kennel and Petschek (1966); and 3) examine the differential characteristics of the KP limit along the lines of what Schulz and Davidson (1988) performed for the non-relativistic formula-tion. We find that three factors limit the highest electron radiation belt intensities within solar system planetary magnetospheres: a) whistler mode interactions that limit spectral intensities to a differential Kennel-Petschek limit (3 planets); b) the absence of robust acceleration pro-cesses associated with injection dynamics (1 planet); and c) material interactions between the radiation particles and clouds of gas and dust (1 planet).

  18. The Goddard Cumulus Ensemble Model (GCE): Improvements and Applications for Studying Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Stephen E.; Zeng, Xiping; Li, Xiaowen; Matsui, Toshi; Mohr, Karen; Posselt, Derek; Chern, Jiundar; Peters-Lidard, Christa; Norris, Peter M.; hide

    2014-01-01

    Convection is the primary transport process in the Earth's atmosphere. About two-thirds of the Earth's rainfall and severe floods derive from convection. In addition, two-thirds of the global rain falls in the tropics, while the associated latent heat release accounts for three-fourths of the total heat energy for the Earth's atmosphere. Cloud-resolving models (CRMs) have been used to improve our understanding of cloud and precipitation processes and phenomena from micro-scale to cloud-scale and mesoscale as well as their interactions with radiation and surface processes. CRMs use sophisticated and realistic representations of cloud microphysical processes and can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems. CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. The Goddard Cumulus Ensemble model (GCE) has been developed and improved at NASA/Goddard Space Flight Center over the past three decades. It is amulti-dimensional non-hydrostatic CRM that can simulate clouds and cloud systems in different environments. Early improvements and testing were presented in Tao and Simpson (1993) and Tao et al. (2003a). A review on the application of the GCE to the understanding of precipitation processes can be found in Simpson and Tao (1993) and Tao (2003). In this paper, recent model improvements (microphysics, radiation and land surface processes) are described along with their impact and performance on cloud and precipitation events in different geographic locations via comparisons with observations. In addition, recent advanced applications of the GCE are presented that include understanding the physical processes responsible for diurnal variation, examining the impact of aerosols (cloud condensation nuclei or CCN and ice nuclei or IN) on precipitation processes, utilizing a satellite simulator to improve the microphysics, providing better simulations for satellite-derived latent heating retrieval, and coupling with a general circulation model to improve the representation of precipitation processes.

  19. MO-B-BRB-03: Systems Engineering Tools for Treatment Planning Process Optimization in Radiation Medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapur, A.

    The radiotherapy treatment planning process has evolved over the years with innovations in treatment planning, treatment delivery and imaging systems. Treatment modality and simulation technologies are also rapidly improving and affecting the planning process. For example, Image-guided-radiation-therapy has been widely adopted for patient setup, leading to margin reduction and isocenter repositioning after simulation. Stereotactic Body radiation therapy (SBRT) and Radiosurgery (SRS) have gradually become the standard of care for many treatment sites, which demand a higher throughput for the treatment plans even if the number of treatments per day remains the same. Finally, simulation, planning and treatment are traditionally sequentialmore » events. However, with emerging adaptive radiotherapy, they are becoming more tightly intertwined, leading to iterative processes. Enhanced efficiency of planning is therefore becoming more critical and poses serious challenge to the treatment planning process; Lean Six Sigma approaches are being utilized increasingly to balance the competing needs for speed and quality. In this symposium we will discuss the treatment planning process and illustrate effective techniques for managing workflow. Topics will include: Planning techniques: (a) beam placement, (b) dose optimization, (c) plan evaluation (d) export to RVS. Planning workflow: (a) import images, (b) Image fusion, (c) contouring, (d) plan approval (e) plan check (f) chart check, (g) sequential and iterative process Influence of upstream and downstream operations: (a) simulation, (b) immobilization, (c) motion management, (d) QA, (e) IGRT, (f) Treatment delivery, (g) SBRT/SRS (h) adaptive planning Reduction of delay between planning steps with Lean systems due to (a) communication, (b) limited resource, (b) contour, (c) plan approval, (d) treatment. Optimizing planning processes: (a) contour validation (b) consistent planning protocol, (c) protocol/template sharing, (d) semi-automatic plan evaluation, (e) quality checklist for error prevention, (f) iterative process, (g) balance of speed and quality Learning Objectives: Gain familiarity with the workflow of modern treatment planning process. Understand the scope and challenges of managing modern treatment planning processes. Gain familiarity with Lean Six Sigma approaches and their implementation in the treatment planning workflow.« less

  20. Neutron irradiation and damage assessment of plastic scintillators of the Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Mdhluli, J. E.; Mellado, B.; Sideras-Haddad, E.

    2017-01-01

    Following the comparative study of proton induced radiation damage on various plastic scintillator samples from the ATLAS-CERN detector, a study on neutron irradiation and damage assessment on the same type of samples will be conducted. The samples will be irradiated with different dose rates of neutrons produced in favourable nuclear reactions using a radiofrequency linear particle accelerator as well as from the SAFARI nuclear reactor at NECSA. The MCNP 5 code will be utilized in simulating the neutron transport for determining the dose rate. Light transmission and light yield tests will be performed in order to assess the radiation damage on the scintillators. In addition, Raman spectroscopy and Electron Paramagnetic Resonance (EPR) analysis will be used to characterize the samples after irradiation. The project aims to extent these studies to include radiation assessment damage of any component that processes the scintillating light and deteriorates the quantum efficiency of the Tilecal detector, namely, photomultiplier tubes, wavelength shifting optical fibres and the readout electronics. They will also be exposed to neutron irradiation and the damage assessed in the same manner.

  1. Development and application of a set of mesh-based and age-dependent Chinese family phantoms for radiation protection dosimetry: Preliminary Data for external photon beams

    NASA Astrophysics Data System (ADS)

    Pi, Yifei; Zhang, Lian; Huo, Wanli; Feng, Mang; Chen, Zhi; Xu, X. George

    2017-09-01

    A group of mesh-based and age-dependent family phantoms for Chinese populations were developed in this study. We implemented a method for deforming original RPI-AM and RPI-AF models into phantoms of different ages: 5, 10 ,15 and adult. More than 120 organs for each model were processed to match with the values of the Chinese reference parameters within 0.5%. All of these phantoms were then converted to voxel format for Monte Carlo simulations. Dose coefficients for adult models were counted to compare with those of RPI-AM and RPI-AF. The results show that there are significant differences between absorbed doses of RPI phantoms and these of our adult phantoms at low energies. Comparisons for the dose coefficients among different ages and genders were also made. it was found that teenagers receive more radiation doses than adults under the same irradiation condition. This set of phantoms can be utilized to estimate dosimetry for Chinese population for radiation protection, medical imaging, and radiotherapy.

  2. Spatio-temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    DOE PAGES

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian; ...

    2018-04-03

    Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less

  3. Spatio-temporal Convergence of Maximum Daily Light-Use Efficiency Based on Radiation Absorption by Canopy Chlorophyll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yao; Xiao, Xiangming; Wolf, Sebastian

    Light-use efficiency (LUE), which quantifies the plants’ efficiency in utilizing solar radiation for photosynthetic carbon fixation, is an important factor for gross primary production (GPP) estimation. Here we use satellite-based solar-induced chlorophyll fluorescence (SIF) as a proxy for photosynthetically active radiation absorbed by chlorophyll (APAR chl) and derive an estimation of the fraction of APAR chl (fPAR chl) from four remotely-sensed vegetation indicators. By comparing maximum LUE estimated at different scales from 127 eddy flux sites, we found that the maximum daily LUE based on PAR absorption by canopy chlorophyll (εmore » $$chl\\atop{max}$$), unlike other expressions of LUE, tends to converge across biome types. The photosynthetic seasonality in tropical forests can also be tracked by the change of fPAR chl, suggesting the corresponding (ε$$chl\\atop{max}$$}$) to have less seasonal variation. Finally, this spatio-temporal convergence of LUE derived from fPAR chl can be used to build simple but robust GPP models and to better constrain process-based models.« less

  4. Sound source identification and sound radiation modeling in a moving medium using the time-domain equivalent source method.

    PubMed

    Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang

    2015-05-01

    Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.

  5. Active/Passive Control of Sound Radiation from Panels using Constrained Layer Damping

    NASA Technical Reports Server (NTRS)

    Gibbs, Gary P.; Cabell, Randolph H.

    2003-01-01

    A hybrid passive/active noise control system utilizing constrained layer damping and model predictive feedback control is presented. This system is used to control the sound radiation of panels due to broadband disturbances. To facilitate the hybrid system design, a methodology for placement of constrained layer damping which targets selected modes based on their relative radiated sound power is developed. The placement methodology is utilized to determine two constrained layer damping configurations for experimental evaluation of a hybrid system. The first configuration targets the (4,1) panel mode which is not controllable by the piezoelectric control actuator, and the (2,3) and (5,2) panel modes. The second configuration targets the (1,1) and (3,1) modes. The experimental results demonstrate the improved reduction of radiated sound power using the hybrid passive/active control system as compared to the active control system alone.

  6. Development and characterization of acrylated palm oil nanoparticles using ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajau, Rida; Yunus, Wan Md Zin Wan; Dahlan, Khairul Zaman Mohd

    2012-11-27

    In this study, the utilization of radiation crosslinking methods which are known as intermolecular and intramolecular crosslinking for the formation of nanoparticles of Acrylated Palm Oil (APO) in the microemulsion system that also consists of Pluronic F-127 (PF-127) surfactant was demonstrated. This microemulsion system was subjected to the ionizing radiation i.e. gamma irradiation at different doses to form the crosslinked APO nanoparticles. The effects of radiation doses on the size of APO nanoparticles were investigated using the Dynamic Light Scattering (DLS) method and their images were viewed using the Transmission Electron Microcrospy (TEM). The Fourier Transform Infra-Red (FTIR) spectroscopy wasmore » used to characterize the chemical structure and the crosslinking conversion of carbon-carbon double bond (-C = C-) of the APO nanoparticles after irradiation. As a result, the size of the APO nanoparticle decreased when the irradiation dose increased. Reduce in size might be due to the effect of intramolecular crosslinking reaction of the APO nanoparticles during irradiation process. Meanwhile, the intramolecular -C C- crosslinking conversion percentage was increased at doses below 1kGy before decreasing at the higher dose that might due to the intermolecular crosslinking of the macromolecules. This study showed that radiation crosslinking methods of polymerization and crosslinking in the microemulsion were found to be promising for the synthesis of nanoparticles.« less

  7. Activating Photodynamic Therapy in vitro with Cerenkov Radiation Generated from Yttrium-90

    PubMed Central

    Hartl, Brad A.; Hirschberg, Henry; Marcu, Laura; Cherry, Simon R.

    2017-01-01

    The translation of photodynamic therapy (PDT) to the clinical setting has primarily been limited to easily accessible and/or superficial diseases, for which traditional light delivery can be performed noninvasively. Cerenkov radiation, as generated from medically relevant radionuclides, has been suggested as a means to deliver light to deeper tissues noninvasively to overcome this depth limitation. This article investigates the utility of Cerenkov radiation, as generated from the radionuclide yttrium-90, for activating the PDT process using clinically approved aminolevulinic acid at 1.0 mm and also the more efficient porphyrin-based photosensitizer mesotetraphenylporphine with two sulfonate groups on adjacent phenyl rings (TPPS2a) at 1.2 μM. Experiments were conducted with monolayer cultured glioma and breast tumor cell lines. Although aminolevulinic acid proved to be ineffective for generating a therapeutic effect at all but the highest activity levels, TPPS2a produced at least a 20% therapeutic effect at activities ranging from 6 to 60 μCi/well for the C6 glioma cell line. Importantly, these results demonstrate for the first time, to our knowledge, that Cerenkov radiation generated from a radionuclide can be used to activate PDT using clinically relevant photosensitizers. These results therefore provide evidence that it may be possible to generate a phototherapeutic effect in vivo using Cerenkov radiation and clinically relevant photosensitizers. PMID:27481495

  8. Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.

    2000-01-01

    The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.

  9. Improved estimations of gross primary production using satellite-derived photosynthetically active radiation

    NASA Astrophysics Data System (ADS)

    Cai, Wenwen; Yuan, Wenping; Liang, Shunlin; Zhang, Xiaotong; Dong, Wenjie; Xia, Jiangzhou; Fu, Yang; Chen, Yang; Liu, Dan; Zhang, Qiang

    2014-01-01

    Terrestrial vegetation gross primary production (GPP) is an important variable in determining the global carbon cycle as well as the interannual variability of the atmospheric CO2 concentration. The accuracy of GPP simulation is substantially affected by several critical model drivers, one of the most important of which is photosynthetically active radiation (PAR) which directly determines the photosynthesis processes of plants. In this study, we examined the impacts of uncertainties in radiation products on GPP estimates in China. Two satellite-based radiation products (GLASS and ISCCP), three reanalysis products (MERRA, ECMWF, and NCEP), and a blended product of reanalysis and observations (Princeton) were evaluated based on observations at hundreds of sites. The results revealed the highest accuracy for two satellite-based products over various temporal and spatial scales. The three reanalysis products and the Princeton product tended to overestimate radiation. The GPP simulation driven by the GLASS product exhibited the highest consistency with those derived from site observations. Model validation at 11 eddy covariance sites suggested the highest model performance when utilizing the GLASS product. Annual GPP in China driven by GLASS was 5.55 Pg C yr-1, which was 68.85%-94.87% of those derived from the other products. The results implied that the high spatial resolution, satellite-derived GLASS PAR significantly decreased the uncertainty of the GPP estimates at the regional scale.

  10. The CGL1 (HeLa × Normal Skin Fibroblast) Human Hybrid Cell Line: A History of Ionizing Radiation Induced Effects on Neoplastic Transformation and Novel Future Directions in SNOLAB.

    PubMed

    Pirkkanen, Jake S; Boreham, Douglas R; Mendonca, Marc S

    2017-10-01

    Cellular transformation assays have been utilized for many years as powerful in vitro methods for examining neoplastic transformation potential/frequency and mechanisms of carcinogenesis for both chemical and radiological carcinogens. These mouse and human cell based assays are labor intensive but do provide quantitative information on the numbers of neoplastically transformed foci produced after carcinogenic exposure and potential molecular mechanisms involved. Several mouse and human cell systems have been generated to undertake these studies, and they vary in experimental length and endpoint assessment. The CGL1 human cell hybrid neoplastic model is a non-tumorigenic pre-neoplastic cell that was derived from the fusion of HeLa cervical cancer cells and a normal human skin fibroblast. It has been utilized for the several decades to study the carcinogenic/neoplastic transformation potential of a variety of ionizing radiation doses, dose rates and radiation types, including UV, X ray, gamma ray, neutrons, protons and alpha particles. It is unique in that the CGL1 assay has a relatively short assay time of 18-21 days, and rather than relying on morphological endpoints to detect neoplastic transformation utilizes a simple staining method that detects the tumorigenic marker alkaline phosphatase on the neoplastically transformed cells cell surface. In addition to being of human origin, the CGL1 assay is able to detect and quantify the carcinogenic potential of very low doses of ionizing radiation (in the mGy range), and utilizes a neoplastic endpoint (re-expression of alkaline phosphatase) that can be detected on both viable and paraformaldehyde fixed cells. In this article, we review the history of the CGL1 neoplastic transformation model system from its initial development through the wide variety of studies examining the effects of all types of ionizing radiation on neoplastic transformation. In addition, we discuss the potential of the CGL1 model system to investigate the effects of near zero background radiation levels available within the radiation biology lab we have established in SNOLAB.

  11. Stokes injected Raman capillary waveguide amplifier

    DOEpatents

    Kurnit, Norman A.

    1980-01-01

    A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.

  12. Radiation area monitor device and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni

    A radiation area monitor device/method, utilizing: a radiation sensor having a directional radiation sensing capability; a rotation mechanism operable for selectively rotating the radiation sensor such that the directional radiation sensing capability selectively sweeps an area of interest; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the directional radiation sensing capability selectively sweeps the area of interest. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor; and amore » second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.« less

  13. Time-course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow.

    PubMed

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei-Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes; Silverman, Daniel H S

    2008-06-23

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non-irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time-course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3-12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time-course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually.

  14. Time‐course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow

    PubMed Central

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei‐Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes

    2008-01-01

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time‐course of [18F]FDG uptake in normal tissues using small animal‐dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG‐PET scans were acquired for each mouse at 0 (pre‐radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non‐irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time‐course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3–12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p<0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2–8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p=0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time‐course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually. PACs Number: 87.50.‐a

  15. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    USGS Publications Warehouse

    Haas, Kevin A.; Warner, John C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales.

  16. Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS

    USGS Publications Warehouse

    Haas, K.A.; Warner, J.C.

    2009-01-01

    Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.

  17. Characterization of Outer Space Radiation Induced Changes in Extremophiles Utilizing Deep Space Gateway Opportunities

    NASA Astrophysics Data System (ADS)

    Venkateswaran, K.; Wang, C.; Smith, D.; Mason, C.; Landry, K.; Rettberg, P.

    2018-02-01

    Extremophilic microbial survival, adaptation, biological functions, and molecular mechanisms associated with outer space radiation can be tested by exposing them onto Deep Space Gateway hardware (inside/outside) using microbiology and molecular biology techniques.

  18. Double stratification effects in chemically reactive squeezed Sutterby fluid flow with thermal radiation and mixed convection

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Farooq, M.; Javed, M.; Anjum, Aisha

    2018-03-01

    A current analysis is carried out to study theoretically the mixed convection characteristics in squeezing flow of Sutterby fluid in squeezed channel. The constitutive equation of Sutterby model is utilized to characterize the rheology of squeezing phenomenon. Flow characteristics are explored with dual stratification. In flowing fluid which contains heat and mass transport, the first order chemical reaction and radiative heat flux affect the transport phenomenon. The systems of non-linear governing equations have been modulating which then solved by mean of convergent approach (Homotopy Analysis Method). The graphs are reported and illustrated for emerging parameters. Through graphical explanations, drag force, rate of heat and mass transport are conversed for different pertinent parameters. It is found that heat and mass transport rate decays with dominant double stratified parameters and chemical reaction parameter. The present two-dimensional examination is applicable in some of the engineering processes and industrial fluid mechanics.

  19. Operator based integration of information in multimodal radiological search mission with applications to anomaly detection

    NASA Astrophysics Data System (ADS)

    Benedetto, J.; Cloninger, A.; Czaja, W.; Doster, T.; Kochersberger, K.; Manning, B.; McCullough, T.; McLane, M.

    2014-05-01

    Successful performance of radiological search mission is dependent on effective utilization of mixture of signals. Examples of modalities include, e.g., EO imagery and gamma radiation data, or radiation data collected during multiple events. In addition, elevation data or spatial proximity can be used to enhance the performance of acquisition systems. State of the art techniques in processing and exploitation of complex information manifolds rely on diffusion operators. Our approach involves machine learning techniques based on analysis of joint data- dependent graphs and their associated diffusion kernels. Then, the significant eigenvectors of the derived fused graph Laplace and Schroedinger operators form the new representation, which provides integrated features from the heterogeneous input data. The families of data-dependent Laplace and Schroedinger operators on joint data graphs, shall be integrated by means of appropriately designed fusion metrics. These fused representations are used for target and anomaly detection.

  20. ERBE Geographic Scene and Monthly Snow Data

    NASA Technical Reports Server (NTRS)

    Coleman, Lisa H.; Flug, Beth T.; Gupta, Shalini; Kizer, Edward A.; Robbins, John L.

    1997-01-01

    The Earth Radiation Budget Experiment (ERBE) is a multisatellite system designed to measure the Earth's radiation budget. The ERBE data processing system consists of several software packages or sub-systems, each designed to perform a particular task. The primary task of the Inversion Subsystem is to reduce satellite altitude radiances to fluxes at the top of the Earth's atmosphere. To accomplish this, angular distribution models (ADM's) are required. These ADM's are a function of viewing and solar geometry and of the scene type as determined by the ERBE scene identification algorithm which is a part of the Inversion Subsystem. The Inversion Subsystem utilizes 12 scene types which are determined by the ERBE scene identification algorithm. The scene type is found by combining the most probable cloud cover, which is determined statistically by the scene identification algorithm, with the underlying geographic scene type. This Contractor Report describes how the geographic scene type is determined on a monthly basis.

  1. TID Simulation of Advanced CMOS Devices for Space Applications

    NASA Astrophysics Data System (ADS)

    Sajid, Muhammad

    2016-07-01

    This paper focuses on Total Ionizing Dose (TID) effects caused by accumulation of charges at silicon dioxide, substrate/silicon dioxide interface, Shallow Trench Isolation (STI) for scaled CMOS bulk devices as well as at Buried Oxide (BOX) layer in devices based on Silicon-On-Insulator (SOI) technology to be operated in space radiation environment. The radiation induced leakage current and corresponding density/concentration electrons in leakage current path was presented/depicted for 180nm, 130nm and 65nm NMOS, PMOS transistors based on CMOS bulk as well as SOI process technologies on-board LEO and GEO satellites. On the basis of simulation results, the TID robustness analysis for advanced deep sub-micron technologies was accomplished up to 500 Krad. The correlation between the impact of technology scaling and magnitude of leakage current with corresponding total dose was established utilizing Visual TCAD Genius program.

  2. Residual strain gradient determination in metal matrix composites by synchrotron X-ray energy dispersive diffraction

    NASA Technical Reports Server (NTRS)

    Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.

    1993-01-01

    An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.

  3. Short-pulse laser interactions with disordered materials and liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phinney, L.M.; Goldman, C.H.; Longtin, J.P.

    High-power, short-pulse lasers in the picosecond and subpicosecond range are utilized in an increasing number of technologies, including materials processing and diagnostics, micro-electronics and devices, and medicine. In these applications, the short-pulse radiation interacts with a wide range of media encompassing disordered materials and liquids. Examples of disordered materials include porous media, polymers, organic tissues, and amorphous forms of silicon, silicon nitride, and silicon dioxide. In order to accurately model, efficiently control, and optimize short-pulse, laser-material interactions, a thorough understanding of the energy transport mechanisms is necessary. Thus, fractals and percolation theory are used to analyze the anomalous diffusion regimemore » in random media. In liquids, the thermal aspects of saturable and multiphoton absorption are examined. Finally, a novel application of short-pulse laser radiation to reduce surface adhesion forces in microstructures through short-pulse laser-induced water desorption is presented.« less

  4. Photon up-conversion increases biomass yield in Chlorella vulgaris.

    PubMed

    Menon, Kavya R; Jose, Steffi; Suraishkumar, Gadi K

    2014-12-01

    Photon up-conversion, a process whereby lower energy radiations are converted to higher energy levels via the use of appropriate phosphor systems, was employed as a novel strategy for improving microalgal growth and lipid productivity. Photon up-conversion enables the utilization of regions of the solar spectrum, beyond the typical photosynthetically active radiation, that are usually wasted or are damaging to the algae. The effects of up-conversion of red light by two distinct sets of up-conversion phosphors were studied in the model microalgae Chlorella vulgaris. Up-conversion by set 1 phosphors led to a 2.85 fold increase in biomass concentration and a 3.2 fold increase in specific growth rate of the microalgae. While up-conversion by set 2 phosphors resulted in a 30% increase in biomass and 12% increase in specific intracellular neutral lipid, while the specific growth rates were comparable to that of the control. Furthermore, up-conversion resulted in higher levels of specific intracellular reactive oxygen species in C. vulgaris. Up-conversion of red light (654 nm) was shown to improve biomass yields in C. vulgaris. In principle, up-conversion can be used to increase the utilization range of the electromagnetic spectrum for improved cultivation of photosynthetic systems such as plants, algae, and microalgae. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Selected bibliography of terrestrial freshwater, and marine radiation ecology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, V.; Whicker, F.W.

    1975-01-01

    An extensive bibliography is presented of publications related to field or laboratory studies of wild species of plants and animals with respect to radiation effects or metabolic studies involving radionuclides. The references are listed under the following headings: status and needs of radiation ecology; environmental radioactivity; radionuclide concentration; ionizing radiation effects; techniques utilizing radionuclides and ionizing radiation in ecology; measurement of ionizing radiation; peaceful uses of atomic energy; waste disposal; nuclear testing and ecological consequences of a nuclear war; glossaries, standards, and licensing procedures; reviews of radionuclides in the environment; and sources of information. (HLW)

  6. Radiation area monitor device and method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vencelj, Matjaz; Stowe, Ashley C.; Petrovic, Toni

    A radiation area monitor device/method, utilizing: a radiation sensor; a rotating radiation shield disposed about the radiation sensor, wherein the rotating radiation shield defines one or more ports that are transparent to radiation; and a processor operable for analyzing and storing a radiation fingerprint acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor. Optionally, the radiation sensor includes a gamma and/or neutron radiation sensor. The device/method selectively operates in: a first supervised mode during which a baseline radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated aboutmore » the radiation sensor; and a second unsupervised mode during which a subsequent radiation fingerprint is acquired by the radiation sensor as the rotating radiation shield is rotated about the radiation sensor, wherein the subsequent radiation fingerprint is compared to the baseline radiation fingerprint and, if a predetermined difference threshold is exceeded, an alert is issued.« less

  7. Radwaste desk reference - Volume 3, Part 2: Liquid waste management. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deltete, D.; Fisher, S.; Kelly, J.J.

    1994-05-01

    EPRI began, in late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOT transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a questionmore » and answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2, included here, addresses liquid waste management. It includes extensive information and operating practices related to liquid waste generation and control, liquid waste processing systems at existing U.S. nuclear plants, processes for managing wet wastes (handling, dewatering, solidifying, processing, and packaging), and liquid waste measurement and analysis.« less

  8. Terahertz plasmonic laser radiating in an ultra-narrow beam

    DOE PAGES

    Wu, Chongzhao; Khanal, Sudeep; Reno, John L.; ...

    2016-07-07

    Plasmonic lasers (spasers) generate coherent surface plasmon polaritons (SPPs) and could be realized at subwavelength dimensions in metallic cavities for applications in nanoscale optics. Plasmonic cavities are also utilized for terahertz quantum-cascade lasers (QCLs), which are the brightest available solid-state sources of terahertz radiation. A long standing challenge for spasers that are utilized as nanoscale sources of radiation, is their poor coupling to the far-field radiation. Unlike conventional lasers that could produce directional beams, spasers have highly divergent radiation patterns due to their subwavelength apertures. Here, we theoretically and experimentally demonstrate a new technique for implementing distributed feedback (DFB) thatmore » is distinct from any other previously utilized DFB schemes for semiconductor lasers. The so-termed antenna-feedback scheme leads to single-mode operation in plasmonic lasers, couples the resonant SPP mode to a highly directional far-field radiation pattern, and integrates hybrid SPPs in surrounding medium into the operation of the DFB lasers. Experimentally, the antenna-feedback method, which does not require the phase matching to a well-defined effective index, is implemented for terahertz QCLs, and single-mode terahertz QCLs with a beam divergence as small as 4°×4° are demonstrated, which is the narrowest beam reported for any terahertz QCL to date. Moreover, in contrast to a negligible radiative field in conventional photonic band-edge lasers, in which the periodicity follows the integer multiple of half-wavelengths inside the active medium, antenna-feedback breaks this integer limit for the first time and enhances the radiative field of the lasing mode. Terahertz lasers with narrow-beam emission will find applications for integrated as well as standoff terahertz spectroscopy and sensing. Furthermore, the antenna-feedback scheme is generally applicable to any plasmonic laser with a Fabry–Perot cavity irrespective of its operating wavelength and could bring plasmonic lasers closer to practical applications.« less

  9. Reinforcing the role of the conventional C-arm - a novel method for simplified distal interlocking

    PubMed Central

    2012-01-01

    Background The common practice for insertion of distal locking screws of intramedullary nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure of the patient and the surgical personnel. A new concept is introduced utilizing information from within conventional radiographic images to help accurately guide the surgeon to place the interlocking bolt into the interlocking hole. The newly developed technique was compared to conventional freehand in an operating room (OR) like setting on human cadaveric lower legs in terms of operating time and radiation exposure. Methods The proposed concept (guided freehand), generally based on the freehand gold standard, additionally guides the surgeon by means of visible landmarks projected into the C-arm image. A computer program plans the correct drilling trajectory by processing the lens-shaped hole projections of the interlocking holes from a single image. Holes can be drilled by visually aligning the drill to the planned trajectory. Besides a conventional C-arm, no additional tracking or navigation equipment is required. Ten fresh frozen human below-knee specimens were instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland). The implants were distally locked by performing the newly proposed technique as well as the conventional freehand technique on each specimen. An orthopedic resident surgeon inserted four distal screws per procedure. Operating time, number of images and radiation time were recorded and statistically compared between interlocking techniques using non-parametric tests. Results A 58% reduction in number of taken images per screw was found for the guided freehand technique (7.4 ± 3.4) (mean ± SD) compared to the freehand technique (17.6 ± 10.3) (p < 0.001). Total radiation time (all 4 screws) was 55% lower for the guided freehand technique compared to conventional freehand (p = 0.001). Operating time per screw (from first shot to screw tightened) was on average 22% reduced by guided freehand (p = 0.018). Conclusions In an experimental setting, the newly developed guided freehand technique for distal interlocking has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method utilizes established clinical workflows and does not require cost intensive add-on devices or extensive training. The underlying principle carries potential to assist implant positioning in numerous other applications within orthopedics and trauma from screw insertions to placement of plates, nails or prostheses. PMID:22276698

  10. How gamma radiation processing systems are benefiting from the latest advances in information technology

    NASA Astrophysics Data System (ADS)

    Gibson, Wayne H.; Levesque, Daniel

    2000-03-01

    This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.

  11. Adapting the Reconfigurable SpaceCube Processing System for Multiple Mission Applications

    NASA Technical Reports Server (NTRS)

    Petrick, Dave

    2014-01-01

    This paper will detail the use of SpaceCube in multiple space flight applications including the Hubble Space Telescope Servicing Mission 4 (HST-SM4), an International Space Station (ISS) radiation test bed experiment, and the main avionics subsystem for two separate ISS attached payloads. Each mission has had varying degrees of data processing complexities, performance requirements, and external interfaces. We will show the methodology used to minimize the changes required to the physical hardware, FPGA designs, embedded software interfaces, and testing.This paper will summarize significant results as they apply to each mission application. In the HST-SM4 application we utilized the FPGA resources to accelerate portions of the image processing algorithms more than 25 times faster than a standard space processor in order to meet computational speed requirements. For the ISS radiation on-orbit demonstration, the main goal is to show that we can rely on the commercial FPGAs and processors in a space environment. We describe our FPGA and processor radiation mitigation strategies that have resulted in our eight PowerPCs being available and error free for more than 99.99 of the time over the period of four years. This positive data and proven reliability of the SpaceCube on ISS resulted in the Department of Defense (DoD) selecting SpaceCube, which is replacing an older and slower computer currently used on ISS, as the main avionics for two upcoming ISS experiment campaigns. This paper will show how we quickly reconfigured the SpaceCube system to meet the more stringent reliability requirements

  12. Effect of Radiological Countermeasures on Subjective Well-Being and Radiation Anxiety after the 2011 Disaster: The Fukushima Health Management Survey.

    PubMed

    Murakami, Michio; Takebayashi, Yoshitake; Takeda, Yoshihito; Sato, Akiko; Igarashi, Yasumasa; Sano, Kazumi; Yasutaka, Tetsuo; Naito, Wataru; Hirota, Sumire; Goto, Aya; Ohira, Tetsuya; Yasumura, Seiji; Tanigawa, Koichi

    2018-01-12

    After the Fukushima Daiichi Nuclear Power Station accident in 2011, concerns about radiation exposure and decline in subjective well-being have been reported. To tackle these problems, various countermeasures in relation to radiation have been implemented. In this study, we comprehensively evaluated the effects of radiological countermeasures on subjective well-being (e.g., satisfaction with life (SWL) and emotional well-being) and radiation anxiety, through a questionnaire survey targeting Fukushima residents ( N = 1023). Propensity scores matching was applied to evaluate significant effects of radiological countermeasures on subjective well-being and radiation anxiety. Among the radiological countermeasures, thyroid examination, whole body counter, and air dose monitoring showed the highest proportions of participation, utilization, and useful evaluation, suggesting a high degree of public attention focused on these countermeasures. The basic survey was associated with significant increases in SWL and self-rated health (SH). Thyroid examination was significantly associated with not only a reduction in radiation anxiety but also an increase of emotional stress, suggesting the importance of careful design of system and detailed communication. Food inspection was associated with deterioration in SH. Those who utilized explanatory meetings showed increases in sadness, worry, and radiation anxiety, indicating that additional attention is required of the experts and authorities involved in explanatory meetings.

  13. Development of Radiated Power Diagnostics for NSTX-U

    NASA Astrophysics Data System (ADS)

    Reinke, Matthew; van Eden, G. G.; Lovell, Jack; Peterson, Byron; Gray, Travis; Chandra, Rian; Stratton, Brent; Ellis, Robert; NSTX-U Team

    2016-10-01

    New tools to measure radiated power in NSTX-U are under development to support a range of core and boundary physics research. Multiple resistive bolometer pinhole cameras are being built and calibrated to support FY17 operations, all utilizing standard Au-foil sensors from IPT-Albrecht. The radiation in the lower divertor will be measured using two, 8 channel arrays viewing both vertically and radially to enable estimates of the 2D radiation structure. The core radiation will be measured using a 24 channel array viewing tangentially near the midplane, observing the full cross-section from the inner to outer limiter. This enables characterization of the centrifugally-driven in/out radiation asymmetry expected from mid-Z and high-Z impurities in highly rotating NSTX-U plasmas. All sensors utilize novel FPGA-based BOLO8BLF analyzers from D-tAcq Solutions. Resistive bolometer measurements are complemented by an InfraRed Video Bolometer (IRVB) which measures the temperature change of radiation absorber using an IR camera. A prototype IRVB system viewing the lower divertor was installed on NSTX-U for FY16 operations. Initial results from the plasma and benchtop testing are used to demonstrate the relative advantages between IRVB and resistive bolometers. Supported in Part by DE-AC05-00OR22725 & DE-AC02-09CH11466.

  14. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.

    PubMed

    Hauser, Anastasia K; Mitov, Mihail I; Daley, Emily F; McGarry, Ronald C; Anderson, Kimberly W; Hilt, J Zach

    2016-10-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of Radiological Countermeasures on Subjective Well-Being and Radiation Anxiety after the 2011 Disaster: The Fukushima Health Management Survey

    PubMed Central

    Murakami, Michio; Takeda, Yoshihito; Sato, Akiko; Igarashi, Yasumasa; Sano, Kazumi; Yasutaka, Tetsuo; Naito, Wataru; Hirota, Sumire; Goto, Aya; Ohira, Tetsuya; Yasumura, Seiji; Tanigawa, Koichi

    2018-01-01

    After the Fukushima Daiichi Nuclear Power Station accident in 2011, concerns about radiation exposure and decline in subjective well-being have been reported. To tackle these problems, various countermeasures in relation to radiation have been implemented. In this study, we comprehensively evaluated the effects of radiological countermeasures on subjective well-being (e.g., satisfaction with life (SWL) and emotional well-being) and radiation anxiety, through a questionnaire survey targeting Fukushima residents (N = 1023). Propensity scores matching was applied to evaluate significant effects of radiological countermeasures on subjective well-being and radiation anxiety. Among the radiological countermeasures, thyroid examination, whole body counter, and air dose monitoring showed the highest proportions of participation, utilization, and useful evaluation, suggesting a high degree of public attention focused on these countermeasures. The basic survey was associated with significant increases in SWL and self-rated health (SH). Thyroid examination was significantly associated with not only a reduction in radiation anxiety but also an increase of emotional stress, suggesting the importance of careful design of system and detailed communication. Food inspection was associated with deterioration in SH. Those who utilized explanatory meetings showed increases in sadness, worry, and radiation anxiety, indicating that additional attention is required of the experts and authorities involved in explanatory meetings. PMID:29329263

  16. Radiative Properties of Thin Films of Common Dielectric Materials in the IR Spectral Range of 1.5-14.2 μm: Application to Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Bañobre, Asahel; Marthi, Sita Rajyalaxmi; Ravindra, N. M.

    2018-05-01

    To measure, map and control temperature, imaging of materials in a thermal furnace routinely utilizes non-contact sensors, such as pyrometers. These pyrometers require a pre-knowledge of the radiative properties of materials in the desired infrared range of wavelengths. In this study, radiative properties of some commonly used thin films of dielectric materials are investigated within the infrared (IR) spectral range of 1.5-14.2 μm. Radiative properties of aluminum oxide (Al2O3), silicon dioxide (SiO2), aluminum nitride (AlN) and silicon nitride (Si3N4) have been simulated and compared, utilizing a matrix method of representing the optical properties. The simulated results of the radiative properties show that Si3N4 is an excellent choice for the infrared radiation absorbing layer that is currently used in infrared uncooled detectors (microbolometers) because of its optical, mechanical and electrical properties. A case study of the radiative properties of an infrared uncooled microbolometer (Honeywell structure) is presented and discussed in the infrared spectral range of 8-14 μm. The results obtained serve as useful information for the design and fabrication of infrared imaging systems and components such as coatings, detectors, filters, lenses and waveguides.

  17. Radiation detection system

    DOEpatents

    Whited, R.C.

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI/sub 2/, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  18. The Contribution of Human Factors in Military System Development: Methodological Considerations

    DTIC Science & Technology

    1980-07-01

    Risk/Uncertainty Analysis - Project Scoring - Utility Scales - Relevance Tree Techniques (Reverse Factor Analysis) 2. Computer Simulation Simulation...effectiveness of mathematical models for R&D project selection. Management Science, April 1973, 18. 6-43 .1~ *.-. Souder, W.E. h scoring methodology for...per some interval PROFICIENCY test scores (written) RADIATION radiation effects aircrew performance on radiation environments REACTION TIME 1) (time

  19. [How did the earth's oxygen atmosphere originate?].

    PubMed

    Schäfer, G

    2004-09-01

    The planet earth did not carry an oxygen atmosphere from the beginning. Though oxygen could arise from radiation mediated water splitting, these processes were not efficient enough to create a global gas atmosphere. Oxygen in the latter is a product of the photosynthetic activity of early green organisms. Only after biological mass-formation of oxygen the UV-protective ozone layer could develop, then enabeling life to move from water onto land. This took billions of years. The basics of the processes of biological oxygen liberation and utilization are described in the following as well as the importance of their steady state equilibrium. Also a hint is given to oxygen as a toxic compound though being a chemical prerequisite for aerobic life on earth.

  20. AAFE man-made noise experiment project. Volume 2: Project and experiment discussions

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An experiment for the acquisition and processing of man-made noise interference data on earth orbital altitudes is discussed. The objectives of the project are to confirm the results of analytical studies concerning radio frequency man-made noise in space. It is stated that the measurements of the amounts and types of noise in frequency bands of interest could allow the allocation and utilization of frequencies to be optimized and would also contribute to the engineering objective of optimizing flight receiving systems. A second objective of the project was to design and fabricate a noise measuring receiver which would demonstrate the feasibility of the experiment design under the project. The procedures for acquiring and processing the electromagnetic radiation data are discussed.

  1. Influence of Non-linear Radiation Heat Flux on Rotating Maxwell Fluid over a Deformable Surface: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.

    2018-04-01

    Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary. A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here.

  2. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  3. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  4. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  5. Plant-based Food and Feed Protein Structure Changes Induced by Gene-transformation heating and bio-ethanol processing: A Synchrotron-based Molecular Structure and Nutrition Research Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P Yu

    Unlike traditional 'wet' analytical methods which during processing for analysis often result in destruction or alteration of the intrinsic protein structures, advanced synchrotron radiation-based Fourier transform infrared microspectroscopy has been developed as a rapid and nondestructive and bioanalytical technique. This cutting-edge synchrotron-based bioanalytical technology, taking advantages of synchrotron light brightness (million times brighter than sun), is capable of exploring the molecular chemistry or structure of a biological tissue without destruction inherent structures at ultra-spatial resolutions. In this article, a novel approach is introduced to show the potential of the advanced synchrotron-based analytical technology, which can be used to study plant-basedmore » food or feed protein molecular structure in relation to nutrient utilization and availability. Recent progress was reported on using synchrotron-based bioanalytical technique synchrotron radiation-based Fourier transform infrared microspectroscopy and diffused reflectance infrared Fourier transform spectroscopy to detect the effects of gene-transformation (Application 1), autoclaving (Application 2), and bio-ethanol processing (Application 3) on plant-based food and feed protein structure changes on a molecular basis. The synchrotron-based technology provides a new approach for plant-based protein structure research at ultra-spatial resolutions at cellular and molecular levels.« less

  6. Reconstruction of large cranial defects in the presence of heavy radiation damage and infection utilizing tissue transferred by microvascular anastomoses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robson, M.C.; Zachary, L.S.; Schmidt, D.R.

    1989-03-01

    Six cases of large defects of the scalp, skull, and dura following tumor ablation and radiation are presented. Each was accompanied by chronic infection in the irradiated defect. Efforts to reconstruct the resulting defects with local flaps were not successful. One-stage reconstruction was then accomplished in each case utilizing a latissimus dorsi musculocutaneous or myo-osteocutaneous free flap transferred by microvascular anastomoses. The versatility of the latissimus dorsi musculocutaneous and/or osseous flap allows single-stage reconstruction of these complex defects.

  7. Moon manned missions radiation safety analysis

    NASA Astrophysics Data System (ADS)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats, from very simple shelters to more complex bases, are considered in full detail (e.g., shape, thickness, materials, etc) with considerations of various shielding strategies. In this first analysis all the shape considered are cylindrical or composed of combination of cylinders. Moreover, a radiation safety analysis of more future possible habitats like lava tubes has been also performed.

  8. Reduction of scatter radiation during transradial percutaneous coronary angiography: a randomized trial using a lead-free radiation shield.

    PubMed

    Politi, Luigi; Biondi-Zoccai, Giuseppe; Nocetti, Luca; Costi, Tiziana; Monopoli, Daniel; Rossi, Rosario; Sgura, Fabio; Modena, Maria Grazia; Sangiorgi, Giuseppe M

    2012-01-01

    Occupational radiation exposure is a growing problem due to the increasing number and complexity of interventional procedures performed. Radial artery access has reduced the number of complications at the price of longer procedure duration. Radpad® scatter protection is a sterile, disposable bismuth-barium radiation shield drape that should be able to decrease the dose of operator radiation during diagnostic and interventional procedures. Such radiation shield has never been tested in a randomized study in humans. Sixty consecutive patients undergoing coronary angiography by radial approach were randomized 1:1 to Radpad use versus no radiation shield protection. The sterile shield was placed around the area of right radial artery sheath insertion and extended medially to the patient trunk. All diagnostic procedures were performed by the same operator to reduce variability in radiation absorption. Radiation exposure was measured blindly using thermoluminescence dosimeters positioned at the operator's chest, left eye, left wrist, and thyroid. Despite similar fluoroscopy time (3.52 ± 2.71 min vs. 3.46 ± 2.77 min, P = 0.898) and total examination dose (50.5 ± 30.7 vs. 45.8 ± 18.0 Gycm(2), P = 0.231), the mean total radiation exposure to the operator was significantly lower when Radpad was utilized (282.8 ± 32.55 μSv vs. 367.8 ± 105.4 μSv, P < 0.0001) corresponding to a 23% total reduction. Moreover, mean radiation exposure was lower with Radpad utilization at all body locations ranging from 13 to 34% reduction. This first-in-men randomized trial demonstrates that Radpad significantly reduces occupational radiation exposure during coronary angiography performed through right radial artery access. Copyright © 2011 Wiley Periodicals, Inc.

  9. Seed sprout production: Consumables and a foundation for higher plant growth in space

    NASA Technical Reports Server (NTRS)

    Day, Michelle; Thomas, Terri; Johnson, Steve; Luttges, Marvin

    1990-01-01

    Seed sprouts can be produced as a source of fresh vegetable materials and as higher plant seedlings in space. Sprout production was undertaken to evaluate the mass accumulations possible, the technologies needed, and the reliability of the overall process. Baseline experiments corroborated the utility of sprout production protocols for a variety of seed types. The automated delivery of saturated humidity effectively supplants labor intensive manual soaking techniques. Automated humidification also lend itself to modest centrifugal sprout growth environments. A small amount of ultraviolet radiation effectively suppressed bacterial and fungal contamination, and the sprouts were suitable for consumption.

  10. Low-loss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation.

    PubMed

    Pafchek, R; Tummidi, R; Li, J; Webster, M A; Chen, E; Koch, T L

    2009-02-10

    A thermal oxidation fabrication technique is employed to form low-loss high-index-contrast silicon shallow-ridge waveguides in silicon-on-insulator (SOI) with maximally tight vertical confinement. Drop-port responses from weakly coupled ring resonators demonstrate propagation losses below 0.36 dB/cm for TE modes. This technique is also combined with "magic width" designs mitigating severe lateral radiation leakage for TM modes to achieve propagation loss values of 0.94 dB/cm. We discuss the fabrication process utilized to form these low-loss waveguides and implications for sensor devices in particular.

  11. Adjuvant Treatment for Older Women with Invasive Breast Cancer

    PubMed Central

    Jolly, Trevor A; Williams, Grant R; Bushan, Sita; Pergolotti, Mackenzi; Nyrop, Kirsten A; Jones, Ellen L; Muss, Hyman B

    2016-01-01

    Older women experience a large share of breast cancer incidence and death. With the projected rise in the number of older cancer patients, adjuvant chemo-, radiation and endocrine therapy management will become a key component of breast cancer treatment in older women. Many factors influence adjuvant treatment decisions including patient preferences, life expectancy and tumor biology. Geriatric assessment predicts important outcomes, identifies key deficits, and can aid in the decision making process. This review utilizes clinical vignettes to illustrate core principles in adjuvant management of breast cancer in older women and suggests an approach incorporating life expectancy and geriatric assessment. PMID:26767315

  12. The utility of Landsat-D for water-resources studies

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.

    1980-01-01

    The paper discusses applications of the Landsat-D remote sensing observations to hydrology and management of water resources. It is expected that the Landsat-D thematic mapper will provide spatial resolution of 30 m vs 79 m in the reflected solar radiation bands; additional spectral resolution in the 0.5 to 1.0 micron region and new bands covering regions in the 0.45 to 2.35 micron range will be available. The thematic mapper produces data at an 85 megabit/sec rate; an advanced data processing system will be used for improved monitoring of earth resources.

  13. Implementation of radiation shielding calculation methods. Volume 1: Synopsis of methods and summary of results

    NASA Technical Reports Server (NTRS)

    Capo, M. A.; Disney, R. K.

    1971-01-01

    The work performed in the following areas is summarized: (1) Analysis of Realistic nuclear-propelled vehicle was analyzed using the Marshall Space Flight Center computer code package. This code package includes one and two dimensional discrete ordinate transport, point kernel, and single scatter techniques, as well as cross section preparation and data processing codes, (2) Techniques were developed to improve the automated data transfer in the coupled computation method of the computer code package and improve the utilization of this code package on the Univac-1108 computer system. (3) The MSFC master data libraries were updated.

  14. The impact of urban morphology and land cover on the sensible heat flux retrieved by satellite and in-situ observations

    NASA Astrophysics Data System (ADS)

    Gawuc, L.; Łobocki, L.; Kaminski, J. W.

    2017-12-01

    Land surface temperature (LST) is a key parameter in various applications for urban environments research. However, remotely-sensed radiative surface temperature is not equivalent to kinetic nor aerodynamic surface temperature (Becker and Li, 1995; Norman and Becker, 1995). Thermal satellite observations of urban areas are also prone to angular anisotropy which is directly connected with the urban structure and relative sun-satellite position (Hu et al., 2016). Sensible heat flux (Qh) is the main component of surface energy balance in urban areas. Retrieval of Qh, requires observations of, among others, a temperature gradient. The lower level of temperature measurement is commonly replaced by remotely-sensed radiative surface temperature (Chrysoulakis, 2003; Voogt and Grimmond, 2000; Xu et al., 2008). However, such replacement requires accounting for the differences between aerodynamic and radiative surface temperature (Chehbouni et al., 1996; Sun and Mahrt, 1995). Moreover, it is important to avoid micro-scale processes, which play a major role in the roughness sublayer. This is due to the fact that Monin-Obukhov similarity theory is valid only in dynamic sublayer. We will present results of the analyses of the impact of urban morphology and land cover on the seasonal changes of sensible heat flux (Qh). Qh will be retrieved by two approaches. First will be based on satellite observations of radiative surface temperature and second will be based on in-situ observations of kinetic road temperature. Both approaches will utilize wind velocity, and air temperature observed in-situ. We will utilize time series of MODIS LST observations for the period of 2005-2014 as well as simultaneous in-situ observations collected by road weather network (9 stations). Ground stations are located across the city of Warsaw, outside the city centre in low-rise urban structure. We will account for differences in urban morphology and land cover in the proximity of ground stations. We will utilize DEM and Urban Atlas LULC database and freely available visible aerial and satellite imagery. All the analyses will be conducted for single pixels, which will be closest to the locations of the ground stations (nearest neighbour approach). Appropriate figures showing the seasonal variability of Qh will be presented.

  15. Multiple scattering in planetary regoliths using first-order incoherent interactions

    NASA Astrophysics Data System (ADS)

    Muinonen, Karri; Markkanen, Johannes; Väisänen, Timo; Penttilä, Antti

    2017-10-01

    We consider scattering of light by a planetary regolith modeled using discrete random media of spherical particles. The size of the random medium can range from microscopic sizes of a few wavelengths to macroscopic sizes approaching infinity. The size of the particles is assumed to be of the order of the wavelength. We extend the numerical Monte Carlo method of radiative transfer and coherent backscattering (RT-CB) to the case of dense packing of particles. We adopt the ensemble-averaged first-order incoherent extinction, scattering, and absorption characteristics of a volume element of particles as input for the RT-CB. The volume element must be larger than the wavelength but smaller than the mean free path length of incoherent extinction. In the radiative transfer part, at each absorption and scattering process, we account for absorption with the help of the single-scattering albedo and peel off the Stokes parameters of radiation emerging from the medium in predefined scattering angles. We then generate a new scattering direction using the joint probability density for the local polar and azimuthal scattering angles. In the coherent backscattering part, we utilize amplitude scattering matrices along the radiative-transfer path and the reciprocal path, and utilize the reciprocity of electromagnetic waves to verify the computation. We illustrate the incoherent volume-element scattering characteristics and compare the dense-medium RT-CB to asymptotically exact results computed using the Superposition T-matrix method (STMM). We show that the dense-medium RT-CB compares favorably to the STMM results for the current cases of sparse and dense discrete random media studied. The novel method can be applied in modeling light scattering by the surfaces of asteroids and other airless solar system objects, including UV-Vis-NIR spectroscopy, photometry, polarimetry, and radar scattering problems.Acknowledgments. Research supported by European Research Council with Advanced Grant No. 320773 SAEMPL, Scattering and Absorption of ElectroMagnetic waves in ParticuLate media. Computational resources provided by CSC - IT Centre for Science Ltd, Finland.

  16. GPU-BASED MONTE CARLO DUST RADIATIVE TRANSFER SCHEME APPLIED TO ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heymann, Frank; Siebenmorgen, Ralf, E-mail: fheymann@pa.uky.edu

    2012-05-20

    A three-dimensional parallel Monte Carlo (MC) dust radiative transfer code is presented. To overcome the huge computing-time requirements of MC treatments, the computational power of vectorized hardware is used, utilizing either multi-core computer power or graphics processing units. The approach is a self-consistent way to solve the radiative transfer equation in arbitrary dust configurations. The code calculates the equilibrium temperatures of two populations of large grains and stochastic heated polycyclic aromatic hydrocarbons. Anisotropic scattering is treated applying the Heney-Greenstein phase function. The spectral energy distribution (SED) of the object is derived at low spatial resolution by a photon counting proceduremore » and at high spatial resolution by a vectorized ray tracer. The latter allows computation of high signal-to-noise images of the objects at any frequencies and arbitrary viewing angles. We test the robustness of our approach against other radiative transfer codes. The SED and dust temperatures of one- and two-dimensional benchmarks are reproduced at high precision. The parallelization capability of various MC algorithms is analyzed and included in our treatment. We utilize the Lucy algorithm for the optical thin case where the Poisson noise is high, the iteration-free Bjorkman and Wood method to reduce the calculation time, and the Fleck and Canfield diffusion approximation for extreme optical thick cells. The code is applied to model the appearance of active galactic nuclei (AGNs) at optical and infrared wavelengths. The AGN torus is clumpy and includes fluffy composite grains of various sizes made up of silicates and carbon. The dependence of the SED on the number of clumps in the torus and the viewing angle is studied. The appearance of the 10 {mu}m silicate features in absorption or emission is discussed. The SED of the radio-loud quasar 3C 249.1 is fit by the AGN model and a cirrus component to account for the far-infrared emission.« less

  17. PRESERVATION OF FOOD BY LOW-DOSE IONIZING ENERGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-01-01

    A review is presented of the current status of investigations on the radiation processing of foods. The technical feasibility of this preservation method is well established and the economic feasibility of the method appears promising, particularly in low-dose applications. The current status of development of radiation sources is discussed. Pork has responded best among the meats tested for radiation processing. Sausage, luncheon meats, and chicken demonstrate good potential. Beef appears acceptable at low radiation dose ranges but presents flavor problems at high dosages. The storage life of refrigerated and unrefrigerated marine products is increased by radiation processing, Vegetable s aremore » easily damaged by comparatively small doses of radiation. Shredded cabbage treated at 300,000 rad is an excellent product and asparagus, snap beans, lima beans, broccoli, carrots, and corn are promising vegetables for radiation processing. Radiation treatment inhibits sprouting of potatoes and onions. Radiation processing of strawberries, grapes, peaches, tomatoes, and citrus fruits at doses between 200,000 and 800,000 rad affects molds that cause rotting and increases the storage life of these fruits. Radiation processing of cereal grains, cereal products, and military ration components destroys adult insects, larvae, and eggs of insect pests that infest these foods. No radioactivity has been induced in food products by high radiation doses. Extensive studies have shown that radiation processing has no effect on the wholesomeness of foods. The economic feasibility and potentialities of the radiation processing of foods are discussed. (C.H.)« less

  18. Source of coherent short wavelength radiation

    DOEpatents

    Villa, Francesco

    1990-01-01

    An apparatus for producing coherent radiation ranging from X-rays to the far ultraviolet (i.e., 1 Kev to 10 eV) utilizing the Compton scattering effect. A photon beam from a laser is scattered on a high energy electron bunch from a pulse power linac. The short wavelength radiation produced by such scattering has sufficient intensity and spatial coherence for use in high resolution applications such as microscopy.

  19. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  20. Characterizing the Spatial and Temporal Distribution of Aerosol Optical Thickness Over the Atlantic Basin Utilizing GOES-8 Multispectral Data

    NASA Technical Reports Server (NTRS)

    Fox, Robert; Prins, Elaine Mae; Feltz, Joleen M.

    2001-01-01

    In recent years, modeling and analysis efforts have suggested that the direct and indirect radiative effects of both anthropogenic and natural aerosols play a major role in the radiative balance of the earth and are an important factor in climate change calculations. The direct effects of aerosols on radiation and indirect effects on cloud properties are not well understood at this time. In order to improve the characterization of aerosols within climate models it is important to accurately parameterize aerosol forcing mechanisms at the local, regional, and global scales. This includes gaining information on the spatial and temporal distribution of aerosols, transport regimes and mechanisms, aerosol optical thickness, and size distributions. Although there is an expanding global network of ground measurements of aerosol optical thickness and size distribution at specific locations, satellite data must be utilized to characterize the spatial and temporal extent of aerosols and transport regimes on regional and global scales. This study was part of a collaborative effort to characterize aerosol radiative forcing over the Atlantic basin associated with the following three major aerosol components in this region: urban/sulfate, Saharan dust, and biomass burning. In-situ ground measurements obtained by a network of sun photometers during the Smoke Clouds and Radiation Experiment in Brazil (SCAR-B) and the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) were utilized to develop, calibrate, and validate a Geostationary Operational Environmental Satellite (GOES)-8 aerosol optical thickness (AOT) product. Regional implementation of the GOES-8 AOT product was used to augment point source measurements to gain a better understanding of the spatial and temporal distributions of Atlantic basin aerosols during SCAR-B and TARFOX.

  1. Radiation techniques for esophageal cancer.

    PubMed

    Zhang, Minsi; Wu, Abraham J

    2017-10-01

    Radiotherapy plays a crucial role in the curative management of localized esophageal cancer, both as definitive and preoperative therapy. For definitive therapy, the standard radiation dose is 50.4 Gy in 28 fractions and should be delivered with concurrent chemotherapy. Chemoradiotherapy also has a wellestablished benefit in the preoperative setting, as established in the CROSS randomized trial. Radiation fields are typically generous, to account for subclinical extension of disease along the esophagus and to regional nodes. Three-dimensional conformal radiation is the current standard technique for esophageal cancer, though intensity-modulated radiation therapy is increasingly utilized and may improve the outcomes of esophageal radiotherapy by reducing radiation dose to critical normal tissues.

  2. The radiation fields around a proton therapy facility: A comparison of Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Ottaviano, G.; Picardi, L.; Pillon, M.; Ronsivalle, C.; Sandri, S.

    2014-02-01

    A proton therapy test facility with a beam current lower than 10 nA in average, and an energy up to 150 MeV, is planned to be sited at the Frascati ENEA Research Center, in Italy. The accelerator is composed of a sequence of linear sections. The first one is a commercial 7 MeV proton linac, from which the beam is injected in a SCDTL (Side Coupled Drift Tube Linac) structure reaching the energy of 52 MeV. Then a conventional CCL (coupled Cavity Linac) with side coupling cavities completes the accelerator. The linear structure has the important advantage that the main radiation losses during the acceleration process occur to protons with energy below 20 MeV, with a consequent low production of neutrons and secondary radiation. From the radiation protection point of view the source of radiation for this facility is then almost completely located at the final target. Physical and geometrical models of the device have been developed and implemented into radiation transport computer codes based on the Monte Carlo method. The scope is the assessment of the radiation field around the main source for supporting the safety analysis. For the assessment independent researchers used two different Monte Carlo computer codes named FLUKA (FLUktuierende KAskade) and MCNPX (Monte Carlo N-Particle eXtended) respectively. Both are general purpose tools for calculations of particle transport and interactions with matter, covering an extended range of applications including proton beam analysis. Nevertheless each one utilizes its own nuclear cross section libraries and uses specific physics models for particle types and energies. The models implemented into the codes are described and the results are presented. The differences between the two calculations are reported and discussed pointing out disadvantages and advantages of each code in the specific application.

  3. Estimation of citation-based scholarly activity among radiation oncology faculty at domestic residency-training institutions: 1996-2007.

    PubMed

    Choi, Mehee; Fuller, Clifton D; Thomas, Charles R

    2009-05-01

    Advancement in academic radiation oncology is largely contingent on research productivity and the perceived external influence of an individual's scholarly work. The purpose of this study was to use the Hirsch index (h-index) to estimate the research productivity of current radiation oncology faculty at U.S. academic institutions between 1996 and 2007. We performed bibliometric citation database searches for available radiation oncology faculty at domestic residency-training institutions (n = 826). The outcomes analyzed included the total number of manuscripts, total number of citations, and the h-index between 1996 and 2007. Analysis of overall h-index rankings with stratification by academic ranking, junior vs. senior faculty status, and gender was performed. Of the 826 radiation oncologists, the mean h-index was 8.5. Of the individuals in the top 10% by the h-index, 34% were chairpersons, 88% were senior faculty, and 13% were women. A greater h-index was associated with a higher academic ranking and senior faculty status. Recursive partitioning analysis revealed an h-index threshold of 15 (p <0.0001) as an identified breakpoint between the senior and junior faculty. Overall, women had lower h-indexes compared with men (mean, 6.4 vs. 9.4); however, when stratified by academic ranking, the gender differential all but disappeared. Using the h-index as a partial surrogate for research productivity, it appears that radiation oncologists in academia today comprise a prolific group, however, with a highly skewed distribution. According to the present analysis, the h-index correlated with academic ranking. Thus, it potentially has utility in the process of promotion decisions. Overall, women in radiation oncology were less academically productive than men; the possible reasons for the gender differential are discussed.

  4. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  5. Flight Computer Processing Avionics for Space Station Microgravity Experiments: A Risk Assessment of Commercial Off-the-Shelf Utilization

    NASA Technical Reports Server (NTRS)

    Estes, Howard; Liggin, Karl; Crawford, Kevin; Humphries, Rick (Technical Monitor)

    2001-01-01

    NASA/Marshall Space Flight Center (MSFC) is continually looking for ways to reduce the costs and schedule and minimize the technical risks during the development of microgravity programs. One of the more prominent ways to minimize the cost and schedule is to use off-the-shelf hardware (OTS). However, the use of OTS often increases the risk. This paper addresses relevant factors considered during the selection and utilization of commercial off-the-shelf (COTS) flight computer processing equipment for the control of space station microgravity experiments. The paper will also discuss how to minimize the technical risks when using COTS processing hardware. Two microgravity experiments for which the COTS processing equipment is being evaluated for are the Equiaxed Dendritic Solidification Experiment (EDSE) and the Self-diffusion in Liquid Elements (SDLE) experiment. Since MSFC is the lead center for Microgravity research, EDSE and SDLE processor selection will be closely watched by other experiments that are being designed to meet payload carrier requirements. This includes the payload carriers planned for the International Space Station (ISS). The purpose of EDSE is to continue to investigate microstructural evolution of, and thermal interactions between multiple dendrites growing under diffusion controlled conditions. The purpose of SDLE is to determine accurate self-diffusivity data as a function of temperature for liquid elements selected as representative of class-like structures. In 1999 MSFC initiated a Center Director's Discretionary Fund (CDDF) effort to investigate and determine the optimal commercial data bus architecture that could lead to faster, better, and lower cost data acquisition systems for the control of microgravity experiments. As part of this effort various commercial data acquisition systems were acquired and evaluated. This included equipment with various form factors, (3U, 6U, others) and equipment that utilized various bus structures, (VME, PC104, STD bus). This evaluation of hardware was performed in conjunction with a trade study that considered over twenty (20) different factors relevant to the selection of an optimum design approach. These factors included; safety, sizing and timing, radiation hardness and single event upset, power consumption, heat dissipation, size and volume, expected service life, maintainability, heritage, operating systems, requirements for software reuse, availability of compatible interface boards, relative cost, schedule, reliability, EMI/EMC factors, "hot swap" capability, standards for conduction cooling, I/O capabilities, unique carrier requirements and operating system considerations. The approach to evaluate Safety as part of this study included a review of the Preliminary Hazard Analysis (PHA) for each of the experiment designs and a determination of how each hazard could be addressed and eliminated when different processors were selected. This included evaluating various design approaches and trade-offs between fault tolerant designs and fail-safe designs in accordance with NSTS 1700.7B. This will include the results of radiation testing where available. Various operating systems, such as VxWorks, Linux, QNX, and Embedded NT are evaluated and the advantages and disadvantages of their utilization are also addressed. Design implementation strategies for the various operating systems are considered and discussed. This paper presents the results and recommendations from this trade study. Preliminary conclusions from this study are that safety concerns from lack or radiation testing on COTS equipment can be addressed by additional testing and design considerations, the PC104 bus provided adequate I/O for the SDLE and EDSE microgravity experiments, and PC104 bus components offered significant advantages over VME and cPCI for weight and space reductions.

  6. Satellite estimation of surface spectral ultraviolet irradiance using OMI data in East Asia

    NASA Astrophysics Data System (ADS)

    Lee, H.; Kim, J.; Jeong, U.

    2017-12-01

    Due to a strong influence to the human health and ecosystem environment, continuous monitoring of the surface ultraviolet (UV) irradiance is important nowadays. The amount of UVA (320-400 nm) and UVB (290-320 nm) radiation at the Earth surface depends on the extent of Rayleigh scattering by atmospheric gas molecules, the radiative absorption by ozone, radiative scattering by clouds, and both absorption and scattering by airborne aerosols. Thus advanced consideration of these factors is the essential part to establish the process of UV irradiance estimation. Also UV index (UVI) is a simple parameter to show the strength of surface UV irradiance, therefore UVI has been widely utilized for the purpose of UV monitoring. In this study, we estimate surface UV irradiance at East Asia using realistic input based on OMI Total Ozone and reflectivity, and then validate this estimated comparing to UV irradiance from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) data. In this work, we also try to develop our own retrieval algorithm for better estimation of surface irradiance. We use the Vector Linearized Discrete Ordinate Radiative Transfer (VLIDORT) model version 2.6 for our UV irradiance calculation. The input to the VLIDORT radiative transfer calculations are the total ozone column (TOMS V7 climatology), the surface albedo (Herman and Celarier, 1997) and the cloud optical depth. Based on these, the UV irradiance is calculated based on look-up table (LUT) approach. To correct absorbing aerosol, UV irradiance algorithm added climatological aerosol information (Arola et al., 2009). The further study, we analyze the comprehensive uncertainty analysis based on LUT and all input parameters.

  7. Toward an Improved Understanding of the Tropical Energy Budget Using TRMM-based Atmospheric Radiative Heating Products

    NASA Astrophysics Data System (ADS)

    L'Ecuyer, T.; McGarragh, G.; Ellis, T.; Stephens, G.; Olson, W.; Grecu, M.; Shie, C.; Jiang, X.; Waliser, D.; Li, J.; Tian, B.

    2008-05-01

    It is widely recognized that clouds and precipitation exert a profound influence on the propagation of radiation through the Earth's atmosphere. In fact, feedbacks between clouds, radiation, and precipitation represent one of the most important unresolved factors inhibiting our ability to predict the consequences of global climate change. Since its launch in late 1997, the Tropical Rainfall Measuring Mission (TRMM) has collected more than a decade of rainfall measurements that now form the gold standard of satellite-based precipitation estimates. Although not as widely advertised, the instruments aboard TRMM are also well-suited to the problem of characterizing the distribution of atmospheric heating in the tropics and a series of algorithms have recently been developed for estimating profiles of radiative and latent heating from these measurements. This presentation will describe a new multi-sensor tropical radiative heating product derived primarily from TRMM observations. Extensive evaluation of the products using a combination of ground and satellite-based observations is used to place the dataset in the context of existing techniques for quantifying atmospheric radiative heating. Highlights of several recent applications of the dataset will be presented that illustrate its utility for observation-based analysis of energy and water cycle variability on seasonal to inter-annual timescales and evaluating the representation of these processes in numerical models. Emphasis will be placed on the problem of understanding the impacts of clouds and precipitation on atmospheric heating on large spatial scales, one of the primary benefits of satellite observations like those provided by TRMM.

  8. Citation-based Estimation of Scholarly Activity Among Domestic Academic Radiation Oncologists: Five-Year Update.

    PubMed

    Choi, Mehee; Holliday, Emma B; Jagsi, Reshma; Wilson, Lynn D; Fuller, Clifton D; Thomas, Charles R

    2014-03-01

    To analyze up-to-date Hirsch index ( h -index) data to estimate the scholarly productivity of academic radiation oncology faculty. Bibliometric citation database searches were performed for radiation oncology faculty at domestic residency-training institutions. Outcomes analyzed included the number of manuscripts, number of citations, and h -index between 1996 and 2012. Analyses of overall h -index rankings with stratification by academic ranking, gender, and departmental faculty size were performed. One thousand thirty-seven radiation oncologists from 87 programs were included. Overall, the mean h -index was 10.8. Among the top 10% by h -index, 38% were chairpersons, all were senior faculty, and 11% were women. As expected, higher h -index was associated with higher academic ranking and senior faculty status. Recursive partitioning analysis revealed an h -index threshold of 20 ( p <0.001) as an identified breakpoint between senior vs. junior faculty. Furthermore, h -index breakpoints of 12 ( p <0.001) and 25 ( p <0.001) were identified between assistant professor vs. associate professor, and associate professor vs. professor levels, respectively. Multivariate analysis identified higher academic ranking, male gender, and larger departmental faculty size as independent variables associated with higher h -index. The current results suggest an overall rise in scholarly citation metrics among domestic academic radiation oncologists, with a current mean h- index of 10.8, vs. 8.5 in 2008. Significant relationships exist between h -index and academic rank, gender, and departmental size. The results offer up-to-date benchmarks for evaluating academic radiation oncologist to the national average and potentially has utility in the process of appointment and promotion decisions.

  9. Enhancement of efficiency of storage and processing of food raw materials using radiation technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.

    The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.

  10. Development of an autonomous treatment planning strategy for radiation therapy with effective use of population-based prior data.

    PubMed

    Wang, Huan; Dong, Peng; Liu, Hongcheng; Xing, Lei

    2017-02-01

    Current treatment planning remains a costly and labor intensive procedure and requires multiple trial-and-error adjustments of system parameters such as the weighting factors and prescriptions. The purpose of this work is to develop an autonomous treatment planning strategy with effective use of prior knowledge and in a clinically realistic treatment planning platform to facilitate radiation therapy workflow. Our technique consists of three major components: (i) a clinical treatment planning system (TPS); (ii) a formulation of decision-function constructed using an assemble of prior treatment plans; (iii) a plan evaluator or decision-function and an outer-loop optimization independent of the clinical TPS to assess the TPS-generated plan and to drive the search toward a solution optimizing the decision-function. Microsoft (MS) Visual Studio Coded UI is applied to record some common planner-TPS interactions as subroutines for querying and interacting with the TPS. These subroutines are called back in the outer-loop optimization program to navigate the plan selection process through the solution space iteratively. The utility of the approach is demonstrated by using clinical prostate and head-and-neck cases. An autonomous treatment planning technique with effective use of an assemble of prior treatment plans is developed to automatically maneuver the clinical treatment planning process in the platform of a commercial TPS. The process mimics the decision-making process of a human planner and provides a clinically sensible treatment plan automatically, thus reducing/eliminating the tedious manual trial-and-errors of treatment planning. It is found that the prostate and head-and-neck treatment plans generated using the approach compare favorably with that used for the patients' actual treatments. Clinical inverse treatment planning process can be automated effectively with the guidance of an assemble of prior treatment plans. The approach has the potential to significantly improve the radiation therapy workflow. © 2016 American Association of Physicists in Medicine.

  11. Exploring the Role of Piwi/piRNA Pathway in Epigenetic Dysregulation in Low Dose Radiation Induced Cardiovascular Disease

    NASA Astrophysics Data System (ADS)

    Jejelowo, O. A.; Tariq, M. A.

    2018-02-01

    We will utilize multi-omics to identify robust biomarkers and to understand radiation effects and develop countermeasures. Information obtained will enhance development of capabilities to monitor health in real time and for mitigation of risks.

  12. Basic and applied research related to the technology of space energy conversion systems, 1982 - 1983

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.

    1983-01-01

    Topics on solar energy conversion concepts and applications are discussed. An overview of the current status and future utilization of radiation receivers for electrical energy generation, liquid droplet radiation systems, and liquid droplet heat exchangers is presented.

  13. Biological-based and physical-based optimization for biological evaluation of prostate patient's plans

    NASA Astrophysics Data System (ADS)

    Sukhikh, E.; Sheino, I.; Vertinsky, A.

    2017-09-01

    Modern modalities of radiation treatment therapy allow irradiation of the tumor to high dose values and irradiation of organs at risk (OARs) to low dose values at the same time. In this paper we study optimal radiation treatment plans made in Monaco system. The first aim of this study was to evaluate dosimetric features of Monaco treatment planning system using biological versus dose-based cost functions for the OARs and irradiation targets (namely tumors) when the full potential of built-in biological cost functions is utilized. The second aim was to develop criteria for the evaluation of radiation dosimetry plans for patients based on the macroscopic radiobiological criteria - TCP/NTCP. In the framework of the study four dosimetric plans were created utilizing the full extent of biological and physical cost functions using dose calculation-based treatment planning for IMRT Step-and-Shoot delivery of stereotactic body radiation therapy (SBRT) in prostate case (5 fractions per 7 Gy).

  14. Wide-range radiation dose monitor

    DOEpatents

    Kopp, Manfred K.

    1986-01-01

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  15. Wide-range radiation dose monitor

    DOEpatents

    Kopp, M.K.

    1984-09-20

    A radiation dose-rate monitor is provided which operates in a conventional linear mode for radiation in the 0 to 0.5 R/h range and utilizes a nonlinear mode of operation for sensing radiation from 0.5 R/h to over 500 R/h. The nonlinear mode is achieved by a feedback circuit which adjusts the high voltage bias of the proportional counter, and hence its gas gain, in accordance with the amount of radiation being monitored. This allows compression of readout onto a single scale over the range of 0 to greater than 500 R/h without scale switching operations.

  16. Identifying and managing radiation damage during in situ transmission x-ray microscopy of Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Nelson, Johanna; Yang, Yuan; Misra, Sumohan; Andrews, Joy C.; Cui, Yi; Toney, Michael F.

    2013-09-01

    Radiation damage is a topic typically sidestepped in formal discussions of characterization techniques utilizing ionizing radiation. Nevertheless, such damage is critical to consider when planning and performing experiments requiring large radiation doses or radiation sensitive samples. High resolution, in situ transmission X-ray microscopy of Li-ion batteries involves both large X-ray doses and radiation sensitive samples. To successfully identify changes over time solely due to an applied current, the effects of radiation damage must be identified and avoided. Although radiation damage is often significantly sample and instrument dependent, the general procedure to identify and minimize damage is transferable. Here we outline our method of determining and managing the radiation damage observed in lithium sulfur batteries during in situ X-ray imaging on the transmission X-ray microscope at Stanford Synchrotron Radiation Lightsource.

  17. Effect of electron beam radiation processing on mechanical and thermal properties of fully biodegradable crops straw/poly (vinyl alcohol) biocomposites

    NASA Astrophysics Data System (ADS)

    Guo, Dan

    2017-01-01

    Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.

  18. The Negative Impact of Stark Law Exemptions on Graduate Medical Education and Health Care Costs: The Example of Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anscher, Mitchell S., E-mail: manscher@mcvh-vcu.ed; Anscher, Barbara M.; Bradley, Cathy J.

    2010-04-15

    Purpose: To survey radiation oncology training programs to determine the impact of ownership of radiation oncology facilities by non-radiation oncologists on these training programs and to place these findings in a health policy context based on data from the literature. Methods and Materials: A survey was designed and e-mailed to directors of all 81 U.S. radiation oncology training programs in this country. Also, the medical and health economic literature was reviewed to determine the impact that ownership of radiation oncology facilities by non-radiation oncologists may have on patient care and health care costs. Prostate cancer treatment is used to illustratemore » the primary findings. Results: Seventy-three percent of the surveyed programs responded. Ownership of radiation oncology facilities by non-radiation oncologists is a widespread phenomenon. More than 50% of survey respondents reported the existence of these arrangements in their communities, with a resultant reduction in patient volumes 87% of the time. Twenty-seven percent of programs in communities with these business arrangements reported a negative impact on residency training as a result of decreased referrals to their centers. Furthermore, the literature suggests that ownership of radiation oncology facilities by non-radiation oncologists is associated with both increased utilization and increased costs but is not associated with increased access to services in traditionally underserved areas. Conclusions: Ownership of radiation oncology facilities by non-radiation oncologists appears to have a negative impact on residency training by shifting patients away from training programs and into community practices. In addition, the literature supports the conclusion that self-referral results in overutilization of expensive services without benefit to patients. As a result of these findings, recommendations are made to study further how physician ownership of radiation oncology facilities influence graduate medical education, treatment patterns and utilization, and health care costs. Patients also need to be aware of financial arrangements that may influence their physician's treatment recommendations.« less

  19. Evidence-based Peer Review for Radiation Therapy - Updated Review of the Literature with a Focus on Tumour Subsite and Treatment Modality.

    PubMed

    Huo, M; Gorayski, P; Poulsen, M; Thompson, K; Pinkham, M B

    2017-10-01

    Technological advances in radiation therapy permit steep dose gradients from the target to spare normal tissue, but increase the risk of geographic miss. Suboptimal target delineation adversely affects clinical outcomes. Prospective peer review is a method for quality assurance of oncologists' radiotherapy plans. Published surveys suggest it is widely implemented. However, it may not be feasible to review every case before commencement of radiation therapy in all departments. The rate of plan changes following peer review of cases without a specific subsite or modality is typically around 10%. Stereotactic body radiation therapy, head and neck, gynaecological, gastrointestinal, haematological and lung cases are associated with higher rates of change of around 25%. These cases could thus be prioritised for peer review. Other factors may limit peer review efficacy including organisational culture, time constraints and the physical environment in which sessions are held. Recommendations for peer review endorsed by the American Society for Radiation Oncology were made available in 2013, but a number of relevant studies have been published since. Here we review and update the literature, and provide an updated suggestion for the implementation of peer review to serve as an adjunct to published guidelines. This may help practitioners evaluate their current processes and maximise the utility and effectiveness of peer review sessions. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Analysis of diffuse radiation data for Beer Sheva: Measured (shadow ring) versus calculated (global-horizontal beam) values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudish, A.I.; Ianetz, A.

    1993-12-01

    The authors have utilized concurrently measured global, normal incidence beam, and diffuse radiation data, the latter measured by means of a shadow ring pyranometer to study the relative magnitude of the anisotropic contribution (circumsolar region and nonuniform sky conditions) to the diffuse radiation. In the case of Beer Sheva, the monthly average hourly anisotropic correction factor varies from 2.9 to 20.9%, whereas the [open quotes]standard[close quotes] geometric correction factor varies from 5.6 to 14.0%. The monthly average hourly overall correction factor (combined anisotropic and geometric factors) varies from 8.9 to 37.7%. The data have also been analyzed using a simplemore » model of sky radiance developed by Steven in 1984. His anisotropic correction factor is a function of the relative strength and angular width of the circumsolar radiation region. The results of this analysis are in agreement with those previously reported for Quidron on the Dead Sea, viz. the anisotropy and relative strength of the circumsolar radiation are significantly greater than at any of the sites analyzed by Steven. In addition, the data have been utilized to validate a model developed by LeBaron et al. in 1990 for correcting shadow ring diffuse radiation data. The monthly average deviation between the corrected and true diffuse radiation values varies from 4.55 to 7.92%.« less

  1. Radiation hydrolysate of tuna cooking juice with enhanced antioxidant properties

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Sung, Nak-Yun; Lee, Ju-Woon

    2012-08-01

    Tuna protein hydrolysates are of increasing interest because of their potential application as a source of bioactive peptides. Large amounts of tuna cooking juice with proteins and extracts are produced during the process of tuna canning, and these cooking juice wastes cause environmental problems. Therefore, in this study, cooking juice proteins were hydrolyzed by irradiation for their utilization as functional additives. The degree of hydrolysis of tuna cooking juice protein increased from 0% to 15.1% at the absorbed doses of 50 kGy. To investigate the antioxidant activity of the hydrolysate, it was performed the ferric reducing antioxidant power (FRAP) assay, and the lipid peroxidation inhibitory and superoxide radical scavenging activities were measured. The FRAP values increased from 1470 μM to 1930 μM and IC50 on superoxide anion was decreased from 3.91 μg/mL to 1.29 μg/mL at 50 kGy. All of the antioxidant activities were increased in the hydrolysate, suggesting that radiation hydrolysis, which is a simple process that does not require an additive catalysts or an inactivation step, is a promising method for food and environmental industries.

  2. Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yoon Hee; Lee, Kunjai

    Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain accessmore » to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)« less

  3. Denoising solar radiation data using coiflet wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my; Janier, Josefina B., E-mail: josefinajanier@petronas.com.my; Muthuvalu, Mohana Sundaram, E-mail: mohana.muthuvalu@petronas.com.my

    Signal denoising and smoothing plays an important role in processing the given signal either from experiment or data collection through observations. Data collection usually was mixed between true data and some error or noise. This noise might be coming from the apparatus to measure or collect the data or human error in handling the data. Normally before the data is use for further processing purposes, the unwanted noise need to be filtered out. One of the efficient methods that can be used to filter the data is wavelet transform. Due to the fact that the received solar radiation data fluctuatesmore » according to time, there exist few unwanted oscillation namely noise and it must be filtered out before the data is used for developing mathematical model. In order to apply denoising using wavelet transform (WT), the thresholding values need to be calculated. In this paper the new thresholding approach is proposed. The coiflet2 wavelet with variation diminishing 4 is utilized for our purpose. From numerical results it can be seen clearly that, the new thresholding approach give better results as compare with existing approach namely global thresholding value.« less

  4. Charge collection and non-ionizing radiation tolerance of CMOS pixel sensors using a 0.18 μm CMOS process

    NASA Astrophysics Data System (ADS)

    Zhang, Ying; Zhu, Hongbo; Zhang, Liang; Fu, Min

    2016-09-01

    The proposed Circular Electron Positron Collider (CEPC) will be primarily aimed for precision measurements of the discovered Higgs boson. Its innermost vertex detector, which will play a critical role in heavy-flavor tagging, must be constructed with fine-pitched silicon pixel sensors with low power consumption and fast readout. CMOS pixel sensor (CPS), as one of the most promising candidate technologies, has already demonstrated its excellent performance in several high energy physics experiments. Therefore it has been considered for R&D for the CEPC vertex detector. In this paper, we present the preliminary studies to improve the collected signal charge over the equivalent input capacitance ratio (Q / C), which will be crucial to reduce the analog power consumption. We have performed detailed 3D device simulation and evaluated potential impacts from diode geometry, epitaxial layer properties and non-ionizing radiation damage. We have proposed a new approach to improve the treatment of the boundary conditions in simulation. Along with the TCAD simulation, we have designed the exploratory prototype utilizing the TowerJazz 0.18 μm CMOS imaging sensor process and we will verify the simulation results with future measurements.

  5. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual components. The goal of this study is to provide a merged observational benchmark for large-scale diagnostic analyses, remote sensing and land surface modeling.

  6. Interactions between Electromagnetic Fields.

    DTIC Science & Technology

    1985-02-10

    the cortical surface of a cat, in vivo, caused calcium release. Follow-up.nvestigatlons, using radiofrequency (RF) radiation , utilized simplfer, in...vitro brain tissue preparations from the cat and from the chicken. RF radiation was found to cause changes in the calcium flux only when the radiation ...circumvented by the finding th#’ t sub-ELF signals applied directly to the sample can also cause changes ip the calcium fluxes, although at tissue intensities on

  7. Gynogenesis in carp, Cyprinus Carpio L. and tench, Tinca Tinca L. induced by 60Co radiation in highly homogeneous radiating field

    NASA Astrophysics Data System (ADS)

    Pipota, J.; Linhart, O.

    The paper deals with a method of fertility inactivation of fish spermatozoa by gamma radiation. Spermatozoa motility remained unchanged after irradiation. Irradiated sperm has been utilized to induced gynogenesis by means of retention of the second polar body and of mitotic gynogenesis, realized in carp for the first time. Homogeneity of gamma-rays field was + - 1 %.

  8. Electricity and short wavelength radiation generator

    DOEpatents

    George, E.V.

    1985-08-26

    Methods and associated apparati for use of collisions of high energy atoms and ions of He, Ne, or Ar with themselves or with high energy neutrons to produce short wavelength radiation (lambda approx. = 840-1300 A) that may be utilized to produce cathode-anode currents or photovoltaic currents.

  9. The choice of primary energy source including PV installation for providing electric energy to a public utility building - a case study

    NASA Astrophysics Data System (ADS)

    Radomski, Bartosz; Ćwiek, Barbara; Mróz, Tomasz M.

    2017-11-01

    The paper presents multicriteria decision aid analysis of the choice of PV installation providing electric energy to a public utility building. From the energy management point of view electricity obtained by solar radiation has become crucial renewable energy source. Application of PV installations may occur a profitable solution from energy, economic and ecologic point of view for both existing and newly erected buildings. Featured variants of PV installations have been assessed by multicriteria analysis based on ANP (Analytic Network Process) method. Technical, economical, energy and environmental criteria have been identified as main decision criteria. Defined set of decision criteria has an open character and can be modified in the dialog process between the decision-maker and the expert - in the present case, an expert in planning of development of energy supply systems. The proposed approach has been used to evaluate three variants of PV installation acceptable for existing educational building located in Poznań, Poland - the building of Faculty of Chemical Technology, Poznań University of Technology. Multi-criteria analysis based on ANP method and the calculation software Super Decisions has proven to be an effective tool for energy planning, leading to the indication of the recommended variant of PV installation in existing and newly erected public buildings. Achieved results show prospects and possibilities of rational renewable energy usage as complex solution to public utility buildings.

  10. Some preliminary estimates of energy utilization in even-aged northern hardwoods

    Treesearch

    William B. Leak

    1970-01-01

    Estimates of energy utilization from various sources indicate that even-aged northern hardwood stands utilize less than 1/2 percent of net solar radiation for wood, leaf, and seed production, and only about 1/10 percent for production of merchantable wood. Forest managers should seek to understand and manipulate the remaining 99+ percent of solar energy, for improving...

  11. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Xia, Fei; Gopan, Akshay

    Washington University in St. Louis and its project partners are developing a unique pressurized oxy-combustion process that aims to improve efficiency and costs by reducing the recycling of flue gas to near zero. Normally, in the absence of recycled flue gas or another inert gas, combustion of fuel and oxygen results in a dramatic increase in temperature of the combustion products and radiant energy, as compared to combustion in air. High heat flux to the boiler tubes may result in a tube surface temperatures that exceed safe operating limits. In the Staged Pressurized Oxy-Combustion (SPOC) process, this problem is addressedmore » by staging the delivery of fuel and by novel combustion design that allows control of heat flux. In addition, the main mode of heat transfer to the steam cycle is by radiation, as opposed to convection. Therefore, the requirement for recycling large amounts of flue gas, for temperature control or to improve convective heat transfer, is eliminated, resulting in a reduction in auxiliary loads. The following report contains a detailed summary of scientific findings and accomplishments for the period of Oct. 1, 2013 to Sept 30, 2014. Results of ASPEN process and CFD modelling activities aimed at improving the SPOC process and boiler design are presented. The effects of combustion pressure and fuel moisture on the plant efficiency are discussed. Combustor pressure is found to have only a minor impact beyond 16 bar. For fuels with moisture content greater than approx 30%, e.g. coal/water slurries, the amount of latent heat of condensation exceeds that which can be utilized in the steam cycle and plant efficiency is reduced significantly. An improved boiler design is presented that achieves a more uniform heat flux profile. In addition, a fundamental study of radiation in high-temperature, high-pressure, particle-laden flows is summarized which provides a more complete understanding of heat transfer in these unusual conditions and to allow for optimization. The results reveal that for the SPOC design, absorption and emission due to particles is the dominant factor for determining the wall heat flux. The mechanism of “radiative trapping” of energy within the high-temperature flame region and the approach to utilizing this mechanism to control wall heat flux are described. This control arises, by design, from the highly non-uniform (non-premixed) combustion characteristics within the SPOC boiler, and the resulting gradients in temperature and particle concentration. Finally, a simple method for estimating the wall heat flux in pressurized combustion systems is presented.« less

  12. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies

    NASA Astrophysics Data System (ADS)

    Holt, Robert W.; Zhang, Rongxiao; Esipova, Tatiana V.; Vinogradov, Sergei A.; Glaser, Adam K.; Gladstone, David J.; Pogue, Brian W.

    2014-09-01

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  13. Developing radiation tolerant polymer nanocomposites using C 60 as an additive

    DOE PAGES

    Christian, Jonathan H.; Wilson, Jason; Nicholson, James C.; ...

    2016-04-13

    In nuclear facilities utilizing plutonium, polymeric materials are subjected to long-term, close-contact, and continuous α radiation exposure, which can lead to compounding material degradation and eventual failure. Herein we model the attenuation of α particles by linear-low-density polyethylene (LLDPE), polyvinyl alcohol (PVA) thin films, and C 60 using Monte Carlo N-Particle Extended (MCNPX) software. The degradation of these materials was investigated experimentally by irradiating them with a beam of α particles of 5.8 MeV energy at a tandem Van de Graaff accelerator delivering a dose rate of 2.95 × 10 6 rad s –1 over a 7.1 mm 2 samplemore » area. Our development of a method to test α particle-induced material degradation using a tandem accelerator is significant as degradation from naturally occurring α sources (i.e. Pu, Am) occurs too slowly for these sources to be used in practical experiments. Our results show that PVA nanocomposites containing 5 wt% C 60 were found to withstand about 7 times the α dose of undoped PVA films before a puncture in the film was detected. When these films were adhered to a LLDPE sheet the dual layer polymer was capable of withstanding about 13 times the dose of LLDPE and nearly twice the dose of the doped PVA thin film alone. Doping polymers with C 60 is an attractive way to generate more durable, radiation tolerant materials without increasing the thickness of the material which would lead to greater waste for disposal. Furthermore, the results herein help to resolve a prevalent technical challenge faced in nuclear facilities that utilize polymeric materials for nuclear processing and disposal.« less

  14. Cherenkov excited phosphorescence-based pO2 estimation during multi-beam radiation therapy: phantom and simulation studies.

    PubMed

    Holt, Robert W; Zhang, Rongxiao; Esipova, Tatiana V; Vinogradov, Sergei A; Glaser, Adam K; Gladstone, David J; Pogue, Brian W

    2014-09-21

    Megavoltage radiation beams used in External Beam Radiotherapy (EBRT) generate Cherenkov light emission in tissues and equivalent phantoms. This optical emission was utilized to excite an oxygen-sensitive phosphorescent probe, PtG4, which has been developed specifically for NIR lifetime-based sensing of the partial pressure of oxygen (pO2). Phosphorescence emission, at different time points with respect to the excitation pulse, was acquired by an intensifier-gated CCD camera synchronized with radiation pulses delivered by a medical linear accelerator. The pO2 distribution was tomographically recovered in a tissue-equivalent phantom during EBRT with multiple beams targeted from different angles at a tumor-like anomaly. The reconstructions were tested in two different phantoms that have fully oxygenated background, to compare a fully oxygenated and a fully deoxygenated inclusion. To simulate a realistic situation of EBRT, where the size and location of the tumor is well known, spatial information of a prescribed region was utilized in the recovery estimation. The phantom results show that region-averaged pO2 values were recovered successfully, differentiating aerated and deoxygenated inclusions. Finally, a simulation study was performed showing that pO2 in human brain tumors can be measured to within 15 mmHg for edge depths less than 10-20 mm using the Cherenkov Excited Phosphorescence Oxygen imaging (CEPhOx) method and PtG4 as a probe. This technique could allow non-invasive monitoring of pO2 in tumors during the normal process of EBRT, where beams are generally delivered from multiple angles or arcs during each treatment fraction.

  15. Thin silicon solar cell performance characteristics

    NASA Technical Reports Server (NTRS)

    Gay, C. F.

    1978-01-01

    Refined techniques for surface texturizing, back surface field and back surface reflector formation were evaluated for use with shallow junction, single-crystal silicon solar cells. Each process was characterized individually and collectively as a function of device thickness and bulk resistivity. Among the variables measured and reported are open circuit voltage, short circuit current and spectral response. Substantial improvements were obtained by the utilization of a low cost aluminum paste process to simultaneously remove the unwanted n(+) diffused region, form the back surface field and produce an ohmic contact metallization. The highly effective BSF which results from applying this process has allowed fabrication of cells 0.05 mm thick with initial outputs as high as 79.5 mW/4 sq cm (28 C, AM0) and superior electron radiation tolerance. Cells of 0.02 mm to 0.04 mm thickness have been fabricated with power to mass ratios well in excess of 2 watts per gram.

  16. 40 CFR 190.02 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electrical power for public use by any fuel cycle through utilization of nuclear energy. (b) Uranium fuel... directly support the production of electrical power for public use utilizing nuclear energy, but excludes... ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS General Provisions § 190.02...

  17. 40 CFR 190.02 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrical power for public use by any fuel cycle through utilization of nuclear energy. (b) Uranium fuel... directly support the production of electrical power for public use utilizing nuclear energy, but excludes... ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS General Provisions § 190.02...

  18. Methodology for the passive detection and discrimination of chemical and biological aerosols

    NASA Astrophysics Data System (ADS)

    Marinelli, William J.; Shokhirev, Kirill N.; Konno, Daisei; Rossi, David C.; Richardson, Martin

    2013-05-01

    The standoff detection and discrimination of aerosolized biological and chemical agents has traditionally been addressed through LIDAR approaches, but sensor systems using these methods have yet to be deployed. We discuss the development and testing of an approach to detect these aerosols using the deployed base of passive infrared hyperspectral sensors used for chemical vapor detection. The detection of aerosols requires the inclusion of down welling sky and up welling ground radiation in the description of the radiative transfer process. The wavelength and size dependent ratio of absorption to scattering provides much of the discrimination capability. The approach to the detection of aerosols utilizes much of the same phenomenology employed in vapor detection; however, the sensor system must acquire information on non-line-of-sight sources of radiation contributing to the scattering process. We describe the general methodology developed to detect chemical or biological aerosols, including justifications for the simplifying assumptions that enable the development of a real-time sensor system. Mie scattering calculations, aerosol size distribution dependence, and the angular dependence of the scattering on the aerosol signature will be discussed. This methodology will then be applied to two test cases: the ground level release of a biological aerosol (BG) and a nonbiological confuser (kaolin clay) as well as the debris field resulting from the intercept of a cruise missile carrying a thickened VX warhead. A field measurement, conducted at the Utah Test and Training Range will be used to illustrate the issues associated with the use of the method.

  19. Incorporating digital imaging into dental hygiene practice.

    PubMed

    Saxe, M J; West, D J

    1997-01-01

    The objective of this paper is to describe digital imaging technology: available modalities, scientific imaging process, advantages and limitations, and applications to dental hygiene practice. Advances in technology have created innovative imaging modalities for intraoral radiography that eliminate film as the traditional image receptor. Digital imaging generates instantaneous radiographic images on a display monitor following exposure. Advantages include lower patient exposure per image and elimination of film processing. Digital imaging enhances diagnostic capabilities and, therefore, treatment decisions by the oral healthcare provider. Utilization of digital imaging technology for intraoral radiography will advance the practice of dental hygiene. Although spatial resolution is inferior to conventional film, digital imaging provides adequate resolution to diagnose oral diseases. Dental hygienists must evaluate new technologies in radiography to continue providing quality care while reducing patient exposure to ionizing radiation.

  20. MATHEMATICAL METHODS IN MEDICAL IMAGE PROCESSING

    PubMed Central

    ANGENENT, SIGURD; PICHON, ERIC; TANNENBAUM, ALLEN

    2013-01-01

    In this paper, we describe some central mathematical problems in medical imaging. The subject has been undergoing rapid changes driven by better hardware and software. Much of the software is based on novel methods utilizing geometric partial differential equations in conjunction with standard signal/image processing techniques as well as computer graphics facilitating man/machine interactions. As part of this enterprise, researchers have been trying to base biomedical engineering principles on rigorous mathematical foundations for the development of software methods to be integrated into complete therapy delivery systems. These systems support the more effective delivery of many image-guided procedures such as radiation therapy, biopsy, and minimally invasive surgery. We will show how mathematics may impact some of the main problems in this area, including image enhancement, registration, and segmentation. PMID:23645963

  1. Relationship between radiation dose reduction and image quality change in photostimulable phosphor luminescence X-ray imaging systems.

    PubMed

    Sakurai, T; Kawamata, R; Kozai, Y; Kaku, Y; Nakamura, K; Saito, M; Wakao, H; Kashima, I

    2010-05-01

    The aim of the study was to clarify the change in image quality upon X-ray dose reduction and to re-analyse the possibility of X-ray dose reduction in photostimulable phosphor luminescence (PSPL) X-ray imaging systems. In addition, the study attempted to verify the usefulness of multiobjective frequency processing (MFP) and flexible noise control (FNC) for X-ray dose reduction. Three PSPL X-ray imaging systems were used in this study. Modulation transfer function (MTF), noise equivalent number of quanta (NEQ) and detective quantum efficiency (DQE) were evaluated to compare the basic physical performance of each system. Subjective visual evaluation of diagnostic ability for normal anatomical structures was performed. The NEQ, DQE and diagnostic ability were evaluated at base X-ray dose, and 1/3, 1/10 and 1/20 of the base X-ray dose. The MTF of the systems did not differ significantly. The NEQ and DQE did not necessarily depend on the pixel size of the system. The images from all three systems had a higher diagnostic utility compared with conventional film images at the base and 1/3 X-ray doses. The subjective image quality was better at the base X-ray dose than at 1/3 of the base dose in all systems. The MFP and FNC-processed images had a higher diagnostic utility than the images without MFP and FNC. The use of PSPL imaging systems may allow a reduction in the X-ray dose to one-third of that required for conventional film. It is suggested that MFP and FNC are useful for radiation dose reduction.

  2. [Quant therapy and the composition of the moister of the eye anterior chamber (an experimental study)].

    PubMed

    Pavliuk, E Iu; Sherkhoeva, D Ts; Pavliuk, A Iu; Khristoforov, V N

    2005-01-01

    We examined 12 rabbits, 6 of whom (12 eyes) were exposed to magneto-infrared laser radiation (MILR) and another 6 (12 eyes) were controls. The parameters of pulse and continuous infrared LED radiation were as follows: wavelength--860 nm, pulse capacity--2 W, mean radiation capacity--10 mW, magnetic field strength--up to 17 mTl. A study of the moister of the anterior chamber showed a MILR-induced activated metabolism, i.e. a better acid-base balance (ABB), more intense oxygenation in the ocular tissues and decreased acidosis. Higher concentrations of buffer bases (ABEe and SBEc) cause shifts in ABB towards metabolic alkalosis. A lower concentration of glucose denotes intensified processes related with its utilization. A lack of changes in the quantity of salts in the moister of the anterior chamber rules out the possibility of that the content of glucose would go down due to its dissolution with a big volume of newly produced moister. A lack of an increase in the concentration of whole protein, as observed after MILR, can be regarded as indirect evidence to absence of any adverse effect on the vascular wall.

  3. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies1[OPEN

    PubMed Central

    Quick, W. Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. PMID:27895208

  4. An ARM data-oriented diagnostics package to evaluate the climate model simulation

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Xie, S.

    2016-12-01

    A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.

  5. The ALI-ARMS Code for Modeling Atmospheric non-LTE Molecular Band Emissions: Current Status and Applications

    NASA Technical Reports Server (NTRS)

    Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.

    2008-01-01

    The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.

  6. A critical appraisal of the clinical utility of proton therapy in oncology

    PubMed Central

    Wang, Dongxu

    2015-01-01

    Proton therapy is an emerging technology for providing radiation therapy to cancer patients. The depth dose distribution of a proton beam makes it a preferable radiation modality as it reduces radiation to the healthy tissue outside the tumor, compared with conventional photon therapy. While theoretically beneficial, its clinical values are still being demonstrated from the increasing number of patients treated with proton therapy, from several dozen proton therapy centers around the world. High equipment and facility costs are often the major obstacle for its wider adoption. Because of the high cost and lack of definite clinical evidence of its superiority, proton therapy treatment faces criticism on its cost-effectiveness. Technological development is causing a gradual lowering of costs, and research and clinical studies are providing further evidence on its clinical utility. PMID:26604838

  7. Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.

    2011-12-01

    Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This work demonstrates the importance of land use in shaping future patterns of climate change, both globally and regionally.

  8. Utility of an Australasian registry for children undergoing radiation treatment.

    PubMed

    Ahern, Verity

    2014-12-01

    The aim of this study was to evaluate the utility of an Australasian registry ('the Registry') for children undergoing radiation treatment (RT). Children under the age of 16 years who received a course of radiation between January 1997 and December 2010 and were enrolled on the Registry form the subjects of this study. A total of 2232 courses of RT were delivered, predominantly with radical intent (87%). Registrations fluctuated over time, but around one-half of children diagnosed with cancer undergo a course of RT. The most prevalent age range at time of RT was 10-15 years, and the most common diagnoses were central nervous system tumours (34%) and acute lymphoblastic leukaemia (20%). The Registry provides a reflection of the patterns of care of children undergoing RT in Australia and a mechanism for determining the resources necessary to manage children by RT (human, facilities and emerging technologies, such as proton therapy). It lacks the detail to provide information on radiotherapy quality and disease outcomes which should be the subject of separate audit studies. The utility of the Registry has been hampered by its voluntary nature and varying needs for consent. Completion of registry forms is a logical requirement for inclusion in the definition of a subspecialist in paediatric radiation oncology. © 2014 The Royal Australian and New Zealand College of Radiologists.

  9. Radiative and convective heating during Venus entry.

    NASA Technical Reports Server (NTRS)

    Page, W. A.; Woodward, H. T.

    1972-01-01

    Determination of the stagnation region heating of probes entering the Venusian atmosphere. Both convective and radiative heat-transfer rates are predicted, and account is taken of the important effects of radiative transport in the vehicle shock layer. A nongray radiative transport model is utilized which parallels a four-band treatment previously developed for air (Page et al., 1969), but includes two additional bands to account for the important CO(4+) molecular band system. Some comparisons are made between results for Venus entry and results for earth entry obtained using a viscous earth entry program.

  10. Sustainably Sourced, Thermally Resistant, Radiation Hard Biopolymer

    NASA Technical Reports Server (NTRS)

    Pugel, Diane

    2011-01-01

    This material represents a breakthrough in the production, manufacturing, and application of thermal protection system (TPS) materials and radiation shielding, as this represents the first effort to develop a non-metallic, non-ceramic, biomaterial-based, sustainable TPS with the capability to also act as radiation shielding. Until now, the standing philosophy for radiation shielding involved carrying the shielding at liftoff or utilizing onboard water sources. This shielding material could be grown onboard and applied as needed prior to different radiation landscapes (commonly seen during missions involving gravitational assists). The material is a bioplastic material. Bioplastics are any combination of a biopolymer and a plasticizer. In this case, the biopolymer is a starch-based material and a commonly accessible plasticizer. Starch molecules are composed of two major polymers: amylase and amylopectin. The biopolymer phenolic compounds are common to the ablative thermal protection system family of materials. With similar constituents come similar chemical ablation processes, with the potential to have comparable, if not better, ablation characteristics. It can also be used as a flame-resistant barrier for commercial applications in buildings, homes, cars, and heater firewall material. The biopolymer is observed to undergo chemical transformations (oxidative and structural degradation) at radiation doses that are 1,000 times the maximum dose of an unmanned mission (10-25 Mrad), indicating that it would be a viable candidate for robust radiation shielding. As a comparison, the total integrated radiation dose for a three-year manned mission to Mars is 0.1 krad, far below the radiation limit at which starch molecules degrade. For electron radiation, the biopolymer starches show minimal deterioration when exposed to energies greater than 180 keV. This flame-resistant, thermal-insulating material is non-hazardous and may be sustainably sourced. It poses no hazardous waste threats during its lifecycle. The material composition is radiation-tolerant up to megarad doses, indicating its use as a radiation shielding material. It is lightweight, non-metallic, and able to be mechanically densified, permitting a tunable gradient of thermal and radiation protection as needed. The dual-use (thermal and radiation shielding), sustainable nature of this material makes it suitable for both industrial applications as a sustainable/green building material, and for space applications as thermal protection material and radiation shield.

  11. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    NASA Technical Reports Server (NTRS)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of the regolith materials by about 6%. The findings may be utilized to extend the possibilities of potential candidate materials for lunar habitat structures, will potentially impact the design criteria of future human bases on the moon, and provide some guidelines for future space mission planning with respect to radiation exposure and risks posed on astronauts.

  12. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  13. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  14. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  15. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  16. 47 CFR 15.211 - Tunnel radio systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Tunnel radio systems. 15.211 Section 15.211... Tunnel radio systems. An intentional radiator utilized as part of a tunnel radio system may operate on... system (intentional radiator and all connecting wires) shall be contained solely within a tunnel, mine or...

  17. Localization of dense intracranial electrode arrays using magnetic resonance imaging

    PubMed Central

    Doyle, Werner K.; Halgren, Eric; Carlson, Chad; Belcher, Thomas L.; Cash, Sydney S.; Devinsky, Orrin; Thesen, Thomas

    2013-01-01

    Intracranial electrode arrays are routinely used in the pre-surgical evaluation of patients with medically refractory epilepsy, and recordings from these electrodes have been increasingly employed in human cognitive neurophysiology due to their high spatial and temporal resolution. For both researchers and clinicians, it is critical to localize electrode positions relative to the subject-specific neuroanatomy. In many centers, a post-implantation MRI is utilized for electrode detection because of its higher sensitivity for surgical complications and the absence of radiation. However, magnetic susceptibility artifacts surrounding each electrode prohibit unambiguous detection of individual electrodes, especially those that are embedded within dense grid arrays. Here, we present an efficient method to accurately localize intracranial electrode arrays based on pre- and post-implantation MR images that incorporates array geometry and the individual's cortical surface. Electrodes are directly visualized relative to the underlying gyral anatomy of the reconstructed cortical surface of individual patients. Validation of this approach shows high spatial accuracy of the localized electrode positions (mean of 0.96 mm±0.81 mm for 271 electrodes across 8 patients). Minimal user input, short processing time, and utilization of radiation-free imaging are strong incentives to incorporate quantitatively accurate localization of intracranial electrode arrays with MRI for research and clinical purposes. Co-registration to a standard brain atlas further allows inter-subject comparisons and relation of intracranial EEG findings to the larger body of neuroimaging literature. PMID:22759995

  18. Overview of Photonic Materials for Application in Space Environments

    NASA Technical Reports Server (NTRS)

    Taylor, E. W.; Osinski, M.; Svimonishvili, Tengiz; Watson, M.; Bunton, P.; Pearson, S. D.; Bilbro, J.

    1999-01-01

    Future space systems will he based on components evolving from the development and refinement of new and existing photonic materials. Optically based sensors, inertial guidance, tracking systems, communications, diagnostics, imaging and high speed optical processing are but a few of the applications expected to widely utilize photonic materials. The response of these materials to space environment effects (SEE) such as spacecraft charging, orbital debris, atomic oxygen, ultraviolet irradiation, temperature and ionizing radiation will be paramount to ensuring successful space applications. The intent of this paper is to, address the latter two environments via a succinct comparison of the known sensitivities of selected photonic materials to the temperature and ionizing radiation conditions found in space and enhanced space environments Delineation of the known temperature and radiation induced responses in LiNbO3, AlGaN, AlGsAs,TeO2, Si:Ge, and several organic polymers are presented. Photonic materials are realizing rapid transition into applications for many proposed space components and systems including: optical interconnects, optical gyros, waveguide and spatial light modulators, light emitting diodes, lasers, optical fibers and fiber optic amplifiers. Changes to material parameters such as electrooptic coefficients, absorption coefficients, polarization, conductivity, coupling coefficients, diffraction efficiencies, and other pertinent material properties examined for thermo-optic and radiation induced effect. Conclusions and recommendations provide the reader with an understanding of the limitations or attributes of material choices for specific applications.

  19. Optical Analysis of Transparent Polymeric Material Exposed to Simulated Space Environment

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Finckenor, Miria M.

    1999-01-01

    Transparent polymeric materials are being designed and utilized as solar concentrating lenses for spacecraft power and propulsion systems. These polymeric lenses concentrate solar energy onto energy conversion devices such as solar cells and thermal energy systems. The conversion efficiency is directly related to the transmissivity of the polymeric lens. The Environmental Effects Group of the Marshall Space Flight Center's Materials, Processes, and Manufacturing Department exposed a variety of materials to a simulated space environment and evaluated them for an, change in optical transmission. These materials include Lexan(TM), polyethylene terephthalate (PET). several formulations of Tefzel(TM). and Teflon(TM), and silicone DC 93-500. Samples were exposed to a minimum of 1000 Equivalent Sun Hours (ESH) of near-UV radiation (250 - 400 nm wavelength). Data will be presented on materials exposed to charged particle radiation equivalent to a five-year dose in geosynchronous orbit. These exposures were performed in MSFC's Combined Environmental Effects Test Chamber, a unique facility with the capability to expose materials simultaneously or sequentially to protons, low-energy electrons, high-energy electrons, near UV radiation and vacuum UV radiation.Prolonged exposure to the space environment will decrease the polymer film's transmission and thus reduce the conversion efficiency. A method was developed to normalize the transmission loss and thus rank the materials according to their tolerance to space environmental exposure. Spectral results and the material ranking according to transmission loss are presented.

  20. Utilizing the R/V Marcus G. Langseth's streamer to measure the acoustic radiation of its seismic source in the shallow waters of New Jersey's continental shelf.

    PubMed

    Crone, Timothy J; Tolstoy, Maya; Gibson, James C; Mountain, Gregory

    2017-01-01

    Shallow water marine seismic surveys are necessary to understand a range of Earth processes in coastal environments, including those that represent major hazards to society such as earthquakes, tsunamis, and sea-level rise. Predicting the acoustic radiation of seismic sources in shallow water, which is required for compliance with regulations designed to limit impacts on protected marine species, is a significant challenge in this environment because of variable reflectivity due to local geology, and the susceptibility of relatively small bathymetric features to focus or shadow acoustic energy. We use data from the R/V Marcus G. Langseth's towed hydrophone streamer to estimate the acoustic radiation of the ship's seismic source during a large survey of the shallow shelf off the coast of New Jersey. We use the results to estimate the distances from the source to acoustic levels of regulatory significance, and use bathymetric data from the ship's multibeam system to explore the relationships between seafloor depth and slope and the measured acoustic radiation patterns. We demonstrate that existing models significantly overestimate mitigation radii, but that the variability of received levels in shallow water suggest that in situ real-time measurements would help improve these estimates, and that post-cruise revisions of received levels are valuable in accurately determining the potential acoustic impact of a seismic survey.

  1. Transfer of Real-time Dynamic Radiation Environment Assimilation Model; Research to Operation

    NASA Astrophysics Data System (ADS)

    Cho, K. S. F.; Hwang, J.; Shin, D. K.; Kim, G. J.; Morley, S.; Henderson, M. G.; Friedel, R. H.; Reeves, G. D.

    2015-12-01

    Real-time Dynamic Radiation Environment Assimilation Model (rtDREAM) was developed by LANL for nowcast of energetic electrons' flux at the radiation belt to quantify potential risks from radiation damage at the satellites. Assimilated data are from multiple sources including LANL assets (GEO, GPS). For transfer from research to operation of the rtDREAM code, LANL/KSWC/NOAA makes a Memorandum Of Understanding (MOU) on the collaboration between three parts. By this MOU, KWSC/RRA provides all the support for transitioning the research version of DREAM to operations. KASI is primarily responsible for providing all the interfaces between the current scientific output formats of the code and useful space weather products that can be used and accessed through the web. In the second phase, KASI will be responsible in performing the work needed to transform the Van Allen Probes beacon data into "DREAM ready" inputs. KASI will also provide the "operational" code framework and additional data preparation, model output, display and web page codes back to LANL and SWPC. KASI is already a NASA partnering ground station for the Van Allen Probes' space weather beacon data and can here show use and utility of these data for comparison between rtDREAM and observations by web. NOAA has offered to take on some of the data processing tasks specific to the GOES data.

  2. Solar Pumped, Alkali Vapor Laser.

    DTIC Science & Technology

    1987-09-04

    convert the solar radiation to electricity or longer wavelength blackbody radiation which is then used to power the laser. A directly pumped solar laser...wavelength blackbody radiation which is then used to power the laser. A directly pumped solar laser would utilize a portion of the solar spectrum to directly...sodium dimer (near the upper laser state) and a second body. *, I will review the method we used for measuring these rates and present preliminary

  3. Radiation detection system using semiconductor detector with differential carrier trapping and mobility

    DOEpatents

    Whited, Richard C.

    1981-01-01

    A system for obtaining improved resolution in relatively thick semiconductor radiation detectors, such as HgI.sub.2, which exhibit significant hole trapping. Two amplifiers are used: the first measures the charge collected and the second the contribution of the electrons to the charge collected. The outputs of the two amplifiers are utilized to unfold the total charge generated within the detector in response to a radiation event.

  4. Some features of radiation processing in the plastics industry

    NASA Astrophysics Data System (ADS)

    D´, J.

    In the last few years, the production of free radicals by radiation became competitive with chemical initiators. Nevertheless, radiation processing got only a firm footing, where distinct advantages could be demonstrated as compared with conventional processes, either in the technology or the product quality. This paper is intended to direct attention to some of the special features of radiation processing.

  5. Broad band waveguide spectrometer

    DOEpatents

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  6. PR-EDB: Power Reactor Embrittlement Database - Version 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John; Subramani, Ranjit

    2008-03-01

    The aging and degradation of light-water reactor pressure vessels is of particular concern because of their relevance to plant integrity and the magnitude of the expected irradiation embrittlement. The radiation embrittlement of reactor pressure vessel materials depends on many factors, such as neutron fluence, flux, and energy spectrum, irradiation temperature, and preirradiation material history and chemical compositions. These factors must be considered to reliably predict pressure vessel embrittlement and to ensure the safe operation of the reactor. Large amounts of data from surveillance capsules are needed to develop a generally applicable damage prediction model that can be used for industrymore » standards and regulatory guides. Furthermore, the investigations of regulatory issues such as vessel integrity over plant life, vessel failure, and sufficiency of current codes, Standard Review Plans (SRPs), and Guides for license renewal can be greatly expedited by the use of a well-designed computerized database. The Power Reactor Embrittlement Database (PR-EDB) is such a comprehensive collection of data for U.S. designed commercial nuclear reactors. The current version of the PR-EDB lists the test results of 104 heat-affected-zone (HAZ) materials, 115 weld materials, and 141 base materials, including 103 plates, 35 forgings, and 3 correlation monitor materials that were irradiated in 321 capsules from 106 commercial power reactors. The data files are given in dBASE format and can be accessed with any personal computer using the Windows operating system. "User-friendly" utility programs have been written to investigate radiation embrittlement using this database. Utility programs allow the user to retrieve, select and manipulate specific data, display data to the screen or printer, and fit and plot Charpy impact data. The PR-EDB Version 3.0 upgrades Version 2.0. The package was developed based on the Microsoft .NET framework technology and uses Microsoft Access for backend data storage, and Microsoft Excel for plotting graphs. This software package is compatible with Windows (98 or higher) and has been built with a highly versatile user interface. PR-EDB Version 3.0 also contains an "Evaluated Residual File" utility for generating the evaluated processed files used for radiation embrittlement study.« less

  7. Variations in Medicare Reimbursement in Radiation Oncology: An Analysis of the Medicare Provider Utilization and Payment Data Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Charles C.; Lanni, Thomas B.; Robertson, John M., E-mail: JRobertson@beaumont.edu

    Purpose: The purposes of this study were to summarize recently published data on Medicare reimbursement to individual radiation oncologists and to identify the causes of variation in Medicare reimbursement in radiation oncology. Methods and Materials: The Medicare Provider Utilization and Payment Data: Physician and Other Supplier Public Use File (POSPUF), which details nearly all services provided by radiation oncologists in 2012, was used for this study. The data were filtered and analyzed by physician and by billing code. Statistical analysis was performed to identify differences in reimbursements based on sex, rurality, billing of technical services, or location in a certificatemore » of need (CON) state. Results: There were 4135 radiation oncologists who received a total of $1,499,625,803 in payments from Medicare in 2012. Seventy-five percent of radiation oncologists were male. The median reimbursement was $146,453. The code with the highest total reimbursement was 77418 (radiation treatment delivery intensity modulated radiation therapy [IMRT]). The most commonly billed evaluation and management (E/M) code for new visits was 99205 (49%). The most commonly billed E/M code for established visits was 99213 (54%). Forty percent of providers billed none of their new office visits using 99205 (the highest E/M billing code), whereas 34% of providers billed all of their new office visits using 99205. For the 1510 radiation oncologists (37%) who billed technical services, median Medicare reimbursement was $606,008, compared with $93,921 for all other radiation oncologists (P<.001). On multivariate analysis, technical services billing (P<.001), male sex (P<.001), and rural location (P=.007) were predictive of higher Medicare reimbursement. Conclusions: The billing of technical services, with their high capital and labor overhead requirements, limits any comparison in reimbursement between individual radiation oncologists or between radiation oncologists and other specialists. Male sex and rural practice location are independent predictors of higher total Medicare reimbursements.« less

  8. Variations in Medicare Reimbursement in Radiation Oncology: An Analysis of the Medicare Provider Utilization and Payment Data Set.

    PubMed

    Vu, Charles C; Lanni, Thomas B; Robertson, John M

    2016-04-01

    The purposes of this study were to summarize recently published data on Medicare reimbursement to individual radiation oncologists and to identify the causes of variation in Medicare reimbursement in radiation oncology. The Medicare Provider Utilization and Payment Data: Physician and Other Supplier Public Use File (POSPUF), which details nearly all services provided by radiation oncologists in 2012, was used for this study. The data were filtered and analyzed by physician and by billing code. Statistical analysis was performed to identify differences in reimbursements based on sex, rurality, billing of technical services, or location in a certificate of need (CON) state. There were 4135 radiation oncologists who received a total of $1,499,625,803 in payments from Medicare in 2012. Seventy-five percent of radiation oncologists were male. The median reimbursement was $146,453. The code with the highest total reimbursement was 77418 (radiation treatment delivery intensity modulated radiation therapy [IMRT]). The most commonly billed evaluation and management (E/M) code for new visits was 99205 (49%). The most commonly billed E/M code for established visits was 99213 (54%). Forty percent of providers billed none of their new office visits using 99205 (the highest E/M billing code), whereas 34% of providers billed all of their new office visits using 99205. For the 1510 radiation oncologists (37%) who billed technical services, median Medicare reimbursement was $606,008, compared with $93,921 for all other radiation oncologists (P<.001). On multivariate analysis, technical services billing (P<.001), male sex (P<.001), and rural location (P=.007) were predictive of higher Medicare reimbursement. The billing of technical services, with their high capital and labor overhead requirements, limits any comparison in reimbursement between individual radiation oncologists or between radiation oncologists and other specialists. Male sex and rural practice location are independent predictors of higher total Medicare reimbursements. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  10. Development Status of a CVD System to Deposit Tungsten onto UO2 Powder via the WCI6 Process

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Kimberlin, A.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under development for deep space exploration. NTP's high specific impulse (> 850 second) enables a large range of destinations, shorter trip durations, and improved reliability. W-60vol%UO2 CERMET fuel development efforts emphasize fabrication, performance testing and process optimization to meet service life requirements. Fuel elements must be able to survive operation in excess of 2850 K, exposure to flowing hydrogen (H2), vibration, acoustic, and radiation conditions. CTE mismatch between W and UO2 result in high thermal stresses and lead to mechanical failure as a result UO2 reduction by hot hydrogen (H2) [1]. Improved powder metallurgy fabrication process control and mitigated fuel loss can be attained by coating UO2 starting powders within a layer of high density tungsten [2]. This paper discusses the advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process.

  11. Characterization and evaluation of ionizing and non-ionizing imaging systems used in state of the art image-guided radiation therapy techniques

    NASA Astrophysics Data System (ADS)

    Stanley, Dennis Nichols

    With the growing incidence of cancer worldwide, the need for effective cancer treatment is paramount. Currently, radiation therapy exists as one of the few effective, non-invasive methods of reducing tumor size and has the capability for the elimination of localized tumors. Radiation therapy utilizes non-invasive external radiation to treat localized cancers but to be effective, physicians must be able to visualize and monitor the internal anatomy and target displacements. Image-Guided Radiation Therapy frequently utilizes planar and volumetric imaging during a course of radiation therapy to improve the precision and accuracy of the delivered treatment to the internal anatomy. Clinically, visualization of the internal anatomy allows physicians to refine the treatment to include as little healthy tissue as possible. This not only increases the effectiveness of treatment by damaging only the tumor but also increases the quality of life for the patient by decreasing the amount of healthy tissue damaged. Image-Guided Radiation Therapy is commonly used to treat tumors in areas of the body that are prone to movement, such as the lungs, liver, and prostate, as well as tumors located close to critical organs and tissues such as the tumors in the brain and spinal cord. Image-Guided Radiation Therapy can utilize both ionizing modalities, like x-ray based planar radiography and cone-beam CT, and nonionizing modalities like MRI, ultrasound and video-based optical scanning systems. Currently ionizing modalities are most commonly utilized for their ability to visualize and monitor internal anatomy but cause an increase to the total dose to the patient. Nonionizing imaging modalities allow frequent/continuous imaging without the increase in dose; however, they are just beginning to be clinically implemented in radiation oncology. With the growing prevalence and variety of Image-Guided Radiation Therapy imaging modalities the ability to evaluate the overall image quality, monitor the stability of the imaging systems and characterize each system are important to ensuring the consistency and effectiveness of the overall treatment. Image-Guided Radiation Therapy quality assurance allows a method of quantifying the accuracy and stability of the imaging systems. Understanding how the ionizing imaging systems operate and change over time allows for a more effective overall treatment and will be the focus of the first step of this project. In each of the first three aims, different ionizing imaging modalities will be evaluated for their temporal stability and a record of the determined tolerance level will be reported. The Second step of this project will be a characterization of the accuracy and performance of the new C-Rad CatalystHD a video-based, surface-imaging guided patient localization system. The catalyst will be analyzed for it accuracy of setup and patient positing, intra- and inter- fraction motion detection as well as its respiratory gating capabilities. The final step of this project will be to use the well-established accuracy of the XVI volumetric imaging system as a benchmark to assess the accuracy of the C-Rad CatalystHD system for use in pretreatment patient position verification for cranial stereotactic procedures. The treatment of brain lesions generally requires a very high degree of precision due to relatively small target sizes, close proximity to eloquent areas of the brain, and large, ablative doses being delivered. Stringent accuracy in imaging is needed to verify and monitor the correct spatial delivery of radiation throughout treatment. In order to investigate if the CatalystHD system is a capable imaging system for such deliveries, the system will need to be assessed and benchmarked against the XVI in a phantom geometry. By doing so, the currently unproven utility of the CatalystHD system for cranial stereotactic delivery may be established. (Abstract shortened by ProQuest.).

  12. Gamma greenhouse: A chronic facility for crops improvement and agrobiotechnology

    NASA Astrophysics Data System (ADS)

    Azhar, M.; Ahsanulkhaliqin, A. W.

    2014-02-01

    Gamma irradiation is one of the most common procedures in plant mutagenesis and agrobiotechnology activities. The procedures consist of chronic and acute gamma radiation. Generally, 60Co and 137Cs are gamma radiation sources for radiation processing with relatively high energy (half-life 5.27 years for 60Co and 30.1 years for 137Cs). The energy associated with gamma radiation is high enough to break the molecular bonds and ionize atoms without affecting structure of the atomic nucleus (avoiding induction of radioactivity). The Gamma Green House (GGH) is the only chronic irradiation facility in Malaysia, located at Malaysian Nuclear Agency (Nuclear Malaysia). GGH is used for induction of mutation in plants and other biological samples at low dose radiation over period of time depending on the nature and sensitivity of the plant species. The GGH consist of circular green house with 30 meters radius, control room and irradiator with interlock system. The irradiator produces low dose gamma radiation derived from Caesium-137 radioactive source. The biological samples can be exposed to low dose radiation in days, weeks, months or years. The current irradiation rate for GGH is 2.67 Gy/hr at 1 meter from the source. Chronic gamma irradiation produces a wider mutation spectrum and useful for minimizing radiation damages towards obtaining new improved traits for research and commercial values. The prospect of the gamma greenhouse is its uses in research, educations and services on induced mutation techniques for the improvement of plant varieties and microbes. In generating awareness and attract users to the facility, Nuclear Malaysia provides wide range of irradiation services for plant species and mutagenesis consultancies to academicians, students scientists, and plant breeders, from local universities, other research institutes, and growers. Charges for irradiation and consultancy services are at nominal rates. The utilization activities of the gamma greenhouse mainly cover Research and Development, Research Collaboration, Exchange of Information, Irradiation Services, Training Programs, Education, Exchange of Scientists and Seminars/ Conferences.

  13. White matter and information processing speed following treatment with cranial-spinal radiation for pediatric brain tumor.

    PubMed

    Scantlebury, Nadia; Bouffet, Eric; Laughlin, Suzanne; Strother, Douglas; McConnell, Dina; Hukin, Juliette; Fryer, Christopher; Laperriere, Normand; Montour-Proulx, Isabelle; Keene, Daniel; Fleming, Adam; Jabado, Nada; Liu, Fang; Riggs, Lily; Law, Nicole; Mabbott, Donald J

    2016-05-01

    We compared the structure of specific white matter tracts and information processing speed between children treated for posterior fossa tumors with cranial-spinal radiation (n = 30), or with surgery +/- focal radiation (n = 29), and healthy children (n = 37). Probabilistic diffusion tensor imaging (DTI) tractography was used to delineate the inferior longitudinal fasciculi, optic radiation, inferior frontal occipital fasciculi, and uncinate fasciculi bilaterally. Information processing speed was measured using the coding and symbol search subtests of the Wechsler Intelligence Scales, and visual matching, pair cancellation, and rapid picture naming subtests of the Woodcock-Johnson Test of Cognitive Ability, 3rd revision. We examined group differences using repeated measures MANOVAs and path analyses were used to test the relations between treatment, white matter structure of the tracts, and information processing speed. DTI indices of the optic radiations, the inferior longitudinal fasciculi, and the inferior fronto-occipital fasciculi differed between children treated with cranial-spinal radiation and children treated with surgery +/- focal radiation, and healthy controls (p = .045). Children treated with cranial-spinal radiation also exhibited lower processing speed scores relative to healthy control subjects (p = .002). Notably, we observed that group differences in information processing speed were related to the structure of the right optic radiation (p = .002). We show that cranial-spinal radiation may have a negative impact on information processing speed via insult to the right optic radiations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Shared decision-making: is it time to obtain informed consent before radiologic examinations utilizing ionizing radiation? Legal and ethical implications.

    PubMed

    Berlin, Leonard

    2014-03-01

    Concerns about the possibility of developing cancer due to diagnostic imaging examinations utilizing ionizing radiation exposure are increasing. Research studies of survivors of atomic bomb explosions, nuclear reactor accidents, and other unanticipated exposures to similar radiation have led to varying conclusions regarding the stochastic effects of radiation exposure. That high doses of ionizing radiation cause cancer in humans is generally accepted, but the question of whether diagnostic levels of radiation cause cancer continues to be hotly debated. It cannot be denied that overexposure to ionizing radiation beyond a certain threshold, which has not been exactly determined, does generate cancer. This causes a dilemma: what should patients be informed about the possibility that a CT or similar examination might cause cancer later in life? At present, there is no consensus in the radiology community as to whether informed consent must be obtained from a patient before the patient undergoes a CT or similar examination. The author analyzes whether there is a legal duty mandating radiologists to obtain such informed consent but also, irrespective of the law, whether there an ethical duty that compels radiologists to inform patients of potential adverse effects of ionizing radiation. Over the past decade, there has been a noticeable shift from a benevolent, paternalistic approach to medical care to an autonomy-based, shared-decision-making approach, whereby patient and physician work as partners in determining what is medically best for the patient. Radiologists should discuss the benefits and hazards of imaging with their patients. Copyright © 2014. Published by Elsevier Inc.

  15. Identification of Novel Desiccation-Tolerant S. cerevisiae Strains for Deep Space Biosensors

    NASA Technical Reports Server (NTRS)

    Tieze, Sofia Massaro; Santa Maria, Sergio R.; Liddell, Lauren C.; Bhattacharya, Sharmila

    2017-01-01

    NASA's BioSentinel mission, a secondary payload that will fly on the Space Launch System's first Exploration Mission (EM-1), utilizes the budding yeast S. cerevisiae to study the biological response to the deep space radiation environment. Yeast samples are desiccated prior to launch to suspend growth and metabolism while the spacecraft travels to its target heliocentric orbit beyond Low Earth Orbit. Each sample is then rehydrated at the desired time points to reactivate the cells. A major risk in this mission is the loss of cell viability that occurs in the recovery period following the desiccation and rehydration process. Cell survival is essential for the detection of the biological response to features in the deep space environment, including ionizing radiation. The aim of this study is to mitigate viable cell loss in future biosensors by identifying mutations and genes that confer tolerance to desiccation stress in rad51, a radiation-sensitive yeast strain. We initiated a screen for desiccation-tolerance after rehydrating cells that were desiccated for three years, and selected various clones exhibiting robust growth. To verify retention of radiation sensitivity in the isolated clones - a crucial feature for a successful biosensor - we exposed them to ionizing radiation. Finally, to elucidate the genetic and molecular bases for observed desiccation-tolerance, we will perform whole-genome sequencing of those rad51 clones that exhibit both robust growth and radiation sensitivity following desiccation. The identification and characterization of desiccation-tolerant strains will allow us to engineer a biological model that will be resilient in face of the challenges of the deep space environment, and will thus ensure the experimental success of future biosensor missions.

  16. Identification of Novel Desiccation-Tolerant S. cerevisiae Strains for Deep Space Biosensors

    NASA Technical Reports Server (NTRS)

    Tieze, Sofia Massaro; Santa Maria, Sergio R.; Liddell, Lauren; Bhattacharya, Sharmila

    2017-01-01

    NASA's BioSentinel mission, a secondary payload that will fly on the Space Launch Systems first Exploration Mission (EM-1), utilizes the budding yeast S. cerevisiae to study the biological response to the deep space radiation environment. Yeast samples are desiccated prior to launch to suspend growth and metabolism while the spacecraft travels to its target heliocentric orbit beyond Low Earth Orbit. Each sample is then rehydrated at the desired time points to reactivate the cells. A major risk in this mission is the loss of cell viability that occurs in the recovery period following the desiccation and rehydration process. Cell survival is essential for the detection of the biological response to features in the deep space environment, including ionizing radiation.The aim of this study is to mitigate viable cell loss in future biosensors by identifying mutations and genes that confer tolerance to desiccation stress in rad51, a radiation-sensitive yeast strain. We initiated a screen for desiccation-tolerance after rehydrating cells that were desiccated for three years, and selected various clones exhibiting robust growth. To verify retention of radiation sensitivity in the isolated clonesa crucial feature for a successful biosensorwe exposed them to ionizing radiation. Finally, to elucidate the genetic and molecular bases for observed desiccation-tolerance, we will perform whole-genome sequencing of those rad51 clones that exhibit both robust growth and radiation sensitivity following desiccation. The identification and characterization of desiccation-tolerant strains will allow us to engineer a biological model that will be resilient in face of the challenges of the deep space environment, and will thus ensure the experimental success of future biosensor missions.

  17. Utilization of surgery, chemotherapy, radiation therapy, and hospice at the end of life for patients diagnosed with metastatic melanoma.

    PubMed

    Huo, Jinhai; Du, Xianglin L; Lairson, David R; Chan, Wenyaw; Jiang, Jing; Buchholz, Thomas A; Guadagnolo, B Ashleigh

    2015-06-01

    To examine the patterns of utilization of radiation therapy, chemotherapy, surgery, and hospice at the end-of-life care for patients diagnosed with metastatic melanoma. We identified 816 Medicare beneficiaries toward who were 65 years of age or older, with pathologically confirmed metastatic malignant melanoma between January 1, 2000, and December 31, 2007. We evaluated trends and associations between sociodemographic and health service characteristics and the use of hospice care, chemotherapy, surgery, and radiation therapy. We found increasing use of surgery for patients with metastatic melanoma from 13% in 2000 to 30% in 2007 (P=0.03 for trend), and no significant fluctuation in the use of chemotherapy (P=0.43) or radiation therapy (P=0.46). Older patients were less likely to receive radiation therapy or chemotherapy. The use of hospice care increased from 61% in 2000 to 79% in 2007 (P=0.07 for trend). Enrollment in short-term (1 to 3 d) hospice care use increased, whereas long-term hospice care (≥4 d) remained stable. Patients living in the SEER (Surveillance, Epidemiology and End Results) northeast and south regions were less likely to undergo surgery. Patients enrolled in long-term hospice care used significantly less chemotherapy, surgery, and radiation therapy. Surgery and hospice care use increased over the years of this study, whereas the use of chemotherapy and radiation therapy remained consistent for patients diagnosed with metastatic melanoma.

  18. Time-resolved vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokmakoff, Andrei; Champion, Paul; Heilweil, Edwin J.

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation ofmore » reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.« less

  19. Remote enzyme activation using gold coated magnetite as antennae for radio frequency fields

    NASA Astrophysics Data System (ADS)

    Collins, Christian B.; Ackerson, Christopher J.

    2018-02-01

    The emerging field of remote enzyme activation, or the ability to remotely turn thermophilic increase enzyme activity, could be a valuable tool for understanding cellular processes. Through exploitation of the temperature dependence of enzymatic processes and high thermal stability of thermophilic enzymes these experiments utilize nanoparticles as `antennae' that convert radiofrequency (RF) radiation into local heat, increasing activity of the enzymes without increasing the temperature of the surrounding bulk solution. To investigate this possible tool, thermolysin, a metalloprotease was covalently conjugated to 4nm gold coated magnetite particles via peptide bond formation with the protecting ligand shell. RF stimulated protease activity at 17.76 MHz in a solenoid shaped antenna, utilizing both electric and magnetic field interactions was investigated. On average 40 percent higher protease activity was observed in the radio frequency fields then when bulk heating the sample to the same temperature. This is attributed to electrophoretic motion of the nanoparticle enzyme conjugates and local regions of heat generated by the relaxation of the magnetite cores with the oscillating field. Radio frequency local heating of nanoparticles conjugated to enzymes as demonstrated could be useful in the activation of specific enzymes in complex cellular environments.

  20. Three Canted Radiator Panels to Provide Adequate Cooling for Instruments on Slewing Spacecraft in LEO

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2012-01-01

    Certain free-flying spacecraft in low Earth orbit (LEO) or payloads on the International Space Station (ISS) are required to slew to point the telescopes at targets. Instrument detectors and electronics require cooling. Traditionally a planar thermal radiator is used. The temperature of such a radiator varies significantly when the spacecraft slews because its view factors to space vary significantly. Also for payloads on the ISS, solar impingement on the radiator is possible. These thermal adversities could lead to inadequate cooling for the instrument. This paper presents a novel thermal design concept that utilizes three canted radiator panels to mitigate this problem. It increases the overall radiator view factor to cold space and reduces the overall solar or albedo flux absorbed per unit area of the radiator.

  1. Roles Played by Electrostatic Waves in Producing Radio Emissions

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    2000-01-01

    Processes in which electromagnetic radiation is produced directly or indirectly via intermediate waves are reviewed. It is shown that strict theoretical constraints exist for electrons to produce nonthermal levels of radiation directly by the Cerenkov or cyclotron resonances. In contrast, indirect emission processes in which intermediary plasma waves are converted into radiation are often favored on general and specific grounds. Four classes of mechanisms involving the conversion of electrostatic waves into radiation are linear mode conversion, hybrid linear/nonlinear mechanisms, nonlinear wave-wave and wave-particle processes, and radiation from localized wave packets. These processes are reviewed theoretically and observational evidence summarized for their occurrence. Strong evidence exists that specific nonlinear wave processes and mode conversion can explain quantitatively phenomena involving type III solar radio bursts and ionospheric emissions. On the other hand, no convincing evidence exists that magnetospheric continuum radiation is produced by mode conversion instead of nonlinear wave processes. Further research on these processes is needed.

  2. Optical frequency shot-noise suppression in electron beams: Three-dimensional analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nause, A.; Dyunin, E.; Gover, A.

    2010-05-15

    A predicted effect of current shot-noise suppression at optical-frequencies in a drifting charged-particle-beam and the corresponding process of particles self-ordering are analyzed in a one-dimensional (1D) model and verified by three-dimensional numerical simulations. The analysis confirms the prediction of a 1D single mode Langmuir plasma wave model of longitudinal plasma oscillation in the beam, and it defines the regime of beam parameters in which this effect takes place. The suppression of relativistic beam shot noise can be utilized to enhance the coherence of free electron lasers and of any coherent radiation device using an electron beam.

  3. Multiattribute risk analysis in nuclear emergency management.

    PubMed

    Hämäläinen, R P; Lindstedt, M R; Sinkko, K

    2000-08-01

    Radiation protection authorities have seen a potential for applying multiattribute risk analysis in nuclear emergency management and planning to deal with conflicting objectives, different parties involved, and uncertainties. This type of approach is expected to help in the following areas: to ensure that all relevant attributes are considered in decision making; to enhance communication between the concerned parties, including the public; and to provide a method for explicitly including risk analysis in the process. A multiattribute utility theory analysis was used to select a strategy for protecting the population after a simulated nuclear accident. The value-focused approach and the use of a neutral facilitator were identified as being useful.

  4. Innovative methods of energy transfer.

    PubMed

    McBee, L E

    1996-09-01

    Energy is utilized in many forms for processing egg products and other foods. Energy in the form of heat has commonly been used to kill microorganisms and pasteurize eggs. Transfer of energy by convection and conduction is limited by the properties of the egg product. Energy transfer by radiation is being used to advantage in the development of innovative methods to kill or inactivate microorganisms. A review of the electromagnetic spectrum reveals underutilized forms of energy with unique properties. Specific frequencies and method of application are selected for their ability to focus energy toward the destruction of microorganisms and the production of safe food products for the public.

  5. Low Temperature Testing of a Radiation Hardened CMOS 8-Bit Flash Analog-to-Digital (A/D) Converter

    NASA Technical Reports Server (NTRS)

    Gerber, Scott S.; Hammond, Ahmad; Elbuluk, Malik E.; Patterson, Richard L.; Overton, Eric; Ghaffarian, Reza; Ramesham, Rajeshuni; Agarwal, Shri G.

    2001-01-01

    Power processing electronic systems, data acquiring probes, and signal conditioning circuits are required to operate reliably under harsh environments in many of NASA:s missions. The environment of the space mission as well as the operational requirements of some of the electronic systems, such as infrared-based satellite or telescopic observation stations where cryogenics are involved, dictate the utilization of electronics that can operate efficiently and reliably at low temperatures. In this work, radiation-hard CMOS 8-bit flash A/D converters were characterized in terms of voltage conversion and offset in the temperature range of +25 to -190 C. Static and dynamic supply currents, ladder resistance, and gain and offset errors were also obtained in the temperature range of +125 to -190 C. The effect of thermal cycling on these properties for a total of ten cycles between +80 and - 150 C was also determined. The experimental procedure along with the data obtained are reported and discussed in this paper.

  6. Neutron radiation effects on Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Talnagi, Joseph; Miller, Don W.

    2003-07-01

    Nuclear Power Plant operators and Generation IV plant designers are considering advanced data transmission and measurement systems to improve system economics and safety, while concurrently addressing the issue of obsolescence of instrumentation and control systems. Fiber optic sensors have advantages over traditional sensors such as immunity to electromagnetic interference or radio frequency interference, higher sensitivity and accuracy, smaller size and less weight, higher bandwidth and multiplexing capability. A Fabry-Perot fiber optic sensor utilizes a unique interferometric mechanism and data processing technique, and has potential applications in nuclear radiation environments. Three sensors with different gamma irradiation history were irradiated in a mixed neutron/gamma irradiation field, in which the total neutron fluence was 2.6×10 16 neutrons/cm 2 and the total gamma dose was 1.09 MGy. All of them experienced a temperature shift of about 34°F but responded linearly to temperature changes. An annealing phenomenon was observed as the environmental temperature increased, which reduced the offset by approximately 63%.

  7. Decision support tools for proton therapy ePR: intelligent treatment planning navigator and radiation toxicity tool for evaluating of prostate cancer treatment

    NASA Astrophysics Data System (ADS)

    Le, Anh H.; Deshpande, Ruchi; Liu, Brent J.

    2010-03-01

    The electronic patient record (ePR) has been developed for prostate cancer patients treated with proton therapy. The ePR has functionality to accept digital input from patient data, perform outcome analysis and patient and physician profiling, provide clinical decision support and suggest courses of treatment, and distribute information across different platforms and health information systems. In previous years, we have presented the infrastructure of a medical imaging informatics based ePR for PT with functionality to accept digital patient information and distribute this information across geographical location using Internet protocol. In this paper, we present the ePR decision support tools which utilize the imaging processing tools and data collected in the ePR. The two decision support tools including the treatment plan navigator and radiation toxicity tool are presented to evaluate prostate cancer treatment to improve proton therapy operation and improve treatment outcomes analysis.

  8. Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor.

    PubMed

    Welte, Michael; Warren, Kent; Scheffe, Jonathan R; Steinfeld, Aldo

    2017-09-20

    We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO 2 and reforming of CH 4 using concentrated radiation as the source of process heat. The 2 kW th solar reactor prototype utilizes a cavity receiver enclosing a vertical Al 2 O 3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH 4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO 2-δ ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H 2 :CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH 4 reformed.

  9. Combined Ceria Reduction and Methane Reforming in a Solar-Driven Particle-Transport Reactor

    PubMed Central

    2017-01-01

    We report on the experimental performance of a solar aerosol reactor for carrying out the combined thermochemical reduction of CeO2 and reforming of CH4 using concentrated radiation as the source of process heat. The 2 kWth solar reactor prototype utilizes a cavity receiver enclosing a vertical Al2O3 tube which contains a downward gravity-driven particle flow of ceria particles, either co-current or counter-current to a CH4 flow. Experimentation under a peak radiative flux of 2264 suns yielded methane conversions up to 89% at 1300 °C for residence times under 1 s. The maximum extent of ceria reduction, given by the nonstoichiometry δ (CeO2−δ), was 0.25. The solar-to-fuel energy conversion efficiency reached 12%. The syngas produced had a H2:CO molar ratio of 2, and its calorific value was solar-upgraded by 24% over that of the CH4 reformed. PMID:28966440

  10. The Effect of an Ultrasound Radiation on the Synthesis of 4A Zeolite from Fly Ash

    NASA Astrophysics Data System (ADS)

    Susanto, H.; Imani, N. A. C.; Aslamiyah, N. R.; Istirokhatun, T.; Robbani, M. H.

    2018-05-01

    The use of coal as a fuel source generates a lot of solid waste fly ash. Thus, efforts to reduce or utilize the amount of fly ash are urgently needed. This paper presents zeolite synthesis from fly ash. The fly ash was activated by using NaOH solution prior to fusing process with a weight ratio of 1:2 and mixing with distilled water at a weight ratio of 1:5. Thereafter, the addition of alumina with a concentration of 0.71 %, 1.42 %, 2.12 %, and 2.8 % w/v was performed. The effects of heating and ultrasound radiation on the characteristic of zeolite products were investigated. The results showed that the addition of alumina 2.8 % w/v resulted in the Si/Al ratio of zeolite 4A is ∼1. SEM images demonstrated that the presence of ultrasound wave resulted in crystals structure morphology as also supported by XRD characterization. The average crystal size for the ultrasonic treatment was 42.46 nm.

  11. 3DHZETRN: Inhomogeneous Geometry Issues

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Slaba, Tony C.; Badavi, Francis F.

    2017-01-01

    Historical methods for assessing radiation exposure inside complicated geometries for space applications were limited by computational constraints and lack of knowledge associated with nuclear processes occurring over a broad range of particles and energies. Various methods were developed and utilized to simplify geometric representations and enable coupling with simplified but efficient particle transport codes. Recent transport code development efforts, leading to 3DHZETRN, now enable such approximate methods to be carefully assessed to determine if past exposure analyses and validation efforts based on those approximate methods need to be revisited. In this work, historical methods of representing inhomogeneous spacecraft geometry for radiation protection analysis are first reviewed. Two inhomogeneous geometry cases, previously studied with 3DHZETRN and Monte Carlo codes, are considered with various levels of geometric approximation. Fluence, dose, and dose equivalent values are computed in all cases and compared. It is found that although these historical geometry approximations can induce large errors in neutron fluences up to 100 MeV, errors on dose and dose equivalent are modest (<10%) for the cases studied here.

  12. Space Radiation Transport Methods Development

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathi, R. K.; Qualls, G. D.; Cucinotta, F. A.; Prael, R. E.; Norbury, J. W.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard Finite Element Method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 milliseconds and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of reconfigurable computing and could be utilized in the final design as verification of the deterministic method optimized design.

  13. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  14. Position sensitive detection of neutrons in high radiation background field.

    PubMed

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  15. Position sensitive detection of neutrons in high radiation background field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vavrik, D., E-mail: vavrik@itam.cas.cz; Institute of Theoretical and Applied Mechanics, Academy of Sciences of the Czech Republic, Prosecka 76, 190 00 Prague 9; Jakubek, J.

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e{sup −} radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm{sup 2}) spectroscopic Timepix detector adapted for neutron detection utilizing very thin {sup 10}B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane)more » and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10{sup −4}.« less

  16. Detection of alpha radiation in a beta radiation field

    DOEpatents

    Mohagheghi, Amir H.; Reese, Robert P.

    2001-01-01

    An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

  17. Power flow in normal human voice production

    NASA Astrophysics Data System (ADS)

    Krane, Michael

    2016-11-01

    The principal mechanisms of energy utilization in voicing are quantified using a simplified model, in order to better define voice efficiency. A control volume analysis of energy utilization in phonation is presented to identify the energy transfer mechanisms in terms of their function. Conversion of subglottal airstream potential energy into useful work done (vocal fold vibration, flow work, sound radiation), and into heat (sound radiation absorbed by the lungs, glottal jet dissipation) are described. An approximate numerical model is used to compute the contributions of each of these mechanisms, as a function of subglottal pressure, for normal phonation. Acknowledge support of NIH Grant 2R01DC005642-10A1.

  18. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data

    NASA Technical Reports Server (NTRS)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  19. Commercial Parts Radiation Testing

    DTIC Science & Technology

    2015-01-13

    New Mexico’s COSMIAC Center performed radiation testing on a series of operational amplifiers, microcontrollers and microprocessor. The...commercial microcontroller and microprocessor equipment. The team would develop a list of the most promising commercial parts that might be utilized to...parts will include microprocessors, microcontrollers and memory modules. In addition, Field Programmable Gate Arrays (FPGAs) will also be chosen

  20. A Reliability Simulator for Radiation-Hard Microelectronics Development

    DTIC Science & Technology

    1991-07-01

    1 3.0 PHASE II WORK PLANS ................................................................ 2... plan . The correlation experimental details including the devices utilized, the hot-carrier stressing and the wafer-level radiation correlation procedure...channel devices, and a new lifetime extrapolation method is demonstrated for p-channel devices. 3.0 PHASE II WORK PLANS The Phase 1I program consisted of

  1. Backgrounds, radiation damage, and spacecraft orbits

    NASA Astrophysics Data System (ADS)

    Grant, Catherine E.; Miller, Eric D.; Bautz, Mark W.

    2017-08-01

    The scientific utility of any space-based observatory can be limited by the on-orbit charged particle background and the radiation-induced damage. All existing and proposed missions have had to make choices about orbit selection, trading off the radiation environment against other factors. We present simulations from ESA’s SPace ENVironment Information System (SPENVIS) of the radiation environment for spacecraft in a variety of orbits, from Low Earth Orbit (LEO) at multiple inclinations to High Earth Orbit (HEO) to Earth-Sun L2 orbit. We summarize how different orbits change the charged particle background and the radiation damage to the instrument. We also discuss the limitations of SPENVIS simulations, particularly outside the Earth’s trapped radiation and point to new resources attempting to address those limitations.

  2. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.

    1998-01-01

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  3. RADIATION BIOLOGY AND ISOTOPE UTILIZATION IN APPLIED BOTANY (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glubrecht, H.

    A short survey is given of the problems being studied in the Institute for Radiation Biology in the Technische Hochschule in Hannover. Extensive data are presented on a method of studying the effect of ionizing radiation on plant cells with the aid of UV microspectroscopy. From the change in UV absorption in ranges of a few mu , conclusions can be drawn as to the probability of primary ionizations in protein molecules and nucleic acids. (auth)

  4. SpaceCube Mini

    NASA Technical Reports Server (NTRS)

    Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas

    2012-01-01

    This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and application code for the PowerPCs and the Xilinx FPGA. In addition, it will feature highspeed DDR SDRAM (double data rate synchronous dynamic random-access memory) to store the instructions and data of active applications. This version will also feature SATA-II and Gigabit Ethernet interfaces. Furthermore, there will also be general-purpose, multi-gigabit interfaces. In addition, the system will have dozens of transceivers that can support LVDS (low-voltage differential signaling), RS-422, or SpaceWire. The SpaceCube Mini includes an I/O card that can be customized to meet the needs of each mission. This version of the SpaceCube will be designed so that multiple Minis can be networked together using SpaceWire, Ethernet, or even a custom protocol. Scalability can be provided by networking multiple SpaceCube Minis together. Rigid-Flex technology is being targeted for the construction of the SpaceCube Mini, which will make the extremely compact and low-weight design feasible. The SpaceCube Mini is designed to fit in the compact CubeSat form factor, thus allowing deployment in a new class of missions that the previous SpaceCube versions were not suited for. At the time of this reporting, engineering units should be available in the summer 2012.

  5. Application of radiation processing in asia and the pacific region: Focus on malaysia

    NASA Astrophysics Data System (ADS)

    Mohd Dahlan, Khairul Zaman HJ.

    1995-09-01

    Applications of radiation processing in Malaysia and other developing countries in Asia and the Pacific region is increasing as the countries move toward industrialisation. At present, there are more than 85 gamma facilities and 334 electron accelerators in Asia and the Pacific region which are mainly in Japan, Rep. of Korea and China. The main applications which are in the interest of the region are radiation sterilisation of medical products; radiation crosslinking of wire and cable, heat shrinkable film and tube, and foam; radiation curing of surface coatings, printing inks and adhesive; radiation vulcanisation of natural rubber latex; radiation processing of agro-industrial waste; radiation treatment of sewage sludge and municipal waste; food irradiation; tissue grafts and radiation synthesis of bioactive materials.

  6. Radiation Beamline Testbeds for the Simulation of Planetary and Spacecraft Environments for Human and Robotic Mission Risk Assessment

    NASA Technical Reports Server (NTRS)

    Wilkins, Richard

    2010-01-01

    The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the international space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Medical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materials. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scientific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technology, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.

  7. Radiation beamline testbeds for the simulation of planetary and spacecraft environments for human and robotic mission risk assessment

    NASA Astrophysics Data System (ADS)

    Wilkins, Richard

    The Center for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View A&M University, Prairie View, Texas, USA, is establishing an integrated, multi-disciplinary research program on the scientific and engineering challenges faced by NASA and the inter-national space community caused by space radiation. CRESSE focuses on space radiation research directly applicable to astronaut health and safety during future long term, deep space missions, including Martian, lunar, and other planetary body missions beyond low earth orbit. The research approach will consist of experimental and theoretical radiation modeling studies utilizing particle accelerator facilities including: 1. NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory; 2. Proton Synchrotron at Loma Linda University Med-ical Center; and 3. Los Alamos Neutron Science Center (LANSCE) at Los Alamos National Laboratory. Specifically, CRESSE investigators are designing, developing, and building experimental test beds that simulate the lunar and Martian radiation environments for experiments focused on risk assessment for astronauts and instrumentation. The testbeds have been designated the Bioastronautics Experimental Research Testbeds for Environmental Radiation Nostrum Investigations and Education (BERT and ERNIE). The designs of BERT and ERNIE will allow for a high degree of flexibility and adaptability to modify experimental configurations to simulate planetary surface environments, planetary habitats, and spacecraft interiors. In the nominal configuration, BERT and ERIE will consist of a set of experimental zones that will simulate the planetary atmosphere (Solid CO2 in the case of the Martian surface.), the planetary surface, and sub-surface regions. These experimental zones can be used for dosimetry, shielding, biological, and electronic effects radiation studies in support of space exploration missions. BERT and ERNIE are designed to be compatible with the experimental areas associated with the above facilities. CRESSE has broad expertise in space radiation in the areas of space radiation environment modeling, Monte-Carlo radiation transport modeling, space radiation instrumentation and dosimetry, radiation effects on electronics, and multi-functional composite shielding materi-als. The BERT and ERNIE testbeds will be utilized in individual and collaborative research incorporating this expertise. The research goal is to maximize the technical readiness level (TRL) of radiation instrumentation for human and robotic missions, optimizing the return value of CRESSE for NASA exploration and international co-operative missions. Outcomes and knowledge from research utilizing BERT and ERNIE will be applied to a variety of scien-tific and engineering disciplines vital for safe and reliable execution of future space exploration missions, which can be negatively impacted by the space radiation environment. The testbeds will be central to a variety of university educational activities and educational goals of NASA. Specifically, BERT and ERNIE will enhance educational opportunities in science, technol-ogy, engineering and mathematics (STEM) disciplines for engineering and science students at PVAMU, a historically black college/university. Preliminary data on prototype testbed configurations, including simulated lunar regolith (JSC-1A stimulant based on Apollo 11 samples), regolith/polyethylene composites, and dry ice, will be presented to demonstrate the usefulness of BERT and ERNIE in radiation beam line experiments.

  8. 15 CFR 784.3 - Scope and conduct of complementary access.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Utilize radiation detection and measurement devices; (iii) Utilize non-destructive measurements and sampling; (iv) Examine relevant records (i.e., records appropriate for the purpose of complementary access...); (v) Perform location-specific environmental sampling; and Note to § 784.3(b)(1)(v): BIS will not seek...

  9. Comparative transcriptome analysis of rice seedlings induced by different doses of heavy ion radiation

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Yeqing; Wang, Wei

    2016-07-01

    Highly ionizing radiation (HZE) in space is considered as a main factor causing biological effects on plant seeds. To investigate the different effects on genome-wide gene expression of low-dose and high-dose ion radiation, we carried out ground-base carbon particle HZE experiments with different cumulative doses (0Gy, 0.2Gy, 2Gy) to rice seeds and then performed comparative transcriptome analysis of the rice seedlings. We identified a total of 2551 and 1464 differentially expressed genes (DEGs) in low-dose and high-dose radiation groups, respectively. Gene ontology analyses indicated that low-dose and high-dose ion radiation both led to multiple physiological and biochemical activities changes in rice. By Gene Ontology analyses, the results showed that only one process-oxidation reduction process was enriched in the biological process category after high-dose ion radiation, while more processes such as response to biotic stimulus, heme binding, tetrapyrrole binding, oxidoreductase activity, catalytic activity and oxidoreductase activity were significantly enriched after low-dose ion radiation. The results indicated that the rice plants only focused on the process of oxidation reduction to response to high-dose ion radiation, whereas it was a coordination of multiple biological processes to response to low-dose ion radiation. To elucidate the transcriptional regulation of radiation stress-responsive genes, we identified several DEGs-encoding TFs. AP2/EREBP, bHLH, C2H2, MYB and WRKY TF families were altered significantly in response to ion radiation. Mapman analysis speculated that the biological effects on rice seedlings caused by the radiation stress might share similar mechanisms with the biotic stress. Our findings highlight important alterations in the expression of radiation response genes, metabolic pathways, and TF-encoding genes in rice seedlings exposed to low-dose and high-dose ion radiation.

  10. The simulation of the LANFOS-H food radiation contamination detector using Geant4 package

    NASA Astrophysics Data System (ADS)

    Piotrowski, Lech Wiktor; Casolino, Marco; Ebisuzaki, Toshikazu; Higashide, Kazuhiro

    2015-02-01

    Recent incident in the Fukushima power plant caused a growing concern about the radiation contamination and resulted in lowering the Japanese limits for the permitted amount of 137Cs in food to 100 Bq/kg. To increase safety and ease the concern we are developing LANFOS (Large Food Non-destructive Area Sampler)-a compact, easy to use detector for assessment of radiation in food. Described in this paper LANFOS-H has a 4 π coverage to assess the amount of 137Cs present, separating it from the possible 40K food contamination. Therefore, food samples do not have to be pre-processed prior to a test and can be consumed after measurements. It is designed for use by non-professionals in homes and small institutions such as schools, showing safety of the samples, but can be also utilized by specialists providing radiation spectrum. Proper assessment of radiation in food in the apparatus requires estimation of the γ conversion factor of the detectors-how many γ photons will produce a signal. In this paper we show results of the Monte Carlo estimation of this factor for various approximated shapes of fish, vegetables and amounts of rice, performed with Geant4 package. We find that the conversion factor combined from all the detectors is similar for all food types and is around 37%, varying maximally by 5% with sample length, much less than for individual detectors. The different inclinations and positions of samples in the detector introduce uncertainty of 1.4%. This small uncertainty validates the concept of a 4 π non-destructive apparatus.

  11. Development of an electronic radiation oncology patient information management system.

    PubMed

    Mandal, Abhijit; Asthana, Anupam Kumar; Aggarwal, Lalit Mohan

    2008-01-01

    The quality of patient care is critically influenced by the availability of accurate information and its efficient management. Radiation oncology consists of many information components, for example there may be information related to the patient (e.g., profile, disease site, stage, etc.), to people (radiation oncologists, radiological physicists, technologists, etc.), and to equipment (diagnostic, planning, treatment, etc.). These different data must be integrated. A comprehensive information management system is essential for efficient storage and retrieval of the enormous amounts of information. A radiation therapy patient information system (RTPIS) has been developed using open source software. PHP and JAVA script was used as the programming languages, MySQL as the database, and HTML and CSF as the design tool. This system utilizes typical web browsing technology using a WAMP5 server. Any user having a unique user ID and password can access this RTPIS. The user ID and password is issued separately to each individual according to the person's job responsibilities and accountability, so that users will be able to only access data that is related to their job responsibilities. With this system authentic users will be able to use a simple web browsing procedure to gain instant access. All types of users in the radiation oncology department should find it user-friendly. The maintenance of the system will not require large human resources or space. The file storage and retrieval process would be be satisfactory, unique, uniform, and easily accessible with adequate data protection. There will be very little possibility of unauthorized handling with this system. There will also be minimal risk of loss or accidental destruction of information.

  12. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  13. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Preoperative Treatment of Extremity Soft Tissue Sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richard, Patrick, E-mail: patrjr@uw.edu; Phillips, Mark; Smith, Wade

    Purpose: Create a cost-effectiveness model comparing preoperative intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3DCRT) for extremity soft tissue sarcomas. Methods and Materials: Input parameters included 5-year local recurrence rates, rates of acute wound adverse events, and chronic toxicities (edema, fracture, joint stiffness, and fibrosis). Health-state utilities were used to calculate quality-adjusted life years (QALYs). Overall treatment costs per QALY or incremental cost-effectiveness ratio (ICER) were calculated. Roll-back analysis was performed using average costs and utilities to determine the baseline preferred radiation technique. One-way, 2-way, and probabilistic sensitivity analyses (PSA) were performed for input parameters with themore » largest impact on the ICER. Results: Overall treatment costs were $17,515.58 for 3DCRT compared with $22,920.51 for IMRT. The effectiveness was higher for IMRT (3.68 QALYs) than for 3DCRT (3.35 QALYs). The baseline ICER for IMRT was $16,842.75/QALY, making it the preferable treatment. The ICER was most sensitive to the probability of local recurrence, upfront radiation costs, local recurrence costs, certain utilities (no toxicity/no recurrence, grade 1 toxicity/no local recurrence, grade 4 toxicity/no local recurrence), and life expectancy. Dominance patterns emerged when the cost of 3DCRT exceeded $15,532.05 (IMRT dominates) or the life expectancy was under 1.68 years (3DCRT dominates). Furthermore, preference patterns changed based on the rate of local recurrence (threshold: 13%). The PSA results demonstrated that IMRT was the preferred cost-effective technique for 64% of trials compared with 36% for 3DCRT. Conclusions: Based on our model, IMRT is the preferred technique by lowering rates of local recurrence, severe toxicities, and improving QALYs. From a third-party payer perspective, IMRT should be a supported approach for extremity soft tissue sarcomas.« less

  14. Miniaturized radiation chirper

    DOEpatents

    Umbarger, C. John; Wolf, Michael A.

    1980-01-01

    The disclosure relates to a miniaturized radiation chirper for use with a small battery supplying on the order of 5 volts. A poor quality CdTe crystal which is not necessarily suitable for high resolution gamma ray spectroscopy is incorporated with appropriate electronics so that the chirper emits an audible noise at a rate that is proportional to radiation exposure level. The chirper is intended to serve as a personnel radiation warning device that utilizes new and novel electronics with a novel detector, a CdTe crystal. The resultant device is much smaller and has much longer battery life than existing chirpers.

  15. Evaluation of standard radiation atmosphere aerosol models for a coastal environment

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Sebacher, D. I.; Fuller, W. H.; Lecroy, S. R.

    1986-01-01

    Calculations are compared with data from an experiment to evaluate the utility of standard radiation atmosphere (SRA) models for defining aerosol properties in atmospheric radiation computations. Initial calculations with only SRA aerosols in a four-layer atmospheric column simulation allowed a sensitivity study and the detection of spectral trends in optical depth, which differed from measurements. Subsequently, a more detailed analysis provided a revision in the stratospheric layer, which brought calculations in line with both optical depth and skylight radiance data. The simulation procedure allows determination of which atmospheric layers influence both downwelling and upwelling radiation spectra.

  16. Radiation detector having a multiplicity of individual detecting elements

    DOEpatents

    Whetten, Nathan R.; Kelley, John E.

    1985-01-01

    A radiation detector has a plurality of detector collection element arrays immersed in a radiation-to-electron conversion medium. Each array contains a multiplicity of coplanar detector elements radially disposed with respect to one of a plurality of positions which at least one radiation source can assume. Each detector collector array is utilized only when a source is operative at the associated source position, negating the necessity for a multi-element detector to be moved with respect to an object to be examined. A novel housing provides the required containment of a high-pressure gas conversion medium.

  17. Electric dipole-quadrupole hybridization induced enhancement of second-harmonic generation in T-shaped plasmonic heterodimers.

    PubMed

    Guo, Kai; Zhang, Yong-Liang; Qian, Cheng; Fung, Kin-Hung

    2018-04-30

    In this work, we demonstrate computationally that electric dipole-quadrupole hybridization (EDQH) could be utilized to enhance plasmonic SHG efficiency. To this end, we construct T-shaped plasmonic heterodimers consisting of a short and a long gold nanorod with finite element method simulation. By controlling the strength of capacitive coupling between two gold nanorods, we explore the effect of EDQH evolution on the SHG process, including the SHG efficiency enhancement, corresponding near-field distribution, and far-field radiation pattern. Simulation results demonstrate that EDQH could enhance the SHG efficiency by a factor >100 in comparison with that achieved by an isolated gold nanorod. Additionally, the far-field pattern of the SHG could be adjusted beyond the well-known quadrupolar distribution and confirms that EDQH plays an important role in the SHG process.

  18. Measurement of stimulated Hawking emission in an analogue system.

    PubMed

    Weinfurtner, Silke; Tedford, Edmund W; Penrice, Matthew C J; Unruh, William G; Lawrence, Gregory A

    2011-01-14

    Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. To address this issue experimentally, we utilize the analogy between the propagation of fields around black holes and surface waves on moving water. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include surface wave horizons. Long waves propagating upstream towards this region are blocked and converted into short (deep-water) waves. This is the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion process for this system. Given the close relationship between stimulated and spontaneous emission, our findings attest to the generality of the Hawking process.

  19. Effective photodegradation of methomyl pesticide in concentrated solutions by novel enhancement of the photocatalytic activity of TiO2 using CdSO4 nanoparticles.

    PubMed

    Barakat, N A M; Nassar, M M; Farrag, T E; Mahmoud, M S

    2014-01-01

    Annihilation of electrons-holes recombination process is the main remedy to enhance the photocatalytic activity of the semiconductors photocatalysts. Doping of this class of photocatalysts by foreign nanoparticles is usually utilized to create high Schottky barrier that facilitates electron capture. In the literature, because nonpolar nanoparticles (usually pristine metals, e.g., Ag, Pt, Au, etc.) were utilized in the doping process, the corresponding improvement was relatively low. In this study, CdSO4-doped TiO2 nanoparticles are introduced as a powerful and reusable photocatalyst for the photocatalytic degradation of methomyl pesticide in concentrated aqueous solutions. The utilized CdSO4 nanoparticles form polar grains in the TiO2 matrix due to the electrons leaving characteristic of the sulfate anion. The introduced nanoparticles could successfully eliminate the harmful pesticide under the sunlight radiation within a very short time (less than 1 h), with a removal capacity reaching 1,000 mg pesticide per gram of the introduced photocatalyst. Moreover, increase in the initial concentration of the methomyl did not affect the photocatalytic performance; typically 300, 500, 1,000, and 2,000 mg/l solutions were completely treated within 30, 30, 40, and 60 min, respectively, using 100 mg catalyst. Interestingly, the photocatalytic efficiency was not affected upon multiple use of the photocatalyst. Moreover, negative activation energy was obtained which reveals super activity of the introduced photocatalyst. The distinct photocatalytic activity indicates the complete annihilation of the electrons-holes recombination process and abundant existence of electrons on the catalyst surfaces due to strong electrons capturing the operation of the utilized polar CdSO4 nanoparticles. The introduced photocatalyst has been prepared using the sol-gel technique. Overall, the simplicity of the synthesizing procedure and the obtained featured photocatalytic activity strongly recommend the introduced nanoparticles to treat the methomyl-containing polluted water.

  20. Amorphous silicon radiation detectors

    DOEpatents

    Street, Robert A.; Perez-Mendez, Victor; Kaplan, Selig N.

    1992-01-01

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

  1. Amorphous silicon radiation detectors

    DOEpatents

    Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

    1992-11-17

    Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

  2. Radiation detector device for rejecting and excluding incomplete charge collection events

    DOEpatents

    Bolotnikov, Aleksey E.; De Geronimo, Gianluigi; Vernon, Emerson; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.

    2016-05-10

    A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.

  3. Including internal mammary lymph nodes in radiation therapy for synchronous bilateral breast cancer: an international survey of treatment technique and clinical priorities.

    PubMed

    Roumeliotis, M; Long, K; Phan, T; Graham, D; Quirk, S

    2018-06-05

    The aim of this study was to understand the international standard practice for radiation therapy treatment techniques and clinical priorities for institutions including the internal mammary lymph nodes (IMLNs) in the target volume for patients with synchronous bilateral breast cancer. An international survey was developed to include questions that would provide awareness of favored treatment techniques, treatment planning and delivery resource requirements, and the clinical priorities that may lead to the utilization of preferred treatment techniques. Of the 135 respondents, 82 indicated that IMLNs are regularly included in the target volume for radiation therapy (IMLN-inclusion) when the patient is otherwise generally indicated for regional nodal irradiation. Of the 82 respondents that regularly include IMLNs, five were removed as those respondents do not treat this population synchronously. Of the 77 respondents, institutional standard of care varied significantly, though VMAT (34%) and combined static photon and electron fields (21%) were the most commonly utilized techniques. Respondents did preferentially select target volume coverage (70%) as the most important clinical priority, followed by normal tissue sparing (25%). The results of the survey indicate that the IMLN-inclusion for radiation therapy has not yet been comprehensively adopted. As well, no consensus on best practice for radiation therapy treatment techniques has been reached.

  4. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOEpatents

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  5. Monte Carlo Simulations of Radiative and Neutrino Transport under Astrophysical Conditions

    NASA Astrophysics Data System (ADS)

    Krivosheyev, Yu. M.; Bisnovatyi-Kogan, G. S.

    2018-05-01

    Monte Carlo simulations are utilized to model radiative and neutrino transfer in astrophysics. An algorithm that can be used to study radiative transport in astrophysical plasma based on simulations of photon trajectories in a medium is described. Formation of the hard X-ray spectrum of the Galactic microquasar SS 433 is considered in detail as an example. Specific requirements for applying such simulations to neutrino transport in a densemedium and algorithmic differences compared to its application to photon transport are discussed.

  6. Single-node orbit analsyis with radiation heat transfer only

    NASA Technical Reports Server (NTRS)

    Peoples, J. A.

    1977-01-01

    The steady-state temperature of a single node which dissipates energy by radiation only is discussed for a nontime varying thermal environment. Relationships are developed to illustrate how shields can be utilized to represent a louver system. A computer program is presented which can assess periodic temperature characteristics of a single node in a time varying thermal environment having energy dissipation by radiation only. The computer program performs thermal orbital analysis for five combinations of plate, shields, and louvers.

  7. Inertial confinement fusion method producing line source radiation fluence

    DOEpatents

    Rose, Ronald P.

    1984-01-01

    An inertial confinement fusion method in which target pellets are imploded in sequence by laser light beams or other energy beams at an implosion site which is variable between pellet implosions along a line. The effect of the variability in position of the implosion site along a line is to distribute the radiation fluence in surrounding reactor components as a line source of radiation would do, thereby permitting the utilization of cylindrical geometry in the design of the reactor and internal components.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Shim, Jong-In; Shin, Dong-Soo, E-mail: dshin@hanyang.ac.kr

    While there have been many discussions on the standard Si pn-diodes, little attention has been paid and confusion still arises on the ideality factor of the radiative recombination current in semiconductor light-emitting diodes (LEDs). In this letter, we theoretically demonstrate and experimentally confirm by using blue and infrared semiconductor LEDs that the ideality factor of the radiative recombination current is unity especially for low-current-density ranges. We utilize the data of internal quantum efficiency measured by the temperature-dependent electroluminescence to separate the radiative current component from the total current.

  9. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  10. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  11. Optimization of Martian regolith and ultra-high molecular weight polyethylene composites for radiation shielding and habitat structures

    NASA Astrophysics Data System (ADS)

    Wilkins, Richard; Gersey, Brad; Baburaj, Abhijit; Barnett, Milan; Zhou, Xianren

    2012-07-01

    In preparation for long duration missions to the moon, Mars or, even near earth asteroids, one challenge, amongst many others, that the space program faces is shielding against space radiation. It is difficult to effectively shield all sources of space radiation because of the broad range of types and high energies found in space, so the most important goal is to minimize the damaging effects that may occur to humans and electronics during long duration space flight. For a long duration planetary habitat, a shielding option is to use in situ resources such as the native regolith. A possible way to utilize regolith on a planet is to combine it with a binder to form a structural material that also exhibits desirable shielding properties. In our studies, we explore Martian regolith and ultra-high molecular weight polyethylene (UHMWPE) composites. We selected UHMWPE as the binder in our composites due to its high hydrogen content; a desirable characteristic for shielding materials in a space environment. Our initial work has focused on the process of developing the right ratio of simulated Martian regolith and UHMWPE to yield the best results in material endurance and strength, while retaining good shielding characteristics. Another factor in our optimization process is to determine the composite ratio that minimizes the amount of ex situ UHMWPE while retaining desirable structural and shielding properties. This consideration seeks to minimize mission weight and costs. Mechanical properties such as tensile strength of the Martian regolith/UHMWPE composite as a function of its grain size, processing parameters, and different temperature variations used are discussed. The radiation shielding effectiveness of loose mixtures of Martian regolith/ UHMWPE is evaluated using a 200 MeV proton beam and a tissue equivalent proportional counter. Preliminary results show that composites with an 80/20 ratio percent weight of regolith to UHMWPE can be fabricated with potentially useful structural strength. I n addition, Martian regolith, while not as efficient as polyethylene at reducing proton energy as a function of shield thickness, compares well with polyethylene at shielding the 200 MeV protons. These preliminary results indicate that native Martian regolith has promising properties as a habitat material for future human missions. Future work studying the shielding effectiveness and radiation tolerance will also be discussed.

  12. Effect of radiation processing on meat tenderisation

    NASA Astrophysics Data System (ADS)

    Kanatt, Sweetie R.; Chawla, S. P.; Sharma, Arun

    2015-06-01

    The effect of radiation processing (0, 2.5, 5 and 10 kGy) on the tenderness of three types of popularly consumed meat in India namely chicken, lamb and buffalo was investigated. In irradiated meat samples dose dependant reduction in water holding capacity, cooking yield and shear force was observed. Reduction in shear force upon radiation processing was more pronounced in buffalo meat. Protein and collagen solubility as well as TCA soluble protein content increased on irradiation. Radiation processing of meat samples resulted in some change in colour of meat. Results suggested that irradiation leads to dose dependant tenderization of meat. Radiation processing of meat at a dose of 2.5 kGy improved its texture and had acceptable odour.

  13. KAMO: towards automated data processing for microcrystals.

    PubMed

    Yamashita, Keitaro; Hirata, Kunio; Yamamoto, Masaki

    2018-05-01

    In protein microcrystallography, radiation damage often hampers complete and high-resolution data collection from a single crystal, even under cryogenic conditions. One promising solution is to collect small wedges of data (5-10°) separately from multiple crystals. The data from these crystals can then be merged into a complete reflection-intensity set. However, data processing of multiple small-wedge data sets is challenging. Here, a new open-source data-processing pipeline, KAMO, which utilizes existing programs, including the XDS and CCP4 packages, has been developed to automate whole data-processing tasks in the case of multiple small-wedge data sets. Firstly, KAMO processes individual data sets and collates those indexed with equivalent unit-cell parameters. The space group is then chosen and any indexing ambiguity is resolved. Finally, clustering is performed, followed by merging with outlier rejections, and a report is subsequently created. Using synthetic and several real-world data sets collected from hundreds of crystals, it was demonstrated that merged structure-factor amplitudes can be obtained in a largely automated manner using KAMO, which greatly facilitated the structure analyses of challenging targets that only produced microcrystals. open access.

  14. Protracted Low-Dose Ionizing Radiation Effects upon Primate Performance

    DTIC Science & Technology

    1977-12-01

    61 G. Dosimetry ................................ ............. 74 NTiS Whife Sectle ) U A N O U C E D JUSTIFICATION...AECL facility. Standard dosimetry techniques were utilized during radiation expo- sur.. In addition, extensive preexposure calibration was conducted...During each of the epochs, the five basic variables were deter- mined. These calculations were accomplished on an analog computer, Electronics Associates

  15. Coated x-ray filters

    DOEpatents

    Steinmeyer, P.A.

    1992-11-24

    A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers. 4 figs.

  16. Coated x-ray filters

    DOEpatents

    Steinmeyer, Peter A.

    1992-11-24

    A radiation filter for filtering radiation beams of wavelengths within a preselected range of wavelengths comprises a radiation transmissive substrate and an attenuating layer deposited on the substrate. The attenuating layer may be deposited by a sputtering process or a vacuum process. Beryllium may be used as the radiation transmissive substrate. In addition, a second radiation filter comprises an attenuating layer interposed between a pair of radiation transmissive layers.

  17. Experimental study of radiation dose rate at different strategic points of the BAEC TRIGA Research Reactor.

    PubMed

    Ajijul Hoq, M; Malek Soner, M A; Salam, M A; Haque, M M; Khanom, Salma; Fahad, S M

    2017-12-01

    The 3MW TRIGA Mark-II Research Reactor of Bangladesh Atomic Energy Commission (BAEC) has been under operation for about thirty years since its commissioning at 1986. In accordance with the demand of fundamental nuclear research works, the reactor has to operate at different power levels by utilizing a number of experimental facilities. Regarding the enquiry for safety of reactor operating personnel and radiation workers, it is necessary to know the radiation level at different strategic points of the reactor where they are often worked. In the present study, neutron, beta and gamma radiation dose rate at different strategic points of the reactor facility with reactor power level of 2.4MW was measured to estimate the rising level of radiation due to its operational activities. From the obtained results high radiation dose is observed at the measurement position of the piercing beam port which is caused by neutron leakage and accordingly, dose rate at the stated position with different reactor power levels was measured. This study also deals with the gamma dose rate measurements at a fixed position of the reactor pool top surface for different reactor power levels under both Natural Convection Cooling Mode (NCCM) and Forced Convection Cooling Mode (FCCM). Results show that, radiation dose rate is higher for NCCM in compared with FCCM and increasing with the increase of reactor power. Thus, concerning the radiological safety issues for working personnel and the general public, the radiation dose level monitoring and the experimental analysis performed within this paper is so much effective and the result of this work can be utilized for base line data and code verification of the nuclear reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Photolysis Rate Coefficient Calculations in Support of SOLVE II

    NASA Technical Reports Server (NTRS)

    Swartz, William H.

    2005-01-01

    A quantitative understanding of photolysis rate coefficients (or "j-values") is essential to determining the photochemical reaction rates that define ozone loss and other crucial processes in the atmosphere. j-Values can be calculated with radiative transfer models, derived from actinic flux observations, or inferred from trace gas measurements. The primary objective of the present effort was the accurate calculation of j-values in the Arctic twilight along NASA DC-8 flight tracks during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II), based in Kiruna, Sweden (68 degrees N, 20 degrees E) during January-February 2003. The JHU/APL radiative transfer model was utilized to produce a large suite of j-values for photolysis processes (over 70 reactions) relevant to the upper troposphere and lower stratosphere. The calculations take into account the actual changes in ozone abundance and apparent albedo of clouds and the Earth surface along the aircraft flight tracks as observed by in situ and remote sensing platforms (e.g., EP-TOMS). A secondary objective was to analyze solar irradiance data from NCAR s Direct beam Irradiance Atmospheric Spectrometer (DIAS) on-board the NASA DC-8 and to start the development of a flexible, multi-species spectral fitting technique for the independent retrieval of O3,O2.02, and aerosol optical properties.

  19. Positronium production in cryogenic environments

    NASA Astrophysics Data System (ADS)

    Cooper, B. S.; Alonso, A. M.; Deller, A.; Liszkay, L.; Cassidy, D. B.

    2016-03-01

    We report measurements of positronium (Ps) formation following positron irradiation of mesoporous SiO2 films and Ge(100) single crystals at temperatures ranging from 12-700 K. As both of these materials generate Ps atoms via nonthermal processes, they are able to function as positron-positronium converters at cryogenic temperatures. Our data show that such Ps formation is possibly provided the targets are not compromised by adsorption of residual gas. In the case of SiO2 films, we observe a strong reduction in the Ps formation efficiency following irradiation with UV laser light (λ =243.01 nm) below 250 K, in accordance with previous observations of radiation-induced surface paramagnetic centers. Conversely, Ps emission from Ge is enhanced by irradiation with visible laser light (λ =532 nm) via a photoemission process that persists at cryogenic temperatures. Both mesoporous SiO2 films and Ge crystals were found to produce Ps efficiently in cryogenic environments. Accordingly, these materials are likely to prove useful in several areas of research, including Ps mediated antihydrogen formation conducted in the cold bore of a superconducting magnet, the production of Rydberg Ps for experiments in which the effects of black-body radiation must be minimized, and the utilization of mesoporous structures that have been modified to produce cold Ps atoms.

  20. Generation of plasma X-ray sources via high repetition rate femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Baguckis, Artūras; Plukis, Artūras; Reklaitis, Jonas; Remeikis, Vidmantas; Giniūnas, Linas; Vengris, Mikas

    2017-12-01

    In this study, we present the development and characterization of Cu plasma X-ray source driven by 20 W average power high repetition rate femtosecond laser in ambient atmosphere environment. The peak Cu- Kα photon flux of 2.3 × 109 photons/s into full solid angle is demonstrated (with a process conversion efficiency of 10-7), using pulses with peak intensity of 4.65 × 1014 W/cm2. Such Cu- Kα flux is significantly larger than others found in comparable experiments, performed in air environment. The effects of resonance plasma absorption process, when optimized, are shown to increase measured flux by the factor of 2-3. The relationship between X-ray photon flux and plasma-driving pulse repetition rate is quasi-linear, suggesting that fluxes could further be increased to 1010 photons/s using even higher average powers of driving radiation. These results suggest that to fully utilize the potential of high repetition rate laser sources, novel target material delivery systems (for example, jet-based ones) are required. On the other hand, this study demonstrates that high energy lasers currently used for plasma X-ray sources can be conveniently and efficiently replaced by high average power and repetition rate laser radiation, as a way to increase the brightness of the generated X-rays.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Dean J.; Harding, Lee T.

    Isotope identification algorithms that are contained in the Gamma Detector Response and Analysis Software (GADRAS) can be used for real-time stationary measurement and search applications on platforms operating under Linux or Android operating sys-tems. Since the background radiation can vary considerably due to variations in natu-rally-occurring radioactive materials (NORM), spectral algorithms can be substantial-ly more sensitive to threat materials than search algorithms based strictly on count rate. Specific isotopes or interest can be designated for the search algorithm, which permits suppression of alarms for non-threatening sources, such as such as medical radionuclides. The same isotope identification algorithms that are usedmore » for search ap-plications can also be used to process static measurements. The isotope identification algorithms follow the same protocols as those used by the Windows version of GADRAS, so files that are created under the Windows interface can be copied direct-ly to processors on fielded sensors. The analysis algorithms contain provisions for gain adjustment and energy lineariza-tion, which enables direct processing of spectra as they are recorded by multichannel analyzers. Gain compensation is performed by utilizing photopeaks in background spectra. Incorporation of this energy calibration tasks into the analysis algorithm also eliminates one of the more difficult challenges associated with development of radia-tion detection equipment.« less

  2. Room Temperature Hard Radiation Detectors Based on Solid State Compound Semiconductors: An Overview

    NASA Astrophysics Data System (ADS)

    Mirzaei, Ali; Huh, Jeung-Soo; Kim, Sang Sub; Kim, Hyoun Woo

    2018-05-01

    Si and Ge single crystals are the most common semiconductor radiation detectors. However, they need to work at cryogenic temperatures to decrease their noise levels. In contrast, compound semiconductors can be operated at room temperature due to their ability to grow compound materials with tunable densities, band gaps and atomic numbers. Highly efficient room temperature hard radiation detectors can be utilized in biomedical diagnostics, nuclear safety and homeland security applications. In this review, we discuss room temperature compound semiconductors. Since the field of radiation detection is broad and a discussion of all compound materials for radiation sensing is impossible, we discuss the most important materials for the detection of hard radiation with a focus on binary heavy metal semiconductors and ternary and quaternary chalcogenide compounds.

  3. Mice Lacking RIP3 Kinase are not Protected from Acute Radiation Syndrome.

    PubMed

    Castle, Katherine D; Daniel, Andrea R; Moding, Everett J; Luo, Lixia; Lee, Chang-Lung; Kirsch, David G

    2018-06-01

    Exposure to high doses of ionizing radiation can cause lethal injury to normal tissue, thus inducing acute radiation syndrome. Acute radiation syndrome is caused by depletion of bone marrow cells (hematopoietic syndrome) and irreparable damage to the epithelial cells in the gastrointestinal tract (gastrointestinal syndrome). Although radiation initiates apoptosis in the hematopoietic and gastrointestinal compartments within the first few hours after exposure, alternative mechanisms of cell death may contribute to injury in these radiosensitive tissues. In this study, we utilized mice lacking a critical regulator of necroptosis, receptor interacting protein 3 (RIP3) kinase, to characterize the role of RIP3 in normal tissue toxicity after irradiation. Our results suggest that RIP3-mediated signaling is not a critical driver of acute radiation syndrome.

  4. Investigation of space radiation effects in polymeric film-forming materials

    NASA Technical Reports Server (NTRS)

    Giori, C.; Yamauchi, T.; Jarke, F.

    1975-01-01

    The literature search in the field of ultraviolet radiation effects that was conducted during the previous program, Contract No. NAS1-12549, has been expanded to include the effects of charged particle radiation and high energy electromagnetic radiation. The literature from 1958 to 1969 was searched manually, while the literature from 1969 to present was searched by using a computerized keyword system. The information generated from this search was utilized for the design of an experimental program aimed at the development of materials with improved resistance to the vacuum-radiation environment of space. Preliminary irradiation experiments were performed which indicate that the approaches and criteria employed are very promising and may provide a solution to the challenging problem of polymer stability to combined ultraviolet/high energy radiation.

  5. Variable waveband infrared imager

    DOEpatents

    Hunter, Scott R.

    2013-06-11

    A waveband imager includes an imaging pixel that utilizes photon tunneling with a thermally actuated bimorph structure to convert infrared radiation to visible radiation. Infrared radiation passes through a transparent substrate and is absorbed by a bimorph structure formed with a pixel plate. The absorption generates heat which deflects the bimorph structure and pixel plate towards the substrate and into an evanescent electric field generated by light propagating through the substrate. Penetration of the bimorph structure and pixel plate into the evanescent electric field allows a portion of the visible wavelengths propagating through the substrate to tunnel through the substrate, bimorph structure, and/or pixel plate as visible radiation that is proportional to the intensity of the incident infrared radiation. This converted visible radiation may be superimposed over visible wavelengths passed through the imaging pixel.

  6. Iatrogenic deep musculocutaneous radiation injury following percutaneous coronary intervention.

    PubMed

    Monaco, JoAn L; Bowen, Kanika; Tadros, Peter N; Witt, Peter D

    2003-08-01

    Radiation-induced skin injury has been reported for multiple fluoroscopic procedures. Previous studies have indicated that prolonged fluoroscopic exposure during even a single percutaneous coronary intervention (PCI) may lead to cutaneous radiation injury. We document a novel case of deep muscle damage requiring wide local debridement and muscle flap reconstruction in a 59-year-old man with a large radiation-induced wound to the lower thoracic region following 1 prolonged PCI procedure. The deep muscular iatrogenic injury described in this report may be the source of significant morbidity. Recommendations to reduce radiation-induced damage include careful examination of the skin site before each procedure, minimized fluoroscopy time, utilization of pulse fluoroscopy, employment of radiation filters, and collimator s and rotation of the location of the image intensifier.

  7. Improving degradation of paracetamol by integrating gamma radiation and Fenton processes.

    PubMed

    Cruz-González, Germán; Rivas-Ortiz, Iram B; González-Labrada, Katia; Rapado-Paneque, Manuel; Chávez-Ardanza, Armando; Nuevas-Paz, Lauro; Jáuregui-Haza, Ulises J

    2016-10-14

    Degradation of paracetamol (N-(4-hydroxiphenyl)acetamide) in aqueous solution by gamma radiation, gamma radiation/H2O2 and gamma radiation/Fenton processes was studied. Parameters affecting the radiolysis of paracetamol such as radiation dose, initial concentration of pollutant, pH and initial oxidant concentration were investigated. Gamma radiation was performed using a (60)Co source irradiator. Paracetamol degradation and mineralization increased with increasing absorbed radiation dose, but decreased with increasing initial concentration of the drug in aqueous solution. The addition of H2O2 resulted in an increased effect on irradiation-driven paracetamol degradation in comparison with the performance of the irradiation-driven process alone: paracetamol removal increased from 48.9% in the absence of H2O2 to 95.2% for H2O2 concentration of 41.7 mmol/L. However, the best results were obtained with gamma radiation/Fenton process with 100% of the drug removal at 5 kGy, for optimal H2O2 and Fe(2+) concentrations at 13.9 and 2.3 mmol/L, respectively, with a high mineralization of 63.7%. These results suggest gamma radiation/H2O2 and gamma radiation/Fenton processes as promising methods for paracetamol degradation in polluted wastewaters.

  8. Does Travel Time to a Radiation Facility Impact Patient Decision-Making Regarding Treatment for Prostate Cancer? A Study of the New Hampshire State Cancer Registry.

    PubMed

    Ghali, Fady; Celaya, Maria; Laviolette, Michael; Ingimarsson, Johann; Carlos, Heather; Rees, Judy; Hyams, Elias

    2018-02-01

    We sought to determine whether further distance from a radiation center is associated with lower utilization of external beam radiation therapy (XRT). We retrospectively identified patients with a new diagnosis of localized prostate cancer (CaP) within the New Hampshire State Cancer Registry from 2004 to 2011. Patients were categorized by age, D'Amico risk category, year of treatment, marital status, season of diagnosis, urban/rural residence, and driving time to the nearest radiation facility. Treatment decisions were stratified into those requiring multiple trips (XRT) or a single trip (surgery or brachytherapy). Multivariable regression analysis was performed. A total of 4,731 patients underwent treatment for newly diagnosed CaP during the study period, including 1,575 multitrip (XRT) and 3,156 single-trip treatments. Of these, 87.6% lived within a 30-minute drive to a radiation facility. In multivariable analysis, time to the nearest radiation facility was not associated with treatment decisions (P = .26). However, higher risk category, older age, married status, and winter diagnosis were associated with XRT (P < .05). More recent year of diagnosis and urban residence were associated with single-trip therapy (primarily surgery) (P < .05). There was a significant interaction between travel time and season of diagnosis (P = .03), as well as a marginally significant interaction with urban/rural status (P = .07). Overall, further travel time to a radiation facility was not associated with lower utilization of XRT. These data are encouraging regarding access to care for CaP in New Hampshire. © 2016 National Rural Health Association.

  9. Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy

    PubMed Central

    Baird, Jason R.; Savage, Talicia; Cottam, Benjamin; Friedman, David; Bambina, Shelly; Messenheimer, David J.; Fox, Bernard; Newell, Pippa; Bahjat, Keith S.; Gough, Michael J.; Crittenden, Marka R.

    2016-01-01

    The anecdotal reports of promising results seen with immunotherapy and radiation in advanced malignancies have prompted several trials combining immunotherapy and radiation. However, the ideal timing of immunotherapy with radiation has not been clarified. Tumor bearing mice were treated with 20Gy radiation delivered only to the tumor combined with either anti-CTLA4 antibody or anti-OX40 agonist antibody. Immunotherapy was delivered at a single timepoint around radiation. Surprisingly, the optimal timing of these therapies varied. Anti-CTLA4 was most effective when given prior to radiation therapy, in part due to regulatory T cell depletion. Administration of anti-OX40 agonist antibody was optimal when delivered one day following radiation during the post-radiation window of increased antigen presentation. Combination treatment of anti-CTLA4, radiation, and anti-OX40 using the ideal timing in a transplanted spontaneous mammary tumor model demonstrated tumor cures. These data demonstrate that the combination of immunotherapy and radiation results in improved therapeutic efficacy, and that the ideal timing of administration with radiation is dependent on the mechanism of action of the immunotherapy utilized. PMID:27281029

  10. A Step Beyond BRET: Fluorescence by Unbound Excitation from Luminescence (FUEL)

    PubMed Central

    Dragavon, Joseph; Sinow, Carolyn; Holland, Alexandra D.; Rekiki, Abdessalem; Theodorou, Ioanna; Samson, Chelsea; Blazquez, Samantha; Rogers, Kelly L.; Tournebize, Régis; Shorte, Spencer L.

    2014-01-01

    Fluorescence by Unbound Excitation from Luminescence (FUEL) is a radiative excitation-emission process that produces increased signal and contrast enhancement in vitro and in vivo. FUEL shares many of the same underlying principles as Bioluminescence Resonance Energy Transfer (BRET), yet greatly differs in the acceptable working distances between the luminescent source and the fluorescent entity. While BRET is effectively limited to a maximum of 2 times the Förster radius, commonly less than 14 nm, FUEL can occur at distances up to µm or even cm in the absence of an optical absorber. Here we expand upon the foundation and applicability of FUEL by reviewing the relevant principles behind the phenomenon and demonstrate its compatibility with a wide variety of fluorophores and fluorescent nanoparticles. Further, the utility of antibody-targeted FUEL is explored. The examples shown here provide evidence that FUEL can be utilized for applications where BRET is not possible, filling the spatial void that exists between BRET and traditional whole animal imaging. PMID:24894759

  11. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for the radioprotection of hematopoietic cells against the cell killing effects of radiation, and for improving survival in irradiated animals. Preliminary data suggest similar antioxidant protective effects for animals exposed to potentially lethal doses of proton radiation. Studies were also performed to determine whether dietary antioxidants could affect the incidence rates of malignancies in CBA mice exposed to 300 cGy proton (1 GeV/n) radiation or 50 cGy iron ion (1 GeV/n) radiation [9]. Two antioxidant formulations were utilized in these studies; an AOX formulation containing the mixture of antioxidant agents developed from our previous studies and an antioxidant dietary formulation containing the soybean-derived protease inhibitor known as the Bowman-Birk inhibitor (BBI). BBI was evaluated in the form of BBI Concentrate (BBIC), which is the form of BBI utilized in human trials. BBIC has been utilized in human trials since 1992, as described [10]. The major finding in the long-term animal studies was that there was a reduced risk of malignant lymphoma in mice exposed to space radiations and maintained on diets containing the antioxidant formulations. In addition, the two different dietary countermeasures also reduced the yields of a variety of different rare tumor types, arising from both epithelial and connective tissue cells, observed in the animals exposed to space radiation. REFERENCES [1] Guan J. et al (2004) Radiation Research 162, 572-579. [2] Wan X.S. et al (2005) Radiation Research 163, 364-368. [3] Wan X.S. et al (2005) Radiation Research 163, 232-240. [4] Guan J. et al (2006) Radiation Research 165, 373-378. [5] Wan X.S. et al (2006) International Journal of Radiation Oncology, Biology, Physics 64, 1475-1481. [6] Kennedy A.R. et al (2006) Radiation Research 166, 327-332. [7] Kennedy A.R. et al (2007) Radiation & Environmental Biophysics 46(2), 201-3. [8]Wambi, C., Sanzari, J., Wan, X.S., Nuth, M., Davis, J., Ko, Y.-H., Sayers, C.M., Baran, M., Ware, J.H. and Kennedy, A.R. Dietary antioxidants protect hematopoietic cells and improve animal survival following total body irradiation. Radiation Res. (in press) [9] Kennedy, A.R., Davis, J.G., Carlton, W. and Ware, J.H. Effects of dietary antioxidant supplementation on the development of malignancies and other neoplastic lesions in mice exposed to proton or iron ion radiation. Radiation Res. (submitted) [10] Kennedy, A.R. The Status of Human Trials Utilizing Bowman-Birk Inhibitor Concentrate from Soybeans. In: Soy in Health and Disease Prevention, edited by Michihiro Sugano, CRC Press Press LLC, Boca Raton, Florida, Chapter 12, pp. 207-223, 2005. ACKNOWLEDGEMENTS; This work was supported by the National Space Biomedical Research Institute through NASA NCC 9-58.

  12. DirtyGrid I: 3D Dust Radiative Transfer Modeling of Spectral Energy Distributions of Dusty Stellar Populations

    NASA Astrophysics Data System (ADS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, Karl A.

    2018-06-01

    Understanding the properties of stellar populations and interstellar dust has important implications for galaxy evolution. In normal star-forming galaxies, stars and the interstellar medium dominate the radiation from ultraviolet (UV) to infrared (IR). In particular, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the IR. This is a strongly nonlinear process that makes independent studies of the UV-optical and IR susceptible to large uncertainties and degeneracies. Over the years, UV to IR spectral energy distribution (SED) fitting utilizing varying approximations has revealed important results on the stellar and dust properties of galaxies. Yet the approximations limit the fidelity of the derived properties. There is sufficient computer power now available that it is now possible to remove these approximations and map out of landscape of galaxy SEDs using full dust radiative transfer. This improves upon previous work by directly connecting the UV, optical, and IR through dust grain physics. We present the DIRTYGrid, a grid of radiative transfer models of SEDs of dusty stellar populations in galactic environments designed to span the full range of physical parameters of galaxies. Using the stellar and gas radiation input from the stellar population synthesis model PEGASE, our radiative transfer model DIRTY self-consistently computes the UV to far-IR/sub-mm SEDs for each set of parameters in our grid. DIRTY computes the dust absorption, scattering, and emission from the local radiation field and a dust grain model, thereby physically connecting the UV-optical to the IR. We describe the computational method and explain the choices of parameters in DIRTYGrid. The computation took millions of CPU hours on supercomputers, and the SEDs produced are an invaluable tool for fitting multi-wavelength data sets. We provide the complete set of SEDs in an online table.

  13. An Improved Algorithm for Retrieving Surface Downwelling Longwave Radiation from Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Kratz, David P.; Wilber, Anne C.; Gupta, Shashi K.; Cess, Robert D.

    2006-01-01

    Retrieving surface longwave radiation from space has been a difficult task since the surface downwelling longwave radiation (SDLW) are integrations from radiation emitted by the entire atmosphere, while those emitted from the upper atmosphere are absorbed before reaching the surface. It is particularly problematic when thick clouds are present since thick clouds will virtually block all the longwave radiation from above, while satellites observe atmosphere emissions mostly from above the clouds. Zhou and Cess developed an algorithm for retrieving SDLW based upon detailed studies using radiative transfer model calculations and surface radiometric measurements. Their algorithm linked clear sky SDLW with surface upwelling longwave flux and column precipitable water vapor. For cloudy sky cases, they used cloud liquid water path as an additional parameter to account for the effects of clouds. Despite the simplicity of their algorithm, it performed very well for most geographical regions except for those regions where the atmospheric conditions near the surface tend to be extremely cold and dry. Systematic errors were also found for areas that were covered with ice clouds. An improved version of the algorithm was developed that prevents the large errors in the SDLW at low water vapor amounts. The new algorithm also utilizes cloud fraction and cloud liquid and ice water paths measured from the Cloud and the Earth's Radiant Energy System (CERES) satellites to separately compute the clear and cloudy portions of the fluxes. The new algorithm has been validated against surface measurements at 29 stations around the globe for the Terra and Aqua satellites. The results show significant improvement over the original version. The revised Zhou-Cess algorithm is also slightly better or comparable to more sophisticated algorithms currently implemented in the CERES processing. It will be incorporated in the CERES project as one of the empirical surface radiation algorithms.

  14. Shifting the focus to practice quality improvement in radiation oncology.

    PubMed

    Crozier, Cheryl; Erickson-Wittmann, Beth; Movsas, Benjamin; Owen, Jean; Khalid, Najma; Wilson, J Frank

    2011-09-01

    To demonstrate how the American College of Radiology, Quality Research in Radiation Oncology (QRRO) process survey database can serve as an evidence base for assessing quality of care in radiation oncology. QRRO has drawn a stratified random sample of radiation oncology facilities in the USA and invited those facilities to participate in a Process Survey. Information from a prior QRRO Facilities Survey has been used along with data collected under the current National Process Survey to calculate national averages and make statistically valid inferences for national process measures for selected cancers in which radiation therapy plays a major role. These measures affect outcomes important to patients and providers and measure quality of care. QRRO's survey data provides national benchmark data for numerous quality indicators. The Process Survey is "fully qualified" as a Practice Quality Improvement project by the American Board of Radiology under its Maintenance of Certification requirements for radiation oncology and radiation physics. © 2011 National Association for Healthcare Quality.

  15. Space Biophysics: Accomplishments, Trends, Challenges

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.

    2015-01-01

    Physics and biology are inextricably linked. All the chemical and biological processes of life are dutifully bound to follow the rules and laws of physics. In space, these physical laws seem to turn on their head and biological systems, from microbes to humans, adapt and evolve in myriad ways to cope with the changed physical influences of the space environment. Gravity is the most prominent change in space that influences biology. In microgravity, the physical processes of sedimentation, density-driven convective flow, influence of surface tension and fluid pressure profoundly influence biology at the molecular and cellular level as well as at the whole-body level. Gravity sensing mechanisms are altered, structural and functional components of biology (such as bone and muscle) are reduced and changes in the way fluids and gasses behave also drive the way microbial systems and biofilms grow as well as the way plants and animals adapt. The radiation environment also effects life in space. Solar particle events and high energy cosmic radiation can cause serious damage to DNA and other biomolecules. The results can cause mutation, cellular damage or death, leading to health consequences of acute radiation damage or long-term health consequences such as increased cancer risk. Space Biophysics is the study and utilization of physical changes in space that cause changes in biological systems. The unique physical environment in space has been used successfully to grow high-quality protein crystals and 3D tissue cultures that could not be grown in the presence of unidirectional gravitational acceleration here on Earth. All biological processes that change in space have their root in a biophysical alteration due to microgravity and/or the radiation environment of space. In order to fully-understand the risks to human health in space and to fully-understand how humans, plants, animals and microbes can safely and effectively travel and eventually live for long periods beyond the protective environment of Earth, the biophysical properties underlying these changes must be studied, characterized and understood. This lecture reviews the current state of NASA biophysics research accomplishments and identifies future trends and challenges for biophysics research on the International Space Station and beyond.

  16. Enhancement of Extraction of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Sheikhly, Mohamad; Dietz, Travis; Tsinas, Zois

    2016-04-01

    Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand, which was originally discovered and promoted by Japanese studies in the late 1980s.more » Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater which could expand the known stockpiles of other highly desirable materials.« less

  17. Enhancement of Extraction of Uranium from Seawater – Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietz, Travis Cameron; Tsinas, Zois; Tomaszewski, Claire

    2016-05-16

    Even at a concentration of 3 μg/L, the world’s oceans contain a thousand times more uranium than currently know terrestrial sources. In order to take advantage of this stockpile, methods and materials must be developed to extract it efficiently, a difficult task considering the very low concentration of the element and the competition for extraction by other atoms in seawater such as sodium, calcium, and vanadium. The majority of current research on methods to extract uranium from seawater are vertical explorations of the grafting of amidoxime ligand, which was originally discovered and promoted by Japanese studies in the late 1980s.more » Our study expands on this research horizontally by exploring the effectiveness of novel uranium extraction ligands grafted to the surface of polymer substrates using radiation. Through this expansion, a greater understanding of uranium binding chemistry and radiation grafting effects on polymers has been obtained. While amidoxime-functionalized fabrics have been shown to have the greatest extraction efficiency so far, they suffer from an extensive chemical processing step which involves treatment with powerful basic solutions. Not only does this add to the chemical waste produced in the extraction process and add to the method’s complexity, but it also significantly impacts the regenerability of the amidoxime fabric. The approach of this project has been to utilize alternative, commercially available monomers capable of extracting uranium and containing a carbon-carbon double bond to allow it to be grafted using radiation, specifically phosphate, oxalate, and azo monomers. The use of commercially available monomers and radiation grafting with electron beam or gamma irradiation will allow for an easily scalable fabrication process once the technology has been optimized. The need to develop a cheap and reliable method for extracting uranium from seawater is extremely valuable to energy independence, and will extend the quantity of uranium available to the nuclear power industry far into the future. The development of this technology will also promote science in relation to the extraction of other elements from seawater, which could expand the known stockpiles of other highly desirable materials.« less

  18. X-ray source for mammography

    DOEpatents

    Logan, Clinton M.

    1994-01-01

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  19. Study of fuel cell thermal control systems for advanced missions.

    NASA Technical Reports Server (NTRS)

    Caputo, R. S.

    1972-01-01

    This study evaluated many heat rejection and thermal control concepts which could be applied to fuel cells for long term (600 hours) orbital and lunar surface missions. The concepts considered several types of radiators which utilized pumped gas, liquid and two phase working fluids and incorporated solid conduction fins as well as heat pipe (vapor chamber) fins. The comparison of the concepts was based on weight, area and other factors such as standby power, ability to accommodate heat load variation, control complexity, and meteoroid survival capability. A design selection matrix was established and an optimum (primary) and an alternate (secondary) heat rejection concept was chosen. Heat rejection techniques utilizing self-controlled heat pipe radiators dominate the results.

  20. Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies.

    PubMed

    Meacham, Katherine; Sirault, Xavier; Quick, W Paul; von Caemmerer, Susanne; Furbank, Robert

    2017-01-01

    Genetic improvement of photosynthetic performance of cereal crops and increasing the efficiency with which solar radiation is converted into biomass has recently become a major focus for crop physiologists and breeders. The pulse amplitude modulated chlorophyll fluorescence technique (PAM) allows quantitative leaf level monitoring of the utilization of energy for photochemical light conversion and photoprotection in natural environments, potentially over the entire crop lifecycle. Here, the diurnal relationship between electron transport rate (ETR) and irradiance was measured in five cultivars of rice (Oryza sativa) in canopy conditions with PAM fluorescence under natural solar radiation. This relationship differed substantially from that observed for conventional short term light response curves measured under controlled actinic light with the same leaves. This difference was characterized by a reduced curvature factor when curve fitting was used to model this diurnal response. The engagement of photoprotective processes in chloroplast electron transport in leaves under canopy solar radiation was shown to be a major contributor to this difference. Genotypic variation in the irradiance at which energy flux into photoprotective dissipation became greater than ETR was observed. Cultivars capable of higher ETR at midrange light intensities were shown to produce greater leaf area over time, estimated by noninvasive imaging. © 2017 American Society of Plant Biologists. All Rights Reserved.

Top