Sample records for processing celss crop

  1. Processing of nutritious, safe and acceptable foods from CELSS candidate crops

    NASA Technical Reports Server (NTRS)

    Fu, B.; Nelson, P. E.; Irvine, R.; Kanach, L. L.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    A controlled ecological life-support system (CELSS) is required to sustain life for long-duration space missions. The challenge is preparing a wide variety of tasty, familiar, and nutritious foods from CELSS candidate crops under space environmental conditions. Conventional food processing technologies will have to be modified to adapt to the space environment. Extrusion is one of the processes being examined as a means of converting raw plant biomass into familiar foods. A nutrition-improved pasta has been developed using cowpea as a replacement for a portion of the durum semolina. A freeze-drying system that simulates the space conditions has also been developed. Other technologies that would fulfill the requirements of a CELSS will also be addressed.

  2. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1992-01-01

    The goal of this research is to develop a progressive series of mathematical models for the CELSS hydroponic crops. These models will systematize the experimental findings from the crop researchers in the CELSS Program into a form useful to investigate system-level considerations, for example, dynamic studies of the CELSS Initial Reference Configurations. The crop models will organize data from different crops into a common modeling framework. This is the fifth semiannual report for this project. The following topics are discussed: (1) use of field crop models to explore phasic control of CELSS crops for optimizing yield; (2) seminar presented at Purdue CELSS NSCORT; and (3) paper submitted on analysis of bioprocessing of inedible plant materials.

  3. Determining the potential productivity of food crops in controlled environments

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    1992-01-01

    The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: (1) the development of gas exchange techniques to continuously monitor plant growth rates and (2) environmental techniques to reduce plant height in communities.

  4. Electrolytic Removal of Nitrate From CELSS Crop Residues

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo; Sager, John

    1996-01-01

    The controlled ecological life support system (CELSS) resource recovery system is a waste processing system using aerobic and anaerobic bioreactors to recover plant nutrients and secondary foods from inedible biomass. Crop residues contain significant amounts of nitrate which presents two problems: (1) both CELSS biomass production and resource recovery consume large quantities of nitric acid, (2) nitrate causes a variety of problems in both aerobic and anaerobic bioreactors. A technique was proposed to remove the nitrate from potato inedible biomass leachate and to satisfy the nitric acid demand using a four compartment electrolytic cell.

  5. The dynamics of hydroponic crops for simulation studies of the CELSS initial reference configurations

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1993-01-01

    During the past several years, the NASA Program in Controlled Ecological Life Support Systems (CELSS) has continued apace with crop research and logistic, technological, and scientific strides. These include the CELSS Test Facility planned for the space station and its prototype Engineering Development Unit, soon to be active at Ames Research Center (as well as the advanced crop growth research chamber at Ames); the large environmental growth chambers and the planned human test bed facility at Johnson Space Center; the NSCORT at Purdue with new candidate crops and diverse research into the CELSS components; the gas exchange data for soy, potatoes, and wheat from Kennedy Space Center (KSC); and the high-precision gas exchange data for wheat from Utah State University (USU). All these developments, taken together, speak to the need for crop modeling as a means to connect the findings of the crop physiologists with the engineers designing the system. A need also exists for crop modeling to analyze and predict the gas exchange data from the various locations to maximize the scientific yield from the experiments. One fruitful approach employs what has been called the 'energy cascade'. Useful as a basis for CELSS crop growth experimental design, the energy cascade as a generic modeling approach for CELSS crops is a featured accomplishment in this report. The energy cascade is a major tool for linking CELSS crop experiments to the system design. The energy cascade presented here can help collaborations between modelers and crop experimenters to develop the most fruitful experiments for pushing the limits of crop productivity. Furthermore, crop models using the energy cascade provide a natural means to compare, feature for feature, the crop growth components between different CELSS experiments, for example, at Utah State University and Kennedy Space Center.

  6. Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1987-01-01

    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.

  7. Processing of nutritious, safe and acceptable foods from cells candidate crops

    NASA Astrophysics Data System (ADS)

    Fu, B.; Nelson, P. E.; Irvine, R.; Kanach, L. L.

    A controlled ecological life-support system (CELSS) is required to sustain life for long-duration space missions. The challenge is preparing a wide variety of tasty, familiar, and nutritious foods from CELSS candidate crops under space environmental conditions. Conventional food processing technologies will have to be modified to adapt to the space environment. Extrusion is one of the processes being examined as a means of converting raw plant biomass into familiar foods. A nutrition-improved pasta has been developed using cowpea as a replacement for a portion of the durum semolina. A freeze-drying system that simulates the space conditions has also been developed. Other technologies that would fulfill the requirements of a CELSS will also be addressed.

  8. CELSS research and development program

    NASA Technical Reports Server (NTRS)

    Bubenheim, David

    1990-01-01

    Research in Controlled Ecological Life Support Systems (CELSS) conducted by NASA indicate that plant based systems are feasible candidates for human support in space. Ames has responsibility for research and development, systems integration and control, and space flight experiment portions of the CELSS program. Important areas for development of new methods and technologies are biomass production, waste processing, water purification, air revitalization, and food processing. For the plant system, the approach was to identify the flexibility and response time for the food, water, and oxygen production, and carbon dioxide consumption processes. Tremendous increases in productivity, compared with terrestrial agriculture, were realized. Waste processing research emphasizes recycle (transformation) of human wastes, trash, and inedible biomass to forms usable as inputs to the plant production system. Efforts to improve efficiency of the plant system, select new CELSS crops for a balanced diet, and initiate closed system research with the Crop Growth Research Chambers continue. The System Control and Integration program goal is to insure orchestrated system operation of the biological, physical, and chemical operation of the biological, physical, and chemical component processors of the CELSS. Space flight studies are planned to verify adequate operation of the system in reduced gravity or microgravity environments.

  9. Earth benefits of interdisciplinary CELSS-related research by the NSCORT in Bioregenerative Life Support

    NASA Technical Reports Server (NTRS)

    Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.

    1996-01-01

    Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.

  10. Earth benefits of interdisciplinary celss-related research by the NSCORT in Bioregenerative Life Support

    NASA Astrophysics Data System (ADS)

    Mitchell, C.; Sherman, L.; Nielsen, S.; Nelson, P.; Trumbo, P.; Hodges, T.; Hasegawa, P.; Bressan, R.; Ladisch, M.; Auslander, D.

    Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO_2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainability of a CELSS that will enable management of diverse complex systems on Earth.

  11. Earth benefits of interdisciplinary CELSS-related research by the NSCORT in Bioregenerative Life Support.

    PubMed

    Mitchell, C; Sherman, L; Nielsen, S; Nelson, P; Trumbo, P; Hodges, T; Hasegawa, P; Bressan, R; Ladisch, M; Auslander, D

    1996-01-01

    Earth benefits of research from the NSCORT in Bioregenerative Life Support will include the following: development of active control mechanisms for light, CO2, and temperature to maximize photosynthesis of crop plants during important phases of crop development; automation of crop culture systems; creation of novel culture systems for optimum productivity; creation of value-added crops with superior nutritional, yield, and waste-process characteristics; environmental control of food and toxicant composition of crops; new process technologies and novel food products for safe, nutritious, palatable vegetarian diets; creation of menus for healthful vegetarian diets with psychological acceptability; enzymatic procedures to degrade recalcitrant crop residues occurring in municipal waste; control-system strategies to ensure sustainabilty of a CELSS that will enable management of diverse complex systems on Earth.

  12. Bioregenerative life-support systems

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1994-01-01

    Long-duration future habitation of space involving great distances from Earth and/or large crew sizes (eg, lunar outpost, Mars base) will require a controlled ecological life-support system (CELSS) to simultaneously revitalize atmosphere (liberate oxygen and fix carbon dioxide), purify water (via transpiration), and generate human food (for a vegetarian diet). Photosynthetic higher plants and algae will provide the essential functions of biomass productivity in a CELSS, and a combination of physicochemical and bioregenerative processes will be used to regenerate renewable resources from waste materials. Crop selection criteria for a CELSS include nutritional use characteristics as well as horticultural characteristics. Cereals, legumes, and oilseed crops are used to provide the major macronutrients for the CELSS diet. A National Aeronautics and Space Administration (NASA) Specialized Center of Research and Training (NSCORT) was established at Purdue University to establish proof of the concept of the sustainability of a CELSS. The Biosphere 2 project in Arizona is providing a model for predicted and unpredicted situations that arise as a result of closure in a complex natural ecosystem.

  13. OCAM - A CELSS modeling tool: Description and results. [Object-oriented Controlled Ecological Life Support System Analysis and Modeling

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray

    1992-01-01

    Controlled Ecological Life Support System (CELSS) technology is critical to the Space Exploration Initiative. NASA's Kennedy Space Center has been performing CELSS research for several years, developing data related to CELSS design. We have developed OCAM (Object-oriented CELSS Analysis and Modeling), a CELSS modeling tool, and have used this tool to evaluate CELSS concepts, using this data. In using OCAM, a CELSS is broken down into components, and each component is modeled as a combination of containers, converters, and gates which store, process, and exchange carbon, hydrogen, and oxygen on a daily basis. Multiple crops and plant types can be simulated. Resource recovery options modeled include combustion, leaching, enzyme treatment, aerobic or anaerobic digestion, and mushroom and fish growth. Results include printouts and time-history graphs of total system mass, biomass, carbon dioxide, and oxygen quantities; energy consumption; and manpower requirements. The contributions of mass, energy, and manpower to system cost have been analyzed to compare configurations and determine appropriate research directions.

  14. An Intelligent Crop Planning Tool for Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Laura O.; Leon, Jorge

    1996-01-01

    This paper describes a crop planning tool developed for the Controlled Ecological Life Support Systems (CELSS) project which is in the research phases at various NASA facilities. The Crop Planning Tool was developed to assist in the understanding of the long term applications of a CELSS environment. The tool consists of a crop schedule generator as well as a crop schedule simulator. The importance of crop planning tools such as the one developed is discussed. The simulator is outlined in detail while the schedule generator is touched upon briefly. The simulator consists of data inputs, plant and human models, and various other CELSS activity models such as food consumption and waste regeneration. The program inputs such as crew data and crop states are discussed. References are included for all nominal parameters used. Activities including harvesting, planting, plant respiration, and human respiration are discussed using mathematical models. Plans provided to the simulator by the plan generator are evaluated for their 'fitness' to the CELSS environment with an objective function based upon daily reservoir levels. Sample runs of the Crop Planning Tool and future needs for the tool are detailed.

  15. Controlled Ecological Life Support System (CELSS) modeling

    NASA Technical Reports Server (NTRS)

    Drysdale, Alan; Thomas, Mark; Fresa, Mark; Wheeler, Ray

    1992-01-01

    Attention is given to CELSS, a critical technology for the Space Exploration Initiative. OCAM (object-oriented CELSS analysis and modeling) models carbon, hydrogen, and oxygen recycling. Multiple crops and plant types can be simulated. Resource recovery options from inedible biomass include leaching, enzyme treatment, aerobic digestion, and mushroom and fish growth. The benefit of using many small crops overlapping in time, instead of a single large crop, is demonstrated. Unanticipated results include startup transients which reduce the benefit of multiple small crops. The relative contributions of mass, energy, and manpower to system cost are analyzed in order to determine appropriate research directions.

  16. Effects of Bioreactor Retention Time on Aerobic Microbial Decomposition of CELSS Crop Residues

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable, bioreactor retention time, on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.

  17. The CELSS Test Facility - A foundation for crop research in space

    NASA Technical Reports Server (NTRS)

    Straight, C. L.; Macelroy, R. D.

    1990-01-01

    Under the NASA Space Biology Initiative, a CELSS Test Facility (CTF) is being planned for installation on Space Station Freedom. The CTF will be used to study the productivity of typical CELSS higher plant crops under the microgravity conditions of the Space Station Freedom (SSF). Such science studies will be supported under the CELSS Space Research Project. The CTF will be used to evaluate fundamental issues of crop productivity, such as the production rates of O2, food and transpired water, and CO2 uptake. A series of precursor tests that are essential to the development of the CTF will be flown on Space Shuttle flights. The tests will be used to validate and qualify technology concepts and to answer specific questions regarding seed germination, root/shoot orientation, water condensation and recycling, nutrient delivery, and liquid/gas phase interactions.

  18. Intelligent Planning and Scheduling for Controlled Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leon, V. Jorge

    1996-01-01

    Planning in Controlled Ecological Life Support Systems (CELSS) requires special look ahead capabilities due to the complex and long-term dynamic behavior of biological systems. This project characterizes the behavior of CELSS, identifies the requirements of intelligent planning systems for CELSS, proposes the decomposition of the planning task into short-term and long-term planning, and studies the crop scheduling problem as an initial approach to long-term planning. CELSS is studied in the realm of Chaos. The amount of biomass in the system is modeled using a bounded quadratic iterator. The results suggests that closed ecological systems can exhibit periodic behavior when imposed external or artificial control. The main characteristics of CELSS from the planning and scheduling perspective are discussed and requirements for planning systems are given. Crop scheduling problem is identified as an important component of the required long-term lookahead capabilities of a CELSS planner. The main characteristics of crop scheduling are described and a model is proposed to represent the problem. A surrogate measure of the probability of survival is developed. The measure reflects the absolute deviation of the vital reservoir levels from their nominal values. The solution space is generated using a probability distribution which captures both knowledge about the system and the current state of affairs at each decision epoch. This probability distribution is used in the context of an evolution paradigm. The concepts developed serve as the basis for the development of a simple crop scheduling tool which is used to demonstrate its usefulness in the design and operation of CELSS.

  19. The Crop Growth Research Chamber - A ground-based facility for CELSS research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Luna, Phil M.; Wagenbach, Kimberly M.; Haslerud, Mark; Straight, Christian L.

    1989-01-01

    Crop Growth Research Chambers (CGRCs) are being developed as CELSS research facilities for the NASA/Ames Research Center. The history of the CGRC project is reviewed, noting the applications of CGRC research for the development of the Space Station. The CGRCs are designed for CELSS research and development, system control and integration, and flight hardware design and experimentation. The atmospheric and hydroponic environments of the CGRC system are described and the science requirements for CGRC environmental control are listed.

  20. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  1. Dynamic optimization of CELSS crop photosynthetic rate by computer-assisted feedback control

    NASA Astrophysics Data System (ADS)

    Chun, C.; Mitchell, C. A.

    1997-01-01

    A procedure for dynamic optimization of net photosynthetic rate (Pn) for crop production in Controlled Ecological Life-Support Systems (CELSS) was developed using leaf lettuce as a model crop. Canopy Pn was measured in real time and fed back for environmental control. Setpoints of photosynthetic photon flux (PPF) and CO_2 concentration for each hour of the crop-growth cycle were decided by computer to reach a targeted Pn each day. Decision making was based on empirical mathematical models combined with rule sets developed from recent experimental data. Comparisons showed that dynamic control resulted in better yield per unit energy input to the growth system than did static control. With comparable productivity parameters and potential for significant energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  2. A perspective on CELSS control issues

    NASA Technical Reports Server (NTRS)

    Blackwell, Ann L.

    1990-01-01

    Some issues of Closed Ecological Life Support System (CELSS) analysis and design are effectively addressed from a systems control perspective. CELSS system properties that may be elucidated using control theory in conjunction with mathematical and simulation modeling are enumerated. The approach that is being taken to the design of a control strategy for the Crop Growth Research Chamber (CGRC) and the relationship of that approach to CELSS plant growth unit subsystems control is described.

  3. Preliminary test results from the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, Mark H.; Macelroy, R. D.; Blackwell, C. C.; Borchers, B. A.; Drews, M. E.; Longabaugh, J. R.; Yendler, B. S.; Zografos, A. I.

    1994-01-01

    As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown in the microgravity environment of the Space Station. Tight environmental control will be maintained while data on gas exchange rates and biomass accumulation rates are collected. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been designed, constructed and is in the process of subsystem and system testing at NASA Ames Research Center. The EDU is a ground test-bed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper reviews the functional requirements for the EDU, and focuses on the performance evaluation and test results of the various subsystems. Preliminary integrated performance results and control system operation are addressed, and plans for future science and technology testing are discussed.

  4. The CELSS Test Facility Project - An example of a CELSS flight experiment system

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Straight, C. L.

    1992-01-01

    The design of the facility is described in terms of its use as an investigation tool for evaluating crop growth in space with reference to required emerging technologies. NASA's CELSS Test Facility (CTF) is designed to permit the measurement of crop-plant productivity under microgravity conditions including biomass production, food production, water transpiration, and O2/CO2 exchanges. Crucial hardware tests and qualifications are identified to assure the operation of CTF technologies in space including the nutrient-delivery, water-condensation, and gas-liquid-mixing subsystems. The design concept and related scientific requirements are described and shown to provide microgravity crop research. The CTF is expected to provide data for plant research and for concepts for bioregenerative life-support systems for applications to Martian, lunar, and space-station missions.

  5. Applications of CELSS technology to controlled environment agriculture

    NASA Technical Reports Server (NTRS)

    Bates, Maynard E.; Bubenheim, David L.

    1991-01-01

    Controlled environment agriculture (CEA) is defined as the use of environmental manipulation for the commercial production of organisms, whether plants or animals. While many of the technologies necessary for aquaculture systems in North America is nevertheless doubling approximately every five years. Economic, cultural, and environmental pressures all favor CEA over field production for many non-commodity agricultural crops. Many countries around the world are already dependent on CEA for much of their fresh food. Controlled ecological life support systems (CELSS), under development at ARC, KSC, and JSC expand the concept of CEA to the extent that all human requirements for food, oxygen, and water will be provided regenerated by processing of waste streams to supply plant inputs. The CELSS will likely contain plants, humans, possibly other animals, microorganisms and physically and chemical processors. In effect, NASA will create engineered ecosystems. In the process of developing the technology for CELSS, NASA will develop information and technology which will be applied to improving the efficiency, reliability, and cost effectiveness for CEA, improving its resources recycling capabilities, and lessening its environmental impact to negligible levels.

  6. Robotics in a controlled, ecological life support system

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.; Krom, Kimberly J.

    1993-01-01

    Controlled, Ecological Life Support Systems (CELSS) that utilize plants to provide food, water and oxygen could consume considerable amounts of labor unless crop production, recovery and processing are automated. Robotic manipulators equipped with special end-effectors and programmed to perform the sensing and materials handling tasks would minimize the amount of astronaut labor required. The Human Rated Test Facility (HRTF) planned for Johnson Space Center could discover and demonstrate techniques of crop production which can be reliably integrated with machinery to minimize labor requirements. Before the physical components (shelves, lighting fixtures, etc.) can be selected, a systems analysis must be performed to determine which alternative processes should be followed and how the materials handling tasks should be automated. Given that the current procedures used to grow crops in a CELSS may not be the best methods to automate, then what are the alternatives? How may plants be grown, harvested, processed for food, and the inedible components recycled? What commercial technologies current exist? What research efforts are underway to develop new technologies which might satisfy the need for automation in a CELSS? The answers to these questions should prove enlightening and provide some of the information necessary to perform the systems analysis. The planting, culturing, gathering, threshing and separation, food processing, and recovery of inedible portions of wheat were studied. The basic biological and materials handling processes of each task are defined and discussed. Current practices at Johnson Space Center and other NASA centers are described and compared to common production practices in the plant production industry. Technologies currently being researched which might be applicable are identified and illustrated. Finally, based on this knowledge, several scenarios are proposed for automating the tasks for wheat.

  7. Utilization of potatoes in CELSS: Productivity and growing systems

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.

    1986-01-01

    The potato plant (solanum tuberosum L.) is one of the basic food crops that should be studied for use in NASA's closed Ecological Life Support System (CELSS). It offers high yields per unit area and time, with most of this production in the form of highly digestible carbohydrate. Potatoes, like wheat and rice, are particularly useful in human diets because of their nutritional versatility and ease of processing and preparation. The growth of the potato was studied and it was found to be a useful species for life support systems.

  8. The crop growth research chamber

    NASA Technical Reports Server (NTRS)

    Wagenbach, Kimberly

    1993-01-01

    The Crop Growth Research Chamber (CGRC) has been defined by CELSS principle investigators and science advisory panels as a necessary ground-based tool in the development of a regenerative life support system. The focus of CGRC research will be on the biomass production component of the CELSS system. The ground-based Crop Growth Research Chamber is for the study of plant growth and development under stringently controlled environments isolated from the external environment. The chamber has importance in three areas of CELSS activities: (1) crop research; (2) system control and integration, and (3) flight hardware design and experimentation. The laboratory size of the CGRC will be small enough to allow duplication of the unit, the conducting of controlled experiments, and replication of experiments, but large enough to provide information representative of larger plant communities. Experiments will focus on plant growth in a wide variety of environments and the effects of those environments on plant production of food, water, oxygen, toxins, and microbes. To study these effects in a closed system, tight control of the environment is necessary.

  9. Quinoa: An emerging new crop with potential for CELSS

    NASA Technical Reports Server (NTRS)

    Schlick, Greg; Bubenheim, David L.

    1993-01-01

    Chenopodium quinoa is being considered as a new crop for the Controlled Ecological Life Support System (CELSS) because of its high protein values (12 - 18%) and unique amino acid composition. Lysine, and essential amino acid that is deficient in many grain crops, is found in quinoa approaching Food and Agriculture Organization of the United Nations (FAO) standards set for humans. This 'new' crop, rich in protein and with desirable proportions of important amino acids, may provide greater versatility in meeting the needs of humans on long-term space missions. Initially, the cultivars CO407 x ISLUGA, CO407 Heat Tolerant Population 1, and Real' (a Bolivian variety) were examined. The first cultivar showed the most promise in greenhouse studies. When grown hydroponically in the greenhouse, with no attempt to maximize productivity, this cultivar produced 202 g m(exp -2) with a harvest index of 37%. None of the cultivars were greater than 70 cm in height. Initial results indicate that quinoa could be an excellent crop for CELSS because of the high concentration of protein, ease of use, versatility in preparation, and potential for greatly increased yields in controlled environments.

  10. Methodologies for processing plant material into acceptable food on a small scale

    NASA Technical Reports Server (NTRS)

    Parks, Thomas R.; Bindon, John N.; Bowles, Anthony J. G.; Golbitz, Peter; Lampi, Rauno A.; Marquardt, Robert F.

    1994-01-01

    Based on the Controlled Environment Life Support System (CELSS) production of only four crops, wheat, white potatoes, soybeans, and sweet potatoes; a crew size of twelve; a daily planting/harvesting regimen; and zero-gravity conditions, estimates were made on the quantity of food that would need to be grown to provide adequate nutrition; and the corresponding amount of biomass that would result. Projections were made of the various types of products that could be made from these crops, the unit operations that would be involved, and what menu capability these products could provide. Equipment requirements to perform these unit operations were screened to identify commercially available units capable of operating (or being modified to operate) under CELSS/zero-gravity conditions. Concept designs were developed for those equipment needs for which no suitable units were commercially available. Prototypes of selected concept designs were constructed and tested on a laboratory scale, as were selected commercially available units. This report discusses the practical considerations taken into account in the various design alternatives, some of the many product/process factors that relate to equipment development, and automation alternatives. Recommendations are made on both general and specific areas in which it was felt additional investigation would benefit CELSS missions.

  11. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets.

    PubMed

    Salisbury, F B; Clark, M A

    1996-01-01

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  12. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Clark, M. A.

    1996-01-01

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  13. Suggestions for crops grown in controlled ecological life-support systems, based on attractive vegetarian diets

    NASA Astrophysics Data System (ADS)

    Salisbury, F. B.; Clark, M. A. Z.

    Assuming that crops grown in controlled ecological life-support systems (CELSS) should provide a basis for meals that are both nutritious and attractive (to taste and vision), and that CELSS diets on the moon or Mars or in space-craft during long voyages will have to be mostly vegetarian, a workshop was convened at the Johnson Space Center, Houston, Texas, U.S.A. on 19 to 21 January, 1994. Participants consisted of trained nutritionists and others; many of the approximately 18 presenters who discussed possible diets were practicing vegetarians, some for more than two decades. Considering all the presentations, seven conclusions (or points for discussion) could be formulated: nutritious vegetarian diets are relatively easily to formulate, vegetarian diets are healthy, variety is essential in vegetarian diets, some experiences (e.g., Bios-3 and Biosphere 2) are relevant to planning of CELSS diets, physical constraints will limit the choice of crops, a preliminary list of recommended crops can be formulated, and this line of research has some potential practical spinoffs. The list of crops and the reasons for including specific crops might be of interest to professionals in the field of health and nutrition as well as to those who are designing closed ecological systems.

  14. Monitoring and control technologies for bioregenerative life support systems/CELSS

    NASA Technical Reports Server (NTRS)

    Knott, William M.; Sager, John C.

    1991-01-01

    The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS.

  15. Choosing plants to be grown in a Controlled Environment Life Support System (CELSS) based upon attractive vegetarian diets.

    PubMed

    Salisbury, F B; Clark, M A

    1996-01-01

    Space explorers on the Moon, Mars, or even in a space craft might grow plants in a CELSS to remove CO2 and provide O2 and food. Selection of crops to be studied has been rather arbitrary but should be based on plants that can provide a balanced and attractive, mostly vegetarian diet. Additional selection criteria include ease of growth in artificial environments and sufficient variety provided over long intervals. This article is based on a workshop convened to study vegetarian diets for use in a CELSS. Participants included nutritional scientists, practicing vegetarians, and interested employees of the Johnson Space Center. It was concluded that diets meeting the criteria could be formulated, and a list of suitable crops was compiled.

  16. Controlled ecological life support systems (CELSS) flight experimentation

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Macelroy, R.; Borchers, B.; Farrance, M.; Nelson, T.; Blackwell, C.; Yendler, B.; Tremor, J.

    1994-01-01

    The NASA CELSS program has the goal of developing life support systems for humans in space based on the use of higher plants. The program has supported research at universities with a primary focus of increasing the productivity of candidate crops plants. To understand the effects of the space environment on plant productivity, the CELSS Test Facility (CTF) has been conceived as an instrument that will permit the evaluation of plant productivity on Space Station Freedom. The CTF will maintain specific environmental conditions and collect data on gas exchange rates and biomass accumulation over the growth period of several crop plants grown sequentially from seed to harvest. The science requirements for the CTF will be described, as will current design concepts and specific technology requirements for operation in micro-gravity.

  17. Evaluation of an anaerobic digestion system for processing CELSS crop residues for resource recovery

    NASA Astrophysics Data System (ADS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw day^-1) that converted 33% of feed (dry weight loss) to CO_2 and ``volatile fatty acids'' (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH_4^+-N and the remainder unaccounted and probably lost to denitrification and NH_4^+ volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH_4^+-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH_4^+-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.

  18. Evaluation of an Anaerobic Digestion System for Processing CELSS Crop Residues for Resource Recovery

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    Three bioreactors, connected in series, were used to process CELSS potato residues for recovery of resources. The first stage was an anaerobic digestor (8 L working volume; cow rumen contents inoculum; fed-batch; 8 day retention time; feed rate 25 gdw/day) that converted 33% of feed (dry weight loss) to CO2 and "volatile fatty acids" (vfa, 83:8:8 mmolar ratio acetic:propionic:butyric). High nitrate-N in the potato residue feed was absent in the anaerobic effluent, with a high portion converted to NH4(+)-N and the remainder unaccounted and probably lost to denitrification and NH4(+) volatilization. Liquid anaerobic effluent was fed to an aerobic, yeast biomass production vessel (2 L volume; Candida ingens inoculum; batch [pellicle] growth; 2 day retention time) where the VFAs and some NH4(+)-N were converted into yeast biomass. Yeast yields accounted for up to 8% of potato residue fed into the anaerobic bioreactor. The third bioreactor (0.5 L liquid working volume; commercial nitrifier inoculum; packed-bed biofilm; continuous yeast effluent feed; recirculating; constant volume; 2 day hydraulic retention time) was used to convert successfully the remaining NH4(+)-N into nitrate-N (preferred form of N for CELSS crop production) and to remove the remaining degradable soluble organic carbon. Effluents from the last two stages were used for partial replenishment of minerals for hydroponic potato production.

  19. Optimization of controlled environments for hydroponic production of leaf lettuce for human life support in CELSS

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.; Knight, S. L.; Ford, T. L.

    1986-01-01

    A research project in the food production group of the Closed Ecological Life Support System (CELSS) program sought to define optimum conditions for photosynthetic productivity of a higher plant food crop. The effects of radiation and various atmospheric compositions were studied.

  20. Controlled environment crop production - Hydroponic vs. lunar regolith

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce G.; Salisbury, Frank B.

    1989-01-01

    The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.

  1. Preparatory space experiments for development of a CELSS

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.

    1990-01-01

    The goal of Closed Ecological Life Support System (CELSS) studies is to examine the effects of microgravity on yield and quality of plant products and on the interactions between irradiance and crop area. Measuring yield and quality of crops as a function of irradiance in microgravity is virtually unique to the CELSS program, as is the emphasis on canopies rather than individual plants. The first step for space experiments is to develop a relatively stress free environment for plant growth, something that has so far never been achieved. High light levels are essential, and there must be time enough to complete a significant portion of the life cycle. Optimal atmosphere and nutrients must be provided. Such responses as germination, orientation of roots and shoots, photosynthesis and respiration, floral initiation and development, and seed maturation and viability will be studied.

  2. Further Characterization of CELSS Wastes: A Review of Solid Wastes Present to Support Potential Secondary Biomass Production

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.

    1996-01-01

    Controlled ecological life support systems (CELSS) may one day play an essential role in extraterrestrial colonies. Key to the success of any CELSS will be the system's ability to approach a self-supporting status through recovery and reuse of basic resources. Primary CELSS solid wastes with potential to support secondary biomass production will be inedible plant biomass and metabolic human wastes. Solid waste production is summarized and reported as 765 g N per day per person, including 300 g C and 37 g N per day per person. One Resource Recovery configuration using the bioprocessing of solid wastes into a Tilapia feed stream is examined. Based on estimated conversion efficiencies, 12 g of protein per day per person is produced as a nutrition supplement. The unique tissue composition of crops produced at the Kennedy Space Center CELSS Program highlights the need to evaluate Resource Recovery components with data generated in the CELSS environment.

  3. Initial Closed Operation of the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, Mark

    1995-01-01

    As part of the NASA Controlled Ecological Life Support System (CELSS) Program, a CELSS Test Facility (CTF) is being planned for installation on the Space Station. The CTF will be used to provide data on the productivity and efficiency of a variety of CELSS higher plant crops grown sequentially from seed to harvest in the microgravity environment of the Space Station. Stringent environmental control will be maintained while fundamental crop productivity issues, such as carbon dioxide uptake and oxygen production rates, water transpiration rates, and biomass accumulation rates are obtained for comparison with ground-based data. In order to obtain an early realistic determination of the subsystem and system requirements necessary to provide the appropriate environmental conditions specified for CTF crop productivity experiments, an Engineering Development Unit (EDU) has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The EDU is a ground-based testbed which will be used to characterize the integrated performance of major subsystem technologies, to evaluate hardware candidates and control strategies required for the CTF, and to further define the ability to meet CTF requirements within present Space Station constraints. This paper describes the initial closed operational testing of the EDU. Measured performance data are compared with the specified functional requirements and results from initial closed testing are presented. Plans for future science and technology testing are discussed.

  4. Initial closed operation of the CELSS Test Facility Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Blackwell, C.; Zografos, A.; Drews, M.; MacElroy, R.; McKenna, R.; Heyenga, A. G.

    2003-01-01

    As part of the NASA Advanced Life Support Flight Program, a Controlled Ecological Life Support System (CELSS) Test Facility Engineering Development Unit has been constructed and is undergoing initial operational testing at NASA Ames Research Center. The Engineering Development Unit (EDU) is a tightly closed, stringently controlled, ground-based testbed which provides a broad range of environmental conditions under which a variety of CELSS higher plant crops can be grown. Although the EDU was developed primarily to provide near-term engineering data and a realistic determination of the subsystem and system requirements necessary for the fabrication of a comparable flight unit, the EDU has also provided a means to evaluate plant crop productivity and physiology under controlled conditions. This paper describes the initial closed operational testing of the EDU, with emphasis on the hardware performance capabilities. Measured performance data during a 28-day closed operation period are compared with the specified functional requirements, and an example of inferring crop growth parameters from the test data is presented. Plans for future science and technology testing are also discussed. Published by Elsevier Science Ltd on behalf of COSPAR.

  5. Investigating combustion as a method of processing inedible biomass produced in NASA's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Wheeler, R. M.; Hinkle, C. R.; Sager, J. C.; Knott, W. M.

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project at the John F. Kennedy Space Center is a research program to integrate and evaluate biological processes to provide air, water, and food for humans in closed environments for space habitation. This project focuses on the use of conventional crop plants as grown in the Biomass Production Chamber (BPC) for the production and recycling of oxygen, food, and water. The inedible portion of these crops has the potential to be converted to edible biomass or directly to the elemental constituents for direct recycling. Converting inedible biomass directly, by combustion, to carbon dioxide, water, and minerals could provide a baseline for estimating partitioning of the mass balance during recycling in a CELSS. Converting the inedible biomass to carbon dioxide and water requires the same amount of oxygen that was produced by photosynthesis. The oxygen produced during crop growth is just equal to the oxygen required to oxidize all the biomass produced during growth. Thus, the amount of oxygen produced that is available for human consumption is in proportion to the amount of biomass actually utilized by humans. The remaining oxygen must be available to oxidize the rest of the biomass back to carbon dioxide and water or the system will not be a regenerative one.

  6. CELSS Antarctic Analog Project (CAAP): A New Paradigm for Polar Life Support and CELSS Research

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Straight, Christian; Flynn, Michael; Bates, Maynard; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The CELSS Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and National Aeronautics and Space Administration (NASA) project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. CAAP is implemented through the joint NSF/NASA Antarctic Space Analog Program (ASAP), initiated to support the pursuit of future NASA missions and to promote the transfer of space technologies to the NSF. Under a Memorandum of Agreement, the CAAP represents an example of a working dual agency cooperative project. NASA goals are operational testing of CELSS technologies and the conduct of scientific study to facilitate . technology selection, system design and methods development, including human dynamics as required for the operation of a CELSS. Although not fully closed, food production, water purification, and waste recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. The CAAP facility will be highly integrated with the new South Pole Station infrastructure and will be composed of a deployed hardware facility and a research activity. This paper will include a description of CAAP and its functionality, conceptual designs, component selection and sizing for the crop growth chamber, crop production expectations, and a brief report on an initial on-site visit. This paper will also provide a discussion of issues associated with power and energy use and the applicability of CAAP to direct technology transfer to society in general and remote communities in particular.

  7. Storage stability of screwpress-extracted oils and residual meals from CELSS candidate oilseed crops

    NASA Astrophysics Data System (ADS)

    Stephens, S. D.; Watkins, B. A.; Nielsen, S. S.

    1997-01-01

    The efficacy of using screwpress extraction for oil was studied with three Controlled Ecological Life-Support System (CELSS) candidate oilseed crops (soybean, peanut, and canola), since use of volatile organic solvents for oil extraction likely would be impractical in a closed system. Low oil yields from initial work indicated that a modification of the process is necessary to increase extraction efficiency. The extracted oil from each crop was tested for stability and sensory characteristics. When stored at 23 degC, canola oil and meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. When stored at 65 degC, soybean oil and canola meal were least stable to oxidative rancidity, whereas peanut oil and meal were least stable to hydrolytic rancidity. Sensory evaluation of the extracted oils used in bread and salad dressing indicated that flavor, odor intensity, acceptability, and overall preference may be of concern for screwpress-extracted canola oil when it is used in an unrefined form. Overall results with screwpress-extracted crude oils indicated that soybean oil may be more stable and acceptable than canola or peanut under typical storage conditions.

  8. Annual report

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The overall goal of the Tuskegee University Center for Food Production, Processing and Waste Management in Controlled Ecological Life Support Systems (CELSS) is to provide tested information and technologies applicable to bioregenerative food production systems for life support on long-term manned space mission. Specifically, the center is developing information, computer simulated models, methodologies and technology for sweetpotato and peanut biomass production and processing, inclusive of waste management and recycling of these crops selected by NASA for CELSS. The Center is organized into interdisciplinary teams of life scientists and engineers that work together on specific objectives and long-term goals. Integral to the goal of the Center is the development of both basic and applied research information and the training of young scientists and engineers, especially underrepresented minorities that will increase the professional pool in these disciplines and contribute to the advancement of space sciences and exploration.

  9. Pressure Control System Design for a Closed Crop Growth Chamber

    NASA Technical Reports Server (NTRS)

    Tsai, K.; Blackwell, C.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) is an area of active research at NASA. CELSS is a plant-based bioregenerative life support system for long term manned space flights where resupply is costly or impractical. The plants in a CELSS will function to convert the carbon dioxide (exhaled by the crew) into oxygen, purify non-potable water into potable quality water, and provide food for the crew. Prior to implementing a CELSS life support system, one must have knowledge on growing plants in a closed chamber under low gravity. This information will come from research to be conducted on the CELSS Test Facility that will operate on the Space Station Freedom. Currently a ground-based CELSS Test Facility is being built at NASA Ames Research Center. It is called the EDU (Engineering Development Unit). This system will allow researchers to identify issues that may cause difficulties in the development of the CELSS Test Facility and aid in the development of new needed technologies. The EDU consists of a 1 m2 crop growth chamber that is surrounded by a containment enclosure. The containment enclosure isolates the system so there is very little mass and thermal exchange with the ambient. The leakage rate is on the order of 1 % of the enclosure's volume per day (with 0.2S psi pressure difference). The thermal leakage is less than 0.5% of the electrical power supplied to the system per degree Celsius difference from the surrounding. The pressure in the containment enclosure is regulated at 62.5 Pa below the ambient by an active controller. The goal is to maintain this set point for a variety of conditions, such as a range of operating temperatures, heat load variations that occur when the lights are turned on and off, and fluctuations in ambient pressure. In addition certain transition tracking performance is required. This paper illustrates the application of some advanced systems control methods to the task of synthesizing the EDU's pressure control system.

  10. Utilization of urea, ammonia, nitrite, and nitrate by crop plants in a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Rains, D. W.; Qualset, C. O.

    1982-01-01

    The utilization of nitrogen compounds by crop plants is studied. The selection of crop varieties for efficient production using urea, ammonia, nitrite, and nitrate, and the assimilation of mixed nitrogen sources by cereal leaves and roots are discussed.

  11. Dynamic control of photosynthetic photon flux for lettuce production in CELSS

    NASA Technical Reports Server (NTRS)

    Chun, C.; Mitchell, C. A.

    1996-01-01

    A new dynamic control of photosynthetic photon flux (PPF) was tested using lettuce canopies growing in the Minitron II plant-growth/canopy gas-exchange system. Canopy photosynthetic rates (Pn) were measured in real time and fedback for further environment control. Pn can be manipulated by changing PPF, which is a good environmental parameter for dynamic control of crop production in a Controlled Ecological Life-Support Systems CELSS. Decision making that combines empirical mathematical models with rule sets developed from recent experimental data was tested. With comparable yield indices and potential for energy savings, dynamic control strategies will contribute greatly to the sustainability of space-deployed CELSS.

  12. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  13. Controlled environments alter nutrient content of soybeans

    NASA Astrophysics Data System (ADS)

    Jurgonski, L. J.; Smart, D. J.; Bugbee, B.; Nielsen, S. S.

    1997-01-01

    Information about compositional changes in plants grown in controlled environments is essential for developing a safe, nutritious diet for a Controlled Ecological Life-Support System (CELSS). Information now is available for some CELSS candidate crops, but detailed information has been lacking for soybeans. To determine the effect of environment on macronutrient and mineral composition of soybeans, plants were grown both in the field and in a controlled environment where the hydroponic nutrient solution, photosynthetic flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at seed maturity, separated into discrete parts, and oven dried prior to chemical analysis. Plant material was analyzed for proximate composition (moisture, protein, lipid, ash, and carbohydrate), total nitrogen (N), nonprotein N (NPN), nitrate, minerals, amino acid composition, and total dietary fiber. The effect of environment on composition varied by cultivar and plant part. Chamber-grown plants generally exhibited the following characteristics compared with field-grown plants: 1) increased total N and protein N for all plant parts, 2) increased nitrate in leaves and stems but not in seeds, 3) increased lipids in seeds, and 4) decreased Ca:P ratio for stems, pods, and leaves. These trends are consistent with data for other CELSS crops. Total N, protein N, and amino acid contents for 350 ppm CO_2 and 1000 ppm CO_2 were similar for seeds, but protein N and amino acid contents for leaves were higher at 350 ppm CO_2 than at 1000 ppm CO_2. Total dietary fiber content of soybean leaves was higher with 350 ppm CO_2 than with 1000 ppm CO_2. Such data will help in selecting of crop species, cultivars, and growing conditions to ensure safe, nutritious diets for CELSS.

  14. Lunar Farming: Achieving Maximum Yield for the Exploration of Space

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.

    1991-01-01

    A look at what it might be like on a lunar farm in the year 2020 is provided from the point of view of the farmer. Of necessity, the farm would be a Controlled Ecological (or Environment) Life-Support System (CELSS) or a bioregenerative life-support system. Topics covered in the imaginary trip through the farm are the light, water, gasses, crops, the medium used for plantings, and the required engineering. The CELSS is designed with four functioning parts: (1) A plant-production facility with higher plants and algae; (2) food technology kitchens; (3) waste processing and recycling facilities; and (4) control systems. In many cases there is not yet enough information to be sure about matters discussed, but the exercise in imagination pinpoints a number of areas that still need considerable research to resolve the problems perceived.

  15. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato.

    PubMed

    McKeehen, J D; Mitchell, C A; Wheeler, R M; Bugbee, B; Nielsen, S S

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  16. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  17. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  18. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber.

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Berry, W L

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  19. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  20. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  1. Some challenges in designing a lunar, Martian, or microgravity CELSS.

    PubMed

    Salisbury, F B

    1992-01-01

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3 xg and in the vacuum of space. Light (energy demanding), CO2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures--and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.

  2. Some challenges in designing a lunar, Martian, or microgravity CELSS

    NASA Astrophysics Data System (ADS)

    Salisbury, Frank B.

    The design of a bioregenerative life-support system (a Controlled Ecological Life-Support System or CELSS) for long-duration stays on the moon, Mars, or in a space craft poses formidable problems in engineering and in theory. Technological (hardware) problems include: (1) Creation and control of gas composition and pressure, temperature, light, humidity, and air circulation, especially in microgravity to 1/3xg and in the vacuum of space. Light (energy demanding), CO 2 levels, and the rooting media are special problems for plants. (2) Developing specialized equipment for food preparation. (3) Equipment development for waste recycling. (4) Development of computer systems for environmental monitoring and control as well as several other functions. Problems of theory (software) include: (1) Determining crop species and cultivars (some bred especially for CELSS). (2) Optimum environments and growing and harvesting techniques for each crop. (3) Best and most efficient food-preparation techniques and required equipment. (4) Best and most efficient waste-recycling techniques and equipment. This topic includes questions about the extent of closure, resupply, and waste storage. (5) How to achieve long-term stability. (6) How to avoid catastrophic failures-and how to recover from near-catastrophic failures (for example, plant diseases). Many problems must be solved.

  3. Cloning crops in a CELSS via tissue culture: Prospects and problems

    NASA Technical Reports Server (NTRS)

    Carman, John G.; Hess, J. Richard

    1990-01-01

    Micropropagation is currently used to clone fruits, nuts, and vegetables and involves controlling the outgrowth in vitro of basal, axillary, or adventitious buds. Following clonal multiplication, shoots are divided and rooted. This process has greatly reduced space and energy requirements in greenhouses and field nurseries and has increased multiplication rates by greater than 20 fold for some vegetatively propagated crops and breeding lines. Cereal and legume crops can also be cloned by tissue culture through somatic embryogenesis. Somatic embryos can be used to produce 'synthetic seed', which can tolerate desiccation and germinate upon rehydration. Synthetic seed of hybrid wheat, rice, soybean and other crops could be produced in a controlled ecological life support system. Thus, yield advantages of hybreds over inbreds (10 to 20 percent) could be exploited without having to provide additional facilities and energy for parental-line and hybrid seed nurseries.

  4. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system.

    PubMed

    Bubenheim, D L; Schlick, G; Wilson, D; Bates, M

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  5. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility.

  6. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  7. The evolution of CELSS for lunar bases. [Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Klein, H. P.; Averner, M. M.

    1985-01-01

    A bioregenerative life support system designed to address the fundamental requirements of a functioning independent lunar base is presented in full. Issues to be discussed are associated with CELSS weight, volume and cost of operation. The fundamental CELSS component is a small, highly automated module containing plants which photosynthesize and provide the crew with food, water and oxygen. Hydrogen, nitrogen and carbon dioxide will be initially brought in from earth, recycled and their waste products conserved. As the insufficiency of buffers necessitates stringent cybernetic control, a stable state will be maintained by computer control. Through genetic engineering and carbon dioxide, temperature, and nutrient manipulation, plant productivity can be increased, while the area necessary for growth and illumination energy decreased. In addition, photosynthetic efficiency can be enhanced through lamp design, fiber optics and the use of appropriate wavelengths. Crop maintenance will be performed by robotics, as a means of preventing plant ailments.

  8. EPCOT, NASA and plant pathogens in space.

    PubMed

    White, R

    1996-01-01

    Cooperative work between NASA and Walt Disney World's EPCOT Land Pavilion is described. Joint efforts include research about allelopathy in multi-species plant cropping in CELSS, LEDs as light sources in hydroponic systems, and the growth of plant pathogens in space.

  9. Ethylene dynamics in the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1994-01-01

    A material balance model for ethylene was developed and applied retrospectively to data obtained in the Biomass Production Chamber of CELSS in order to calculate true plant production rates of ethylene. Four crops were analyzed: wheat, lettuce, soybean, and potato. The model represents an effort to account for each and every source and sink for ethylene in the system. The major source of ethylene is the plant biomass and the major sink is leakage to the surroundings. The result, expressed in the units of ppd/day, were converted to nl of ethylene per gram of plant dry mass per hour and compare favorably with recent glasshouse to belljar experiments.

  10. Performance of the CELSS Antarctic Analog Project (CAAP) Crop Production System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1998-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a concomitant decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant based, regenerative life support requires resources in excess of resource allocations proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system to achieve enhanced performance efficiency. Both single crop, batch production, and continuous cultivation of mixed crops Product ion scenarios have been completed. The crop productivity as well as engineering performance of the chamber will be described. For each scenario, energy required and partitioned for lighting, cooling, pumps, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with up to 25 different crops under cultivation, 17 sq m of crop area provided a mean of 515 g edible biomass per day (83% of the approximately 620 g required for one person). Lighting efficiency (moles on photons kWh-1) approached 4 and the conversion efficiency of light energy to biomass was greatly enhanced compared with conventional growing systems. Engineering and biological performance achieved place plant-based life support systems at the threshold of feasibility.

  11. Development of the CELSS Emulator at NASA JSC

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Emulator is under development at the NASA Johnson Space Center (JSC) with the purpose to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. This paper describes Version 1.0 of the CELSS Emulator that was initiated in 1988 on the JSC Multi Purpose Applications Console Test Bed as the simulation framework. The run module of the simulation system now contains a CELSS model called BLSS. The CELSS Emulator makes it possible to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  12. Development of the CELSS emulator at NASA. Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Emulator is under development. It will be used to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. Described here is Version 1.0 of the CELSS Emulator that was initiated in 1988 on the Johnson Space Center (JSC) Multi Purpose Applications Console Test Bed as the simulation framework. The run model of the simulation system now contains a CELSS model called BLSS. The CELSS simulator empowers us to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.

  13. Controlled ecological life support systems; Proceedings of Workshop II of the 26th COSPAR Plenary Meeting, Toulouse, France, June 30-July 11, 1986

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Smernoff, D. T. (Editor)

    1987-01-01

    The present conference on the development status of Controlled Ecological Life Support Systems (CELSSs) discusses food production and gas exchange with the Spirulina blue-green alga, biomass recycling for greater energy efficiency in algal culture CELSSs, algal proteins for food processing in a CELSS, a CELSS with photosynthetic N2-fixing cyanobacteria, the NASA CELSS program, and vapor compression ditillation and membrane technology for water revitalization. Also discussed are a fundamental study of CELSS gas monitoring, the application of catalytic wet oxidation to CELSS, a large-scale perspective on ecosystems, Japanese CELSS research activities, the use of potatoes in bioregenerative life-support, wheat production in controlled environments, and a trickle water and feeding system in plant culture.

  14. The CELSS breadboard project: Plant production

    NASA Technical Reports Server (NTRS)

    Knott, William M.

    1990-01-01

    NASA's Breadboard Project for the Controlled Ecological Life Support System (CELSS) program is described. The simplified schematic of a CELSS is given. A modular approach is taken to building the CELSS Breadboard. Each module is researched in order to develop a data set for each one prior to its integration into the complete system. The data being obtained from the Biomass Production Module or the Biomass Production Chamber is examined. The other primary modules, food processing and resource recovery or waste management, are discussed briefly. The crew habitat module is not discussed. The primary goal of the Breadboard Project is to scale-up research data to an integrated system capable of supporting one person in order to establish feasibility for the development and operation of a CELSS. Breadboard is NASA's first attempt at developing a large scale CELSS.

  15. Integration, design, and construction of a CELSS breadboard facility for bioregenerative life support system research

    NASA Technical Reports Server (NTRS)

    Prince, R.; Knott, W.; Buchanan, Paul

    1987-01-01

    Design criteria for the Biomass Production Chamber (BPC), preliminary operating procedures, and requirements for the future development of the Controlled Ecological Life Support System (CELSS) are discussed. CELSS, which uses a bioregenerative system, includes the following three major units: (1) a biomass production component to grow plants under controlled conditions; (2) food processing components to derive maximum edible content from all plant parts; and (3) waste management components to recover and recycle all solids, liquids, and gases necessary to support life. The current status of the CELSS breadboard facility is reviewed; a block diagram of a simplified version of CELSS and schematic diagrams of the BPS are included.

  16. Application of Guided Inquiry System Technique (GIST) to Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Aroeste, H.

    1982-01-01

    Guided Inquiry System Technique, a global approach to problem solving, was applied to the subject of Controlled Ecological Life Support Systems (CELSS). Nutrition, food processing, and the use of higher plants in a CELSS were considered by a panel of experts. Specific ideas and recommendations gleaned from discussions with panel members are presented.

  17. Controlled Ecological Life Support System: Research and Development Guidelines

    NASA Technical Reports Server (NTRS)

    Mason, R. M. (Editor); Carden, J. L. (Editor)

    1982-01-01

    Results of a workshop designed to provide a base for initiating a program of research and development of controlled ecological life support systems (CELSS) are summarized. Included are an evaluation of a ground based manned demonstration as a milestone in CELSS development, and a discussion of development requirements for a successful ground based CELSS demonstration. Research recommendations are presented concerning the following topics: nutrition and food processing, food production, waste processing, systems engineering and modelling, and ecology-systems safety.

  18. Mineral separation and recycle in a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.

    1982-01-01

    The background of the mineral nutrition needs of plants are examined along with the applicability of mineral control and separation to a controlled ecological life support system (CELSS). Steps that may be taken in a program to analytically define and experimentally test key mineral control concepts in the nutritional and waste processing loops of a CELSS are delineated.

  19. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  20. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  1. Chemical characterization of some aqueous leachates from crop residues in 'CELSS'

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1992-01-01

    Aqueous leachate samples prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions have been compared and general chemical characterization has been accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified, however, general composition related to the presence of phenol-like compounds was explored.

  2. Microbial biofilm formation and its consequences for the CELSS program

    NASA Technical Reports Server (NTRS)

    Mitchell, R.

    1994-01-01

    A major goal of the Controlled Ecology Life Support System (CELSS) program is to provide reliable and efficient life support systems for long-duration space flights. A principal focus of the program is on the growth of higher plants in growth chambers. These crops should be grown without the risk of damage from microbial contamination. While it is unlikely that plant pathogens will pose a risk, there are serious hazards associated with microorganisms carried in the nutrient delivery systems and in the atmosphere of the growth chamber. Our experience in surface microbiology showed that colonization of surfaces with microorganisms is extremely rapid even when the inoculum is small. After initial colonization extensive biofilms accumulate on moist surfaces. These microbial films metabolize actively and slough off continuously to the air and water. During plant growth in the CELSS program, microbial biofilms have the potential to foul sensors and to plug nutrient delivery systems. In addition both metabolic products of microbial growth and degradation products of materials being considered for use as nutrient reservoirs and for delivery are likely sources of chemicals known to adversly affect plant growth.

  3. Empirical Modeling of Plant Gas Fluxes in Controlled Environments

    NASA Technical Reports Server (NTRS)

    Cornett, Jessie David

    1994-01-01

    As humans extend their reach beyond the earth, bioregenerative life support systems must replace the resupply and physical/chemical systems now used. The Controlled Ecological Life Support System (CELSS) will utilize plants to recycle the carbon dioxide (CO2) and excrement produced by humans and return oxygen (O2), purified water and food. CELSS design requires knowledge of gas flux levels for net photosynthesis (PS(sub n)), dark respiration (R(sub d)) and evapotranspiration (ET). Full season gas flux data regarding these processes for wheat (Triticum aestivum), soybean (Glycine max) and rice (Oryza sativa) from published sources were used to develop empirical models. Univariate models relating crop age (days after planting) and gas flux were fit by simple regression. Models are either high order (5th to 8th) or more complex polynomials whose curves describe crop development characteristics. The models provide good estimates of gas flux maxima, but are of limited utility. To broaden the applicability, data were transformed to dimensionless or correlation formats and, again, fit by regression. Polynomials, similar to those in the initial effort, were selected as the most appropriate models. These models indicate that, within a cultivar, gas flux patterns appear remarkably similar prior to maximum flux, but exhibit considerable variation beyond this point. This suggests that more broadly applicable models of plant gas flux are feasible, but univariate models defining gas flux as a function of crop age are too simplistic. Multivariate models using CO2 and crop age were fit for PS(sub n), and R(sub d) by multiple regression. In each case, the selected model is a subset of a full third order model with all possible interactions. These models are improvements over the univariate models because they incorporate more than the single factor, crop age, as the primary variable governing gas flux. They are still limited, however, by their reliance on the other environmental conditions under which the original data were collected. Three-dimensional plots representing the response surface of each model are included. Suitability of using empirical models to generate engineering design estimates is discussed. Recommendations for the use of more complex multivariate models to increase versatility are included.

  4. Selection of candidate salad vegetables for controlled ecological life support system

    NASA Astrophysics Data System (ADS)

    Qin, L.; Guo, S.; Ai, W.; Tang, Y.

    Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol-1) and another which used various light intensities (100, 300, 500 and 700 μmol m-2 s-1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.

  5. Crop Production for Advanced Life Support Systems - Observations From the Kennedy Space Center Breadboard Project

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Peterson, B. V.; Goins, G. D.

    2003-01-01

    The use of plants for bioregenerative life support for space missions was first studied by the US Air Force in the 1950s and 1960s. Extensive testing was also conducted from the 1960s through the 1980s by Russian researchers located at the Institute of Biophysics in Krasnoyarsk, Siberia, and the Institute for Biomedical Problems in Moscow. NASA initiated bioregenerative research in the 1960s (e.g., Hydrogenomonas) but this research did not include testing with plants until about 1980, with the start of the Controlled Ecological Life Support System (CELSS) Program. The NASA CELSS research was carried out at universities, private corporations, and NASA field centers, including Kennedy Space Center (KSC). The project at KSC began in 1985 and was called the CELSS Breadboard Project to indicate the capability for plugging in and testing various life support technologies; this name has since been dropped but bioregenerative testing at KSC has continued to the present under the NASA s Advanced Life Support (ALS) Program. A primary objective of the KSC testing was to conduct pre-integration tests with plants (crops) in a large, atmospherically closed test chamber called the Biomass Production Chamber (BPC). Test protocols for the BPC were based on observations and growing procedures developed by university investigators, as well as procedures developed in plant growth chamber studies at KSC. Growth chamber studies to support BPC testing focused on plant responses to different carbon dioxide (CO2) concentrations, different spectral qualities from various electric lamps, and nutrient film hydroponic culture techniques.

  6. Plant growth chamber M design

    NASA Technical Reports Server (NTRS)

    Prince, R. P.; Knott, W. M.

    1986-01-01

    Crop production is just one of the many processes involved in establishing long term survival of man in space. The benefits of integrating higher plants into the overall plan was recognized early by NASA through the Closed Ecological Life Support System (CELSS) program. The first step is to design, construct, and operate a sealed (gas, liquid, and solid) plant growth chamber. A 3.6 m diameter by 6.7 m high closed cylinder (previously used as a hypobaric vessel during the Mercury program) is being modified for this purpose. The chamber is mounted on legs with the central axis vertical. Entrance to the chamber is through an airlock. This chamber will be devoted entirely to higher plant experimentation. Any waste treatment, food processing or product storage studies will be carried on outside of this chamber. Its primary purpose is to provide input and output data on solids, liquids, and gases for single crop species and multiple species production using different nutrient delivery systems.

  7. The perspective crops for the bioregenerative human life support systems

    NASA Astrophysics Data System (ADS)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These plants were grown under artificial light conditions from 5 to 7 months. All crops were cut periodically in every month. On the base of our investigations it is possible to recommend for using in CELSS the next crops: marjoram, sweet-Mary and common thyme. The micronutrients containing in barley and above mentioned volatile crops will be useful for good appetite and health of the crew.

  8. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    NASA Technical Reports Server (NTRS)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  9. Consideration in selecting crops for the human-rated life support system: a linear programming model

    NASA Astrophysics Data System (ADS)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  10. Selection of Crop Varieties for Efficient Production Using Urea, Ammonia, Nitrite, and Nitrate in Celss

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.

    1982-01-01

    The presence of NO2(-) in the external solution increased the overall efficiency of the mixed N sources by cereal leaves. The NH4(+) in the substrate solution decreased the efficiency of NO3(-) reduction, while NO3(-) in the substrate solution increased the efficiency of NH4(+) assimilation.

  11. Growing crops for space explorers on the moon, Mars, or in space.

    PubMed

    Salisbury, F B

    1999-01-01

    An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars of a CELSS facility depend strongly on where it is to be located. The presence of gravity on the Moon and Mars simplifies the design for a facility on those bodies, but a spacecraft in microgravity is a much more challenging environment. One problem is that plants, which are very sensitive to gravity, might not grow and produce food in the virtual absence of gravity. However, the experience with growing super-dwarf wheat in the Russian space station Mir, while not entirely successful because of the sterile wheat heads, was highly encouraging. The plants grew well for 123 days, producing more biomass than had been produced in space before. This was due to the high photon flux available to the plants and the careful control of substrate moisture. The sterile heads were probably due to the failure to remove the gaseous plant hormone, ethylene, from the Mir atmosphere. Since ethylene can easily be removed, it should be possible to grow wheat and other crops in microgravity with the production of viable seeds. On the ground Biosphere-2 taught us several lessons about the design and construction of a CELSS facility, but Bios-3 came much closer to achieving the goals of such a facility. Although stability was never completely reached, Bios-3 was much more stable than Biosphere-2 apparently because every effort was made to keep the system simple and to use the best technology available to maintain control. Wastes were not recycled in Bios-3 except for urine, and inedible plant materials were incinerated to restore CO2 to the atmosphere. Since much meat (about 20% of calories) was imported, closure in the Bios-3 experiments was well below 100%. But then, a practical CELSS on the Moon might also depend on regular resupply from Earth. Several important lessons have been learned from the CELSS research described in this review.

  12. Growing crops for space explorers on the moon, Mars, or in space

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.

    1999-01-01

    An option in the long-duration exploration of space, whether on the Moon or Mars or in a spacecraft on its way to Mars or the asteroids, is to utilize a bioregenerative life-support system in addition to the physicochemical systems that will always be necessary. Green plants can use the energy of light to remove carbon dioxide from the atmosphere and add oxygen to it while at the same time synthesizing food for the space travelers. The water that crop plants transpire can be condensed in pure form, contributing to the water purification system. An added bonus is that green plants provide a familiar environment for humans far from their home planet. The down side is that such a bioregenerative life-support system--called a controlled environment life-support system (CELSS) in this paper--must be highly complex and relatively massive to maintain a proper composition of the atmosphere while also providing food. Thus, launch costs will be high. Except for resupply and removal of nonrecycleable substances, such a system is nearly closed with respect to matter but open with respect to energy. Although a CELSS facility is small compared to the Earth's biosphere, it must be large enough to feed humans and provide a suitable atmosphere for them. A functioning CELSS can only be created with the help of today's advanced technology, especially computerized controls. Needed are energy for light, possibly from a nuclear power plant, and equipment to provide a suitable environment for plant growth, including a way to supply plants with the necessary mineral nutrients. All this constitutes the biomass production unit. There must also be food preparation facilities and a means to recycle or dispose of waste materials and there must be control equipment to keep the facility running. Humans are part of the system as well as plants and possibly animals. Human brain power will often be needed to keep the system functional in spite of the best computer-driven controls. The particulars of a CELSS facility depend strongly on where it is to be located. The presence of gravity on the Moon and Mars simplifies the design for a facility on those bodies, but a spacecraft in microgravity is a much more challenging environment. One problem is that plants, which are very sensitive to gravity, might not grow and produce food in the virtual absence of gravity. However, the experience with growing super-dwarf wheat in the Russian space station Mir, while not entirely successful because of the sterile wheat heads, was highly encouraging. The plants grew well for 123 days, producing more biomass than had been produced in space before. This was due to the high photon flux available to the plants and the careful control of substrate moisture. The sterile heads were probably due to the failure to remove the gaseous plant hormone, ethylene, from the Mir atmosphere. Since ethylene can easily be removed, it should be possible to grow wheat and other crops in microgravity with the production of viable seeds. On the ground Biosphere-2 taught us several lessons about the design and construction of a CELSS facility, but Bios-3 came much closer to achieving the goals of such a facility. Although stability was never completely reached, Bios-3 was much more stable than Biosphere-2 apparently because every effort was made to keep the system simple and to use the best technology available to maintain control. Wastes were not recycled in Bios-3 except for urine, and inedible plant materials were incinerated to restore CO2 to the atmosphere. Since much meat (about 20% of calories) was imported, closure in the Bios-3 experiments was well below 100%. But then, a practical CELSS on the Moon might also depend on regular resupply from Earth. Several important lessons have been learned from the CELSS research described in this review.

  13. Nutritional models for a Controlled Ecological Life Support System (CELSS): Linear mathematical modeling

    NASA Technical Reports Server (NTRS)

    Wade, Rose C.

    1989-01-01

    The NASA Controlled Ecological Life Support System (CELSS) Program is involved in developing a biogenerative life support system that will supply food, air, and water to space crews on long-duration missions. An important part of this effort is in development of the knowledge and technological capability of producing and processing foods to provide optimal diets for space crews. This involves such interrelated factors as determination of the diet, based on knowledge of nutrient needs of humans and adjustments in those needs that may be required as a result of the conditions of long-duration space flight; determination of the optimal mixture of crops required to provide nutrients at levels that are sufficient but not excessive or toxic; and consideration of the critical issues of spacecraft space and power limitations, which impose a phytomass minimization requirement. The complex interactions among these factors are examined with the goal of supplying a diet that will satisfy human needs while minimizing the total phytomass requirement. The approach taken was to collect plant nutritional composition and phytomass production data, identify human nutritional needs and estimate the adjustments to the nutrient requirements likely to result from space flight, and then to generate mathematical models from these data.

  14. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1993-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  15. Techniques for optimal crop selection in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Mccormack, Ann; Finn, Cory; Dunsky, Betsy

    1992-01-01

    A Controlled Ecological Life Support System (CELSS) utilizes a plant's natural ability to regenerate air and water while being grown as a food source in a closed life support system. Current plant research is directed toward obtaining quantitative empirical data on the regenerative ability of each species of plant and the system volume and power requirements. Two techniques were adapted to optimize crop species selection while at the same time minimizing the system volume and power requirements. Each allows the level of life support supplied by the plants to be selected, as well as other system parameters. The first technique uses decision analysis in the form of a spreadsheet. The second method, which is used as a comparison with and validation of the first, utilizes standard design optimization techniques. Simple models of plant processes are used in the development of these methods.

  16. Mechanism and potential applications of bio-ligninolytic systems in a CELSS

    NASA Technical Reports Server (NTRS)

    Sarikaya, A.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1997-01-01

    A large amount of inedible plant material, generated as a result of plant growth in a Controlled Ecological Life Support System (CELSS), should be pretreated and converted into forms that can be recycled on earth as well as in space. The main portion of the inedible biomass is lignocellulosic material. Enzymatic hydrolysis of this cellulose would provide sugars for many other uses by recycling carbon, hydrogen, oxygen, and nitrogen through formation of carbon dioxide, heat, and sugars, which are potential foodstuffs. To obtain monosaccharides from cellulose, the protective effect of lignin should be removed. White-rot fungi degrade lignin more extensively and rapidly than other microorganisms. Pleurotus ostreatus degrades lignin effectively, and produces edible and flavorful mushrooms that increase the quality and nutritional value of the diet. This mushroom is also capable of metabolizing hemicellulose, thereby providing a food use of this pentose containing polysaccharide. This study presents the current knowledge of physiology and biochemistry of primary and secondary metabolisms of basidiomycetes, and degradation mechanism of lignin. A better understanding of the ligninolytic activity of white-rot fungi will impact the CELSS Program by providing insights on how edible fungi might be used to recycle the inedible portions of the crops.

  17. The CELSS Antarctic Analog Project: an advanced life support testbed at the Amundsen-Scott South Pole Station, Antarctica.

    PubMed

    Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.

  18. Growing root, tuber and nut crops hydroponically for CELSS

    NASA Technical Reports Server (NTRS)

    Hill, W. A.; Mortley, D. G.; Loretan, P. A.; Bonsi, C. K.; Morris, C. E.; Mackowiak, C. L.; Wheeler, R. M.; Tibbitts, T. W.

    1992-01-01

    Among the crops selected by NASA for growth in controlled ecological life-support systems are four that have subsurface edible parts: potatoes, sweet potatoes, sugar beets and peanuts. These crops can be produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent, fluorescent plus incandescent, and high-pressure sodium-plus-metal-halide lamps have proven to be effective light sources. Continuous light with 16-C and 28/22-C (day/night) temperatures produce highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g/sq m for potatoes, sweet potatoes, sugar beets and peanuts, respectively, are produced in controlled environment hydroponic systems.

  19. Optimization approach to LED crop illumination inside a controlled ecological life support system

    NASA Astrophysics Data System (ADS)

    Avercheva, Olga; Berkovich, Yuliy A.; Bassarskaya, Elizaveta; Zhigalova, Tatiana; Smolyanina, Svetlana O.; Kochetova, Galina; Konovalova, Irina

    Artificial lighting sources for growing plants can be efficiently used to control gas exchange and preserve the necessary closure of internal matter turnover in the atmosphere of a controlled ecological life support system (CELSS). However, the lighting sources contribute strongly to the equivalent mass of a CELSS. Thus, the choice of an optimal plant lighting regime largely determines the efficiency of the artificial ecosystem. Lighting systems based on light-emitting diodes (LEDs) are now considered the most promising for space applications (Massa et al., 2006). Many types of LEDs have been developed in recent years. Because of this, the problem of optimizing a lighting source for space vegetation chambers has become more difficult: we need to optimize more parameters (such as emission spectrum, light intensity, frequency of light pulses and the shape of the lighting field inside a vegetation chamber), and in a wider range of values. In this presentation we discuss approaches to optimizing the emission spectrum of a lighting source for the use in space applications, including CELSS. One of the benefits of LEDs is their narrow-band emission spectrum, which allows us to construct a lighting source with an optimal spectrum for plant growth and production. A number of experiments have shown that the reaction of plants to a narrow-band emission spectrum of LEDs is highly species-specific and affects many processes in plants. Adding a small amount of far red light to red and blue quanta increased biomass in radish and lettuce (Tamulaitis et al., 2005). Adding blue and near UV light of different wavelengths to red light decreased total sugar content in lettuce (Urbonavičiūtė et al., 2007) and Chinese cabbage (Avercheva et al., 2009). Supplemental green light improved the nutrition quality of some lettuce varieties: decreased nitrate content and increased ascorbic acid content (Samuoliene et al., 2012). It has also been shown that changes in lighting spectrum can lead to changes in hormone content in plant tissues, and to changes in the ratio of active and inactive forms of hormones (Golovatskaya, 2005; Tamulaitis et al., 2005; Minich et al., 2006). This, in turn, may lead to changes in plant growth and biomass composition. Thus, we should vary the emission spectrum of a lighting source to improve both the productivity (i.e. gas exchange) and nutrition quality of plants growing inside a CELSS. However, it is hard to find a universal spectrum for all plants and all applications. Fundamental studies of the finer effects of narrow-band light on plant growth and metabolism may be beneficial to explain these effects. On the basis of these studies, we may be able to formulate recommendations to optimize lighting sources for different plant species. One optimization approach to LED crop illumination inside CELSS could be use of white LEDs with proper addition of red LEDs. A more difficult approach is to construct lighting sources with a multiband spectrum to adjust it for specific applications experimentally.

  20. Composition and analysis of a model waste for a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1983-01-01

    A model waste based on a modest vegetarian diet is given, including composition and elemental analysis. Its use is recommended for evaluation of candidate waste treatment processes for a Controlled Ecological Life Support System (CELSS).

  1. Evaluation of engineering foods for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1982-01-01

    The feasibility of developing acceptable and reliable engineered foods for use in controlled ecological support systems (CELSS) was evaluated. Food resupply and regeneration are calculated, flow charts of food processes in a multipurpose food pilot plant are presented, and equipment for a multipurpose food pilot plant and potential simplification of processes are discussed. Food-waste treatment and water usage in food processing and preparation are also considered.

  2. The components of crop productivity: measuring and modeling plant metabolism

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1995-01-01

    Several investigators in the CELSS program have demonstrated that crop plants can be remarkably productive in optimal environments where plants are limited only by incident radiation. Radiation use efficiencies of 0.4 to 0.7 g biomass per mol of incident photons have been measured for crops in several laboratories. Some early published values for radiation use efficiency (1 g mol-1) were inflated due to the effect of side lighting. Sealed chambers are the basic research module for crop studies for space. Such chambers allow the measurement of radiation and CO2 fluxes, thus providing values for three determinants of plant growth: radiation absorption, photosynthetic efficiency (quantum yield), and respiration efficiency (carbon use efficiency). Continuous measurement of each of these parameters over the plant life cycle has provided a blueprint for daily growth rates, and is the basis for modeling crop productivity based on component metabolic processes. Much of what has been interpreted as low photosynthetic efficiency is really the result of reduced leaf expansion and poor radiation absorption. Measurements and models of short-term (minutes to hours) and long-term (days to weeks) plant metabolic rates have enormously improved our understanding of plant environment interactions in ground-based growth chambers and are critical to understanding plant responses to the space environment.

  3. A review of recent activities in the NASA CELSS program

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Tremor, J.; Smernoff, D. T.; Knott, W.; Prince, R. P.

    1987-01-01

    A CELSS (Controlled Ecological Life Support System) is a device that utilizes photosynthetic organisms and light energy to regenerate waste materials into oxygen and food for a crew in space. The results of theoretical and practical studies conducted by investigators within the CELSS program suggest that a bioregenerative life support system can be a useful and effective method of regenerating consumable materials for crew sustenance. Experimental data suggests that the operation of a CELSS in space will be practical if plants can be made to behave predictably in the space environment. Much of the work currently conducted within the CELSS program centers on the biological components of the CELSS system. The work is particularly directed at ways of achieving high efficiency and long term stability of all components of the system. Included are explorations of the conversion of nonedible cellulose to edible materials, nitrogen fixation by biological and chemical methods, and methods of waste processing. It is the intent of the presentation to provide a description of the extent to which a bioregenerative life support system can meet the constraints of the space environment, and to assess the degree to which system efficiency and stability can be increased during the next decade.

  4. Diet expert subsystem for CELSS

    NASA Technical Reports Server (NTRS)

    Yendler, Boris S.; Nguyen, Thoi K.; Waleh, Ahmad

    1991-01-01

    An account is given of the mathematical basis of a diet-controlling expert system, designated 'Ceres' for the human crews of a Controlled Ecological Life Support System (CELSS). The Ceres methodology can furnish both steady-state and dynamic diet solutions; the differences between Ceres and a conventional nutritional-modeling method is illustrated by the case of a three-component, potato-wheat-soybean food system. Attention is given to the role of food processing in furnishing flexibility in diet-planning management. Crew diet solutions based on simple optimizations are not necessarily the most suitable for optimum CELSS operation.

  5. Preliminary evaluation of waste processing in a CELSS

    NASA Technical Reports Server (NTRS)

    Jacquez, Ricardo B.

    1990-01-01

    Physical/chemical, biological, and hybrid methods can be used in a space environment for processing wastes generated by a Closed Ecological Life Support System (CELSS). Two recycling scenarios are presented. They reflect differing emphases on and responses to the waste system formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system.

  6. Growing root, tuber and nut crops hydroponically for CELSS.

    PubMed

    Hill, W A; Mortley, D G; Mackowiak, C L; Loretan, P A; Tibbitts, T W; Wheeler, R M; Bonsi, C K; Morris, C E

    1992-01-01

    Among the crops selected by the National Aeronautics and Space Administration for growth in controlled ecological life support systems are four that have subsurface edible parts -- potatoes, sweet potatoes, sugar beets and peanuts. These crops have been produced in open and closed (recirculating), solid media and liquid, hydroponic systems. Fluorescent , fluorescent plus incandescent and high pressure sodium plus metal halide lamps have proven to be effective light sources. Continuous light with 16 degrees C and 28/22 degrees C (day/night) temperatures have produced highest yields for potato and sweet potato, respectively. Dry weight yields of up to 4685, 2541, 1151 and 207 g m-2 for for potatoes, sweet potatoes, sugar beets and peanuts, respectively, have been produced in controlled environment hydroponic systems.

  7. KSC-95pc1196

    NASA Image and Video Library

    2000-05-02

    Original photo and caption dated August 14, 1995: "KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day "human rated" experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft."

  8. KSC-95pc1197

    NASA Image and Video Library

    2000-05-02

    Original photo and caption dated August 14, 1995: "KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day "human rated" experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft."

  9. Lunar base agriculture: Soils for plant growth

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W. (Editor); Henninger, Donald L. (Editor)

    1989-01-01

    This work provides information on research and experimentation concerning various aspects of food production in space and particularly on the moon. Options for human settlement of the moon and Mars and strategies for a lunar base are discussed. The lunar environment, including the mineralogical and chemical properties of lunar regolith are investigated and chemical and physical considerations for a lunar-derived soil are considered. It is noted that biological considerations for such a soil include controlled-environment crop production, both hydroponic and lunar regolith-based; microorganisms and the growth of higher plants in lunar-derived soils; and the role of microbes to condition lunar regolith for plant cultivation. Current research in the controlled ecological life support system (CELSS) project is presented in detail and future research areas, such as the growth of higher research plants in CELSS are considered. Optimum plant and microbiological considerations for lunar derived soils are examined.

  10. An analysis of alternative technologies for the removal of ethylene from the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1995-01-01

    A variety of technologies were analyzed for their potential to remove ethylene from the CELSS Biomass Production Chamber (BPC). During crop production (e.g., lettuce, wheat, soybean, potato) in the BPC ethylene can accumulate in the airspace and subsequently affect plant viability. The chief source of ethylene is the plants themselves which reside in plastic trays containing nutrient solution. The main sink for ethylene is chamber leakage. The removal technology can be employed when deleterious levels (e.g., 50 ppb for potato) of ethylene are exceeded in the BPC and perhaps to optimize the plant growth process once a better understanding is developed of the relationship between exogenous ethylene concentration and plant growth. The technologies examined were catalytic oxidation, molecular sieve, cryotrapping, permanganate absorption, and UV degradation. Upon analysis, permanganate was chosen as the most suitable method. Experimental data for ethylene removal by permanganate during potato production was analyzed in order to design a system for installation in the BPC air duct. In addition, an analysis of the impact on ethylene concentration in the BPC of integrating the Breadboard Scale Aerobic Bioreactor (BSAB) with the BPC was performed. The result indicates that this unit has no significant effect on the ethylene material balance as a source or sink.

  11. Plan for CELSS test bed project

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1986-01-01

    The Closed Ecological Life Support Systems (CELSS) testbed project will achieve two major goals: It will develop the knowledge and technology needed to build and test biological or combined biological physiochemical regenerative life support systems. It will fabricate, test, and operate ground based facilities to accomplish proof-of-concent testing and evaluation leading to flight experimentation. The project will combine basic research and applied research/engineering to achieve a phased, integrated development of hardware, systems, and techniques for food and oxygen production, food processing, and waste processing in closed systems. The project will design, fabricate, and operate within three years a botanical production system scaled to a sufficient size to verify oxygen and nutrient load production (carbohydrates, fats, proteins) at a useable level. It will develop within five years a waste management system compatible with the botanical production system and a food processing system that converts available biomass into edible products. It will design, construct, and operate within ten years a ground based candidate CELSS that includes man as an active participant in the system. It will design a flight CELSS module within twelve years and construct and conduct initial flight tests within fifteen years.

  12. Closed Ecological Life Support Systems (CELSS) Test Facility

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.

    1992-01-01

    The CELSS Test Facility (CTF) is being developed for installation on Space Station Freedom (SSF) in August 1999. It is designed to conduct experiments that will determine the effects of microgravity on the productivity of higher (crop) plants. The CTF will occupy two standard SSF racks and will accommodate approximately one square meter of growing area and a canopy height of 80 cm. The growth volume will be isolated from the external environment, allowing stringent control of environmental conditions. Temperature, humidity, oxygen, carbon dioxide, and light levels will all be closely controlled to prescribed set points and monitored. This level of environmental control is needed to prevent stress and allow accurate assessment of microgravity effect (10-3 to 10-6 x g). Photosynthetic rates and respiration rates, calculated through continuous recording of gas concentrations, transpiration, and total and edible biomass produced will be measured. Toxic byproducts will be monitored and scrubbed. Transpiration water will be collected within the chamber and recycled into the nutrient solution. A wide variety of crop plants, e.g., wheat, soy beans, lettuce, potatoes, can be accommodated and various nutrient delivery systems and light delivery systems will be available. In the course of its development, the CTF will exploit fully, and contribute importantly, to the state-of-art in closed system technology and plant physiology.

  13. A review of recent activities in the NASA CELSS program

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Tremor, J.; Smernoff, D. T.; Knott, W.; Prince, R. P.

    1987-01-01

    A CELSS (Controlled Ecological Life Support System) is a device that utilizes photosynthetic organisms and light energy to regenerate waste materials into oxygen and food for a crew in space. The results of studies with the CELSS program suggest that a bioregenerative life support system is a useful and effective method of regenerating consumable materials for crew sustenance. The data suggests that the operation of a CELSS in space is practical if plants can be made to behave predictably in the space environment. Much of the work centers on the biological components of the CELSS system. Ways of achieving high efficiency and long term stability of all components of the system are examined. Included are explorations of the conversion of nonedible cellulose to edible materials, nitrogen fixation by biological and chemical methods, and methods of waste processing. A description is provided of the extent to which a bioregenerative life support system can meet the constraints of the space environment, and the degree is assessed to which system efficiency and stability can be increased during the next decade.

  14. Survey of CELSS Concepts and Preliminary Research in Japan

    NASA Technical Reports Server (NTRS)

    Ohya, H.; Oshima, T.; Nitta, K.

    1985-01-01

    Agricultural and other experiments relating to the development of a controlled ecological life support system (CELSS) were proposed. The engineering feasibility of each proposal was investigated by a CELSS experiment concept met study group. The CELSS experiment concept to clarify the goals of CELSS and to determine three phases to achieve the goals. The resulting phases, or missions, and preliminary proposals and studies needed to develop a CELSS are described.

  15. Controlled ecological life support system breadboard project, 1988

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1990-01-01

    The Closed Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989 to 1993 are listed. The Biomass Production Chamber (BPC) became operational and tests of wheat as a single crop are nearing completion.

  16. Publications of the NASA Controlled Ecological Life Support System (CELSS) program 1989-1992

    NASA Technical Reports Server (NTRS)

    Powers, Janet V.

    1994-01-01

    Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) program are listed. The CELSS program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system, which is based upon the integration of biological and physical/chemical processes, that will produce nutritious and palatable food, potable and hygienic water, and a breathable atmosphere by recycling metabolic and other wastes. This research and technology development is being performed in the areas of biomass production/food processing, waste management, and systems management and control. The bibliography follows these divisions. Principal investigators whose research tasks resulted in publication are identified by an asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.

  17. Ethylene Production by Plants in a Closed Environment

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Peterson, B. V.; Sager, J. C.; Knott, W. M.

    1996-01-01

    Ethylene production by 20-sq m stands of wheat, soybean, lettuce and potato was monitored throughout growth and development in NASA's Controlled Ecological Life Support System (CELSS) Biomass Production Chamber. Chamber ethylene concentrations rose during periods of rapid growth for all four species, reaching 120 parts per billion (ppb) for wheat, 60 ppb for soybean, and 40 to 50 ppb for lettuce and potato. Following this, ethylene concentrations declined during seed fill and maturation (wheat and soybean), or remained relatively constant (potato). Lettuce plants were harvested during rapid growth and peak ethylene production. The highest ethylene production rates (unadjusted for chamber leakage) ranged from 0.04 to 0.06 ml/sq m/day during rapid growth of lettuce and wheat stands, or approximately 0.8 to 1.1 ml/g fresh weight/h. Results suggest that ethylene production by plants is a normal event coupled to periods of rapid metabolic activity, and that ethylene removal or control measures should be considered for growing crops in a tightly closed CELSS.

  18. An assessment of waste processing/resource recovery technologies for lunar/Mars life applications

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Packham, Nigel J. C.; Henninger, Donald H.

    1992-01-01

    NASA's future manned missions to explore the solar system are by nature of long duration, mandating extensive regeneration of life support consumables from wastes generated in space-based habitats. Long-duration exploration missions would otherwise be prohibitive due to the number and frequency of energy-intensive resupply missions from Earth. Resource recovery is therefore a critical component of the controlled ecological life support system (CELSS). In order to assess resource recovery technologies for CELSS applications, the Crew and Thermal Systems Division at NASA-Johnson Space Center convened a three-day workshop to assess potential resource recovery technologies for application in a space-based CELSS. This paper describes the methodology of assessing and ranking of these technologies. Recommendations and issues are identified. Evaluations focused on the processes for handling and treatment of inedible plant biomass, human waste, and human generated trash. Technologies were assessed on the basis of safety, reliability, technology readiness, and performance characteristics.

  19. The NASA CELSS program

    NASA Technical Reports Server (NTRS)

    Averner, Maurice M.

    1990-01-01

    The NASA Controlled Ecological Life Support System (CELSS) program was initiated with the premise that NASA's goal would eventually include extended duration missions with sizable crews requiring capabilities beyond the ability of conventional life support technology. Currently, as mission duration and crew size increase, the mass and volume required for consumable life support supplies also increase linearly. Under these circumstances the logistics arrangements and associated costs for life support resupply will adversely affect the ability of NASA to conduct long duration missions. A solution to the problem is to develop technology for the recycling of life support supplies from wastes. The CELSS concept is based upon the integration of biological and physico-chemical processes to construct a system which will produce food, potable water, and a breathable atmosphere from metabolic and other wastes, in a stable and reliable manner. A central feature of a CELSS is the use of green plant photosynthesis to produce food, with the resulting production of oxygen and potable water, and the removal of carbon dioxide.

  20. Closed-ecology life support systems /CELSS/ for long-duration, manned missions

    NASA Technical Reports Server (NTRS)

    Modell, M.; Spurlock, J. M.

    1979-01-01

    Studies were conducted to scope the principal areas of technology that can contribute to the development of closed-ecology life support systems (CELSS). Such systems may be required for future space activities, such as space stations, manufacturing facilities, or colonies. A major feature of CELSS is the regeneration of food from carbon in waste materials. Several processes, using biological and/or physico-chemical components, have been postulated for closing the recycle loop. At the present time, limits of available technical information preclude the specification of an optimum scheme. Nevertheless, the most significant technical requirements can be determined by way of an iterative procedure of formulating, evaluating and comparing various closed-system scenario. The functions features and applications of this systems engineering procedure are discussed.

  1. Candidate Species Selection: Cultural and Photosynthetic Aspects

    NASA Technical Reports Server (NTRS)

    Mitchell, C. A.

    1982-01-01

    Cultural information is provided for a data base that will be used to select candidate crop species for a controlled ecological life support system (CELSS). Lists of food crops which will satisfy most nutritional requirements of humans and also fit within the scope of cultural restrictions that logically would apply to a closed, regenerating system were generated. Cultural and environmental conditions that will allow the most rapid production of edible biomass from candidate species in the shortest possible time are identified. Cultivars which are most productive in terms of edible biomass production by (CE) conditions, and which respond to the ever-closed approach to optimization realized by each shortened production cycle are selected. The experimental approach with lettuce was to grow the crop hydroponically in a growth chamber and to manipulate such variables as light level and duration, day/night temperature, and nutrient form and level in the solution culture.

  2. Airborne trace contaminants of possible interest in CELSS

    NASA Technical Reports Server (NTRS)

    Garavelli, J. S.

    1986-01-01

    One design goal of Closed Ecological Life Support Systems (CELSS) for long duration space missions is to maintain an atmosphere which is healthy for all the desirable biological species and not deleterious to any of the mechanical components in that atmosphere. CELESS design must take into account the interactions of at least six major components; (1) humans and animals, (2) higher plants, (3) microalgae, (4) bacteria and fungi, (5) the waste processing system, and (6) other mechanical systems. Each of these major components can be both a source and a target of airborne trace contaminants in a CELSS. A range of possible airborne trace contaminants is discussed within a chemical classification scheme. These contaminants are analyzed with respect to their probable sources among the six major components and their potential effects on those components. Data on airborne chemical contaminants detected in shuttle missions is presented along with this analysis. The observed concentrations of several classes of compounds, including hydrocarbons, halocarbons, halosilanes, amines and nitrogen oxides, are considered with respect to the problems which they present to CELSS.

  3. Impact of diet on the design of waste processors in CELSS

    NASA Technical Reports Server (NTRS)

    Waleh, Ahmad; Kanevsky, Valery; Nguyen, Thoi K.; Upadhye, Ravi; Wydeven, Theodore

    1991-01-01

    The preliminary results of a design analysis for a waste processor which employs existing technologies and takes into account the constraints of human diet are presented. The impact of diet is determined by using a model and an algorithm developed for the control and management of diet in a Controlled Ecological Life Support System (CELSS). A material and energy balance model for thermal oxidation of waste is developed which is consistent with both physical/chemical methods of incineration and supercritical water oxidation. The two models yield quantitative analysis of the diet and waste streams and the specific design parameters for waste processors, respectively. The results demonstrate that existing technologies can meet the demands of waste processing, but the choice and design of the processors or processing methods will be sensitive to the constraints of diet. The numerical examples are chosen to display the nature and extent of the gap in the available experiment information about CELSS requirements.

  4. The conversion of lignocellulosics to fermentable sugars: A survey of current research and application to CELSS

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.; Baresi, Larry

    1990-01-01

    An overview of the options for converting lignocellulosics into fermentable sugars as applied to the Closed Ecological Life Support System (CELSS) is given. A requirement for pretreatment is shown as well as the many available options. At present, physical/chemical methods are the simplest and best characterized options, but enzymatic processes will likely be the method of choice in the future. The use of pentose sugars by microorganisms to produce edibles at levels comparable to conventional plants is shown. The possible use of mycelial food production on pretreated but not hydrolyzed lignocelluloscis is also presented. Simple tradeoff analysis among some of the many possible biological pathways to regeneration of waste lignocellulosics was undertaken. Comparisons with complete oxidation processes were made. It is suggested that the NASA Life Sciences CELSS program maintain relationships with other government agencies involved in lignocellulosic conversions and use their expertise when the actual need for such conversion technology arises rather than develop this expertise within NASA.

  5. The Controlled Ecological Life Support Systems (CELSS) research program

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.

    1990-01-01

    The goal of the Controlled Ecological Life Support Systems (CELSS) program is to develop systems composed of biological, chemical and physical components for purposes of human life support in space. The research activities supported by the program are diverse, but are focused on the growth of higher plants, food and waste processing, and systems control. Current concepts associated with the development and operation of a bioregenerative life support system will be discussed in this paper.

  6. Validated environmental and physiological data from the CELSS Breadboard Projects Biomass Production Chamber. BWT931 (Wheat cv. Yecora Rojo)

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Mackowiak, C. L.; Markwell, G. A.; Wheeler, R. M.; Sager, J. C.

    1993-01-01

    This KSC database is being made available to the scientific research community to facilitate the development of crop development models, to test monitoring and control strategies, and to identify environmental limitations in crop production systems. The KSC validated dataset consists of 17 parameters necessary to maintain bioregenerative life support functions: water purification, CO2 removal, O2 production, and biomass production. The data are available on disk as either a DATABASE SUBSET (one week of 5-minute data) or DATABASE SUMMARY (daily averages of parameters). Online access to the VALIDATED DATABASE will be made available to institutions with specific programmatic requirements. Availability and access to the KSC validated database are subject to approval and limitations implicit in KSC computer security policies.

  7. Studies on maximum yield of wheat for the controlled environments of space

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1986-01-01

    The economic feasibility of using food-producing crop plants in a closed ecological Life-Support System (CELSS) will ultimately depend on the energy and area (or volume) required to provide the nutritional requirements for each person. Energy and area requirements are, to some extent, inversely related; that is, an increased energy input results in a decreased area requirement and vice versa. A major goal of the research effort was to determine the controlled-environment good-production efficiency of wheat per unit area, per unit time, and per unit energy input.

  8. Advanced support systems development and supporting technologies for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Simon, William E.; Li, Ku-Yen; Yaws, Carl L.; Mei, Harry T.; Nguyen, Vinh D.; Chu, Hsing-Wei

    1994-01-01

    A methyl acetate reactor was developed to perform a subscale kinetic investigation in the design and optimization of a full-scale metabolic simulator for long term testing of life support systems. Other tasks in support of the closed ecological life support system test program included: (1) heating, ventilation and air conditioning analysis of a variable pressure growth chamber, (2) experimental design for statistical analysis of plant crops, (3) resource recovery for closed life support systems, and (4) development of data acquisition software for automating an environmental growth chamber.

  9. Publications of the NASA CELSS (Controlled Ecological Life Support Systems) program

    NASA Technical Reports Server (NTRS)

    Dufour, P. A.; Solberg, J. L.; Wallace, J. S.

    1985-01-01

    Publications on research sponsored by the NASA CELSS (controlled ecological life support systems) Program are listed. The bibliography is divided into four areas: (1) human requirements; (2) food production; (3) waste management; and (4) system management and control. The 210 references cover the period from the inception of the CELSS Program (1979) to the present, as well as some earlier publications during the development of the CELSS Program.

  10. Selection of Cultivars for use in Controlled Environment Life Support System (CELSS) Human Rated Test Facility (HRTF) Trials

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1997-01-01

    The aims under this training grant, as under the subsequent fellowship, were to elaborate the theory and technique of cultivar evaluation for specialized controlled environments, then to employ the technique on selected crops, ultimately conducting cultivar trials, and making the knowledge gained available for use in NASA's space program. We undertook a comprehensive search of the Cornell agricultural library (Mann library) and its data-bases for any and all material relating to cultivar evaluation of vegetable crops, and also developed the logic of how to go about narrowing down the field of contending cultivars when undertaking cultivar trials. The results of this work, the principal outcome of the grant, are reflected in his MS thesis, particularly in Chapter 2, "Commercial and Scientific Literature," and even more so in Chapter 8, "Selecting cultivars and lines for screening." David also attended annual conferences of vegetable crop plant breeders, annual yield trials and breeding trials for vegetable crops, as well as relevant professional conferences such as the ASHS annual meetings, and the others.

  11. Research recommendations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The research and development sequences and priorities for CELSS development were established for each of the following areas: nutrition and food processing, food production, waste processing, systems engineering/modeling, and ecology-systems safety.

  12. Plant productivity in controlled environments

    NASA Technical Reports Server (NTRS)

    Salisbury, F. B.; Bugbee, B.

    1988-01-01

    To assess the cost and area/volume requirements of a farm in a space station or Lunar or Martian base, a few laboratories in the United States, the Soviet Union, France, and Japan are studying optimum controlled environments for the production of selected crops. Temperature, light, photoperiod, CO2, humidity, the root-zone environment, and cultivars are the primary factors being manipulated to increase yields and harvest index. Our best wheat yields on a time basis (24 g m-2 day-1 of edible biomass) are five times good field yields and twice the world record. Similar yields have been obtained in other laboratories with potatoes and lettuce; soybeans are also promising. These figures suggest that approximately 30 m2 under continuous production could support an astronaut with sufficient protein and about 2800 kcal day-1. Scientists under Iosif Gitelzon in Krasnoyarsk, Siberia, have lived in a closed system for up to 5 months, producing 80% of their own food. Thirty square meters for crops were allotted to each of the two men taking part in the experiment. A functional controlled-environment life-support system (CELSS) will require the refined application of several disciplines: controlled-environment agriculture, food preparation, waste disposal, and control-systems technology, to list only the broadest categories. It has seemed intuitively evident that ways could be found to prepare food, regenerate plant nutrients from wastes, and even control and integrate several subsystems of a CELSS. But could sufficient food be produced in the limited areas and with the limited energy that might be available? Clearly, detailed studies of food production were necessary.

  13. Plant productivity in controlled environments.

    PubMed

    Salisbury, F B; Bugbee, B

    1988-04-01

    To assess the cost and area/volume requirements of a farm in a space station or Lunar or Martian base, a few laboratories in the United States, the Soviet Union, France, and Japan are studying optimum controlled environments for the production of selected crops. Temperature, light, photoperiod, CO2, humidity, the root-zone environment, and cultivars are the primary factors being manipulated to increase yields and harvest index. Our best wheat yields on a time basis (24 g m-2 day-1 of edible biomass) are five times good field yields and twice the world record. Similar yields have been obtained in other laboratories with potatoes and lettuce; soybeans are also promising. These figures suggest that approximately 30 m2 under continuous production could support an astronaut with sufficient protein and about 2800 kcal day-1. Scientists under Iosif Gitelzon in Krasnoyarsk, Siberia, have lived in a closed system for up to 5 months, producing 80% of their own food. Thirty square meters for crops were allotted to each of the two men taking part in the experiment. A functional controlled-environment life-support system (CELSS) will require the refined application of several disciplines: controlled-environment agriculture, food preparation, waste disposal, and control-systems technology, to list only the broadest categories. It has seemed intuitively evident that ways could be found to prepare food, regenerate plant nutrients from wastes, and even control and integrate several subsystems of a CELSS. But could sufficient food be produced in the limited areas and with the limited energy that might be available? Clearly, detailed studies of food production were necessary.

  14. Treatment of CELSS and PCELSS waste to produce nutrients for plant growth. [Controlled Ecological Life Support Systems and Partially Controlled Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Modell, M.; Meissner, H.; Karel, M.; Carden, J.; Lewis, S.

    1981-01-01

    The research program entitled 'Development of a Prototype Experiment for Treating CELSS (Controlled Ecological Life Support Systems) and PCELSS (Partially Controlled Ecological Life Support Systems) Wastes to Produce Nutrients for Plant Growth' consists of two phases: (1) the development of the neccessary facilities, chemical methodologies and models for meaningful experimentation, and (2) the application of what methods and devices are developed to the interfacing of waste oxidation with plant growth. Homogeneous samples of freeze-dried human feces and urine have been prepared to ensure comparability of test results between CELSS waste treatment research groups. A model of PCELSS food processing wastes has been developed, and an automated gas chromatographic system to analyze oxidizer effluents was designed and brought to operational status. Attention is given the component configuration of the wet oxidation system used by the studies.

  15. NASA's Biomass Production Chamber: a testbed for bioregenerative life support studies

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Sager, J. C.; Yorio, N. C.; Ruffe, L. M.; Fortson, R. E.; Dreschel, T. W.; Knott, W. M.; Corey, K. A.

    1996-01-01

    The Biomass Production Chamber (BPC) located at Kennedy Space Center, FL, USA provides a large (20 m2 area, 113 m3 vol.), closed environment for crop growth tests for NASA's Controlled Ecological Life Support System (CELSS) program. Since the summer of 1988, the chamber has operated on a near-continuous basis (over 1200 days) without any major failures (excluding temporary power losses). During this time, five crops of wheat (64-86 days each), three crops of soybean (90 to 97 days), five crops of lettuce (28-30 days), and four crops of potato (90 to 105 days were grown, producing 481 kg of dry plant biomass, 196 kg edible biomass, 540 kg of oxygen, 94,700 kg of condensed water, and fixing 739 kg of carbon dioxide. Results indicate that total biomass yields were close to expected values for the given light input, but edible biomass yields and harvest indices were slightly lower than expected. Stand photosynthesis, respiration, transpiration, and nutrient uptake rates were monitored throughout growth and development of the different crops, along with the build-up of ethylene and other volatile organic compounds in the atmosphere. Data were also gathered on system hardware maintenance and repair, as well as person-hours required for chamber operation. Future tests will include long-term crop production studies, tests in which nutrients from waste treatment systems will be used to grow new crops, and multi-species tests.

  16. CELSS experiment model and design concept of gas recycle system

    NASA Technical Reports Server (NTRS)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  17. Earth to lunar CELSS evolution

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The comprehensive results of human activities on the environment, such as deforestation and ozone depletion, and the natural laws that govern the global environment have yet to be determined. Closed Ecological Life Support Systems (CELSS) research can play an instrumental role in dispelling these mysteries, as well as have the ability to support life in hostile environments, which the Earth one day may become. CELSS conclusions, such as the timescales in which plants fix carbon dioxide (CO2), will be the key to understanding each component and how it affects the ecological balance between plants and animals, the environment, and the biological engines that drive Earth's system. However, to understand how CELSS can be used as an investigative tool, the concept of a CELSS must be clearly defined. A definition of CELSS is given. The evolutionary establishment of a lunar base with a bioregenerative life support system in a Space Station Freedom (SSF) module to support a crew of four for two weeks duration was chosen as the design topic.

  18. The conversion of lignocellulosics to fermentable sugars - A survey of current research and applications to CELSS

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.; Baresi, Larry

    1990-01-01

    This report provides an overview options for converting lignocellulosics into fermentable sugars in CELSS. A requirement for pretreatment is shown. Physical-chemical and enzymatic hydrolysis processes for producing fermentable sugars are discussed. At present physical-chemical methods are the simplest and best characterized options, but enzymatic processes will be the likely method of choice in the future. The use of pentose sugars by microorganisms to produce edibles is possible. The use of mycelial food production on pretreated but not hydrolyzed lignocellulosics is also possible. Simple trade-off analyses to regenerate waste lignocellulosics for two pathways are made, one of which is compared to complete oxidation.

  19. Evaluation of Enzymatic Hydrolysis of CELSS Wheat Residue Cellulose at a Scale Environment to NASA's KSC Breadboard Project

    NASA Technical Reports Server (NTRS)

    Strayer, Richard F.

    1993-01-01

    Biomass processing at the Kennedy Space Center CELSS breadboard project has focused on the evaluation of breadboard-scale enzymatic hydrolysis of wheat residue cellulose (25%, w/w). Five replicate runs of cellulase production by Trichoderma reesei (QM9414) and enzymatic hydrolysis of residue cellulose were completed. Enzymes were produced in 1 0 days (5 L, 25 g (dry weight) residue). Cellulose hydrolysis (12 L, 50 g (dry weight) residue) using these enzymes produced 5.5 to 6.0 g glucose liter(exp -1) in 7 days. Cellulose conversion efficiency was 29%. These processes are feasible technically on a breadboard scale, but would only increase the edible wheat yield 10%.

  20. Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment.

    PubMed

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-01-01

    Indoor air quality is vital to the health and comfort of people who live inside a controlled ecological life support system (CELSS) built for long-term space explorations. Here we measured aromatic hydrocarbons to assess their sources and health risks during a 4-person-180-day integrated experiment inside a CELSS with four cabins for growing crops, vegetables and fruits and other two cabins for working, accommodations and resources management. During the experiment, the average concentrations of benzene, ethylbenzene, m,p-xylenes and o-xylene were found to decrease exponentially from 7.91±3.72, 37.2±35.2, 100.8±111.7 and 46.8±44.1μg/m 3 to 0.39±0.34, 1.4±0.5, 2.8±0.7 and 2.1±0.9μg/m 3 , with half-lives of 25.3, 44.8, 44.7 and 69.3days, respectively. Toluene to benzene ratios indicated emission from construction materials or furniture to be a dominant source for toluene, and concentrations of toluene fluctuated during the experiment largely due to the changing sorption by growing plants. The cancer and no-cancer risks based on exposure pattern of the crews were insignificant in the end of the experiment. This study also suggested that using low-emitting materials/furniture, growing plants and purifying air actively would all help to lower hazardous air pollutants inside CELSS. Broadly, the results would benefit not only the development of safe and comfort life support systems for space exploration but also the understanding of interactions between human and the total environment in closed systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Carbon dioxide and water exchange of a soybean stand grown in the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1990-01-01

    Soybean plants were grown under metal halide lamps in NASA's biomass production chamber (BPC). Experiments were conducted to determine whole stand rates of carbon dioxide exchange and transpiration as influenced by time of day, CO2 concentration, irradiance, and temperature. Plants were grown at a population of 24 plants/sq m, a daily cycle of 12 hr light/12 hr dark, and average temperature regime of 26 C light/20 C dark, and a CO2 concentration enriched and maintained at 1000 ppm during the photoperiod. A distinct diurnal pattern in the rate of stand transpiration was measured at both ambient and enriched (1000 ppm) concentration of CO2. Data generated in this study represent true whole stand responses to key developmental and environmental variables and will be valuable in database construction for future working CELSS. Crop growth studies in the BPC were conducted with a high degree of environmental control, gas tightness during growth, and have used large plant stands. These characteristics have placed it in a unique position internationally as a research tool and as a preprototype subcomponent to a fully integrated CELSS. The results from the experiments are presented.

  2. Chemical characterization of some aerobic liquids in CELSS

    NASA Technical Reports Server (NTRS)

    Madsen, Brooks C.

    1993-01-01

    Untreated aqueous soybean and wheat leachate and aerobically treated wheat leachate prepared from crop residues that are produced as a component of the Controlled Ecological Life Support System program designed to support long duration space missions were compared, and a general chemical characterization was accomplished. Solid phase extraction and high performance liquid chromatography were used to accomplish comparisons based on chromatographic and ultraviolet absorption properties of the components that are present. Specific compounds were not identified; however, general composition related to the initial presence of phenol-like compounds and their disappearance during aerobic treatment was explored.

  3. Controlled Ecological Life Support Systems: CELSS '89 Workshop

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D. (Editor)

    1990-01-01

    Topics discussed at NASA's Controlled Ecological Life Support Systems (CELSS) workshop concerned the production of edible biomass. Specific areas of interest ranged from the efficiency of plant growth, to the conversion of inedible plant material to edible food, to the use of plant culture techniques. Models of plant growth and whole CELSS systems are included. The use of algae to supplement and improve dietary requirements is addressed. Flight experimentation is covered in topics ranging from a Salad Machine for use on the Space Station Freedom to conceptual designs for a lunar base CELSS.

  4. Robust catastrophe-free space agriculture on Mars

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi

    During the early stage of CELSS research, economy was a selling point of the bio-regenerative life support concept. Until system integration was exercised in detail at mission planing for the International Space Station, the turning point from open system to CELSS was estimated 10 years of operation for 10 crew member as a consensus. Initial investment and operational cost for the 10-10 regenerative system was believed to be cheaper than the integrated amount of consumables for running open system. Any drop-out from recycling loop of materials is counted as “penalty”. Under this context, degree of closure was raised as an index to measure “maturity” of CELSS technology. Once it was found quite difficult to achieve 100 % closure perfect, science merit of CELSS study was redefined as a small scaled model of terrestrial biosphere. Natural ecosystem has huge sink and backyard in its materials loop. They provide a basis for keeping member in the ecology without falling into catastrophe. Low productivity at high biological diversity is a common key feature at the climax phase of ecosystem. Artificial ecosystem on ground relies on “unpaid” backyard function of surrounding biosphere together with strong control for realizing high productivity at less degree of bio-diversity. It should be noted that top criteria in engineering manned space system is robustness and survivability of crew. All other item is secondary, and just better to have. Without verification of catastrophe free, space agriculture will never be implemented for space and stay as a fantasy on ground forever. There is a great gap between ecology and this requirement for manned space system. In order to fill this gap, we should remind how gatherer and hunter was civilized after the agricultural revolution about ten thousand years ago. Planting cereal crop was a great second step in agricultural innovation. Cereal grain can be stored more than one year after its harvest. Food processing and preservation technology has been quite developed in modern age. After resource is accumulated enough to support the next term, go-decision for the succeeding mission is made. Life can be sustained by stock of food and oxygen produced during previous term. Terrestrial agriculture these days is not only for food production, but improves amenity for life. Psychological support for space crew is a keen issue at conducting long space mission under physically isolated confined environment. Farming plants and animals is an effective relief under such stressful environment. By utilizing on site resource available on Mars, space agriculture is an essential choice with more than 100 % materials recycling and total life management in space exploration. Among many merits, 100 % survivability is the top priority.

  5. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  6. A modified MBR system with post advanced purification for domestic water supply system in 180-day CELSS: Construction, pollutant removal and water allocation.

    PubMed

    Li, Ting; Zhang, Liangchang; Ai, Weidang; Dong, Wenyi; Yu, Qingni

    2018-05-22

    Water supply was vital to people's life, especially inside Controlled Ecological Life Support System (CELSS) for long-term space exploration. A platform of 4-person-180-day integrated experiment inside a CELSS including 6 cabins called 'SPACEnter' was established in Shenzhen, China. Based on this platform, a Membrane Bio-Reactor (MBR) system configuring post advanced purification, including I-MBR, II-MBR, nanofiltration (NF), reverse osmosis (RO), ion-exchange (IE), polyiodide disinfection (PI) and mineralization (MC) stages, used as a Domestic Water Supply System (DWSS) to guarantee crew's daily life was constructed. The performance of DWSS to treat the real plant cabin's condensate water was examined during continuously 180-day experiment. The long-term operation results showed that, though the influent pollutant load changed as the experiment processing, the system exhibited stable performance on pollutants removal with average effluent TOC<0.5 mg/L, NH 4 + -N<0.02 mg/L, NO 3 - -N<0.25 mg/L, NO 2 - -N<0.001 mg/L, and displayed good capacity for controlling the trace metal ions and microorganism. The effluent through such modified MBR system was sufficiently allocated as hygiene water and potable water, and the average value was 39.69 and 10.93 L/d, respectively. The consumption of the modified MBR process was within the designed allowable scope. The outcomes of this study will be helpful for facilitating future applications of MBR as bio-based water supply technology in the CELSS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Achieving and documenting closure in plant growth facilities

    NASA Technical Reports Server (NTRS)

    Knott, W. M.; Sager, John C.; Wheeler, Ray

    1992-01-01

    As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. The concept of closure as it pertains to CELSS and engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program are described. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5 percent of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in the facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.

  8. A 'breadboard' biomass production chamber for CELSS

    NASA Technical Reports Server (NTRS)

    Prince, Ralph P.; Knott, William M., III; Hilding, Suzanne E.; Mack, Tommy L.

    1987-01-01

    The Breadboard Project of the Controlled Ecological Life Support System (CELSS) Program is the first attempt by NASA to integrate the primary components of a bioregenerative life support system into a functioning system. The central component of this project is a Biomass Production Chamber (BPC). The BPC is under construction, and when finished will be sealed for the study of the flux of gases, liquids, and solids through the production module of a CELSS. Features of the CELSS breadboard facility will be covered as will design requirements for the BPC. Cultural practices developed for wheat for the BPC wil be discussed.

  9. Photoperiod shift effects on yield characteristics of rice

    NASA Technical Reports Server (NTRS)

    Volk, G. M.; Mitchell, C. A.

    1995-01-01

    Edible yield must be maximized for each crop species selected for inclusion in the Controlled Ecological Life-Support System (CELSS) proposed by NASA to support long-term manned space missions. In a greenhouse study aimed at increasing biomass partitioning to rice (Oryza sativa L.) grain, plants of the high yielding semi-dwarf rice cultivar Ai-Nan-Tsao were started in pots under 8-h photoperiods at a density of 212 plants m-2. After different periods of time under 8-h photoperiods, pots were switched to continuous light for the remainder of the cropping cycle. Continuous light did not delay time to first panicle emergence (60 d) or time to harvest (83 d). There was a positive correlation between the length of continuous light treatments and nongrain biomass. Grain yield (1.6 +/- 0.2 g plant-1) did not increase in continuous light. Yield-efficiency rate (grain weight per length of cropping cycle, canopy volume, and weight of nongrain shoot biomass) was used to compare treatments. Small Ai-Nan-Tsao rice canopies grown under 8-h photoperiods were more efficient producers of grain than canopies grown under continuous light for a portion of the rice cropping cycle.

  10. Developing of discrimination experiment to find most adequate model of plant’s multi-nutrient functional response

    NASA Astrophysics Data System (ADS)

    Saltykov, M. Yu; Bartsev, S. I.

    2017-02-01

    To create reliable Closed Ecological Life Support Systems (CELSS) it is necessary to have models which can predict CELSS dynamic with good accuracy. However it was shown that conventional ecological models cannot describe CELSS correctly if it is closed by more than one element. This problem can be solved by means more complex models than conventional ones - so called flexible metabolism models. However it is possible that CELSS also can be described correctly in “semi-conventional” framework - when only one trophic level is described by flexible metabolism model. Another problem in CELSS modeling is existence of different and incompatible hypotheses about relationships between plants growth rate and amounts of nutrients (functional responses). Difficulty of testing these hypotheses is associated with multi-nutrient dependency of growth rate and comprehensive experimental studies are expensive and time-consuming. This work is devoted to testing the hypothesis that “semi-conventional” approach is enough to describe CELSS, and to planning the discrimination experiment on selecting correct type of the plant’s functional response. To do that three different models of plants (one flexible and two conventional) were investigated both in the scope of CELSS model, and in hemostat model. Numerical simulations show that each of the models has typical patterns which can be determined in experiment with real plants.

  11. Development of a prototype experiment for treating CELSS and PCELSS wastes to produce nutrients for plant growth

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Future long term spaceflights require extensive recycling of wastes to minimize the need for resupplying the vessel. The recycling occurs in a fully or partially closed environment life support system (CELSS or PCELSS). The National Aeronautics and Space Administration (NASA) is interested in converting wastewater into potable water or water for hydroponic farming as part of a CELSS. The development of technologies for wastewater treatment that produce a minimum of by-products is essential. One process that achieves good conversion of moderately concentrated organic wastes in water (1 to 20% by weight) completely to carbon dioxide and water is oxidation in supercritical water. Both air (or oxygen) and many organics are completely miscible with supercritical water, so there are no interphase mass transport resistances that limits the overall oxidation reaction. The temperature of supercritical water, which must be above 374 C, is also sufficient to have rapid reaction kinetics for the oxidations.

  12. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Under a NASA Small Business Innovation Research (SBIR) contract, Axiomatics Corporation developed a shunting Dielectric Sensor to determine the nutrient level and analyze plant nutrient solutions in the CELSS, NASA's space life support program. (CELSS is an experimental facility investigating closed-cycle plant growth and food processing for long duration manned missions.) The DiComp system incorporates a shunt electrode and is especially sensitive to changes in dielectric property changes in materials at measurements much lower than conventional sensors. The analyzer has exceptional capabilities for predicting composition of liquid streams or reactions. It measures concentrations and solids content up to 100 percent in applications like agricultural products, petrochemicals, food and beverages. The sensor is easily installed; maintenance is low, and it can be calibrated on line. The software automates data collection and analysis.

  13. Carbon dioxide exchange of lettuce plants under hypobaric conditions

    NASA Technical Reports Server (NTRS)

    Corey, K. A.; Bates, M. E.; Adams, S. L.; MacElroy, R. D. (Principal Investigator)

    1996-01-01

    Growth of plants in a Controlled Ecological Life Support System (CELSS) may involve the use of hypobaric pressures enabling lower mass requirements for atmospheres and possible enhancement of crop productivity. A controlled environment plant growth chamber with hypobaric capability designed and built at Ames Research Center was used to determine if reduced pressures influence the rates of photosynthesis (Ps) and dark respiration (DR) of hydroponically grown lettuce plants. The chamber, referred to as a plant volatiles chamber (PVC), has a growing area of about 0.2 m2, a total gas volume of about 0.7 m3, and a leak rate at 50 kPa of <0.1%/day. When the pressure in the chamber was reduced from ambient to 51 kPa, the rate of net Ps increased by 25% and the rate of DR decreased by 40%. The rate of Ps increased linearly with decreasing pressure. There was a greater effect of reduced pressure at 41 Pa CO2 than at 81 Pa CO2. This is consistent with reports showing greater inhibition of photorespiration (Pr) in reduced O2 at low CO2 concentrations. When the partial pressure of O2 was held constant but the total pressure was varied between 51 and 101 kPa, the rate of CO2 uptake was nearly constant, suggesting that low pressure enhancement of Ps may be mainly attributable to lowered partial pressure of O2 and the accompanying reduction in Pr. The effects of lowered partial pressure of O2 on Ps and DR could result in substantial increases in the rates of biomass production, enabling rapid throughput of crops or allowing flexibility in the use of mass and energy resources for a CELSS.

  14. Electrochemical Technology for Oxygen Removal and Measurement in the CELSS Test Facility, Engineering Development Unit

    NASA Technical Reports Server (NTRS)

    Drews, Michael E.; Covington, Al (Technical Monitor)

    1994-01-01

    The Life Support Flight Program is evaluating regenerative technologies, including those that utilize higher plants, as a means to reduce resupply over long duration space missions. Constructed to assist in the evaluation process is the CELSS Test Facility Engineering Development Unit (CTF-EDU) an environmentally closed (less than 1% mass and thermal leakage) technology test bed. This ground based fully functional prototype is currently configured to support crop growth, utilizing the power, volume and mass resources allocated for two space station racks. Sub-system technologies were selected considering their impact on available resources, their ability to minimize integration issues, and their degree of modularity. Gas specific mass handling is a key sub-system technology for both biological and physical/chemical life support technologies. The CTF-EDU requires such a system to accommodate non-linear oxygen production from crops, by enabling the control system to change and sustain partial pressure set points in the growth volume. Electrochemical cells are one of the technologies that were examined for oxygen handling in the CTF-EDU. They have been additionally considered to meet other regenerative life support functions, such as oxygen generation, the production of potable water from composite waste streams, and for having the potential to integrate life support functions with those of propulsion and energy storage. An oxygen removal system based on an electrochemical cell was chosen for the EDU due to it's low power, volume and mass requirements (10W, 0.000027 cu m, 4.5 kg) and because of the minimal number of integration considerations. Unlike it's competitors, the system doesn't require post treatments of its byproducts, or heat and power intensive regenerations, that also mandate system redundancy or cycling. The EDUs oxygen removal system only requires two resources, which are already essential to controlled plant growth: electricity and water. Additionally, the amount of oxygen that is removed from the EDU is directly proportional to the cell input current via Faraday's constant, potentially allowing for a mol/electron measurement of photosynthetic rate. The currently operative oxygen removal system has maintained reduced oxygen set points within the EDU, and preparation is underway to verify of the accuracy of electrochemical measurement of oxygen production and hence, photosynthesis. This paper examines the working principles of the electrochemical cell, outlines the overall design of the oxygen removal system and its integration with other EDU subsystems, and summarizes test results obtained over crop growth cycles in the CTF-EDU.

  15. CELSS Transportation Analysis

    NASA Technical Reports Server (NTRS)

    Olson, R. L.; Gustan, E. A.; Vinopal, T. J.

    1985-01-01

    Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.

  16. Initial assessments of life support technology evolution and advanced sensor requirements, volume 2, appendix A

    NASA Technical Reports Server (NTRS)

    Montgomery, Edward E.

    1991-01-01

    The primary issues studied were how the transition from a physical/chemical (P/C) to hybrid to a Closed Ecological Life Support System (CELSS) could be achieved, what sensors and monitors are needed for a P/C -CELSS hybrid system, and how a CELSS could be automated and what controls would be needed to do so.

  17. Approaches to resource recovery in controlled ecological life support systems

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Wydeven, T.

    1994-01-01

    Recovery of resources from waste streams in a space habitat is essential to minimize the resupply burden and achieve self sufficiency. The ultimate goal of a Controlled Ecological Life Support System (CELSS) is to achieve the greatest practical level of mass recycle and provide self sufficiency and safety for humans. Several mission scenarios leading to the ultimate application could employ CELSS component technologies or subsystems with initial emphasis on recycle of the largest mass components of the waste stream. Candidate physical/chemical and biological processes for resource recovery from liquid and solid waste streams are discussed and the current fundamental recovery potentials are estimated.

  18. Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing

    NASA Technical Reports Server (NTRS)

    Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.

  19. Progress in European CELSS activities

    NASA Technical Reports Server (NTRS)

    Skoog, A. I.

    1987-01-01

    The European Controlled Ecological Life Support System (CELSS) activities started in the late 1970's with system analysis and feasibility studies of Biological Life Support Systems (BLSS). The initiation for CELSS came from the industry side in Europe, but since then planning and hardware feasibility analyses have been initiated also from customer/agency side. Despite this, it is still too early to state that a CELSS program as a concerted effort has been agreed upon in Europe. However, the general CELSS objectives were accepted as planning and possible development goals for the European effort for manned space activities, and as experimental planning topics in the life sciences community for the next decades. It is expected that ecological life support systems can be tested and implemented on a space station towards the end of this century or early in the next. For the European activities a possible scenario can be projected based on ongoing life support system development activities and the present life sciences goals.

  20. Mathematical modeling of control subsystems for CELSS: Application to diet

    NASA Technical Reports Server (NTRS)

    Waleh, Ahmad; Nguyen, Thoi K.; Kanevsky, Valery

    1991-01-01

    The dynamic control of a Closed Ecological Life Support System (CELSS) in a closed space habitat is of critical importance. The development of a practical method of control is also a necessary step for the selection and design of realistic subsystems and processors for a CELSS. Diet is one of the dynamic factors that strongly influences, and is influenced, by the operational states of all major CELSS subsystems. The problems of design and maintenance of a stable diet must be obtained from well characterized expert subsystems. The general description of a mathematical model that forms the basis of an expert control program for a CELSS is described. The formulation is expressed in terms of a complete set of time dependent canonical variables. System representation is dynamic and includes time dependent storage buffers. The details of the algorithm are described. The steady state results of the application of the method for representative diets made from wheat, potato, and soybean are presented.

  1. Publications of the NASA Controlled Ecological Life Support Systems (CELSS) Program 1984-86

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Publications of research sponsored by the NASA CELSS (Controlled Ecological Life Support Systems) Program are listed, along with publications of interest to the Program. The bibliography is divided into the three major divisions of CELSS research: (1) Food Production; (2) Waste Management; and (3) Systems Management and Control. This bibliography is an update of NASA CR-3911 and includes references from 1984 through 1986.

  2. CELSS and regenerative life support for manned missions to MARS

    NASA Technical Reports Server (NTRS)

    Mcelroy, R. D.

    1986-01-01

    In the mid 1990's, the space station will become a point from which inter-planetary vehicles can be launched. The practicalities of a manned Mars mission are now being studied, along with some newer concepts for human life support. Specifically, the use of organisms such as plants and algae as the basis for life support systems is now being actively considered. A Controlled Ecological Life Support System (CELSS) is composed of several facilities: (1) to grow photosynthetic plants or algae which will produce food, oxygen and potable water, and remove carbon dioxide exhaled by a crew; (2) to process biomass into food; (3) to oxidize organic wastes into CO2; and (4) to maintain system operation and stability. Such a system, when compared to using materials stored at launch, may have distinct weight and cost advantages, depending upon crew size and mission duration, as well as psychological benefits for the crew. The use of the system during transit, as well as in establishing a re-visitable surface camp, will increase the attractiveness of the CELSS concept for life support on interplanetary missions.

  3. Publications of the NASA Controlled Ecological Life Support System (CELSS) Program, 1979-1989

    NASA Technical Reports Server (NTRS)

    Wallace, Janice S.; Powers, Janet V.

    1990-01-01

    Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) Program from 1979 to 1989 are listed. The CELSS Program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system that continually recycles the solid, liquid, and gaseous materials essential for human life. The bibliography is divided into four major subject areas: food production, nutritional requirements, waste management, and systems management and control.

  4. The Lunar CELSS Test Module

    NASA Technical Reports Server (NTRS)

    Hoehn, Alexander; Gomez, Shawn; Luttges, Marvin W.

    1992-01-01

    The evolutionarily-developed Lunar Controlled Ecological Life Support System (CELSS) Test Module presented can address questions concerning long-term human presence-related issues both at LEO and in the lunar environment. By achieving well-defined research goals at each of numerous developmental stages (each economically modest), easily justifiable operations can be undertaken. Attention is given to the possibility of maximizing non-NASA involvement in these CELSS developmental efforts via the careful definability and modest risk of each developmental stage.

  5. Reproducible analyses of microbial food for advanced life support systems

    NASA Technical Reports Server (NTRS)

    Petersen, Gene R.

    1988-01-01

    The use of yeasts in controlled ecological life support systems (CELSS) for microbial food regeneration in space required the accurate and reproducible analysis of intracellular carbohydrate and protein levels. The reproducible analysis of glycogen was a key element in estimating overall content of edibles in candidate yeast strains. Typical analytical methods for estimating glycogen in Saccharomyces were not found to be entirely aplicable to other candidate strains. Rigorous cell lysis coupled with acid/base fractionation followed by specific enzymatic glycogen analyses were required to obtain accurate results in two strains of Candida. A profile of edible fractions of these strains was then determined. The suitability of yeasts as food sources in CELSS food production processes is discussed.

  6. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants in control hydroponic solution containing pure deionized water, no growth difference could be measured resulting from any of the recovered water treatments. Both biological treatment and VCD offer alternative technology approaches to recovering water from waste streams appropriate for input into a crop production system. A high level of crop performance (food, air, and water production) can be maintained with either processor; selection decisions can be based on other factors regarding system integration.

  7. The CELSS Antarctic Analog Project: An Advanced Life Support Testbed at the Amundsen-Scott South Pole Station, Antarctica

    NASA Technical Reports Server (NTRS)

    Straight, Christian L.; Bubenheim, David L.; Bates, Maynard E.; Flynn, Michael T.

    1994-01-01

    CELSS Antarctic Analog Project (CAAP) represents a logical solution to the multiple objectives of both the NASA and the National Science Foundation (NSF). CAAP will result in direct transfer of proven technologies and systems, proven under the most rigorous of conditions, to the NSF and to society at large. This project goes beyond, as it must, the generally accepted scope of CELSS and life support systems including the issues of power generation, human dynamics, community systems, and training. CAAP provides a vivid and starkly realistic testbed of Controlled Ecological Life Support System (CELSS) and life support systems and methods. CAAP will also be critical in the development and validation of performance parameters for future advanced life support systems.

  8. Controlled environment life support system: Calcium-related leaf injuries on plants

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.

    1985-01-01

    A calcium related injury in lettuce termed tipburn was the focus of this study. It affects the young developing leaves as they become enclosed during head formation. It is a good model system to study because the injury can be induced with good predictability and lettuce is one of the crops chosen by the CELSS program for concentrated study. Investigations were undertaken to study a number of different procedures, that would have the potential for encouraging movement of calcium into the young developing leaves and to study the time course and pattern of calcium accumulation in developing leaves to provide a basis for developing effective control procedures for this injury.

  9. Analysis of remote reflectin spectroscopy to monitor plant health

    NASA Technical Reports Server (NTRS)

    Woodhouse, R.; Heeb, M.; Berry, W.; Hoshizaki, T.; Wood, M.

    1994-01-01

    Remote non-contact reflection spectroscopy is examined as a method for detecting stress in Controlled Ecological Life Support System (CELSS) type crops. Lettuce (Latuca Sativa L. cv. Waldmans Green) and wheat (Triticum Aestivum L. cv. Yecora Rojo) were grown hydroponically. Copper and zinc treatments provided toxic conditions. Nitrogen, phosphorous, and potassium treatments were used for deficiency conditions. Water stress was also induced in test plants. Reflectance spectra were obtained in the visible and near infrared (400nm to 2600nm) wavebands. Numerous effects of stress conditions can be observed in the collected spectra and this technique appears to have promise as a remote monitor of plant health, but significant research remains to be conducted to realize the promise.

  10. Use of Martian resources in a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.; Macelroy, Robert D.

    1989-01-01

    Possibile crew life support systems for Mars are reviewed, focusing on ways to use Martian resources as life support materials. A system for bioregenerative life support using photosynthetic organisms, known as the Controlled Ecological Life Support System (CELSS), is examined. The possible use of higher plants or algae to produce oxygen on Mars is investigated. The specific requirements for a CELSS on Mars are considered. The exploitation of water, respiratory gases, and mineral nutrients on Mars is discussed.

  11. A new relative referencing method for crop monitoring using chlorophyll fluorescence

    NASA Technical Reports Server (NTRS)

    Norikane, J.; Goto, E.; Kurata, K.; Takakura, T.

    2003-01-01

    The measurement of plant chlorophyll fluorescence has been used for many years as a method to monitor a plant's health status. These types of methods have been mostly relegated to the laboratory. The newly developed Relative Referencing Method allows for the measurement of chlorophyll fluorescence under artificial lighting conditions. The fluorescence signal can be determined by first taking a reference signal measurement, then a second measurement with an additional fluorescence excitation source. The first signal can then be subtracted from the second and the plant's chlorophyll fluorescence due to the second lighting source can be determined. With this simple approach, a photosynthesizing plant can be monitored to detect signs of water stress. Using this approach experiments on tomato plants have shown that it was possible to detect water stress, while the plants were continuously illuminated by fluorescent lamps. This method is a promising tool for the remote monitoring of crops grown in a CELSS-type application. Published by Elsevier Science Ltd on behalf of COSPAR.

  12. A summary of porous tube plant nutrient delivery system investigations from 1985 to 1991

    NASA Technical Reports Server (NTRS)

    Dreschel, T. W.; Brown, C. S.; Piastuch, W. C.; Hinkle, C. R.; Sager, J. C.; Wheeler, R. M.; Knott, W. M.

    1992-01-01

    The Controlled Ecological Life Support System (CELSS) Program is a research effort to evaluate biological processes at a one person scale to provide air, water, and food for humans in closed environments for space habitation. This program focuses currently on the use of conventional crop plants and the use of hydroponic systems to grow them. Because conventional hydroponic systems are dependent on gravity to conduct solution flow, they cannot be used in the microgravity of space. Thus, there is a need for a system that will deliver water and nutrients to plant roots under microgravity conditions. The Plant Space Biology Program is interested in investigating the effect that the space environment has on the growth and development of plants. Thus, there is also a need to have a standard nutrient delivery method for growing plants in space for research into plant responses to microgravity. The Porous Tube Plant Nutrient Delivery System (PTPNDS) utilizes a hydrophilic, microporous material to control water and nutrient delivery to plant roots. It has been designed and analyzed to support plant growth independent of gravity and plans are progressing to test it in microgravity. It has been used successfully to grow food crops to maturity in an earth-bound laboratory. This document includes a bibliography and summary reports from the growth trials performed utilizing the PTPNDS.

  13. The CELSS research program - A brief review of recent activities

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Tremor, J.; Bubenheim, D. L.; Gale, J.

    1989-01-01

    The history of the Controlled Ecological Life Support System program, initiated by NASA in the late 1970s to explore the use of bioregenerative methods of life support, is reviewed. The project focused on examining the process involved in converting inorganic minerals and gases into life support materials using sunlight as the primary energy source. The research, planning, and technological development required by the CELSS program and conducted at NASA field centers, at various universities, and by commercial organizations are reviewed. Research activities at universities have focused upon exploring methods of reducing the size of the system, reducing system power requirements, understanding issues that are associated with its long-term stability, and identifying new technologies that might be useful in improving its efficiency. Research activities at Ames research center have focused on the use of common duckweed as a high biomass-producing plant, which is high in protein and on waste processing.

  14. Non-conventional approaches to food processing in CELSS. I - Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae (Scenedesmus obliquus) cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine makes algal protein isolate a high quality component of CELSS diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical CO2 resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  15. Algal culture studies for CELSS

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Arnett, K.; Gladue, R.; Cox, J.; Lieberman, D.

    1987-01-01

    Microalgae are well-suited as a component of a Closed Environmental Life Support System (CELSS), since they can couple the closely related functions of food production and atmospheric regeneration. The objective was to provide a basis for predicting the response of CELSS algal cultures, and thus the food supply and air regeneration system, to changes in the culture parameters. Scenedesmus growth was measured as a function of light intensity, and the spectral dependence of light absorption by the algae as well as algal respiration in the light were determined as a function of cell concentration. These results were used to test and confirm a mathematical model that describes the productivity of an algal culture in terms of the competing processes of photosynthesis and respiration. The relationship of algal productivity to cell concentration was determined at different carbon dioxide concentrations, temperatures, and light intensities. The maximum productivity achieved by an air-grown culture was found to be within 10% of the computed maximum productivity, indicating that CO2 was very efficiently removed from the gas stream by the algal culture. Measurements of biomass productivity as a function of cell concentration at different light intensities indicated that both the productivity and efficiency of light utilization were greater at higher light intensities.

  16. A simple, mass balance model of carbon flow in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1989-01-01

    Internal cycling of chemical elements is a fundamental aspect of a Controlled Ecological Life Support System (CELSS). Mathematical models are useful tools for evaluating fluxes and reservoirs of elements associated with potential CELSS configurations. A simple mass balance model of carbon flow in CELSS was developed based on data from the CELSS Breadboard project at Kennedy Space Center. All carbon reservoirs and fluxes were calculated based on steady state conditions and modelled using linear, donor-controlled transfer coefficients. The linear expression of photosynthetic flux was replaced with Michaelis-Menten kinetics based on dynamical analysis of the model which found that the latter produced more adequate model output. Sensitivity analysis of the model indicated that accurate determination of the maximum rate of gross primary production is critical to the development of an accurate model of carbon flow. Atmospheric carbon dioxide was particularly sensitive to changes in photosynthetic rate. The small reservoir of CO2 relative to large CO2 fluxes increases the potential for volatility in CO2 concentration. Feedback control mechanisms regulating CO2 concentration will probably be necessary in a CELSS to reduce this system instability.

  17. The effect of radiation on the long term productivity of a plant based CELSS

    NASA Technical Reports Server (NTRS)

    Thompson, B. G.; Lake, B. H.

    1987-01-01

    Mutations occur at a higher rate in space than under terrestrial conditions, primarily due to an increase in radiation levels. These mutations may effect the productivity of plants found in a controlled ecological life support system (CELSS). Computer simulations of plants with different ploidies, modes of reproduction, lethality thresholds, viability thresholds and susceptibilities to radiation induced mutations were performed under space normal and solar flare conditions. These simulations identified plant characteristics that would enable plants to retain high productivities over time in a CELSS.

  18. A role for the diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, in nitrogen cycling for CELSS applications.

    PubMed

    Schneegurt, M A; Sherman, L A

    1996-01-01

    Simple calculations show that fixed nitrogen regeneration in a CELSS may not be as efficient as stowage and resupply of fixed nitrogen compounds. However, fixed nitrogen regeneration may be important for the sustainability and safety of a deployed CELSS. Cyanothece sp. strain ATCC 51142, a unicellular, aerobic, diazotrophic cyanobacterium, with high growth rates and a robust metabolism, is a reasonable candidate organism for a biological, fixed nitrogen regeneration system. In addition, Cyanothece sp. cultures may be used to balance gas exchange ratio imparities between plants and humans. The regeneration of fixed nitrogen compounds by cyanobacterial cultures was examined in the context of a broad computer model/simulation (called CELSS-3D). When cyanothece sp. cultures were used to balance gas exchange imparities, the biomass harvested could supply as much as half of the total fixed nitrogen needed for plant biomass production.

  19. Object-oriented model-driven control

    NASA Technical Reports Server (NTRS)

    Drysdale, A.; Mcroberts, M.; Sager, J.; Wheeler, R.

    1994-01-01

    A monitoring and control subsystem architecture has been developed that capitalizes on the use of modeldriven monitoring and predictive control, knowledge-based data representation, and artificial reasoning in an operator support mode. We have developed an object-oriented model of a Controlled Ecological Life Support System (CELSS). The model based on the NASA Kennedy Space Center CELSS breadboard data, tracks carbon, hydrogen, and oxygen, carbodioxide, and water. It estimates and tracks resorce-related parameters such as mass, energy, and manpower measurements such as growing area required for balance. We are developing an interface with the breadboard systems that is compatible with artificial reasoning. Initial work is being done on use of expert systems and user interface development. This paper presents an approach to defining universally applicable CELSS monitor and control issues, and implementing appropriate monitor and control capability for a particular instance: the KSC CELSS Breadboard Facility.

  20. Incineration for resource recovery in a closed ecological life support system

    NASA Technical Reports Server (NTRS)

    Upadhye, R. S.; Wignarajah, K.; Wydeven, T.

    1993-01-01

    A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.

  1. Calcium bioavailability of vegetarian diets in rats: potential application in a bioregenerative life-support system.

    PubMed

    Nickel, K P; Nielsen, S S; Smart, D J; Mitchell, C A; Belury, M A

    1997-01-01

    Calcium bioavailability of vegetarian diets containing various proportions of candidate crops for a controlled ecological life-support system (CELSS) was determined by femur 45Ca uptake. Three vegetarian diets and a control diet were labeled extrinsically with 45Ca and fed to 5-wk old male rats. A fifth group of rats fed an unlabeled control diet received an intraperitoneal (IP) injection of 45Ca. There was no significant difference in mean calcium absorption of vegetarian diets (90.80 +/- 5.23%) and control diet (87.85 +/- 5.25%) when calculated as the percent of an IP dose. The amounts of phytate, oxalate, and dietary fiber in the diets did not affect calcium absorption.

  2. Calcium bioavailability of vegetarian diets in rats: potential application in a bioregenerative life-support system

    NASA Technical Reports Server (NTRS)

    Nickel, K. P.; Nielsen, S. S.; Smart, D. J.; Mitchell, C. A.; Belury, M. A.

    1997-01-01

    Calcium bioavailability of vegetarian diets containing various proportions of candidate crops for a controlled ecological life-support system (CELSS) was determined by femur 45Ca uptake. Three vegetarian diets and a control diet were labeled extrinsically with 45Ca and fed to 5-wk old male rats. A fifth group of rats fed an unlabeled control diet received an intraperitoneal (IP) injection of 45Ca. There was no significant difference in mean calcium absorption of vegetarian diets (90.80 +/- 5.23%) and control diet (87.85 +/- 5.25%) when calculated as the percent of an IP dose. The amounts of phytate, oxalate, and dietary fiber in the diets did not affect calcium absorption.

  3. Incineration as a method for resource recovery from inedible biomass in a Controlled Ecological Life Support System.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1995-01-01

    Resource recovery from waste streams in a space habitat is essential to minimize the resupply burden and achieve self-sufficiency. In a Controlled Ecological Life Support System (CELSS) human wastes and inedible biomass will represent significant sources of secondary raw materials necessary for support of crop plant production (carbon, water, and inorganic plant nutrients). Incineration, pyrolysis, and water extraction have been investigated as candidate processes for recovery of these important resources from inedible biomass in a CELSS. During incineration CO2 is produced by oxidation of the organic components and this product can be directly utilized by plants. Water is concomitantly produced, requiring only a phase change for recovery. Recovery of inorganics is more difficult, requiring solubilization of the incinerator ash. The process of incineration followed by water solubilization of ash resulted in loss of 35% of the inorganics originally present in the biomass. Losses were attributed to volatilization (8%) and non-water-soluble ash (27%). All of the ash remaining following incineration could be solubilized with acid, with losses resulting from volatilization only. The recovery for individual elements varied. Elemental retention in the ash ranged from 100% of that present in the biomass for Ca, P, Mg, Na, and Si to 10% for Zn. The greatest water solubility was observed for potassium with recovery of approximately 77% of that present in the straw. Potassium represented 80% of the inorganic constituents in the wheat straw, and because of slightly greater solubility made up 86% of the water-soluble ash. Following incineration of inedible biomass from wheat, 65% of the inorganics originally present in the straw were recovered by water solubilization and 92% recovered by acid solubilization. Recovery of resources is more complex for pyrolysis and water extraction. Recovery of carbon, a resource of greater mass than the inorganic component of biomass, is more difficult following pyrolysis and water extraction of biomass. In both cases, additional processors would be required to provide products equivalent to those resulting from incineration alone. The carbon, water, and inorganic resources of inedible biomass are effectively separated and output in usable forms through incineration.

  4. Incineration as a Method for Resource Recovery from Inedible Biomass in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Wignarajah, Kanapathipillai

    1995-01-01

    Resource recovery from waste streams in a space habitat is essential to minimize the resupply burden and achieve self-sufficiency. In a Controlled Ecological Life Support System (CELSS) human wastes and inedible biomass will represent significant sources of secondary raw materials necessary for support of crop plant production (carbon, water, and inorganic plant nutrients). Incineration, pyrolysis, and water extraction have been investigated as candidate processes for recovery of these important resources from inedible biomass in a CELSS. During incineration CO2 is produced by oxidation of the organic components and this product can be directly utilized by plants. Water is concomitantly produced, requiring only a phase change for recovery. Recovery of inorganics is more difficult, requiring solubilization of the incinerator ash. The process of incineration followed by water solubilization of ash resulted in loss of 35% of the inorganics originally present in the biomass. Losses were attributed to volatilization (8%) and non-water-soluble ash (27%). All of the ash remaining following incineration could be solubilized with acid, with losses resulting from volatilization only. The recovery for individual elements varied. Elemental retention in the ash ranged from 100% of that present in the biomass for Ca, P, Mg, Na, and Si to 10% for Zn. The greatest water solubility was observed for potassium with recovery of approximately 77% of that present in the straw. Potassium represented 80% of the inorganic constituents in the wheat straw, and because of slightly greater solubility made up 86% of the water-soluble ash. Following incineration of inedible biomass from wheat, 65% of the inorganics originally present in the straw were recovered by water solubilization and 92% recovered by acid solubilization. Recovery of resources is more complex for pyrolysis and water extraction. Recovery of carbon, a resource of greater mass than the inorganic component of biomass, is more difficult following pyrolysis and water extraction of biomass. In both cases, additional processors would be required to provide products equivalent to those resulting from incineration alone. The carbon, water, and organic resources of inedible biomass are effectively separated and output in usable forms through incineration.

  5. Use of inedible wheat residues from the KSC-CELSS breadboard facility for production of fungal cellulase

    NASA Technical Reports Server (NTRS)

    Strayer, R. F.; Brannon, M. A.; Garland, J. L.

    1990-01-01

    Cellulose and xylan (a hemicellulose) comprise 50 percent of inedible wheat residue (which is 60 percent of total wheat biomass) produced in the Kennedy Space Center Closed Ecological Life Support System (CELSS) Breadboard Biomass Production Chamber (BPC). These polysaccharides can be converted by enzymatic hydrolysis into useful monosaccharides, thus maximizing the use of BPC volume and energy, and minimizing waste material to be treated. The evaluation of CELSS-derived wheat residues for production for cellulase enzyme complex by Trichoderma reesei and supplemental beta-glucosidase by Aspergillus phoenicis is in progress. Results to date are given.

  6. Design and testing of a model CELSS chamber robot

    NASA Astrophysics Data System (ADS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; McCarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-08-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system. A stability pre-test was used to determine whether the model robot arm would tip over on the stand when it was fully extended. Results showed the stand tipped when 50 Newtons were applied horizontally to the top of the vertical shaft while the arm was fully extended.

  7. Design and testing of a model CELSS chamber robot

    NASA Technical Reports Server (NTRS)

    Davis, Mark; Dezego, Shawn; Jones, Kinzy; Kewley, Christopher; Langlais, Mike; Mccarthy, John; Penny, Damon; Bonner, Tom; Funderburke, C. Ashley; Hailey, Ruth

    1994-01-01

    A robot system for use in an enclosed environment was designed and tested. The conceptual design will be used to assist in research performed by the Controlled Ecological Life Support System (CELSS) project. Design specifications include maximum load capacity, operation at specified environmental conditions, low maintenance, and safety. The robot system must not be hazardous to the sealed environment, and be capable of stowing and deploying within a minimum area of the CELSS chamber facility. This design consists of a telescoping robot arm that slides vertically on a shaft positioned in the center of the CELSS chamber. The telescoping robot arm consists of a series of links which can be fully extended to a length equal to the radius of the working envelope of the CELSS chamber. The vertical motion of the robot arm is achieved through the use of a combination ball screw/ball spline actuator system. The robot arm rotates cylindrically about the vertical axis through use of a turntable bearing attached to a central mounting structure fitted to the actuator shaft. The shaft is installed in an overhead rail system allowing the entire structure to be stowed and deployed within the CELSS chamber. The overhead rail system is located above the chamber's upper lamps and extends to the center of the CELSS chamber. The mounting interface of the actuator shaft and rail system allows the entire actuator shaft to be detached and removed from the CELSS chamber. When the actuator shaft is deployed, it is held fixed at the bottom of the chamber by placing a square knob on the bottom of the shaft into a recessed square fitting in the bottom of the chamber floor. A support boot ensures the rigidity of the shaft. Three student teams combined into one group designed a model of the CELSS chamber robot that they could build. They investigated materials, availability, and strength in their design. After the model arm and stand were built, the class performed pre-tests on the entire system. A stability pre-test was used to determine whether the model robot arm would tip over on the stand when it was fully extended. Results showed the stand tipped when 50 Newtons were applied horizontally to the top of the vertical shaft while the arm was fully extended. This proved that it was stable. Another pre-test was the actuator slip test used to determine if there is an adequate coefficient of friction between the actuator drive wheels and drive cable to enable the actuator to fully extend and retract the arm. This pre-test revealed that the coefficient of friction was not large enough to prevent slippage. Sandpaper was glued to the drive wheel and this eliminated the slippage problem. The class preformed a fit test in the CELSS chamber to ensure that the completed robot arm is capable of reaching the entire working envelope. The robot was centered in the chamber and the arm was fully extended to the sides of the chamber. The arm was also able to retract to clear the drain pipes separating the upper and lower plant trays.

  8. CELSS scenario analysis: Breakeven calculations

    NASA Technical Reports Server (NTRS)

    Mason, R. M.

    1980-01-01

    A model of the relative mass requirements of food production components in a controlled ecological life support system (CELSS) based on regenerative concepts is described. Included are a discussion of model scope, structure, and example calculations. Computer programs for cultivar and breakeven calculations are also included.

  9. An overview of Japanese CELSS research activities

    NASA Technical Reports Server (NTRS)

    Nitta, Keiji

    1987-01-01

    Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.

  10. Plant diversity to support humans in a CELSS ground based demonstrator

    NASA Technical Reports Server (NTRS)

    Howe, J. M.; Hoff, J. E.

    1981-01-01

    A controlled ecological life support system (CELSS) for human habitation in preparation for future long duration space flights is considered. The success of such a system depends upon the feasibility of revitalization of food resources and the human nutritional needs which are to be met by these food resources. Edible higher plants are prime candidates for the photoautotrophic components of this system if nutritionally adequate diets can be derived from these plant sources to support humans. Human nutritional requirements information based on current knowledge are developed for inhabitants envisioned in the CELSS ground based demonstrator. Groups of plant products that can provide the nutrients are identified.

  11. Performance and reliability of the NASA biomass production chamber

    NASA Technical Reports Server (NTRS)

    Fortson, R. E.; Sager, J. C.; Chetirkin, P. V.

    1994-01-01

    The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of CELSS, are discussed.

  12. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R. O.; Ollinger, O.; Venables, A.; Fernandez, E.

    1982-01-01

    Studies with algal cultures which relate to closed ecological life support systems (CELSS) are discussed. A description of a constant cell density apparatus for continuous culture of algae is included. Excretion of algal by-products, and nitrogen utilization and excretion are discussed.

  13. The maximization of the productivity of aquatic plants for use in controlled ecological life support systems (CELSS).

    PubMed

    Thompson, B G

    1989-03-01

    Lemna minor (common duckweed) and a Wolffia sp. were grown in submerged growth systems. Submerged growth increased the productivity unit volume (P/UV) of the organisms and may allow these plants to be used in a controlled ecological life support system (CELSS).

  14. Research on some functions of Azolla in CELSS system

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Min, Chen; Xia-shi, Liu; Chungchu, Liu

    This article detailed the possibility of using Azolla in CELSS system, the characters of Azolla; the experiments on using Azolla as O 2-releasing plant to provide O 2 for human in airtight chamber; using Azolla as an important biological part for urine solution purification was also introduced.

  15. The maximization of the productivity of aquatic plants for use in controlled ecological life support systems (CELSS)

    NASA Astrophysics Data System (ADS)

    Thompson, B. G.

    Lemna minor (common duckweed) and a Wolffia sp. were grown in submerged growth systems. Submerged growth increased the productivity/unit volume (P/UV) of the organisms and may allow these plants to be used in a controlled ecological life support system (CELSS).

  16. Plants for water recycling, oxygen regeneration and food production

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.

    1991-01-01

    During long-duration space missions that require recycling and regeneration of life support materials the major human wastes to be converted to usable forms are CO2, hygiene water, urine and feces. A Controlled Ecological Life Support System (CELSS) relies on the air revitalization, water purification and food production capabilities of higher plants to rejuvenate human wastes and replenish the life support materials. The key processes in such a system are photosynthesis, whereby green plants utilize light energy to produce food and oxygen while removing CO2 from the atmosphere, and transpiration, the evaporation of water from the plant. CELSS research has emphasized the food production capacity and efforts to minimize the area/volume of higher plants required to satisfy all human life support needs. Plants are a dynamic system capable of being manipulated to favour the supply of individual products as desired. The size and energy required for a CELSS that provides virtually all human needs are determined by the food production capacity. Growing conditions maximizing food production do not maximize transpiration of water; conditions favoring transpiration and scaling to recycle only water significantly reduces the area, volume, and energy inputs per person. Likewise, system size can be adjusted to satisfy the air regeneration needs. Requirements of a waste management system supplying inputs to maintain maximum plant productivity are clear. The ability of plants to play an active role in waste processing and the consequence in terms of degraded plant performance are not well characterized. Plant-based life support systems represent the only potential for self sufficiency and food production in an extra-terrestrial habitat.

  17. Growing Food for Space and Earth: NASA's Contributions to Vertical Agriculture

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond M.

    2015-01-01

    Beginning in the 1980s with NASA's Controlled Ecological Life Support System (CELSS) Program and later the 1990s and early 2000s with the Advanced Life Support Project, NASA conducted extensive testing with crops in controlled environment conditions. One series of tests conducted at Kennedy Space Center used a large chamber with vertically stacked shelves to support hydroponic growing trays, with a bank of electric lamps above each shelf. This is essentially the same approach that has become popular for use in so-called vertical agriculture systems, which attempts to optimize plant production in a fixed volume. Some of the findings and commonalities of NASA's work during this period and how it overlaps with current interests in vertical agriculture will be presented in the talk.

  18. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  19. Application of photosynthetic N2-fixing cyanobacteria to the CELSS program

    NASA Technical Reports Server (NTRS)

    Packer, L.; Fry, I.; Belkin, S.

    1986-01-01

    Commercially available air lift fermentors were used to simultaneously monitor biomass production, N2-fixation, photosynthesis, respiration, and sensitivity to oxidative damage during growth under various nutritional and light regimes, to establish a data base for the integration of these organisms into a Closed Ecological Life Support System (CELSS) program. Certain cyanobacterial species have the unique ability to reduce atmospheric N2 to organic nitrogen. These organisms combine the ease of cultivation characteristics of prokaryotes with the fully developed photosynthetic apparatus of higher plants. This, along with their ability to adapt to changes in their environment by modulation of certain biochemical pathways, make them attractive candidates for incorporation into the CELSS program.

  20. Controlled ecological life support system: Transportation analysis

    NASA Technical Reports Server (NTRS)

    Gustan, E.; Vinopal, T.

    1982-01-01

    This report discusses a study utilizing a systems analysis approach to determine which NASA missions would benefit from controlled ecological life support system (CELSS) technology. The study focuses on manned missions selected from NASA planning forecasts covering the next half century. Comparison of various life support scenarios for the selected missions and characteristics of projected transportation systems provided data for cost evaluations. This approach identified missions that derived benefits from a CELSS, showed the magnitude of the potential cost savings, and indicated which system or combination of systems would apply. This report outlines the analytical approach used in the evaluation, describes the missions and systems considered, and sets forth the benefits derived from CELSS when applicable.

  1. Performance and reliability of the NASA Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Sager, J. C.; Chetirkin, P. V.

    1994-01-01

    The Biomass Production Chamber (BPC) at the Kennedy Space Center is part of the Controlled Ecological Life Support System (CELSS) Breadboard Project. Plants are grown in a closed environment in an effort to quantify their contributions to the requirements for life support. Performance of this system is described. Also, in building this system, data from component and subsystem failures are being recorded. These data are used to identify problem areas in the design and implementation. The techniques used to measure the reliability will be useful in the design and construction of future CELSS. Possible methods for determining the reliability of a green plant, the primary component of a CELSS, are discussed.

  2. Qualitative Reasoning methods for CELSS modeling.

    PubMed

    Guerrin, F; Bousson, K; Steyer JPh; Trave-Massuyes, L

    1994-11-01

    Qualitative Reasoning (QR) is a branch of Artificial Intelligence that arose from research on engineering problem solving. This paper describes the major QR methods and techniques, which, we believe, are capable of addressing some of the problems that are emphasized in the literature and posed by CELSS modeling, simulation, and control at the supervisory level.

  3. The controlled ecological life support system Antarctic analog project: Analysis of wastewater from the South Pole Station, Antarctica, volume 1

    NASA Technical Reports Server (NTRS)

    Flynn, Michael T.; Bubenheim, David L.; Straight, Christian L.; Belisle, Warren

    1994-01-01

    The Controlled Ecological Life Support system (CELSS) Antarctic Analog Project (CAAP) is a joint National Science Foundation (NSF) and NASA project for the development, deployment and operation of CELSS technologies at the Amundsen-Scott South Pole Station. NASA goals are operational testing of CELSS technologies and the conduct of scientific studies to facilitate technology selection and system design. The NSF goals are that the food production, water purification, and waste treatment capabilities which will be provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, and minimize environmental impacts associated with human presence on the polar plateau. This report presents an analysis of wastewater samples taken from the Amundsen-Scott South Pole Station, Antarctica. The purpose of the work is to develop a quantitative understanding of the characteristics of domestic sewage streams at the South Pole Station. This information will contribute to the design of a proposed plant growth/waste treatment system which is part of the CELSS Antarctic Analog Project (CAAP).

  4. Advanced life support systems in lunar and Martian environments utilizing a higher plant based engineering paradigm

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1992-01-01

    The paper describes a higher-plant-based engineering paradigm for advanced life support in a Controlled Ecological Life Support System (CELSS) on the surface of the moon or Mars, called the CELSS Breadboard Project, designed at John F. Kennedy Space Center. Such a higher-plant-based system would use the plants for a direct food source, gas exchange, water reclamation, and plant residuals in a complex biological resource recovery scheme. The CELSS Breadboard Project utilizes a 'breadboard' approach of developing independent systems that are evaluated autonomously and are later interconnected. Such a scheme will enable evaluation of life support system methodologies tested for their efficiency in a life support system for habitats on the moon or Mars.

  5. Development of Selection Criteria and Their Application in Evaluation of CELSS Candidate Species

    NASA Technical Reports Server (NTRS)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    A total of 21 criteria were considered; nine of them fall into the realm of human nutrition and convenience (the "use' criteria), and the remaining 12 are predominantly cultural considerations. Five criteria were considered to be of great importance in the selection of plant species and were given double eight relative to the remaining criteria. "Use' criteria include the following: energy concentration, nutritional composition, palatability, serving size and frequency, processing requirements, use flexibility, toxicity, and human experience. "Cultural' criteria include the following: proportion of edible biomass, yield of edible plant biomass, continuous vs. determinate harvestability, growth habit and morphology, environmental tolerance, photoperiodic and temperature requirements, symbiotic requirements and restrictions, carbon dioxide-light intensity response, suitability for soilless culture, disease resistance, familarity with species, and pollination and propagation. A total of 115 species were evaluated and scored according to suitability for a CELSS.

  6. Effects of photoperiod on wheat growth, development and yield in CELSS

    NASA Astrophysics Data System (ADS)

    Yunze, Shen; Shuangsheng, Guo

    2014-12-01

    A Controlled Ecological Life Support System (CELSS) is a sealed system used in spaceflight in order to provide astronauts with food and O2 by plants. It is of great significance to increase the energy-using efficiency because energy is extremely deficient in the space. Therefore, the objective of this research was to increase the energy-using efficiency of wheat by regulating the photoperiod. Sixteen treatments were set in total: four photoperiods before flowering (PBF) combined with four photoperiods after flowering (PAF) of 12 h, 16 h, 20 h and 24 h. The light source was red-blue LED (90% red+10% blue). As a result, the growth period of wheat was largely extended by shorter PBF, particularly the number of days from tillering to jointing and from jointing to heading. The period from flowering to maturity was extended by shorter PAF. Shorter PBF and longer PAF could increase not only the yield but also the energy-using efficiency of wheat. As for the nutritional quality, longer photoperiod (both PBF and PAF) increased starch concentration as well as decreased protein concentration of seeds. The effects of PBF and PAF were interactional. The lighting strategy with PBF of 12 h and PAF of 24 h was proved to be the optimum photoperiod for wheat cultivation in CELSS. The mechanisms of photoperiod effect contain two aspects. Firstly, photoperiod is a signal for many processes in plant growth, particularly the process of ear differentiation. Shorter PBF promoted the ear differentiation of wheat, increasing the spikelet number, floret number and seed number and thus enhancing the yield. Secondly, longer photoperiod leads to more light energy input and longer time of photosynthesis, so that longer PAF provided more photosynthate and increased seed yield.

  7. Distribution of human waste samples in relation to sizing waste processing in space

    NASA Technical Reports Server (NTRS)

    Parker, Dick; Gallagher, S. K.

    1992-01-01

    Human waste processing for closed ecological life support systems (CELSS) in space requires that there be an accurate knowledge of the quantity of wastes produced. Because initial CELSS will be handling relatively few individuals, it is important to know the variation that exists in the production of wastes rather than relying upon mean values that could result in undersizing equipment for a specific crew. On the other hand, because of the costs of orbiting equipment, it is important to design the equipment with a minimum of excess capacity because of the weight that extra capacity represents. A considerable quantity of information that had been independently gathered on waste production was examined in order to obtain estimates of equipment sizing requirements for handling waste loads from crews of 2 to 20 individuals. The recommended design for a crew of 8 should hold 34.5 liters per day (4315 ml/person/day) for urine and stool water and a little more than 1.25 kg per day (154 g/person/day) of human waste solids and sanitary supplies.

  8. Implementation of sensor and control designs for bioregenerative systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The EGM 4000/4001 Engineering Design class is an interdisciplinary design course that allows students to experience the design process. The projects involved the design of sensors and subsystems of a closed-loop life support system (CLLSS) with special emphasis on the Controlled Ecological Life Support System (CELSS) currently being developed at Kennedy Space Center (KSC) by NASA. To understand the work performed by the students, one must understand the purpose and concept of a CLLSS system. In the years to come, NASA will be constructing Moon bases and sending astronauts to other worlds on extended space missions. In order to support the crews, unreasonably large quantities of supplies would have to be sent from Earth. These supplies would be difficult to transport and require large holds. To remedy this problem, NASA plans to incorporate crops into the spacecraft. These crops would supply food for the crews, as well as provide beneficial psychological side effects. In addition, the plants would recycle the air and human waste and provide oxygen and water for the humans. The students in the design class were to work on supporting this project. In order to do this successfully, the course was separated into two phases. The first semester involved studying the various aspects of a CLLSS to determine sensing needs and develop ideas. The second semester involved first determining which of the ideas were most promising. Specific sensors were then designed and tested under laboratory conditions with promising results. Finally, recommendations for further development were proposed. Atmosphere and temperature control, nutrient delivery, plant health and propagation, and resource recycling are discussed.

  9. Develop Recovery Systems for Separations of Salts from Process Streams for use in Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1998-01-01

    The main objectives of this project were the development of a four-compartment electrolytic cell using high selective membranes to remove nitrate from crop residue leachate and convert it to nitric acid, and the development of an six compartment electrodialysis cell to remove selectively sodium from urine wastes. The recovery of both plant inedible biomass and human wastes nutrients to sustain a biomass production system are important aspects in the development of a controlled ecological life support system (CELSS) to provide the basic human needs required for life support during long term space missions. A four-compartment electrolytic cell has been proposed to remove selectively nitrate from crop residue and to convert it to nitric acid, which is actually used in the NASA-KSC Controlled Ecological Life Support System to control the pH of the aerobic bioreactors and biomass production chamber. Human activities in a closed system require large amount of air, water and minerals to sustain life and also generate wastes. Before using human wastes as nutrients, these must be treated to reduce organic content and to remove some minerals which have adverse effects on plant growth. Of all the minerals present in human urine, sodium chloride (NACl) is the only one that can not be used as nutrient for most plants. Human activities also requires sodium chloride as part of the diet. Therefore, technology to remove and recover sodium chloride from wastes is highly desirable. A six-compartment electrodialysis cell using high selective membranes has been proposed to remove and recover NaCl from human urine.

  10. Characterization of the Water Soluble Component of Inedible Residue from Candidate CELSS Crops

    NASA Technical Reports Server (NTRS)

    Garland, Jay

    1992-01-01

    Recycling of inorganic nutrients required for plant growth will be a necessary component of a fully closed, bioregenerative life support system. This research characterized the recovery of plant nutrients from the inedible fraction of three crop types (wheat, potato, and soybean) by soaking, or leaching, in water. A considerable portion of the dry weight of the inedible biomass was readily soluble (29 percent for soybean, 43 percent for wheat, and 52 percent for potato). Greater weight loss from potato was a result of higher tissue concentrations of potassium, nitrate, and phosphate. Approximately 25 percent of the organic content of the biomass was water soluble, while the majority of most inorganic nutrients, except for calcium and iron, were recovered in the leachate. Direct use of the leachates in hydroponic media could provide between 40-90 percent of plant nutrient demands for wheat, and 20-50 percent of demand for soybean and potato. Further evaluation of leaching as a component of resource recovery scheme in a bioregenerative system requires study of (1) utilization of plant leachates in hydroponic plant culture; and (2) conversion of organic material (both soluble and insoluble) into edible, or other useful, products.

  11. The first "space" vegetables have been grown in the "SVET" greenhouse by means of controlled environmental conditions.

    PubMed

    Ivanova, T N; Bercovich YuA; Mashinskiy, A L; Meleshko, G I

    1992-04-01

    The paper describes the project "SVET"--the creating of a small dimensions space greenhouse of new generation. By means of minicomputer, "SVET" is full-automatic operating and controlling environmental conditions system in the higher plants growth unit. A number of studies have selected the radish and cabbage vegetables as a potentially important crop for CELSS (short term cycle of vegetation). The "SVET" space greenhouse has been mounted on the "CRYSTAL" technological module which docked to the "MIR" orbital space station on June 10, 1990. Soviet cosmonauts Balandin and Solovyov started the first experiments with the greenhouse on June 15, 1990. The preliminary results of the seeds cultivation for the first 54-days period in "SVET" are presented. Morphometrical characteristics of the plants, brought back to the Earth are given. The vegetation peculiarities, such as the plants growth and the development slowing-down, or the dry substance contents raising are noted. For the first time, the root crop of radish plants at microgravity conditions, are produced. Characteristics of controlled plants' environment parameters and an estimation of functional properties of control and regulation systems of the "SVET" greenhouse in space flight according to telemetry data is given.

  12. Preparation and analysis of standardized waste samples for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Carden, J. L.; Browner, R.

    1982-01-01

    The preparation and analysis of standardized waste samples for controlled ecological life support systems (CELSS) are considered. Analysis of samples from wet oxidation experiments, the development of ion chromatographic techniques utilizing conventional high pressure liquid chromatography (HPLC) equipment, and an investigation of techniques for interfacing an ion chromatograph (IC) with an inductively coupled plasma optical emission spectrometer (ICPOES) are discussed.

  13. Genetic engineering possibilities for CELSS: A bibliography and summary of techniques

    NASA Technical Reports Server (NTRS)

    Johnson, E. J.

    1982-01-01

    A bibliography of the most useful techniques employed in genetic engineering of higher plants, bacteria associated with plants, and plant cell cultures is provided. A resume of state-of-the-art genetic engineering of plants and bacteria is presented. The potential application of plant bacterial genetic engineering to CELSS (Controlled Ecological Life Support System) program and future research needs are discussed.

  14. Manipulating cyanobacteria: Spirulina for potential CELSS diet

    NASA Technical Reports Server (NTRS)

    Tadros, Mahasin G.; Smith, Woodrow; Mbuthia, Peter; Joseph, Beverly

    1989-01-01

    Spirulina sp. as a bioregenerative photosynthetic and an edible alga for spacecraft crew in a CELSS, was characterized for the biomass yield in batch cultures, under various environmental conditions. The partitioning of the assimalitory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. Experiments with Spirulina have shown that under stress conditions (i.e., high light 160 uE/sq m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrates increased at the expense of proteins. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total of the algal could be manipulated by growth conditions. These results support the feasibility of considering Spirulina as a subsystem in CELSS because of the ease with which its nutrient content can be manipulated.

  15. Evaluation of engineering foods for closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1982-01-01

    A nutritionally adequate and acceptable diet was evaluated and developed. A design for a multipurpose food plant is discussed. The types and amounts of foods needed to be regenerated in a partially closed ecological life support system (PCELSS) were proposed. All steps of food processes to be utilized in the multipurpose food plant of PCELSS were also considered. Equipment specifications, simplification of the proposed processes, and food waste treatment were analyzed.

  16. Design of Sensors for Control of Closed Loop Life Support Systems

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A brief summary is presented of a Engineering Design sequence, a cooperation between NASA-Kennedy and the University of Florida on the Controlled Environmental Life Support System (CELSS) program. Part of the class was devoted to learning general principles and techniques of design. The next portion of the class was devoted to learning to design, actually fabricating and testing small components and subsystems of a CELSS.

  17. Nutrition and food technology for a Controlled Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Glaser, P. E.; Mabel, J. A.

    1981-01-01

    Food technology requirements and a nutritional strategy for a Controlled Ecological Life Support System (CELSS) to provide adequate food in an acceptable form in future space missions are discussed. The establishment of nutritional requirements, dietary goals, and a food service system to deliver acceptable foods in a safe and healthy form and the development of research goals and priorities were the main objectives of the study.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoehn, A.; Chamberlain, D.J.; Forsyth, S.W.

    PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). {ital Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens} were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center formore » Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support. {copyright} {ital 1997 American Institute of Physics.}« less

  19. Efficiency of N use by wheat as a function of influx and efflux of NO3

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1990-01-01

    Since N assimilation is one of the most costly functions of a plant, its efflux before assimilation results in a serious energy cost and loss in efficiency which could decrease yields. Efficient crop production is critical to the Closed Ecology Life Support System (CELSS). The objective is to determine the extent of efflux of the N species NO3(-), NH4(+), NO2(-), and urea after uptake, and possible means of regulation. Researchers found that NO3 efflux became serious as its substrate level increased. Efflux/Influx (E/I) of NO3(-) was greater in darkness (35 percent) than in light (14 percent), and the ratio greatly increased with substrate NO3 (-), (up to 45 percent at 10 mM). It seems advantageous to use the lowest possible nutrient concentration of NO3(-). The feasibility of using ClO3(-) was assessed and its toxicity determined.

  20. Integration of Biological, Physical/Chemical and Energy Efficient Systems in the CELSS Antarctic Analog: Performance of Prototype Systems and Issues for Life Support

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Lamparter, Richard; Bates, Maynard; Kliss, Mark (Technical Monitor)

    1998-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP), and the National Aeronautics and Space Administration (NASA). The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle, and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety, and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions, such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for waste treatment, water recycle, resource recovery and crop production are being evaluated in a testbed at Ames Research Center. The combined performance of these biological and physical/chemical systems as an integrated function in support of the human habitat will be discussed. Overall system performance will be emphasized. The effectiveness and efficiency of component technologies will be discussed in the context of energy and mass flow within the system and contribution to achieving a mass and energy conservative system. Critical to the discussion are interfaces with habitat functions outside of the closed-loop life support: the ability of the system to satisfy the life support requirements of the habitat and the ability to define input requirements. The significance of analog functions in relation to future Mars habitats will be discussed.

  1. Design of components for the NASA OCEAN project

    NASA Technical Reports Server (NTRS)

    Wright, Jenna (Editor); Clift, James; Dumais, Bryan; Gardner, Shannon; Hernandez, Juan Carlos; Nolan, Laura; Park, Mia; Peoples, Don; Phillips, Elizabeth; Tillman, Mark

    1993-01-01

    The goal of the Fall 1993 semester of the EGM 4000 class was to design, fabricate, and test components for the 'Ocean CELSS Experimental Analog NASA' Project (OCEAN Project) and to aid in the future development of NASA's Controlled Ecological Life Support System (CELSS). The OCEAN project's specific aims are to place a human, Mr. Dennis Chamberland from NASA's Life Science Division of Research, into an underwater habitat off the shore of Key Largo, FL for three months. During his stay, he will monitor the hydroponic growth of food crops and evaluate the conditions necessary to have a successful harvest of edible food. The specific designs chosen to contribute to the OCEAN project by the EGM 4000 class are in the areas of hydroponic habitat monitoring, human health monitoring, and production of blue/green algae. The hydroponic monitoring system focused on monitoring the environment of the plants. This included the continuous sensing of the atmospheric and hydroponic nutrient solution temperatures. Methods for monitoring the continuous flow of the hydroponic nutrient solution across the plants and the continuous supply of power for these sensing devices were also incorporated into the design system. The human health monitoring system concentrated on continuously monitoring various concerns of the occupant in the underwater living habitat of the OCEAN project. These concerns included monitoring the enclosed environment for dangerous levels of carbon monoxide and smoke, high temperatures from fire, and the ceasing of the continuous airflow into the habitat. The blue/green algae project emphasized both the production and harvest of a future source of food. This project did not interact with any part of the OCEAN project. Rather, it was used to show the possibility of growing this kind of algae as a supplemental food source inside a controlled ecological life support system.

  2. Controlled Ecological Life Support System: Use of Higher Plants

    NASA Technical Reports Server (NTRS)

    Tibbits, T. W.; Alford, D. K.

    1982-01-01

    Results of two workshops concerning the use of higher plants in Controlled Ecological Life Support Systems (CELSS) are summarized. Criteria for plant selection were identified from these categories: food production, nutrition, oxygen production and carbon dioxide utilization, water recycling, waste recycling, and other morphological and physiological considerations. Types of plant species suitable for use in CELSS, growing procedures, and research priorities were recommended. Also included are productivity values for selected plant species.

  3. Recycling of trace elements required for humans in CELSS.

    PubMed

    Ashida, A

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  4. Recycling of trace elements required for humans in CELSS

    NASA Astrophysics Data System (ADS)

    Ashida, A.

    1994-11-01

    Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.

  5. Scenarios for optimizing potato productivity in a lunar CELSS

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Morrow, R. C.; Tibbitts, T. W.; Bula, R. J.

    1992-01-01

    The use of controlled ecological life support system (CELSS) in the development and growth of large-scale bases on the Moon will reduce the expense of supplying life support materials from Earth. Such systems would use plants to produce food and oxygen, remove carbon dioxide, and recycle water and minerals. In a lunar CELSS, several factors are likely to be limiting to plant productivity, including the availability of growing area, electrical power, and lamp/ballast weight for lighting systems. Several management scenarios are outlined in this discussion for the production of potatoes based on their response to irradiance, photoperiod, and carbon dioxide concentration. Management scenarios that use 12-hr photoperiods, high carbon dioxide concentrations, and movable lamp banks to alternately irradiate halves of the growing area appear to be the most efficient in terms of growing area, electrical power, and lamp weights. However, the optimal scenario will be dependent upon the relative 'costs' of each factor.

  6. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  7. Estimated flows of gases and carbon within CEEF ecosystem composed of human, crops and goats

    NASA Astrophysics Data System (ADS)

    Tako, Y.; Komatsubara, O.; Honda, G.; Arai, R.; Nitta, K.

    The Closed Ecology Experiment Facilities (CEEF) can be used as a test bed for Controlled Ecological Life Support Systems (CELSS), because technologies developed for the CEEF system facilitate self-sufficient material circulation necessary for long term missions such as Lunar and Mars exploration. In the experiment conducted under closed condition in FY2003, rice and soybeans were cultivated sequentially in two chambers and a chamber, each having a cultivation area of 30 m2 and floor area of 43 m2, inside the Plantation Module with artificial lighting of the CEEF. In the chamber having a cultivation area of 60 m2 and floor area of 65 m2, inside the Plantation Module with natural and artificial lighting, peanuts and safflowers were also cultivated. Stable transplant (or seeding) and harvest of each crop were maintained during a month. Flows of CO2, O2 and carbon to and from the crops were analyzed during the stable cultivation period. Simulated works and stay in the CEEF lasting five days were conducted two times under ventilating condition in FY2003. Gas exchange of human was estimated using heart rate data collected during the experiments and correlation between gas exchange rate and heart rate. Gas exchange rate and carbon balance of female goats were determined using an open-flow measurement system with a gastight chamber. From these results, flows of gases and carbon in the CEEF were discussed.

  8. Environmental and cultural considerations for growth of potatoes in CELSS

    NASA Technical Reports Server (NTRS)

    Tibbitts, Theodore W.; Bennett, Susan M.; Morrow, Robert C.

    1990-01-01

    The white potato (Solanum tuberosum) was evaluated for use in the Closed Ecology Life Support System (CELSS) because of its high ratio of edible to inedible biomass and highly nutritious tuber that consists of readily digestible carbohydrates and proteins. Results are given for conditions that will produce the highest yields. The results, given in tabluar form, indicate the optimum temperatures, irradiance, carbon dioxide concentration, root environment, plant spacing, root and stolen containment, and harvesting times.

  9. Nostoc sphaeroides Kützing, an excellent candidate producer for CELSS

    NASA Astrophysics Data System (ADS)

    Hao, Zongjie; Li, Dunhai; Li, Yanhui; Wang, Zhicong; Xiao, Yuan; Wang, Gaohong; Liu, Yongding; Hu, Chunxiang; Liu, Qifang

    2011-11-01

    Some phytoplankton can be regarded as possible candidates in the establishment of Controlled Ecological Life Support System (CELSS) for some intrinsic characteristics, the first characteristic is that they should grow rapidly, secondly, they should be able to endure some stress factors and develop some corresponding adaptive strategies; also it is very important that they could provide food rich in nutritious protein and vitamins for the crew; the last but not the least is they can also fulfill the other main functions of CELSS, including supplying oxygen, removing carbon dioxide and recycling the metabolic waste. According to these characteristics, Nostoc sphaeroides, a potential healthy food in China, was selected as the potential producer in CELSS. It was found that the oxygen average evolution rate of this algae is about 150 μmol O 2 mg -1 h -1, and the size of them are ranged from 2 to 20 mm. Also it can be cultured with high population density, which indicated that the potential productivity of Nostoc sphaeroides is higher than other algae in limited volume. We measured the nutrient contents of the cyanobacterium and concluded it was a good food for the crew. Based on above advantages, Nostoc sphaeroides was assumed to a suitable phytoplankton for the establishment of Controlled Ecological Life Support System. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food in future space missions.

  10. Human life support for advanced space exploration

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near-term technologies are adequate to implement a Lunar Base CELSS. There are no apparent "show-stoppers" which require the development of new technologies. However, there are several areas in which new materials and technologies could be used for a more efficient implementation of the system, e.g., by decreasing mass or power requirement and increasing recycling efficiency. These areas must be further addressed through research and development. Finally, although this study focused on the development of a Lunar Base CELSS, the same technologies and a nearly identical design would be appropriate for a Mars base. Actually, except for the distance of transportation, the implementation of a CELSS on Mars would even be easier than it would be on the Moon. The presence of atmospheric CO2 on Mars, although in low concentration, coupled with the fact that the day/night cycle on Mars is very similar to that on Earth, makes the use of light-weight, greenhouse-like structures for growing food plants even more feasible than on the Moon. There are some environmental problems, which would have to be dealt with, like dust storms and the large amount of the ultraviolet radiation incident on the planet's surface. However, the materials and methods are largely available today to develop such a life support system for a Mars base.

  11. Human life support for advanced space exploration.

    PubMed

    Schwartzkopf, S H

    1997-01-01

    The requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near-term technologies are adequate to implement a Lunar Base CELSS. There are no apparent "show-stoppers" which require the development of new technologies. However, there are several areas in which new materials and technologies could be used for a more efficient implementation of the system, e.g., by decreasing mass or power requirement and increasing recycling efficiency. These areas must be further addressed through research and development. Finally, although this study focused on the development of a Lunar Base CELSS, the same technologies and a nearly identical design would be appropriate for a Mars base. Actually, except for the distance of transportation, the implementation of a CELSS on Mars would even be easier than it would be on the Moon. The presence of atmospheric CO2 on Mars, although in low concentration, coupled with the fact that the day/night cycle on Mars is very similar to that on Earth, makes the use of light-weight, greenhouse-like structures for growing food plants even more feasible than on the Moon. There are some environmental problems, which would have to be dealt with, like dust storms and the large amount of the ultraviolet radiation incident on the planet's surface. However, the materials and methods are largely available today to develop such a life support system for a Mars base.

  12. Report of the 1st Planning Workshop for CELSS Flight Experimentation

    NASA Technical Reports Server (NTRS)

    Tremor, John W.; Macelroy, Robert D.

    1988-01-01

    A workshop held March 23 and 24, 1987 to establish a base upon which a CELSS flight experiment program will be developed, is summarized. The kind of information necessary for productivity assessment was determined. In addition, generic experiments necessary to gather that information were identified and prioritized. General problems of hardware and equipment were defined. The need for the hardware to provide a stress-free environment, not only for productivity, but also to make more readily identifiable disturbing mission factors, was recognized.

  13. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Astrophysics Data System (ADS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    Oxygen concentration and separation is an essential factor for air recycling in a CELSS. Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of O2 from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  14. General purpose free floating platform for KC-135 flight experimentation

    NASA Technical Reports Server (NTRS)

    Borchers, Bruce A.; Yendler, Boris S.; Kliss, Mark H.; Gonzales, Andrew A.; Edwards, Mark T.

    1994-01-01

    The Controlled Ecological Life Support Systems (CELSS) program is evaluating higher plants as a means of providing life support functions aboard space craft. These plant systems will be capable of regenerating air and water while meeting some of the food requirements of the crew. In order to grow plants in space, a series of systems are required to provide the necessary plant support functions. Some of the systems required for CELSS experiments are such that is is likely that existing technologies will require refinement, or novel technologies will need to be developed. To evaluate and test these technologies, a series of KC-135 precursor flights are being proposed. A general purpose free floating experiment platform is being developed to allow the KC-135 flights to be used to their fullest. This paper will outline the basic design for the CELSS Free Floating Test Bed (FFTB), and the requirements for the individual subsystems. Several preliminary experiments suitable for the free floater will also be discussed.

  15. Design of an elemental analysis system for CELSS research

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.

    1987-01-01

    The results of experiments conducted with higher plants in tightly sealed growth chambers provide definite evidence that the physical closure of a chamber has significant effects on many aspects of a plant's biology. One of these effects is seen in the change in rates of uptake, distribution, and re-release or nutrient elements by the plant (mass balance). Experimental data indicates that these rates are different from those recorded for plants grown in open field agriculture, or in open growth chambers. Since higher plants are a crucial component of a controlled ecological life support system (CELSS), it is important that the consequences of these rate differences be understood with regard to the growth and yield of the plants. A description of a system for elemental analysis which can be used to monitor the mass balance of nutrient elements in CELSS experiments is given. Additionally, data on the uptake of nutrient elements by higher plants grown in a growth chamber is presented.

  16. Nonlinear system controller design based on domain of attaction: An application to CELSS analysis and control

    NASA Technical Reports Server (NTRS)

    Babcock, P. S., IV

    1986-01-01

    Nonlinear system controller design based on the domain of attraction is presented. This is particularly suited to investigating Closed Ecological Life Support Systems (CELSS) models. In particular, the dynamic consequences of changes in the waste storage capacity and system mass, and how information is used for control in CELSS models are examined. The models' high dimensionality and nonlinear state equations make them difficult to analyze by any other technique. The domain of attraction is the region in initial conditions that tend toward an attractor and it is delineated by randomly selecting initial conditions from the region of state space being investigated. Error analysis is done by repeating the domain simulations with independent samples. A refinement of this region is the domain of performance which is the region of initial conditions meeting a performance criteria. In nonlinear systems, local stability does not insure stability over a larger region. The domain of attraction marks out this stability region; hence, it can be considered a measure of a nonlinear system's ability to recovery from state perturbations. Considering random perturbations, the minimum radius of the domain is a measure of the magnitude of perturbations for which recovery is guaranteed. Design of both linear and nonlinear controllers are shown. Three CELSS models, with 9 to 30 state variable, are presented. Measures of the domain of attraction are used to show the global behavior of these models under a variety of design and controller scenarios.

  17. The Influence of Power Limitations on Closed Environment Life Support System Applications

    NASA Technical Reports Server (NTRS)

    Flynn, Michael; Kliss, Mark (Technical Monitor)

    1997-01-01

    The future of manned space exploration will be determined through a process which balances the innate need of humanity to explore its surroundings and the costs associated with accomplishing these goals. For NASA, this balance is derived from economics and budgetary constraints that hold it accountable for the expenditure of public funds. These budgetary realities demand a reduction in cost and expenditures of exploration and research activities. For missions venturing out to the edge of habitability, the development of cost effective life support approaches will have a significant influence on mission viability. Over the past several years, a variety of mission scenarios for potential Lunar and Mars missions have been developed. The most promising of these scenarios attempt to provide basic mission requirements at a minimum cost. As a result, these scenarios are extremely power limited. For Closed Environment Life Support System (CELSS) applications, these realities impose both limitations and direction to future research. This paper presents a summary of these mission scenarios and an evaluation of the impact which these power limitations will have on CELSS system design.

  18. Metabolic support for a lunar base

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.

    1985-01-01

    A review of the metabolic support systems used and the metabolic support requirements provided on past and current spaceflight programs is presented. This review will provide familiarization with unique constraints of space flight and technology as it relates to inflight metabolic support of astronauts. This information, along with a general review of the NASA effort to develop a Controlled Ecological Life Support System (CELSS) will define the general scenario of metabolic support for a lunar base. A phased program of metabolic support for a lunar base will be elucidated. Included will be discussion of the CELSS water reclamation and food recycling technology as it now exists and how it could be expected to be progressively incorporated into the lunar base. This transition would be from a relatively open system in the initial development period, when mechanical phase change water reclamation and minimal plant growth are incorporated, to the final period when practically total closure of the life support system will be proved through physicochemical and biological processes. Finally, a review of the estimated metabolic intake requirements for the occupants of a lunar base will be presented.

  19. Plant Research

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Land's agricultural research team is testing new ways to sustain life in space as a research participant with Kennedy Space Center's Controlled Ecological Life Support System (CELSS). The Land, sponsored by Kraft General Foods, is an entertainment, research, and education facility at EPCOT Center, part of Walt Disney World. The cooperative effort is simultaneously a research and development program, a technology demonstration that provides the public to see high technology at work and an area of potential spinoff: the CELSS work may generate Earth use technology beneficial to the hydroponic (soilless growing) vegetable production industries of the world.

  20. Carbon use efficiency in optimal environments. [for photosynthesis in CELSS

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    1989-01-01

    The short- and long-term effects of environmental changes on plant productivity are studied using a model in which yield is determined by four factors: absorption of photosynthetic photon flux, photosynthetic efficiency, respiratory carbon use efficiency, and harvest index. The characteristics of the model are reviewed. Emphasis is given to the relationship between carbon use efficiency and yield. The biochemical pathways resulting in CO2 efflux are examined, including photorespiration, cyanide-resistant respiration, and dark respiration. The possibility of measuring photosynthesis and respiration in a CELSS is discussed.

  1. The role of plant disease in the development of controlled ecological life support systems

    NASA Technical Reports Server (NTRS)

    Nelson, B.

    1986-01-01

    Plant diseases could be important factors affecting growth of higher plants in Closed Ecological Life Support Systems (CELSS). Disease control, therefore, will be needed to maintain healthy plants. The most important controls should be aimed at preventing the introduction, reproduction and spread of pathogens and preventing plant infection. An integrared ease control program will maximize that approach. In the design and operation of CELSS, plant disease should be considered an important aspect of plant growth. The effects of plant diseases are reviewed and several disease control measures are discussed.

  2. Preliminary experimental results of gas recycling subsystems except carbon dioxide concentration

    NASA Technical Reports Server (NTRS)

    Otsuji, K.; Sawada, T.; Satoh, S.; Kanda, S.; Matsumura, H.; Kondo, S.; Otsubo, K.

    1987-01-01

    Oxygen concentration and separation is an essential factor for air recycling in a controlled ecological life support system (CELSS). Furthermore, if the value of the plant assimilatory quotient is not coincident with that of the animal respiratory quotient, the recovery of oxygen from the concentrated CO2 through chemical methods will become necessary to balance the gas contents in a CELSS. Therefore, oxygen concentration and separation equipment using Salcomine and O2 recovery equipment, such as Sabatier and Bosch reactors, were experimentally developed and tested.

  3. Efficiency of N use by wheat as a function of influx and efflux of NO sub 3

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1989-01-01

    Since N assimilation is one of the most costly functions of a plant, its efflux before assimilation results in a serious energy cost and loss in efficiency which could decrease yields. Efficient crop production is critical to the Controlled Ecological Life-Support System (CELSS). The objective is to determine the extent of efflux of the N species NO3(-), NH4(+), NO2(-), and urea after uptake, and possible means of regulation. It was found that NO3(-) efflux became serious as its substrate level increased. Efflux/Influx (E/I) of 3NO3(-) was greater in darkness (35 pct) than in light (14 pct) and the ratio greatly increased with increased substrate NO3(-), (up to 45 pct at 10 mM). It seems advantageous to use the lowest possible nutrient concentration of NO3(-). The feasibility of using ClO3(-) as a trapping agent (competitive inhibitor of NO3(-) uptake) for effluxed NO3(-) was assessed and its toxicity determined.

  4. 10 day flight performance of the plant generic bioprocessing apparatus (PGBA) plant growth facility aboard STS-77

    NASA Astrophysics Data System (ADS)

    Hoehn, Alex; Chamberlain, Dale J.; Forsyth, Sasha W.; Hanna, David S.; Scovazzo, Paul; Horner, Michael B.; Stodieck, Louis S.; Todd, Paul; Heyenga, A. Gerard; Kliss, Mark H.; Bula, Raymond; Yetka, Robert

    1997-01-01

    PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center for Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support.

  5. Growing wheat in Biosphere 2 under elevated CO2: observations and modeling

    NASA Technical Reports Server (NTRS)

    Tubiello, F. N.; Mahato, T.; Morton, T.; Druitt, J. W.; Volk, T.; Marino, B. D.

    1999-01-01

    Spring wheat (Triticum aestivum L., cv. Yecora Rojo) was grown in the intensive agricultural biome (IAB) of Biosphere 2 during the l995-l996 winter/spring season. Environmental conditions were characterized by a day/night temperature regime of 27/17 degrees C, relative humidity (RH) levels around 45%, mean atmospheric CO2 concentration of 450 ppmv, and natural light conditions with mean intensities about half of outside levels. Weekly samples of above-ground plant matter were collected throughout the growing season and phenological events recorded. A computer model, CERES-Wheat, previously tested under both field and controlled conditions, was used to simulate the observed crop growth and to help in data analysis. We found that CERES-Wheat simulated the data collected at Biosphere 2 to within 10% of observed, thus suggesting that wheat growth inside the IAB was comparable to that documented in other environments. The model predicts phenological stages and final dry matter (DM) production within l0% of the observed data. Measured DM production rates, normalized for light absorbed by the crop. suggested photosynthetic efficiencies intermediate between those observed under optimal field conditions and those recorded in NASA-Controlled Ecological Life-Support Systems (CELSS). We suggest that such a difference can be explained primarily in terms of low light levels inside the IAB, with additional effects due to elevated CO2 concentrations and diffuse light fractions.

  6. Sweet potato growth parameters, yield components and nutritive value for CELSS applications

    NASA Technical Reports Server (NTRS)

    Loretan, P. A.; Bonsi, C. K.; Hill, W. A.; Ogbuehi, C. R.; Mortley, D. G.

    1989-01-01

    Sweet potatoes have been grown hydroponically using the nutrient film technique (NFT) to provide a potential food source for long-term manned space missions. Experiments in both sand and NFT cultivars have produced up to 1790 g/plant of fresh storage root with an edible biomass index ranging from 60-89 percent and edible biomass linear growth rates of 39-66 g/sq m day in 105 to 130 days. Experiments with different cultivars, nutrient solution compositions, application rates, air and root temperatures, photoperiods, and light intensities indicate good potential for sweet potatoes in CELSS.

  7. Two new advanced forms of spectrometry for space and commercial applications

    NASA Technical Reports Server (NTRS)

    Schlager, Kenneth J.

    1991-01-01

    Reagentless ultraviolet absorption spectrometry (UVAS) and Liquid Atomic Emission Spectrometry (LAES) represent new forms of spectrometry with extensive potential in both space and commercial applications. Originally developed under KSC sponsorship for monitoring nutrient solutions for the Controlled Ecological Life Support System (CELSS), both UVAS and LAES have extensive analytical capabilities for both organic and inorganic chemical compounds. Both forms of instrumentation involve the use of remote fiber optic probes and real-time measurements for on-line process monitoring. Commercial applications exist primarily in environmental analysis and for process control in the chemical, pulp and paper, food processing, metal plating, and water/wastewater treatment industries.

  8. Non-methane hydrocarbons in a controlled ecological life support system.

    PubMed

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-02-01

    Non-methane hydrocarbons (NMHCs) are vital to people's health and plants' growth, especially inside a controlled ecological life support system (CELSS) built for long-term space explorations. In this study, we measured 54 kinds of NMHCs to study their changing trends in concentration levels during a 4-person-180-day integrated experiment inside a CELSS with four cabins for plants growing and other two cabins for human daily activities and resources management. During the experiment, the total mixing ratio of measured NMHCs was 423 ± 283 ppbv at the first day and it approached 2961 ± 323 ppbv ultimately. Ethane and propane were the most abundant alkanes and their mixing ratios kept growing from 27.5 ± 19.4 and 31.0 ± 33.6 ppbv to 2423 ± 449 ppbv and 290 ± 10 ppbv in the end. For alkenes, ethylene and isoprene presented continuously fluctuating states during the experimental period with average mixing ratios of 30.4 ± 19.3 ppbv, 7.4 ± 5.8 ppbv. For aromatic hydrocarbons, the total mixing ratios of benzene, toluene, ethylbenzene and xylenes declined from 48.0 ± 44 ppbv initially to 3.8 ± 1.1 ppbv ultimately. Biomass burning, sewage treatment, construction materials and plants all contributed to NMHCs inside CELSS. In conclusion, the results demonstrate the changing trends of NMHCs in a long-term closed ecological environment's atmosphere which provides valuable information for both the atmosphere management of CELSS and the exploration of interactions between humans and the total environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Evaluations of catalysts for wet oxidation waste management in CELSS

    NASA Astrophysics Data System (ADS)

    Oguchi, Mitsuo; Nitta, Keiji

    1992-11-01

    A wet oxidation method is considered to be one of the most effective methods of waste processing and recycling in CELSS (Controlled Ecological Life Support System). The first test using rabbit waste as raw material was conducted under a decomposition temperature of 280 °C for 30 minutes and an initial pure oxygen pressure of 4.9 MPa (50 kgf/cm2) before heating, and the following results were obtained. The value of COD (Chemical Oxygen Demand) was reduced 82.5 % by the wet oxidation. And also the Kjeldahl nitrogen concentration was decreased 98.8%. However, the organic carbon compound in the residual solution was almost acetic acid and ammonia was produced. In order to activate the oxidation more strongly, the second tests using catalysts such as Pd, Ru and Ru+Rh were conducted. As the results of these tests, the effectiveness of catalysts for oxidizing raw material ws shown as follows: COD and the Kjeldahl nitrogen values were drastically decreased 99.65 % and 99.88 %, respectively. Furthermore, the quantity of acetic acid and ammonia were reduced considerably. On the other hand, nitrate was showed a value 30 times as much as without catalytic oxidation.

  10. Characterization of Spirulina biomass for CELSS diet potential

    NASA Technical Reports Server (NTRS)

    Tadros, Mahasin G.

    1988-01-01

    Spirulina sp. as a bioregenerative photosynthetic and an edible alga for space craft crew in a CELSS, was characterized for growth rate and biomass yield in batch cultures, under various environmental conditions. The cell characteristics were identified for two strains of Spirulina: S. maxima and S. plantensis. Fast growth rate and high yield of both strains were obtained under the following conditions: temperature (30 to 35 C), light irradiance (60 to 100 uE/m/s), nitrate (30 mM), phosphate (2 mM), aeration (300 ml/min), and ph (9 to 10). The partitioning of the assimalatory products (proteins, carbohydrates, lipids) were manipulated by varying the environmental growth conditions. The experiments with Spirulina demonstrated that under stress conditions (high light 120 uE/m/s, temperature 38 C, nitrogen or phosphate limitation; 0.1 M sodium chloride) carbohydrate increased at the expense of protein. In other experiments, where the growth media were sufficient in nutrients and incubated under optimum growth conditions, the total proteins were increased up to almost 70 percent of the organic weight. Conclusion: The nutritional quality of the alga could be manipulated by growth conditions, and therefore usful as a subsystem in CELSS.

  11. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  12. Operation of an experimental algal gas exchanger for use in a CELSS

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.; Wharton, Robert A., Jr.; Averner, Maurice M.

    1987-01-01

    Concepts of a Closed Ecological Life Support System (CELSS) anticipate the use of photosynthetic organisms (higher plants and algae) for air revitalization. The rates of production and uptake of carbon dioxide and oxygen between the crew and the photosynthetic organisms are mismatched. An algal system used for gas exchange only will have the difficulty of an accumulation or depletion of these gases beyond physiologically tolerable limits (in a closed system the mismatch between assimilatory quotient (AQ) and respiratory quotient (RQ) is balanced by the operation of the waste processor). The results are given of a study designed to test the feasibility of using environmental manipulations to maintain physiologically appropriate atmospheres for algae and mice in a gas closed system. Specifically, the atmosphere behavior of this system is considered with algae grown on nitrate or urea and at different light intensities and optical densities. Manipulation of both allow operation of the system in a gas stable manner. Operation of such a system in a CELSS may be useful for reduction of buffer sizes, as a backup system for higher plant air revitalization and to supply extra oxygen to the waste processor or during crew changes.

  13. Potential for utilization of algal biomass for components of the diet in CELSS

    NASA Technical Reports Server (NTRS)

    Kamarei, A. R.; Nakhost, Z.; Karel, M.

    1986-01-01

    The major nutritional components of the green algae (Scenedesmus obliquus) grown in a Constant Cell Density Apparatus were determined. Suitable methodology to prepare proteins from which three major undesirable components of these cells (i.e., cell walls, nucleic acids, and pigments) were either removed or substantially reduced was developed. Results showed that processing of green algae to protein isolate enhances is potential nutritional and organoleptic acceptability as a diet component in controlled Ecological Life Support System.

  14. Atmospheric dynamics in the “Laboratory Biosphere” with wheat and sweet potato crops

    NASA Astrophysics Data System (ADS)

    Dempster, William F.; Allen, J. P.; Alling, A.; Silverstone, S.; Van Thillo, M.

    Laboratory Biosphere is a 40-m 3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m 2 of soil. Atmospheric composition changes due to photosynthetic fixation of carbon dioxide and corresponding production of oxygen or the reverse, respiration, are observed in short timeframes, e.g., hourly. To focus on inherent characteristics of the crop as distinct from its area or the volume of the chamber, we report fixation and respiration rates in mmol h -1 m -2 of planted area. An 85-day crop of USU Apogee wheat under a 16-h lighted/8-h dark regime peaked in fixation rate at about 100 mmol h -1 m -2 approximately 24 days after planting. Light intensity was about 840 μmol m -2 s -1. Dark respiration peaked at about 31 mmol h -1 m -2 at the same time. Thereafter, both fixation and respiration declined toward zero as harvest time approached. A residual soil respiration rate of about 1.9 mmol h -1 m -2 was observed in the dark closed chamber for 100 days after the harvest. A 126-day crop of Tuskegee TU-82-155 sweet potato behaved quite differently. Under a 680 μmol m -2 s -1, 18-h lighted/6-h dark regime, fixation during lighted hours rose to a plateau ranging from about 27 to 48 mmol h -1 m -2 after 42 days and dark respiration settled into a range of 12-23 mmol h -1 m -2. These rates continued unabated until the harvest at 126 days, suggesting that tuber biomass production might have continued at about the same rate for some time beyond the harvest time that was exercised in this experiment. In both experiments CO 2 levels were allowed to range widely from a few hundred to about 3000 ppm, which permitted observation of fixation rates both at varying CO 2 concentrations and at each number of days after planting. This enables plotting the fixation rate as a function of both variables. Understanding the atmospheric dynamics of individual crops will be essential for design and atmospheric management of more complex CELSS which integrate the simultaneous growth of several crops as in a sustainable remote life support system.

  15. A study of biohazard protection for farming modules of lunar base CELSS.

    PubMed

    Fujii, T; Midorikawa, Y; Shiba, M; Terai, M; Omasa, K; Nitta, K

    1992-01-01

    For the Closed Ecological Life Support System (CELSS) of a manned lunar base which is planned to be built on the moon early in the 21st century, several proposed programs exist to grow vegetables inside a farming module. At the 40th IAF (Malaga, 1989) the author et al presented a proposal for supplying food and nutrients to a crew of eight members, a basic concept which is based on growing four kinds of vegetables. This paper describes measures for biohazard protection in farming modules. In this study, biohazard protection means prevention of the dispersion of plant diseases to other plant species or other portions of farming beds.

  16. Sweet potato for closed ecological life support systems using the nutrient film technique

    NASA Technical Reports Server (NTRS)

    Loretan, P. A.; Hill, W. A.; Bonsi, C. K.; Morris, C. E.; Lu, J. Y.; Ogbuehi, C. R. A.; Mortley, D. G.

    1990-01-01

    Sweet potatoes were grown hydroponically using the nutrient film technique (NFT) in support of the Closed Ecological Life Support System (CELSS) program. Experiments in the greenhouse with the TI-155 sweet potato cultivar produced up to 1790 g/plant of fresh storage roots. Studies with both TI-155 and Georgia Jet cultivars resulted in an edible biomass index of approximately 60 percent, with edible biomass linear growth rates of 12.1 to 66.0 g m(exp -2)d(exp -1) in 0.05 to 0.13 sq meters in 105 to 130 days. Additional experimental results are given. All studies indicate good potential for sweet potatoes in CELSS.

  17. Johnson Space Center's regenerative life support systems test bed

    NASA Technical Reports Server (NTRS)

    Henninger, Donald L.; Tri, Terry O.; Barta, Daniel J.; Stahl, Randal S.

    1991-01-01

    The Regenerative Life Support System (RLSS) Test Bed at NASA's Johnson Space Center is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants in conjunction with physicochemical life support systems. When completed, the facility will be comprised of two large scale plant growth chambers, each with approximately 10 m(exp 2) growing area. One of the two chambers, the Variable Pressure Growth Chamber (VPGC), will be capable of operating at lower atmospheric pressures to evaluate a range of environments that may be used in Lunar or Martian habitats; the other chamber, the Ambient Pressure Growth Chamber (APGC) will operate at ambient atmospheric pressure. The root zone in each chamber will be configurable for hydroponic or solid state media systems. Research will focus on: (1) in situ resource utilization for CELSS systems, in which simulated lunar soils will be used in selected crop growth studies; (2) integration of biological and physicochemical air and water revitalization systems; (3) effect of atmospheric pressure on system performance; and (4) monitoring and control strategies.

  18. Nostoc sphaeroides Kütz, a candidate producer par excellence for CELSS

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Hao, Zongjie; Liu, Yongding

    A lot of aquatic organisms could be regarded as suitable candidates par excellence in the establishment of CELSS, since they are relatively easy and fast to grow and resistant to changes in environmental condition as well as providing nutritious, protein-and vitamin-rich foods for the crew, which can fulfill the main functions of CELSS, including supplying oxygen, water and food, removing carbon dioxide and making daily life waste reusable. Our labotory has developed mass culture of Nostoc sphaeroides Kütz, which is one of traditional healthy food in China and. The oxygen evolution rate of the cyanobacterium is about 150 molO2.mg-1.h-1, and it usually grows into colony with size between 2-20mm, which is easy to be harvested. It also can be cultured with high density, which show that the productivity of the cyanobacterium in limited volume is higher than other microalgae. We had measured the nutrient content of the cyanobacterium and developed some Chinese Dishes and Soups with Nostoc sphaeroides Kütz, which showed that it was a good food for crew. Using remote sensing technique, we also investigated its growth in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. We plan to develop suitable bioreactor with the cyanobacterium for supplying oxygen and food to crew in future.

  19. Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Dong, Wenping; Ai, Weidang; Feng, Hongqi; Tang, Yongkang; Huang, Zhide; Shen, Yunze; Ren, Jin; Qin, Lifeng; Zeng, Gu; Zhang, Lihong; Zhu, Jingtao; Fei, Jinxue; Xu, Guoxin

    2014-07-01

    A man-plant integration test was processed using the CELSS integration experiment platform in which 4 kinds of plants were grown (Lactuca sativa L var. Dasusheng, L. sativa L var. Youmaicai, Gynura bicolor and Cichorium endivia L) to exchange material with 2 persons in order to research the dynamic changing laws and balanced regulation of air and water between man and plant in an inclosed system. In the test the material flow was measured so that the dynamically changing laws and balanced regulation of air and water between man and plant in the closed system were mostly mastered. The material closure degree of air, water and food reached 100%, 90% and 13.9% respectively with the whole system closure degree up to 95.1%. Meanwhile, it was proved that a 13.5 m2 planting area could meet the demand of one person for O2 in the system, and the energy efficiency ratio of which reached 59.56 g/(kW m2 day). The material flow dynamic balance-regulating technology was initially mastered between man and plant through the test. The interaction was realized among man, plant and environment in the closed system, which is of great significance to the advancement of long-term manned environment control and life support technology for China.

  20. Waste management in space: a NASA symposium. Special issue

    NASA Technical Reports Server (NTRS)

    Wydeven, T. (Principal Investigator)

    1991-01-01

    This special issue contains papers from the NASA Symposium on Waste Processing for Advanced Life Support, which was held at NASA Ames Research Center on September 11-13, 1990. Specialists in waste management from academia, government, and industry convened to exchange ideas and advise NASA in developing effective methods for waste management in a Controlled Ecological Life Support System (CELSS). Innovative and well-established methods were presented to assist in developing and managing wastes in closed systems for future long-duration space missions, especially missions to Mars.

  1. Condensate Recycling in Closed Plant Growth Chambers

    NASA Technical Reports Server (NTRS)

    Bledsoe, J. O.; Sager, J. C.; Fortson, R. E.

    1994-01-01

    Water used in the the Controlled Ecological Life Support System (CELSS) Breadboard Project at the Kennedy Space Center is being recycled. Condensation is collected in the air ducts, filtered and deionized, and resupplied to the system for nutrient solutions, supplemental humidification, solvents and diluents. While the system functions well from a process control standpoint, precise and accurate tracking of water movement through the system to answer plant physiological questions is not consistent. Possible causes include hardware errors, undetected vapor loss from chamber leakage, and unmeasured changes in water volume in the plant growth trays.

  2. Design and control strategies for CELSS - Integrating mechanistic paradigms and biological complexities

    NASA Technical Reports Server (NTRS)

    Moore, B., III; Kaufmann, R.; Reinhold, C.

    1981-01-01

    Systems analysis and control theory consideration are given to simulations of both individual components and total systems, in order to develop a reliable control strategy for a Controlled Ecological Life Support System (CELSS) which includes complex biological components. Because of the numerous nonlinearities and tight coupling within the biological component, classical control theory may be inadequate and the statistical analysis of factorial experiments more useful. The range in control characteristics of particular species may simplify the overall task by providing an appropriate balance of stability and controllability to match species function in the overall design. The ultimate goal of this research is the coordination of biological and mechanical subsystems in order to achieve a self-supporting environment.

  3. Utilization of non-conventional systems for conversion of biomass to food components

    NASA Technical Reports Server (NTRS)

    Karel, M.; Nakhost, Z.

    1989-01-01

    The potential use of micro-algae in yielding useful macronutrients for the CELSS is investigated. Algal proteins were isolated and characterized from green algae (Scenedesmus obliquus) grown under controlled conditions. The RNA and DNA contents were determined, and methodology for reduction of the nucleic acid content to acceptable levels developed. Lipid extraction procedures using supercritical fluids were tailored to removal of undesirable lipids and pigments. Initial steps toward preparation of model foods for potential use in the CELSS were taken. The goal was to fabricate food products which contain isolated algal macronutrients such as proteins and lipids and also some components derived from higher plants including wheat flour, soy flour, potato powder (flakes), soy oil, and corn syrup.

  4. Salad Machine - A vegetable production unit for long duration space missions

    NASA Technical Reports Server (NTRS)

    Kliss, M.; Macelroy, R. D.

    1990-01-01

    A review of NASA CELSS development specific to vegetable cultivation during space missions is presented in terms of enhancing the quality of life for space crews. A cultivation unit is being developed to permit the production of 600 grams of edible salad vegetables per week, thereby allowing one salad per crew member three times weekly. Plant-growth requirements are set forth for the specific vegetables, and environmental subsystems are listed. Several preprototype systems are discussed, and one particular integrated-systems design concept is presented in detail with views of the proposed rack configuration. The Salad Machine is developed exclusively from CELSS-derived technology, and the major challenge is the mitigation of the effects of plant-growth requirements on other space-mission facility operations.

  5. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Abraham, Martin

    1993-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  6. Significance of rhizosphere microorganisms in reclaiming water in a CELSS

    NASA Astrophysics Data System (ADS)

    1997-01-01

    Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponically grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.

  7. Significance of rhizosphere microorganisms in reclaiming water in a CELSS

    NASA Astrophysics Data System (ADS)

    Greene, C.; Bubenheim, D. L.; Wignarajah, K.

    1997-01-01

    Plant-microbe interactions, such as those of the rhizosphere, may be ideally suited for recycling water in a Controlled Ecological Life Support System (CELSS). The primary contaminant of waste hygiene water will be surfactants or soaps. We identified changes in the microbial ecology in the rhizosphere of hydroponically grown lettuce during exposure to surfactant. Six week old lettuce plants were transferred into a chamber with a recirculating hydroponic system. Microbial density and population composition were determined for the nutrient solution prior to introduction of plants and then again with plants prior to surfactant addition. The surfactant Igepon was added to the recirculating nutrient solution to a final concentration of 1.0 g L^-1. Bacteria density and species diversity of the solution were monitored over a 72-h period following introduction of Igepon. Nine distinct bacterial types were identified in the rhisosphere; three species accounted for 87% of the normal rhizosphere population. Microbial cell number increased in the presence of Igepon, however species diversity declined. At the point when Igepon was degraded from solution, diversity was reduced to only two species. Igepon was found to be degraded directly by only one species found in the rhizosphere. Since surfactants are degraded from the waste hygiene water within 24 h, the potential for using rhizosphere bacteria as a waste processor in a CELSS is promising.

  8. AQUAPLEX An Environmentally Aware Model Lunar Settlement

    NASA Astrophysics Data System (ADS)

    Preble, Darel

    2003-01-01

    The construction and operation of a replica Lunar settlement (CELSS), can provide many lessons in in-situ resource utilization, telerobotic operation and reducing the hygiene water demanded by existing models of Lunar operation - a larger settlement may be operated with the same amount of precious water. Hypes and Hall and all other CELSS models found in the literature propose quantities of hygiene water far in excess of what would be needed in actual operation using simple, environmentally aware technologies. By using modern zero water toilets, low water showers, CO2 dry cleaning machines, energy efficient washing machines and other hardware, water use can be slashed. The Space Solar Power Workshop sees great opportunity to advance the prospects for Lunar settlement through involving the environmental community in this fun design exercise.

  9. On-line removal of volatile fatty acids from CELSS anaerobic bioreactor via nanofiltration

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1995-01-01

    The CELSS (controlled ecological life support system) resource recovery system, which is a waste processing system, uses aerobic and anaerobic bioreactors to recover plants nutrients and secondary foods from the inedible biomass. The anaerobic degradation of the inedible biomass by means of culture of rumen bacteria,generates organic compounds such as volatile fatty acids (acetic, propionic, butyric, VFA) and ammonia. The presence of VFA in the bioreactor medium at fairly low concentrations decreases the microbial population's metabolic reactions due to end-product inhibition. Technologies to remove VFA continuously from the bioreactor are of high interest. Several candidate technologies were analyzed, such as organic solvent liquid-liquid extraction, adsorption and/or ion exchange, dialysis, electrodialysis, and pressure driven membrane separation processes. The proposed technique for the on-line removal of VFA from the anaerobic bioreactor was a nanofiltration membrane recycle bioreactor. In order to establish the nanofiltration process performance variables before coupling it to the bioreactor, a series of experiments were carried out using a 10,000 MWCO tubular ceramic membrane module. The variables studied were the bioreactor slurry permeation characteristics, such as, the permeate flux, VFA and the nutrient removal rates as a function of applied transmembrane pressure, fluid recirculation velocity, suspended matter concentration, and process operating time. Results indicate that the permeate flux, VFA and nutrients removal rates are directly proportional to the fluid recirculation velocity in the range between 0.6 to 1.0 m/s, applied pressure when these are low than 1.5 bar, and inversely proportional to the total suspended solids concentration in the range between 23,466 to 34,880. At applied pressure higher than 1.5 bar the flux is not more linearly dependent due to concentration polarization and fouling effects over the membrange surface. It was also found that the permeate flux declines rapidly during the first 5 to 8 hours, and then levels off with a diminishing rate of flux decay.

  10. Challenges to plant growing in space.

    PubMed

    Langhans, R W; Dreesen, D R

    1988-04-01

    Picture yourself a million miles from earth; it's lunch time. What will you eat: meat, fish, bread, fresh vegetables (cooked or uncooked), or food from a tube? What will happen to the waste products from the processed food or even from yourself? What will you breathe? These and hundreds of detailed questions must be answered. At present, we have little knowledge about a totally closed environment life support system (CELSS). We have developed in this paper a list of references that are pertinent to the problem. It is divided into subject areas and listed chronologically, rather than alphabetically.

  11. Challenges to plant growing in space

    NASA Technical Reports Server (NTRS)

    Langhans, R. W.; Dreesen, D. R.

    1988-01-01

    Picture yourself a million miles from earth; it's lunch time. What will you eat: meat, fish, bread, fresh vegetables (cooked or uncooked), or food from a tube? What will happen to the waste products from the processed food or even from yourself? What will you breathe? These and hundreds of detailed questions must be answered. At present, we have little knowledge about a totally closed environment life support system (CELSS). We have developed in this paper a list of references that are pertinent to the problem. It is divided into subject areas and listed chronologically, rather than alphabetically.

  12. Studies on Using Azolla for O2-Supplementation and Its Test

    NASA Astrophysics Data System (ADS)

    Liu, C.-C.; Liu, X.-S.; Chen, M.; Bian, Z.-L.

    Establishment of Controlling Ecological Life Safety System (CELSS) is a key technical part in the study on manned station. In order to meet the requirement of long-term out-earth man-carrying flight, it is necessary to build plant-based O2-supplying CELSS. It also possesses the possibility to contribute the realization of mankind dream to live in out-earth planets. Using the physiological reaction of organisms, this system settled the problem in food supply, O2 and water recycle, the regeneration and utilization of CO2 and life residues, thus guarantee the spacemen the health, safety and efficient work when they are far from earth and arrived the space where human is difficult to life in. Azolla as a plant that possesses high growing speed, short growing cycle, high photosynthesis and O2-releasing capacity, and can be artificially grow in multi-layer facilities, it is hopeful to be an important biological part in CELSS for it's the function in O2 production and to be a part of fresh vegetable as well as CO2 absorption. This paper described the study in Azolla as a plant for supplementary O2 supply in future space station flight. The "Azolla-dog" controlling tight system was firstly established in order to determine the regulation of O2-CO2 variation and balance using different weights of dogs with different Azolla growing areas. The further studies included the development of air-tight cabinets where "Azolla-human" airtight experiments were conducted, and the relationship between Azolla-growing area and O2 requirement by human was analyzed. Based on these works, the further experiment on supplementary O2-supply of Azolla-human system was conducted in demonstration cabin for environmental controlling and life security. The O2-supplying amount of Azolla was further gained, and it will provide the experimental basis to probe optimum condition to grow Azolla in space and human-machine combining experiment, also to lay a basis for Azolla as a biological part to enter the ground laboratory of CELSS. Key words: Azolla, Human, Demonstration cabin for environmental controlling and life security, O2-supplying experiment

  13. Controlled Ecological Life Support Systems: CELSS 1985 Workshop

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Martello, N. V. (Editor); Smernoff, D. T. (Editor)

    1986-01-01

    Various topics related to closed ecological systems are discussed. Space habitats, vegetative growth, photosynthesis, recycling, culture techniques, waste utilization bioreactors and controlled atmospheres on space stations are among the topics covered.

  14. Statistical analysis of environmental variability within the CELSS breadboard project's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Stutte, G. W.; Chetirkin, P. V.; Mackowiak, C. L.; Fortson, R. E.

    1993-01-01

    Variability in the aerial and root environments of NASA's Breadboard Project's Biomass Production Chamber (BPC) was determined. Data from two lettuce and two potato growouts were utilized. One growout of each crop was conducted prior to separating the upper and lower chambers; the other was subsequent to separation. There were little or no differences in pH, EC, or solution temperature between the upper and lower chamber or within a chamber. Variation in the aerial environment within a chamber was two to three times greater than variation between chambers for air temperature, relative humidity, and PPF. High variability in air velocity, relative to tray position, was observed. Separating the BPC had no effect on PPF, air velocity, solution temperature, pH, or EC. Separation reduced the gradient in air temperature and relative humidity between the upper and lower chambers, but increased the variability within a chamber. Variation between upper and lower chambers was within 5 percent of environmental set-points and of little or no physiological significance. In contrast, the variability within a chamber limits the capability of the BPC to generate statistically reliable data from individual tray treatments at this time.

  15. Growth of potatoes for CELSS

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Cao, W.; Wheeler, R. M.

    1994-01-01

    This report summarizes research on the utilization of white potatoes (Solanum tuberosum L.) for space life support systems at the University of Wisconsin-Madison over the period of 1984 to 1993. At full maturity the tuber productivity was 37.5 gm(exp -2) d(exp -1), equating to a growing area requirement for one human (2800 kcal d(exp -1)) of 10.1 m(exp -2). A recirculating nutrient system using slanted trays produced best potato growth and tuber yields when a 2-3 cm layer of gravel or arcillite media was utilized. Potato production was close to maximum under lighting levels of 400 micromol m(exp -2) s(exp -1) of photosynthetic photo flux (PPF) for 24 hours or 800 micromol m(exp -2) s(exp -1) for 12 hours, alternating diurnal temperatures of 22 C and 14 C, relative humidity of 85 percent, and a carbon dioxide level of 1000 micromol m(exp -1). The range of effective concentrations of each separate nutrient is reported. The extensive studies with potatoes in this project have demonstrated that this crop has high productivity of nutritous tubers with a high harvest index in controlled environments, and can fulfill a significant portion of the energy and protein requirements for humans in space.

  16. Effects of elevated atmospheric carbon dioxide concentrations on water and acid requirements of soybeans grown in a recirculating hydroponic system

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Wheeler, R. M.; Lowery, W.; Sager, J. C.

    1990-01-01

    Establishing mass budgets of various crop needs, i.e. water and nutrients, in different environments is essential for the Controlled Ecological Life Support System (CELSS). The effects of CO2 (500 and 1000 umol mol (exp -1)) on water and acid use (for pH control) by soybeans in a recirculating hydroponic system were examined. Plants of cvs. McCall and Pixie were grown for 90 days using the nutrient film technique (NFT) and a nitrate based nutrient solution. System acid use for both CO2 levels peaked near 4 weeks during a phase of rapid vegetative growth, but acid use decreased more rapidly under 500 compared to 1000 umol mol (exp GR) CO2. Total system water use by 500 and 1000 umol mol (exp -1) plants was similar, leaving off at 5 weeks and declining as plants senesced (ca. 9 weeks). However, single leaf transpiration rates were consistently lower at 1000 umol mol (exp -1). The data suggest that high CO2 concentrations increase system acid (and nutrient) use because of increased vegetative growth, which in turn negates the benefit of reduced water use (lower transpiration rates) per unit leaf area.

  17. Lunar outpost agriculture

    NASA Technical Reports Server (NTRS)

    Hossner, Lloyd R.; Ming, Douglas W.; Henninger, Donald L.; Allen, Earl R.

    1991-01-01

    The development of a CELSS for a lunar outpost is discussed. It is estimated that a lunar outpost life support system with a crew of four that produces food would break even in terms of mass and cost to deliver the system to the lunar surface after 2.5 years when compared to the cost of resupply from earth. A brief review is made of research on life support systems and NASA projects for evaluating CELSS components. The use of on-site materials for propellants, construction materials, and agriculture is evaluated, and the use of microbes for waste decomposition and stabilization of ecological balance is touched upon. Areas for further investigation include the behavior of organisms in microgravity, genetic alteration, gas exchange capabilities of organisms, integration of biological and physicochemical components, and automation. The development stages leading to lunar deployment are outlined.

  18. CELSS Program Meeting

    NASA Technical Reports Server (NTRS)

    Tremor, John W.; Macelroy, Robert D.

    1987-01-01

    A meeting on the potential contributions of plant science to the goals of Controlled Ecological Life Support System (CELSS) research produced discussions that helped to focus on a variety of topics. In the area of volatiles and soluble organics, microbial activity, disease, and productivity, participants emphasized the need to know more about the consequences of closure for the growth of plants. Under nutrient delivery systems, the problems focus on the need to maintain a stable, optimum nutrient system. Lighting systems discussions emphasized unique methods of direct lighting and development of improved irradiation sources. Flight experiment opportunities were outlined by one speaker. Documentation of the Plant Growth Module was discussed. The last day's discussion focused on the organization of the research group to be involved in the development and use of a two to three cubic meter sealed chamber and ancillary equipment.

  19. study on trace contaminants control assembly for sealed environment chamber

    NASA Astrophysics Data System (ADS)

    Pang, L. P.; Wang, J.; Liu, L. K.; Liu, H.

    The biological and Physicochemical P C life support technologies are all important parts to establish a human Closed Ecological Life Support System CELSS for long-duration mission The latter has the advantages of lower power consumption lower mass and higher efficiency therefore researchers often incorporate the use of biological systems with P C life support technologies to continuously recycle air water and part of the solid waste stream generated such as the Russian BLSS and the NASA-sponsored Lunar-Mars Life Support Test Project LMLSTP In short these tests were very successful in integrating biological and P C life support technologies for long-duration life support Therefore we should use a combination of integrated biological with P C life support technologies in a human CELSS Human construction materials plants animals and soils release much trace toxic gases in a CELSS and they will inhibit plant growth and badly affect human health when their concentrations rise over their threshold levels The effect of biological trace contaminant control technologies is slower especially for a human sealed chamber because human produce much more methane and other contaminants A regenerative Trace Contaminant Control Subsystem TCCS with P C technology is a more important part in this case to control quickly the airborne contaminants levels and assure human in good condition in a sealed chamber This paper describes a trace contaminant control test facility incorporated a 8 m3 sealed environment chamber a regenerative TCCS with P C

  20. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Abraham, Martin; Fisher, John W.

    1995-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst, prepared at The University of Tulsa, at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  1. Silkworm feeding as the source of the animal protein for human

    NASA Astrophysics Data System (ADS)

    Yunan, Y.; Tang, L.; Liu, H.

    Controlled Ecological Life-Support System CELSS which is also called Bioregenerative Life Support System has been considered now as the most advanced and complicated Closed Ecological System in the world Based on the construction principle of the CELSS the resources could be permanently regenerated so the flexibility and security for long-term spaceflight and lunar-base missions could be improved The cost could be also decreased CELSS is more appropriated for long-term manned spaceflight and applied for the possibility of long-term space missions or planetary probe in the lower cost The increasing closure and reliability is considered as the development and integrality direction of Life-Support System LSS The LSS closure and configuration is mainly depended on the human space diet composition Vast researches have been carried on this aspect but these researches mainly concentrate on the space vegetable protein exploitation The animal protein supply is still a problem the solution should be found and the LSS constitution analysis also deserves being explored Many animals have been taken into account to provide the animal proteins nowadays world-wide animals selection mainly focus on the poultry for instance sheep chicken fish etc But the poultry feeding exist many problems such as the long growth periods low efficiency complex feeding procedures and capacious feeding space and these animals also cause the water and air pollution The complete food composition is often depended on the features of the nation diet habit Chinese have

  2. Controlled ecological life-support system - Use of plants for human life-support in space

    NASA Technical Reports Server (NTRS)

    Chamberland, D.; Knott, W. M.; Sager, J. C.; Wheeler, R.

    1992-01-01

    Scientists and engineers within NASA are conducting research which will lead to development of advanced life-support systems that utilize higher plants in a unique approach to solving long-term life-support problems in space. This biological solution to life-support, Controlled Ecological Life-Support System (CELSS), is a complex, extensively controlled, bioengineered system that relies on plants to provide the principal elements from gas exchange and food production to potable water reclamation. Research at John F. Kennedy Space Center (KSC) is proceeding with a comprehensive investigation of the individual parts of the CELSS system at a one-person scale in an approach called the Breadboard Project. Concurrently a relatively new NASA sponsored research effort is investigating plant growth and metabolism in microgravity, innovative hydroponic nutrient delivery systems, and use of highly efficient light emitting diodes for artificial plant illumination.

  3. Wet-oxidation waste management system for CELSS

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Ohya, H.

    1986-01-01

    A wet oxidation system will be useful in the Closed Ecological Life Support System (CELSS) as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 deg C, only 80% of organic in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually noncombustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such as Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification.

  4. Conceptual design for a lunar-base CELSS

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Cullingford, Hatice S.

    1990-01-01

    Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.

  5. Operation of an experimental algal gas exchanger for use in a CELSS

    NASA Technical Reports Server (NTRS)

    Smernoff, David T.; Wharton, Robert A., Jr.; Averner, Maurice M.

    1987-01-01

    Concepts of a CELSS anticipate the use of photosynthetic organisms for air revitalization. The rates of production and uptake of carbon dioxide and oxygen between the crew and the photosynthetic organisms are mismatched. An algal system used for gas exchange only will have the difficulty of an accumulation or depletion of these gases beyond physiologically tolerable limits. The results of a study designed to test the feasibility of using environmental manipulations to maintain physiologically appropriate atmospheres for algae (Chlorella pyrenoidosa) and mice (Mus musculus strain DW/J) in a gas-closed system is reported. Specifically, the atmosphere behavior of this system with Chlorella grown on nitrate or urea and at different light intensities and optical densities is considered. Manipulation of both the photosynthetic rate and the assimilatory quotient of the alga has been found to reduce the mismatch of gas requirements and allow operation of the system in a gas-stable manner.

  6. Sources and processing of CELSS wastes

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Tremor, J.; Koo, C.; Jacquez, R.

    1989-01-01

    The production rate and solid content of waste streams found in a life support system for a space habitat (in which plants are grown for food) are discussed. Two recycling scenarios, derived from qualitative considerations as opposed to quantitative mass and energy balances, tradeoff studies, etc., are presented; they reflect differing emphases on and responses to the waste stream formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system. The data presented demonstrate the magnitude of the challenge to developing a life support system for a space habitat requiring a high degree of closure.

  7. CELSS science needs

    NASA Technical Reports Server (NTRS)

    Rummel, J. D.

    1986-01-01

    Questions and areas of study that need to be persued in order to develope a Controlled Ecological Life Support System are posed. Research topics needing attention are grouped under various leadings: ecology, genetics, plant pathology, cybernetics, chemistry, computer science, fluid dynamics, optics, and solid-state physics.

  8. Higher Plants in life support systems: design of a model and plant experimental compartment

    NASA Astrophysics Data System (ADS)

    Hezard, Pauline; Farges, Berangere; Sasidharan L, Swathy; Dussap, Claude-Gilles

    The development of closed ecological life support systems (CELSS) requires full control and efficient engineering for fulfilling the common objectives of water and oxygen regeneration, CO2 elimination and food production. Most of the proposed CELSS contain higher plants, for which a growth chamber and a control system are needed. Inside the compartment the development of higher plants must be understood and modeled in order to be able to design and control the compartment as a function of operating variables. The plant behavior must be analyzed at different sub-process scales : (i) architecture and morphology describe the plant shape and lead to calculate the morphological parameters (leaf area, stem length, number of meristems. . . ) characteristic of life cycle stages; (ii) physiology and metabolism of the different organs permit to assess the plant composition depending on the plant input and output rates (oxygen, carbon dioxide, water and nutrients); (iii) finally, the physical processes are light interception, gas exchange, sap conduction and root uptake: they control the available energy from photosynthesis and the input and output rates. These three different sub-processes are modeled as a system of equations using environmental and plant parameters such as light intensity, temperature, pressure, humidity, CO2 and oxygen partial pressures, nutrient solution composition, total leaf surface and leaf area index, chlorophyll content, stomatal conductance, water potential, organ biomass distribution and composition, etc. The most challenging issue is to develop a comprehensive and operative mathematical model that assembles these different sub-processes in a unique framework. In order to assess the parameters for testing a model, a polyvalent growth chamber is necessary. It should permit a controlled environment in order to test and understand the physiological response and determine the control strategy. The final aim of this model is to have an envi-ronmental control of plant behavior: this requires an extended knowledge of plant response to environment variations. This needs a large number of experiments, which would be easier to perform in a high-throughput system.

  9. An approach to the preliminary evaluation of Closed Ecological Life Support System (CELSS) scenarios and control strategies

    NASA Technical Reports Server (NTRS)

    Stahr, J. D.; Auslander, D. M.; Spear, R. C.; Young, G. E.

    1982-01-01

    Life support systems for manned space missions are discussed. A scenario analysis method was proposed for the initial step of comparing possible partial or total recycle scenarios. The method is discussed in detail.

  10. The growth and harvesting of algae in a micro-gravity environment

    NASA Technical Reports Server (NTRS)

    Wiltberger, Nancy L.

    1987-01-01

    Algae growth in a micro-gravity environment is an important factor in supporting man's permanent presence in space. Algae can be used to produce food, oxygen, and pure water in a manned space station. A space station is one example of a situation where a Controlled Ecological Life Support System (CELSS) is imperative. In setting up a CELSS with an engineering approach at the Aerospace department of the University of Colorado, questions concerning algae growth in micro-g have arisen. The Get Away Special (GAS) Fluids Management project is a means through which many questions about the effects of a micro-g environment on the adequacy of growth rates, the viability of micro-organisms, and separation of gases and solids for harvesting purposes can be answered. In order to be compatible with the GAS tests, the algae must satisfy the following criteria: (1) rapid growth rates, (2) sustain viability over long periods of non-growth storage, and (3) very brief latency from storage to rapid growth. Testing indicates that the overall growth characteristics of Anacystis Nidulans satisfy the specifications of GAS's design constraints. In addition, data acquisition and the method of growth instigation are two specific problems being examined, as they will be encountered in interfacing with the GAS project. Flight testing will be two-fold, measurement of algae growth in micro-g and separation of algae from growth medium in an artificial gravitation field. Post flight results will provide information on algae viability in a micro-g environment as reflected by algal growth rates in space. Other post flight results will provide a basis for evaluating techniques for harvesting algae. The results from the GAS project will greatly assist the continuing effort of developing the CELSS and its applications for space.

  11. Plant diversity to support humans in a CELSS ground-based demonstrator

    NASA Technical Reports Server (NTRS)

    Howe, J. M.; Hoff, J. E.

    1982-01-01

    Factors that influence the human nutritional requirements envisioned in a controlled ecological life support system ground-based demonstrator and on bioavailability experiments of Ca, Fe and Zn are discussed. The interrelationhip of protein and magnesium on Ca retention is also described.

  12. Interface problems between material recycling systems and plants

    NASA Astrophysics Data System (ADS)

    Nitta, Keiji; Oguchi, Mitsuo; Otsubo, Koji

    A most important problem to creating a CELSS system to be used in space, for example, for a Lunar Base or Manned Mars mission, seems to be how to design and operate the various material recycling system to be used on the missions. Recent studies of a Lunar Base habitat have identified examples of CELSS configurations to be used for the Plant Cultivation Module. Material recycling subsystems to be installed in the Plant Cultivation Modules are proposed to consist of various sub-systems, such as dehumidifier, oxygen separation systems, catalytic wet oxidation systems, nitrogen adjusting systems, including tanks, and so on. The required performances of such various material recycling subsystems are determined based on precise metabolic data of derived from the various species of plants to be selected and investigated. The plant metabolic data, except that for wheat and potato, has not been fully collected at the present time. Therefore, much additional plant cultivation data is required to determine the performances of each material recycling subsystems introduced in Plant Cultivation Modules.

  13. An evaluation of microorganisms for unconventional food regeneration schemes in CELSS - Research recommendations

    NASA Technical Reports Server (NTRS)

    Stokes, B. O.; Petersen, G. R.

    1982-01-01

    The benefits and deficiencies of various candidates for a controlled ecological life support system (CELSS) for manned spacecraft missions of at least 3-14 yr are discussed. Conventional plants are considered unacceptable due to their inefficient production of foodstuffs and overproduction of stems and leafy matter. The alternate concepts are algae and/or bacteria or chemical synthesis of food. Microorganisms are considered the most promising because of their direct use of CO2 and possible utilization of waste streams. Yeasts are cited as the most viable candidates, since a large data base and experience already exists in the commercial food industry. The addition of hydrogen bactria and solar-grown algae is recommended, together with genetic manipulation experiments to tailor the microorganisms to production of foodstuffs closer to the 70 percent carbohydrate, 20 percent protein, and 10 percent lipid optimal food currently accepted. The yeast strain, Hansenula polymorpha, has been successfully grown in methanol and encouraged to produce a 55 percent carbohydrate content.

  14. Use of planetary soils within CELSS: The plant viewpoint

    NASA Astrophysics Data System (ADS)

    Art Spomer, L.

    1994-11-01

    The major functions of soil relative to plant growth include retention and supply of water and minerals, provision of anchorage and support for the root, and provision of an otherwise adequate physical and chemical environment to ensure an extensive, functioning root system. The physical and chemical nature of the solid matrix constituting a soil interacts with the soil confinement configuration, the growing environment, and plant requirements to determine the soil's suitability for plant growth. A wide range of natural and manufactured terrestrial materials have proven adequate soils provided they are not chemically harmful to plants (or animals eating the plants), are suitably prepared for the specific use, and are used in a compatible confinement system. It is presumed this same rationale can be applied to planetary soils for growing plants within any controlled environment life support system (CELSS). The basic concepts of soil and soil-plant interactions are reviewed relative to using soils constituted from local planetary materials for growing plants.

  15. Microgravity particle reduction system

    NASA Technical Reports Server (NTRS)

    Brandon, Vanessa; Joslin, Michelle; Mateo, Lili; Tubbs, Tracey

    1988-01-01

    The Controlled Ecological Life Support System (CELSS) project, sponsored by NASA, is assembling the knowledge required to design, construct, and operate a system which will grow and process higher plants in space for the consumption by crew members of a space station on a long term space mission. The problem of processing dry granular organic materials in microgravity is discussed. For the purpose of research and testing, wheat was chosen as the granular material to be ground into flour. Possible systems which were devised to transport wheat grains into the food processor, mill the wheat into flour, and transport the flour to the food preparation system are described. The systems were analyzed and compared and two satisfactory systems were chosen. Prototypes of the two preferred systems are to be fabricated next semester. They will be tested under simulated microgravity conditions and revised for maximum effectiveness.

  16. Life sciences report 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  17. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Processing bean crop insurance provisions. 457.155... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean crop insurance provisions. The Processing Bean Crop Insurance Provisions for the 1998 and succeeding...

  18. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Processing bean crop insurance provisions. 457.155... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean crop insurance provisions. The Processing Bean Crop Insurance Provisions for the 1998 and succeeding...

  19. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Processing bean crop insurance provisions. 457.155... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean crop insurance provisions. The Processing Bean Crop Insurance Provisions for the 1998 and succeeding...

  20. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Processing bean crop insurance provisions. 457.155... INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean crop insurance provisions. The Processing Bean Crop Insurance Provisions for the 1998 and succeeding...

  1. Generic waste management requirements for a controlled ecological life support system /CELSS/

    NASA Technical Reports Server (NTRS)

    Hoshizaki, T.; Hansen, B. D., III

    1981-01-01

    Regenerative life support systems for future space missions will require closure of the waste-food loop. Each mission application will generate specific requirements for the waste management system. However, there are generic input and output requirements that can be identified when a probable scenario is chosen. This paper discusses the generic requirements when higher plants are chosen as the primary food source. Attention is focused on the quality and quantity of nutrients necessary for culturing higher plants. The types of wastes to be processed are also discussed. In addition, requirements generated by growing plants on three different substrates are presented. This work suggests that the mineral composition of waste materials may require minimal adjustment to satisfy the plant requirements.

  2. Lunar base CELSS: A bioregenerative approach

    NASA Technical Reports Server (NTRS)

    Easterwood, G. W.; Street, J. J.; Sartain, J. B.; Hubbell, D. H.; Robitaille, H. A.

    1992-01-01

    During the twenty-first century, human habitation of a self-sustaining lunar base could become a reality. To achieve this goal, the occupants will have to have food, water, and an adequate atmosphere within a carefully designed environment. Advanced technology will be employed to support terrestrial life-sustaining processes on the Moon. One approach to a life support system based on food production, waste management and utilization, and product synthesis is outlined. Inputs include an atmosphere, water, plants, biodegradable substrates, and manufacutured materials such as fiberglass containment vessels from lunar resources. Outputs include purification of air and water, food, and hydrogen (H2) generated from methane (CH4). Important criteria are as follows: (1) minimize resupply from Earth; and (2) recycle as efficiently as possible.

  3. Current Concepts and Future Directions of CELSS

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D.; Bredt, J.

    1985-01-01

    Bioregenerative life support systems for use in space were studied. Concepts of such systems include the use of higher plants and/or microalgae as sources of food, potable water and oxygen, and as sinks for carbon dioxide and metabolic wastes. Recycling of materials within the system will require processing of food organism and crew wastes using microbiological and/or physical chemical techniques. The dynamics of material flow within the system will require monitoring, control, stabilization and maintenance imposed by computers. Studies included higher plant and algal physiology, environmental responses, and control; flight experiments for testing responses of organisms to weightlessness and increased radiation levels; and development of ground based facilities for the study of recycling within a bioregenerative life support system.

  4. A Computer Model for Analyzing Volatile Removal Assembly

    NASA Technical Reports Server (NTRS)

    Guo, Boyun

    2010-01-01

    A computer model simulates reactional gas/liquid two-phase flow processes in porous media. A typical process is the oxygen/wastewater flow in the Volatile Removal Assembly (VRA) in the Closed Environment Life Support System (CELSS) installed in the International Space Station (ISS). The volatile organics in the wastewater are combusted by oxygen gas to form clean water and carbon dioxide, which is solved in the water phase. The model predicts the oxygen gas concentration profile in the reactor, which is an indicator of reactor performance. In this innovation, a mathematical model is included in the computer model for calculating the mass transfer from the gas phase to the liquid phase. The amount of mass transfer depends on several factors, including gas-phase concentration, distribution, and reaction rate. For a given reactor dimension, these factors depend on pressure and temperature in the reactor and composition and flow rate of the influent.

  5. Design of components for growing higher plants in space

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The overall goal of this project is to design unique systems and components for growing higher plants in microgravity during long-term space missions (Mars and beyond). Specific design tasks were chosen to contribute to and supplement NASA's Controlled Ecological Life Support System (CELSS) project. Selected tasks were automated seeding of plants, plant health sensing, and food processing. Prototype systems for planting both germinated and nongerminated seeds were fabricated and tested. Water and air pressure differences and electrostatic fields were used to trap seeds for separation and transport for planting. An absorption spectrometer was developed to measure chlorophyll levels in plants as an early warning of plant health problems. In the area of food processing, a milling system was created using high-speed rotating blades which were aerodynamically configured to produce circulation and retractable to prevent leakage. The project produced significant results having substantial benefit to NASA. It also provided an outstanding learning experience for the students involved.

  6. Non-conventional approaches to food processing in CELSS, 1. Algal proteins: Characterization and process optimization

    NASA Technical Reports Server (NTRS)

    Nakhost, Z.; Karel, M.; Krukonis, V. J.

    1987-01-01

    Protein isolate obtained from green algae cultivated under controlled conditions was characterized. Molecular weight determination of fractionated algal proteins using SDS-polyacrylamide gel electrophoresis revealed a wide spectrum of molecular weights ranging from 15,000 to 220,000. Isoelectric points of dissociated proteins were in the range of 3.95 to 6.20. Amino acid composition of protein isolate compared favorably with FAO standards. High content of essential amino acids leucine, valine, phenylalanine and lysine make algal protein isolate a high quality component of closed ecological life support system diets. To optimize the removal of algal lipids and pigments supercritical carbon dioxide extraction (with and without ethanol as a co-solvent) was used. Addition of ethanol to supercritical carbon dioxide resulted in more efficient removal of algal lipids and produced protein isolate with a good yield and protein recovery. The protein isolate extracted by the above mixture had an improved water solubility.

  7. Significance of Plant Root Microorganisms in Reclaiming Water in CELSS

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Greene, Catherine; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Since many microorganisms demonstrate the ability to quickly break down complex mixtures of waste and environmental contaminants, examining their potential use for water recycling in a closed environment is appealing. Water contributes approximately 90 percent of the life sustaining provisions in a human space habitat. Nearly half of the daily water requirements will be used for personal hygiene and dish washing. The primary contaminants of the used "gray" water will be the cleansing agents or soaps used to carry out these functions. Reclaiming water from the gray water waste streams is one goal of the NASA program, Controlled Ecological Life Support Systems (CELSS). The microorganisms of plane roots are well documented to be of a beneficial effect to promote plant growth. Most plants exhibit a range of bacteria and fungi which can be highly plant-specific. In our investigations with lettuce grown in hydroponic culture, we identified a microflora of normal rhizosphere. When the roots were exposed to an anionic surfactant, the species diversity changed, based on morphological characteristics, with the numbers of species being reduced from 7 to 2 after 48 hours of exposure. In addition, the species that became dominant in the presence of the anionic surfactant also demonstrated a dramatic increase in population density which corresponded to the degradation of the surfactant in the root zone. The potential for using these or other rhizosphere bacteria as a primary or secondary waste processor is promising, but a number of issues still warrant investigation; these include but are not limited to: (1) the full identification of the microbes, (2) the classes of surfactants the microbes will degrade, (3) the environmental conditions required for optimal processing efficiency and (4) the ability of transferring the microbes to a non-living solid matrix such as a bioreactor.

  8. Subcritical and supercritical water oxidation of CELSS model wastes

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  9. Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS

    NASA Technical Reports Server (NTRS)

    Gale, J.; Smernoff, D. T.; Macler, B. A.; Macelroy, R. D.

    1989-01-01

    The photosynthesis and productivity of Lemna gibba is analyzed for CELSS based plant growth. Net photosynthesis of Lemna gibba is determined as a function of incident photosynthetic photon flux (PPF), with the light coming from above, below, or from both directions. Light from below is about 75 percent as effective as from above when the stand is sparse, but much less so with dense stands. High rates of photosynthesis are measured at 750 micromol / sq m per sec PPF and 1500 micromol/ mol CO2 at densities up to 660 g fresh weight (FW)/ sq m with young cultures. The analysis includes diagrams illustrating the net photosynthesis response to bilateral lighting of a sparse stand of low assimilate Lemna gibba; the effect of stand density on the net photosynthesis response to bilateral lighting of high assimilate Lemna gibba; the net photosynthesis response to ambient CO2 of sparse stands of Lemna gibba; and the time course of net photosynthesis and respiration per unit chamber and per unit dry weight of Lemna gibba.

  10. Wheat production in controlled environments

    NASA Technical Reports Server (NTRS)

    Salisbury, Frank B.; Bugbee, Bruce; Bubenheim, David

    1987-01-01

    Conditions are optimized for maximum yield and quality of wheat to be used in a controlled environment life support system (CELSS) in a Lunar or Martian base or a spacecraft. With yields of 23 to 57 g/sq m/d of edible biomass, a minimum size for a CELSS would be between 12 and 30 sq m per person, utilizing about 600 W/sq m of electrical energy for artificial light. Temperature, irradiance, photoperiod, carbon dioxide levels, humidity, and wind velocity are controlled in growth chambers. Nutrient solutions (adjusted for wheat) are supplied to the roots via a recirculating system that controls pH by adding HNO3 and controlling the NO3/NH4 ratio in solution. A rock-wool plant support allows direct seeding and densities up to 10,000 plants sq m. Densities up to 2000 plants/sq m appear to increase seed yield. Biomass production increases almost linearily with increasing irradiance from 400 to 1700 micromol/sq m/s of photosynthetic photon flux, but the efficiency of light utilization decreases over this range. Photoperiod and temperature both have a profound influence on floral initiation, spikelet formation, stem elongation, and fertilization.

  11. Celss nutrition system utilizing snails

    NASA Astrophysics Data System (ADS)

    Midorikawa, Y.; Fujii, T.; Ohira, A.; Nitta, K.

    At the 40th IAF Congress in Malaga, a nutrition system for a lunar base CELSS was presented. A lunar base with a total of eight crew members was envisaged. In this paper, four species of plants—rice, soybean, lettuce and strawberry—were introduced to the system. These plants were sufficient to satisfy fundamental nutritional needs of the crew members. The supply of nutrition from plants and the human nutritional requirements could almost be balanced. Our study revealed that the necessary plant cultivation area per crew member would be nearly 40 m 3 in the lunar base. The sources of nutrition considered in the study were energy, sugar, fat, amino acids, inorganic salt and vitamins; however, calcium, vitamin B 2, vitamin A and sodium were found to be lacking. Therefore, a subsystem to supply these elements is of considerable value. In this paper, we report on a study for breeding snails and utilizing meat as food. Nutrients supplied from snails are shown to compensate for the abovementioned lacking elements. We evaluate the snail breeder and the associated food supply system as a subsystem of closed ecological life support system.

  12. System development and early biological tests in NASA's biomass production chamber

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Dreschel, T. W.; Sager, J. C.; Prince, R. P.; Knott, W. M.; Hinkle, C. R.; Strayer, R. F.

    1990-01-01

    The Biomass Production Chamber at Kennedy Space Center was constructed to conduct large scale plant growth studies for NASA's CELSS program. Over the past four years, physical systems and computer control software have been continually upgraded and the degree of atmospheric leakage from the chamber has decreased from about 40 to 5 percent of the total volume per day. Early tests conducted with a limited degree of closure showed that total crop (wheat) growth from the best trays was within 80 percent of reported optimal yields for similar light levels. Yields from subsequent tests under more tightly closed conditions have not been as good--up to only 65 percent of optimal yields. Yields appear to have decreased with increasing closure, yet potential problems exist in cultural techniques and further studies are warranted. With the ability to tightly seal the chamber, quantitative data were gathered on CO2 and water exchange rates. Results showed that stand photosynthesis and transpiration reached a peak near 25 days after planting, soon after full vegetative ground cover was established. In the final phase of testing when atmospheric closure was the highest, ethylene gas levels in the chamber rose from about 10 to nearly 120 ppb. Evidence suggests that the ethylene originated from the wheat plants themselves and may have caused an epinastic rolling of the leaves, but no apparent detrimental effects on whole plant function.

  13. 7 CFR 457.144 - Northern potato crop insurance-processing quality endorsement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Northern potato crop insurance-processing quality... Northern potato crop insurance—processing quality endorsement. The Northern Potato Crop Insurance.... Definitions Broker. Any business enterprise regularly engaged in the buying and selling of processing potatoes...

  14. 7 CFR 457.144 - Northern potato crop insurance-processing quality endorsement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Northern potato crop insurance-processing quality... Northern potato crop insurance—processing quality endorsement. The Northern Potato Crop Insurance.... Definitions Broker. Any business enterprise regularly engaged in the buying and selling of processing potatoes...

  15. 7 CFR 457.144 - Northern potato crop insurance-processing quality endorsement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Northern potato crop insurance-processing quality... Northern potato crop insurance—processing quality endorsement. The Northern Potato Crop Insurance.... Definitions Broker. Any business enterprise regularly engaged in the buying and selling of processing potatoes...

  16. 7 CFR 457.144 - Northern potato crop insurance-processing quality endorsement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Northern potato crop insurance-processing quality... Northern potato crop insurance—processing quality endorsement. The Northern Potato Crop Insurance.... Definitions Broker. Any business enterprise regularly engaged in the buying and selling of processing potatoes...

  17. Carbon balance and productivity of Lemna gibba, a candidate plant for CELSS.

    PubMed

    Gale, J; Smernoff, D T; Macler, B A; MacElroy, R D

    1989-01-01

    The photosynthesis and productivity of Lemna gibba were studied with a view to its use in Controlled Ecological Life Support Systems (CELSS). Photosynthesis of L. gibba floating on the nutrient solution could be driven by light coming from either above or below. Light from below was about 75% as effective as from above when the stand was sparse, but much less so with dense stands. High rates of photosynthesis (ca. 800 nanomoles CO2 g dry weight (DW)-1 s-1) were measured at 750 micromoles m-2 s-1 PPF and 1500 micromoles mol-1 CO2. This was attained at densities up to 660 g fresh weight (FW) m-2 with young cultures. After a few days growth under these conditions, and at higher densities, the rate of photosynthesis dropped to less than 25% of the initial value. This drop was only partly alleviated by thinning the stand or by introducing a short dark period at high temperature (26 degrees C). Despite the drop in the rate of photosynthesis, maximum yields were obtained in batch cultures grown under continuous light, constant temperature and high [CO2]. Plant protein content was less than reported for field grown Lemna. When the plants were harvested daily, maintaining a stand density of 600 g FW m-2, yields of 18 g DW m-2 d-1 were obtained. The total dry weight of L. gibba included 40% soluble material (sugars and amino acids), 15% protein, 5% starch, 5% ash and 35% cellulose and other polymers. We conclude that a CELSS system could be designed around stacked, alternate layers of transparent Lemna trays and lamps. This would allow for 7 tiers per meter height. Based on present data from single layers, the yield of such a system is calculated to be 135 g DW m-3 d-1 of a 100% edible, protein-rich food.

  18. 7 CFR 457.155 - Processing bean crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing bean crop insurance provisions. 457.155 Section 457.155 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.155 Processing bean...

  19. Advanced space design program to the Universities Space Research Association and the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Nevill, Gale E., Jr.

    1988-01-01

    The goal of the Fall 1987 class of EGM 4000 was the investigation of engineering aspects contributing to the development of NASA's Controlled Ecological Life Support System (CELSS). The areas investigated were the geometry of plant growth chambers, automated seeding of plants, remote sensing of plant health, and processing of grain into edible forms. The group investigating variable spacing of individual soybean plants designed growth trays consisting of three dimensional trapezoids arranged in a compact circular configuration. The automated seed manipulation and planting group investigated the electrical and mechanical properties of wheat seeds and developed three seeding concepts based upon these properties. The plant health and disease sensing group developed a list of reliable plant health indicators and investigated potential detection technologies.

  20. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Processing sweet corn crop insurance provisions. 457.154 Section 457.154 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.154 Processing...

  1. AgMIP: Next Generation Models and Assessments

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2014-12-01

    Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6 that involves the key modeling groups from around the world including North America, Europe, South America, Sub-Saharan Africa, South Asia, East Asia, and Australia and Oceania. This community process will lead to mutually agreed protocols for coordinated global and regional assessments.

  2. Control and modeling of a CELSS (Controlled Ecological Life Support System)

    NASA Technical Reports Server (NTRS)

    Auslander, D. M.; Spear, R. C.; Babcock, P. S.; Nadel, M.

    1983-01-01

    Research topics that arise from the conceptualization of control for closed life support systems which are life support systems in which all or most of the mass is recycled are discussed. Modeling and control of uncertain and poorly defined systems, resource allocation in closed life support systems, and control structures or systems with delay and closure are emphasized.

  3. Fermentation and oxygen transfer in microgravity

    NASA Technical Reports Server (NTRS)

    Dunlop, Eric H.

    1989-01-01

    The need for high rate oxygen transfer in microgravity for a Controlled Ecological Life Support System (CELSS) environment offers a number of difficulties and challenges. The use of a phase separated bioreactor appears to provide a way of overcoming these problems resulting in a system capable of providing high cell densities with rapid fermentation rates. Some of the key design elements are discussed.

  4. Regenerative life support system research

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.

  5. Enzyme conversion of lignocellulosic plant materials for resource recovery in a controlled ecological life support system

    NASA Astrophysics Data System (ADS)

    Kohlmann, K. L.; Westgate, P.; Velayudhan, A.; Weil, J.; Sarikaya, A.; Brewer, M. A.; Hendrickson, R. L.; Ladisch, M. R.

    1996-01-01

    A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.

  6. Enzyme conversion of lignocellulosic plant materials for resource recovery in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Kohlmann, K. L.; Westgate, P.; Velayudhan, A.; Weil, J.; Sarikaya, A.; Brewer, M. A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    A large amount of inedible plant material composed primarily of the carbohydrate materials cellulose, hemicellulose, and lignin is generated as a result of plant growth in a Controlled Ecological Life-Support System (CELSS). Cellulose is a linear homopolymer of glucose, which when properly processed will yield glucose, a valuable sugar because it can be added directly to human diets. Hemicellulose is a heteropolymer of hexoses and pentoses that can be treated to give a sugar mixture that is potentially a valuable fermentable carbon source. Such fermentations yield desirable supplements to the edible products from hydroponically-grown plants such as rapeseed, soybean, cowpea, or rice. Lignin is a three-dimensionally branched aromatic polymer, composed of phenyl propane units, which is susceptible to bioconversion through the growth of the white rot fungus, Pluerotus ostreatus. Processing conditions, that include both a hot water pretreatment and fungal growth and that lead to the facile conversion of plant polysaccharides to glucose, are presented.

  7. Life sciences and space research XXIII(3): Natural and artificial ecosystems; Proceedings of the Topical Meetings of the 27th COSPAR Plenary Meeting, Espoo, Finland, July 18-29, 1988

    NASA Technical Reports Server (NTRS)

    Macelroy, R. D. (Editor); Tibbitts, T. W. (Editor); Thompson, B. G. (Editor); Volk, T. (Editor)

    1989-01-01

    The present conference discusses topics in the fields of higher plant growth under controlled environmental conditions, waste oxidation, carbon cycling, and biofermentor design and operation. Attention is given to CO2 and O2 effects on the development and fructification of wheat in closed systems, transpiration during life cycle in controlled wheat growth, sources and processing of CELSS wastes, waste-recycling in bioregenerative life support, and the effect of iodine disinfection products on higher plants. Also discussed are carbon cycling by cellulose-fermenting nitrogen-fixing bacteria, a bioreactor design with sunlight supply and operations systems for use in the space environment, gas bubble coalescence in reduced gravity conditions, and model system studies of a phase-separated membrane bioreactor.

  8. 7 CFR 457.144 - Northern potato crop insurance-processing quality endorsement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Northern potato crop insurance-processing quality endorsement. 457.144 Section 457.144 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.144...

  9. Controlled Ecological Life Support System Breadboard Project - 1988

    NASA Technical Reports Server (NTRS)

    Knott, W. M.

    1989-01-01

    The Controlled Ecological Life Support System (CELSS) Breadboard Project, NASA's effort to develop the technology required to produce a functioning bioregenerative system, is discussed. The different phases of the project and its current status are described. The relationship between the project components are shown, and major project activities for fiscal years 1989-1993 are listed. The biomass production chamber to be used by the project is described.

  10. A design methodology for nonlinear systems containing parameter uncertainty: Application to nonlinear controller design

    NASA Technical Reports Server (NTRS)

    Young, G.

    1982-01-01

    A design methodology capable of dealing with nonlinear systems, such as a controlled ecological life support system (CELSS), containing parameter uncertainty is discussed. The methodology was applied to the design of discrete time nonlinear controllers. The nonlinear controllers can be used to control either linear or nonlinear systems. Several controller strategies are presented to illustrate the design procedure.

  11. Design concepts for bioreactors in space

    NASA Technical Reports Server (NTRS)

    Seshan, P. K.; Peterson, G. R.; Beard, B.; Boshe, C.; Dunlop, E. H.

    1987-01-01

    Microbial food sources are becoming viable and more efficient alternatives to conventional food sources, especially in the context of closed ecological life support systems (CELSS) in space habitats. Two bioreactor design concepts presented represent two dissimilar approaches to grappling with the absence of gravity in space habitats and deserve to be tested for adoption as important components of the life support function aboard spacecraft, space stations and other extra-terrestrial habitats.

  12. Controlled ecological life support system higher plant flight experiments

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Wheeler, R. M.

    1984-01-01

    Requirements for spaceflight experments which involve higher plants were determined. The plants are studied for use in controlled ecological life support systems (CELSS). Two categories of research requirements are discussed: (1) the physical needs which include nutrient, water and gas exchange requirements; (2) the biological and physiological functions which affect plants in zero gravity environments. Physical problems studies are given the priority since they affect all biological experiments.

  13. Electrochemical control of pH in a hydroponic nutrient solution

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, S. H.

    1986-01-01

    The electrochemical pH control system described was found to provide a feasible alternative method of controlling nutrient solution pH for CELSS applications. The plants grown in nutrient solution in which the pH was controlled electrochemically showed no adverse effects. Further research into the design of a larger capacity electrode bridge for better control is indicated by the results of this experiment, and is currently under way.

  14. Workshop on Closed System Ecology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Self maintaining laboratory scale ecological systems completely isolated from exchanges of matter with external systems were demonstrated. These research tools are discussed in terms of their anticipated value in understanding (1) global ecological material and energy balances, (2) the dynamics of stability and instability in ecosystems, (3) the effects of man-made substances and structures on ecosystems, and (4) the precise requirements for dynamic control of controlled ecology life support systems (CELSS).

  15. Characterization of Spirulina biomass for CELSS diet potential

    NASA Technical Reports Server (NTRS)

    Tadros, Mahasin G.

    1993-01-01

    Cyanobacteria, Spirulina maxima as a biogenerative photosynthetic and an edible alga for the space craft crew in a CELSS, was evaluated in an effort to increase the growth rate, biomass, yield, and chemical analysis in continuous cultures. The cell characteristics were determined for cultures maintained at steady state with respect to the substrate concentration. The productivity increased in experiments exposed to low light (30 uE m(exp -2)s(exp -1). Oxygen evolved and protein production were higher in cultures exposed to low light intensity. There was a relationship between nitrate concentration and the yield of the culture. Increasing the concentration of nitrate in the growth medium up to 20 mM was enough to produce a culture having the same chemical composition as that of complete medium. High light was inhibiting the yield of the culture. Increasing the concentration of phosphate beyond 1 mM did not improve the yield of the culture. Increasing the concentration of sodium chloride in the growth medium did not affect the growth of the alga up to 0.1 M but beyond that the culture started to be stressed. The response to stress appeared in high production of total carbohydrate on the expense of protein production. The oxygen production was also higher in cultures stressed with sodium chloride.

  16. An analysis of the productivity of a CELSS continuous algal culture system

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Arnett, K.

    1986-01-01

    One of the most attractive aspects of using algal cultures as plant components for a Closed Ecological Life Support Systems (CELSS) is the efficiency with which they can be grown. Although algae are not necessarily intrinsically more efficient than higher plants, the ease which they can be handled and manipulated (more like chemical reagents than plants), and the culturing techniques available, result in much higher growth rates than are usually attainable with higher plants. Furthermore, preliminary experiments have demonstrated that algal growth and physiology is not detectable altered in a microgravity environment, (1) whereas the response of higher plants to zero gravity is unknown. In order to rationally design and operate culture systems, it is necessary to understand how the macroparameters of a culture system, e.g., productivity, are related to the physiological aspects of the algal culture. A first principles analysis of culture system is discussed, and a mathematical model that describes the relationship of culture productivity to the cell concentration of light-limited culture is derived. The predicted productivity vs cell concentration curve agrees well with the experimental data obtained to test this model, indicating that this model permits an accurate prediction of culture productivity given the growth parameters of the system.

  17. Evaluation of engineered foods for Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Karel, M.

    1981-01-01

    A system of conversion of locally regenerated raw materials and of resupplied freeze-dried foods and ingredients into acceptable, safe and nutritious engineered foods is proposed. The first phase of the proposed research has the following objectives: (1) evaluation of feasibility of developing acceptable and reliable engineered foods from a limited selection of plants, supplemented by microbially produced nutrients and a minimum of dehydrated nutrient sources (especially those of animal origin); (2) evaluation of research tasks and specifications of research projects to adapt present technology and food science to expected space conditions (in particular, problems arising from unusual gravity conditions, problems of limited size and the isolation of the food production system, and the opportunities of space conditions are considered); (3) development of scenarios of agricultural production of plant and microbial systems, including the specifications of processing wastes to be recycled.

  18. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins.

    PubMed

    Belfry, Kimberly D; Trueman, Cheryl; Vyn, Richard J; Loewen, Steven A; Van Eerd, Laura L

    2017-01-01

    Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L.) production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated) and tomato cultivar (early vs. late) was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L.), winter cereal rye (hereafter referred to as rye) (Secale cereale L.), oilseed radish (OSR) (Raphanus sativus L. var. oleiferus Metzg Stokes), and mix of OSR and rye (OSR + rye) treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS)) was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit margins.

  19. Winter cover crops on processing tomato yield, quality, pest pressure, nitrogen availability, and profit margins

    PubMed Central

    Belfry, Kimberly D.; Trueman, Cheryl; Vyn, Richard J.; Loewen, Steven A.; Van Eerd, Laura L.

    2017-01-01

    Much of cover crop research to date focuses on key indicators of impact without considering the implications over multiple years, in the absence of a systems-based approach. To evaluate the effect of three years of autumn cover crops on subsequent processing tomato (Solanum lycopersicum L.) production in 2010 and 2011, a field split-split-plot factorial design trial with effects of cover crop type, urea ammonium nitrate fertilizer rate (0 or 140 kg N ha-1 preplant broadcast incorporated) and tomato cultivar (early vs. late) was conducted. The main plot factor, cover crop, included a no cover crop control, oat (Avena sativa L.), winter cereal rye (hereafter referred to as rye) (Secale cereale L.), oilseed radish (OSR) (Raphanus sativus L. var. oleiferus Metzg Stokes), and mix of OSR and rye (OSR + rye) treatments. Cover crop biomass of 0.5 to 2.8 and 1.7 to 3.1 Mg ha-1 was attained in early Oct. and the following early May, respectively. In general, OSR increased soil mineral N during cover crop growth and into the succeeding summer tomato growing season, while the remaining cover crops did not differ from the no cover crop control. The lack of a cover crop by N rate interaction in soil and plant N analyses at harvest suggests that growers may not need to modify N fertilizer rates to tomatoes based on cover crop type. Processing tomato fruit quality at harvest (rots, insect or disease damage, Agtron colour, pH, or natural tomato soluble solids (NTSS)) was not affected by cover crop type. In both years, marketable yield in the no cover crop treatment was lower or not statistically different than all planted cover crops. Partial profit margins over both years were 1320 $ ha-1 higher with OSR and $960 higher with oat compared to the no cover crop control. Thus, results from a systems-based approach suggest that the cover crops tested had no observed negative impact on processing tomato production and have the potential to increase marketable yield and profit margins. PMID:28683080

  20. Plant breeding and genetics

    USDA-ARS?s Scientific Manuscript database

    The ultimate goal of plant breeding is to develop improved crops. Improvements can be made in crop productivity, crop processing and marketing, and/or consumer quality. The process of developing an improved cultivar begins with intercrossing lines with high performance for the traits of interest, th...

  1. Crop Row Detection in Maize Fields Inspired on the Human Visual Perception

    PubMed Central

    Romeo, J.; Pajares, G.; Montalvo, M.; Guerrero, J. M.; Guijarro, M.; Ribeiro, A.

    2012-01-01

    This paper proposes a new method, oriented to image real-time processing, for identifying crop rows in maize fields in the images. The vision system is designed to be installed onboard a mobile agricultural vehicle, that is, submitted to gyros, vibrations, and undesired movements. The images are captured under image perspective, being affected by the above undesired effects. The image processing consists of two main processes: image segmentation and crop row detection. The first one applies a threshold to separate green plants or pixels (crops and weeds) from the rest (soil, stones, and others). It is based on a fuzzy clustering process, which allows obtaining the threshold to be applied during the normal operation process. The crop row detection applies a method based on image perspective projection that searches for maximum accumulation of segmented green pixels along straight alignments. They determine the expected crop lines in the images. The method is robust enough to work under the above-mentioned undesired effects. It is favorably compared against the well-tested Hough transformation for line detection. PMID:22623899

  2. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using combined biochemical and thermochemical processes in a multi-stage biorefinery concept

    USDA-ARS?s Scientific Manuscript database

    The environmental impact of agricultural waste from processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the...

  3. Biomass production and nitrogen dynamics in an integrated aquaculture/agriculture system

    NASA Technical Reports Server (NTRS)

    Owens, L. P.; Hall, C. R.

    1990-01-01

    A combined aquaculture/agriculture system that brings together the three major components of a Controlled Ecological Life Support System (CELSS) - biomass production, biomass processing, and waste recycling - was developed to evaluate ecological processes and hardware requirements necessary to assess the feasibility of and define design criteria for integration into the Kennedy Space Center (KSC) Breadboard Project. The system consists of a 1 square meter plant growth area, a 500 liter fish culture tank, and computerized monitoring and control hardware. Nutrients in the hydrophonic solution were derived from fish metabolites and fish food leachate. In five months of continuous operation, 27.0 kg of lettuce tops, 39.9 kg of roots and biofilm, and 6.6 kg of fish (wet weights) were produced with 12.7 kg of fish food input. Based on dry weights, a biomass conversion index of 0.52 was achieved. A nitrogen budget was derived to determine partitioning of nitrogen within various compartments of the system. Accumulating nitrogen in the hypoponic solution indicated a need to enlarge the plant growth area, potentially increasing the biomass production and improving the biomass conversion index.

  4. Biomass recycle as a means to improve the energy efficiency of CELSS algal culture systems

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Cox, J.; Lieberman, D.; Behrens, P.; Arnett, K.

    1987-01-01

    Algal cultures can be very rapid and efficient means to generate biomass and regenerate the atmosphere for closed environmental life support systems. However, as in the case of most higher plants, a significant fraction of the biomass produced by most algae cannot be directly converted to a useful food product by standard food technology procedures. This waste biomass will serve as an energy drain on the overall system unless it can be efficiently recycled without a significant loss of its energy content. Experiments are reported in which cultures of the alga Scenedesmus obliquus were grown in the light and at the expense of an added carbon source, which either replaced or supplemented the actinic light. As part of these experiments, hydrolyzed waste biomass from these same algae were tested to determine whether the algae themselves could be made part of the biological recycling process. Results indicate that hydrolyzed algal (and plant) biomass can serve as carbon and energy sources for the growth of these algae, suggesting that the efficiency of the closed system could be significantly improved using this recycling process.

  5. Silicon Era of Carbon-Based Life: Application of Genomics and Bioinformatics in Crop Stress Research

    PubMed Central

    Li, Man-Wah; Qi, Xinpeng; Ni, Meng; Lam, Hon-Ming

    2013-01-01

    Abiotic and biotic stresses lead to massive reprogramming of different life processes and are the major limiting factors hampering crop productivity. Omics-based research platforms allow for a holistic and comprehensive survey on crop stress responses and hence may bring forth better crop improvement strategies. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and functional genomic studies in crops still lag far behind similar studies in humans and other animals. In this review, we summarize some useful genomics and bioinformatics resources available to crop scientists. In addition, we also discuss the major challenges and advancements in the “-omics” studies, with an emphasis on their possible impacts on crop stress research and crop improvement. PMID:23759993

  6. Robust crop and weed segmentation under uncontrolled outdoor illumination.

    PubMed

    Jeon, Hong Y; Tian, Lei F; Zhu, Heping

    2011-01-01

    An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA).

  7. Use of a Lunar Outpost for Developing Space Settlement Technologies

    NASA Technical Reports Server (NTRS)

    Purves, Lloyd R.

    2008-01-01

    The type of polar lunar outpost being considered in the NASA Vision for Space Exploration (VSE) can effectively support the development of technologies that will not only significantly enhance lunar exploration, but also enable long term crewed space missions, including space settlement. The critical technologies are: artificial gravity, radiation protection, Closed Ecological Life Support Systems (CELSS) and In-Situ Resource Utilization (ISRU). These enhance lunar exploration by extending the time an astronaut can remain on the moon and reducing the need for supplies from Earth, and they seem required for space settlement. A polar lunar outpost provides a location to perform the research and testing required to develop these technologies, as well as to determine if there are viable countermeasures that can reduce the need for Earth-surface-equivalent gravity and radiation protection on long human space missions. The types of spinning space vehicles or stations envisioned to provide artificial gravity can be implemented and tested on the lunar surface, where they can create any level of effective gravity above the 1/6 Earth gravity that naturally exists on the lunar surface. Likewise, varying degrees of radiation protection can provide a natural radiation environment on the lunar surface less than or equal to 1/2 that of open space at 1 AU. Lunar ISRU has the potential of providing most of the material needed for radiation protection, the centrifuge that provides artificial gravity; and the atmosphere, water and soil for a CELSS. Lunar ISRU both saves the cost of transporting these materials from Earth and helps define the requirements for ISRU on other planetary bodies. Biosphere II provides a reference point for estimating what is required for an initial habitat with a CELSS. Previous studies provide initial estimates of what would be required to provide such a lunar habitat with the gravity and radiation environment of the Earth s surface. While much preparatory work can be accomplished with existing capabilities such as the ISS, the full implementation of a lunar habitat with an Earth-like environment will require the development of a lunar mission architecture that goes beyond VSE concepts. The proven knowledge of how to build such a lunar habitat can then be applied to various approaches for space settlement.

  8. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods.

    PubMed

    Nyochembeng, Leopold M; Beyl, Caula A; Pacumbaba, R P

    2008-09-01

    Long-term manned space flights to Mars require the development of an advanced life support (ALS) ecosystem including efficient food crop production, processing and recycling waste products thereof. Using edible white rot fungi (EWRF) to achieve effective biomass transformation in ALS requires optimal and rapid biodegradative activity on lignocellulosic wastes. We investigated the mycelial growth of Lentinula edodes and Pleurotus ostreatus on processed residues of various crops under various cropping patterns. In single cropping, mycelial growth and fruiting in all strains were significantly repressed on sweet potato and basil. However, growth of the strains was improved when sweet potato and basil residues were paired with rice or wheat straw. Oyster mushroom (Pleurotus) strains were better than shiitake (L. edodes) strains under single, paired, and mixed cropping patterns. Mixed cropping further eliminated the inherent inhibitory effect of sweet potato, basil, or lettuce on fungal growth. Co-cropping fungal species had a synergistic effect on rate of fungal growth, substrate colonization, and fruiting. Use of efficient cropping methods may enhance fungal growth, fruiting, biodegradation of crop residues, and efficiency of biomass recycling.

  9. Large area crop inventory experiment crop assessment subsystem software requirements document

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The functional data processing requirements are described for the Crop Assessment Subsystem of the Large Area Crop Inventory Experiment. These requirements are used as a guide for software development and implementation.

  10. Plant Growth Module (PGM) conceptual design

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Rasmussen, Daryl

    1987-01-01

    The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.

  11. Comparative effect of lunar fines and terrestrtrial ash on the growth of a blue-green alga and germinating radish seeds

    NASA Technical Reports Server (NTRS)

    Ridley, E. J.

    1983-01-01

    Although it is understood that photosynthetic organisms will be required as components of a closed ecological life support system (CELSS) for a manned lunar based, a basic problem is to identify organisms best capable of utilizing lunar regolith materials. Also, there is need to determine what nutrient supplements have to be added to lunar soils, and at what levels in order to promote high bio-mass production.

  12. Microinvertebrates in CELSS Hydroponic Rhizosphere: Experimental Invasion as a Test of Community Stability and a Test of a Method to Measure Bacterivory

    NASA Technical Reports Server (NTRS)

    Sager, John; Garland, Jay; Jenkins, David G.

    1996-01-01

    This report consists of two separate draft manuscripts, each prepared for submittal to a peer-reviewed journal after Kennedy Space Center (KSC) colleague editorial review and final revision. References for the two papers have been combined in this report. The two manuscripts are: (1) Experimental invasion of aquatic rhizosphere habitat and invertebrate communities, and (2) Lysozyme analysis is neither protistan- or bacteriore-specific.

  13. Effects of air current speed on gas exchange in plant leaves and plant canopies.

    PubMed

    Kitaya, Y; Tsuruyama, J; Shibuya, T; Yoshida, M; Kiyota, M

    2003-01-01

    To obtain basic data on adequate air circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the air current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas exchange rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the air current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at air current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at air current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased air current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of air movement around plants for enhancing the gas exchange in the leaf, especially in plant canopies in the CELSS. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  14. Potato growth and yield using nutrient film technique (NFT)

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Hinkle, C. R.

    1990-01-01

    Potato plants, cvs Denali and Norland, were grown in polyvinyl chloride (PVC) trays using a continuous flowing nutrient film technique (NFT) to study tuber yield for NASA's Controlled Ecological Life Support Systems (CELSS) program. Nutrient solution pH was controlled automatically using 0.39M (2.5% (v/v) nitric acid (HNO3), while water and nutrients were replenished manually each day and twice each week, respectively. Plants were spaced either one or two per tray, allotting 0.2 or 0.4 m2 per plant. All plants were harvested after 112 days. Denali plants yielded 2850 and 2800 g tuber fresh weight from the one- and two-plant trays, respectively, while Norland plants yielded 1800 and 2400 g tuber fresh weight from the one- and two-plant trays. Many tubers of both cultivars showed injury to the periderm tissue, possibly caused by salt accumulation from the nutrient solution on the surface. Total system water usage throughout the study for all the plants equaled 709 liters (L), or approximately 2 L m-2 d-1. Total system acid usage throughout the study (for nutrient solution pH control) equaled 6.60 L, or 18.4 ml m-2 d-1 (7.2 mmol m-2 d-1). The results demonstrate that continuous flowing nutrient film technique can be used for tuber production with acceptable yields for the CELSS program.

  15. Impact of nowcasting on the production and processing of agricultural crops. [in the US

    NASA Technical Reports Server (NTRS)

    Dancer, W. S.; Tibbitts, T. W.

    1973-01-01

    The value was studied of improved weather information and weather forecasting to farmers, growers, and agricultural processing industries in the United States. The study was undertaken to identify the production and processing operations that could be improved with accurate and timely information on changing weather patterns. Estimates were then made of the potential savings that could be realized with accurate information about the prevailing weather and short term forecasts for up to 12 hours. This weather information has been termed nowcasting. The growing, marketing, and processing operations of the twenty most valuable crops in the United States were studied to determine those operations that are sensitive to short-term weather forecasting. Agricultural extension specialists, research scientists, growers, and representatives of processing industries were consulted and interviewed. The value of the crops included in this survey and their production levels are given. The total value for crops surveyed exceeds 24 billion dollars and represents more than 92 percent of total U.S. crop value.

  16. The impacts of data constraints on the predictive performance of a general process-based crop model (PeakN-crop v1.0)

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Purves, Drew W.; Smith, Matthew J.

    2017-04-01

    Improving international food security under a changing climate and increasing human population will be greatly aided by improving our ability to modify, understand and predict crop growth. What we predominantly have at our disposal are either process-based models of crop physiology or statistical analyses of yield datasets, both of which suffer from various sources of error. In this paper, we present a generic process-based crop model (PeakN-crop v1.0) which we parametrise using a Bayesian model-fitting algorithm to three different sources: data-space-based vegetation indices, eddy covariance productivity measurements and regional crop yields. We show that the model parametrised without data, based on prior knowledge of the parameters, can largely capture the observed behaviour but the data-constrained model greatly improves both the model fit and reduces prediction uncertainty. We investigate the extent to which each dataset contributes to the model performance and show that while all data improve on the prior model fit, the satellite-based data and crop yield estimates are particularly important for reducing model error and uncertainty. Despite these improvements, we conclude that there are still significant knowledge gaps, in terms of available data for model parametrisation, but our study can help indicate the necessary data collection to improve our predictions of crop yields and crop responses to environmental changes.

  17. 7 CFR 457.154 - Processing sweet corn crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... corn processor contract with the processing company, and recognized by the Cooperative State Research... in the area would normally not further care for the crop, must be replanted unless we agree that it... samples of the unharvested crop for our inspection. The samples must be at least 10 feet wide and extend...

  18. Fluorescent marker for the detection of crop and upper gastrointestinal leakage in poultry processing plants.

    PubMed

    Byrd, J A; Hargis, B M; Corrier, D E; Brewer, R L; Caldwell, D J; Bailey, R H; McReynolds, J L; Herron, K L; Stanker, L H

    2002-01-01

    Previous published research has identified the crop as a source of Salmonella and Campylobacter contamination for broiler carcasses and reported that broiler crops are 86 times more likely to rupture than ceca during commercial processing. Presently, we evaluated leakage of crop and upper gastrointestinal contents from broilers using a fluorescent marker at commercial processing plants. Broilers were orally gavaged with a fluorescent marker paste (corn meal-fluorescein dye-agar) within 30 min of live hang. Carcasses were collected at several points during processing and were examined for upper gastrointestinal leakage using long-wavelength black light. This survey indicated that 67% of the total broiler carcasses were positive for the marker at the rehang station following head and shank removal. Crops were mechanically removed from 61% of the carcasses prior to the cropper, and visual online examination indicated leakage of crop contents following crop removal by the pack puller. Examination of the carcasses prior to the cropper detected the marker in the following regions: neck (50.5% positive), thoracic inlet (69.7% positive), thoracic cavity (35.4% positive), and abdominal cavity (34.3% positive). Immediately prior to chill immersion, 53.2% of the carcasses contained some degree of visually identifiable marker contamination, as follows: neck (41.5% positive), thoracic inlet (45.2% positive), thoracic cavity (26.2% positive), and abdominal cavity (30.2% positive). These results suggest that this fluorescent marker technique may serve as a useful tool for rapid identification of potential changes, which could reduce the incidence of crop rupture and contamination of carcasses at processing.

  19. The limits of crop productivity: validating theoretical estimates and determining the factors that limit crop yields in optimal environments

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.

    1992-01-01

    Plant scientists have sought to maximize the yield of food crops since the beginning of agriculture. There are numerous reports of record food and biomass yields (per unit area) in all major crop plants, but many of the record yield reports are in error because they exceed the maximal theoretical rates of the component processes. In this article, we review the component processes that govern yield limits and describe how each process can be individually measured. This procedure has helped us validate theoretical estimates and determine what factors limit yields in optimal environments.

  20. Robust Crop and Weed Segmentation under Uncontrolled Outdoor Illumination

    PubMed Central

    Jeon, Hong Y.; Tian, Lei F.; Zhu, Heping

    2011-01-01

    An image processing algorithm for detecting individual weeds was developed and evaluated. Weed detection processes included were normalized excessive green conversion, statistical threshold value estimation, adaptive image segmentation, median filter, morphological feature calculation and Artificial Neural Network (ANN). The developed algorithm was validated for its ability to identify and detect weeds and crop plants under uncontrolled outdoor illuminations. A machine vision implementing field robot captured field images under outdoor illuminations and the image processing algorithm automatically processed them without manual adjustment. The errors of the algorithm, when processing 666 field images, ranged from 2.1 to 2.9%. The ANN correctly detected 72.6% of crop plants from the identified plants, and considered the rest as weeds. However, the ANN identification rates for crop plants were improved up to 95.1% by addressing the error sources in the algorithm. The developed weed detection and image processing algorithm provides a novel method to identify plants against soil background under the uncontrolled outdoor illuminations, and to differentiate weeds from crop plants. Thus, the proposed new machine vision and processing algorithm may be useful for outdoor applications including plant specific direct applications (PSDA). PMID:22163954

  1. Analysis of an algae-based CELSS. II - Options and weight analysis

    NASA Technical Reports Server (NTRS)

    Holtzapple, Mark T.; Little, Frank E.; Moses, William M.; Patterson, C. O.

    1989-01-01

    Life support components are evaluated for application to an idealized closed life support system which includes an algal reactor for food production. Weight-based trade studies are reported as 'break-even' time for replacing food stores with a regenerative bioreactor. It is concluded that closure of the life support gases (oxygen recovery) depends on the carbon dioxide reduction chemistry and that an algae-based food production can provide an attractive alternative to re-supply for longer duration missions.

  2. Analysis of an algae-based CELSS. Part 2: options and weight analysis

    NASA Technical Reports Server (NTRS)

    Holtzapple, M. T.; Little, F. E.; Moses, W. M.; Patterson, C. O.

    1989-01-01

    Life support components are evaluated for application to an idealized closed life support system which includes an algal reactor for food production. Weight-based trade studies are reported as "break-even" time for replacing food stores with a regenerative bioreactor. It is concluded that closure of the life support gases (oxygen recovery) depends on the carbon dioxide reduction chemistry and that an algae-based food production can provide an attractive alternative to re-supply for longer duration missions.

  3. Algal culture studies related to a Closed Ecological Life Support System (CELSS)

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Behrens, P.; Fernandez, E.; Ollinger, O.; Howell, C.; Venables, A.; Huggins, D.; Gladue, R.

    1984-01-01

    In many respects, algae would be the ideal plant component for a biologically based controlled life support system, since they are eminently suited to the closely coupled functions of atmosphere regeneration and food production. Scenedesmus obliquus and Spirulina platensis were grown in three continuous culture apparatuses. Culture vessels their operation and relative merits are described. Both light and nitrogen utilization efficiency are examined. Long term culture issues are detailed and a discussion of a plasmid search in Spirulina is included.

  4. Controlled Ecological Life Support System. Design, Development, and Use of a Ground-Based Plant Growth Module

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D.; Smernoff, David T.; Rummel, John D.

    1987-01-01

    Problems of food production by higher plants are addressed. Experimentation requirements and necessary equipment for designing an experimental Controlled Ecological Life Support System (CELSS) Plant Growth Module are defined. A framework is provided for the design of laboratory sized plant growth chambers. The rationale for the development of an informal collaborative effort between investigators from universities and industry and those at Ames is evaluated. Specific research problems appropriate for collaborative efforts are identified.

  5. Problems in water recycling for Space Station Freedom and long duration life support

    NASA Technical Reports Server (NTRS)

    Janik, D. S.; Crump, W. J.; Macler, B. A.; Wydeven, T., Jr.; Sauer, R. L.

    1989-01-01

    A biologically-enhanced, physical/chemical terminal water treatment testbed for the Space Station Freedom is proposed. Recycled water requirements for human, animal, plant and/or combined crews for long duration space missions are discussed. An effective terminal treatment method for recycled water reclamation systems that is based on using granular activated carbon as the principal active agent and the controls of microbial contamination and growth within recycled water systems are examined. The roles of plants in water recycling within CELSS is studied.

  6. The applicability of the catalytic wet-oxidation to CELSS

    NASA Technical Reports Server (NTRS)

    Takahashi, Y.; Nitta, K.; Ohya, H.; Oguchi, M.

    1987-01-01

    The wet oxidation catalysis of Au, Pd, Pt, Rh or Ru on a ceramic honeycomb carrier was traced in detail by 16 to 20 repetitive batch tests each. As a result, Pt or Pd on a honeycomb carrier was shown to catalyze complete nitrogen gasification as N2. Though the catalysts which realize both complete nitrogen gasification and complete oxidation could not be found, the Ru+Rh catalyst was found to be most promising. Ru honeycomb catalyzed both nitrification and nitrogen gasification.

  7. Mineral Separation in a CELSS by Ion-exchange Chromatography

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  8. NASA Earth Science Research Results for Improved Regional Crop Yield Prediction

    NASA Astrophysics Data System (ADS)

    Mali, P.; O'Hara, C. G.; Shrestha, B.; Sinclair, T. R.; G de Goncalves, L. G.; Salado Navarro, L. R.

    2007-12-01

    National agencies such as USDA Foreign Agricultural Service (FAS), Production Estimation and Crop Assessment Division (PECAD) work specifically to analyze and generate timely crop yield estimates that help define national as well as global food policies. The USDA/FAS/PECAD utilizes a Decision Support System (DSS) called CADRE (Crop Condition and Data Retrieval Evaluation) mainly through an automated database management system that integrates various meteorological datasets, crop and soil models, and remote sensing data; providing significant contribution to the national and international crop production estimates. The "Sinclair" soybean growth model has been used inside CADRE DSS as one of the crop models. This project uses Sinclair model (a semi-mechanistic crop growth model) for its potential to be effectively used in a geo-processing environment with remote-sensing-based inputs. The main objective of this proposed work is to verify, validate and benchmark current and future NASA earth science research results for the benefit in the operational decision making process of the PECAD/CADRE DSS. For this purpose, the NASA South American Land Data Assimilation System (SALDAS) meteorological dataset is tested for its applicability as a surrogate meteorological input in the Sinclair model meteorological input requirements. Similarly, NASA sensor MODIS products is tested for its applicability in the improvement of the crop yield prediction through improving precision of planting date estimation, plant vigor and growth monitoring. The project also analyzes simulated Visible/Infrared Imager/Radiometer Suite (VIIRS, a future NASA sensor) vegetation product for its applicability in crop growth prediction to accelerate the process of transition of VIIRS research results for the operational use of USDA/FAS/PECAD DSS. The research results will help in providing improved decision making capacity to the USDA/FAS/PECAD DSS through improved vegetation growth monitoring from high spatial and temporal resolution remote sensing datasets; improved time-series meteorological inputs required for crop growth models; and regional prediction capability through geo-processing-based yield modeling.

  9. Genomic exploitation of genetic variation for crop improvement

    USDA-ARS?s Scientific Manuscript database

    Crop plants produce food, fiber, and fuel that are essential to human civilization and mainstays of economic prosperity. Our society continues to cultivate and improve the crop plants for better quality and productivity with sustainable environments. The process of crop genetic improvement has bee...

  10. Role of modern chemistry in sustainable arable crop protection.

    PubMed

    Smith, Keith; Evans, David A; El-Hiti, Gamal A

    2008-02-12

    Organic chemistry has been, and for the foreseeable future will remain, vitally important for crop protection. Control of fungal pathogens, insect pests and weeds is crucial to enhanced food provision. As world population continues to grow, it is timely to assess the current situation, anticipate future challenges and consider how new chemistry may help meet those challenges. In future, agriculture will increasingly be expected to provide not only food and feed, but also crops for conversion into renewable fuels and chemical feedstocks. This will further increase the demand for higher crop yields per unit area, requiring chemicals used in crop production to be even more sophisticated. In order to contribute to programmes of integrated crop management, there is a requirement for chemicals to display high specificity, demonstrate benign environmental and toxicological profiles, and be biodegradable. It will also be necessary to improve production of those chemicals, because waste generated by the production process mitigates the overall benefit. Three aspects are considered in this review: advances in the discovery process for new molecules for sustainable crop protection, including tests for environmental and toxicological properties as well as biological activity; advances in synthetic chemistry that may offer efficient and environmentally benign manufacturing processes for modern crop protection chemicals; and issues related to energy use and production through agriculture.

  11. Foods for a Mission to Mars: Equivalent System Mass and Development of a Multipurpose Small-Scale Seed Processor

    NASA Technical Reports Server (NTRS)

    Gandolph, J.; Chen, G.; Weiss, I.; Perchonok, D. M.; Wijeratne, W.; Fortune, S.; Corvalan, C.; Campanella, O.; Okos, M.; Mauer, L. J.

    2007-01-01

    The candidate crops for planetary food systems include: wheat, white and sweet potatoes, soybean, peanut, strawberry, dry bean including le ntil and pinto, radish, rice, lettuce, carrot, green onion, tomato, p eppers, spinach, and cabbage. Crops such as wheat, potatoes, soybean, peanut, dry bean, and rice can only be utilized after processing, while others are classified as ready-to-eat. To process foods in space, the food processing subsystem must be capable of producing a variety of nutritious, acceptable, and safe edible ingredients and food produ cts from pre-packaged and resupply foods as well as salad crops grown on the transit vehicle or other crops grown on planetary surfaces. D esigning, building, developing, and maintaining such a subsystem is b ound to many constraints and restrictions. The limited power supply, storage locations, variety of crops, crew time, need to minimize waste , and other equivalent system mass (ESM) parameters must be considere d in the selection of processing equipment and techniques.

  12. Correlating climate and longleaf pine cone crops: Is there a connection?

    Treesearch

    Neil Pederson; John S. Kush; Ralph S. Meldahl

    1998-01-01

    The physiological development of longleaf pine seed from flower through cone to seed is a lengthy process, extending over three calendar years. The duration of this process may be the main reason why longleaf pine produces infrequent seed crops with which to regenerate itself. Adequate crops occur every 5-7 years, on average, causing problems for those interested in...

  13. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops?

    PubMed Central

    Patterson, Sara E.; Bolivar-Medina, Jenny L.; Falbel, Tanya G.; Hedtcke, Janet L.; Nevarez-McBride, Danielle; Maule, Andrew F.; Zalapa, Juan E.

    2016-01-01

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered. PMID:26858730

  14. Are We on the Right Track: Can Our Understanding of Abscission in Model Systems Promote or Derail Making Improvements in Less Studied Crops?

    PubMed

    Patterson, Sara E; Bolivar-Medina, Jenny L; Falbel, Tanya G; Hedtcke, Janet L; Nevarez-McBride, Danielle; Maule, Andrew F; Zalapa, Juan E

    2015-01-01

    As the world population grows and resources and climate conditions change, crop improvement continues to be one of the most important challenges for agriculturalists. The yield and quality of many crops is affected by abscission or shattering, and environmental stresses often hasten or alter the abscission process. Understanding this process can not only lead to genetic improvement, but also changes in cultural practices and management that will contribute to higher yields, improved quality and greater sustainability. As plant scientists, we have learned significant amounts about this process through the study of model plants such as Arabidopsis, tomato, rice, and maize. While these model systems have provided significant valuable information, we are sometimes challenged to use this knowledge effectively as variables including the economic value of the crop, the uniformity of the crop, ploidy levels, flowering and crossing mechanisms, ethylene responses, cultural requirements, responses to changes in environment, and cellular and tissue specific morphological differences can significantly influence outcomes. The value of genomic resources for lesser-studied crops such as cranberries and grapes and the orphan crop fonio will also be considered.

  15. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    PubMed

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  16. The uncertainty of crop yield projections is reduced by improved temperature response functions

    USDA-ARS?s Scientific Manuscript database

    Increasing the accuracy of crop productivity estimates is a key Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on cr...

  17. How does spatial and temporal resolution of vegetation index impact crop yield estimation?

    USDA-ARS?s Scientific Manuscript database

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing data have long been used in crop yield estimation for decades. The process-based approach uses light use efficiency model to estimate crop yield. Vegetation index (VI) ...

  18. Gaussian process models for reference ET estimation from alternative meteorological data sources

    USDA-ARS?s Scientific Manuscript database

    Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid regions where crop water demand exceeds rainfall. Daily grass or alfalfa reference ET values and crop coefficients are widely used to estimate crop water demand. ...

  19. Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    NASA Technical Reports Server (NTRS)

    Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.

    1986-01-01

    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.

  20. Yield model development project implementation plan

    NASA Technical Reports Server (NTRS)

    Ambroziak, R. A.

    1982-01-01

    Tasks remaining to be completed are summarized for the following major project elements: (1) evaluation of crop yield models; (2) crop yield model research and development; (3) data acquisition processing, and storage; (4) related yield research: defining spectral and/or remote sensing data requirements; developing input for driving and testing crop growth/yield models; real time testing of wheat plant process models) and (5) project management and support.

  1. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  2. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.

    PubMed

    Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo

    2013-03-01

    Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.

  3. The change of amyloplasts structure and composition of storage starch in potato minitubers during imitated microgravity

    NASA Astrophysics Data System (ADS)

    Nedukha, O. M.; Kordyum, E. L.; Martyn, G. M.; Schnyukova, E. I.

    Potato was designated for food production in the controlled ecological life-support system CELSS because its tubers as it is known contain starch and significant protein content and are edible food after the long-term storage We used the cultivation of potato miniplants under influence of long-term horizontal clinorotation 2 rev min which imitated microgravity as a model for the technology of potato food production in the CELSS The aim of our work was to determine content and composition storage starch as well as amyloplast ultrastructure of storage parenchyma cells in potato minitubers formed under long-term to 6 weeks slow horizontal clinorotation 2 rpm Minitubers developed from axillary buds of potato miniplants growing in the aseptic stationary conditions and under clinorotation Methods of scanning and transmission electron microscopy were used for the study of surface and ultrastructure of amyloplasts the biochemical method by Hovenkamp-Hermelink et al 1988 - for study of starch composition Some differences were observed in amyloplast structure under clinorotation namely increased volume of starch grains in plastid decreased stroma volume changed structure of envelope membranes in comparison with the stationary control Besides an appearance of fraction of gigantic amyloplasts in central layers of parenchyma was observed under clinorotation after 4 weeks of growth The total starch content increased and reached to 219 5 - 4 1 mg g FW at 6 weeks of clinorotation it was 167 5 - 5 6 mg g FW in the control minitubers A ratio of

  4. Effect of CO2 levels on nutrient content of lettuce and radish.

    PubMed

    McKeehen, J D; Smart, D J; Mackowiak, C L; Wheeler, R M; Nielsen, S S

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  5. Effect of CO_2 levels on nutrient content of lettuce and radish

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.

  6. Effect of CO2 levels on nutrient content of lettuce and radish

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  7. Impact of warming climate and cultivar change on maize phenology in the last three decades in North China Plain

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Qi, Yongqing; Shen, Yanjun; Tao, Fulu; Moiwo, Juana P.; Liu, Jianfeng; Wang, Rede; Zhang, He; Liu, Fengshan

    2016-05-01

    As climate change could significantly influence crop phenology and subsequent crop yield, adaptation is a critical mitigation process of the vulnerability of crop growth and production to climate change. Thus, to ensure crop production and food security, there is the need for research on the natural (shifts in crop growth periods) and artificial (shifts in crop cultivars) modes of crop adaptation to climate change. In this study, field observations in 18 stations in North China Plain (NCP) are used in combination with Agricultural Production Systems Simulator (APSIM)-Maize model to analyze the trends in summer maize phenology in relation to climate change and cultivar shift in 1981-2008. Apparent warming in most of the investigated stations causes early flowering and maturity and consequently shortens reproductive growth stage. However, APSIM-Maize model run for four representative stations suggests that cultivar shift delays maturity and thereby prolongs reproductive growth (flowering to maturity) stage by 2.4-3.7 day per decade (d 10a-1). The study suggests a gradual adaptation of maize production process to ongoing climate change in NCP via shifts in high thermal cultivars and phenological processes. It is concluded that cultivation of maize cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production and food security in the NCP study area and beyond.

  8. Putting mechanisms into crop production models.

    PubMed

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.

  9. Bioregenerative Life Support Systems Test Complex (Bio-Plex) Food Processing System: A Dual System

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Vittadini, Elena; Peterson, Laurie J.; Swango, Beverly E.; Toerne, Mary E.; Russo, Dane M. (Technical Monitor)

    2001-01-01

    A Bioregenerative Life Support Test Complex, BIO-Plex, is currently being constructed at the Johnson Space Center (JSC) in Houston, TX. This facility will attempt to answer the questions involved in developing a lunar or planetary base. The Food Processing System (FPS) of the BIO-Plex is responsible for supplying food to the crew in coordination with the chosen mission scenario. Long duration space missions require development of both a Transit Food System and of a Lunar or Planetary Food System. These two systems are intrinsically different since the first one will be utilized in the transit vehicle in microgravity conditions with mostly resupplied foods, while the second will be used in conditions of partial gravity (hypogravity) to process foods from crops grown in the facility. The Transit Food System will consist of prepackaged food of extended shelf life. It will be supplemented with salad crops that will be consumed fresh. Microgravity imposes significant limitation on the ability to handle food and allows only for minimal processing. The challenge is to develop food systems similar to the International Space Station or Shuttle Food Systems but with a shelf life of 3 - 5 years. The Lunar or Planetary Food System will allow for food processing of crops due to the presence of some gravitational force (1/6 to 1/3 that of Earth). Crops such as wheat, soybean, rice, potato, peanut, and salad crops, will be processed to final products to provide a nutritious and acceptable diet for the crew. Not only are constraints imposed on the FPS from the crops (e.g., crop variation, availability, storage and shelf-life) but also significant requirements are present for the crew meals (e.g., RDA, high quality, safety, variety). The FPS becomes a fulcrum creating the right connection from crops to crew meals while dealing with issues of integration within a closed self-regenerative system (e.g., safe processing, waste production, volumes, air contaminations, water usage, etc.). Options for the first test, for duration of 120 days, currently scheduled for late 2003 are outlined.

  10. Preliminary process engineering evaluation of ethanol production from vegetative crops

    NASA Astrophysics Data System (ADS)

    Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.

    1982-12-01

    Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.

  11. Automatic rice crop height measurement using a field server and digital image processing.

    PubMed

    Sritarapipat, Tanakorn; Rakwatin, Preesan; Kasetkasem, Teerasit

    2014-01-07

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the height of the marker bar compared to the height of the initial marker bar. Four digital image processing steps are employed to automatically measure the rice crop height: band selection, filtering, thresholding, and height measurement. Band selection is used to remove redundant features. Filtering extracts significant features of the marker bar. The thresholding method is applied to separate objects and boundaries of the marker bar versus other areas. The marker bar is detected and compared with the initial marker bar to measure the rice crop height. Our experiment used a field server with a digital camera to continuously monitor a rice field located in Suphanburi Province, Thailand. The experimental results show that the proposed method measures rice crop height effectively, with no human intervention required.

  12. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) That is grown for processing for sugar or for seed; and (3) That is not interplanted with another crop... market the sugarcane. Plant cane. The insured crop which grows from seed planted for the crop year... Seed (a) In addition to your duties under section 14 of the Basic Provisions (§ 457.8), in the event of...

  13. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) That is grown for processing for sugar or for seed; and (3) That is not interplanted with another crop... market the sugarcane. Plant cane. The insured crop which grows from seed planted for the crop year... Seed (a) In addition to your duties under section 14 of the Basic Provisions (§ 457.8), in the event of...

  14. 7 CFR 457.116 - Sugarcane crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) That is grown for processing for sugar or for seed; and (3) That is not interplanted with another crop... market the sugarcane. Plant cane. The insured crop which grows from seed planted for the crop year... Seed (a) In addition to your duties under section 14 of the Basic Provisions (§ 457.8), in the event of...

  15. Longleaf Pine Cone Crops and Climate: A Possible Link

    Treesearch

    Neil Pederson; John S. Kush; Ralph S. Meldahl; William D. Bayer

    1999-01-01

    The physiological development of longieaf pine seed extends over three calendar years. The duration of this process may explain the reason for infrequent seed crops. Infrequent crops cause problems for those interested in natural regeneration. Longleaf pine cone crops have been monitored on the Escambia Experimental Forest (EEF) in Brewton, AL since 1958. Weather data...

  16. Genetically Engineered Materials for Biofuels Production

    NASA Astrophysics Data System (ADS)

    Raab, Michael

    2012-02-01

    Agrivida, Inc., is an agricultural biotechnology company developing industrial crop feedstocks for the fuel and chemical industries. Agrivida's crops have improved processing traits that enable efficient, low cost conversion of the crops' cellulosic components into fermentable sugars. Currently, pretreatment and enzymatic conversion of the major cell wall components, cellulose and hemicellulose, into fermentable sugars is the most expensive processing step that prevents widespread adoption of biomass in biofuels processes. To lower production costs we are consolidating pretreatment and enzyme production within the crop. In this strategy, transgenic plants express engineered cell wall degrading enzymes in an inactive form, which can be reactivated after harvest. We have engineered protein elements that disrupt enzyme activity during normal plant growth. Upon exposure to specific processing conditions, the engineered enzymes are converted into their active forms. This mechanism significantly lowers pretreatment costs and enzyme loadings (>75% reduction) below those currently available to the industry.

  17. A national research & development strategy for biomass crop feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, L.L.; Cushman, J.H.

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limitsmore » of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.« less

  18. Controlled Ecological Life Support Systems: Natural and Artificial Ecosystems

    NASA Technical Reports Server (NTRS)

    Macelroy, Robert D. (Editor); Thompson, Brad G. (Editor); Tibbitts, Theodore W. (Editor); Volk, Tyler (Editor)

    1989-01-01

    The scientists supported by the NASA sponsored Controlled Ecological Life Support Systems (CELSS) program have played a major role in creating a Committee on Space Research (COSPAR) section devoted to the development of bioregenerative life support for use in space. The series of 22 papers were sponsored by Subcommission F.4. The papers deal with many of the diverse aspects of life support, and with outgrowth technologies that may have commercial applications in fields such as biotechnology and bioengineering. Papers from researchers in France, Canada, Japan and the USSR are also presented.

  19. A chamber design for closed ecological systems research

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, H.; Stofan, P. E.

    1981-01-01

    A single-plant growth chamber is described which is closed with respect to nutrient and gas flows, in order to serve as a tool in the investigation of control over biological systems. Such control procedures are essential for the use of biological components in the development of a closed ecological life support system (CELSS). The chamber's design consists of two concentric clear plastic cylinders equipped with aeroponic feed tubing, a supporting platform for the plant and a set of sensors that includes an anemometer, thermistors, pressure and strain gauges, and humidity sensors.

  20. Design of biomass management systems and components for closed loop life support systems

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The goal of the EGM 4000/1 Design class was to investigate a Biomass Management System (BMS) and design, fabricate, and test components for biomass management in a closed-loop life support system (CLLSS). The designs explored were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center. Designs included a sectored plant growth unit, a container and transfer mechanism, and an air curtain system for fugitive particle control. The work performed by the class members is summarized.

  1. Automated Signal Processing Applied to Volatile-Based Inspection of Greenhouse Crops

    PubMed Central

    Jansen, Roel; Hofstee, Jan Willem; Bouwmeester, Harro; van Henten, Eldert

    2010-01-01

    Gas chromatograph–mass spectrometers (GC-MS) have been used and shown utility for volatile-based inspection of greenhouse crops. However, a widely recognized difficulty associated with GC-MS application is the large and complex data generated by this instrument. As a consequence, experienced analysts are often required to process this data in order to determine the concentrations of the volatile organic compounds (VOCs) of interest. Manual processing is time-consuming, labour intensive and may be subject to errors due to fatigue. The objective of this study was to assess whether or not GC-MS data can also be automatically processed in order to determine the concentrations of crop health associated VOCs in a greenhouse. An experimental dataset that consisted of twelve data files was processed both manually and automatically to address this question. Manual processing was based on simple peak integration while the automatic processing relied on the algorithms implemented in the MetAlign™ software package. The results of automatic processing of the experimental dataset resulted in concentrations similar to that after manual processing. These results demonstrate that GC-MS data can be automatically processed in order to accurately determine the concentrations of crop health associated VOCs in a greenhouse. When processing GC-MS data automatically, noise reduction, alignment, baseline correction and normalisation are required. PMID:22163594

  2. Regional crop yield forecasting: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    de Wit, A.; van Diepen, K.; Boogaard, H.

    2009-04-01

    Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.

  3. 9 CFR 205.101 - Certification-request and processing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... system will interpret the term “crop year” and how it will classify as to crop year an EFS not showing crop year; (10) Show what fee will be charged and explain how the costs of the system will be covered...

  4. 9 CFR 205.101 - Certification-request and processing.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... system will interpret the term “crop year” and how it will classify as to crop year an EFS not showing crop year; (10) Show what fee will be charged and explain how the costs of the system will be covered...

  5. Cloud decision model for selecting sustainable energy crop based on linguistic intuitionistic information

    NASA Astrophysics Data System (ADS)

    Peng, Hong-Gang; Wang, Jian-Qiang

    2017-11-01

    In recent years, sustainable energy crop has become an important energy development strategy topic in many countries. Selecting the most sustainable energy crop is a significant problem that must be addressed during any biofuel production process. The focus of this study is the development of an innovative multi-criteria decision-making (MCDM) method to handle sustainable energy crop selection problems. Given that various uncertain data are encountered in the evaluation of sustainable energy crops, linguistic intuitionistic fuzzy numbers (LIFNs) are introduced to present the information necessary to the evaluation process. Processing qualitative concepts requires the effective support of reliable tools; then, a cloud model can be used to deal with linguistic intuitionistic information. First, LIFNs are converted and a novel concept of linguistic intuitionistic cloud (LIC) is proposed. The operations, score function and similarity measurement of the LICs are defined. Subsequently, the linguistic intuitionistic cloud density-prioritised weighted Heronian mean operator is developed, which served as the basis for the construction of an applicable MCDM model for sustainable energy crop selection. Finally, an illustrative example is provided to demonstrate the proposed method, and its feasibility and validity are further verified by comparing it with other existing methods.

  6. Nitrous oxide emissions from crop rotations including wheat, oilseed rape and dry peas

    NASA Astrophysics Data System (ADS)

    Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P.

    2013-03-01

    Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas (GHG), originate from soils at a global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes can reduce N fertilizer use, and possibly N2O emissions. Nevertheless, the decomposition of crop organic matter during the crop cycle and residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed rape crops, fertilized or not, in various rotations. A field experiment was conducted over 4 consecutive years to compare the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly due to the site's soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after the pea crop. These results should be confirmed over a wider range of soil types. Nevertheless, they demonstrate the absence of N2O emissions linked to the symbiotic N fixation process, and allow us to estimate the decrease in N2O emissions by 20-25% through including one pea crop in a three-year rotation. On a larger scale, this reduction of GHG emissions at field level has to be added to the decrease due to the reduced production and transport of the N fertilizer not applied to the pea crop.

  7. Grape Pigments

    USDA-ARS?s Scientific Manuscript database

    Grapevine is the most valuable horticultural crop in the world. The majority of the fruit is processed into wine, but significant portions of the worldwide crop are destined for fresh consumption, dried into raisins, processed into non-alcoholic juice, and distilled into spirits. The quality of wi...

  8. A network-based approach for semi-quantitative knowledge mining and its application to yield variability

    NASA Astrophysics Data System (ADS)

    Schauberger, Bernhard; Rolinski, Susanne; Müller, Christoph

    2016-12-01

    Variability of crop yields is detrimental for food security. Under climate change its amplitude is likely to increase, thus it is essential to understand the underlying causes and mechanisms. Crop models are the primary tool to project future changes in crop yields under climate change. A systematic overview of drivers and mechanisms of crop yield variability (YV) can thus inform crop model development and facilitate improved understanding of climate change impacts on crop yields. Yet there is a vast body of literature on crop physiology and YV, which makes a prioritization of mechanisms for implementation in models challenging. Therefore this paper takes on a novel approach to systematically mine and organize existing knowledge from the literature. The aim is to identify important mechanisms lacking in models, which can help to set priorities in model improvement. We structure knowledge from the literature in a semi-quantitative network. This network consists of complex interactions between growing conditions, plant physiology and crop yield. We utilize the resulting network structure to assign relative importance to causes of YV and related plant physiological processes. As expected, our findings confirm existing knowledge, in particular on the dominant role of temperature and precipitation, but also highlight other important drivers of YV. More importantly, our method allows for identifying the relevant physiological processes that transmit variability in growing conditions to variability in yield. We can identify explicit targets for the improvement of crop models. The network can additionally guide model development by outlining complex interactions between processes and by easily retrieving quantitative information for each of the 350 interactions. We show the validity of our network method as a structured, consistent and scalable dictionary of literature. The method can easily be applied to many other research fields.

  9. VIC-CropSyst-v2: A regional-scale modeling platform to simulate the nexus of climate, hydrology, cropping systems, and human decisions

    NASA Astrophysics Data System (ADS)

    Malek, Keyvan; Stöckle, Claudio; Chinnayakanahalli, Kiran; Nelson, Roger; Liu, Mingliang; Rajagopalan, Kirti; Barik, Muhammad; Adam, Jennifer C.

    2017-08-01

    Food supply is affected by a complex nexus of land, atmosphere, and human processes, including short- and long-term stressors (e.g., drought and climate change, respectively). A simulation platform that captures these complex elements can be used to inform policy and best management practices to promote sustainable agriculture. We have developed a tightly coupled framework using the macroscale variable infiltration capacity (VIC) hydrologic model and the CropSyst agricultural model. A mechanistic irrigation module was also developed for inclusion in this framework. Because VIC-CropSyst combines two widely used and mechanistic models (for crop phenology, growth, management, and macroscale hydrology), it can provide realistic and hydrologically consistent simulations of water availability, crop water requirements for irrigation, and agricultural productivity for both irrigated and dryland systems. This allows VIC-CropSyst to provide managers and decision makers with reliable information on regional water stresses and their impacts on food production. Additionally, VIC-CropSyst is being used in conjunction with socioeconomic models, river system models, and atmospheric models to simulate feedback processes between regional water availability, agricultural water management decisions, and land-atmosphere interactions. The performance of VIC-CropSyst was evaluated on both regional (over the US Pacific Northwest) and point scales. Point-scale evaluation involved using two flux tower sites located in agricultural fields in the US (Nebraska and Illinois). The agreement between recorded and simulated evapotranspiration (ET), applied irrigation water, soil moisture, leaf area index (LAI), and yield indicated that, although the model is intended to work on regional scales, it also captures field-scale processes in agricultural areas.

  10. iPot: Improved potato monitoring in Belgium using remote sensing and crop growth modelling

    NASA Astrophysics Data System (ADS)

    Piccard, Isabelle; Gobin, Anne; Curnel, Yannick; Goffart, Jean-Pierre; Planchon, Viviane; Wellens, Joost; Tychon, Bernard; Cattoor, Nele; Cools, Romain

    2016-04-01

    Potato processors, traders and packers largely work with potato contracts. The close follow up of contracted parcels is important to improve the quantity and quality of the crop and reduce risks related to storage, packaging or processing. The use of geo-information by the sector is limited, notwithstanding the great benefits that this type of information may offer. At the same time, new sensor-based technologies continue to gain importance and farmers increasingly invest in these. The combination of geo-information and crop modelling might strengthen the competitiveness of the Belgian potato chain in a global market. The iPot project, financed by the Belgian Science Policy Office (Belspo), aims at providing the Belgian potato processing sector, represented by Belgapom, with near real time information on field condition (weather-soil), crop development and yield estimates, derived from a combination of satellite images and crop growth models. During the cropping season regular UAV flights (RGB, 3x3 cm) and high resolution satellite images (DMC/Deimos, 22m pixel size) were combined to elucidate crop phenology and performance at variety trials. UAV images were processed using a K-means clustering algorithm to classify the crop according to its greenness at 5m resolution. Vegetation indices such as %Cover and LAI were calculated with the Cyclopes algorithm (INRA-EMMAH) on the DMC images. Both DMC and UAV-based cover maps showed similar patterns, and helped detect different crop stages during the season. A wide spread field monitoring campaign with crop observations and measurements allowed for further calibration of the satellite image derived vegetation indices. Curve fitting techniques and phenological models were developed and compared with the vegetation indices during the season, both at trials and farmers' fields. Understanding and predicting crop phenology and canopy development is important for timely crop management and ultimately for yield estimates. An intuitive web-based geo-information platform is developed to allow both the industry and the research centres to access, analyse and combine the data with their own field observations for improved decision-making.

  11. Putting mechanisms into crop production models

    USDA-ARS?s Scientific Manuscript database

    Crop simulation models dynamically predict processes of carbon, nitrogen, and water balance on daily or hourly time-steps to the point of predicting yield and production at crop maturity. A brief history of these models is reviewed, and their level of mechanism for assimilation and respiration, ran...

  12. Cropping system effects on wind erosion potential

    USDA-ARS?s Scientific Manuscript database

    Wind erosion of soil is a destructive process impacting crop productivity and human health and safety. The mechanics of wind erosion and soil properties that influence erosion are well understood. Less well-studied are the effects that cropping intensity has upon those soil properties. We collected ...

  13. The uncertainty of crop yield projections is reduced by improved temperature response functions.

    PubMed

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rötter, Reimund P; Kimball, Bruce A; Ottman, Michael J; Wall, Gerard W; White, Jeffrey W; Reynolds, Matthew P; Alderman, Phillip D; Aggarwal, Pramod K; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andrew J; De Sanctis, Giacomo; Doltra, Jordi; Fereres, Elias; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A; Izaurralde, Roberto C; Jabloun, Mohamed; Jones, Curtis D; Kersebaum, Kurt C; Koehler, Ann-Kristin; Liu, Leilei; Müller, Christoph; Naresh Kumar, Soora; Nendel, Claas; O'Leary, Garry; Olesen, Jørgen E; Palosuo, Taru; Priesack, Eckart; Eyshi Rezaei, Ehsan; Ripoche, Dominique; Ruane, Alex C; Semenov, Mikhail A; Shcherbak, Iurii; Stöckle, Claudio; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wallach, Daniel; Wang, Zhimin; Wolf, Joost; Zhu, Yan; Asseng, Senthold

    2017-07-17

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  14. The Uncertainty of Crop Yield Projections Is Reduced by Improved Temperature Response Functions

    NASA Technical Reports Server (NTRS)

    Wang, Enli; Martre, Pierre; Zhao, Zhigan; Ewert, Frank; Maiorano, Andrea; Rotter, Reimund P.; Kimball, Bruce A.; Ottman, Michael J.; White, Jeffrey W.; Reynolds, Matthew P.; hide

    2017-01-01

    Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for is greater than 50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 C to 33 C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

  15. A future scenario of the global regulatory landscape regarding genome-edited crops

    PubMed Central

    Araki, Motoko

    2017-01-01

    ABSTRACT The global agricultural landscape regarding the commercial cultivation of genetically modified (GM) crops is mosaic. Meanwhile, a new plant breeding technique, genome editing is expected to make genetic engineering-mediated crop breeding more socially acceptable because it can be used to develop crop varieties without introducing transgenes, which have hampered the regulatory review and public acceptance of GM crops. The present study revealed that product- and process-based concepts have been implemented to regulate GM crops in 30 countries. Moreover, this study analyzed the regulatory responses to genome-edited crops in the USA, Argentina, Sweden and New Zealand. The findings suggested that countries will likely be divided in their policies on genome-edited crops: Some will deregulate transgene-free crops, while others will regulate all types of crops that have been modified by genome editing. These implications are discussed from the viewpoint of public acceptance. PMID:27960622

  16. The biological function of pigeon crop milk and the regulation of its production.

    PubMed

    Luo, Yi; Wang, Xun; Ma, Yao; Li, Xiao Kai

    2017-12-20

    The pigeon (Columba livia) is one of the few birds capable of secreting nutrients to nourish squabs. During the incubation period, the crop of the parent pigeon will be thickened. When squabs are hatched, the crop milk will be secreted from the crop and fed to squabs. The nutritional benefits are similar between the pigeon crop milk and mammalian milk, and both of them are regulated by prolactin. Prolactin stimulates the proliferation of crop epithelial cells, which eventually slough to form the crop milk. Evidence suggests that the complex process may be associated with the transcription of the AnxIcp35 gene and the activation of JAK/STAT and Wnt signal pathways. In this review, we summarize the main components and the biological function of the crop milk, the histological changes of the crop and the regulatory mechanism of crop milk secretion.

  17. Wheat Response to Differences In Water and Nutritional Status Between Zeoponic and Hydroponic Growth Systems

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan L.; Ming, Douglas W.; Henderson, Keith E.; Carrier, Chris; Gruener, John E.; Barta, Dan J.; Henninger, Don L.

    1999-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L., CV 'USU-Apogee'). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15-20 L per square meters per d up to day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences were noted in water status between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT versus hydroponic culture. Sterile green tillers made up 12% and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4 -N nutrition of plants grown in ZPT as compared with NO3-N in hydroponic nutrient solution. It was likely that NH4-N induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  18. Wheat response to differences in water and nutritional status between zeoponic and hydroponic growth systems

    NASA Technical Reports Server (NTRS)

    Steinberg, S. L.; Ming, D. W.; Henderson, K. E.; Carrier, C.; Gruener, J. E.; Barta, D. J.; Henninger, D. L.

    2000-01-01

    Hydroponic culture has traditionally been used for controlled environment life support systems (CELSS) because the optimal environment for roots supports high growth rates. Recent developments in zeoponic substrate and microporous tube irrigation (ZPT) also offer high control of the root environment. This study compared the effect of differences in water and nutrient status of ZPT or hydroponic culture on growth and yield of wheat (Triticum aestivum L. cv. USU-Apogee). In a side-by-side test in a controlled environment, wheat was grown in ZPT and recirculating hydroponics to maturity. Water use by plants grown in both culture systems peaked at 15 to 20 L m-2 d-1 up to Day 40, after which it declined more rapidly for plants grown in ZPT culture due to earlier senescence of leaves. No consistent differences in water status were noted between plants grown in the two culture systems. Although yield was similar, harvest index was 28% lower for plants grown in ZPT than in hydroponic culture. Sterile green tillers made up 12 and 0% of the biomass of plants grown in ZPT and hydroponic culture, respectively. Differences in biomass partitioning were attributed primarily to NH4-N nutrition of plants grown in ZPT compared with NO3-N in hydroponic nutrient solution. It is probable that NH4-N-induced Ca deficiency produced excess tillering and lower harvest index for plants grown in ZPT culture. These results suggest that further refinements in zeoponic substrate would make ZPT culture a viable alternative for achieving high productivity in a CELSS.

  19. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  20. 7 CFR 319.59-1 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... processing. Hay. Host crops cut and dried for feeding to livestock. Hay cut after reaching the dough stage may contain mature kernels of the host crop. Host crops. Plants or plant parts, including grain, seed..., and a seed. Seed. Wheat (Triticum aestivum), durum wheat (Triticum durum), and triticale (Triticum...

  1. Integrated approaches to climate-crop modelling: needs and challenges.

    PubMed

    Betts, Richard A

    2005-11-29

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate-vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (03) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate-chemistry-crop-hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models.

  2. Quantifying the indirect impacts of climate on agriculture: an inter-method comparison

    DOE PAGES

    Calvin, Kate; Fisher-Vanden, Karen

    2017-10-27

    Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparisonmore » between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between - 12% and + 15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.« less

  3. Quantifying the indirect impacts of climate on agriculture: an inter-method comparison

    NASA Astrophysics Data System (ADS)

    Calvin, Kate; Fisher-Vanden, Karen

    2017-11-01

    Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparison between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between -12% and +15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.

  4. Quantifying the indirect impacts of climate on agriculture: an inter-method comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvin, Kate; Fisher-Vanden, Karen

    Climate change and increases in CO2 concentration affect the productivity of land, with implications for land use, land cover, and agricultural production. Much of the literature on the effect of climate on agriculture has focused on linking projections of changes in climate to process-based or statistical crop models. However, the changes in productivity have broader economic implications that cannot be quantified in crop models alone. How important are these socio-economic feedbacks to a comprehensive assessment of the impacts of climate change on agriculture? In this paper, we attempt to measure the importance of these interaction effects through an inter-method comparisonmore » between process models, statistical models, and integrated assessment model (IAMs). We find the impacts on crop yields vary widely between these three modeling approaches. Yield impacts generated by the IAMs are 20%-40% higher than the yield impacts generated by process-based or statistical crop models, with indirect climate effects adjusting yields by between - 12% and + 15% (e.g. input substitution and crop switching). The remaining effects are due to technological change.« less

  5. Bioregenerative food system cost based on optimized menus for advanced life support

    NASA Technical Reports Server (NTRS)

    Waters, Geoffrey C R.; Olabi, Ammar; Hunter, Jean B.; Dixon, Mike A.; Lasseur, Christophe

    2002-01-01

    Optimized menus for a bioregenerative life support system have been developed based on measures of crop productivity, food item acceptability, menu diversity, and nutritional requirements of crew. Crop-specific biomass requirements were calculated from menu recipe demands while accounting for food processing and preparation losses. Under the assumption of staggered planting, the optimized menu demanded a total crop production area of 453 m2 for six crew. Cost of the bioregenerative food system is estimated at 439 kg per menu cycle or 7.3 kg ESM crew-1 day-1, including agricultural waste processing costs. On average, about 60% (263.6 kg ESM) of the food system cost is tied up in equipment, 26% (114.2 kg ESM) in labor, and 14% (61.5 kg ESM) in power and cooling. This number is high compared to the STS and ISS (nonregenerative) systems but reductions in ESM may be achieved through intensive crop productivity improvements, reductions in equipment masses associated with crop production, and planning of production, processing, and preparation to minimize the requirement for crew labor.

  6. Increased food production and reduced water use through optimized crop distribution

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  7. S.I.I.A for monitoring crop evolution and anomaly detection in Andalusia by remote sensing

    NASA Astrophysics Data System (ADS)

    Rodriguez Perez, Antonio Jose; Louakfaoui, El Mostafa; Munoz Rastrero, Antonio; Rubio Perez, Luis Alberto; de Pablos Epalza, Carmen

    2004-02-01

    A new remote sensing application was developed and incorporated to the Agrarian Integrated Information System (S.I.I.A), project which is involved on integrating the regional farming databases from a geographical point of view, adding new values and uses to the original information. The project is supported by the Studies and Statistical Service, Regional Government Ministry of Agriculture and Fisheries (CAP). The process integrates NDVI values from daily NOAA-AVHRR and monthly IRS-WIFS images, and crop classes location maps. Agrarian local information and meteorological information is being included in the working process to produce a synergistic effect. An updated crop-growing evaluation state is obtained by 10-days periods, crop class, sensor type (including data fusion) and administrative geographical borders. Last ten years crop database (1992-2002) has been organized according to these variables. Crop class database can be accessed by an application which helps users on the crop statistical analysis. Multi-temporal and multi-geographical comparative analysis can be done by the user, not only for a year but also for a historical point of view. Moreover, real time crop anomalies can be detected and analyzed. Most of the output products will be available on Internet in the near future by a on-line application.

  8. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    PubMed

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  9. Global accumulation of tree-crops and its competition with forest loss and food security in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Shigematsu, A.; Mizoue, N.; Yoshida, S.

    2011-12-01

    Tree-crops, which are the plants holding trunks for several decades and supply products in a form of fruits or resin, such as oil palm and natural rubber, comprises 5% of crop land of the world in 2008. While the expansion has been a major driver of forest loss and food security, a research on the process and proportion of tree-crops on global scale has been lacking. We examined the regional and temporal difference on the expansion process of the top five abundant tree-crops of the world while linking the trend of crop areas (for food production) and forest areas between 1960s and 2000s. We adopted FAOSTAT database and focused on globally abundant top-five tree crops (oil palm, rubber, coconuts, coffee, cocoa). Globally, notable proportional change of these five tree-crops on total crop lands was observed in Asia from 1.8% in 1961 to 5.2% in 2008. Regionally, it was Southeast Asia that exhibited the growth in the ratio of these five tree-crops on overall crop lands for the last half a century; from only one-tenth in 1961 to as much as one-fourth in 2008. While oil palm plantations are established in southern part of Southeast Asia, rubber plantations are being established in expense of traditional agricultural fields in northern Southeast Asia. We identified the tree-crops expansion has been increased in expense of agricultural areas (production for food) in Thailand from 1961 to 2008 (r = -0.828, P < 0.0001) and Myanmar from 1961 to 1989 (r = -0.741, P < 0.0001). The impacts of ongoing tree-crops expansion on food and wood security of the region need to be carefully monitored in terms of biodiversity, carbon storage, the local climate and the hydrological cycle. We proposed the suggestion the necessity of a new framework of protecting agricultural land from the expansion of tree-crops, especially oil palm and rubber.

  10. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will likely benefit grassland bird populations, and bioenergy landscapes could be designed to maximize biodiversity benefits while meeting targets for biomass production.

  11. Independent Peer Evaluation of the Large Area Crop Inventory Experiment (LACIE): The LACIE Symposium

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Yield models and crop estimate accuracy are discussed within the Large Area Crop Inventory Experiment. The wheat yield estimates in the United States, Canada, and U.S.S.R. are emphasized. Experimental results design, system implementation, data processing systems, and applications were considered.

  12. 7 CFR 319.59-1 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...

  13. 7 CFR 319.59-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...

  14. 7 CFR 319.59-1 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...

  15. 7 CFR 319.59-1 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... triticale (Triticum aestivum X Secale cereale) used for consumption or processing. Hay. Host crops cut and... host crop. Host crops. Plants or plant parts, including grain, seed, or hay, of wheat (Triticum..., a vine, a cutting, a graft, a scion, a bud, a bulb, a root, and a seed. Seed. Wheat (Triticum...

  16. A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration

    USDA-ARS?s Scientific Manuscript database

    Ensembles of process-based crop models are now commonly used to simulate crop growth and development for climate scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of de...

  17. Crop sensors for automation of in-season nitrogen application

    USDA-ARS?s Scientific Manuscript database

    Crop canopy reflectance sensing can be used to assess in-season crop nitrogen (N) health for automatic control of N fertilization. Typically, sensor data are processed to an established index, such as the Normalized Difference Vegetative Index (NDVI) and differences in that index from a well-fertili...

  18. Research in remote sensing of agriculture, earth resources, and man's environment

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A.

    1975-01-01

    Progress is reported for several projects involving the utilization of LANDSAT remote sensing capabilities. Areas under study include crop inventory, crop identification, crop yield prediction, forest resources evaluation, land resources evaluation and soil classification. Numerical methods for image processing are discussed, particularly those for image enhancement and analysis.

  19. The limits of crop productivity

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce; Monje, Oscar

    1992-01-01

    The component processes that govern yield limits in food crops are reviewed and how each process can be individually measured is described. The processes considered include absorption of photosynthetic radiation by green tissue, carbon-fixation efficiency in photosynthesis, carbon use efficiency in respiration, biomass allocation to edible products, and efficiency of photosynthesis and respiration. The factors limiting yields in optimal environments are considered.

  20. Nitrous oxide emissions from crop rotations including wheat, rapeseed and dry pea

    NASA Astrophysics Data System (ADS)

    Jeuffroy, M. H.; Baranger, E.; Carrouée, B.; de Chezelles, E.; Gosme, M.; Hénault, C.; Schneider, A.; Cellier, P.

    2012-07-01

    Approximately 65% of anthropogenic emissions of N2O, a potent greenhouse gas, originate from soils at global scale, and particularly after N fertilisation of the main crops in Europe. Thanks to their capacity to fix atmospheric N2 through biological fixation, legumes allow to reduce N fertilizer use, and possibly N2O emission. Nevertheless, the decomposition of crop organic matter during the crop cycle and during the residue decomposition, and possibly the N fixation process itself, could lead to N2O emissions. The objective of this study was to quantify N2O emissions from a dry pea crop (Pisum sativum, harvested at maturity) and from the subsequent crops in comparison with N2O emissions from wheat and oilseed-rape crops, fertilized or not, in various rotations. A field experiment was conducted during 4 consecutive years, aiming at comparing the emissions during the pea crop, in comparison with those during the wheat (fertilized or not) or oilseed rape crops, and after the pea crop, in comparison with other preceding crops. N2O fluxes were measured using static chambers. In spite of low N2O fluxes, mainly linked with the site soil characteristics, fluxes during the crop were significantly lower for pea and unfertilized wheat than for fertilized wheat and oilseed rape. The effect of the preceding crop was not significant, while soil mineral N at harvest was higher after pea. These results, combined with the emission reduction allowed by the production and transport of the N fertiliser not applied on the pea crop, should be confirmed in a larger range of soil types. Nevertheless, they demonstrate the absence of N2O emission linked to the symbiotic N fixation process, and allow us to estimate the decrease of N2O emissions to 20-25% by including one pea crop in a three-year rotation. At a larger scale, this reduction of GHG emissions at field level has to be cumulated with the reduction of GHG emissions linked with the lower level of production and transport of the N fertiliser not applied on the pea crop.

  1. Genome-editing technologies and their potential application in horticultural crop breeding

    PubMed Central

    Xiong, Jin-Song; Ding, Jing; Li, Yi

    2015-01-01

    Plant breeding, one of the oldest agricultural activities, parallels human civilization. Many crops have been domesticated to satisfy human's food and aesthetical needs, including numerous specialty horticultural crops such as fruits, vegetables, ornamental flowers, shrubs, and trees. Crop varieties originated through selection during early human civilization. Other technologies, such as various forms of hybridization, mutation, and transgenics, have also been invented and applied to crop breeding over the past centuries. The progress made in these breeding technologies, especially the modern biotechnology-based breeding technologies, has had a great impact on crop breeding as well as on our lives. Here, we first review the developmental process and applications of these technologies in horticultural crop breeding. Then, we mainly describe the principles of the latest genome-editing technologies and discuss their potential applications in the genetic improvement of horticultural crops. The advantages and challenges of genome-editing technologies in horticultural crop breeding are also discussed. PMID:26504570

  2. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Crop classification and mapping based on Sentinel missions data in cloud environment

    NASA Astrophysics Data System (ADS)

    Lavreniuk, M. S.; Kussul, N.; Shelestov, A.; Vasiliev, V.

    2017-12-01

    Availability of high resolution satellite imagery (Sentinel-1/2/3, Landsat) over large territories opens new opportunities in agricultural monitoring. In particular, it becomes feasible to solve crop classification and crop mapping task at country and regional scale using time series of heterogenous satellite imagery. But in this case, we face with the problem of Big Data. Dealing with time series of high resolution (10 m) multispectral imagery we need to download huge volumes of data and then process them. The solution is to move "processing chain" closer to data itself to drastically shorten time for data transfer. One more advantage of such approach is the possibility to parallelize data processing workflow and efficiently implement machine learning algorithms. This could be done with cloud platform where Sentinel imagery are stored. In this study, we investigate usability and efficiency of two different cloud platforms Amazon and Google for crop classification and crop mapping problems. Two pilot areas were investigated - Ukraine and England. Google provides user friendly environment Google Earth Engine for Earth observation applications with a lot of data processing and machine learning tools already deployed. At the same time with Amazon one gets much more flexibility in implementation of his own workflow. Detailed analysis of pros and cons will be done in the presentation.

  4. Effects of input uncertainty on cross-scale crop modeling

    NASA Astrophysics Data System (ADS)

    Waha, Katharina; Huth, Neil; Carberry, Peter

    2014-05-01

    The quality of data on climate, soils and agricultural management in the tropics is in general low or data is scarce leading to uncertainty in process-based modeling of cropping systems. Process-based crop models are common tools for simulating crop yields and crop production in climate change impact studies, studies on mitigation and adaptation options or food security studies. Crop modelers are concerned about input data accuracy as this, together with an adequate representation of plant physiology processes and choice of model parameters, are the key factors for a reliable simulation. For example, assuming an error in measurements of air temperature, radiation and precipitation of ± 0.2°C, ± 2 % and ± 3 % respectively, Fodor & Kovacs (2005) estimate that this translates into an uncertainty of 5-7 % in yield and biomass simulations. In our study we seek to answer the following questions: (1) are there important uncertainties in the spatial variability of simulated crop yields on the grid-cell level displayed on maps, (2) are there important uncertainties in the temporal variability of simulated crop yields on the aggregated, national level displayed in time-series, and (3) how does the accuracy of different soil, climate and management information influence the simulated crop yields in two crop models designed for use at different spatial scales? The study will help to determine whether more detailed information improves the simulations and to advise model users on the uncertainty related to input data. We analyse the performance of the point-scale crop model APSIM (Keating et al., 2003) and the global scale crop model LPJmL (Bondeau et al., 2007) with different climate information (monthly and daily) and soil conditions (global soil map and African soil map) under different agricultural management (uniform and variable sowing dates) for the low-input maize-growing areas in Burkina Faso/West Africa. We test the models' response to different levels of input data from very little to very detailed information, and compare the models' abilities to represent the spatial variability and temporal variability in crop yields. We display the uncertainty in crop yield simulations from different input data and crop models in Taylor diagrams which are a graphical summary of the similarity between simulations and observations (Taylor, 2001). The observed spatial variability can be represented well from both models (R=0.6-0.8) but APSIM predicts higher spatial variability than LPJmL due to its sensitivity to soil parameters. Simulations with the same crop model, climate and sowing dates have similar statistics and therefore similar skill to reproduce the observed spatial variability. Soil data is less important for the skill of a crop model to reproduce the observed spatial variability. However, the uncertainty in simulated spatial variability from the two crop models is larger than from input data settings and APSIM is more sensitive to input data then LPJmL. Even with a detailed, point-scale crop model and detailed input data it is difficult to capture the complexity and diversity in maize cropping systems.

  5. Ecoclimatic indicators to study climate suitability of areas for the cultivation of specific crops

    NASA Astrophysics Data System (ADS)

    Caubel, J.; Garcia de Cortazar Atauri, I.; Cufi, J.; Huard, F.; Launay, M.; Ripoche, D.; Graux, A.; deNoblet, N.

    2013-12-01

    Climatic conditions play a fundamental role in the suitability of geographical areas for cropping. In the context of climate change, we could expect changes in overall climatic conditions and so, on the suitability for cropping. Therefore, assessing the future climate suitability of areas for cropping is decisive for anticipating agriculture in a given area. Moreover, it is crucial to have access to the split up information concerning the effect of climate on the achievement of the main ecophysiological processes and cultural practices taking place during the crop cycle. In this way, stakeholders can envisage land use adaptations under climate change conditions, such as changes in cultural practices or development of new varieties for example. We proposed an aggregation tool of ecoclimatic indicators to design evaluation trees of climate suitability of areas for cropping, GETARI (Generic Evaluation Tool of Ecoclimatic Indicators). It calculates an overall climate suitability index at the annual scale, from a designed evaluation tree. This aggregation tool allows to characterize climate suitability according to crop ecophysiology, grain/fruit quality or crop management. GETARI proposes the major ecophysiological processes and cultural practices taking place during phenological periods, together with the climatic effects that are known to affect their achievement. The climatic effects on the ecophysiological processes (or cultural practices) during phenological periods are captured by the ecoclimatic indicators, which are agroclimatic indicators calculated over phenological periods. They give information about crop response to climate through ecophysiological or agronomic thresholds. Those indices of suitability are normalized and aggregated according to aggregation rules in order to compute an overall climate index. In order to illustrate how GETARI can be used, we designed evaluation trees in order to study the climate suitability for maize cropping regarding ecophysiology, for wheat cropping regarding its management and for grape cropping regarding its quality. The designed evaluation trees were developed in accordance with expert assessment and were applied in some past climatic conditions in France to verify their consistence. To conclude, the use of indicators does not replace models but represent additional tools for understanding and spatializing some results obtained by models. Their use can provide information about suitability of geographical areas for cropping in future climatic conditions and can enable to minimize the risk of crop failure. This work is carried out under the research program ORACLE (Opportunities and Risks of Agrosystems & forests in response to CLimate, socio-economic and policy changEs in France (and Europe).

  6. Integrated approaches to climate–crop modelling: needs and challenges

    PubMed Central

    A. Betts, Richard

    2005-01-01

    This paper discusses the need for a more integrated approach to modelling changes in climate and crops, and some of the challenges posed by this. While changes in atmospheric composition are expected to exert an increasing radiative forcing of climate change leading to further warming of global mean temperatures and shifts in precipitation patterns, these are not the only climatic processes which may influence crop production. Changes in the physical characteristics of the land cover may also affect climate; these may arise directly from land use activities and may also result from the large-scale responses of crops to seasonal, interannual and decadal changes in the atmospheric state. Climate models used to drive crop models may, therefore, need to consider changes in the land surface, either as imposed boundary conditions or as feedbacks from an interactive climate–vegetation model. Crops may also respond directly to changes in atmospheric composition, such as the concentrations of carbon dioxide (CO2), ozone (O3) and compounds of sulphur and nitrogen, so crop models should consider these processes as well as climate change. Changes in these, and the responses of the crops, may be intimately linked with meteorological processes so crop and climate models should consider synergies between climate and atmospheric chemistry. Some crop responses may occur at scales too small to significantly influence meteorology, so may not need to be included as feedbacks within climate models. However, the volume of data required to drive the appropriate crop models may be very large, especially if short-time-scale variability is important. Implementation of crop models within climate models would minimize the need to transfer large quantities of data between separate modelling systems. It should also be noted that crop responses to climate change may interact with other impacts of climate change, such as hydrological changes. For example, the availability of water for irrigation may be affected by changes in runoff as a direct consequence of climate change, and may also be affected by climate-related changes in demand for water for other uses. It is, therefore, necessary to consider the interactions between the responses of several impacts sectors to climate change. Overall, there is a strong case for a much closer coupling between models of climate, crops and hydrology, but this in itself poses challenges arising from issues of scale and errors in the models. A strategy is proposed whereby the pursuit of a fully coupled climate–chemistry–crop–hydrology model is paralleled by continued use of separate climate and land surface models but with a focus on consistency between the models. PMID:16433093

  7. Belowground Microbiota and the Health of Tree Crops.

    PubMed

    Mercado-Blanco, Jesús; Abrantes, Isabel; Barra Caracciolo, Anna; Bevivino, Annamaria; Ciancio, Aurelio; Grenni, Paola; Hrynkiewicz, Katarzyna; Kredics, László; Proença, Diogo N

    2018-01-01

    Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops.

  8. Belowground Microbiota and the Health of Tree Crops

    PubMed Central

    Mercado-Blanco, Jesús; Abrantes, Isabel; Barra Caracciolo, Anna; Bevivino, Annamaria; Ciancio, Aurelio; Grenni, Paola; Hrynkiewicz, Katarzyna; Kredics, László; Proença, Diogo N.

    2018-01-01

    Trees are crucial for sustaining life on our planet. Forests and land devoted to tree crops do not only supply essential edible products to humans and animals, but also additional goods such as paper or wood. They also prevent soil erosion, support microbial, animal, and plant biodiversity, play key roles in nutrient and water cycling processes, and mitigate the effects of climate change acting as carbon dioxide sinks. Hence, the health of forests and tree cropping systems is of particular significance. In particular, soil/rhizosphere/root-associated microbial communities (known as microbiota) are decisive to sustain the fitness, development, and productivity of trees. These benefits rely on processes aiming to enhance nutrient assimilation efficiency (plant growth promotion) and/or to protect against a number of (a)biotic constraints. Moreover, specific members of the microbial communities associated with perennial tree crops interact with soil invertebrate food webs, underpinning many density regulation mechanisms. This review discusses belowground microbiota interactions influencing the growth of tree crops. The study of tree-(micro)organism interactions taking place at the belowground level is crucial to understand how they contribute to processes like carbon sequestration, regulation of ecosystem functioning, and nutrient cycling. A comprehensive understanding of the relationship between roots and their associate microbiota can also facilitate the design of novel sustainable approaches for the benefit of these relevant agro-ecosystems. Here, we summarize the methodological approaches to unravel the composition and function of belowground microbiota, the factors influencing their interaction with tree crops, their benefits and harms, with a focus on representative examples of Biological Control Agents (BCA) used against relevant biotic constraints of tree crops. Finally, we add some concluding remarks and suggest future perspectives concerning the microbiota-assisted management strategies to sustain tree crops. PMID:29922245

  9. Autonomous support for microorganism research in space

    NASA Astrophysics Data System (ADS)

    Fleet, M. L.; Smith, J. D.; Klaus, D. M.; Luttges, M. W.

    1993-02-01

    A preliminary design for performing on orbit, autonomous research on microorganisms and cultured cells/tissues is presented. The payload is designed to be compatible with the COMercial Experiment Transporter (COMET), an orbiter middeck locker interface and with Space Station Freedom. Uplink/downlink capabilities and sample return through controlled reentry are available for all carriers. Autonomous testing activities are preprogrammed with in-flight reprogrammability. Sensors for monitoring temperature, pH, light, gravity levels, vibrations, and radiation are provided for environmental regulation and experimental data collection. Additional data acquisition includes optical density measurement, microscopy, video, and film photography. On-board data storage capabilities are provided. A fluid transfer mechanism is utilized for inoculation, sampling, and nutrient replenishment of experiment cultures. In addition to payload design, research opportunities are explored to illustrate hardware versatility and function. The project is defined to provide biological data pertinent to extended duration crewed space flight including crew health issues and development of a Controlled Ecological Life Support System (CELSS). In addition, opportunities are opened for investigations leading to commercial applications of space, such as pharmaceutical development, modeling of terrestrial diseases, and material processing.

  10. A bioreactor system for the nitrogen loop in a Controlled Ecological Life Support System

    NASA Technical Reports Server (NTRS)

    Saulmon, M. M.; Reardon, K. F.; Sadeh, W. Z.

    1996-01-01

    As space missions become longer in duration, the need to recycle waste into useful compounds rises dramatically. This problem can be addressed by the development of Controlled Ecological Life Support Systems (CELSS) (i.e., Engineered Closed/Controlled Eco-Systems (ECCES)), consisting of human and plant modules. One of the waste streams leaving the human module is urine. In addition to the reclamation of water from urine, recovery of the nitrogen is important because it is an essential nutrient for the plant module. A 3-step biological process for the recycling of nitrogenous waste (urea) is proposed. A packed-bed bioreactor system for this purpose was modeled, and the issues of reaction step segregation, reactor type and volume, support particle size, and pressure drop were addressed. Based on minimization of volume, a bioreactor system consisting of a plug flow immobilized urease reactor, a completely mixed flow immobilized cell reactor to convert ammonia to nitrite, and a plug flow immobilized cell reactor to produce nitrate from nitrite is recommended. It is apparent that this 3-step bioprocess meets the requirements for space applications.

  11. Implementation of Sensor and Control Designs for Bioregenerative Systems

    NASA Technical Reports Server (NTRS)

    Rodriguez, Pedro R. (Editor)

    1990-01-01

    The goal of the Spring 1990 EGM 4001 Design class was to design, fabricate, and test sensors and control systems for a closed loop life support system (CLLSS). The designs investigated were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center (KSC). Designs included a seed moisture content sensor, a porous medium wetness sensor, a plant health sensor, and a neural network control system. The seed group focused on the design and implementation of a sensor that could detect the moisture content of a seed batch. The porous medium wetness group concentrated on the development of a sensor to monitor the amount of nutrient solution within a porous plate incorporating either infrared reflectance or thermal conductance properties. The plant health group examined the possibility of remotely monitoring the health of the plants within the Biomass Production Chamber (BPC) using infrared reflectance properties. Finally, the neural network group concentrated on the ability to use parallel processing in order to control a robot arm and analyze the data from the health sensor to detect regions of a plant.

  12. Training Under-Represented Students in Biological Research at Fisk University

    NASA Technical Reports Server (NTRS)

    Gunasekaran, Muthukumaran

    1999-01-01

    The objectives of our training and research project in biology at Fisk are to motivate and train our African-American undergraduate and graduate students by (a) teaching the basic principles and applications of different biological, biochemical and biophysical research techniques; (b) providing a "hands on experience" with laboratory instrumentation (c) requiring the students to participate in the proposed research project entitled "Cyanobacterial Bioreactors for Oxygen and Ammonia Production under "CELSS" Conditions" to gain confidence in independently conducting experiments and (d) providing training in scientific data collection and presentation to peers in scientific conferences or meetings.

  13. A method of variable spacing for controlled plant growth systems in spaceflight and terrestrial agriculture applications

    NASA Technical Reports Server (NTRS)

    Knox, J.

    1986-01-01

    A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.

  14. Environmental modification of yield and food composition of cowpea and leaf lettuce

    NASA Technical Reports Server (NTRS)

    Mitchell, Cary A.; Nielsen, Suzanne S.; Bubenheim, David L.

    1990-01-01

    Cowpea (Vigna unguiculata (L.) Walp.) and leaf lettuce (Lactuca sativa L.) are candidate species to provide ligume protein and starch or serve as a salad base for a nutritionally balanced and psychologically satisfying vegetarian diet in the Controlled Ecology Life Support System (CELSS). Various nutritional parameters are reported. Hydroponic leaf lettuce grew best under CO2 enrichment and photosynthetic photon flux (PPF) enhancement. Leaf protein content reached 36 percent with NH4(+) + NO3 nutrition; starch and free sugar content was as high as 7 or 8.4 percent of DW, respectively, for high PPF/CO2 enriched environments.

  15. Plant growth and gas balance in a plant and mushroom cultivation system

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Tani, A.; Kiyota, M.; Aiga, I.

    1994-11-01

    In order to obtain basic data for construction of a plant cultivation system incorporating a mushroom cultivation subsystem in the CELSS, plant growth and atmospheric CO2 balance in the system were investigated. The plant growth was promoted by a high level of CO2 which resulted from the respiration of the mushroom mycelium in the system. The atmospheric CO2 concentration inside the system changed significantly due to the slight change in the net photosynthetic rate of plants and/or the respiration rate of the mushroom when the plant cultivation system combined directly with the mushroom cultivation subsystem.

  16. Extraterrestrial applications of solar optics for interior illumination

    NASA Technical Reports Server (NTRS)

    Eijadi, David A.; Williams, Kyle D.

    1992-01-01

    Solar optics is a terrestrial technology that has potential extraterrestrial applications. Active solar optics (ASO) and passive solar optics (PSO) are two approaches to the transmission of sunlight to remote interior spaces. Active solar optics is most appropriate for task illumination, while PSO is most appropriate for general illumination. Research into solar optics, motivated by energy conservation, has produced lightweight and low-cost materials, products that have applications to NASA's Controlled Ecological Life Support System (CELSS) program and its lunar base studies. Specifically, prism light guides have great potential in these contexts. Several applications of solar optics to lunar base concepts are illustrated.

  17. Preparatory steps for a robust dynamic model for organically bound tritium dynamics in agricultural crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melintescu, A.; Galeriu, D.; Diabate, S.

    2015-03-15

    The processes involved in tritium transfer in crops are complex and regulated by many feedback mechanisms. A full mechanistic model is difficult to develop due to the complexity of the processes involved in tritium transfer and environmental conditions. First, a review of existing models (ORYZA2000, CROPTRIT and WOFOST) presenting their features and limits, is made. Secondly, the preparatory steps for a robust model are discussed, considering the role of dry matter and photosynthesis contribution to the OBT (Organically Bound Tritium) dynamics in crops.

  18. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    USDA-ARS?s Scientific Manuscript database

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  19. Manual LANDSAT data analysis for crop type identification

    NASA Technical Reports Server (NTRS)

    Hay, C. M. (Principal Investigator)

    1979-01-01

    The process of manual identification of crop type by human analysts and problems associated in LACIE that were associated with manual crop identification measurement procedures are described. Research undertaken in cooperation with LACIE operations by the supporting research community to effect solutions to, or obtain greater understanding of the problems is discussed.

  20. Simulating crop phenology in the Community Land Model and its impact on energy and carbon fluxes

    USDA-ARS?s Scientific Manuscript database

    A reasonable representation of crop phenology and biophysical processes in land surface models is necessary to accurately simulate energy, water and carbon budgets at the field, regional, and global scales. However, the evaluation of crop models that can be coupled to earth system models is relative...

  1. Chili peppers: Challenges and advances in transitioning harvesting of New Mexico's signature crop

    USDA-ARS?s Scientific Manuscript database

    New Mexico-type chile (Capsicum annuum L.), often referred to as ‘Anaheim’, is the signature crop of New Mexico. Both the red and green (fully sized, but physiologically immature) crops are celebrated in local cuisine, culture and art, and production and processing of chile is an integral contributo...

  2. Issues of Spatial and Temporal Scale in Modeling the Effects of Field Operatiions on Soil Properties

    USDA-ARS?s Scientific Manuscript database

    Tillage is an important procedure for modifying the soil environment in order to enhance crop growth and conserve soil and water resources. Process-based models of crop production are widely used in decision support, but few explicitly simulate tillage. The Cropping Systems Model (CSM) was modified ...

  3. 7 CFR 1412.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... available, the planted acres as determined by CCC using other sources. Planted and considered planted (P&CP... the FSA county committee on the farm for a crop. For the purposes of this part, P&CP is limited to... sequence. Replacement crop acreage is not included as P&CP. Processing means with respect to uses of a crop...

  4. 7 CFR 1412.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... available, the planted acres as determined by CCC using other sources. Planted and considered planted (P&CP... the FSA county committee on the farm for a crop. For the purposes of this part P&CP is limited to... sequence. Replacement crop acreage is not included as P&CP. Processing means with respect to uses of a crop...

  5. 7 CFR 1412.3 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... available, the planted acres as determined by CCC using other sources. Planted and considered planted (P&CP... the FSA county committee on the farm for a crop. For the purposes of this part, P&CP is limited to... sequence. Replacement crop acreage is not included as P&CP. Processing means with respect to uses of a crop...

  6. 7 CFR 1412.3 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... available, the planted acres as determined by CCC using other sources. Planted and considered planted (P&CP... the FSA county committee on the farm for a crop. For the purposes of this part, P&CP is limited to... sequence. Replacement crop acreage is not included as P&CP. Processing means with respect to uses of a crop...

  7. 75 FR 15603 - Common Crop Insurance Regulations; Florida Avocado Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... administrative review process of good farming practices, as applicable, must be exhausted before any action... farming operation. For instance, all producers are required to submit an application and acreage report to...; damage; or a change in practices on yield potential of the insured crop could provide a wide range of...

  8. Sustainable Disposal of Edible Food Byproducts at University Research Farms

    ERIC Educational Resources Information Center

    Baldwin, Sherill; Chung, Kimberly

    2007-01-01

    Purpose: Research at agricultural universities often generates food crops that are edible by-products of the research process. The purpose of this paper is to explore the factors that affect decision-making around the disposal of these crops. Understanding decision-making suggests how universities might include food crop production into campus…

  9. Advances in crop proteomics: PTMs of proteins under abiotic stress.

    PubMed

    Wu, Xiaolin; Gong, Fangping; Cao, Di; Hu, Xiuli; Wang, Wei

    2016-03-01

    Under natural conditions, crop plants are frequently subjected to various abiotic environmental stresses such as drought and heat wave, which may become more prevalent in the coming decades. Plant acclimation and tolerance to an abiotic stress are always associated with significant changes in PTMs of specific proteins. PTMs are important for regulating protein function, subcellular localization and protein activity and stability. Studies of plant responses to abiotic stress at the PTMs level are essential to the process of plant phenotyping for crop improvement. The ability to identify and quantify PTMs on a large-scale will contribute to a detailed protein functional characterization that will improve our understanding of the processes of crop plant stress acclimation and stress tolerance acquisition. Hundreds of PTMs have been reported, but it is impossible to review all of the possible protein modifications. In this review, we briefly summarize several main types of PTMs regarding their characteristics and detection methods, review the advances in PTMs research of crop proteomics, and highlight the importance of specific PTMs in crop response to abiotic stress. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genomic misconception: a fresh look at the biosafety of transgenic and conventional crops. A plea for a process agnostic regulation.

    PubMed

    Ammann, Klaus

    2014-01-25

    The regulation of genetically engineered crops, in Europe and within the legislation of the Cartagena biosafety protocol is built on false premises: The claim was (and unfortunately still is) that there is a basic difference between conventional and transgenic crops, this despite the fact that this has been rejected on scientifically solid grounds since many years. This contribution collects some major arguments for a fresh look at regulation of transgenic crops, they are in their molecular processes of creation not basically different from conventional crops, which are based in their breeding methods on natural, sometimes enhanced mutation. But the fascination and euphoria of the discoveries in molecular biology and the new perspectives in plant breeding in the sixties and seventies led to the wrong focus on transgenic plants alone. In a collective framing process the initial biosafety debates focused on the novelty of the process of transgenesis. When early debates on the risk assessment merged into legislative decisions, this wrong focus on transgenesis alone seemed uncontested. The process-focused view was also fostered by a conglomerate of concerned scientists and biotechnology companies, both with a vested interest to at least tolerate the rise of the safety threshold to secure research money and to discourage competitors of all kinds. Policy minded people and opponent activists without deeper insight in the molecular science agreed to those efforts without much resistance. It is interesting to realize, that the focus on processes was uncontested by a majority of regulators, this despite of serious early warnings from important authorities in science, mainly of US origin. It is time to change the regulation of genetically modified (GM) crops toward a more science based process-agnostic legislation. Although this article concentrates on the critique of the process-oriented regulation, including some details about the history behind, there should be no misunderstanding that there are other important factors responsible for the failure of this kind of process-oriented regulation, most importantly: the predominance of politics in the decision making processes combined with the lack of serious scientific debates on regulatory matters within the European Union and also in the Cartagena system, the obscure and much too complex decision making structures within the EU, and the active, professional, negative and intimidating role of fundamental opposition against GM crops on all levels dealing with flawed science, often declared as better parallel science published by 'independent' scientists. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. As-Built documentation of programs to implement the Robertson and Doraiswamy/Thompson models

    NASA Technical Reports Server (NTRS)

    Valenziano, D. J. (Principal Investigator)

    1981-01-01

    The software which implements two spring wheat phenology models is described. The main program routines for the Doraiswamy/Thompson crop phenology model and the basic Robertson crop phenology model are DTMAIN and BRMAIN. These routines read meteorological data files and coefficient files, accept the planting date information and other information from the user, and initiate processing. Daily processing for the basic Robertson program consists only of calculation of the basic Robertson increment of crop development. Additional processing in the Doraiswamy/Thompson program includes the calculation of a moisture stress index and correction of the basic increment of development. Output for both consists of listings of the daily results.

  12. Alternate Bearing in Citrus: Changes in the Expression of Flowering Control Genes and in Global Gene Expression in ON- versus OFF-Crop Trees

    PubMed Central

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Zemach, Hanita; Weissberg, Mira; Ophir, Ron; Blumwald, Eduardo; Sadka, Avi

    2012-01-01

    Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural importance, how the developing crop influences the following year's return bloom and yield is not fully understood. It might be assumed that an ‘AB signal’ is generated in the fruit, or in another organ that senses fruit presence, and moves into the bud to determine its fate—flowering or vegetative growth. The bud then responds to fruit presence by altering regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points. Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and OFF buds. PMID:23071667

  13. Alternate bearing in citrus: changes in the expression of flowering control genes and in global gene expression in ON- versus OFF-crop trees.

    PubMed

    Shalom, Liron; Samuels, Sivan; Zur, Naftali; Shlizerman, Lyudmila; Zemach, Hanita; Weissberg, Mira; Ophir, Ron; Blumwald, Eduardo; Sadka, Avi

    2012-01-01

    Alternate bearing (AB) is the process in fruit trees by which cycles of heavy yield (ON crop) one year are followed by a light yield (OFF crop) the next. Heavy yield usually reduces flowering intensity the following year. Despite its agricultural importance, how the developing crop influences the following year's return bloom and yield is not fully understood. It might be assumed that an 'AB signal' is generated in the fruit, or in another organ that senses fruit presence, and moves into the bud to determine its fate-flowering or vegetative growth. The bud then responds to fruit presence by altering regulatory and metabolic pathways. Determining these pathways, and when they are altered, might indicate the nature of this putative AB signal. We studied bud morphology, the expression of flowering control genes, and global gene expression in ON- and OFF-crop buds. In May, shortly after flowering and fruit set, OFF-crop buds were already significantly longer than ON-crop buds. The number of differentially expressed genes was higher in May than at the other tested time points. Processes differentially expressed between ON- and OFF-crop trees included key metabolic and regulatory pathways, such as photosynthesis and secondary metabolism. The expression of genes of trehalose metabolism and flavonoid metabolism was validated by nCounter technology, and the latter was confirmed by metabolomic analysis. Among genes induced in OFF-crop trees was one homologous to SQUAMOSA PROMOTER BINDING-LIKE (SPL), which controls juvenile-to-adult and annual phase transitions, regulated by miR156. The expression pattern of SPL-like, miR156 and other flowering control genes suggested that fruit load affects bud fate, and therefore development and metabolism, a relatively long time before the flowering induction period. Results shed light on some of the metabolic and regulatory processes that are altered in ON and OFF buds.

  14. Developmental Pathways Are Blueprints for Designing Successful Crops

    PubMed Central

    Trevaskis, Ben

    2018-01-01

    Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene–gene or gene–environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted. PMID:29922318

  15. Developmental Pathways Are Blueprints for Designing Successful Crops.

    PubMed

    Trevaskis, Ben

    2018-01-01

    Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.

  16. 77 FR 27658 - Common Crop Insurance Regulations; Processing Sweet Corn Crop Insurance Provisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... CFR part 400, subpart J for the informal administrative review process of good farming practices as... 7 CFR part 400, subpart J for determinations of good farming practices, as applicable, must be... farming operation. For instance, all producers are required to submit an application and acreage report to...

  17. Sugar concentration in nectar: a quantitative metric of crop attractiveness for refined pollinator risk assessments.

    PubMed

    Knopper, Loren D; Dan, Tereza; Reisig, Dominic D; Johnson, Josephine D; Bowers, Lisa M

    2016-10-01

    Those involved with pollinator risk assessment know that agricultural crops vary in attractiveness to bees. Intuitively, this means that exposure to agricultural pesticides is likely greatest for attractive plants and lowest for unattractive plants. While crop attractiveness in the risk assessment process has been qualitatively remarked on by some authorities, absent is direction on how to refine the process with quantitative metrics of attractiveness. At a high level, attractiveness of crops to bees appears to depend on several key variables, including but not limited to: floral, olfactory, visual and tactile cues; seasonal availability; physical and behavioral characteristics of the bee; plant and nectar rewards. Notwithstanding the complexities and interactions among these variables, sugar content in nectar stands out as a suitable quantitative metric by which to refine pollinator risk assessments for attractiveness. Provided herein is a proposed way to use sugar nectar concentration to adjust the exposure parameter (with what is called a crop attractiveness factor) in the calculation of risk quotients in order to derive crop-specific tier I assessments. This Perspective is meant to invite discussion on incorporating such changes in the risk assessment process. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2016 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  18. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus.

    PubMed

    McGee, C F; Byrne, H; Irvine, A; Wilson, J

    2017-01-01

    Commercial cultivation of the button mushroom Agaricus bisporus is performed through the inoculation of a semipasteurized composted material. Pasteurization of the compost material prior to inoculation results in a substrate with a fungal community that becomes dominated by A. bisporus. However, little is known about the composition and activity in the wider fungal community beyond the presence of A. bisporus in compost throughout the mushroom cropping process. In this study, the fungal cropping compost community was characterized by sequencing nuc rDNA ITS1-5.8S-ITS2 amplified from extractable DNA and RNA. The fungal community generated from DNA extracts identified a diverse community containing 211 unique species, although only 51 were identified from cDNA. Agaricus bisporus was found to dominate in the DNA-derived fungal community for the duration of the cropping process. However, analysis of cDNA extracts found A. bisporus to dominate only up to the first crop flush, after which activity decreased sharply and a much broader fungal community became active. This study has highlighted the diverse fungal community that is present in mushroom compost during cropping.

  19. Increased yield stability of field-grown winter barley (Hordeum vulgare L.) varietal mixtures through ecological processes

    PubMed Central

    Creissen, Henry E.; Jorgensen, Tove H.; Brown, James K.M.

    2016-01-01

    Crop variety mixtures have the potential to increase yield stability in highly variable and unpredictable environments, yet knowledge of the specific mechanisms underlying enhanced yield stability has been limited. Ecological processes in genetically diverse crops were investigated by conducting field trials with winter barley varieties (Hordeum vulgare), grown as monocultures or as three-way mixtures in fungicide treated and untreated plots at three sites. Mixtures achieved yields comparable to the best performing monocultures whilst enhancing yield stability despite being subject to multiple predicted and unpredicted abiotic and biotic stresses including brown rust (Puccinia hordei) and lodging. There was compensation through competitive release because the most competitive variety overyielded in mixtures thereby compensating for less competitive varieties. Facilitation was also identified as an important ecological process within mixtures by reducing lodging. This study indicates that crop varietal mixtures have the capacity to stabilise productivity even when environmental conditions and stresses are not predicted in advance. Varietal mixtures provide a means of increasing crop genetic diversity without the need for extensive breeding efforts. They may confer enhanced resilience to environmental stresses and thus be a desirable component of future cropping systems for sustainable arable farming. PMID:27375312

  20. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se; Escobar, Federico; Fu Xinmei

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competitionmore » for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.« less

  1. Developing a Foundation for Constructing New Curricula in Soil, Crop, and Turfgrass Sciences

    ERIC Educational Resources Information Center

    Jarvis, Holly D.; Collett, Ryan; Wingenbach, Gary; Heilman, James L.; Fowler, Debra

    2012-01-01

    Some soil and crop science university programs undergo curricula revision to maintain relevancy with their profession and/or to attract the best students to such programs. The Department of Soil and Crop Sciences at Texas A&M University completed a thorough data gathering process as part of its revision of the undergraduate curriculum and…

  2. 7 CFR 457.147 - Central and Southern potato crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Processing; for potatoes produced for seed, the United States Standards for Grades of Seed Potatoes; and for.... Definitions Certified seed. Potatoes that were entered into the potato certified seed program and that meet all requirements for production to be used to produce a seed crop for the next crop year or a potato...

  3. 7 CFR 457.147 - Central and Southern potato crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Processing; for potatoes produced for seed, the United States Standards for Grades of Seed Potatoes; and for.... Definitions Certified seed. Potatoes that were entered into the potato certified seed program and that meet all requirements for production to be used to produce a seed crop for the next crop year or a potato...

  4. Tillage and cropping sequence impacts on nitrogen cycling in dryland farming in eastern Montana, USA

    USDA-ARS?s Scientific Manuscript database

    Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. We evaluated the 21-yr effects of combinations of...

  5. Evaluating Concentrations of Heavy Metals in the U.S. Peanut Crop in the Presence of Detection Limits

    USDA-ARS?s Scientific Manuscript database

    The concentration of mercury, cadmium, lead, and arsenic along with glyphosate and an extensive array of pesticides in the U.S. peanut crop was assessed for crop years 2013-2015. Samples were randomly selected from various buying points during the grading process. Samples were selected from the thre...

  6. Soil response to biodynamic farming practices in estevia -Stevia Rebaudiana- (Extremadura, Spain)

    NASA Astrophysics Data System (ADS)

    Labrador, Juana; Colmenares, Ricardo; Sánchez, Eduardo; Creus, Juan; García, Nieves; Blázquez, Jaime; Moreno, Marta M.

    2014-05-01

    The first results of the evolution of an organic-biodynamic cultivation of stevia (Stevia rebaudiana) in Extremadura (Spain) are shown here. The organic-biodynamic approach permits experimentally for a more holistic view of the crop development process what means the understanding and quantification of its evolution at different scales. The research methodology applied includes not only quantitative individual parameters of the crop development but also global parameters which make a contribution of very relevant information concerning unbalances between growth and differentiation processes, as well as other aspects linked to the product intrinsic quality. The crop cultivation has been done over a plot of 2.5 has, on acid soils (pH 5.18) and very poor organic matter content (0.5 %). On this first year of cultivation two cuts were given to the plant with an average total yield of 4,500 kg/ha without any supply of solid organic matter, only with the application of the biodynamic preparations. So far results regarding soil improvement and crop productivity, taking into consideration the practices used, let us introduce this pioneer crop in Extremadura, not only as an alternative crop to the current tobacco crop in this area, but also as a development resource for the rural environment of this region. Key words: Agroecology, Organic Biodynamic Agriculture, Stevia Rebaudiana

  7. Sustainable harvest: managing plasticity for resilient crops

    PubMed Central

    Bloomfield, Justin A; Rose, Terry J; King, Graham J

    2014-01-01

    Maintaining crop production to feed a growing world population is a major challenge for this period of rapid global climate change. No consistent conceptual or experimental framework for crop plants integrates information at the levels of genome regulation, metabolism, physiology and response to growing environment. An important role for plasticity in plants is assisting in homeostasis in response to variable environmental conditions. Here, we outline how plant plasticity is facilitated by epigenetic processes that modulate chromatin through dynamic changes in DNA methylation, histone variants, small RNAs and transposable elements. We present examples of plant plasticity in the context of epigenetic regulation of developmental phases and transitions and map these onto the key stages of crop establishment, growth, floral initiation, pollination, seed set and maturation of harvestable product. In particular, we consider how feedback loops of environmental signals and plant nutrition affect plant ontogeny. Recent advances in understanding epigenetic processes enable us to take a fresh look at the crosstalk between regulatory systems that confer plasticity in the context of crop development. We propose that these insights into genotype × environment (G × E) interaction should underpin development of new crop management strategies, both in terms of information-led agronomy and in recognizing the role of epigenetic variation in crop breeding. PMID:24891039

  8. The evolution of modern agriculture and its future with biotechnology.

    PubMed

    Harlander, Susan K

    2002-06-01

    Since the dawn of agriculture, humans have been manipulating crops to enhance their quality and yield. Via conventional breeding, seed producers have developed the modern corn hybrids and wheat commonly grown today. Newer techniques, such as radiation breeding, enhanced the seed producers' ability to develop new traits in crops. Then in the 1980's-1990's, scientists began applying genetic engineering techniques to improve crop quality and yield. In contrast to earlier breeding methods, these techniques raised questions about their safety to consumers and the environment. This paper provides an overview of the kinds of genetically modified crops developed and marketed to date and the value they provide farmers and consumers. The safety assessment process required for these crops is contrasted with the lack of a formal process required for traditionally bred crops. While European consumers have expressed concern about foods and animal feeds containing ingredients from genetically modified crops, Americans have largely been unconcerned or unaware of the presence of genetically modified foods on the market. This difference in attitude is reflected in Europe's decision to label foods containing genetically modified ingredients while no such labeling is required in the U.S. In the future, genetic modification will produce a variety of new products with enhanced nutritional or quality attributes.

  9. Eleven years of crop diversification alters decomposition dynamics of litter mixtures incubated with soil

    DOE PAGES

    McDaniel, M. D.; Grandy, A. S.; Tiemann, L. K.; ...

    2016-08-11

    Agricultural crop rotations have been shown to increase soil carbon (C), nitrogen (N), and microbial biomass. The mechanisms behind these increases remain unclear, but may be linked to the diversity of crop residue inputs to soil organic matter (SOM). Here, we used a residue mixture incubation to examine how variation in long-term diversity of plant communities in agroecosystems influences decomposition of residue mixtures, thus providing a comparison of the effects of plant diversification on decomposition in the long term (via crop rotation) and short term (via residue mixtures). Three crop residue mixtures, ranging in diversity from two to four species,more » were incubated for 360 d with soils from five crop rotations, ranging from monoculture corn (mC) to a complex five-crop rotation. In response, we measured fundamental soil pools and processes underlying C and N cycling. These included soil respiration, inorganic N, microbial biomass, and extracellular enzymes. We hypothesized that soils with more diverse cropping histories would show greater synergistic mixture effects than mC. For most variables (except extracellular enzymes), crop rotation history, or the long-term history of plant diversity in the field, had a stronger effect on soil processes than mixture composition. In contrast to our hypothesis, the mC soil had nearly three and seven times greater synergistic mixture effects for respiration and microbial biomass N, respectively, compared with soils from crop rotations. This was due to the low response of the mC soils to poor quality residues (corn and wheat), likely resulting from a lack of available C and nutrients to cometabolize these residues. These results indicate that diversifying crop rotations in agricultural systems alter the decomposition dynamics of new residue inputs, which may be linked to the benefits of increasing crop rotation diversity on soil nutrient cycling, SOM dynamics, and yields.« less

  10. Designing Crop Simulation Web Service with Service Oriented Architecture Principle

    NASA Astrophysics Data System (ADS)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.

    2015-12-01

    Crop simulation models are efficient tools for simulating crop growth processes and yield. Running crop models requires data from various sources as well as time-consuming data processing, such as data quality checking and data formatting, before those data can be inputted to the model. It makes the use of crop modeling limited only to crop modelers. We aim to make running crop models convenient for various users so that the utilization of crop models will be expanded, which will directly improve agricultural applications. As the first step, we had developed a prototype that runs DSSAT on Web called as Tomorrow's Rice (v. 1). It predicts rice yields based on a planting date, rice's variety and soil characteristics using DSSAT crop model. A user only needs to select a planting location on the Web GUI then the system queried historical weather data from available sources and expected yield is returned. Currently, we are working on weather data connection via Sensor Observation Service (SOS) interface defined by Open Geospatial Consortium (OGC). Weather data can be automatically connected to a weather generator for generating weather scenarios for running the crop model. In order to expand these services further, we are designing a web service framework consisting of layers of web services to support compositions and executions for running crop simulations. This framework allows a third party application to call and cascade each service as it needs for data preparation and running DSSAT model using a dynamic web service mechanism. The framework has a module to manage data format conversion, which means users do not need to spend their time curating the data inputs. Dynamic linking of data sources and services are implemented using the Service Component Architecture (SCA). This agriculture web service platform demonstrates interoperability of weather data using SOS interface, convenient connections between weather data sources and weather generator, and connecting various services for running crop models for decision support.

  11. Three-Dimension Visualization for Primary Wheat Diseases Based on Simulation Model

    NASA Astrophysics Data System (ADS)

    Shijuan, Li; Yeping, Zhu

    Crop simulation model has been becoming the core of agricultural production management and resource optimization management. Displaying crop growth process makes user observe the crop growth and development intuitionisticly. On the basis of understanding and grasping the occurrence condition, popularity season, key impact factors for main wheat diseases of stripe rust, leaf rust, stem rust, head blight and powdery mildew from research material and literature, we designed 3D visualization model for wheat growth and diseases occurrence. The model system will help farmer, technician and decision-maker to use crop growth simulation model better and provide decision-making support. Now 3D visualization model for wheat growth on the basis of simulation model has been developed, and the visualization model for primary wheat diseases is in the process of development.

  12. Perspectives on genetically modified crops and food detection.

    PubMed

    Lin, Chih-Hui; Pan, Tzu-Ming

    2016-01-01

    Genetically modified (GM) crops are a major product of the global food industry. From 1996 to 2014, 357 GM crops were approved and the global value of the GM crop market reached 35% of the global commercial seed market in 2014. However, the rapid growth of the GM crop-based industry has also created controversies in many regions, including the European Union, Egypt, and Taiwan. The effective detection and regulation of GM crops/foods are necessary to reduce the impact of these controversies. In this review, the status of GM crops and the technology for their detection are discussed. As the primary gap in GM crop regulation exists in the application of detection technology to field regulation, efforts should be made to develop an integrated, standardized, and high-throughput GM crop detection system. We propose the development of an integrated GM crop detection system, to be used in combination with a standardized international database, a decision support system, high-throughput DNA analysis, and automated sample processing. By integrating these technologies, we hope that the proposed GM crop detection system will provide a method to facilitate comprehensive GM crop regulation. Copyright © 2015. Published by Elsevier B.V.

  13. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Identifying traits for genotypic adaptation using crop models.

    PubMed

    Ramirez-Villegas, Julian; Watson, James; Challinor, Andrew J

    2015-06-01

    Genotypic adaptation involves the incorporation of novel traits in crop varieties so as to enhance food productivity and stability and is expected to be one of the most important adaptation strategies to future climate change. Simulation modelling can provide the basis for evaluating the biophysical potential of crop traits for genotypic adaptation. This review focuses on the use of models for assessing the potential benefits of genotypic adaptation as a response strategy to projected climate change impacts. Some key crop responses to the environment, as well as the role of models and model ensembles for assessing impacts and adaptation, are first reviewed. Next, the review describes crop-climate models can help focus the development of future-adapted crop germplasm in breeding programmes. While recently published modelling studies have demonstrated the potential of genotypic adaptation strategies and ideotype design, it is argued that, for model-based studies of genotypic adaptation to be used in crop breeding, it is critical that modelled traits are better grounded in genetic and physiological knowledge. To this aim, two main goals need to be pursued in future studies: (i) a better understanding of plant processes that limit productivity under future climate change; and (ii) a coupling between genetic and crop growth models-perhaps at the expense of the number of traits analysed. Importantly, the latter may imply additional complexity (and likely uncertainty) in crop modelling studies. Hence, appropriately constraining processes and parameters in models and a shift from simply quantifying uncertainty to actually quantifying robustness towards modelling choices are two key aspects that need to be included into future crop model-based analyses of genotypic adaptation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Effect of modeled microgravity on UV-C-induced interplant communication of Arabidopsis thaliana.

    PubMed

    Wang, Ting; Xu, Wei; Li, Huasheng; Deng, Chenguang; Zhao, Hui; Wu, Yuejin; Liu, Min; Wu, Lijun; Lu, Jinying; Bian, Po

    2017-12-01

    Controlled ecological life support systems (CELSS) will be an important feature of long-duration space missions of which higher plants are one of the indispensable components. Because of its pivotal role in enabling plants to cope with environmental stress, interplant communication might have important implications for the ecological stability of such CELSS. However, the manifestations of interplant communication in microgravity conditions have yet to be fully elucidated. To address this, a well-established Arabidopsis thaliana co-culture experimental system, in which UV-C-induced airborne interplant communication is evaluated by the alleviation of transcriptional gene silencing (TGS) in bystander plants, was placed in microgravity modeled by a two-dimensional rotating clinostat. Compared with plants under normal gravity, TGS alleviation in bystander plants was inhibited in microgravity. Moreover, TGS alleviation was also prevented when plants of the pgm-1 line, which are impaired in gravity sensing, were used in either the UV-C-irradiated or bystander group. In addition to the specific TGS-loci, interplant communication-shaped genome-wide DNA methylation in bystander plants was altered under microgravity conditions. These results indicate that interplant communications might be modified in microgravity. Time course analysis showed that microgravity interfered with both the production of communicative signals in UV-C-irradiated plants and the induction of epigenetic responses in bystander plants. This was further confirmed by the experimental finding that microgravity also prevented the response of bystander plants to exogenous methyl jasmonate (JA) and methyl salicylate (SA), two well-known airborne signaling molecules, and down-regulated JA and SA biosynthesis in UV-C-irradiated plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of dynamic agricultural decision making in an ecohydrological model

    NASA Astrophysics Data System (ADS)

    Reichenau, T. G.; Krimly, T.; Schneider, K.

    2012-04-01

    Due to various interdependencies between the cycles of water, carbon, nitrogen, and energy the impacts of climate change on ecohydrological systems can only be investigated in an integrative way. Furthermore, the human intervention in the environmental processes makes the system even more complex. On the one hand human impact affects natural systems. On the other hand the changing natural systems have a feedback on human decision making. One of the most important examples for this kind of interaction can be found in the agricultural sector. Management dates (planting, fertilization, harvesting) are chosen based on meteorological conditions and yield expectations. A faster development of crops under a warmer climate causes shorter cropping seasons. The choice of crops depends on their profitability, which is mainly determined by market prizes, the agro-political framework, and the (climate dependent) crop yield. This study investigates these relations for the district Günzburg located in the Upper Danube catchment in southern Germany. The modeling system DANUBIA was used to perform dynamically coupled simulations of plant growth, surface and soil hydrological processes, soil nitrogen transformations, and agricultural decision making. The agro-economic model simulates decisions on management dates (based on meteorological conditions and the crops' development state), on fertilization intensities (based on yield expectations), and on choice of crops (based on profitability). The environmental models included in DANUBIA are to a great extent process based to enable its use in a climate change scenario context. Scenario model runs until 2058 were performed using an IPCC A1B forcing. In consecutive runs, dynamic crop management, dynamic crop selection, and a changing agro-political framework were activated. Effects of these model features on hydrological and ecological variables were analyzed separately by comparing the results to a model run with constant crop distribution and constant management. Results show that the influence of the modeled dynamic management adaptation on variables like transpiration, carbon uptake, or nitrate leaching from the vadose zone is stronger than the influence of a dynamic choice of crops. Climate change was found to have a stronger impact on this modeled choice of crops than the agro-political framework. These results suggest that scenario studies in areas with a large share of arable land should take into account management adaptations to changing climate.

  17. Estimation of Rice Crop Yields Using Random Forests in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Lin, H. S.; Nguyen, S. T.; Chen, C. R.

    2017-12-01

    Rice is globally one of the most important food crops, directly feeding more people than any other crops. Rice is not only the most important commodity, but also plays a critical role in the economy of Taiwan because it provides employment and income for large rural populations. The rice harvested area and production are thus monitored yearly due to the government's initiatives. Agronomic planners need such information for more precise assessment of food production to tackle issues of national food security and policymaking. This study aimed to develop a machine-learning approach using physical parameters to estimate rice crop yields in Taiwan. We processed the data for 2014 cropping seasons, following three main steps: (1) data pre-processing to construct input layers, including soil types and weather parameters (e.g., maxima and minima air temperature, precipitation, and solar radiation) obtained from meteorological stations across the country; (2) crop yield estimation using the random forests owing to its merits as it can process thousands of variables, estimate missing data, maintain the accuracy level when a large proportion of the data is missing, overcome most of over-fitting problems, and run fast and efficiently when handling large datasets; and (3) error verification. To execute the model, we separated the datasets into two groups of pixels: group-1 (70% of pixels) for training the model and group-2 (30% of pixels) for testing the model. Once the model is trained to produce small and stable out-of-bag error (i.e., the mean squared error between predicted and actual values), it can be used for estimating rice yields of cropping seasons. The results obtained from the random forests-based regression were compared with the actual yield statistics indicated the values of root mean square error (RMSE) and mean absolute error (MAE) achieved for the first rice crop were respectively 6.2% and 2.7%, while those for the second rice crop were 5.3% and 2.9%, respectively. Although there are several uncertainties attributed to the data quality of input layers, our study demonstrates the promising application of random forests for estimating rice crop yields at the national level in Taiwan. This approach could be transferable to other regions of the world for improving large-scale estimation of rice crop yields.

  18. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change.

    PubMed

    Makate, Clifton; Wang, Rongchang; Makate, Marshall; Mango, Nelson

    2016-01-01

    This paper demonstrates how crop diversification impacts on two outcomes of climate smart agriculture; increased productivity (legume and cereal crop productivity) and enhanced resilience (household income, food security, and nutrition) in rural Zimbabwe. Using data from over 500 smallholder farmers, we jointly estimate crop diversification and each of the outcome variables within a conditional (recursive) mixed process framework that corrects for selectivity bias arising due to the voluntary nature of crop diversification. We find that crop diversification depends on the land size, farming experience, asset wealth, location, access to agricultural extension services, information on output prices, low transportation costs and general information access. Our results also indicate that an increase in the rate of adoption improves crop productivity, income, food security and nutrition at household level. Overall, our results are indicative of the importance of crop diversification as a viable climate smart agriculture practice that significantly enhances crop productivity and consequently resilience in rural smallholder farming systems. We, therefore, recommend wider adoption of diversified cropping systems notably those currently less diversified for greater adaptation to the ever-changing climate.

  19. Crop Identification Technolgy Assessment for Remote Sensing (CITARS). Volume 1: Task design plan

    NASA Technical Reports Server (NTRS)

    Hall, F. G.; Bizzell, R. M.

    1975-01-01

    A plan for quantifying the crop identification performances resulting from the remote identification of corn, soybeans, and wheat is described. Steps for the conversion of multispectral data tapes to classification results are specified. The crop identification performances resulting from the use of several basic types of automatic data processing techniques are compared and examined for significant differences. The techniques are evaluated also for changes in geographic location, time of the year, management practices, and other physical factors. The results of the Crop Identification Technology Assessment for Remote Sensing task will be applied extensively in the Large Area Crop Inventory Experiment.

  20. A STELLA model to estimate water and nitrogen dynamics in a short-rotation woody crop plantation

    Treesearch

    Ying Ouyang; Jiaen Zhang; Theodor D. Leininger; Brent R. Frey

    2015-01-01

    Although short-rotation woody crop biomass production technology has demonstrated a promising potential to supply feedstocks for bioenergy production, the water and nutrient processes in the woody crop planation ecosystem are poorly understood. In this study, a computer model was developed to estimate the dynamics of water and nitrogen (N) species (e.g., NH4...

Top