Sample records for processing ethylene dibromide

  1. Volatilization of ethylene dibromide from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Overall mass-transfer coefficients for the volatilization of ethylene dibromide from water were measured simultaneously with the oxygen absorption coefficient in a laboratory stirred tank. Coefficients were measured as a function of mixing conditions in the water for two windspeeds. The ethylene dibromide mass-transfer coefficient depended on windspeed; the ethylene dibromide liquid-film coefficient did not, in agreement with theory. A constant relation existed between the liquid-film coefficients for ethylene dibromide and oxygen.

  2. AUTOMOTIVE EMISSIONS OF ETHYLENE DIBROMIDE

    EPA Science Inventory

    Ethylene dibromide, a suspected carcinogen, and ethylene dichloride are commonly used in leaded gasoline as scavengers. Ethylene dibromide emission rates were determined from seven automobiles which had a wide range of control devices, ranging from totally uncontrolled to evapora...

  3. Drinking Water Criteria Document for Ethylene Dibromide (EDB) (Final Draft, 1985)

    EPA Science Inventory

    The Office of Drinking Water (ODW), U.S. Environmental Protection Agency has prepared a "Drinking Water Criteria Document on Ethylene Dibromide (EDB)". The Criteria Document is an extensive review of the following topics: Physical and chemical properties of ethylene dibromide, to...

  4. 40 CFR Table 36 to Subpart G of... - Compound Lists Used for Compliance Demonstrations for Enhanced Biological Treatment Processes...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Ethylene Glycol MonobutylEther Acetate Chloroprene. Ethylene Glycol MonomethylEther Acetate Cumene (isopropylbenzene). Ethylene Glycol Dimethyl Ether Dibromoethane 1,2. Hexachlorobenzene Dichlorobenzene 1,4.... Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...

  5. Assessment of the Mutagenic Potential of Carbon Disulfide, Carbon Tetrachloride, Dichloromethane, Ethylene Dichloride, and Methyl Bromide: A Comparative Analysis in Relation to Ethylene Dibromide

    EPA Science Inventory

    The document provides an evaluation of the mutagenic potential of five alternative fumigants to ethylene dibromide(EDB). These include carbon disulfide(CS2), carbon tetrachloride(CCl4), dichloromethane(DCM), ethylene dichloride(EDC), and methyl bromide (MB). Of the five proposed ...

  6. 40 CFR Table 36 to Subpart G of... - Compound Lists Used for Compliance Demonstrations for Enhanced Biological Treatment Processes...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Trichlorobenzene 1,2,4. Dimethylaniline N,N. Trichlorophenol 2,4,6 Epichlorohydrin. Triethylamine Ethyl Acrylate. Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...

  7. 40 CFR Table 36 to Subpart G of... - Compound Lists Used for Compliance Demonstrations for Enhanced Biological Treatment Processes...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Trichlorobenzene 1,2,4. Dimethylaniline N,N. Trichlorophenol 2,4,6 Epichlorohydrin. Triethylamine Ethyl Acrylate. Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...

  8. 40 CFR Table 36 to Subpart G of... - Compound Lists Used for Compliance Demonstrations for Enhanced Biological Treatment Processes...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Trichlorobenzene 1,2,4. Dimethylaniline N,N. Trichlorophenol 2,4,6 Epichlorohydrin. Triethylamine Ethyl Acrylate. Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...

  9. 40 CFR Table 36 to Subpart G of... - Compound Lists Used for Compliance Demonstrations for Enhanced Biological Treatment Processes...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Trichlorobenzene 1,2,4. Dimethylaniline N,N. Trichlorophenol 2,4,6 Epichlorohydrin. Triethylamine Ethyl Acrylate. Ethylbenzene. Ethylene Oxide. Ethylene Dibromide. Hexachlorobutadiene. Hexachloroethane. Hexane-n. Methyl...

  10. Anaerobic Biodegradation of Ethylene Dibromide and 1,2-Dichloroethane in the Presence of Fuel Hydrocarbons

    EPA Science Inventory

    Field evidence from underground storage tank sites where leaded gasoline leaked indicates the lead scavengers 1,2- dibromoethane (ethylene dibromide, or EDB) and 1,2- dichloroethane (1,2-DCA) may be present in groundwater at levels that pose unacceptable risk. These compounds are...

  11. Gas-film coefficients for the volatilization of ethylene dibromide from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tal, D.Y.

    1986-01-01

    Gas-film coefficients for the volatilization of ethylene dibromide (EDB) and water were determined in the laboratory as a function of wind speed and temperature. The ratio of the coefficients was independent of wind speed and increased slightly with temperature. Use of this ratio with an environmentally determined gas-film coefficient for the evaporation of water permits determination of the gas-film coefficient for the volatilization of EDB from environmental waters.

  12. 40 CFR Table 1 to Subpart F of... - Synthetic Organic Chemical Manufacturing Industry Chemicals

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... III Ethylcellulose 9004573 V Ethylcyanoacetate 105566 V Ethylene carbonate 96491 I Ethylene dibromide (Dibromoethane) 106934 I Ethylene glycol 107211 I Ethylene glycol diacetate 111557 I Ethylene glycol dibutyl ether 112481 V Ethylene glycol diethyl ether 629141 I (1,2-diethoxyethane). Ethylene glycol 110714 I...

  13. 40 CFR Table 4 to Subpart F of... - Organic Hazardous Air Pollutants Subject to Cooling Tower Monitoring Requirements in § 63.104

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Dichlorobenzidine (3,3″-) 91941 Dichloroethane (1,2-) (Ethylene dichloride) (EDC) 107062 Dichloroethyl ether (Bis(2... Ethyl acrylate 140885 Ethylbenzene 100414 Ethyl chloride (Chloroethane) 75003 Ethylene dibromide (Dibromoethane) 106934 Ethylene glycol dimethyl ether 110714 Ethylene glycol monobutyl ether 111762 Ethylene...

  14. 27 CFR 21.59 - Formula No. 32.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....Cellulose intermediates and industrial collodions. 052.Inks (not including meat branding inks). 241.... 523.Other ethyl esters. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572.Ethylene gas...

  15. New Development of Polymer-Based Cotton for Breathable Material

    USDA-ARS?s Scientific Manuscript database

    Recently, we converted the poly (ethylene oxide) dibromide to poly (ethylene oxide) diazides and reacted to study cycloaddition polymerization with bisphenol-A dipropargyl ether to produce elastomers compatible with cotton (Polymer Preprints, 2005, 46(1), 737-738). The reactants were characterized w...

  16. Potential hazards of fumigant residues.

    PubMed Central

    Fishbein, L

    1976-01-01

    A spectrum of fumigants (primarily ethylene dibromide, 1,2-dibromo-3-chloropropane, ethylene oxide, symdibromotetetrachloroethane, 1,3-dichloropropene, dichlorovos, carbon tetrachloride, methyl bromide) as well as their degradation products in foodstuffs and soil have been examined mainly in regard to the potential mutagenicity of their residues. PMID:789068

  17. 40 CFR 60.707 - Chemicals affected by subpart RRR.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 123-42-2 1,4-Dichlorobutene 110-57-6 3,4-Dichloro-1-butene 64037-54-3 Dichlorodifluoromethane 75-71-8... Ethyl chloride 75-00-3 Ethylene 74-85-1 Ethylene dibromide 106-93-4 Ethylene dichloride 107-06-2...-7 (2-Ethylhexyl) amine 104-75-6 6-Ethyl-1,2,3,4-tetrahydro 9,10-anthracenedione 15547-17-8...

  18. SUCCESSFUL APPLICATION OF AIR SPARGING TO REMEDIATE ETHYLENE DEBROMIDE (EDB) IN GROUND WATER INKANSAS

    EPA Science Inventory

    Although Ethylene Dibromide (EDB) was banned in conventional motor fuel in the USA by 1990, EDB continues to contaminate ground water at many old gasoline service station sites. Although EDB contamination is widespread, there is little performance data on technology to remediat...

  19. 27 CFR 21.32 - Formula No. 1.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...

  20. 27 CFR 21.32 - Formula No. 1.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...

  1. 27 CFR 21.32 - Formula No. 1.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...

  2. 27 CFR 21.32 - Formula No. 1.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...

  3. 27 CFR 21.32 - Formula No. 1.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methyl isobutyl ketone; 1 gallon of mixed isomers of nitropropane; or 1 gallon of methyl n- butyl ketone.... 551.Acetaldehyde. 552.Other aldehydes. 561.Ethyl ether. 562.Other ethers. 571.Ethylene dibromide. 572...

  4. Toxic exposure to ethylene dibromide and mercuric chloride: effects on laboratory-reared octopuses.

    PubMed

    Adams, P M; Hanlon, R T; Forsythe, J W

    1988-01-01

    The effects of acute and chronic exposure to either ethylene dibromide (EDB) or mercuric chloride (MC) were studied in laboratory-reared Octopus joubini, O. maya and O. bimaculoides. The advantages of using octopuses were that the responses were immediate, highly visible and sensitive. All species demonstrated signs of toxicity to acute and chronic exposure to EDB and to MC. A dosage-sensitive relationship for the loss and subsequent recovery of locomotor response and of chromatophore expansion was found for each species after acute exposure. For each species the LC50 for chronic exposure occurred within 12 hr at 100 mg/l for EDB and within 3 hr at 1,000 mg/l for MC. This study demonstrated the potential usefulness of laboratory-reared octopuses in evaluating the toxicity of marine environmental pollutants.

  5. Industrial-hygiene report, walk-through survey, papaya packing/shipping facilities, Hilo, Hawaii, July 1983. [Ethylene dibromide exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clapp, D.

    1983-07-01

    Worker exposure to ethylene dibromide (EDB) was investigated at three papaya packing and shipping facilities in Hilo, Hawaii. Breathing-zone samples were collected in the three facilities over a three day period. Blind spikes were submitted as a control on time and temperature effects. Blank samples were also prepared. Spike results reflected the effects of time and temperature in shipment from Hawaii to Massachusetts. All spikes were roughly comparable and showed a recovery of about 68%. Overnight laboratory results were adjusted upward by 72% and NIOSH laboratory results by 68%. Six out of 38 samples exceeded the NIOSH recommended amount ofmore » 130 ppb. The author concludes that there is a chronic, low-concentration exposure to EDB for all workers in the papaya industry in Hilo. An epidemiological study of reproductive and cytogenetic effects of EDB exposure on these workers is recommended.« less

  6. Design Tool for Planning Permanganate Injection Systems

    DTIC Science & Technology

    2010-08-01

    Chemical Spill 10 CSTR continuously stirred tank reactors CT contact time EDB ethylene dibromide ESTCP Environmental Security Technology...63 6.2 Simulating Oxidant Distribution Using a Series of CSTRs ...ER- 0625. 6.2 SIMULATING OXIDANT DISTRIBUTION USING A SERIES OF CSTRS 6.2.1 MODEL DEVELOPMENT The transport and consumption of permanganate

  7. Distribution and Fate of Energetics on DoD Test and Training Ranges

    DTIC Science & Technology

    2004-11-01

    766 ND ND ND 1,2,4-Tdchlorobenzene pg/L 0 954 ND ND ND 1,2-Dibromo-3- Chloropropane pg/L 1 766 0.60 0.60 0.60 1,2-Dibromoethane (Ethylene Dibromide) pg...xxii 1 - Introduction .................................................................................................. 1 - 1 Background... 1 - 1 Scope of Project CP 1155

  8. DNA adducts of ethylene dibromide: Aspects of formation and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cmarik, J.L.

    1,2-Dibromoethane (ethylene dibromide, EDB), a potential human carcinogen, undergoes bioactivation by the pathway of glutathione (GSH) conjugation, which generates a reactive intermediate capable of alkylating DNA. The major DNA adduct formed is S-[2-(N[sup 7]-guanyl)ethyl]GSH. This dissertation examined the bioactivation of EDB and the formation of DNA adducts. The selectivity of purified rat and human GSH S-transferases for EDB was examined in vitro. An assay was developed to measure the formation of S,S[prime]-ethylene-bis(GSH). The [alpha] class of the GSH S-transferases was responsible for the majority of EDB-GSH conjugation with both the rat and human enzymes. Human tissue samples for a victimmore » of EDB poisoning were analyzed for S-[2-(N[sup 7]-guanyl)ethyl]GSH utilizing electrochemical detection. No adducts were detected in samples of brain, heart, or kidney. The pattern of alkylation of guanines in fragments of plasmid pBR322 DNA by S-(2-chloroethyl)GSH and related compounds was determined. Alkylation varied approximately ten-fold in intensity and was strongest in runs of guanines. Few differences were observed in the alkylation patterns generated by the different compounds tested. The spectrum of mutations caused by S-(2-chloroethyl)GSH was determined using an M13 bacteriophage forward mutation assay. The majority of mutations (70%) were G:C to A:T transitions. Participation of the N[sup 7]-guanyl adduct in the mutagenic process is strongly implicated. The sequence selectivity of alkylation in the region of M13 sequenced in the mutation assay was determined. Comparison of the sequence selectivity with the mutation spectrum revealed no obligate relationship between the extent of adduct formation and the number of mutations which resulted at different sites. Sequence context appears to exert a strong influence on the processing of lesions. These studies strongly implicate S-[2-(N[sup 7]-guanyl)-ethyl]GSH as a mutagenic lesion formed by EDB.« less

  9. Biological and Abiotic Transformations of Ethylene Dibromide and 1,2-Dichloroethane in Ground Water at Leaded Gasoline Spill Sites

    EPA Science Inventory

    Tetra-ethyl lead was widely used in leaded automobile gasoline from 1923 until 1987. To prevent lead deposits from fouling the engine, 1,2-dibromoethane (EDB) and 1,2-dichloroethane (1,2-DCA) were added to the gasoline to act as lead scavengers. The Maximum Contaminant Levels...

  10. Removal of EDB and 1,2-DCA by Abiotic Reaction with Iron(II) Sulfide

    EPA Science Inventory

    Ethylene Dibromide (EDB) and 1,2-Dichloroethane (1,2-DCA) were used as lead scavengers in leaded motor gasoline in the USA until the late 1980s. Leaded gasoline in contact with ground water should produce concentrations of EDB near 1900 µg/L, and concentrations of 1,2-DCA near 3...

  11. Development of a Design Tool for Planning Aqueous Amendment Injection Systems Permanganate Design Tool

    DTIC Science & Technology

    2010-08-01

    CSTR continuously stirred tank reactors CT contact time EDB ethylene dibromide ESTCP Environmental Security Technology Certification Program...63 6.2 Simulating Oxidant Distribution Using a Series of CSTRs -------------------- 63 6.2.1 Model...SIMULATING OXIDANT DISTRIBUTION USING A SERIES OF CSTRS 6.2.1 MODEL DEVELOPMENT The transport and consumption of permanganate are simulated within the

  12. Semen study of papaya workers exposed to ethylene dibromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliffe, J.M.; Schrader, S.M.; Steenland, K.

    1984-01-01

    A cross sectional semen and cytogenetic study was performed on male workers exposed to ethylene-dibromide (EDB) in the papaya fumigation industry in Hawaii. Semen analyses were conducted on 46 men in six fumigation facilities with an average length of employment of 5 years and airborne exposures to EDB ranging from 16 to 213 parts per billion. Statistically significant decreases in sperm count per ejaculate and the percentage of viable and motile sperm and increases in the proportion of specific morphological abnormalities were observed among exposed men when compared with controls. Semen volume and sperm concentration were also lower in themore » exposed group. No effect of exposure to EDB on sperm velocity, the overall proportion of sperm with normal morphology or YFF bodies was noted. The authors conclude that based on the decreases in sperm count, viability and motility and increases in certain types of morphological abnormalities among workers exposed to EDB, EDB may increase the risk of reproductive impairment in workers at exposure levels near the NIOSH recommended limit of 45 parts per billion and far below the current OSHA standard of 20 parts per million.« less

  13. Degradation of halogenated aliphatic compounds by the ammonia- oxidizing bacterium Nitrosomonas europaea.

    PubMed

    Vannelli, T; Logan, M; Arciero, D M; Hooper, A B

    1990-04-01

    Suspensions of Nitrosomonas europaea catalyzed the ammonia-stimulated aerobic transformation of the halogenated aliphatic compounds dichloromethane, dibromomethane, trichloromethane (chloroform), bromoethane, 1,2-dibromoethane (ethylene dibromide), 1,1,2-trichloroethane, 1,1,1-trichloroethane, monochloroethylene (vinyl chloride), gem-dichloroethylene, cis- and trans-dichloroethylene, cis-dibromoethylene, trichloroethylene, and 1,2,3-trichloropropane, Tetrachloromethane (carbon tetrachloride), tetrachloroethylene (perchloroethylene), and trans-dibromoethylene were not degraded.

  14. Use of Sperm Enzymes to Detect Genotoxic Agents.

    DTIC Science & Technology

    1984-05-01

    ethylene dibromide (EDB) and 1 , 2-dibromo- 3- chloropropane (DBCP) after oral administration in rats and mouse, Toxicol Appl Pharmacol 33: 171-172...AD-A1i42 724 USE OF SPERMEENZYES TO DETECT GENOTOXIC RGENTS(U) 1 / 1 WESTERN MICHIGAN UNIV KALAMAZOO DEPT OF BIOMEDICAL SCIENCES L C GINSBERG ET AL...regarded 1 )Y implication or otherwise, as in any manner licensing the hodder oi any other persoin (ir c, rtr , , conveying any rights or permission to

  15. Use of new field methods of semen analysis in the study of occupational hazards to reproduction: the example of ethylene dibromide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrader, S.M.; Ratcliffe, J.M.; Turner, T.W.

    1987-12-01

    Increasing attention has been paid to the use of semen analysis as an indicator of exposure to potential mutagenic and reproductive hazards. In the infertility clinic setting, semen evaluations include the measurement of sperm concentration, volume, pH, motility, velocity and morphology, the analysis of seminal plasma to evaluate accessory sex gland function and, in some cases, the in vitro evaluation of fertilization capacity and sperm-cervical mucus interaction. To date, however, the study of semen characteristics of occupationally exposed populations has been confined principally to the measurement of sperm concentration and sperm morphology. This has been largely due to the unavailabilitymore » of portable equipment suitable for the measurement of other semen characteristics and the difficulty of obtaining fresh semen samples in the field setting. National Institute for Occupational Safety and Health researchers have developed mobile laboratory facilities which enable us to evaluate fresh samples, in the field, for semen characteristics in addition to concentration and morphology. This paper describes the application of these methods using the example of our recent cross-sectional study of workers occupationally exposed to ethylene dibromide in the papaya fumigation industry. We discuss our findings in the context of the usefulness of semen analysis as an indicator of occupational hazards to male reproduction.« less

  16. 40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...(chloromethyl)ether b 0.999 75-25-2 Bromoform 0.998 106-99-0 1,3-Butadiene 1.000 75-15-0 Carbon disulfide 1.000....000 98-82-8 Cumene 1.000 94-75-7 2,4-D, salts and esters 0.167 334-88-3 Diazomethane c 0.999 132-64-9...-41-4 Ethyl benzene 1.000 75-00-3 Ethyl chloride (Chloroethane) 1.000 106-93-4 Ethylene dibromide...

  17. Contamination of groundwater by the fumigants ethylene dibromide (EDB) and dibromochloropropane (DBCP) near McBee, South Carolina

    USGS Publications Warehouse

    Landmeyer, James E.; Campbell, Bruce G.

    2010-01-01

    McBee is a small town of about 700 people located in Chesterfield County, South Carolina, in the Sandhills region of the upper Coastal Plain. The halogenated organic compounds ethylene dibromide (EDB) and dibromochloropropane (DBCP) have been detected in several public and domestic supply and irrigation wells since 2002 at concentrations above their U.S. Environmental Protection Agency Maximum Contaminant Limits of 0.05 and 0.2 microgram per liter (µg/L), respectively. The source(s) and release histories of EDB and DBCP to local groundwater are unknown, but believed to be related to their historical use between the 1940s and their ban in the late 1970s as fumigants to control nematode damage in peach orchards. However, gasoline and jet-fuel supplies also contained EDB and are an alternative source of contamination to groundwater. The detection of EDB and DBCP in water wells has raised health concerns because groundwater is the sole source of water supply in the McBee area. In April 2010, forensic, geochemical-based investigation was initiated by the U.S. Geological Survey in cooperation with the Alligator Rural Water & Sewer Company to provide additional data regarding EDB and DBCP in local groundwater. The investigation includes an assessment of the use, release, and disposal history of EDB and DBCP in the area, the distribution of EDB and DBCP concentrations in the unsaturated zone, and transport and fate in groundwater.

  18. Gas chromatographic determination of fumigant residues in stored grains, using isooctane partitioning and dual column packings.

    PubMed

    Daft, J L

    1983-03-01

    A gas chromatographic (GC) procedure for determining fumigants in grains was developed. Fumigants were leached from grain samples with the official AOAC method using acetone-water (5 + 1). They were then partitioned from the leachate with isooctane, yielding a dry, stable extract that was analyzed by GC. Fortified sample recoveries ranged from 90 to 100%. Two GC columns were used, 20% OV-101 and 20% OV-225/20% OV-17 (2 + 1). These columns gave dissimilar retention profiles and baseline resolution for the 7 fumigants investigated: chloroform, ethylene dichloride, carbon tetrachloride, trichloroethylene, chloropicrin, ethylene dibromide, and tetrachloroethylene. Further tests showed that grain samples could be screened for fumigant residues by direct injection of the acetone-water leachates obtained using the AOAC method.

  19. Therapeutic plasma exchange: an effective treatment in ethylene dibromide poisoning cases.

    PubMed

    Pahwa, Naresh; Bharani, Rajesh; Jain, Manish; Argal, Suarabh; Soni, Harish; Kosta, Susmit; Kumar, Ravindra

    2013-10-01

    Ethylene dibromide (EDB) poisoning is very common in Central India and has fatal outcome. EDB is highly protein bound and, therefore, it is suggested that therapeutic plasma exchange (TPE) may be useful in removing drug from body shortly after ingestion before EDB metabolizes and causes severe end organ damage. The aim of our study is to find the effect of time of start of TPE on survival outcome of EDB poisoning cases. Fifty-eight cases of EDB poisoning were reviewed from 2007 to 2012 in Department of critical care medicine in tertiary care hospitals at Indore. Five patients were discharged against medical advice and lost to follow up. TPE was done in 47 patients as early as possible and irrespective of appearance of clinical symptoms. TPE was not performed in six cases as they were hypotensive at admission. The patients with EDB poisoning were 15-45 yrs old with 3:2 male to female ratio. Out of 47 who received TPE, 39 patients survived. TPE had started within 24 h of ingestions of EDB in 36 out of 39 survived patients. Survival outcome was nine times higher in patients who received TPE within 24 h than after 24 h of ingestion. Survival rate was increased to 100% in patients where TPE was done within 12 h of ingestion of EDB. Early TPE help to remove plasma protein bound toxin with significant mortality reduction. However, delay in start of TPE after ingestion of poison has significant poor survival outcome. Copyright © 2013 Wiley Periodicals, Inc.

  20. Undetected Groundwater Contamination at Underground Storage Tank Sites by the Gasoline Lead Scavengers Ethylene Dibromide and 1,2-Dichloroethane

    NASA Astrophysics Data System (ADS)

    Falta, R. W.

    2004-05-01

    Ethylene dibromide (EDB) is a synthetic organic chemical that was produced in large amounts for use as a leaded gasoline additive and pesticide. The chlorinated solvent 1,2-dichlorethane (1,2-DCA) is widely used in the chemical industry, and was also added to leaded gasoline. EDB and 1,2-DCA are classified as probable human carcinogens by the United States Environmental Protection Agency (EPA), and EDB's use as a pesticide was suspended in 1984. The current EPA maximum contaminant level (MCL) for EDB in drinking water is 0.05 ug/l, and the MCL for 1,2-DCA is 5 ug/l. EDB has proven to be both mobile and persistent in groundwater, and contamination of groundwater by EDB was documented in several states beginning in the early 1980s. The majority of this contamination is attributed to agricultural uses of EDB, however approximately 90 percent of the EDB produced was used as a leaded gasoline additive, and it was present in virtually all leaded gasoline sold in the US. 1,2-DCA is commonly found as a groundwater contaminant, and it is both mobile and persistent. Past site investigations and remediation efforts at underground storage tank sites contaminated by leaded gasoline have rarely addressed the potential for EDB or 1,2-DCA contamination. However, the concentrations of EDB and 1,2-DCA in leaded gasoline were high enough to produce groundwater concentrations of thousands of ug/l. For this reason, there is a substantial likelihood that undetected EDB and 1,2-DCA plumes above the MCL may exist at many sites where leaded gasoline leaked or spilled. An initial review of field data from underground storage tank sites in two states suggests that this problem is widespread.

  1. Ethylene dibromide (EDB) trends in the upper Floridan Aquifer, Seminole County, Georgia, October 1981 to November 1987

    USGS Publications Warehouse

    McConnell, J.B.

    1988-01-01

    Results of an investigation to assess the persistence and trends of ethylene dibromide (EDB) in the Upper Floridan aquifer, in Georgia indicate that in November 1987, EDB was present in the groundwater 4 years after it was last applied as a soil fumigant in the intensively farmed area of central Seminole County. At that time, EDB was detected in water samples from one domestic well and four irrigation wells. Concentrations ranged from less than 0.01 micrograms/L to 3.3 micrograms/L. The investigation in November 1987 revealed the groundwater contamination was limited to the 4-sq-mi area in the vicinity of Buck Hole, a sinkhole in a swampy depression in the central part of the County. In three of the five wells in which EDB was detected, concentrations have not changed significantly since August 1983. However, in one irrigation well near Buck Hole, the concentration decreased from 110 to 0.7 microgram/L since October 1981. In another irrigation well near Buck Hole, the concentration decreased from 26 to about 2.5 microgram/L during that period. The groundwater level data indicate that from Buck Hole, the hydraulic gradient in the Upper Floridan aquifer is about 2.8 ft/mi toward the east. However, the movement of EDB from the area of relatively high concentration near Buck Hole in the direction of inferred flow lines is not apparent. Although concentration gradients were not detected along flow lines, the movement of water induced by pumping wells W4 and W5 produced short-term decreasing and increasing trends in EDB Concentrations in wells W4 and W5, respectively. (USGS)

  2. Irradiation and fumigation effects on flavor, aroma and composition of grapefruit products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moshonas, M.G.; Shaw, P.E.

    1982-05-01

    Effects were evaluated on grapefruit treated to meet quarantine restrictions against Caribbean fruit fly infestation. Differences were found in flavor of fresh sections, fresh juice, and aroma of peel oil when obtained from fruit irradiated with x-rays, as compared with products from nonirradiated fruit. Flavor differences were found in all pasteurized juices from fruit irradiated at 50-60 krad. Vitamin C levels were significantly lower in juice from most irradiated fruit. Flavor differences were found in fresh and pasteurized juice from fruit treated with methyl bromide, and in pasteurized juice from fruit treated with ethylene dibromide. Aroma differences were found inmore » peel oil from fruit treated with phosphine.« less

  3. Movement and fate of ethylene dibromide (EDB) in ground water in Seminole County, Georgia

    USGS Publications Warehouse

    McConnell, J.B.

    1987-01-01

    An investigation to assess the movement and fate of ethylene dibromide (EDB) in the Upper Floridan aquifer (formerly the principal artesian aquifer) was conducted, because a previous investigation conducted in August 1983, had found EDB contamination of the aquifer in about a 4 sq mi area in central Seminole County, Georgia. Analyses of water from wells resampled in June 1985 indicate that EDB was present in the groundwater 2 yr after last being applied as a soil fumigant. The investigation revealed that groundwater recharge and irrigation pumping between August 1983 and June 1985 did not substantially change the areal extent of EDB in the Upper Floridan aquifer but concentrations of EDB seem to be declining. The highest concentrations again were found in two irrigation wells near Buck Hole, a sinkhole in a swampy depression in central Seminole County. EDB concentrations in these two wells ranged from 1.5 to 13 micrograms/L. Samples from two of three wells in the residuum near Buck Hole also had detectable concentrations of EDB. The presence of EDB in water samples from wells tapping the residuum and wells tapping the Upper Floridan aquifer indicates that agriculturally applied EDB has moved downward from the surface soils through the residuum and into the aquifer. Results of aquifer tests conducted in a similar geohydrologic setting suggest that local pumping from the highly transmissive aquifer may accelerate downward movement of water and EDB. Potentiometric surface maps of the Upper Floridan aquifer indicate that east of Fishpond Drain, where the highest concentrations of EDB were detected, the direction of groundwater flow and the direction of potential EDB transport generally is south-southeasterly. However, the movement of an EDB plume from the area of relatively high concentrations near Buck Hole along inferred groundwater flow lines was not detected. (Author 's abstract)

  4. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2015-03-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10-15 m3/s.

  5. Soil Fumigation: Principles and Application Technology

    PubMed Central

    Lembright, H. W.

    1990-01-01

    The principal soil fumigants and their order of discovery are carbon disulfide, chloropicrin, methyl bromide, 1,3-dichloropropene, ethylene dibromide, 1,2-dibromo-3-chloropropane, and methyl isothiocyanate. Biological activity of soil fumigants ranges from limited to broad spectrum. Fumigants diffuse through the continuous soil air space as gases. Physical and chemical characteristics determine diffusion rates, distribution between the soil air and moisture, and sorption onto and into the soil particles. The principal soil factors affecting the efficacy of each treatment are the size and continuity of air space, moisture, temperature, organic matter, and depth of placement. Application can be made overall with tractor injection or plow-sole, or as a row or bed treatment. Treatment for trees is best made in conjunction with tree site backhoeing. PMID:19287772

  6. Investigation of ethylene dibromide (EDB) in ground water in Seminole County, Georgia

    USGS Publications Warehouse

    McConnell, James B.; Hicks, D.W.; Lowe, L. E.; Cohen, S.Z.; Jovanovich, A.P.

    1984-01-01

    An investigation of ground water in Seminole County, Georgia, for ethylene dibromide (EDB) was conducted in August 1983 by the U.S. Geological Survey in cooperation with the Exposure Assessment Branch of the U.S. Environmental Protection Agency. The purpose of the investigation was to determine whether EDB, which was previously detected in ground-water samples from four neighboring wells, was localized in the vicinity of the wells or was more widespread in the ground-water system. EDB was detected in 6 of 19 wells sampled. Concentrations ranged from 0.03 to 11.8 micrograms per liter. Five of the six samples that contained EDB were collected from irrigation wells, and one was collected from a domestic well. Concentrations of 4.5 and 11.8 micrograms per liter were found in two irrigation wells located near Buck Hole, a sinkhole in a swampy depression in central Seminole County. EDB was not detected in samples from the remaining 10 irrigation and 3 domestic wells and the surface-water site (detection level less than 0.01 microgram per liter). Nine core samples were collected from a borehole near one of the irrigation wells that had high EDB concentrations. EDB was found in a core sample near the surface and in samples from depths of 24 to 25, 34 to 35, and 39 to 40 feet in the residuum. EDB concentrations in the core samples ranged from 0.06 to 2.4 micrograms per kilogram. EDB in the aquifer was found in a 4-square-mile area of the county in the vicinity of Buck Hole. EDB application information and the local hydrogeology indicate that EDB contamination in ground water in Seminole County probably is due to soil fumigation with EDB. Apparently, EDB moves downward through the residuum and, through undetermined pathways, enters the aquifer. However, because the high concentration of EDB in the aquifer seems to be localized in the Buck Hole area, the possibility of contamination from an EDB fumigant spill cannot be disregarded at this time.

  7. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2013-12-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10-14 m3/s for a reduced electric field of E/ N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.

  8. Fumigants and related chemicals in foods: review of residue findings, contamination sources, and analytical methods.

    PubMed

    Daft, J L

    1991-03-01

    Public concern over chemical residues in foods increased in the United States during the early 1980s. Potentially hazardous levels of ethylene dibromide (EDB), a relatively non-volatile fumigant, were detected in several finished grain-based products by governmental food-monitoring laboratories. As a result, the U.S. Environmental Protection Agency banned the use of EDB as a fumigant in 1983. Commercial fumigators then began using more of the highly volatile chemicals such as methyl bromide and phosphine. These chemicals are less likely to leave residues on stored crops than the previously used fumigants such as EDB, chloroform, and carbon tetrachloride. However, trace residues of many pest-control fumigants and related industrial chemicals are currently found in assorted foods. This contamination may come from the original fumigation of stored crops, or from the industrial chemicals occurring in the environment and in food processing chains. No potential health problem is indicated at this time. Yet scientists continue to uncover the sources of this chemical contamination, and to develop better methods to monitor foods for it. They also seek better ways to protect foodstuffs from pests prior to human consumption.

  9. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.

    PubMed

    Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo

    2018-06-01

    We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.

  10. Determining multifumigants in whole grains and legumes, milled and low-fat grain products, spices, citrus fruit, and beverages.

    PubMed

    Daft, J

    1987-01-01

    Whole grain and legumes, milled and low-fat products, spices, citrus fruit, and dry beverage ingredients are leached with purified, acidified acetone-water solutions. Portions of these leachates are then back-extracted with purified isooctane. Liquid beverages are directly extracted with the isooctane. Six to 10 microL of each isooctane extract is then screened for 11 fumigant residues by gas chromatography (GC) using electron-capture and Hall electroconductivity detectors, and dual 20% OV-101 columns. Further confirmation of residue identity is done on 20% OV-225/20% OV-17 (2.5 + 1 mixed-bed) and 10% SP-1000 columns. The analytes determined include methyl bromide, methylene chloride, carbon disulfide, chloroform, ethylene dichloride, methyl chloroform, carbon tetrachloride, trichloroethylene, chloropicrin, ethylene dibromide, and tetrachloroethylene, using mixed-component reference solutions. Average recoveries from fortified grain range from 25 to 85%; methyl bromide and chloropicrin were recovered the least. Recoveries from the other kinds of food samples range from 43 to 111%. Advantages of this procedure are (1) clean sample extracts, (2) ppb detection limits, (3) residue stability, (4) relative speed, quality control, and safety of the analysis, and (5) results which gave an accurate picture of residual fumigants in grain and food products.

  11. Rapid determination of fumigant and industrial chemical residues in food.

    PubMed

    Daft, J L

    1988-01-01

    A gas chromatographic (GC) method is described for the determination of 22 fumigant and industrial chemical residues in a variety of foods. The fumigants and industrial chemicals determined are methyl bromide, methylene chloride, carbon disulfide, chloroform, 1,1-dichloroethane, ethylene dichloride, methyl chloroform, carbon tetrachloride, methylene bromide, propylene dichloride, 2,3-dichloropropene, trichloroethylene, 1,3-dichloropropylene, 1,1,2-trichloroethane, chloropicrin, ethylene dibromide, tetrachloroethylene, propylene dibromide, 1,1,2,2-tetrachloroethane, p-dichlorobenzene, o-dichlorobenzene, and 1,2-dibromo-3-chloropropane. Except for the latter three, the fumigants are determined at 90 degrees C on 3.6 m 20% loaded OV-101 columns with electron-capture and Hall-electroconductivity detectors. The other 3 compounds (o-dichlorobenzene, p-dichlorobenzene, and 1,2-dibromo-3-chloropropane), which elute beyond 30 min on the above columns, are determined at 90 degrees C on 1.8 m 5% loaded OV-101 columns with the same detectors. The ng/g-level fortifications have an overall mean analyte recovery of 70% and a coefficient of variation of 40%. The variety of foods examined includes both fatty and nonfatty food types (e.g., off-the-shelf cooked and uncooked grain-based items, dairy products, fresh and canned fruits and vegetables, and meats). Samples are extracted and cleaned up according to fat content and food type. Samples containing less than 71% fat are extracted by using an aqueous: nonaqueous shakeout (20% acetone solution under isooctane). Most extracts (isooctanes) are analyzed directly. Extracts from samples containing from 21 to 70% fat (e.g., ground beef, pecans, and corn chips) are cleaned up further on micro-Florisil columns to remove excess fat. A few other samples containing more than 71% fat or oil (e.g., butter, salad dressing, and vegetable oil) are diluted directly in isooctane and, depending on the degree of dilution, can be cleaned up further on micro-Florisil columns. Also, clear beverages (e.g., soda and tea) are extracted directly with isooctane. These extraction and cleanup techniques were tested on 231 different table-ready foods. Three-hundred incurred residues of 10 different fumigants were found in 138 items examined; 93 items had no detectable residues. The main advantage of the method is rapid semiquantitative determination of multiple fumigants from all food types.

  12. Spectroscopic and DFT studies of bis-3-hydroxypyridinium and bis-3-hydroxymethylpyridinium dibromides with tetramethylene linker

    NASA Astrophysics Data System (ADS)

    Komasa, Anna

    2018-01-01

    Experimental and theoretical IR, Raman, UV-Vis, 1H and 13C NMR spectra of 1,4-di(3-hydroxypyridinium)butane dibromide and 1,4-di(3-hydroxymethylpyridinium)butane dibromide were obtained and analyzed. Optimized geometrical structures of the studied compounds were calculated by B3LYP method using 6-311++G(d,p) basis set and employed to determine the theoretical wavenumbers and intensities of IR and Raman spectra. The frequency assignments were supported by the potential energy distribution (PED) analysis. The significant role of the intermolecular interactions and the hydrogen bond was revealed on the basis of IR spectra. The calculated GIAO/B3LYP/6-311++G(d,p) isotropic magnetic shielding constants were used to predict the 1H and 13C chemical shifts for the optimized structures. Accuracy of the prediction of 1H and 13C chemical shifts was significantly improved by a simulation of the solvent in calculations. On the basis of UV-Vis spectra the acid-base equilibrium in the water solution of 1,4-di(3-hydroxypyridinium)butane dibromide was found.

  13. 75 FR 60114 - Notice of Receipt of Requests for Amendments to Delete Uses in Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Hatcheries 82633-2 Sharda Diquat Diquat dibromide Sorghum (seed crop Concentrate only) and Soybean (seed crop only) 83529-13 Diquash Ag Diquat dibromide Sorghum (seed crop only) and Soybean (seed crop only) Users... imposed, as in special review actions. List of Subjects Environmental protection, Pesticides and pests...

  14. Ethylene dibromide: toxicology and risk assessment.

    PubMed

    Alexeeff, G V; Kilgore, W W; Li, M Y

    1990-01-01

    Since the 1920s ethylene dibromide's (EDB's) primary use has been as a scavenger of lead compounds in gasoline. Gasoline evaporation contributed to EDB emissions into the environment. In 1973, the United States Environmental Protection Agency (EPA) issued regulations to reduce the use of leaded gasoline and this has resulted in lower EDB usage and emissions. In addition, EDB has been used extensively as a fumigant since 1948. Its volatility and versatility, based on chemical and biocidal properties, led to its use as a soil sterilant, as a spot fumigant of grain milling machinery, and as a control agent in grain, fruit and vegetable infestations. In 1977 the EPA began a review of EDB's pesticidal uses which eventually led to its cancellation for most agricultural applications. Disposal of EDB and contamination of water supplies remain major environmental concerns. EDB can be absorbed via the dermal, oral and inhalation routes. It appears to be metabolized in vivo by an oxidative pathway (cytochrome P-450) and a conjugation pathway (glutathione S-transferase). The metabolites play an important role in exerting its toxicity. Few human poisonings have been reported from either acute or chronic exposure. However, EDB is irritating to the skin and eyes. Limited information indicates that EDB can damage the liver and kidneys following extensive or prolonged exposure. The genotoxicity of EDB has been clearly demonstrated. It binds to DNA in vivo and in vitro, and a DNA adduct has been identified. EDB has been shown to be mutagenic in numerous bacterial assays, in fungi, in plants, in insects, and in mammalian cell culture. Some evidence indicates that EDB can cause sister chromatid exchange and chromosomal aberrations. EDB is a reproductive toxin, but it does not appear to be teratogenic. It has been shown to affect spermatogenesis in rats, bulls and rams and to affect fertility in fowl. Human studies indicate that EDB exposure may harm sperm and decrease fertility. The toxic effect of greatest concern that may result from EDB exposure is cancer. In rats and mice, EDB produced tumors at the application site and at distant sites. When given orally, EDB has produced tumors in the forestomach, lung, and the circulatory system. When administered by inhalation, EDB produced tumors in the nasal cavity, lung, and the circulatory system. Dermal application of EDB produced skin and lung tumors. Analyses of risks from EDB exposure have focused on potential carcinogenic effects. Initial risk estimates, based on animal studies, indicated that citrus workers had essentially a 100% chance of contracting cancer.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Comparison of storm intensity and application timing on modeled transport and fate of six contaminants.

    PubMed

    Chiovarou, Erica D; Siewicki, Thomas C

    2008-01-15

    Hundreds, if not thousands, of fish kills and kills of other aquatic organisms occur following storms in the US each year, but they are difficult to quantify, investigate, or manage due to the transient nature of major storms and the other priorities following them. Methods are needed to better understand the causes of these kills. The Pesticide Root Zone Model and the Exposure Analysis Modeling System were used to compare risk to resident biota in estuarine headwaters in two locations under various conditions. Contaminants were selected using a landuse-based preliminary risk assessment approach. Atrazine, fipronil, and imidacloprid were compared for potential impacts on important prey species, including copepods and grass shrimp, in Lake Bethel in Volusia County, Florida. Carbaryl, diquat dibromide, and fluoranthene were compared for potential impacts on salmon and other aquatic species in Johnson Creek, near Portland, Oregon. Predictions of contaminant concentrations in groundwater runoff, surface water, benthic sediments, and pelagic biota tissue were obtained based upon watershed characteristics, storm types, and contaminant chemistry and application. For all six contaminants, the simulated concentrations were highest following the 100-yr storms and lowest following the 2-yr storms. Aqueous concentrations ranged between 84 and 2100% higher in 100-yr compared to two-yr storms. Most atrazine and carbaryl concentrations were highest if applied one day before the storm while fipronil, imidacloprid, and diquat dibromide were highest if applied 16 days prior to the storm. Carbaryl and fluoranthene concentrations were highest in the forested segment of the watershed while diquat dibromide concentrations were highest in the agricultural segment. In Florida simulations, groundwater and surface water concentrations generally were highest for atrazine, followed by imidacloprid, and then fipronil. Atrazine poses the highest risk to algae and copepods due to its mobility and high allowable application rates. Fipronil and imidacloprid, though highly toxic, were not predicted to occur at high enough concentrations to pose a risk. In Oregon simulations, groundwater and surface water concentrations generally were highest for carbaryl, followed by fluoranthene, and then diquat dibromide. For salmonids, fluoranthene poses a higher risk than carbaryl, whereas it is unlikely that diquat dibromide will affect salmonids in this system. For crustaceans, carbaryl poses the greatest risk, followed by fluoranthene. Diquat dibromide was determined to pose little risk. These tests demonstrate the use of preliminary risk assessment, along with transport and fate modeling, to characterize risks to aquatic organisms without the need for in situ chemical measurements.

  16. Effects of the workplace on fertility and related reproductive outcomes.

    PubMed Central

    Baranski, B

    1993-01-01

    This report reviews the recent literature on the adverse effects of occupational factors on fertility and related reproductive outcomes. Few studies fulfill the criteria of good study design because of small sample size, insensitive measures of effect, selection, recall, and observation bias, weak if any control of confounding factors, bad definition of exposure, inability to analyze a dose-response relationship, and inadequate statistical analysis. The high prevalence of unsuccessful reproductive outcomes in the general population makes the design of human fertility studies difficult. Although a number of publications indicate that certain occupational factors and settings adversely affect both male and female fertility, it is virtually impossible to estimate the proportion of infertility due to occupational factors in the general population. The collected data suggest that the exposure to the following substances or occupational settings may affect a function of male genital system, leading to sperm abnormalities, hyperestrogenism, impotence, infertility, and/or increased spontaneous abortion rate in wives of exposed workers: alkylmercury, antimonide, anesthetic gases, boron, carbon disulfide, chlorodecone, chloroprene, some carbamates (carbaryl), diaminostilbene, 1,2-dibromo-3-chloropropane, ethylene glycol ethers, ethylene dibromide, inorganic lead, manganese, methyl chloride, organic solvents, synthetic estrogens and progestins, tetraethyllead, combined exposure to styrene and acetone, welding operations, and heat. The majority of reviewed papers on female fertility concerns the alterations of menstrual cycle and pregnancy complications rather than occupational exposure-induced female infertility. The literature supports the hypothesis that, in general, working women have a tendency of higher risk of unsuccessful reproductive outcomes, although the existing data are not sufficient. PMID:8243410

  17. In search of efficient 5-endo-dig cyclization of a carbon-centered radical: 40 years from a prediction to another success for the Baldwin rules.

    PubMed

    Alabugin, Igor V; Timokhin, Vitaliy I; Abrams, Jason N; Manoharan, Mariappan; Abrams, Rachel; Ghiviriga, Ion

    2008-08-20

    Despite being predicted to be stereoelectronically favorable by the Baldwin rules, efficient formation of a C-C bond through a 5-endo-dig radical cyclization remained unknown for more than 40 years. This work reports a remarkable increase in the efficiency of this process upon beta-Ts substitution, which led to the development of an expedient approach to densely functionalized cyclic 1,3-dienes. Good qualitative agreement between the increased efficiency and stereoselectivity for the 5-endo-dig cyclization of Ts-substituted vinyl radicals and the results of density functional theory analysis further confirms the utility of computational methods in the design of new radical processes. Although reactions of Br atoms generated through photochemical Ts-Br bond homolysis lead to the formation of cyclic dibromide side products, the yields of target bromosulfones in the photochemically induced reactions can be increased by recycling the dibromide byproduct into the target bromosulfones through a sequence of addition/elimination reactions at the exocyclic double bond. Discovery of a relatively efficient radical 5-endo-dig closure, accompanied by a C-C bond formation, provides further support to stereoelectronic considerations at the heart of the Baldwin rules and fills one of the last remaining gaps in the arsenal of radical cyclizations.

  18. Turbulence effects on volatilization rates of liquids and solutes

    USGS Publications Warehouse

    Lee, J.-F.; Chao, H.-P.; Chiou, C.T.; Manes, M.

    2004-01-01

    Volatilization rates of neat liquids (benzene, toluene, fluorobenzene, bromobenzene, ethylbenzene, m-xylene, o-xylene, o-dichlorobenzene, and 1-methylnaphthalene) and of solutes (phenol, m-cresol, benzene, toluene, ethylbenzene, o-xylene, and ethylene dibromide) from dilute water solutions have been measured in the laboratory over a wide range of air speeds and water-stirring rates. The overall transfer coefficients (KL) for individual solutes are independent of whether they are in single- or multi-solute solutions. The gas-film transfer coefficients (kG) for solutes in the two-film model, which have hitherto been estimated by extrapolation from reference coefficients, can now be determined directly from the volatilization rates of neatliquids through anew algorithm. The associated liquid-film transfer coefficients (KL) can then be obtained from measured KL and kG values and solute Henry law constants (H). This approach provides a novel means for checking the precision of any kL and kG estimation methods for ultimate prediction of KL. The improved kG estimation enables accurate K L predictions for low-volatility (i.e., low-H) solutes where K L and kGH are essentially equal. In addition, the prediction of KL values for high-volatility (i.e., high-H) solutes, where KL ??? kL, is also improved by using appropriate reference kL values.

  19. Efficacy of irradiation vs thermal methods as quarantine treatments for tropical fruits

    NASA Astrophysics Data System (ADS)

    Moy, James H.

    1993-07-01

    Ionizing radiation can be effectively applied to fruits and vegetables for several purposes. The most feasible and potentially useful application is probably for disinfestation as a quarantine treatment. All stages of a fruit fly will become sterile upon being irradiated at a minimum dose of 0.15 kGy, the dose level approved by the USDA in January 1989 for treating Hawaiian papayas as a quarantine procedure. This is also well below the dose level approved in April, 1986 by the U.S. Food and Drug Administration for irradiating fresh foods for disinfestation and delaying maturation. Research on irradiation of several tropical fruits such as papayas, mangoes, lychees showed that the chemical, sensory and nutrient qualities of these fruits were well retained at 1.0 kGy, and the fruits would ripen normally or slightly delayed. Since September, 1984, thermal methods used by the papaya industry after ethylene dibromide was banned require treatment time of up to 7 hrs and have caused quality problems. Some of the fruits treated by the hot air or the double-dip hot water method lack flavor and had lumpy texture. The vapor heat method as now used is quite expensive. Irradiation studies have proved the efficacy of the process to disinfest tropical fruits of fruit files. Market test of irradiated Hawaiian papayas in 1987 showed that consumers preferred irradiated papayas over hot water treated papayas by 11 to 1. Thus the only hurdle to overcome in using irradiation for tropical fruits is to convince the consumers that irradiated fruits are wholesome and safe for human consumption, which has been amply proven with scientific data obtained during the past three decades, and further proven with the marketing of irradiated fruits in the U.S.A. since early 1992.

  20. [The characteristics of the cholinoreceptors on the identified TAN neuron of the giant African snail Achatina fulica].

    PubMed

    Stepanov, I I; Losev, N A

    1999-04-01

    Acetylcholine, nicotine, a selective agonist of N-cholinoreceptors suberildicholine dibromide, as well as a selective agonist of M-cholinoreceptors 5-methylfurmethide inhibited spike discharges in a dose-dependent manner up to a complete ceasing of the firing in cholinoreceptors situated on the identified neurone TAN of African giant snail Achatina fulica. M-cholinoblocker metamizylum completely prevented the inhibitory effect of methylfurmethide. Central cholinoblocker aetherophen completely prevented the inhibitory effect of suberildicholine dibromide. Metamizylum or aetherophen used alone were only able to decrease the inhibitory effect of acetylcholine, whereas a mixture of these agents suppressed completely the acetylcholine-induced inhibition. The findings suggest that, on the TAN membrane, nicotinic and muscarinic cholinoreceptors co-exist and function in one and the same direction.

  1. 75 FR 17712 - Malathion and Diquat Dibromide; Cancellation Order for Amendments to Terminate Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ... suggested that high levels of exposure to cholinesterase inhibitors such as OP insecticides - may cause a state of permanent hypersensitivity to cholinesterase inhibitors. Nonetheless, the commenter supported...

  2. 76 FR 27317 - Ziram, Diquat Dibromide, and Chloropicrin; Order for Amendments To Terminate Uses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    .... 45728-12 Ziram Granuflo Ziram Blackberries. Fungicide. 58266-2 Tri-Clor Fumigant..... Chloropicrin... using handheld fumigation devices. 70506-173 Ziram 76DF Fungicide.. Ziram Blackberries. 82542-15 Solear...

  3. Use of X-Chromosome Inactivation Pattern to Analyze the Clonality of 14 Female Cases of Kaposi Sarcoma.

    PubMed

    Yuan, Ding; XiuJuan, Wu; Yan, Zhang; JunQin, Liang; Fang, Xiang; Shirong, Yu; Xiaojing, Kang; Yanyan, Feng; Weidong, Wu; Dong, Luo; Qingli, Lu; DeZhi, Zhang; XiongMing, Pu

    2015-06-16

    Kaposi sarcoma (KS) has features of both neoplastic growth and hyperplastic proliferation. It is the most common tumor seen in patients with HIV infection. Whether KS is a real tumor or a benign hyperplastic disease is not known. Tissues from KS and cutaneous hemangioma lesion DNA were extracted, and then digested with methylation-sensitive restriction endonuclease HpaII. Human androgen receptor gene (HUMARA) was amplified with PCR method and the product was separated on 10% denaturing polyacrylamide gels and stained with ethylene dibromide (EB) to show the polymorphism of HUMARA. Phosphoglycerate kinase (PGK) was amplified and the product was digested by BStXI, agarose gel and EB stained to show the polymorphism of PGK. Finally, we analyzed the clonality of KS. In the 14 patients with KS, heterozygosity of the HUMARA gene was observed in 12 (85.7%) cases. Loss of heterozygosity of HUMARA gene on X-chromosome (without HpaII digestion there were 2 bands, after HpaII digestion there were just 1 of the bands), representing monoclonal origin, was present in 11 cases of Kaposi sarcoma. Heterozygosity of the PGK gene was observed in 5 (35.7%) cases, which all represent monoclonal origin. There was no significant difference according to country, stage, or HIV and HHV-8 (P>0.05). The current findings suggest that Kaposi sarcoma is a clonal neoplasm, not a reactive proliferation.

  4. Exploring unimolecular dissociation kinetics of ethyl dibromide through electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Gulvi, Nitin R.; Patel, Priyanka; Badani, Purav M.

    2018-04-01

    Pathway for dissociation of multihalogenated alkyls is observed to be competitive between molecular and atomic elimination products. Factors such as molecular structure, temperature and pressure are known to influence the same. Hence present work is focussed to explore mechanism and kinetics of atomic (Br) and molecular (HBr and Br2) elimination upon pyrolysis of 1,1- and 1,2-ethyl dibromide (EDB). For this purpose, electronic structure calculations were performed at DFT and CCSD(T) level of theory. In addition to concerted mechanism, an alternate energetically efficient isomerisation pathway has been exploited for molecular elimination. Energy calculations are further complimented by detailed kinetic investigation, over wide range of temperature and pressure, using suitable models like Canonical Transition State Theory, Statistical Adiabatic Channel Model and Troe's formalism. Our calculations suggest high branching ratio for dehydrohalogentation reaction, from both isomers of EDB. Fall off curve depicts good agreement between theoretically estimated and experimentally reported values.

  5. Ethylene: Role in Fruit Abscission and Dehiscence Processes 12

    PubMed Central

    Lipe, John A.; Morgan, Page W.

    1972-01-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of natural fruit dehiscence, an important component of ripening in some fruits. Our data also suggest a possible involvement of ethylene in young fruit abscission. PMID:16658259

  6. Ethylene: role in fruit abscission and dehiscence processes.

    PubMed

    Lipe, J A; Morgan, P W

    1972-12-01

    Two peaks of ethylene production occur during the development of cotton fruitz (Gossypium hirsutum L.). These periods precede the occurrence of young fruit shedding and mature fruit dehiscence, both of which are abscission phenomena and the latter is generally assumed to be part of the total ripening process. Detailed study of the dehiscence process revealed that ethylene production of individual, attached cotton fruits goes through a rising, cyclic pattern which reaches a maximum prior to dehiscence. With detached pecan fruits (Carya illinoensis [Wang.] K. Koch), ethylene production measured on alternate days rose above 1 microliter per kilogram fresh weight per hour before dehiscence began and reached a peak several days prior to complete dehiscence. Ethylene production by cotton and pecan fruits was measured just prior to dehiscence and then the internal concentration of the gas near the center of the fruit was determined. From these data a ratio of production rate to internal concentration was determined which allowed calculation of the approximate ethylene concentration in the intact fruit prior to dehiscence and selection of appropriate levels to apply to fruits. Ethylene at 10 microliters per liter of air appears to saturate dehiscence of cotton, pecan, and okra (Hibiscus esculentus L.) fruits and the process is completed in 3 to 4 days. In all cases some hastening of dehiscence was observed with as little as 0.1 microliter of exogenous ethylene per liter of air. The time required for response to different levels of ethylene was determined and compared to the time course of ethylene production and dehiscence. We concluded that internal levels of ethylene rose to dehiscence-stimulating levels a sufficience time before dehiscence for the gas to have initiated the process. Since our data and calculations indicate that enough ethylene is made a sufficient time before dehiscence, to account for the process, we propose that ethylene is one of the regulators of natural fruit dehiscence, an important component of ripening in some fruits. Our data also suggest a possible involvement of ethylene in young fruit abscission.

  7. 40 CFR 63.1082 - What definitions do I need to know?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste... resulting from the quench and compression of cracked gas (the cracking furnace effluent) at an ethylene... within an ethylene production unit. Process wastewater is not organic wastes, process fluids, product...

  8. Effect of the potassium permanganate during papaya fruit ripening: Ethylene production

    NASA Astrophysics Data System (ADS)

    Corrêa, S. F.; Filho, M. B.; da Silva, M. G.; Oliveira, J. G.; Aroucha, E. M. M.; Silva, R. F.; Pereira, M. G.; Vargas, H.

    2005-06-01

    The effect of potassium permanganate (KMnO4) on the ripening process of papaya fruits by monitoring the ethylene emission rates is reported. The ethylene emission was monitored by a photoacoustic spectrometer. Two experimental conditions were applied, being one of them just putting the fruit alone inside the sampling chamber and the second, modifying the atmosphere by the presence of KMnO4. The use of the ethylene absorber reduces the autocatalytic process of ethylene during papaya fruit ripening. For 20 g of KMnO4 the maximal intensity of the ethylene emission decreases by a factor two. Using the same amount of KMnO4, a reduction of about 2.2% in the concentration of ethylene for a mixture of 1ppmv of ethylene in synthetic air was observed.

  9. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DDD, shall maintain an ethylene glycol concentration in the process contact cooling tower at or below... to the process contact cooling tower. (1) To determine the ethylene glycol concentration, owners or... procedures specified in 40 CFR 60.564(j)(1)(i). An average ethylene glycol concentration by weight shall be...

  10. 40 CFR 98.240 - Definition of the source category.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... acrylonitrile, carbon black, ethylene, ethylene dichloride, ethylene oxide, or methanol, except as specified in... independently of an oxychlorination process to produce ethylene dichloride is not part of the petrochemical...

  11. The Insulation of Copper Wire by the Electrostatic Coating Process.

    DTIC Science & Technology

    1983-06-30

    fluorinated ethylene propylene), ECFTE (ethylene- chlorotrifluoro ethylene), and PFA (perfluoroalkoxy resin). Another material of interest with good...Fluoroplastics - Fluoroplastics are a family of polymers with the general paraffin structure that have some or all of the hydrogen replaced by fluorine ...ETFE (ethylene-tetrafluoroethylene copolymer), PFA (perfluoroalkoxy resin), ECTFE (ethylene-chlorotrifluoroethylene), and FEP ( fluorinated ethylene

  12. Ethylene and nitric oxide interact to regulate the magnesium deficiency-induced root hair development in Arabidopsis.

    PubMed

    Liu, Miao; Liu, Xing Xing; He, Xiao Lin; Liu, Li Juan; Wu, Hao; Tang, Cai Xian; Zhang, Yong Song; Jin, Chong Wei

    2017-02-01

    Nitric oxide (NO) and ethylene respond to biotic and abiotic stresses through either similar or independent processes. This study examines the mechanism underlying the effects of NO and ethylene on promoting root hair development in Arabidopsis under magnesium (Mg) deficiency. The interaction between NO and ethylene in the regulation of Mg deficiency-induced root hair development was investigated using NO- and ethylene-related mutants and pharmacological methods. Mg deficiency triggered a burst of NO and ethylene, accompanied by a stimulated development of root hairs. Interestingly, ethylene facilitated NO generation by activation of both nitrate reductase and nitric oxide synthase-like (NOS-L) in the roots of Mg-deficient plants. In turn, NO enhanced ethylene synthesis through stimulating the activities of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and ACC synthase (ACS). These two processes constituted an NO-ethylene feedback loop. Blocking either of these two processes inhibited the stimulation of root hair development under Mg deficiency. In conclusion, we suggest that Mg deficiency increases the production of NO and ethylene in roots, each influencing the accumulation and role of the other, and thus these two signals interactively regulate Mg deficiency-induced root hair morphogenesis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Analysis of Growth and Molecular Responses to Ethylene in Etiolated Rice Seedlings.

    PubMed

    Ma, Biao; Zhang, Jin-Song

    2017-01-01

    Ethylene plays a key role in various submergence responses of rice plants, but the mechanism of ethylene action remains largely unclear in rice. Regarding the differences between rice and Arabidopsis in ethylene-regulated processes, rice plants may possess divergent mechanisms in ethylene signaling in addition to the conserved aspects. Forward genetic analysis is essential to fully understand the ethylene signaling mechanism in rice. Here, we describe a method for screening ethylene-response mutants and evaluating ethylene responsiveness in etiolated rice seedlings.

  14. Targeting Plant Ethylene Responses by Controlling Essential Protein-Protein Interactions in the Ethylene Pathway.

    PubMed

    Bisson, Melanie M A; Groth, Georg

    2015-08-01

    The gaseous plant hormone ethylene regulates many processes of high agronomic relevance throughout the life span of plants. A central element in ethylene signaling is the endoplasmic reticulum (ER)-localized membrane protein ethylene insensitive2 (EIN2). Recent studies indicate that in response to ethylene, the extra-membranous C-terminal end of EIN2 is proteolytically processed and translocated from the ER to the nucleus. Here, we report that the conserved nuclear localization signal (NLS) mediating nuclear import of the EIN2 C-terminus provides an important domain for complex formation with ethylene receptor ethylene response1 (ETR1). EIN2 lacking the NLS domain shows strongly reduced affinity for the receptor. Interaction of EIN2 and ETR1 is also blocked by a synthetic peptide of the NLS motif. The corresponding peptide substantially reduces ethylene responses in planta. Our results uncover a novel mechanism and type of inhibitor interfering with ethylene signal transduction and ethylene responses in plants. Disruption of essential protein-protein interactions in the ethylene signaling pathway as shown in our study for the EIN2-ETR1 complex has the potential to guide the development of innovative ethylene antagonists for modern agriculture and horticulture. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  15. Transcriptomic Analysis Implies That GA Regulates Sex Expression via Ethylene-Dependent and Ethylene-Independent Pathways in Cucumber (Cucumis sativus L.).

    PubMed

    Zhang, Yan; Zhao, Guiye; Li, Yushun; Mo, Ning; Zhang, Jie; Liang, Yan

    2017-01-01

    Sex differentiation of flower buds is an important developmental process that directly affects fruit yield of cucumber ( Cucumis sativus L.). Plant hormones, such as gibberellins (GAs) and ethylene can promote development of male and female flowers, respectively, however, the regulatory mechanisms of GA-induced male flower formation and potential involvement of ethylene in this process still remain unknown. In this study, to unravel the genes and gene networks involved in GA-regulated cucumber sexual development, we performed high throughout RNA-Seq analyses that compared the transcriptomes of shoot tips between GA 3 treated and untreated gynoecious cucumber plants. Results showed that GA 3 application markedly induced male flowers but decreased ethylene production in shoot tips. Furthermore, the transcript levels of M ( CsACS2 ) gene, ethylene receptor CsETR1 and some ethylene-responsive transcription factors were dramatically changed after GA 3 treatment, suggesting a potential involvement of ethylene in GA-regulated sex expression of cucumber. Interestingly, GA 3 down-regulated transcript of a C-class floral homeotic gene, CAG2 , indicating that GA may also influence cucumber sex determination through an ethylene-independent process. These results suggest a novel model for hormone-mediated sex differentiation and provide a theoretical basis for further dissection of the regulatory mechanism of male flower formation in cucumber. Statement: We reveal that GA can regulate sex expression of cucumber via an ethylene-dependent manner, and the M ( CsACS2 ), CsETR1 , and ERFs are probably involved in this process. Moreover, CAG2 , a C-class floral homeotic gene, may also participate in GA-modulated cucumber sex determination, but this pathway is ethylene-independent.

  16. Discovery of a novel nicotinic receptor antagonist for the treatment of nicotine addiction: 1-(3-Picolinium)-12-triethylammonium-dodecane dibromide (TMPD).

    PubMed

    Dwoskin, Linda P; Joyce, B Matthew; Zheng, Guangrong; Neugebauer, Nichole M; Manda, Vamshi K; Lockman, Paul; Papke, Roger L; Bardo, Michael T; Crooks, Peter A

    2007-10-15

    Limitations in efficacy and high relapse rates of currently available smoking cessation agents reveal the need for more efficacious pharmacotherapies. One strategy is to develop subtype-selective nicotinic receptor (nAChR) antagonists that inhibit nicotine-evoked dopamine (DA) release, the primary neurotransmitter involved in nicotine reward. Simple alkylation of the pyridino N-atom converts nicotine from a potent agonist into a potent antagonist. The classical antagonists, hexamethonium and decamethonium, differentiate between peripheral nAChR subtypes. Using a similar approach, we interconnected varying quaternary ammonium moieties with a lipophilic linker to provide N,N'-bis-nicotinium analogs, affording a lead compound, N,N'-dodecyl-1,12-diyl-bis-3-picolinium dibromide (bPiDDB), which inhibited nicotine-evoked DA release and decreased nicotine self-administration. The current work describes a novel compound, 1-(3-picolinium)-12-triethylammonium-dodecane dibromide (TMPD), a hybrid of bPiDDB and decamethonium. TMPD completely inhibited (IC(50)=500 nM) nicotine-evoked DA release from superfused rat striatal slices, suggesting that TMPD acts as a nAChR antagonist at more than one subtype. TMPD (1 microM) inhibited the response to acetylcholine at alpha3beta4, alpha4beta4, alpha4beta2, and alpha1beta1varepsilondelta receptors expressed in Xenopus oocytes. TMPD had a 2-fold higher affinity than choline for the blood-brain barrier choline transporter, suggesting brain bioavailability. TMPD did not inhibit hyperactivity in nicotine sensitized rats, but significantly and specifically decreased nicotine self-administration. Together, the results suggest that TMPD may have the ability to reduce the rewarding effect of nicotine with minimal side effects, a pharmacological profile indicative of potential clinical utility for the treatment of tobacco dependence.

  17. Ethylene Control of Fruit Ripening: Revisiting the Complex Network of Transcriptional Regulation1

    PubMed Central

    Chervin, Christian; Bouzayen, Mondher

    2015-01-01

    The plant hormone ethylene plays a key role in climacteric fruit ripening. Studies on components of ethylene signaling have revealed a linear transduction pathway leading to the activation of ethylene response factors. However, the means by which ethylene selects the ripening-related genes and interacts with other signaling pathways to regulate the ripening process are still to be elucidated. Using tomato (Solanum lycopersicum) as a reference species, the present review aims to revisit the mechanisms by which ethylene regulates fruit ripening by taking advantage of new tools available to perform in silico studies at the genome-wide scale, leading to a global view on the expression pattern of ethylene biosynthesis and response genes throughout ripening. Overall, it provides new insights on the transcriptional network by which this hormone coordinates the ripening process and emphasizes the interplay between ethylene and ripening-associated developmental factors and the link between epigenetic regulation and ethylene during fruit ripening. PMID:26511917

  18. Low-Energy, Low-Cost Production of Ethylene by Low- Temperature Oxidative Coupling of Methane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radaelli, Guido; Chachra, Gaurav; Jonnavittula, Divya

    In this project, we develop a catalytic process technology for distributed small-scale production of ethylene by oxidative coupling of methane at low temperatures using an advanced catalyst. The Low Temperature Oxidative Coupling of Methane (LT-OCM) catalyst system is enabled by a novel chemical catalyst and process pioneered by Siluria, at private expense, over the last six years. Herein, we develop the LT-OCM catalyst system for distributed small-scale production of ethylene by identifying and addressing necessary process schemes, unit operations and process parameters that limit the economic viability and mass penetration of this technology to manufacture ethylene at small-scales. The outputmore » of this program is process concepts for small-scale LT-OCM catalyst based ethylene production, lab-scale verification of the novel unit operations adopted in the proposed concept, and an analysis to validate the feasibility of the proposed concepts.« less

  19. Synthesis of (±)-Bistellettadine A

    PubMed Central

    Yu, Min; Pochapsky, Susan S.

    2010-01-01

    Esterification of the trienoic acid with o-xylylene dibromide gave the bis ester that underwent a templated Diels-Alder reaction to afford the macrodiolide stereospecifically in a single step. The synthesis of bistellettadine A was completed in four steps by hydrolysis and side chain elaboration. PMID:20078082

  20. Preparation, in vitro evaluation and molecular modelling of pyridinium-quinolinium/isoquinolinium non-symmetrical bisquaternary cholinesterase inhibitors.

    PubMed

    Komloova, Marketa; Horova, Anna; Hrabinova, Martina; Jun, Daniel; Dolezal, Martin; Vinsova, Jarmila; Kuca, Kamil; Musilek, Kamil

    2013-12-15

    Two series of non-symmetrical bisquaternary pyridinium-quinolinium and pyridinium-isoquinolinium compounds were prepared as molecules potentially applicable in myasthenia gravis treatment. Their inhibitory ability towards human recombinant acetylcholinesterase and human plasmatic butyrylcholinesterase was determined and the results were compared to the known effective inhibitors such as ambenonium dichloride, edrophonium bromide and experimental compound BW284C51. Two compounds, 1-(10-(pyridinium-1-yl)decyl)quinolinium dibromide and 1-(12-(pyridinium-1-yl)dodecyl)quinolinium dibromide, showed very promising affinity for acetylcholinesterase with their IC50 values reaching nM inhibition of acetylcholinesterase. These most active compounds also showed satisfactory selectivity towards acetylcholinesterase and they seem to be very promising as leading structures for further modifications and optimization. Two of the most promising compounds were examined in the molecular modelling study in order to find the possible interactions between the ligand and tested enzyme. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Roles of auxin and ethylene in aerenchyma formation in sugarcane roots.

    PubMed

    Tavares, E Q P; Grandis, A; Lembke, C G; Souza, G M; Purgatto, E; De Souza, A P; Buckeridge, M S

    2018-03-04

    Although the cross-talk between auxin and ethylene has been described during plant development, the role played by auxin upon gene expression during aerenchyma formation is poorly understood. Root aerenchyma formation results from the opening of gas spaces in the cortex. It is part of a developmental program (constitutive) or due to ethylene treatment or abiotic stress (induced) such as flooding and nutrient starvation. This process relies on programmed cell death and cell wall modifications. Here we followed development of aerenchyma formation in sugarcane along 5 cm from the root apex. As a constitutive process, the aerenchyma formation was observed in the cortex from the 3 rd cm onwards. This occurred despite 1-methylcyclepropene (1-MCP) treatment, an inhibitor of ethylene perception. However, this process occurred while ethylene (and auxin) levels decreased. Within the aerenchyma formation zone, the concentration of ethylene is lower in comparison to the concentration in maize. Besides, the ratio between both hormones (ethylene and auxin) was around 1:1. These pieces of evidence suggest that ethylene sensitivity and ethylene-auxin balance may play a role in the formation of aerenchyma. Furthermore, the transcriptional analysis showed that genes related to cell expansion are up-regulated due to 1-MCP treatment. Our results help explaining the regulation of the formation constitutive aerenchyma in sugarcane.

  2. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria

    DOE PAGES

    Markham, Jennifer N.; Tao, Ling; Davis, Ryan; ...

    2016-08-25

    Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO 2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of amore » process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the productivity of ethylene has the largest effect on cost and is calculated based on a number of variables that are incorporated into this cost model (i.e., quantum requirement, photon transmission efficiency, and the percent of energy going to either ethylene or cyanobacterial biomass production).« less

  3. Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markham, Jennifer N.; Tao, Ling; Davis, Ryan

    Ethylene is a petrochemical produced in large volumes worldwide. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and can be converted into liquid transportation fuels. There is great interest in the development of technologies that produce ethylene from renewable resources, such as biologically derived CO 2 and biomass. One of the metabolic pathways used by microbes to produce ethylene is via an ethylene-forming enzyme (EFE). By expressing a bacterial EFE gene in a cyanobacterium, ethylene has been produced through photosynthetic carbon fixation. Here, we present a conceptual design and techno-economic analysis of amore » process of biofuel production based on the upgradation of ethylene generated by the recombinant cyanobacterium. This analysis focuses on potential near-term to long-term cost projections for the integrated process of renewable fuels derived from ethylene. The cost projections are important in showing the potential of this technology and determining research thrusts needed to reach target goals. The base case for this analysis is a midterm projection using tubular photobioreactors for cyanobacterial growth and ethylene production, cryogenic distillation for ethylene separation and purification, a two-step Ziegler oligomerization process with subsequent hydrotreatment and upgradation for fuel production, and a wastewater treatment process that utilizes anaerobic digestion of cyanobacterial biomass. The minimum fuel selling price (MFSP) for the midterm projection is 15.07 per gallon gasoline equivalent (GGE). Near-term and long-term projections are 28.66 per GGE and 5.36 per GGE, respectively. Single- and multi-point sensitivity analyses are conducted to determine the relative effect that chosen variables could have on the overall costs. This analysis identifies several key variables for improving the overall process economics and outlines strategies to guide future research directions. Finally, the productivity of ethylene has the largest effect on cost and is calculated based on a number of variables that are incorporated into this cost model (i.e., quantum requirement, photon transmission efficiency, and the percent of energy going to either ethylene or cyanobacterial biomass production).« less

  4. Kinetic studies of potassium permanganate adsorption by activated carbon and its ability as ethylene oxidation material

    NASA Astrophysics Data System (ADS)

    Aprilliani, F.; Warsiki, E.; Iskandar, A.

    2018-03-01

    Generally, ethylene production in many horticultural products has been seen to be detrimental to the quality during storage and distribution process. For this reason, removing ethylene from storage or distribution atmosphere is needed to maintain the quality. One of the technologies that can be applied is the use of potassium permanganate (KMnO4). KMnO4 is an active compound that can be used as an oxidizing agent on ethylene removal process. KMnO4 is not recommended for direct used application. As the result, additional material is required to impregnate the potassium permanganate. The inert materials used are commercial activated carbon. Activated carbon is chosen because it has high surface area. The purpose of this research is to determine kinetics adsorption and oxidation model of ethylene removal material. The kinetics adsorption was determined using the pseudo-first and second-order kinetic models. The data on adsorption process show that the second-order equation is more suitable to express the adsorption process on this research. The analyzing of the ethylene oxidation capacity increased with time until it reaches an optimal value. The ethylene oxidation rate is able to be estimated by the formula r = 0.1967 [C2H4]0.99 [KMnO4]0.01; MSE = 0.44 %. The actual and estimation data of ethylene oxidation show that the model is fitted to describe the actual ethylene oxidation under same experimental conditions.

  5. Occupational cancer in Spain.

    PubMed Central

    González, C A; Agudo, A

    1999-01-01

    The knowledge of specific problems of occupational cancer in Spain is scarce. The environment of the workplace has improved over the last few years after a long period distinguished by bad working conditions, incomplete legislation, and insufficient safety measures and control. It has been estimated that 3,083,479 workers (25.4% of employees) were exposed to carcinogens. The most common occupational exposures to carcinogenic agents were solar radiation, environmental tobacco smoke, silica, and wood dust. The highest number of employees were exposed to silica crystalline (404,729), diesel engine exhaust (274,321), rubber products (99,804), benzene (89,932), ethylene dibromide (81,336), agents used in furniture and cabinet making (72,068), and formaldehyde (71,189). The percentage of total cancer deaths attributed to occupational exposure was 4% (6% in men, 0.9% in women). Compared with other European countries, the incidence of lung cancer and leukemia in Spain are one of the lowest, but it is rapidly increasing. The incidence of urinary bladder and larynx cancer, on the contrary, are one of the highest. Few studies on occupational cancer have been conducted in Spain. The main problems are the availability of death certificates and the quality of the information on occupation in mortality of statistics. It is necessary to improve methods of assessment of exposures using expert hygienists and biologic markers of exposure and diseases. Reduction of cancer by limiting or avoiding exposure to known occupational carcinogens is still necessary. PMID:10350510

  6. Nephropathy associated with animal, plant, and chemical toxins in the tropics.

    PubMed

    Jha, Vivekanand; Chugh, Kirpal S

    2003-01-01

    Widespread human exposure to a variety of drugs, chemicals, and biologic products and recent awareness of their toxic manifestations has led to the recognition of toxic nephropathy as an important segment of renal disease in the tropical countries. Tropical nephrotoxins are distinctly different from those seen in the rest of the world and are derived from local fauna and flora or plant and chemical sources. The spectrum of exposure varies from country to country and even from community to community, depending on variations in the distribution of local plants and animal species and prevalent social practices. Acute renal failure (ARF), either alone or in association with liver failure, neurologic abnormalities, metabolic acidosis, disseminated intravascular coagulation, or pulmonary infections is the most common form of presentation. Traditional medicines prescribed by witch doctors (traditional healers) constitute a special class of nephrotoxins among several communities in Africa and Asia. The prevalence of nephropathy caused by traditional medicines is directly related to a combination of ignorance, poverty, lack of medical facilities, lax legislation, and widespread belief in indigenous systems of medicine in rural areas. These medicines are a mix of herbs and unknown chemicals administered orally or as enemas. Clustering of cases after exposure to a particular agent suggests the possibility of a toxic insult. Common animal nephrotoxins are venoms of viper snakes, sea snakes, stinging insects, and raw gallbladder and bile of carp and sheep. Botanical nephrotoxins are encountered both in common edible plants (djenkol beans, mushrooms) and medicinal herbs (impila, cat's claw). Mistaken identification of medicinal herbs by untrained workers and even deliberate trials of toxic substitutes derived from plants frequently lead to renal disease, the most commonly reported being the Chinese herbal nephropathy. Nephrotoxicity caused by chemicals can be secondary to accidental occupational exposure in industrial work places (eg, chromic acid), or after suicidal or homicidal use (eg, copper sulphate, ethylene dibromide, ethylene glycol). Late presentation and multiorgan dysfunction are associated with a high mortality. A high index of suspicion, careful history taking, and an awareness of local practices are essential for proper diagnosis and management of toxic nephropathies in the tropics. Copyright 2003, Elsevier Science (USA). All rights reserved.

  7. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    PubMed

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  8. 75 FR 29435 - Diquat Dibromide; Pesticide Tolerances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-26

    ... requests are provided in 40 CFR 178.25(b). In addition to filing an objection or hearing request with the... basis for derivation of reference values for risk assessment. PODs are developed based on a careful... addition, the Agency must provide for periodic evaluation of any estimates used. To provide for the...

  9. 75 FR 17716 - Notice of Receipt of Requests to Voluntarily Cancel Certain Pesticide Registrations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-07

    ...- Clean Extra isopropylammonium Strength Systemic Weed + Grass 000070-00284 Rigo Neat'n Glyphosate- Clean isopropylammonium Concentrate Systemic Weed and Grass 000100-00530 Methidathion Methidathion Technical 000100 AR-03... Weed and Grass Killer 000192-00177 Dexol Weed Diquat dibromide &Grass Killer 000192-00178 Dexol Weed...

  10. EFFECTS OF CHEMICAL PROCESSING AND OXIDE ETHYLENE STERILIZATION ON CORTICAL AND CANCELLOUS RAT BONE: A LIGHT AND ELECTRON SCANNING MICROSCOPY STUDY

    PubMed Central

    Castiglia, Marcello Teixeira; da Silva, Juliano Voltarelli F.; Frezarim Thomazini, José Armendir; Volpon, José Batista

    2015-01-01

    To evaluate, under microscopic examination, the structural changes displayed by the trabecular and cortical bones after being processed chemically and sterilized by ethylene oxide. Methods: Samples of cancellous and cortical bones obtained from young female albinus rats (Wistar) were assigned to four groups according to the type of treatment: Group I- drying; Group II- drying and ethylene oxide sterilization; III- chemical treatment; IV- chemical treatment and ethylene oxide sterilization. Half of this material was analyzed under ordinary light microscope and the other half using scanning electron microscopy. Results: In all the samples, regardless the group, there was good preservation of the general morphology. For samples submitted to the chemical processing there was better preservation of the cellular content, whereas there was amalgamation of the fibres when ethylene oxide was used. Conclusion: Treatment with ethylene oxide caused amalgamation of the fibers, possibly because of heating and the chemical treatment contributed to a better cellular preservation of the osseous structure. PMID:26998450

  11. Life cycle expression analysis of three cell wall degradation-related genes in ethylene-treated grass

    USDA-ARS?s Scientific Manuscript database

    Ethylene regulates multiple developmental processes during a plant life cycle, but the effect of ethylene on the upregulation of senescence-, stress-, and post-harvest-related genes in forage grasses is poorly understood. In this work, we used quantitative PCR to determine whether ethylene applicat...

  12. Palladium/IzQO-Catalyzed Coordination-Insertion Copolymerization of Ethylene and 1,1-Disubstituted Ethylenes Bearing a Polar Functional Group.

    PubMed

    Yasuda, Hina; Nakano, Ryo; Ito, Shingo; Nozaki, Kyoko

    2018-02-07

    Coordination-insertion copolymerization of ethylene with 1,1-disubstituted ethylenes bearing a polar functional group, such as methyl methacrylate (MMA), is a long-standing challenge in catalytic polymerization. The major obstacle for this process is the huge difference in reactivity of ethylene versus 1,1-disubstituted ethylenes toward both coordination and insertion. Herein we report the copolymerization of ethylene and 1,1-disubstituted ethylenes by using an imidazo[1,5-a]quinolin-9-olate-1-ylidene-supported palladium catalyst. Various types of 1,1-disubstituted ethylenes were successfully incorporated into the polyethylene chain. In-depth characterization of the obtained copolymers and mechanistic inferences drawn from stoichiometric reactions of alkylpalladium complexes with methyl methacrylate and ethylene indicate that the copolymerization proceeds by the same coordination-insertion mechanism that has been postulated for ethylene.

  13. Ethylene Control of Anthocyanin Synthesis in Sorghum

    PubMed Central

    Craker, L. E.; Standley, L. A.; Starbuck, M. J.

    1971-01-01

    Light-induced anthocyanin synthesis in Sorghum vulgare L. seedlings was both promoted and inhibited by ethylene treatment. The rate of anthocyanin formation in sorghum tissue was dependent upon the time of ethylene treatment in relation to light exposure and the stage of the anthocyanin synthesis process. Those plants receiving ethylene treatment during the early lag phase of anthocyanin synthesis had higher anthocyanin content at 24 hours than control plants receiving no ethylene treatment. Plants receiving ethylene treatment after the lag phase had lower anthocyanin content at 24 hours than control plants receiving no ethylene treatment. PMID:16657796

  14. Recovery and purification of ethylene

    DOEpatents

    Reyneke, Rian [Katy, TX; Foral, Michael J [Aurora, IL; Lee, Guang-Chung [Houston, TX; Eng, Wayne W. Y. [League City, TX; Sinclair, Iain [Warrington, GB; Lodgson, Jeffery S [Naperville, IL

    2008-10-21

    A process for the recovery and purification of ethylene and optionally propylene from a stream containing lighter and heavier components that employs an ethylene distributor column and a partially thermally coupled distributed distillation system.

  15. Microfluidic Separation of Ethylene and Ethane Using Frustrated Lewis Pairs.

    PubMed

    Voicu, Dan; Stephan, Douglas W; Kumacheva, Eugenia

    2015-12-21

    Separation of gaseous olefins and paraffins is one of the most important separation processes in the industry. Development of new cost-effective technologies aims at reducing the high energy consumption during the separation process. Here, we took advantage of the reaction of frustrated Lewis pairs (FLPs) with ethylene to achieve reactive extraction of ethylene from ethylene-ethane mixtures. The extraction was studied using a microfluidic platform, which enabled a rapid, high-throughput assessment of reaction conditions to optimize gas separation efficiency. A separation factor of 7.3 was achieved for ethylene from a 1:1 volume ratio mixture of ethylene and ethane, which corresponded to an extracted ethylene purity of 88 %. The results obtained in the microfluidic studies were validated using infrared spectroscopy. This work paves the way for further development of the FLPs and optimization of reaction conditions, thereby maximizing the separation efficiency of olefins from their mixtures with paraffins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. 75 FR 6658 - Malathion, Diquat Dibromide, Metam-potassium and Metam-sodium; Notice of Receipt of Requests to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-10

    ...-sodium and metam- potassium soil fumigant uses (agricultural application) for certain products. The... crop only) 1448-74 PNMDC Metam-potassium Soil fumigant uses (agricultural application) 1448-83 SNMDC Metam-sodium Soil fumigant uses (agricultural application) 1448-85 Busan 1020 Metam-sodium Soil fumigant...

  17. Microwave-Assisted Debromination of α-Bromoketones with Triarylstibanes in Water.

    PubMed

    Murata, Yuki; Sugawara, Yoshiyuki; Matsumura, Mio; Kakusawa, Naoki; Yasuike, Shuji

    2017-01-01

    Several α-bromoarylketones were reacted with triarylstibanes under microwave irradiation in water to obtain the corresponding debrominated ketones. Under similar reaction conditions, 1,2-elimination of vic-dibromides in water afforded the corresponding E-olefins. This reaction is the first example of organoantimony compounds utilized for organic transformation in water.

  18. Adsorption behavior of Cr(VI) on modified natural zeolite by a new bolaform N,N,N,N',N',N'-hexamethyl-1,9-nonanediammonium dibromide reagent.

    PubMed

    Noroozifar, M; Khorasani-Motlagh, M; Gorgij, M N; Naderpour, H R

    2008-07-15

    The demand for effective adsorbents is to increase in response to the widespread recognition of the deleterious health effects of Cr(VI)-oxyanions exposure through drinking water. In this study, Cr(VI)-oxyanions uptake from aqueous solutions by a new bolaform N,N,N,N',N',N'-hexamethyl-1,9-nonanediammonium dibromide reagent-modified natural zeolitic materials from Zahedan, Iran, was investigated using batch technique. Spectrophotometry method was used for Cr determination. The Cr(VI)-solution concentration varied between 2 and 104 mg L(-1). It was shown that the Cr(VI) uptake strongly depended on pH. The maximum removal of Cr(VI) occurred in acidic media at pH<1.5. The amounts of Cr(VI) adsorbed increased with increase in dose of both adsorbents and their contact time. Based on results an adsorption mechanism has been suggested. The adsorption data for modified zeolite using the amine was consistent with Langmuir isotherm equation and the equilibrium data was analyzed using the Langmuir isotherm.

  19. Developing tools for investigating the multiple roles of ethylene: Identification and mapping genes for ethylene biosynthesis and reception in barley

    USDA-ARS?s Scientific Manuscript database

    The plant hormone ethylene is important to many plant processes from germination through senescence, including responses to in vitro growth and plant regeneration. Knowledge of the number of genes, and of their function, that are involved in ethylene biosynthesis and reception is necessary to determ...

  20. Inhibiting ethylene perception with 1-methylcyclopropene triggers molecular responses aimed to cope with cell toxicity and increased respiration in citrus fruits.

    PubMed

    Establés-Ortiz, Beatriz; Romero, Paco; Ballester, Ana-Rosa; González-Candelas, Luis; Lafuente, María T

    2016-06-01

    The ethylene perception inhibitor 1-methylcyclopropene (1-MCP) has been critical in understanding the hormone's mode of action. However, 1-MCP may trigger other processes that could vary the interpretation of results related until now to ethylene, which we aim to understand by using transcriptomic analysis. Transcriptomic changes in ethylene and 1-MCP-treated 'Navelate' (Citrus sinensis L. Osbeck) oranges were studied in parallel with changes in ethylene production, respiration and peel damage. The effects of compounds modifying the levels of the ethylene co-product cyanide and nitric oxide (NO) on fruit physiology were also studied. Results suggested that: 1) The ethylene treatment caused sub-lethal stress since it induced stress-related responses and reduced peel damage; 2) 1-MCP induced ethylene-dependent and ethylene-independent responsive networks; 3) 1-MCP triggered ethylene overproduction, stress-related responses and metabolic shifts aimed to cope with cell toxicity, which mostly affected to the inner part of the peel (albedo); 4) 1-MCP increased respiration and drove metabolism reconfiguration for favoring energy conservation but up-regulated genes related to lipid and protein degradation and triggered the over-expression of genes associated with the plasma membrane cellular component; 5) Xenobiotics and/or reactive oxygen species (ROS) might act as signals for defense responses in the ethylene-treated fruit, while their uncontrolled generation would induce processes mimicking cell death and damage in 1-MCP-treated fruit; 6) ROS, the ethylene co-product cyanide and NO may converge in the toxic effects of 1-MCP. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Ethylene oxide sterilisation--is it safe?

    PubMed Central

    Gillespie, E H; Jackson, J M; Owen, G R

    1979-01-01

    Tests show that ethylene oxide penetrates and can sterilise long narrow tubes in a hospital ethylene oxide steriliser. Residual ethylene oxide levels in plastic tubing after sterilisation have been estimated. Although initially the levels were very high, storage for four days at room temperature reduced them to a safe level. If adequate controls of the sterilising process and storage are carried out, sterilisation by ethylene oxide is considered to be safe for new plastics and clean equipment. Images Figure PMID:512032

  2. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening

    NASA Astrophysics Data System (ADS)

    Bisson, Melanie M. A.; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M.; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  3. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening.

    PubMed

    Bisson, Melanie M A; Kessenbrock, Mareike; Müller, Lena; Hofmann, Alexander; Schmitz, Florian; Cristescu, Simona M; Groth, Georg

    2016-08-01

    The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.

  4. Novel and existing data for a future physiological toxicokinetic model of ethylene and its metabolite ethylene oxide in mouse, rat, and human.

    PubMed

    Filser, Johannes Georg; Artati, Anna; Li, Qiang; Pütz, Christian; Semder, Brigitte; Klein, Dominik; Kessler, Winfried

    2015-11-05

    The olefin ethylene is a ubiquitously found gas. It originates predominantly from plants, combustion processes and industrial sources. In mammals, inhaled ethylene is metabolized by cytochrome P450-dependent monooxygenases, particularly by cytochrome P450 2E1, to ethylene oxide, an epoxide that directly alkylates proteins and DNA. Ethylene oxide was mutagenic in vitro and in vivo in insects and mammals and carcinogenic in rats and mice. A physiological toxicokinetic model is a most useful tool for estimating the ethylene oxide burden in ethylene-exposed rodents and humans. The only published physiological toxicokinetic model for ethylene and metabolically produced ethylene oxide is discussed. Additionally, existing data required for the development of a future model and for testing its predictive accuracy are reviewed and extended by new gas uptake studies with ethylene and ethylene oxide in B6C3F1 mice and with ethylene in F344 rats. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. APC implementation in Chandra Asri - ethylene plant

    NASA Astrophysics Data System (ADS)

    Sidiq, Mochamad; Mustofa, Ali

    2017-05-01

    Nowadays, the modern process plants are continuously improved for maximizing production, Optimization of the energy and raw material and reducing the risk. Due to many disturbances appearance between the process units, hence, the failure of one unit might have a bad effect on the overall productivity. Ethylene Plant have significant opportunities for using Advanced Process Control (APC) technologies to improve operation stability, push closer to quality or equipment limit, and improve the capability of process units to handle disturbances. APC implementation had considered a best answer for solving multivariable control problem. PT. Chandra Asri Petrochemical, Tbk (CAP) operates a large naphtha cracker complex at Cilegon, Indonesia. To optimize the plant operation and to enhance the benefit, Chandra Asri has been decided to implement Advance Process Control (APC) for ethylene plant. The APC implementation technology scopes at CAP are as follows: 1. Hot Section : Furnaces, Quench Tower 2. Cold Section : Demethanizer, Deethanizer, Acetylene Converter, Ethylene Fractionator, Depropanizer, Propylene Fractionator, Debutanizer

  6. Ethylene-forming enzyme and bioethylene production

    PubMed Central

    2014-01-01

    Worldwide, ethylene is the most produced organic compound. It serves as a building block for a wide variety of plastics, textiles, and chemicals, and a process has been developed for its conversion into liquid transportation fuels. Currently, commercial ethylene production involves steam cracking of fossil fuels, and is the highest CO2-emitting process in the chemical industry. Therefore, there is great interest in developing technology for ethylene production from renewable resources including CO2 and biomass. Ethylene is produced naturally by plants and some microbes that live with plants. One of the metabolic pathways used by microbes is via an ethylene-forming enzyme (EFE), which uses α-ketoglutarate and arginine as substrates. EFE is a promising biotechnology target because the expression of a single gene is sufficient for ethylene production in the absence of toxic intermediates. Here we present the first comprehensive review and analysis of EFE, including its discovery, sequence diversity, reaction mechanism, predicted involvement in diverse metabolic modes, heterologous expression, and requirements for harvesting of bioethylene. A number of knowledge gaps and factors that limit ethylene productivity are identified, as well as strategies that could guide future research directions. PMID:24589138

  7. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations.

    PubMed

    Fan, Denise; Dai, Der-Jong; Wu, Ho-Shing

    2012-12-28

    Ethylene is the primary component in most plastics, making it economically valuable. It is produced primarily by steam-cracking of hydrocarbons, but can alternatively be produced by the dehydration of ethanol, which can be produced from fermentation processes using renewable substrates such as glucose, starch and others. Due to rising oil prices, researchers now look at alternative reactions to produce green ethylene, but the process is far from being as economically competitive as using fossil fuels. Many studies have investigated catalysts and new reaction engineering technologies to increase ethylene yield and to lower reaction temperature, in an effort to make the reaction applicable in industry and most cost-efficient. This paper presents various lab synthesized catalysts, reaction conditions, and reactor technologies that achieved high ethylene yield at reasonable reaction temperatures, and evaluates their practicality in industrial application in comparison with steam-cracking plants. The most promising were found to be a nanoscale catalyst HZSM-5 with 99.7% ethylene selectivity at 240 °C and 630 h lifespan, using a microreactor technology with mechanical vapor recompression, and algae-produced ethanol to make ethylene.

  8. Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations

    PubMed Central

    Fan, Denise; Dai, Der-Jong; Wu, Ho-Shing

    2012-01-01

    Ethylene is the primary component in most plastics, making it economically valuable. It is produced primarily by steam-cracking of hydrocarbons, but can alternatively be produced by the dehydration of ethanol, which can be produced from fermentation processes using renewable substrates such as glucose, starch and others. Due to rising oil prices, researchers now look at alternative reactions to produce green ethylene, but the process is far from being as economically competitive as using fossil fuels. Many studies have investigated catalysts and new reaction engineering technologies to increase ethylene yield and to lower reaction temperature, in an effort to make the reaction applicable in industry and most cost-efficient. This paper presents various lab synthesized catalysts, reaction conditions, and reactor technologies that achieved high ethylene yield at reasonable reaction temperatures, and evaluates their practicality in industrial application in comparison with steam-cracking plants. The most promising were found to be a nanoscale catalyst HZSM-5 with 99.7% ethylene selectivity at 240 °C and 630 h lifespan, using a microreactor technology with mechanical vapor recompression, and algae-produced ethanol to make ethylene. PMID:28809297

  9. The Central Role of PhEIN2 in Ethylene Responses throughout Plant Development in Petunia1

    PubMed Central

    Shibuya, Kenichi; Barry, Kristin G.; Ciardi, Joseph A.; Loucas, Holly M.; Underwood, Beverly A.; Nourizadeh, Saeid; Ecker, Joseph R.; Klee, Harry J.; Clark, David G.

    2004-01-01

    The plant hormone ethylene regulates many aspects of growth and development. Loss-of-function mutations in ETHYLENE INSENSITIVE2 (EIN2) result in ethylene insensitivity in Arabidopsis, indicating an essential role of EIN2 in ethylene signaling. However, little is known about the role of EIN2 in species other than Arabidopsis. To gain a better understanding of EIN2, a petunia (Petunia × hybrida cv Mitchell Diploid [MD]) homolog of the Arabidopsis EIN2 gene (PhEIN2) was isolated, and the role of PhEIN2 was analyzed in a wide range of plant responses to ethylene, many that do not occur in Arabidopsis. PhEIN2 mRNA was present at varying levels in tissues examined, and the PhEIN2 expression decreased after ethylene treatment in petals. These results indicate that expression of PhEIN2 mRNA is spatially and temporally regulated in petunia during plant development. Transgenic petunia plants with reduced PhEIN2 expression were compared to wild-type MD and ethylene-insensitive petunia plants expressing the Arabidopsis etr1-1 gene for several physiological processes. Both PhEIN2 and etr1-1 transgenic plants exhibited significant delays in flower senescence and fruit ripening, inhibited adventitious root and seedling root hair formation, premature death, and increased hypocotyl length in seedling ethylene response assays compared to MD. Moderate or strong levels of reduction in ethylene sensitivity were achieved with expression of both etr1-1 and PhEIN2 transgenes, as measured by downstream expression of PhEIL1. These results demonstrate that PhEIN2 mediates ethylene signals in a wide range of physiological processes and also indicate the central role of EIN2 in ethylene signal transduction. PMID:15466231

  10. 75 FR 74714 - DCNA (dicloran), Ziram, Diquat Dibromide, and Chloropicrin; Notice of Receipt of Requests to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... sorghum, and chloropicrin use on mushroom casing, potting soil, and small area seed beds when using hand... delete certain uses which are identified in Table 1 of Unit III. Chloropicrin is a nonselective soil... and soybean (seed Concentrate. crop only). 5785-17 Chlor-O-Pic Chloropicrin Mushroom casing soil...

  11. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

    DOE PAGES

    Chang, Katherine Noelani; Zhong, Shan; Weirauch, Matthew T.; ...

    2013-06-11

    The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signalingmore » pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways.« less

  12. Temporal transcriptional response to ethylene gas drives growth hormone cross-regulation in Arabidopsis

    PubMed Central

    Chang, Katherine Noelani; Zhong, Shan; Weirauch, Matthew T; Hon, Gary; Pelizzola, Mattia; Li, Hai; Huang, Shao-shan Carol; Schmitz, Robert J; Urich, Mark A; Kuo, Dwight; Nery, Joseph R; Qiao, Hong; Yang, Ally; Jamali, Abdullah; Chen, Huaming; Ideker, Trey; Ren, Bing; Bar-Joseph, Ziv; Hughes, Timothy R; Ecker, Joseph R

    2013-01-01

    The gaseous plant hormone ethylene regulates a multitude of growth and developmental processes. How the numerous growth control pathways are coordinated by the ethylene transcriptional response remains elusive. We characterized the dynamic ethylene transcriptional response by identifying targets of the master regulator of the ethylene signaling pathway, ETHYLENE INSENSITIVE3 (EIN3), using chromatin immunoprecipitation sequencing and transcript sequencing during a timecourse of ethylene treatment. Ethylene-induced transcription occurs in temporal waves regulated by EIN3, suggesting distinct layers of transcriptional control. EIN3 binding was found to modulate a multitude of downstream transcriptional cascades, including a major feedback regulatory circuitry of the ethylene signaling pathway, as well as integrating numerous connections between most of the hormone mediated growth response pathways. These findings provide direct evidence linking each of the major plant growth and development networks in novel ways. DOI: http://dx.doi.org/10.7554/eLife.00675.001 PMID:23795294

  13. 40 CFR 61.61 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymerization process which initiates from free radical catalyst sites and is sold undried. (i) Bulk resin means... as follows: (a) Ethylene dichloride plant includes any plant which produces ethylene dichloride by reaction of oxygen and hydrogen chloride with ethylene. (b) Vinyl chloride plant includes any plant which...

  14. 40 CFR 61.61 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymerization process which initiates from free radical catalyst sites and is sold undried. (i) Bulk resin means... as follows: (a) Ethylene dichloride plant includes any plant which produces ethylene dichloride by reaction of oxygen and hydrogen chloride with ethylene. (b) Vinyl chloride plant includes any plant which...

  15. Inhibitors of Ethylene Biosynthesis and Signaling.

    PubMed

    Schaller, G Eric; Binder, Brad M

    2017-01-01

    Ethylene is a gas biosynthesized by plants which has many physiological and developmental effects on their growth. Ethylene affects agriculturally and horticulturally important traits such as fruit ripening, post-harvest physiology, senescence, and abscission, and so ethylene action is often inhibited to improve the shelf life of fruits, vegetables, and cut flowers. Chemical inhibitors of ethylene action are also useful for research to characterize the mechanisms of ethylene biosynthesis and signal transduction, and the role that ethylene plays in various physiological processes. Here, we describe the use of three inhibitors commonly used for the study of ethylene action in plants: 2-aminoethoxyvinyl glycine (AVG), silver ions (Ag), and the gaseous compound 1-methylcyclopropene (1-MCP). AVG is an inhibitor of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase, a key enzyme involved in ethylene biosynthesis. Silver and 1-MCP are both inhibitors of the ethylene receptors. Inhibitor use as well as off-target effects are described with a focus on ethylene responses in dark-grown Arabidopsis seedlings. Methods for the use of these inhibitors can be applied to other plant growth assays.

  16. Generation of ethylene tracer by noncatalytic pyrolysis of natural gas at elevated pressure

    USGS Publications Warehouse

    Lu, Y.; Chen, S.; Rostam-Abadi, M.; Ruch, R.; Coleman, D.; Benson, L.J.

    2005-01-01

    There is a critical need within the pipeline gas industry for an inexpensive and reliable technology to generate an identification tag or tracer that can be added to pipeline gas to identify gas that may escape and improve the deliverability and management of gas in underground storage fields. Ethylene is an ideal tracer, because it does not exist naturally in the pipeline gas, and because its physical properties are similar to the pipeline gas components. A pyrolysis process, known as the Tragen process, has been developed to continuously convert the ???2%-4% ethane component present in pipeline gas into ethylene at common pipeline pressures of 800 psi. In our studies of the Tragen process, pyrolysis without steam addition achieved a maximum ethylene yield of 28%-35% at a temperature range of 700-775 ??C, corresponding to an ethylene concentration of 4600-5800 ppm in the product gas. Coke deposition was determined to occur at a significant rate in the pyrolysis reactor without steam addition. The ?? 13C isotopic analysis of gas components showed a ?? 13C value of ethylene similar to ethane in the pipeline gas, indicating that most of the ethylene was generated from decomposition of the ethane in the raw gas. However, ?? 13C isotopic analysis of the deposited coke showed that coke was primarily produced from methane, rather than from ethane or other heavier hydrocarbons. No coke deposition was observed with the addition of steam at concentrations of > 20% by volume. The dilution with steam also improved the ethylene yield. ?? 2005 American Chemical Society.

  17. Method of identifying plant pathogen tolerance

    DOEpatents

    Ecker, Joseph R.; Staskawicz, Brian J.; Bent, Andrew F.; Innes, Roger W.

    1997-10-07

    A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described.

  18. Low capital implementation of distributed distillation in ethylene recovery

    DOEpatents

    Reyneke, Rian; Foral, Michael J.; Lee, Guang-Chung

    2006-10-31

    An apparatus for recovering ethylene from a hydrocarbon feed stream, where the apparatus is a single distillation column pressure shell encasing an upper region and a lower region. The upper region houses an ethylene distributor rectifying section and the lower region houses a C2 distributor section and an ethylene distributor stripping section. Vapor passes from the lower region into the upper region, and liquid passes from the upper region to the lower region. The process for recovering the ethylene is also disclosed. The hydrocarbon feed stream is introduced into the C2 distributor section, and after a series of stripping and refluxing steps, distinct hydrocarbon products are recovered from the C2 distributor section, the ethylene distributor stripping section, and the ethylene distributor rectifying section, respectively.

  19. Method of identifying plant pathogen tolerance

    DOEpatents

    Ecker, J.R.; Staskawicz, B.J.; Bent, A.F.; Innes, R.W.

    1997-10-07

    A process for identifying a plant having disease tolerance comprising administering to a plant an inhibitory amount of ethylene and screening for ethylene insensitivity, thereby identifying a disease tolerant plant, is described. Plants identified by the foregoing process are also described. 7 figs.

  20. Ethylene-induced inhibition of root growth requires abscisic acid function in rice (Oryza sativa L.) seedlings.

    PubMed

    Ma, Biao; Yin, Cui-Cui; He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-10-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.

  1. Ethylene-Induced Inhibition of Root Growth Requires Abscisic Acid Function in Rice (Oryza sativa L.) Seedlings

    PubMed Central

    He, Si-Jie; Lu, Xiang; Zhang, Wan-Ke; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2014-01-01

    Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development. PMID:25330236

  2. A Combinatorial Interplay Among the 1-Aminocyclopropane-1-carboxylate Isoforms Regulates Ethylene Biosynthesis in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Ethylene (C2H4) is a unique plant-signaling molecule that regulates numerous developmental processes. The key enzyme in the two-step biosynthetic pathway of ethylene is 1-aminocyclopropane-1-carboxylate synthase (ACS), which catalyzes the conversion of Sadenosyl-methionine (AdoMet) to ACC, the precu...

  3. 77 FR 21077 - Codex Alimentarius Commission: Meeting of the Codex Committee on Food Labeling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... Production, Processing, Labeling and Marketing of Organically Produced Foods. (a) Inclusion of Ethylene for Other Products at Step 7; Use of Ethylene for the Ripening of Fruit. (b) Inclusion of Spinosad, Copper Octanoate, and Potassium Bicarbonate. (c) Use of Ethylene for Degreening of Citrus for Fruit Fly Prevention...

  4. Indole-3-Butyric Acid Induces Ectopic Formation of Metaxylem in the Hypocotyl of Arabidopsis thaliana without Conversion into Indole-3-Acetic Acid and with a Positive Interaction with Ethylene.

    PubMed

    Fattorini, Laura; Della Rovere, Federica; Andreini, Eleonora; Ronzan, Marilena; Falasca, Giuseppina; Altamura, Maria Maddalena

    2017-11-21

    The role of the auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and of the auxin-interacting phytohormone ethylene, on the ectopic formation of primary xylem (xylogenesis in planta) is still little known. In particular, auxin/ethylene-target tissue(s), modality of the xylary process (trans-differentiation vs. de novo formation), and the kind of ectopic elements formed (metaxylem vs. protoxylem) are currently unknown. It is also unclear whether IBA may act on the process independently of conversion into IAA. To investigate these topics, histological analyses were carried out in the hypocotyls of Arabidopsis wild type seedlings and ech2ibr10 and ein3eil1 mutants, which are blocked in IBA-to-IAA conversion and ethylene signalling, respectively. The seedlings were grown under darkness with either IAA or IBA, combined or not with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Adventitious root formation was also investigated because this process may compete with xylogenesis. Our results show that ectopic formation of protoxylem and metaxylem occurred as an indirect process starting from the pericycle periclinal derivatives of the hypocotyl basal part. IAA favoured protoxylem formation, whereas IBA induced ectopic metaxylem with ethylene cooperation through the EIN3EIL1 network. Ectopic metaxylem differentiation occurred independently of IBA-to-IAA conversion as mediated by ECH2 and IBR10, and in the place of IBA-induced adventitious root formation.

  5. The ethylene response pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The simple gas ethylene influences a diverse array of plant growth and developmental processes including germination, senescence, cell elongation, and fruit ripening. This review focuses on recent molecular genetic studies, principally in Arabidopsis, in which components of the ethylene response pathway have been identified. The isolation and characterization of two of these genes has revealed that ethylene sensing involves a protein kinase cascade. One of these genes encodes a protein with similarity to the ubiquitous Raf family of Ser/Thr protein kinases. A second gene shows similarity to the prokaryotic two-component histidine kinases and most likely encodes an ethylene receptor. Additional elements involved in ethylene signaling have only been identified genetically. The characterization of these genes and mutants will be discussed.

  6. Highly selective catalytic process for synthesizing 1-hexene from ethylene

    DOEpatents

    Sen, Ayusman; Murtuza, Shahid; Harkins, Seth B.; Andes, Cecily

    2002-01-01

    Ethylene is trimerized to form 1-hexene, at a selectivity of up to about 99 mole percent, by contacting ethylene, at an ethylene pressure of from about 200-1500 psig and at a reaction temperature of from about 0.degree. C. to about 100.degree. C., with a catalyst comprising a tantalum compound (e.g., TaCl.sub.5) and a alkylating component comprising a metal hydrocarbyl compound or a metal hydrocarbyl halide compound (e.g., Sn(CH.sub.3).sub.4).

  7. Ethylene Receptor 1 (ETR1) Is Sufficient and Has the Predominant Role in Mediating Inhibition of Ethylene Responses by Silver in Arabidopsis thaliana*

    PubMed Central

    McDaniel, Brittany K.; Binder, Brad M.

    2012-01-01

    Ethylene influences many processes in Arabidopsis thaliana through the action of five receptor isoforms. All five isoforms use copper as a cofactor for binding ethylene. Previous research showed that silver can substitute for copper as a cofactor for ethylene binding activity in the ETR1 ethylene receptor yet also inhibit ethylene responses in plants. End-point and rapid kinetic analyses of dark-grown seedling growth revealed that the effects of silver are mostly dependent upon ETR1, and ETR1 alone is sufficient for the effects of silver. Ethylene responses in etr1-6 etr2-3 ein4-4 triple mutants were not blocked by silver. Transformation of these triple mutants with cDNA for each receptor isoform under the promoter control of ETR1 revealed that the cETR1 transgene completely rescued responses to silver while the cETR2 transgene failed to rescue these responses. The other three isoforms partially rescued responses to silver. Ethylene binding assays on the binding domains of the five receptor isoforms expressed in yeast showed that silver supports ethylene binding to ETR1 and ERS1 but not the other isoforms. Thus, silver may have an effect on ethylene signaling outside of the ethylene binding pocket of the receptors. Ethylene binding to ETR1 with silver was ∼30% of binding with copper. However, alterations in the Kd for ethylene binding to ETR1 and the half-time of ethylene dissociation from ETR1 do not underlie this lower binding. Thus, it is likely that the lower ethylene binding activity of ETR1 with silver is due to fewer ethylene binding sites generated with silver versus copper. PMID:22692214

  8. Synthesis of Ethylene and Other Useful Products by Reduction of Carbon Dioxide

    NASA Technical Reports Server (NTRS)

    Rosenberg, Sanders D.; Makel, Darby B.; Finn, John E.

    1998-01-01

    The synthesis of ethylene and other useful products by reduction of carbon dioxide is discussed. The synthesis of ethylene from carbon dioxide has been undertaken. A few different chemical reactions are presented for the production of ethylene. This ethylene can then form the basis for the manufacture of a variety of useful products. It can be used in the preparation of a variety of plastics that can be used for the fabrication of structural materials, and can be used in creating life support systems, which can lead to the development of closed life support systems based on the use of inorganic processes and chemical engineering principles.

  9. 40 CFR 63.1092 - What are the major differences between the requirements of 40 CFR part 61, subpart FF, and the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the requirements of 40 CFR part 61, subpart FF, and the waste requirements for ethylene production... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... requirements of 40 CFR part 61, subpart FF, and the waste requirements for ethylene production sources? The...

  10. 77 FR 11390 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories; Nevada

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... Tanks. O Ethylene Oxide X X X Sterilization Facilities. Q Industrial Process Cooling X X Towers. R... Organic-Water Separators. WW Storage Vessels (Tanks)-- X X Control Level 2. XX Ethylene Manufacturing X X... Refractory Products X X Manufacturing. TTTTT Primary Magnesium Refining. X WWWWW Hospital Ethylene Oxide X X...

  11. Certain Aliphatic Nitramines and Related Compounds

    DTIC Science & Technology

    1944-11-29

    I N02 This reaction served in positively establishing the nature . the alkyl group attachment as N- methyl and not 0- methyl . Also N...dinitroplperazine» • • 76 Reaction of N- methyl - ethylenedinitramine and Ethylcne •Dibromide. ; 73 Structure of High-Melting Compound Formed in...Alkylatiori of N- methyl - ethyl enedinitramine 80 Structure of Low-Melting Compound Formed in Alkylation • of N- methyl -ethylcnedinitramine. . 0

  12. Fish embryo toxicity test: identification of compounds with weak toxicity and analysis of behavioral effects to improve prediction of acute toxicity for neurotoxic compounds.

    PubMed

    Klüver, Nils; König, Maria; Ortmann, Julia; Massei, Riccardo; Paschke, Albrecht; Kühne, Ralph; Scholz, Stefan

    2015-06-02

    The fish embryo toxicity test has been proposed as an alternative for the acute fish toxicity test, but concerns have been raised for its predictivity given that a few compounds have been shown to exhibit a weak acute toxicity in the fish embryo. In order to better define the applicability domain and improve the predictive capacity of the fish embryo test, we performed a systematic analysis of existing fish embryo and acute fish toxicity data. A correlation analysis of a total of 153 compounds identified 28 compounds with a weaker or no toxicity in the fish embryo test. Eleven of these compounds exhibited a neurotoxic mode of action. We selected a subset of eight compounds with weaker or no embryo toxicity (cyanazine, picloram, aldicarb, azinphos-methyl, dieldrin, diquat dibromide, endosulfan, and esfenvalerate) to study toxicokinetics and a neurotoxic mode of action as potential reasons for the deviating fish embryo toxicity. Published fish embryo LC50 values were confirmed by experimental analysis of zebrafish embryo LC50 according to OECD guideline 236. Except for diquat dibromide, internal concentration analysis did not indicate a potential relation of the low sensitivity of fish embryos to a limited uptake of the compounds. Analysis of locomotor activity of diquat dibromide and the neurotoxic compounds in 98 hpf embryos (exposed for 96 h) indicated a specific effect on behavior (embryonic movement) for the neurotoxic compounds. The EC50s of behavior for neurotoxic compounds were close to the acute fish toxicity LC50. Our data provided the first evidence that the applicability domain of the fish embryo test (LC50s determination) may exclude neurotoxic compounds. However, neurotoxic compounds could be identified by changes in embryonic locomotion. Although a quantitative prediction of acute fish toxicity LC50 using behavioral assays in fish embryos may not yet be possible, the identification of neurotoxicity could trigger the conduction of a conventional fish acute toxicity test or application of assessment factors while considering the very good fish embryo-acute fish toxicity correlation for other compounds.

  13. Differential expression of ethylene biosynthesis genes in drupelets and receptacle of raspberry (Rubus idaeus).

    PubMed

    Fuentes, Lida; Monsalve, Liliam; Morales-Quintana, Luis; Valdenegro, Mónika; Martínez, Juan-Pablo; Defilippi, Bruno G; González-Agüero, Mauricio

    2015-05-01

    Red Raspberry (Rubus idaeus) is traditionally classified as non-climacteric, and the role of ethylene in fruit ripening is not clear. The available information indicates that the receptacle, a modified stem that supports the drupelets, is involved in ethylene production of ripe fruits. In this study, we report receptacle-related ethylene biosynthesis during the ripening of fruits of cv. Heritage. In addition, the expression pattern of ethylene biosynthesis transcripts was evaluated during the ripening process. The major transcript levels of 1-aminocyclopropane-1-carboxylic acid synthase (RiACS1) and 1-aminocyclopropane-1-carboxylic acid oxidase (RiACO1) were concomitant with ethylene production, increased total soluble solids (TSS) and decreased titratable acidity (TA) and fruit firmness. Moreover, ethylene biosynthesis and transcript levels of RiACS1 and RiACO1 were higher in the receptacle, sustaining the receptacle's role as a source of ethylene in regulating the ripening of raspberry. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption.

    PubMed

    Pires, João; Pinto, Moisés L; Saini, Vipin K

    2014-08-13

    The separation of ethylene from ethane is one of the most energy-intensive single distillations practiced. This separation could be alternatively made by an adsorption process if the adsorbent would preferentially adsorb ethane over ethylene. Materials that exhibit this feature are scarce. Here, we report the case of a metal-organic framework, the IRMOF-8, for which the adsorption isotherms of ethane and ethylene were measured at 298 and 318 K up to pressures of 1000 kPa. Separation of ethane/ethylene mixtures was achieved in flow experiments using a IRMOF-8 filled column. The interaction of gas molecules with the surface of IRMOF-8 was explored using density functional theory (DFT) methods. We show both experimentally and computationally that, as a result of the difference in the interaction energies of ethane and ethylene in IRMOF-8, this material presents the preferential adsorption of ethane over ethylene. The results obtained in this study suggest that MOFs with ligands exhibiting high aromaticity character are prone to adsorb ethane preferably over ethylene.

  15. Regulatory function of Arabidopsis lipid transfer protein 1 (LTP1) in ethylene response and signaling.

    PubMed

    Wang, Honglin; Sun, Yue; Chang, Jianhong; Zheng, Fangfang; Pei, Haixia; Yi, Yanjun; Chang, Caren; Dong, Chun-Hai

    2016-07-01

    Ethylene as a gaseous plant hormone is directly involved in various processes during plant growth and development. Much is known regarding the ethylene receptors and regulatory factors in the ethylene signal transduction pathway. In Arabidopsis thaliana, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1) can interact with and positively regulates the ethylene receptor ETHYLENE RESPONSE1 (ETR1). In this study we report the identification and characterization of an RTE1-interacting protein, a putative Arabidopsis lipid transfer protein 1 (LTP1) of unknown function. Through bimolecular fluorescence complementation, a direct molecular interaction between LTP1 and RTE1 was verified in planta. Analysis of an LTP1-GFP fusion in transgenic plants and plasmolysis experiments revealed that LTP1 is localized to the cytoplasm. Analysis of ethylene responses showed that the ltp1 knockout is hypersensitive to 1-aminocyclopropanecarboxylic acid (ACC), while LTP1 overexpression confers insensitivity. Analysis of double mutants etr1-2 ltp1 and rte1-3 ltp1 demonstrates a regulatory function of LTP1 in ethylene receptor signaling through the molecular association with RTE1. This study uncovers a novel function of Arabidopsis LTP1 in the regulation of ethylene response and signaling.

  16. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development1

    PubMed Central

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-01-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. PMID:26232489

  17. An evaluation of the effects of exogenous ethephon, an ethylene releasing compound, on photosynthesis of mustard (Brassica juncea) cultivars that differ in photosynthetic capacity

    PubMed Central

    Khan, NA

    2004-01-01

    Background The stimulatory effect of CO2 on ethylene evolution in plants is known, but the extent to which ethylene controls photosynthesis is not clear. Studies on the effects of ethylene on CO2 metabolism have shown conflicting results. Increase or inhibition of photosynthesis by ethylene has been reported. To understand the physiological processes responsible for ethylene-mediated changes in photosynthesis, stomatal and mesophyll effects on photosynthesis and ethylene biosynthesis in response to ethephon treatment in mustard (Brassica juncea) cultivars differing in photosynthetic capacity were studied. Results The effects of ethephon on photosynthetic rate (PN), stomatal conductance (gS), carbonic anhydrase (CA) activity, 1-aminocyclopropane carboxylic acid synthase (ACS) activity and ethylene evolution were similar in both the cultivars. Increasing ethephon concentration up to 1.5 mM increased PN, gS and CA maximally, whereas 3.0 mM ethephon proved inhibitory. ACS activity and ethylene evolution increased with increasing concentrations of ethephon. The corresponding changes in gs and CA activity suggest that the changes in photosynthesis in response to ethephon were triggered by altered stomatal and mesophyll processes. Stomatal conductance changed in parallel with changes in mesophyll photosynthetic properties. In both the cultivars ACS activity and ethylene increased up to 3.0 mM ethephon, but 1.5 mM ethephon caused maximum effects on photosynthetic parameters. Conclusion These results suggest that ethephon affects foliar gas exchange responses. The changes in photosynthesis in response to ethephon were due to stomatal and mesophyll effects. The changes in gS were a response maintaining stable intercellular CO2 concentration (Ci) under the given treatment in both the cultivars. Also, the high photosynthetic capacity cultivar, Varuna responded less to ethephon than the low photosynthetic capacity cultivar, RH30. The photosynthetic capacity of RH30 increased with the increase in ethylene evolution due to 1.5 mM ethephon application. PMID:15625009

  18. Molecular association of Arabidopsis RTH with its homolog RTE1 in regulating ethylene signaling.

    PubMed

    Zheng, Fangfang; Cui, Xiankui; Rivarola, Maximo; Gao, Ting; Chang, Caren; Dong, Chun-Hai

    2017-05-17

    The plant hormone ethylene affects many biological processes during plant growth and development. Ethylene is perceived by ethylene receptors at the endoplasmic reticulum (ER) membrane. The ETR1 ethylene receptor is positively regulated by the transmembrane protein RTE1, which localizes to the ER and Golgi apparatus. The RTE1 gene family is conserved in animals, plants, and lower eukaryotes. In Arabidopsis, RTE1-HOMOLOG (RTH) is the only homolog of the Arabidopsis RTE1 gene family. The regulatory function of the Arabidopsis RTH in ethylene signaling and plant growth is largely unknown. The present study shows Arabidopsis RTH gene expression patterns, protein co-localization with the ER and Golgi apparatus, and the altered ethylene response phenotype when RTH is knocked out or overexpressed in Arabidopsis. Compared with rte1 mutants, rth mutants exhibit less sensitivity to exogenous ethylene, while RTH overexpression confers ethylene hypersensitivity. Genetic analyses indicate that Arabidopsis RTH might not directly regulate the ethylene receptors. RTH can physically interact with RTE1, and evidence supports that RTH might act via RTE1 in regulating ethylene responses and signaling. The present study advances our understanding of the regulatory function of the Arabidopsis RTE1 gene family members in ethylene signaling. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Enhancing aerobic biodegradation of 1,2-dibromoethane in groundwater using ethane or propane and inorganic nutrients.

    PubMed

    Hatzinger, Paul B; Streger, Sheryl H; Begley, James F

    2015-01-01

    1,2-Dibromoethane (ethylene dibromide; EDB) is a probable human carcinogen that was previously used as both a soil fumigant and a scavenger in leaded gasoline. EDB has been observed to persist in soils and groundwater, particularly under oxic conditions. The objective of this study was to evaluate options to enhance the aerobic degradation of EDB in groundwater, with a particular focus on possible in situ remediation strategies. Propane gas and ethane gas were observed to significantly stimulate the biodegradation of EDB in microcosms constructed with aquifer solids and groundwater from the FS-12 EDB plume at Joint Base Cape Cod (Cape Cod, MA), but only after inorganic nutrients were added. Ethene gas was also effective, but rates were appreciably slower than for ethane and propane. EDB was reduced to <0.02 μg/L, the Massachusetts state Maximum Contaminant Level (MCL), in microcosms that received ethane gas and inorganic nutrients. An enrichment culture (BE-3R) that grew on ethane or propane gas but not EDB was obtained from the site materials. The degradation of EDB by this culture was inhibited by acetylene gas, suggesting that degradation is catalyzed by a monooxygenase enzyme. The BE-3R culture was also observed to biodegrade 1,2-dichloroethane (DCA), a compound commonly used in conjunction with EDB as a lead scavenger in gasoline. The data suggest that addition of ethane or propane gas with inorganic nutrients may be a viable option to enhance degradation of EDB in groundwater aquifers to below current state or federal MCL values. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States

    USGS Publications Warehouse

    Rowe, B.L.; Toccalino, P.L.; Moran, M.J.; Zogorski, J.S.; Price, C.V.

    2011-01-01

    BACKGROUND: As the population and demand for safe drinking water from domestic wells increase, it is important to examine water quality and contaminant occurrence. A national assessment in 2006 by the U.S. Geological Survey reported findings for 55 volatile organic compounds (VOCs) based on 2,401 domestic wells sampled during 1985-2002. OBJECTIVES: We examined the occurrence of individual and multiple VOCs and assessed the potential human-health relevance of VOC concentrations. We also identified hydrogeologic and anthropogenic variables that influence the probability of VOC occurrence. METHODS: The domestic well samples were collected at the wellhead before treatment of water and analyzed for 55 VOCs. Results were used to examine VOC occurrence and identify associations of multiple explanatory variables using logistic regression analyses. We used a screening-level assessment to compare VOC concentrations to U.S. Environmental Protection Agency maximum contaminant levels (MCLs) and health-based screening levels. RESULTS: We detected VOCs in 65% of the samples; about one-half of these samples contained VOC mixtures. Frequently detected VOCs included chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene. VOC concentrations generally were < 1 ??g/L. One or more VOC concentrations were greater than MCLs in 1.2% of samples, including dibromochloropropane, 1,2-dichloropropane, and ethylene dibromide (fumigants); perchloroethene and trichloroethene (solvents); and 1,1-dichloroethene (organic synthesis compound). CONCLUSIONS: Drinking water supplied by domestic wells is vulnerable to low-level VOC contamination. About 1% of samples had concentrations of potential human-health concern. Identifying factors associated with VOC occurrence may aid in understanding the sources, transport, and fate of VOCs in groundwater.

  1. Occurrence and Potential Human-Health Relevance of Volatile Organic Compounds in Drinking Water from Domestic Wells in the United States

    PubMed Central

    Rowe, Barbara L.; Toccalino, Patricia L.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2007-01-01

    Background As the population and demand for safe drinking water from domestic wells increase, it is important to examine water quality and contaminant occurrence. A national assessment in 2006 by the U.S. Geological Survey reported findings for 55 volatile organic compounds (VOCs) based on 2,401 domestic wells sampled during 1985–2002. Objectives We examined the occurrence of individual and multiple VOCs and assessed the potential human-health relevance of VOC concentrations. We also identified hydrogeologic and anthropogenic variables that influence the probability of VOC occurrence. Methods The domestic well samples were collected at the wellhead before treatment of water and analyzed for 55 VOCs. Results were used to examine VOC occurrence and identify associations of multiple explanatory variables using logistic regression analyses. We used a screening-level assessment to compare VOC concentrations to U.S. Environmental Protection Agency maximum contaminant levels (MCLs) and health-based screening levels. Results We detected VOCs in 65% of the samples; about one-half of these samples contained VOC mixtures. Frequently detected VOCs included chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene. VOC concentrations generally were < 1 μg/L. One or more VOC concentrations were greater than MCLs in 1.2% of samples, including dibromochloropropane, 1,2-dichloropropane, and ethylene dibromide (fumigants); perchloroethene and trichloroethene (solvents); and 1,1-dichloroethene (organic synthesis compound). Conclusions Drinking water supplied by domestic wells is vulnerable to low-level VOC contamination. About 1% of samples had concentrations of potential human-health concern. Identifying factors associated with VOC occurrence may aid in understanding the sources, transport, and fate of VOCs in groundwater. PMID:18007981

  2. Data related uncertainty in near-surface vulnerability assessments for agrochemicals in the San Joaquin Valley.

    PubMed

    Loague, Keith; Blanke, James S; Mills, Melissa B; Diaz-Diaz, Ricardo; Corwin, Dennis L

    2012-01-01

    Precious groundwater resources across the United States have been contaminated due to decades-long nonpoint-source applications of agricultural chemicals. Assessing the impact of past, ongoing, and future chemical applications for large-scale agriculture operations is timely for designing best-management practices to prevent subsurface pollution. Presented here are the results from a series of regional-scale vulnerability assessments for the San Joaquin Valley (SJV). Two relatively simple indices, the retardation and attenuation factors, are used to estimate near-surface vulnerabilities based on the chemical properties of 32 pesticides and the variability of both soil characteristics and recharge rates across the SJV. The uncertainties inherit to these assessments, derived from the uncertainties within the chemical and soil data bases, are estimated using first-order analyses. The results are used to screen and rank the chemicals based on mobility and leaching potential, without and with consideration of data-related uncertainties. Chemicals of historic high visibility in the SJV (e.g., atrazine, DBCP [dibromochloropropane], ethylene dibromide, and simazine) are ranked in the top half of those considered. Vulnerability maps generated for atrazine and DBCP, featured for their legacy status in the study area, clearly illustrate variations within and across the assessments. For example, the leaching potential is greater for DBCP than for atrazine, the leaching potential for DBCP is greater for the spatially variable recharge values than for the average recharge rate, and the leaching potentials for both DBCP and atrazine are greater for the annual recharge estimates than for the monthly recharge estimates. The data-related uncertainties identified in this study can be significant, targeting opportunities for improving future vulnerability assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Pesticide poisoning trend analysis of 13 years: a retrospective study based on telephone calls at the National Poisons Information Centre, All India Institute of Medical Sciences, New Delhi.

    PubMed

    Peshin, Sharda Shah; Srivastava, Amita; Halder, Nabanita; Gupta, Yogendra Kumar

    2014-02-01

    The study was designed to analyze the incidence and pattern of pesticide poisoning calls reported to the National Poisons Information Centre (NPIC), AIIMS, New Delhi and highlight the common classes of pesticides involved in poisoning. The telephone calls received by the Centre during the thirteen year period (1999-2012) were entered into a preset proforma and then into a retrievable database. A total of 4929 calls of pesticide poisoning were recorded. The data was analyzed with respect to age, gender, mode and type of poisoning. The age ranged from 1 to 65 years with the preponderance of males (M = 62.19%, F = 37.80%). The age group mainly involved in poisoning was 18-35 years. While 59.38% calls pertained to household pesticides, 40.61% calls related to agricultural pesticides. The common mode of poisoning was intentional (64.60%) followed by accidental (34.40%) and unknown (1%). Amongst the household pesticides, the highest number of calls were due to pyrethroids (26.23%) followed by rodenticides (17.06%), organophosphates (6.26%), carbamates (4.95%) and others (4.86%). In agricultural pesticides group, the organophosphates (9.79%) ranked the first followed by, aluminium phosphide (9.65%), organochlorines (9.31%), pyrethroids (3.87%), herbicides, weedicides and fungicides (3.20%), ethylene dibromide (2.82%), and others (1.70%). The data analysis shows a high incidence of poisoning due to household pesticides as compared to agricultural pesticides, clearly emphasizing the need for creating awareness and education about proper use and implementation of prevention programmes. Copyright © 2013 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  4. Preconception Brief: Occupational/Environmental Exposures

    PubMed Central

    Gehle, Kim

    2006-01-01

    In the last decade, more than half of U.S. children were born to working mothers and 65% of working men and women were of reproductive age. In 2004 more than 28 million women age 18–44 were employed full time. This implies the need for clinicians to possess an awareness about the impact of work on the health of their patients and their future offspring. Most chemicals in the workplace have not been evaluated for reproductive toxicity, and where exposure limits do exist, they were generally not designed to mitigate reproductive risk. Therefore, many toxicants with unambiguous reproductive and developmental effects are still in regular commercial or therapeutic use and thus present exposure potential to workers. Examples of these include heavy metals, (lead, cadmium), organic solvents (glycol ethers, percholoroethylene), pesticides and herbicides (ethylene dibromide) and sterilants, anesthetic gases and anti-cancer drugs used in healthcare. Surprisingly, many of these reproductive toxicants are well represented in traditional employment sectors of women, such as healthcare and cosmetology. Environmental exposures also figure prominently in evaluating a woman’s health risk and that to a pregnancy. Food and water quality and pesticide and solvent usage are increasingly topics raised by women and men contemplating pregnancy. The microenvironment of a woman, such as her choices of hobbies and leisure time activities also come into play. Caregivers must be aware of their patients’ potential environmental and workplace exposures and weigh any risk of exposure in the context of the time-dependent window of reproductive susceptibility. This will allow informed decision-making about the need for changes in behavior, diet, hobbies or the need for added protections on the job or alternative duty assignment. Examples of such environmental and occupational history elements will be presented together with counseling strategies for the clinician. PMID:16897370

  5. Occurrence and potential human-health relevance of volatile organic compounds in drinking water from domestic wells in the United States.

    USGS Publications Warehouse

    Rowe, B.L.; Toccalino, P.L.; Moran, M.J.; Zogorski, J.S.; Price, C.V.

    2007-01-01

    BACKGROUND: As the population and demand for safe drinking water from domestic wells increase, it is important to examine water quality and contaminant occurrence. A national assessment in 2006 by the U.S. Geological Survey reported findings for 55 volatile organic compounds (VOCs) based on 2,401 domestic wells sampled during 1985-2002. OBJECTIVES: We examined the occurrence of individual and multiple VOCs and assessed the potential human-health relevance of VOC concentrations. We also identified hydrogeologic and anthropogenic variables that influence the probability of VOC occurrence. METHODS: The domestic well samples were collected at the wellhead before treatment of water and analyzed for 55 VOCs. Results were used to examine VOC occurrence and identify associations of multiple explanatory variables using logistic regression analyses. We used a screening-level assessment to compare VOC concentrations to U.S. Environmental Protection Agency maximum contaminant levels (MCLs) and health-based screening levels. RESULTS: We detected VOCs in 65% of the samples; about one-half of these samples contained VOC mixtures. Frequently detected VOCs included chloroform, toluene, 1,2,4-trimethylbenzene, and perchloroethene. VOC concentrations generally were < 1 microg/L. One or more VOC concentrations were greater than MCLs in 1.2% of samples, including dibromochloropropane, 1,2-dichloropropane, and ethylene dibromide (fumigants); perchloroethene and trichloroethene (solvents); and 1,1-dichloroethene (organic synthesis compound). CONCLUSIONS: Drinking water supplied by domestic wells is vulnerable to low-level VOC contamination. About 1% of samples had concentrations of potential human-health concern. Identifying factors associated with VOC occurrence may aid in understanding the sources, transport, and fate of VOCs in groundwater.

  6. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions: Potential sources of the sorption nonlinearity

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.; Rutherford, D.W.; Sheng, G.; Boyd, S.A.

    2000-01-01

    The sorption isotherms of ethylene dibromide (EDB), diuron (DUN), and 3,5-dichlorophenol (DCP) from water on the humic acid and humin fractions of a peat soil and on the humic-acid of a muck soil have been measured. The data were compared with those of the solutes with the whole peat from which the humic-acid (HA) and humin (HM) fractions were derived and on which the sorption of the solutes exhibited varying extents of nonlinear capacities at low relative concentrations (C(e)/S(w)). The HA fraction as prepared by the density-fractionated method is relatively pure and presumably free of high- surface-area carbonaceous material (HSACM) that is considered to be responsible for the observed nonlinear sorption for nonpolar solutes (e.g., EDB) on the peat; conversely, the base-insoluble HM fraction as prepared is presumed to be enriched with HSACM, as manifested by the greatly higher BET- (N2) surface area than that of the whole peat. The sorption of EDB on HA exhibits no visible nonlinear effect, whereas the sorption on HM shows an enhanced nonlinearity over that on the whole peat. The sorption of polar DUN and DCP on HA and HM display nonlinear effects comparable with those on the whole peat; the effects are much more significant than those with nonpolar EDB. These results conform to the hypothesis that adsorption onto a small amount of strongly adsorbing HSACM is largely responsible for the nonlinear sorption of nonpolar solutes on soils and that additional specific interactions with the active groups of soil organic matter are responsible for the generally higher nonlinear sorption of the polar solutes.

  7. CFD Modeling of a Laser-Induced Ethane Pyrolysis in a Wall-less Reactor

    NASA Astrophysics Data System (ADS)

    Stadnichenko, Olga; Snytnikov, Valeriy; Yang, Junfeng; Matar, Omar

    2014-11-01

    Ethylene, as the most important feedstock, is widely used in chemical industry to produce various rubbers, plastics and synthetics. A recent study found the IR-laser irradiation induced ethane pyrolysis yields 25% higher ethylene production rates compared to the conventional steam cracking method. Laser induced pyrolysis is initiated by the generation of radicals upon heating of the ethane, then, followed by ethane/ethylene autocatalytic reaction in which ethane is converted into ethylene and other light hydrocarbons. This procedure is governed by micro-mixing of reactants and the feedstock residence time in reactor. Under mild turbulent conditions, the turbulence enhances the micro-mixing process and allows a high yield of ethylene. On the other hand, the high flow rate only allows a short residence time in the reactor which causes incomplete pyrolysis. This work attempts to investigate the interaction between turbulence and ethane pyrolysis process using large eddy simulation method. The modelling results could be applied to optimize the reactor design and operating conditions. Skolkovo Foundation through the UNIHEAT Project.

  8. Genetic introgression of ethylene-suppressed, long shelf-life transgenic tomatoes with higher-polyamines trait overcomes many unintended effects due to reduced ethylene on metabolome

    USDA-ARS?s Scientific Manuscript database

    Ethylene regulates a myriad physiological and biochemical processes in ripening fruits and is accepted as the ripening hormone for the climacteric fruits. However, its effects on metabolome and resulting fruit quality are not yet fully understood, particularly when some of the ripening-associated bi...

  9. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor.

    PubMed

    Lacey, Randy F; Binder, Brad M

    2016-08-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. © 2016 American Society of Plant Biologists. All Rights Reserved.

  10. Ethylene Regulates the Physiology of the Cyanobacterium Synechocystis sp. PCC 6803 via an Ethylene Receptor1[OPEN

    PubMed Central

    2016-01-01

    Ethylene is a plant hormone that plays a crucial role in the growth and development of plants. The ethylene receptors in plants are well studied, and it is generally assumed that they are found only in plants. In a search of sequenced genomes, we found that many bacterial species contain putative ethylene receptors. Plants acquired many proteins from cyanobacteria as a result of the endosymbiotic event that led to chloroplasts. We provide data that the cyanobacterium Synechocystis (Synechocystis sp. PCC 6803) has a functional receptor for ethylene, Synechocystis Ethylene Response1 (SynEtr1). We first show that SynEtr1 directly binds ethylene. Second, we demonstrate that application of ethylene to Synechocystis cells or disruption of the SynEtr1 gene affects several processes, including phototaxis, type IV pilus biosynthesis, photosystem II levels, biofilm formation, and spontaneous cell sedimentation. Our data suggest a model where SynEtr1 inhibits downstream signaling and ethylene inhibits SynEtr1. This is similar to the inverse-agonist model of ethylene receptor signaling proposed for plants and suggests a conservation of structure and function that possibly originated over 1 billion years ago. Prior research showed that SynEtr1 also contains a light-responsive phytochrome-like domain. Thus, SynEtr1 is a bifunctional receptor that mediates responses to both light and ethylene. To our knowledge, this is the first demonstration of a functional ethylene receptor in a nonplant species and suggests that that the perception of ethylene is more widespread than previously thought. PMID:27246094

  11. 40 CFR 63.1091 - What do the waste requirements do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste... Operations. There are some differences between the ethylene production waste requirements and those of...

  12. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2018-04-03

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  13. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-05-30

    Systems, processes, and catalysts are disclosed for obtaining fuel and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  14. Systems and processes for conversion of ethylene feedstocks to hydrocarbon fuels

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.; Albrecht, Karl O.; Cooper, Alan R.; Frye, John G.; Ramasamy, Karthikeyan Kallupalayam

    2017-09-26

    Systems, processes, and catalysts are disclosed for obtaining fuels and fuel blends containing selected ratios of open-chain and closed-chain fuel-range hydrocarbons suitable for production of alternate fuels including gasolines, jet fuels, and diesel fuels. Fuel-range hydrocarbons may be derived from ethylene-containing feedstocks and ethanol-containing feedstocks.

  15. The regulatory mechanism of fruit ripening revealed by analyses of direct targets of the tomato MADS-box transcription factor RIPENING INHIBITOR

    PubMed Central

    Fujisawa, Masaki; Ito, Yasuhiro

    2013-01-01

    The developmental process of ripening is unique to fleshy fruits and a key factor in fruit quality. The tomato (Solanum lycopersicum) MADS-box transcription factor RIPENING INHIBITOR (RIN), one of the earliest-acting ripening regulators, is required for broad aspects of ripening, including ethylene-dependent and -independent pathways. However, our knowledge of direct RIN target genes has been limited, considering the broad effects of RIN on ripening. In a recent work published in The Plant Cell, we identified 241 direct RIN target genes by chromatin immunoprecipitation coupled with DNA microarray (ChIP-chip) and transcriptome analysis. Functional classification of the targets revealed that RIN participates in the regulation of many biological processes including well-known ripening processes such as climacteric ethylene production and lycopene accumulation. In addition, we found that ethylene is required for the full expression of RIN and several RIN-targeting transcription factor genes at the ripening stage. Here, based on our recently published findings and additional data, we discuss the ripening processes regulated by RIN and the interplay between RIN and ethylene. PMID:23518588

  16. Ethylene Promotes Cadmium-induced Root Growth Inhibition through EIN3 controlled XTH33 and LSU1 expression in Arabidopsis.

    PubMed

    Kong, Xiangpei; Li, Cuiling; Zhang, Feng; Yu, Qianqian; Gao, Shan; Zhang, Maolin; Tian, Huiyu; Zhang, Jian; Yuan, Xianzheng; Ding, Zhaojun

    2018-06-05

    Cadmium (Cd) stress is one of the most serious heavy metal stresses limiting plant growth and development. However, the molecular mechanisms underlying Cd-induced root growth inhibition remain unclear. Here, we found that ethylene signaling positively regulates Cd-induced root growth inhibition. Arabidopsis seedlings pretreated with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid exhibited enhanced Cd-induced root growth inhibition; while the addition of the ethylene biosynthesis inhibitor aminoethoxyvinyl glycine decreased Cd-induced root growth inhibition. Consistently, ethylene-insensitive mutants such as ein4-1, ein3-1 eil1-1 double mutant, and EBF1ox, displayed an increased tolerance to Cd. Furthermore, we also observed that Cd inhibited EIN3 protein degradation, a process which was regulated by ethylene signaling. Genetic and biochemical analyses showed that EIN3 enhanced root growth inhibition under Cd stress through direct binding to the promoters and regulating the expression of XTH33 and LSU1, which encode key regulators of cell wall extension and S metabolic process, respectively. Collectively, our study demonstrates that ethylene plays a positive role in Cd-regulated root growth inhibition through EIN3-mediated transcriptional regulation of XTH33 and LSU1, and provides a molecular framework for the integration of environmental signals and intrinsic regulators in modulating plant root growth. This article is protected by copyright. All rights reserved.

  17. Computer control improves ethylene plant operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, B.D.; Parnis, M.

    ICIA Australia ordered a turnkey 250,000-tpy ethylene plant to be built at the Botany site, Sydney, Australia. Following a feasibility study, an additional order was placed for a process computer system for advanced process control and optimization. This article gives a broad outline of the process computer tasks, how the tasks were implemented, what problems were met, what lessons were learned and what results were achieved.

  18. Prebiotic syntheses of vitamin coenzymes: I. Cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M)

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    The reaction of NH3 and SO3(2-) with ethylene sulfide is shown to be a prebiotic synthesis of cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M). A similar reaction with ethylene imine would give cysteamine and taurine. Ethylene oxide would react with NH3 and N(CH3)3 to give the phospholipid components ethanolamine and choline. The prebiotic sources of ethylene sulfide, ethylene imine and ethylene oxide are discussed. Cysteamine itself is not a suitable thioester for metabolic processes because of acyl transfer to the amino group, but this can be prevented by using an amide of cysteamine. The use of cysteamine in coenzyme A may have been due to its prebiotic abundance. The facile prebiotic synthesis of both cysteamine and coenzyme M suggests that they were involved in very early metabolic pathways.

  19. An analysis of alternative technologies for the removal of ethylene from the CELSS biomass production chamber

    NASA Technical Reports Server (NTRS)

    Rakow, Allen L.

    1995-01-01

    A variety of technologies were analyzed for their potential to remove ethylene from the CELSS Biomass Production Chamber (BPC). During crop production (e.g., lettuce, wheat, soybean, potato) in the BPC ethylene can accumulate in the airspace and subsequently affect plant viability. The chief source of ethylene is the plants themselves which reside in plastic trays containing nutrient solution. The main sink for ethylene is chamber leakage. The removal technology can be employed when deleterious levels (e.g., 50 ppb for potato) of ethylene are exceeded in the BPC and perhaps to optimize the plant growth process once a better understanding is developed of the relationship between exogenous ethylene concentration and plant growth. The technologies examined were catalytic oxidation, molecular sieve, cryotrapping, permanganate absorption, and UV degradation. Upon analysis, permanganate was chosen as the most suitable method. Experimental data for ethylene removal by permanganate during potato production was analyzed in order to design a system for installation in the BPC air duct. In addition, an analysis of the impact on ethylene concentration in the BPC of integrating the Breadboard Scale Aerobic Bioreactor (BSAB) with the BPC was performed. The result indicates that this unit has no significant effect on the ethylene material balance as a source or sink.

  20. A molecular framework of light-controlled phytohormone action in Arabidopsis.

    PubMed

    Zhong, Shangwei; Shi, Hui; Xue, Chang; Wang, Lei; Xi, Yanpeng; Li, Jigang; Quail, Peter H; Deng, Xing Wang; Guo, Hongwei

    2012-08-21

    Environmental changes strongly affect plant growth and development. Phytohormones, endogenous plant-made small molecules such as ethylene, regulate a wide range of processes throughout the lifetime of plants. The ability of plants to integrate external signals with endogenous regulatory pathways is vital for their survival. Ethylene has been found to suppress hypocotyl elongation in darkness while promoting it in light. How ethylene regulates hypocotyl elongation in such opposite ways is largely unknown. In particular, how light modulates and even reverses the function of ethylene has yet to be characterized. Here we show that the basic-helix-loop-helix transcription factor phytochrome-interacting factor 3 (PIF3) is directly activated by ETHYLENE-INSENSITIVE 3 (EIN3) and is indispensible for ethylene-induced hypocotyl elongation in light. Ethylene via EIN3 concomitantly activates two contrasting pathways: the PIF3-dependent growth-promoting pathway and an ethylene response factor 1 (ERF1)-mediated growth-inhibiting pathway. In the light, growth-promoting PIFs are limiting due to light-dependent destabilization, and thus ethylene stimulates growth under these conditions. In contrast, ERF1 is destabilized, and thus limiting, under dark conditions, explaining why ethylene inhibits growth in the dark. Our findings provide a mechanistic insight into how light modulates internal hormone-regulated plant growth. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Inhibition of ethylene production by putrescine alleviates aluminium-induced root inhibition in wheat plants.

    PubMed

    Yu, Yan; Jin, Chongwei; Sun, Chengliang; Wang, Jinghong; Ye, Yiquan; Zhou, Weiwei; Lu, Lingli; Lin, Xianyong

    2016-01-08

    Inhibition of root elongation is one of the most distinct symptoms of aluminium (Al) toxicity. Although putrescine (Put) has been identified as an important signaling molecule involved in Al tolerance, it is yet unknown how Put mitigates Al-induced root inhibition. Here, the possible mechanism was investigated by using two wheat genotypes differing in Al resistance: Al-tolerant Xi Aimai-1 and Al-sensitive Yangmai-5. Aluminium caused more root inhibition in Yangmai-5 and increased ethylene production at the root apices compared to Xi Aimai-1, whereas the effects were significantly reversed by ethylene biosynthesis inhibitors. The simultaneous exposure of wheat seedlings to Al and ethylene donor, ethephon, or ethylene biosynthesis precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), increased ethylene production and aggravated root inhibition, which was more pronounced in Xi Aimai-1. In contrast, Put treatment decreased ethylene production and alleviated Al-induced root inhibition in both genotypes, and the effects were more conspicuous in Yangmai-5. Furthermore, our results indicated that Al-induced ethylene production was mediated by ACC synthase (ACS) and ACC oxidase, and that Put decreased ethylene production by inhibiting ACS. Altogether, these findings indicate that ethylene is involved in Al-induced root inhibition and this process could be alleviated by Put through inhibiting ACS activity.

  2. USSR and Eastern Europe Scientific Abstracts, Chemistry. Number 49

    DTIC Science & Technology

    1976-11-04

    phosphorus tribromide with oxygen initia- tion leads to the synthesis of l-bromoalkane-2-phosphonous acid dibromides. References 8: 4 Russian, 4 Western. 1 ...are developed for synthesis of dialkylmethylphosphonates by nitration of ethoxyvinylphosphonates. References 21: 19 Russian, 2 Western. 1 / 1 USSR...spectroscopic data and reverse synthesis . Figures 2; References 3: 1 Russian, 2 Western. 1 / 1 28 USSR UDC 547.26� GOLOLOBOV, YU. G., BOLDESKUL, I

  3. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls.

    PubMed

    Ma, Qianqian; Sun, Jingbo; Mao, Tonglin

    2016-05-15

    The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.

  4. Pollination increases ethylene production in Lilium hybrida cv. Brindisi flowers but does not affect the time to tepal senescence or tepal abscission.

    PubMed

    Pacifici, Silvia; Prisa, Domenico; Burchi, Gianluca; van Doorn, Wouter G

    2015-01-15

    In many species, pollination induces a rapid increase in ethylene production, which induces early petal senescence, petal abscission, or flower closure. Cross-pollination in Lilium hybrida cv. Brindisi resulted in a small increase in flower ethylene production. In intact plants and in isolated flowers, pollination had no effect on the time to tepal senescence or tepal abscission. When applied to closed buds of unpollinated flowers, exogenous ethylene slightly hastened the time to tepal senescence and abscission. However, exogenous ethylene had no effect when the flowers had just opened, i.e. at the time of pollination. Experiments with silver thiosulphate, which blocks the ethylene receptor, indicated that endogenous ethylene had a slight effect on the regulation of tepal senescence and tepal abscission, although only at the time the tepals were still inside buds and not in open flowers. Low ethylene-sensitivity after anthesis therefore explains why pollination had no effect on the processes studied. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Links Between Ethylene and Sulfur Nutrition-A Regulatory Interplay or Just Metabolite Association?

    PubMed

    Wawrzynska, Anna; Moniuszko, Grzegorz; Sirko, Agnieszka

    2015-01-01

    Multiple reports demonstrate associations between ethylene and sulfur metabolisms, however the details of these links have not yet been fully characterized; the links might be at the metabolic and the regulatory levels. First, sulfur-containing metabolite, methionine, is a precursor of ethylene and is a rate limiting metabolite for ethylene synthesis; the methionine cycle contributes to both sulfur and ethylene metabolism. On the other hand, ethylene is involved in the complex response networks to various stresses and it is known that S deficiency leads to photosynthesis and C metabolism disturbances that might be responsible for oxidative stress. In several plant species, ethylene increases during sulfur starvation and might serve signaling purposes to initiate the process of metabolism reprogramming during adjustment to sulfur deficit. An elevated level of ethylene might result from increased activity of enzymes involved in its synthesis. It has been demonstrated that the alleviation of cadmium stress in plants by application of S seems to be mediated by ethylene formation. On the other hand, the ethylene-insensitive Nicotiana attenuata plants are impaired in sulfur uptake, reduction and metabolism, and they invest their already limited S into methionine needed for synthesis of ethylene constitutively emitted in large amounts to the atmosphere. Regulatory links of EIN3 and SLIM1 (both from the same family of transcriptional factors) involved in the regulation of ethylene and sulfur pathway, respectively, is also quite probable as well as the reciprocal modulation of both pathways on the enzyme activity levels.

  6. 40 CFR 63.1093 - Does this subpart apply to my waste streams?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... ethylene production facility expressly referenced to this subpart XX from subpart YY of this part. The...

  7. 40 CFR 63.1083 - Does this subpart apply to my heat exchange system?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... or operate an ethylene production unit expressly referenced to this subpart XX from subpart YY of...

  8. Intracellular processing of poly(ethylene imine)/ribozyme complexes can be observed in living cells by using confocal laser scanning microscopy and inhibitor experiments.

    PubMed

    Merdan, Thomas; Kunath, Klaus; Fischer, Dagmar; Kopecek, Jindrich; Kissel, Thomas

    2002-02-01

    Critical steps in the subcellular processing of poly(ethylene imine)/nucleic acid complexes, especially endosomal/lysosomal escape, were visualized by using living cell confocal laser scanning microscopy (CSLM) to obtain an insight into their mechanism. Living cell confocal microscopy was used to examine the intracellular fate of poly(ethylene imine)/ribozyme and poly(L-lysine)/ribozyme complexes over time, in the presence of and without bafilomycin Al, a selective inhibitor of endosomal/lysosomal acidification. The compartment of complex accumulation was identified by confocal microscopy with a fluorescent acidotropic dye. To confirm microscopic data, luciferase reporter gene expression was determined under similar experimental conditions. Poly(ethylene imine)/ribozyme complexes accumulate in acidic vesicles, most probably lysosomes. Release of complexes occurs in a sudden event, very likely due to bursting of these organelles. After release, poly(ethylene imine) and ribozyme spread throughout the cell, during which slight differences in distribution between cytosol and nucleus are visible. No lysosomal escape was observed with poly(L-lysine)/ribozyme complexes or when poly(ethylene imine)/ ribozyme complexes were applied together with bafilomycin A1. Poly(ethylene imine)/plasmid complexes exhibited a high luciferase expression, which was reduced approximately 200-fold when lysosomal acidification was suppressed with bafilomycin A1. Our data provide, for the first time, direct experimental evidence for the escape of poly(ethylene imine)/nucleic acid complexes from the endosomal/lysosomal compartment. CLSM, in conjunction with living cell microscopy, is a promising tool for studying the subcellular fate of polyplexes in nucleic acid/gene delivery.

  9. Carbon emissions from U.S. ethylene production under climate change policies.

    PubMed

    Ruth, Matthias; Amato, Anthony D; Davidsdottir, Brynhildur

    2002-01-15

    This paper presents the results from a dynamic computer model of U.S. ethylene production, designed to explore implications of alternative climate change policies for the industry's energy use and carbon emissions profiles. The model applies to the aggregate ethylene industry but distinguishes its main cracker types, fuels used as feedstocks and for process energy, as well as the industry's capital vintage structure and vintage-specific efficiencies. Results indicate that policies which increase the cost of carbon of process energy-such as carbon taxes or carbon permit systems-are relatively blunt instruments for cutting carbon emissions from ethylene production. In contrast, policies directly affecting the relative efficiencies of new to old capital-such as R&D stimuli or accelerated depreciation schedules-may be more effective in leveraging the industry's potential for carbon emissions reductions.

  10. Selective Adsorption of Ethane over Ethylene in PCN-245: Impacts of Interpenetrated Adsorbent.

    PubMed

    Lv, Daofei; Shi, Renfeng; Chen, Yongwei; Wu, Ying; Wu, Houxiao; Xi, Hongxia; Xia, Qibin; Li, Zhong

    2018-03-07

    The separation of ethane from ethylene using cryogenic distillation is an energy-intensive process in the industry. With lower energetic consumption, the adsorption technology provides the opportunities for developing the industry with economic sustainability. We report an iron-based metal-organic framework PCN-245 with interpenetrated structures as an ethane-selective adsorbent for ethylene/ethane separation. The material maintains stability up to 625 K, even after exposure to 80% humid atmosphere for 20 days. Adsorptive separation experiments on PCN-245 at 100 kPa and 298 K indicated that ethane and ethylene uptakes of PCN-245 were 3.27 and 2.39 mmol, respectively, and the selectivity of ethane over ethylene was up to 1.9. Metropolis Monte Carlo calculations suggested that the interpenetrated structure of PCN-245 created greater interaction affinity for ethane than ethylene through the crossing organic linkers, which is consistent with the experimental results. This work highlights the potential application of adsorbents with the interpenetrated structure for ethane separation from ethylene.

  11. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.

    PubMed

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-09-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses. © 2015 American Society of Plant Biologists. All Rights Reserved.

  12. Continuous online Fourier transform infrared (FT-IR) spectrometry analysis of hydrogen chloride (HCl), carbon dioxide (CO2), and water (H2O) in nitrogen-rich and ethylene-rich streams.

    PubMed

    Stephenson, Serena; Pollard, Maria; Boit, Kipchirchir

    2013-09-01

    The prevalence of optical spectroscopy techniques being applied to the online analysis of continuous processes has increased in the past couple of decades. The ability to continuously "watch" changing stream compositions as operating conditions change has proven invaluable to pilot and world-scale manufacturing in the chemical and petrochemical industries. Presented here is an application requiring continuous monitoring of parts per million (ppm) by weight levels of hydrogen chloride (HCl), water (H2O), and carbon dioxide (CO2) in two gas-phase streams, one nitrogen-rich and one ethylene-rich. Because ethylene has strong mid-infrared (IR) absorption, building an IR method capable of quantifying HCl, H2O, and CO2 posed some challenges. A long-path (5.11m) Fourier transform infrared (FT-IR) spectrometer was used in the mid-infrared region between 1800 and 5000 cm(-1), with a 1 cm(-1) resolution and a 10 s spectral update time. Sample cell temperature and pressure were controlled and measured to minimize measurement variability. Models using a modified classical least squares method were developed and validated first in the laboratory and then using the process stream. Analytical models and process sampling conditions were adjusted to minimize interference of ethylene in the ethylene-rich stream. The predictive capabilities of the measurements were ±0.5 ppm for CO2 in either stream; ±1.1 and ±1.3 ppm for H2O in the nitrogen-rich and ethylene-rich streams, respectively; and ±1.0 and ±2.4 ppm for HCl in the nitrogen-rich and ethylene-rich streams, respectively. Continuous operation of the instrument in the process stream was demonstrated using an automated stream switching sample system set to 10 min intervals. Response time for all components of interest was sufficient to acquire representative stream composition data. This setup provides useful insight into the process for troubleshooting and optimizing plant operating conditions.

  13. Methods of producing compounds from plant material

    DOEpatents

    Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H.; Franz, James A.; Alnajjar, Mikhail S.; Neuenschwander, Gary G.; Alderson, Eric V.; Orth, Rick J.; Abbas, Charles A.; Beery, Kyle E.; Rammelsberg, Anne M.; Kim, Catherine J.

    2006-01-03

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  14. Methods of producing compounds from plant materials

    DOEpatents

    Werpy, Todd A [West Richland, WA; Schmidt, Andrew J [Richland, WA; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine, J [Decatur, IL

    2010-01-26

    The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

  15. Fast responses from slowly relaxing'' liquids: A comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.J.; Castner, E.W. Jr.

    1993-11-15

    We have measured the ultrafast solvent relaxation of liquid ethylene glycol, triacetin, and water by means of femtosecond polarization spectroscopy, using optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy. In the viscous liquids triacetin and ethylene glycol, femtosecond relaxation processes were resolved. Not surprisingly, the femtosecond nonlinear optical response of ethylene glycol is quite similar to that of water. Using the theory of Maroncelli, Kumar, and Papazyan, we transform the pure-nuclear solvent response into a dipolar-solvation correlation function for comparison with ultrafast electron-transfer reaction rates.

  16. Fast responses from ``slowly relaxing'' liquids: A comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water

    NASA Astrophysics Data System (ADS)

    Chang, Yong Joon; Castner, Edward W., Jr.

    1993-11-01

    We have measured the ultrafast solvent relaxation of liquid ethylene glycol, triacetin, and water by means of femtosecond polarization spectroscopy, using optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy. In the viscous liquids triacetin and ethylene glycol, femtosecond relaxation processes were resolved. Not surprisingly, the femtosecond nonlinear optical response of ethylene glycol is quite similar to that of water. Using the theory of Maroncelli, Kumar, and Papazyan, we transform the pure-nuclear solvent response into a dipolar-solvation correlation function for comparison with ultrafast electron-transfer reaction rates.

  17. Assay Methods for ACS Activity and ACS Phosphorylation by MAP Kinases In Vitro and In Vivo.

    PubMed

    Han, Xiaomin; Li, Guojing; Zhang, Shuqun

    2017-01-01

    Ethylene, a gaseous phytohormone, has profound effects on plant growth, development, and adaptation to the environment. Ethylene-regulated processes begin with the induction of ethylene biosynthesis. There are two key steps in ethylene biosynthesis. The first is the biosynthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) from S-Adenosyl-Methionine (SAM), a common precursor in many metabolic pathways, which is catalyzed by ACC synthase (ACS). The second is the oxidative cleavage of ACC to form ethylene under the action of ACC oxidase (ACO). ACC biosynthesis is the committing and generally the rate-limiting step in ethylene biosynthesis. As a result, characterizing the cellular ACS activity and understanding its regulation are important. In this chapter, we detail the methods used to measure, (1) the enzymatic activity of both recombinant and native ACS proteins, and (2) the phosphorylation of ACS protein by mitogen-activated protein kinases (MAPKs) in vivo and in vitro.

  18. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  19. An infrared based sensor system for the detection of ethylene for the discrimination of fruit ripening

    NASA Astrophysics Data System (ADS)

    Kathirvelan, J.; Vijayaraghavan, R.

    2017-09-01

    We report the fabrication and testing of a prototype ethylene sensing device for use in fruit ripening applications. A sensor based on infrared (IR) thermal emission was developed and used to detect the ethylene level released during the fruit ripening process. An IR thermal source tuned to the 10.6 μm wavelength was linked to a high-sensitivity silicon temperature detector. When introduced into the wave path between the IR source and temperature detector, ethylene absorbs the 10.6 μm IR waves and decreases the surface temperature of the detector. The output is then converted to an electrical signal (in mV), which gives a direct measurement of the ethylene level. Using this sensor, ethylene concentration measured from a fruit sample continuously decreased from 59 to 5 ppm during the natural ripening process. The sensor exhibited a sensitivity of 3.3 ± 0.2% (change in detector output (mV)/ppm × 100) and could measure concentrations as low as 5 ppm with rise and recovery times of 1 and 3 s, respectively. The system demonstrated good reproducibility. Devices employing this sensor system may be used for fruit ripening applications on site and in the field and for screening artificially ripened fruits, therefore contributing to ensure food safety.

  20. Profiling Ethylene-Responsive Genes Expressed in the Latex of the Mature Virgin Rubber Trees Using cDNA Microarray

    PubMed Central

    Nie, Zhiyi; Kang, Guijuan; Duan, Cuifang; Li, Yu; Dai, Longjun; Zeng, Rizhong

    2016-01-01

    Ethylene is commonly used as a latex stimulant of Hevea brasiliensis by application of ethephon (chloro-2-ethylphosphonic acid); however, the molecular mechanism by which ethylene increases latex production is not clear. To better understand the effects of ethylene stimulation on the laticiferous cells of rubber trees, a latex expressed sequence tag (EST)-based complementary DNA microarray containing 2,973 unique genes (probes) was first developed and used to analyze the gene expression changes in the latex of the mature virgin rubber trees after ethephon treatment at three different time-points: 8, 24 and 48 h. Transcript levels of 163 genes were significantly altered with fold-change values ≥ 2 or ≤ –2 (q-value < 0.05) in ethephon-treated rubber trees compared with control trees. Of the 163 genes, 92 were up-regulated and 71 down-regulated. The microarray results were further confirmed using real-time quantitative reverse transcript-PCR for 20 selected genes. The 163 ethylene-responsive genes were involved in several biological processes including organic substance metabolism, cellular metabolism, primary metabolism, biosynthetic process, cellular response to stimulus and stress. The presented data suggest that the laticifer water circulation, production and scavenging of reactive oxygen species, sugar metabolism, and assembly and depolymerization of the latex actin cytoskeleton might play important roles in ethylene-induced increase of latex production. The results may provide useful insights into understanding the molecular mechanism underlying the effect of ethylene on latex metabolism of H. brasiliensis. PMID:26985821

  1. Involvement of ethylene in sex expression and female flower development in watermelon (Citrullus lanatus).

    PubMed

    Manzano, Susana; Martínez, Cecilia; García, Juan Manuel; Megías, Zoraida; Jamilena, Manuel

    2014-12-01

    Although it is known that ethylene has a masculinizing effect on watermelon, the specific role of this hormone in sex expression and flower development has not been analyzed in depth. By using different approaches the present work demonstrates that ethylene regulates differentially two sex-related developmental processes: sexual expression, i.e. the earliness and the number of female flowers per plant, and the development of individual floral buds. Ethylene production in the shoot apex as well as in male, female and bisexual flowers demonstrated that the female flower requires much more ethylene than the male one to develop, and that bisexual flowers result from a decrease in ethylene production in the female floral bud. The occurrence of bisexual flowers was found to be associated with elevated temperatures in the greenhouse, concomitantly with a reduction of ethylene production in the shoot apex. External treatments with ethephon and AVG, and the use of Cucurbita rootstocks with different ethylene production and sensitivity, confirmed that, as occurs in other cucurbit species, ethylene is required to arrest the development of stamens in the female flower. Nevertheless, in watermelon ethylene inhibits the transition from male to female flowering and reduces the number of pistillate flowers per plant, which runs contrary to findings in other cucurbit species. The use of Cucurbita rootstocks with elevated ethylene production delayed the production of female flowers but reduced the number of bisexual flowers, which is associated with a reduced fruit set and altered fruit shape.

  2. Current understanding on ethylene signaling in plants: the influence of nutrient availability.

    PubMed

    Iqbal, Noushina; Trivellini, Alice; Masood, Asim; Ferrante, Antonio; Khan, Nafees A

    2013-12-01

    The plant hormone ethylene is involved in many physiological processes, including plant growth, development and senescence. Ethylene also plays a pivotal role in plant response or adaptation under biotic and abiotic stress conditions. In plants, ethylene production often enhances the tolerance to sub-optimal environmental conditions. This role is particularly important from both ecological and agricultural point of views. Among the abiotic stresses, the role of ethylene in plants under nutrient stress conditions has not been completely investigated. In literature few reports are available on the interaction among ethylene and macro- or micro-nutrients. However, the published works clearly demonstrated that several mineral nutrients largely affect ethylene biosynthesis and perception with a strong influence on plant physiology. The aim of this review is to revisit the old findings and recent advances of knowledge regarding the sub-optimal nutrient conditions on the effect of ethylene biosynthesis and perception in plants. The effect of deficiency or excess of the single macronutrient or micronutrient on the ethylene pathway and plant responses are reviewed and discussed. The synergistic and antagonist effect of the different mineral nutrients on ethylene plant responses is critically analyzed. Moreover, this review highlights the status of information between nutritional stresses and plant response, emphasizing the topics that should be further investigated. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Differential feedback regulation of ethylene biosynthesis in pulp and peel tissues of banana fruit.

    PubMed

    Inaba, Akitsugu; Liu, Xuejun; Yokotani, Naoki; Yamane, Miki; Lu, Wang-Jin; Nakano, Ryohei; Kubo, Yasutaka

    2007-01-01

    The feedback regulation of ethylene biosynthesis in banana [Musa sp. (AAA group, Cavendish subgroup) cv. Grand Nain] fruit was investigated in an attempt to clarify the opposite effect of 1-methylcyclopropene (1-MCP), an ethylene action inhibitor, before and after the onset of ripening. 1-MCP pre-treatment completely prevented the ripening-induced effect of propylene in pre-climacteric banana fruit, whereas treatment after the onset of ripening stimulated ethylene production. In pre-climacteric fruit, higher concentrations of propylene suppressed ethylene production more strongly, despite their earlier ethylene-inducing effect. Exposure of the fruit ripened by propylene to 1-MCP increased ethylene production concomitantly with an increase in 1-aminocyclopropane-1-carboxylate (ACC) synthase activity and ACC content, and prevented a transient decrease in MA-ACS1 transcripts in the pulp tissues. In contrast, in the peel of ripening fruit, 1-MCP prevented the increase in ethylene production and subsequently the ripening process by reduction of the increase in MA-ACS1 and MA-ACO1 transcripts and of ACC synthase and ACC oxidase activities. These results suggest that ethylene biosynthesis in ripening banana fruit may be controlled negatively in the pulp tissue and positively in the peel tissue. This differential regulation by ethylene in pulp and peel tissues was also observed for MA-PL, MA-Exp, and MA-MADS genes.

  4. Characterization of miRNAs responsive to exogenous ethylene in grapevine berries at whole genome level.

    PubMed

    Zhao, Fanggui; Wang, Chen; Han, Jian; Zhu, Xudong; Li, Xiaopeng; Wang, Xicheng; Fang, Jinggui

    2017-05-01

    MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.

  5. Process for the production of ethylene and other hydrocarbons from coal

    DOEpatents

    Steinberg, Meyer; Fallon, Peter

    1986-01-01

    A process for the production of economically significant amounts of ethyl and other hydrocarbon compounds, such as benzene, from coal is disclosed wherein coal is reacted with methane at a temperature in the approximate range of 500.degree. C. to 1100.degree. C. at a partial pressure less than about 200 psig for a period of less than 10 seconds. Ethylene and other hydrocarbon compounds may be separated from the product stream so produced, and the methane recycled for further production of ethylene. In another embodiment, other compounds produced, such as by-product tars, may be burned to heat the recycled methane.

  6. Ethylene diamine

    Integrated Risk Information System (IRIS)

    Ethylene diamine ; CASRN 107 - 15 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  7. Ethylene-induced differential gene expression during abscission of citrus leaves

    PubMed Central

    Merelo, Paz; Cercós, Manuel; Tadeo, Francisco R.; Talón, Manuel

    2008-01-01

    The main objective of this work was to identify and classify genes involved in the process of leaf abscission in Clementina de Nules (Citrus clementina Hort. Ex Tan.). A 7 K unigene citrus cDNA microarray containing 12 K spots was used to characterize the transcriptome of the ethylene-induced abscission process in laminar abscission zone-enriched tissues and the petiole of debladed leaf explants. In these conditions, ethylene induced 100% leaf explant abscission in 72 h while, in air-treated samples, the abscission period started later and took 240 h. Gene expression monitored during the first 36 h of ethylene treatment showed that out of the 12 672 cDNA microarray probes, ethylene differentially induced 725 probes distributed as follows: 216 (29.8%) probes in the laminar abscission zone and 509 (70.2%) in the petiole. Functional MIPS classification and manual annotation of differentially expressed genes highlighted key processes regulating the activation and progress of the cell separation that brings about abscission. These included cell-wall modification, lipid transport, protein biosynthesis and degradation, and differential activation of signal transduction and transcription control pathways. Expression data associated with the petiole indicated the occurrence of a double defensive strategy mediated by the activation of a biochemical programme including scavenging ROS, defence and PR genes, and a physical response mostly based on lignin biosynthesis and deposition. This work identifies new genes probably involved in the onset and development of the leaf abscission process and suggests a different but co-ordinated and complementary role for the laminar abscission zone and the petiole during the process of abscission. PMID:18515267

  8. Stable Isotope Metabolic Labeling-based Quantitative Phosphoproteomic Analysis of Arabidopsis Mutants Reveals Ethylene-regulated Time-dependent Phosphoproteins and Putative Substrates of Constitutive Triple Response 1 Kinase*

    PubMed Central

    Yang, Zhu; Guo, Guangyu; Zhang, Manyu; Liu, Claire Y.; Hu, Qin; Lam, Henry; Cheng, Han; Xue, Yu; Li, Jiayang; Li, Ning

    2013-01-01

    Ethylene is an important plant hormone that regulates numerous cellular processes and stress responses. The mode of action of ethylene is both dose- and time-dependent. Protein phosphorylation plays a key role in ethylene signaling, which is mediated by the activities of ethylene receptors, constitutive triple response 1 (CTR1) kinase, and phosphatase. To address how ethylene alters the cellular protein phosphorylation profile in a time-dependent manner, differential and quantitative phosphoproteomics based on 15N stable isotope labeling in Arabidopsis was performed on both one-minute ethylene-treated Arabidopsis ethylene-overly-sensitive loss-of-function mutant rcn1-1, deficient in PP2A phosphatase activity, and a pair of long-term ethylene-treated wild-type and loss-of-function ethylene signaling ctr1-1 mutants, deficient in mitogen-activated kinase kinase kinase activity. In total, 1079 phosphopeptides were identified, among which 44 were novel. Several one-minute ethylene-regulated phosphoproteins were found from the rcn1-1. Bioinformatic analysis of the rcn1-1 phosphoproteome predicted nine phosphoproteins as the putative substrates for PP2A phosphatase. In addition, from CTR1 kinase-enhanced phosphosites, we also found putative CTR1 kinase substrates including plastid transcriptionally active protein and calcium-sensing receptor. These regulatory proteins are phosphorylated in the presence of ethylene. Analysis of ethylene-regulated phosphosites using the group-based prediction system with a protein–protein interaction filter revealed a total of 14 kinase–substrate relationships that may function in both CTR1 kinase- and PP2A phosphatase-mediated phosphor-relay pathways. Finally, several ethylene-regulated post-translational modification network models have been built using molecular systems biology tools. It is proposed that ethylene regulates the phosphorylation of arginine/serine-rich splicing factor 41, plasma membrane intrinsic protein 2A, light harvesting chlorophyll A/B binding protein 1.1, and flowering bHLH 3 proteins in a dual-and-opposing fashion. PMID:24043427

  9. An ethylene and ROS-dependent pathway is involved in low ammonium-induced root hair elongation in Arabidopsis seedlings.

    PubMed

    Zhu, Changhua; Yang, Na; Guo, Zhengfei; Qian, Meng; Gan, Lijun

    2016-08-01

    Root hairs are plastic in response to nutrient supply, but relatively little is known about their development under low ammonium (NH4(+)) conditions. This study showed that reducing NH4(+) for 3 days in wild-type Arabidopsis seedlings resulted in drastic elongation of root hairs. To investigate the possible mediation of ethylene and auxin in this process, seedlings were treated with 2,3,5-triiodobenzoic acid (TIBA, auxin transport inhibitor), 1-naphthylphthalamic acid (NPA, auxin transport inhibitor), p-chlorophenoxy isobutyric acid (PCIB, auxin action inhibitor), aminoethoxyvinylglycine (AVG, chemical inhibitor of ethylene biosynthesis), or silver ions (Ag(+), ethylene perception antagonist) under low NH4(+) conditions. Our results showed that TIBA, NPA and PCIB did not inhibit root hair elongation under low NH4(+) conditions, while AVG and Ag(+) completely inhibited low NH4(+)-induced root hair elongation. This suggested that low NH4(+)-induced root hair elongation was dependent on the ethylene pathway, but not the auxin pathway. Further genetic studies revealed that root hair elongation in auxin-insensitive mutants was sensitive to low NH4(+) treatment, but elongation was less sensitive in ethylene-insensitive mutants than wild-type plants. In addition, low NH4(+)-induced root hair elongation was accompanied by reactive oxygen species (ROS) accumulation. Diphenylene iodonium (DPI, NADPH oxidase inhibitor) and dimethylthiourea (DMTU, ROS scavenger) inhibited low NH4(+)-induced root hair elongation, suggesting that ROS were involved in this process. Moreover, ethylene acted together with ROS to modulate root hair elongation under low NH4(+) conditions. These results demonstrate that a signaling pathway involving ethylene and ROS participates in regulation of root hair elongation when Arabidopsis seedlings are subjected to low NH4(+) conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Microbial pathway for anaerobic 5′-methylthioadenosine metabolism coupled to ethylene formation

    PubMed Central

    North, Justin A.; Miller, Anthony R.; Wildenthal, John A.; Young, Sarah J.; Tabita, F. Robert

    2017-01-01

    Numerous cellular processes involving S-adenosyl-l-methionine result in the formation of the toxic by-product, 5′-methylthioadenosine (MTA). To prevent inhibitory MTA accumulation and retain biologically available sulfur, most organisms possess the “universal” methionine salvage pathway (MSP). However, the universal MSP is inherently aerobic due to a requirement of molecular oxygen for one of the key enzymes. Here, we report the presence of an exclusively anaerobic MSP that couples MTA metabolism to ethylene formation in the phototrophic bacteria Rhodospirillum rubrum and Rhodopseudomonas palustris. In vivo metabolite analysis of gene deletion strains demonstrated that this anaerobic MSP functions via sequential action of MTA phosphorylase (MtnP), 5-(methylthio)ribose-1-phosphate isomerase (MtnA), and an annotated class II aldolase-like protein (Ald2) to form 2-(methylthio)acetaldehyde as an intermediate. 2-(Methylthio)acetaldehyde is reduced to 2-(methylthio)ethanol, which is further metabolized as a usable organic sulfur source, generating stoichiometric amounts of ethylene in the process. Ethylene induction experiments using 2-(methylthio)ethanol versus sulfate as sulfur sources further indicate anaerobic ethylene production from 2-(methylthio)ethanol requires protein synthesis and that this process is regulated. Finally, phylogenetic analysis reveals that the genes corresponding to these enzymes, and presumably the pathway, are widespread among anaerobic and facultatively anaerobic bacteria from soil and freshwater environments. These results not only establish the existence of a functional, exclusively anaerobic MSP, but they also suggest a possible route by which ethylene is produced by microbes in anoxic environments. PMID:29133429

  11. Formation mechanism of glycolaldehyde and ethylene glycol in astrophysical ices from HCO• and •CH2OH recombination: an experimental study

    NASA Astrophysics Data System (ADS)

    Butscher, T.; Duvernay, F.; Theule, P.; Danger, G.; Carissan, Y.; Hagebaum-Reignier, D.; Chiavassa, T.

    2015-10-01

    Among all existing complex organic molecules, glycolaldehyde HOCH2CHO and ethylene glycol HOCH2CH2OH are two of the largest detected molecules in the interstellar medium. We investigate both experimentally and theoretically the low-temperature reaction pathways leading to glycolaldehyde and ethylene glycol in interstellar grains. Using infrared spectroscopy, mass spectroscopy and quantum calculations, we investigate formation pathways of glycolaldehyde and ethylene glycol based on HCO• and •CH2OH radical-radical recombinations. We also show that •CH2OH is the main intermediate radical species in the H2CO to CH3OH hydrogenation processes. We then discuss astrophysical implications of the chemical pathway we propose on the observed gas-phase ethylene glycol and glycolaldehyde.

  12. 40 CFR 60.561 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... production process for the manufacture of low density polyethylene in which a reaction pressure of about 15... terephthalate) (PET) manufacture using dimethyl terephthalate means the manufacturing of poly(ethylene.... Poly(ethylene terephthalate) (PET) manufacture using terephthalic acid means the manufacturing of poly...

  13. Ethylene glycol

    Integrated Risk Information System (IRIS)

    Ethylene glycol ; CASRN 107 - 21 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  14. Ethylene thiourea (ETU)

    Integrated Risk Information System (IRIS)

    Ethylene thiourea ( ETU ) ; CASRN 96 - 45 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarci

  15. Spectroscopic investigation into the design of solid-acid catalysts for the low temperature dehydration of ethanol.

    PubMed

    Potter, Matthew E; Aswegen, Sivan V; Gibson, Emma K; Silverwood, Ian P; Raja, Robert

    2016-07-14

    The increased demand for bulk hydrocarbons necessitates research into increasingly sustainable, energy-efficient catalytic processes. Owing to intricately designed structure-property correlations, SAPO-34 has become established as a promising material for the low temperature ethanol dehydration to produce ethylene. However, further optimization of this process requires a precise knowledge of the reaction mechanism at a molecular level. In order to achieve this a range of spectroscopic characterization techniques are required to probe both the interaction with the active site, and also the wider role of the framework. To this end we employ a combination of in situ infra-red and neutron scattering techniques to elucidate the influence of the surface ethoxy species in the activation of both diethyl ether and ethanol, towards the improved formation of ethylene at low temperatures. The combined conclusions of these studies is that the formation of ethylene is the rate determining step, which is of fundamental importance towards the development of this process and the introduction of bio-ethanol as a viable feedstock for ethylene production.

  16. Atmospheric chemistry of ethane and ethylene

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Herman, J. R.; Maier, E. J.; Mcquillan, C. J.

    1982-01-01

    It is shown by a study of ethane and ethylene photochemistry that the loss of ethane is controlled by OH in the troposphere and Cl in the stratosphere. Ethane observations indicating free Cl concentrations below 30 km that are only 10% of the value predicted by the present model calculations cannot be explained by heterogeneous aerosol concentration processes, and contradict current stratospheric photochemistry. The chemical destruction of ethane and ethylene leads to the generation of such compounds as carbon monoxide and formaldehyde, and it is found that the tropospheric concentrations of the latter are enhanced by nearly a factor of three for an ethylene mixing ratio of 2 ppb.

  17. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.).

    PubMed

    In, Byung-Chun; Binder, Brad M; Falbel, Tanya G; Patterson, Sara E

    2013-11-01

    It has been generally thought that in ethylene-sensitive plants such as carnations, senescence proceeds irreversibly once the tissues have entered the climacteric phase. While pre-climacteric petal tissues have a lower sensitivity to ethylene, these tissues are converted to the climacteric phase at a critical point during flower development. In this study, it is demonstrated that the senescence process initiated by exogenous ethylene is reversible in carnation petals. Petals treated with ethylene for 12h showed sustained inrolling and senescence, while petals treated with ethylene for 10h showed inrolling followed by recovery from inrolling. Reverse transcription-PCR analysis revealed differential expression of genes involved in ethylene biosynthesis and ethylene signalling between 10h and 12h ethylene treatment. Ethylene treatment at or beyond 12h (threshold time) decreased the mRNA levels of the receptor genes (DcETR1, DcERS1, and DcERS2) and DcCTR genes, and increased the ethylene biosynthesis genes DcACS1 and DcACO1. In contrast, ethylene treatment under the threshold time caused a transient decrease in the receptor genes and DcCTR genes, and a transient increase in DcACS1 and DcACO1. Sustained DcACS1 accumulation is correlated with decreases in DcCTR genes and increase in DcEIL3 and indicates that tissues have entered the climacteric phase and that senescence proceeds irreversibly. Inhibition of ACS (1-aminocyclopropane-1-carboxylic acid synthase) prior to 12h ethylene exposure was not able to prevent reduction in transcripts of DcCTR genes, yet suppressed transcript of DcACS1 and DcACO1. This leads to the recovery from inrolling of the petals, indicating that DcACS1 may act as a signalling molecule in senescence of flowers.

  18. Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.)

    PubMed Central

    Patterson, Sara E.

    2013-01-01

    It has been generally thought that in ethylene-sensitive plants such as carnations, senescence proceeds irreversibly once the tissues have entered the climacteric phase. While pre-climacteric petal tissues have a lower sensitivity to ethylene, these tissues are converted to the climacteric phase at a critical point during flower development. In this study, it is demonstrated that the senescence process initiated by exogenous ethylene is reversible in carnation petals. Petals treated with ethylene for 12h showed sustained inrolling and senescence, while petals treated with ethylene for 10h showed inrolling followed by recovery from inrolling. Reverse transcription–PCR analysis revealed differential expression of genes involved in ethylene biosynthesis and ethylene signalling between 10h and 12h ethylene treatment. Ethylene treatment at or beyond 12h (threshold time) decreased the mRNA levels of the receptor genes (DcETR1, DcERS1, and DcERS2) and DcCTR genes, and increased the ethylene biosynthesis genes DcACS1 and DcACO1. In contrast, ethylene treatment under the threshold time caused a transient decrease in the receptor genes and DcCTR genes, and a transient increase in DcACS1 and DcACO1. Sustained DcACS1 accumulation is correlated with decreases in DcCTR genes and increase in DcEIL3 and indicates that tissues have entered the climacteric phase and that senescence proceeds irreversibly. Inhibition of ACS (1-aminocyclopropane-1-carboxylic acid synthase) prior to 12h ethylene exposure was not able to prevent reduction in transcripts of DcCTR genes, yet suppressed transcript of DcACS1 and DcACO1. This leads to the recovery from inrolling of the petals, indicating that DcACS1 may act as a signalling molecule in senescence of flowers. PMID:24078672

  19. The Effect of Ethylene and Propylene Pulses on Respiration, Ripening Advancement, Ethylene-Forming Enzyme, and 1-Aminocyclopropane-1-carboxylic Acid Synthase Activity in Avocado Fruit 12

    PubMed Central

    Starrett, David A.; Laties, George G.

    1991-01-01

    When early-season avocado fruit (Persea americana Mill. cv Hass) were treated with ethylene or propylene for 24 hours immediately on picking, the time to the onset of the respiratory climacteric, i.e. the lag period, remained unchanged compared with that in untreated fruit. When fruit were pulsed 24 hours after picking, on the other hand, the lag period was shortened. In both cases, however, a 24 hour ethylene or propylene pulse induced a transient increase in respiration, called the pulse-peak, unaccompanied by ethylene production (IL Eaks [1980] Am Soc Hortic Sci 105: 744-747). The pulse also caused a sharp rise in ethylene-forming enzyme activity in both cases, without any increase in the low level of 1-aminocyclopropane-1-carboxylic acid synthase activity. Thus, the shortening of the lag period by an ethylene pulse is not due to an effect of ethylene on either of the two key enzymes in ethylene biosynthesis. A comparison of two-dimensional polyacrylamide gel electrophoresis polypeptide profiles of in vitro translation products of poly(A+) mRNA from control and ethylene-pulsed fruit showed both up- and down-regulation in response to ethylene pulsing of a number of genes expressed during the ripening syndrome. It is proposed that the pulse-peak or its underlying events reflect an intrinsic element in the ripening process that in late-season or continuously ethylene-treated fruit may be subsumed in the overall climacteric response. A computerized system that allows continuous readout of multiple samples has established that the continued presentation of exogeneous ethylene or propylene to preclimacteric fruit elicits a dual respiration response comprising the merged pulse-peak and climacteric peak in series. The sequential removal of cores from a single fruit has proven an unsatisfactory sampling procedure inasmuch as coring induces wound ethylene, evokes a positive respiration response, and advances ripening. PMID:16668073

  20. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression

    PubMed Central

    2014-01-01

    Background Anthropogenic activities cause metal pollution worldwide. Plants can absorb and accumulate these metals through their root system, inducing stress as a result of excess metal concentrations inside the plant. Ethylene is a regulator of multiple plant processes, and is affected by many biotic and abiotic stresses. Increased ethylene levels have been observed after exposure to excess metals but it remains unclear how the increased ethylene levels are achieved at the molecular level. In this study, the effects of cadmium (Cd) exposure on the production of ethylene and its precursor 1-aminocyclopropane-1-carboxylic acid (ACC), and on the expression of the ACC Synthase (ACS) and ACC Oxidase (ACO) multigene families were investigated in Arabidopsis thaliana. Results Increased ethylene release after Cd exposure was directly measurable in a system using rockwool-cultivated plants; enhanced levels of the ethylene precursor ACC together with higher mRNA levels of ethylene responsive genes: ACO2, ETR2 and ERF1 also indicated increased ethylene production in hydroponic culture. Regarding underlying mechanisms, it was found that the transcript levels of ACO2 and ACO4, the most abundantly expressed members of the ACO multigene family, were increased upon Cd exposure. ACC synthesis is the rate-limiting step in ethylene biosynthesis, and transcript levels of both ACS2 and ACS6 showed the highest increase and became the most abundant isoforms after Cd exposure, suggesting their importance in the Cd-induced increase of ethylene production. Conclusions Cadmium induced the biosynthesis of ACC and ethylene in Arabidopsis thaliana plants mainly via the increased expression of ACS2 and ACS6. This was confirmed in the acs2-1acs6-1 double knockout mutants, which showed a decreased ethylene production, positively affecting leaf biomass and resulting in a delayed induction of ethylene responsive gene expressions without significant differences in Cd contents between wild-type and mutant plants. PMID:25082369

  1. Release of sunflower seed dormancy by cyanide: cross-talk with ethylene signalling pathway

    PubMed Central

    Oracz, Krystyna; El-Maarouf-Bouteau, Hayat; Bogatek, Renata; Bailly, Christophe

    2008-01-01

    Freshly harvested sunflower (Helianthus annuus L.) seeds are considered to be dormant because they fail to germinate at relatively low temperatures (10 °C). This dormancy results mainly from an embryo dormancy and disappears during dry storage. Although endogenous ethylene is known to be involved in sunflower seed alleviation of dormancy, little attention had been paid to the possible role of cyanide, which is produced by the conversion of 1-aminocyclopropane 1-carboxylic acid to ethylene, in this process. The aims of this work were to investigate whether exogenous cyanide could improve the germination of dormant sunflower seeds and to elucidate its putative mechanisms of action. Naked dormant seeds became able to germinate at 10 °C when they were incubated in the presence of 1 mM gaseous cyanide. Other respiratory inhibitors showed that this effect did not result from an activation of the pentose phosphate pathway or the cyanide-insensitive pathway. Cyanide stimulated germination of dormant seeds in the presence of inhibitors of ethylene biosynthesis, but its improving effect required functional ethylene receptors. It did not significantly affect ethylene production and the expression of genes involved in ethylene biosynthesis or in the first steps of ethylene signalling pathway. However, the expression of the transcription factor Ethylene Response Factor 1 (ERF1) was markedly stimulated in the presence of gaseous cyanide. It is proposed that the mode of action of cyanide in sunflower seed dormancy alleviation does not involve ethylene production and that ERF1 is a common component of the ethylene and cyanide signalling pathways. PMID:18448476

  2. Ethylene Production Maximum Achievable Control Technology (MACT) Compliance Manual

    EPA Pesticide Factsheets

    This July 2006 document is intended to help owners and operators of ethylene processes understand and comply with EPA's maximum achievable control technology standards promulgated on July 12, 2002, as amended on April 13, 2005 and April 20, 2006.

  3. Apparatus Circulates Sterilizing Gas

    NASA Technical Reports Server (NTRS)

    Cross, John H.; Schwarz, Ray P.

    1991-01-01

    Apparatus circulates sterilizing gas containing ethylene oxide and chlorofluorocarbon through laboratory or medical equipment. Confines sterilizing gas, circulating it only through parts to be treated. Consists of two units. One delivers ethylene oxide/chlorofluorocarbon gas mixture and removes gas after treatment. Other warms, humidifies, and circulates gas through equipment to be treated. Process provides reliable sterilization with negligible residual toxicity from ethylene oxide. Particularly suitable for sterilization of interiors of bioreactors, heart/lung machines, dialyzers, or other equipment including complicated tubing.

  4. Functional Implications of the Subcellular Localization of Ethylene-Induced Chitinase and [beta]-1,3-Glucanase in Bean Leaves.

    PubMed Central

    Mauch, F.; Staehelin, L. A.

    1989-01-01

    Plants respond to an attack by potentially pathogenic organisms and to the plant stress hormone ethylene with an increased synthesis of hydrolases such as chitinase and [beta]-1,3-glucanase. We have studied the subcellular localization of these two enzymes in ethylene-treated bean leaves by immunogold cytochemistry and by biochemical fractionation techniques. Our micrographs indicate that chitinase and [beta]-1,3-glucanase accumulate in the vacuole of ethylene-treated leaf cells. Within the vacuole label was found predominantly over ethylene-induced electron dense protein aggregates. A second, minor site of accumulation of [beta]-1,3-glucanase was the cell wall, where label was present nearly exclusively over the middle lamella surrounding intercellular air spaces. Both kinds of antibodies labeled Golgi cisternae of ethylene-treated tissue, suggesting that the newly synthesized chitinase and [beta]-1,3-glucanase are processed in the Golgi apparatus. Biochemical fractionation studies confirmed the accumulation in high concentrations of both chitinase and [beta]-1,3-glucanase in isolated vacuoles, and demonstrated that only [beta]-1,3-glucanase, but not chitinase, was present in intercellular washing fluids collected from ethylene-treated leaves. Based on these results and earlier studies, we propose a model in which the vacuole-localized chitinase and [beta]-1,3-glucanase are used as a last line of defense to be released when the attacked host cells lyse. The cell wall-localized [beta]-1,3-glucanase, on the other hand, would be involved in recognition processes, releasing defense activating signaling molecules from the walls of invading pathogens. PMID:12359894

  5. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    PubMed

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.

    PubMed

    Costa, Fabrizio; Alba, Rob; Schouten, Henk; Soglio, Valeria; Gianfranceschi, Luca; Serra, Sara; Musacchi, Stefano; Sansavini, Silviero; Costa, Guglielmo; Fei, Zhangjun; Giovannoni, James

    2010-10-25

    Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species.

  7. Ethylene and 1-Aminocyclopropane-1-carboxylate (ACC) in Plant–Bacterial Interactions

    PubMed Central

    Nascimento, Francisco X.; Rossi, Márcio J.; Glick, Bernard R.

    2018-01-01

    Ethylene and its precursor 1-aminocyclopropane-1-carboxylate (ACC) actively participate in plant developmental, defense and symbiotic programs. In this sense, ethylene and ACC play a central role in the regulation of bacterial colonization (rhizospheric, endophytic, and phyllospheric) by the modulation of plant immune responses and symbiotic programs, as well as by modulating several developmental processes, such as root elongation. Plant-associated bacterial communities impact plant growth and development, both negatively (pathogens) and positively (plant-growth promoting and symbiotic bacteria). Some members of the plant-associated bacterial community possess the ability to modulate plant ACC and ethylene levels and, subsequently, modify plant defense responses, symbiotic programs and overall plant development. In this work, we review and discuss the role of ethylene and ACC in several aspects of plant-bacterial interactions. Understanding the impact of ethylene and ACC in both the plant host and its associated bacterial community is key to the development of new strategies aimed at increased plant growth and protection. PMID:29520283

  8. Overcoming substrate limitations for improved production of ethylene in E. coli

    DOE PAGES

    Lynch, Sean; Eckert, Carrie; Yu, Jianping; ...

    2016-01-04

    Ethylene is an important industrial compound for the production of a wide variety of plastics and chemicals. At present, ethylene production involves steam cracking of a fossil-based feedstock, representing the highest CO 2-emitting process in the chemical industry. Biological ethylene production can be achieved via expression of a single protein, the ethylene-forming enzyme (EFE), found in some bacteria and fungi; it has the potential to provide a sustainable alternative to steam cracking, provided that significant increases in productivity can be achieved. A key barrier is determining factors that influence the availability of substrates for the EFE reaction in potential microbialmore » hosts. In the presence of O 2, EFE catalyzes ethylene formation from the substrates α-ketoglutarate (AKG) and arginine. The concentrations of AKG, a key TCA cycle intermediate, and arginine are tightly controlled by an intricate regulatory system that coordinates carbon and nitrogen metabolism. Thus, reliably predicting which genetic changes will ultimately lead to increased AKG and arginine availability is challenging.« less

  9. Pollination induces autophagy in petunia petals via ethylene.

    PubMed

    Shibuya, Kenichi; Niki, Tomoko; Ichimura, Kazuo

    2013-02-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence.

  10. Pollination induces autophagy in petunia petals via ethylene

    PubMed Central

    Shibuya, Kenichi

    2013-01-01

    Autophagy is one of the main mechanisms of degradation and remobilization of macromolecules, and it appears to play an important role in petal senescence. However, little is known about the regulatory mechanisms of autophagy in petal senescence. Autophagic processes were observed by electron microscopy and monodansylcadaverine staining of senescing petals of petunia (Petunia hybrida); autophagy-related gene 8 (ATG8) homologues were isolated from petunia and the regulation of expression was analysed. Nutrient remobilization was also examined during pollination-induced petal senescence. Active autophagic processes were observed in the mesophyll cells of senescing petunia petals. Pollination induced the expression of PhATG8 homologues and was accompanied by an increase in ethylene production. Ethylene inhibitor treatment in pollinated flowers delayed the induction of PhATG8 homologues, and ethylene treatment rapidly upregulated PhATG8 homologues in petunia petals. Dry weight and nitrogen content were decreased in the petals and increased in the ovaries after pollination in detached flowers. These results indicated that pollination induces autophagy and that ethylene is a key regulator of autophagy in petal senescence of petunia. The data also demonstrated the translocation of nutrients from the petals to the ovaries during pollination-induced petal senescence. PMID:23349142

  11. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow.

    PubMed

    Roper, Kimberley A; Berry, Malcolm B; Ley, Steven V

    2013-01-01

    The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed.

  12. The application of a monolithic triphenylphosphine reagent for conducting Ramirez gem-dibromoolefination reactions in flow

    PubMed Central

    Roper, Kimberley A; Berry, Malcolm B

    2013-01-01

    Summary The application of a monolithic form of triphenylphosphine to the Ramirez gem-dibromoolefination reaction using flow chemistry techniques is reported. A variety of gem-dibromides were synthesised in high purity and excellent yield following only removal of solvent and no further off-line purification. It is also possible to perform the Appel reaction using the same monolith and the relationship between the mechanisms of the two reactions is discussed. PMID:24062843

  13. Influence of oxygen concentration on ethylene removal using dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Takahashi, Katsuyuki; Motodate, Takuma; Takaki, Koichi; Koide, Shoji

    2018-01-01

    Ethylene gas is decomposed using a dielectric barrier discharge plasma reactor for long-period preservation of fruits and vegetables. The oxygen concentration in ambient gas is varied from 2 to 20% to simulate the fruit and vegetable transport container. The experimental results show that the efficiency of ethylene gas decomposition increases with decreasing oxygen concentration. The reactions of ethylene molecules with ozone are analyzed by Fourier transform infrared spectrometry. The analysis results show that the oxidization process by ozone is later than that by oxygen atoms. The amount of oxygen atoms that contribute to ethylene removal increases with decreasing oxygen concentration because the reaction between oxygen radicals and oxygen molecules is suppressed at low oxygen concentrations. Ozone is completely removed and the energy efficiency of C2H4 removal is increased using manganese dioxide as a catalyst.

  14. Ethylene glycol monobutyl ether (EGBE) (2-Butoxyethanol)

    Integrated Risk Information System (IRIS)

    Ethylene glycol monobutyl ether ( EGBE ) ( 2 - Butoxyethanol ) ; CASRN 111 - 76 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I (

  15. Study of the desorption of ethylene oxide fixed on various materials during sterilization by a new procedure

    NASA Technical Reports Server (NTRS)

    Lacomme, M.; Chaigneau, M.; Lemoan, G.

    1977-01-01

    A continuous sterilization process using ethylene oxide was studied in comparison with a classical method in order to evaluate gas retention as a function of time and temperature on polyethylene, PVC, and rubber materials.

  16. Novel polymer composites from waste ethylene-propylene-diene-monomer rubber by supercritical CO2 foaming technology.

    PubMed

    Jeong, Keuk Min; Hong, Yeo Joo; Saha, Prosenjit; Park, Seong Ho; Kim, Jin Kuk

    2014-11-01

    In this study, a composite has been prepared by mixing waste rubber, such as ethylene-propylene-diene-monomer and low-density poly ethylene foaming, with supercritical carbon dioxide. In order to optimise the foaming process of the waste ethylene-propylene-diene-monomer-low-density poly ethylene composite, the variations of pressure and temperature on the foamed Microcell formation were studied. As indicated in scanning electron microscope photographs, the most uniform microcellular pattern was found at 200 bar and 100 °C using 30% by weight of waste ethylene-propylene-diene-monomer. Carbon dioxide could not be dissolved uniformly during foaming owing to extensive cross-linking of the waste ethylene-propylene-diene-monomer used for the composite. As a result the presence of un-uniform microcells after foaming were observed in the composite matrix to impart inferior mechanical properties of the composite. This problem was solved with uniform foaming by increasing the cross-link density of low-density poly ethylene using 1.5 parts per hundred dicumyl peroxide that enhances composite tensile and compressive strength up to 57% and 15%, respectively. The composite has the potential to be used as a foaming mat for artificial turf. © The Author(s) 2014.

  17. Synthesis and Characterization of Polyethylene/Starch Nanocomposites: A Spherical Starch-Supported Catalyst and In Situ Ethylene Polymerization.

    PubMed

    Zhanga, Hao; Xi, Shixia; Wang, Shuwei; Liu, Jingsheng; Yoon, Keun-Byoung; Lee, Dong-Ho; Zhang, Hexin; Zhang, Xuequan

    2017-01-01

    In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.

  18. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation1

    PubMed Central

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei

    2015-01-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag+) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co2+) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag+/Co2+-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. PMID:26109425

  19. Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Lignocellulose Nanofibers Dried in Melted Ethylene-Butene Copolymer

    PubMed Central

    Iwamoto, Shinichiro; Yamamoto, Shigehiro; Lee, Seung-Hwan; Ito, Hirokazu; Endo, Takashi

    2014-01-01

    Lignocellulose nanofibers were prepared by the wet disk milling of wood flour. First, an ethylene-butene copolymer was pre-compounded with wood flour or lignocellulose nanofibers to prepare master batches. This process involved evaporating the water of the lignocellulose nanofiber suspension during compounding with ethylene-butene copolymer by heating at 105 °C. These master batches were compounded again with polypropylene to obtain the final composites. Since ethylene-butene copolymer is an elastomer, its addition increased the impact strength of polypropylene but decreased the stiffness. In contrast, the wood flour- and lignocellulose nanofiber-reinforced composites showed significantly higher flexural moduli and slightly higher flexural yield stresses than did the ethylene-butene/polypropylene blends. Further, the wood flour composites exhibited brittle fractures during tensile tests and had lower impact strengths than those of the ethylene-butene/polypropylene blends. On the other hand, the addition of the lignocellulose nanofibers did not decrease the impact strength of the ethylene-butene/polypropylene blends. Finally, the addition of wood flour and the lignocellulose nanofibers increased the crystallization temperature and crystallization rate of polypropylene. The increases were more remarkable in the case of the lignocellulose nanofibers than for wood flour. PMID:28788222

  20. Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening.

    PubMed

    Wang, Rui-Heng; Yuan, Xin-Yu; Meng, Lan-Huan; Zhu, Ben-Zhong; Zhu, Hong-Liang; Luo, Yun-Bo; Fu, Da-Qi

    2016-01-01

    Ethylene is crucial in climacteric fruit ripening. The ethylene signal pathway regulates several physiological alterations such as softening, carotenoid accumulation and sugar level reduction, and production of volatile compounds. All these physiological processes are controlled by numerous genes and their expression simultaneously changes at the onset of ripening. Ethylene insensitive 2 (EIN2) is a key component for ethylene signal transduction, and its mutation causes ethylene insensitivity. In tomato, silencing SlEIN2 resulted in a non-ripening phenotype and low ethylene production. RNA sequencing of SlEIN2-silenced and wild type tomato, and differential gene expression analyses, indicated that silencing SlEIN2 caused changes in more than 4,000 genes, including those related to photosynthesis, defense, and secondary metabolism. The relative expression level of 28 genes covering ripening-associated transcription factors, ethylene biosynthesis, ethylene signal pathway, chlorophyll binding proteins, lycopene and aroma biosynthesis, and defense pathway, showed that SlEIN2 influences ripening inhibitor (RIN) in a feedback loop, thus controlling the expression of several other genes. SlEIN2 regulates many aspects of fruit ripening, and is a key factor in the ethylene signal transduction pathway. Silencing SlEIN2 ultimately results in lycopene biosynthesis inhibition, which is the reason why tomato does not turn red, and this gene also affects the expression of several defense-associated genes. Although SlEIN2-silenced and green wild type fruits are similar in appearance, their metabolism is significantly different at the molecular level.

  1. Residual formaldehyde after low-temperature steam and formaldehyde sterilization

    PubMed Central

    Gibson, G. L.; Johnston, H. P.; Turkington, V. E.

    1968-01-01

    The levels of formaldehyde remaining in various articles have been estimated immediately after a low-temperature steam and formaldehyde sterilizing process and after various periods of aeration. These levels have been compared with the levels of ethylene oxide remaining after exposure to an ethylene oxide sterilizing process. In rubber and polythene and a plastic, formaldehyde levels are low and slowly fall even further. Ethylene oxide levels are relatively much higher even after seven days' aeration. It is not considered that the residual levels of formaldehyde in rubber, polythene, and a plastic should constitute a danger. Residual levels of formaldehyde in fabrics and paper are higher but this may be of value by giving a self-disinfecting action on storage. PMID:5717551

  2. Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits.

    PubMed

    Chen, Jiao; Liu, Xixia; Li, Fenfang; Li, Yixing; Yuan, Debao

    2017-01-01

    Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits.

  3. Cold shock treatment extends shelf life of naturally ripened or ethylene-ripened avocado fruits

    PubMed Central

    Li, Fenfang; Li, Yixing

    2017-01-01

    Avocado is an important tropical fruit with high commercial value, but has a relatively short storage life. In this study, the effects of cold shock treatment (CST) on shelf life of naturally ripened and ethylene-ripened avocado fruits were investigated. Fruits were immersed in ice water for 30 min, then subjected to natural or ethylene-induced ripening. Fruit color; firmness; respiration rate; ethylene production; and the activities of polygalacturonase (PG), pectin methylesterase (PME), and endo-β-1,4-glucanase were measured. Immersion in ice water for 30 min effectively delayed ripening-associated processes, including peel discoloration, pulp softening, respiration rate, and ethylene production during shelf life. The delay in fruit softening by CST was associated with decreased PG and endo-β-1,4-glucanase activities, but not PME activity. This method could potentially be a useful postharvest technology to extend shelf life of avocado fruits. PMID:29253879

  4. Epigenetic Regulation of Hormone-dependent Plant Growth Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecker, Joseph Robert

    2016-11-18

    Impact of EIN6, EEN and ethylene on the H3K27me3 dynamics in Arabidopsis: To assess the dynamic responsiveness of H3K27me3 levels to ethylene and how this might affect ethylene-induced gene expression, we plan to perform H3K27me3 ChIP-seq and RNA- seq experiments in parallel with etiolated seedlings in the absence and presence of ethylene. Further implementation of ein6, een and ein6een mutants will visualize how the H3K27me3 landscape (-/+ET) is altered when H3K27me3 demethylation and/or INO80-mediated chromatin remodeling is compromised. Additional ChIP-seq analyses with EIN6 will show if ethylene- induced H3K27me3 removal at certain genes is always accompanied by the presence ofmore » EIN6.« less

  5. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.

    PubMed

    Foo, Eloise; McAdam, Erin L; Weller, James L; Reid, James B

    2016-04-01

    The regulation of arbuscular mycorrhizal development and nodulation involves complex interactions between the plant and its microbial symbionts. In this study, we use the recently identified ethylene-insensitive ein2 mutant in pea (Pisum sativum L.) to explore the role of ethylene in the development of these symbioses. We show that ethylene acts as a strong negative regulator of nodulation, confirming reports in other legumes. Minor changes in gibberellin1 and indole-3-acetic acid levels in ein2 roots appear insufficient to explain the differences in nodulation. Double mutants produced by crosses between ein2 and the severely gibberellin-deficient na and brassinosteroid-deficient lk mutants showed increased nodule numbers and reduced nodule spacing compared with the na and lk single mutants, but nodule numbers and spacing were typical of ein2 plants, suggesting that the reduced number of nodules innaandlkplants is largely due to the elevated ethylene levels previously reported in these mutants. We show that ethylene can also negatively regulate mycorrhizae development when ethylene levels are elevated above basal levels, consistent with a role for ethylene in reducing symbiotic development under stressful conditions. In contrast to the hormone interactions in nodulation, ein2 does not override the effect of lk or na on the development of arbuscular mycorrhizae, suggesting that brassinosteroids and gibberellins influence this process largely independently of ethylene. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Ethylene resistance in flowering ornamental plants – improvements and future perspectives

    PubMed Central

    Olsen, Andreas; Lütken, Henrik; Hegelund, Josefine Nymark; Müller, Renate

    2015-01-01

    Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques. PMID:26504580

  7. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence.

    PubMed

    Lü, Peitao; Zhang, Changqing; Liu, Jitao; Liu, Xiaowei; Jiang, Guimei; Jiang, Xinqiang; Khan, Muhammad Ali; Wang, Liangsheng; Hong, Bo; Gao, Junping

    2014-05-01

    Rose (Rosa hybrida) is one of the most important ornamental plants worldwide; however, senescence of its petals terminates the ornamental value of the flower, resulting in major economic loss. It is known that the hormones abscisic acid (ABA) and ethylene promote petal senescence, while gibberellins (GAs) delay the process. However, the molecular mechanisms underlying the antagonistic effects amongst plant hormones during petal senescence are still unclear. Here we isolated RhHB1, a homeodomain-leucine zipper I transcription factor gene, from rose flowers. Quantitative RT-PCR and GUS reporter analyses showed that RhHB1 was strongly expressed in senescing petals, and its expression was induced by ABA or ethylene in petals. ABA or ethylene treatment clearly accelerated rose petal senescence, while application of the gibberellin GA3 delayed the process. However, silencing of RhHB1 delayed the ABA- or ethylene-mediated senescence, and resulted in higher petal anthocyanin levels and lower expression of RhSAG12. Moreover, treatment with paclobutrazol, an inhibitor of GA biosynthesis, repressed these delays. In addition, silencing of RhHB1 blocked the ABA- or ethylene-induced reduction in expression of the GA20 oxidase encoded by RhGA20ox1, a gene in the GA biosynthetic pathway. Furthermore, RhHB1 directly binds to the RhGA20ox1 promoter, and silencing of RhGA20ox1 promoted petal senescence. Eight senescence-related genes showed substantial differences in expression in petals after treatment with GA3 or paclobutrazol. These results suggest that RhHB1 mediates the antagonistic effect of GAs on ABA and ethylene during rose petal senescence, and that the promotion of petal senescence by ABA or ethylene operates through an RhHB1-RhGA20ox1 regulatory checkpoint. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  8. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana

    PubMed Central

    Chang, Ing-Feng

    2013-01-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis. PMID:23943848

  9. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana.

    PubMed

    Huang, Shih-Jhe; Chang, Chia-Lun; Wang, Po-Hsun; Tsai, Min-Chieh; Hsu, Pang-Hung; Chang, Ing-Feng

    2013-11-01

    Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis.

  10. United States Air Force Summer Faculty Research Program, 1988. Program Technical Report. Volume 3

    DTIC Science & Technology

    1988-12-01

    equivalents of U- bromosuccinimide. Although this dibromide ns inert to conventional hydrolysis with concentrated sulfuric acid at 11O*C, conversion to...by first dissolving in hot (II0C) sulfuric acid then pouring into ice water. The resulting precipitate ws air dried then recrystallized once more from...Catalysis Dr. Richard Carlin in Lewis Acid Molten Salts 36 A MCSCF Study of the Rearrangement Dr. Michael McKee of Nitromethane to Methyl Nitrite 37

  11. Decrease in fruit moisture content heralds and might launch the onset of ripening processes.

    PubMed

    Frenkel, Chaim; Hartman, Thomas G

    2012-10-01

    It is known that fruit ripening is a genetically programmed event but it is not entirely clear what metabolic cue(s) stimulate the onset of ripening, ethylene action notwithstanding. Here, we examined the conjecture that fruit ripening might be evoked by an autonomously induced decrease in tissue water status. We found decline in water content occurring at the onset of ripening in climacteric and nonclimacteric fruit, suggesting that this phenomenon might be universal. This decline in water content persisted throughout the ripening process in some fruit, whereas in others it reversed during the progression of the ripening process. Applied ethylene also induced a decrease in water content in potato (Solanum tuberosum) tubers. In ethylene-mutant tomato (Solanum lycopersicum) fruit (antisense to1-aminocyclopropane carboxylate synthase), cold-induced decline in water content stimulated onset of ripening processes apparently independently of ethylene action, suggesting cause-and-effect relationship between decreasing water content and onset of ripening. The decline in tissue water content, occurring naturally or induced by ethylene, was strongly correlated with a decrease in hydration (swelling) efficacy of cell wall preparations suggesting that hydration dynamics of cell walls might account for changes in tissue moisture content. Extent of cell wall swelling was, in turn, related to the degree of oxidative cross-linking of wall-bound phenolic acids, suggesting that oxidant-induced wall restructuring might mediate cell wall and, thus, fruit tissue hydration status. We propose that oxidant-induced cell wall remodeling and consequent wall dehydration might evoke stress signaling for the onset of ripening processes. This study suggests that decline in fruit water content is an early event in fruit ripening. This information may be used to gauge fruit maturity for appropriate harvest date and for processing. Control of fruit hydration state might be used to regulate the onset of fruit ripening. © 2012 Institute of Food Technologists®

  12. Microwave Dielectric Behavior of Soils. Report 2. A Unique Coaxial Measurement Apparatus

    DTIC Science & Technology

    1993-12-01

    the deionization process cr as a result of ions that originate from unclean and/or oxydized outer or inner conductor surfaces. The magnitude of low...speculative. Ethylene Glycol Data were collected on several different alcohols : ethylene glycol (ethanediol), methanol, and ethanol. However, becaue of surface

  13. MOLECULAR ANALYSIS OF THE INTERACTION OF ETHYLENE AND AUXIN DURING FLOWER ABSCISSION

    USDA-ARS?s Scientific Manuscript database

    Abscission, the separation of organs from the parent plant, results in postharvest quality loss in many ornamentals and other fresh produce. The process is initiated by changes in the auxin gradient across the abscission zone (AZ), is triggered by ethylene, and may be accelerated by postharvest stre...

  14. 40 CFR 63.10448 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) National Emission Standards for Hospital Ethylene Oxide Sterilizers Other Requirements and... Clean Air Act (CAA), in 40 CFR 63.2, and in this section as follows: Aeration process means any time... equipment that reduces the quantity of ethylene oxide in the effluent gas stream from sterilization and...

  15. 40 CFR 63.10448 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) National Emission Standards for Hospital Ethylene Oxide Sterilizers Other Requirements and... Clean Air Act (CAA), in 40 CFR 63.2, and in this section as follows: Aeration process means any time... equipment that reduces the quantity of ethylene oxide in the effluent gas stream from sterilization and...

  16. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  17. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    EPA Science Inventory

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  18. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (Interagency Science Discussion Draft)

    EPA Science Inventory

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from ot...

  19. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  20. Selective dehydration of bio-ethanol to ethylene catalyzed by lanthanum-phosphorous-modified HZSM-5: influence of the fusel.

    PubMed

    Hu, Yaochi; Zhan, Nina; Dou, Chang; Huang, He; Han, Yuwang; Yu, Dinghua; Hu, Yi

    2010-11-01

    Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.

  1. Ethylene signalling is mediating the early cadmium-induced oxidative challenge in Arabidopsis thaliana.

    PubMed

    Schellingen, Kerim; Van Der Straeten, Dominique; Remans, Tony; Vangronsveld, Jaco; Keunen, Els; Cuypers, Ann

    2015-10-01

    Cadmium (Cd) induces the generation of reactive oxygen species (ROS) and stimulates ethylene biosynthesis. The phytohormone ethylene is a regulator of many developmental and physiological plant processes as well as stress responses. Previous research indicated various links between ethylene signalling and oxidative stress. Our results support a correlation between the Cd-induced oxidative challenge and ethylene signalling in Arabidopsis thaliana leaves. The effects of 24 or 72 h exposure to 5 μM Cd on plant growth and several oxidative stress-related parameters were compared between wild-type (WT) and ethylene insensitive mutants (etr1-1, ein2-1, ein3-1). Cadmium-induced responses observed in WT plants were mainly affected in etr1-1 and ein2-1 mutants, of which the growth was less inhibited by Cd exposure as compared to WT and ein3-1 mutants. Both etr1-1 and ein2-1 showed a delayed response in the glutathione (GSH) metabolism, including GSH levels and transcript levels of GSH synthesising and recycling enzymes. Furthermore, the expression of different oxidative stress marker genes was significantly lower in Cd-exposed ein2-1 mutants, evidencing that ethylene signalling is involved in early responses to Cd stress. A model for the cross-talk between ethylene signalling and oxidative stress is proposed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening.

    PubMed

    Mou, Wangshu; Li, Dongdong; Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening.

  3. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening

    PubMed Central

    Bu, Jianwen; Jiang, Yuanyuan; Khan, Zia Ullah; Luo, Zisheng; Mao, Linchun; Ying, Tiejin

    2016-01-01

    ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening. PMID:27100326

  4. Recycling of plastic wastes with poly (ethylene-co-methacrylic acid) copolymer as compatibilizer and their conversion into high-end product.

    PubMed

    Rajasekaran, Divya; Maji, Pradip K

    2018-04-01

    This paper deals with the utilization of plastic wastes to a useful product. The major plastic pollutants that are considered to be in maximum use i.e. PET bottle and PE bags have been taken for consideration for recycling. As these two plastic wastes are not compatible, poly (ethylene-co-methacrylic acid) copolymer has been used as compatibilizer to process these two plastic wastes. Effect of dose of poly (ethylene-co-methacrylic acid) copolymer as compatibilizer has been studied here. It has been shown that only 3 wt% of poly (ethylene-co-methacrylic acid) copolymer is sufficient to make 3:1 mass ratio of PET bottle and polyethylene bags compatible. Compatibility has been examined through mechanical testing, thermal and morphological analysis. After analysing the property of recyclates, better mechanical and thermal property has been observed. Almost 500% of tensile property has been improved by addition of 3 wt% of poly (ethylene-co-methacrylic acid) copolymer in 3:1 mass ratio blend of PET bottle and PE bags than that of pristine blend. Morphological analysis by FESEM and AFM has also confirmed the compatibility of the blend. Experimental data showed better performance than available recycling process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene.

    PubMed

    Qi, Weiwei; Sun, Fan; Wang, Qianjie; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Luo, Xiaojin; Yang, Jinshui

    2011-09-01

    Plant height is a decisive factor in plant architecture. Rice (Oryza sativa) plants have the potential for rapid internodal elongation, which determines plant height. A large body of physiological research has shown that ethylene and gibberellin are involved in this process. The APETALA2 (AP2)/Ethylene-Responsive Element Binding Factor (ERF) family of transcriptional factors is only present in the plant kingdom. This family has various developmental and physiological functions. A rice AP2/ERF gene, OsEATB (for ERF protein associated with tillering and panicle branching) was cloned from indica rice variety 9311. Bioinformatic analysis suggested that this ERF has a potential new function. Ectopic expression of OsEATB showed that the cross talk between ethylene and gibberellin, which is mediated by OsEATB, might underlie differences in rice internode elongation. Analyses of gene expression demonstrated that OsEATB restricts ethylene-induced enhancement of gibberellin responsiveness during the internode elongation process by down-regulating the gibberellin biosynthetic gene, ent-kaurene synthase A. Plant height is negatively correlated with tiller number, and higher yields are typically obtained from dwarf crops. OsEATB reduces rice plant height and panicle length at maturity, promoting the branching potential of both tillers and spikelets. These are useful traits for breeding high-yielding crops.

  6. Effect of heat treatment on ethylene and CO2 emissions rates during papaya (Carica papaya L.) fruit ripening

    NASA Astrophysics Data System (ADS)

    da Silva, M. G.; Santos, E. O.; Sthel, M. S.; Cardoso, S. L.; Cavalli, A.; Monteiro, A. R.; de Oliveira, J. G.; Pereira, M. G.; Vargas, H.

    2003-01-01

    Ripening studies of nontreated and treated papaya (papaya L) are accomplished by monitoring the ethylene and CO2 emission rates of that climacteric fruit, to evaluate its shelf life. The treatments simulate the commercial Phitosanitarian process used to avoid the fly infestation. Ethylene emission was measured using a commercial CO2 laser driven photoacoustic setup and CO2, using a commercial gas analysis also based on the photothermal effect. The results show a marked change in ethylene and CO2 emission rate pattern for treated fruits when compared to the ones obtained for nontreated fruits and a displacement of the climacteric pick shown that the treatment causes a decrease of shelf life of fruit.

  7. Quantitative and Functional Phosphoproteomic Analysis Reveals that Ethylene Regulates Water Transport via the C-Terminal Phosphorylation of Aquaporin PIP2;1 in Arabidopsis.

    PubMed

    Qing, Dongjin; Yang, Zhu; Li, Mingzhe; Wong, Wai Shing; Guo, Guangyu; Liu, Shichang; Guo, Hongwei; Li, Ning

    2016-01-04

    Ethylene participates in the regulation of numerous cellular events and biological processes, including water loss, during leaf and flower petal wilting. The diverse ethylene responses may be regulated via dynamic interplays between protein phosphorylation/dephosphorylation and ubiquitin/26S proteasome-mediated protein degradation and protease cleavage. To address how ethylene alters protein phosphorylation through multi-furcated signaling pathways, we performed a (15)N stable isotope labelling-based, differential, and quantitative phosphoproteomics study on air- and ethylene-treated ethylene-insensitive Arabidopsis double loss-of-function mutant ein3-1/eil1-1. Among 535 non-redundant phosphopeptides identified, two and four phosphopeptides were up- and downregulated by ethylene, respectively. Ethylene-regulated phosphorylation of aquaporin PIP2;1 is positively correlated with the water flux rate and water loss in leaf. Genetic studies in combination with quantitative proteomics, immunoblot analysis, protoplast swelling/shrinking experiments, and leaf water loss assays on the transgenic plants expressing both the wild-type and S280A/S283A-mutated PIP2;1 in the both Col-0 and ein3eil1 genetic backgrounds suggest that ethylene increases water transport rate in Arabidopsis cells by enhancing S280/S283 phosphorylation at the C terminus of PIP2;1. Unknown kinase and/or phosphatase activities may participate in the initial up-regulation independent of the cellular functions of EIN3/EIL1. This finding contributes to our understanding of ethylene-regulated leaf wilting that is commonly observed during post-harvest storage of plant organs. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  8. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    PubMed Central

    2010-01-01

    Background Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-Methylcyclopropene. Results To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated. The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Conclusion Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species. PMID:20973957

  9. Berry ripening, pre-processing and thermal treatments affect the phenolic composition and antioxidant capacity of grape (Vitis vinifera L.) juice.

    PubMed

    Genova, Giuseppe; Tosetti, Roberta; Tonutti, Pietro

    2016-01-30

    Grape juice is an important dietary source of health-promoting antioxidant molecules. Different factors may affect juice composition and nutraceutical properties. The effects of some of these factors (harvest time, pre-processing ethylene treatment of grapes and juice thermal pasteurization) were here evaluated, considering in particular the phenolic composition and antioxidant capacity. Grapes (Vitis vinifera L., red-skinned variety Sangiovese) were collected twice in relation to the technological harvest (TH) and 12 days before TH (early harvest, EH) and treated with gaseous ethylene (1000 ppm) or air for 48 h. Fresh and pasteurized (78 °C for 30 min) juices were produced using a water bath. Three-way analysis of variance showed that the harvest date had the strongest impact on total polyphenols, hydroxycinnamates, flavonols, and especially on total flavonoids. Pre-processing ethylene treatment significantly increased the proanthocyanidin, anthocyanin and flavan-3-ol content in the juices. Pasteurization induced a significant increase in anthocyanin concentration. Antioxidant capacity was enhanced by ethylene treatment and pasteurization in juices from both TH and EH grapes. These results suggest that an appropriate management of grape harvesting date, postharvest and processing may lead to an improvement in nutraceutical quality of juices. Further research is needed to study the effect of the investigated factors on juice organoleptic properties. © 2015 Society of Chemical Industry.

  10. Overcoming substrate limitations for improved production of ethylene in E. coli.

    PubMed

    Lynch, Sean; Eckert, Carrie; Yu, Jianping; Gill, Ryan; Maness, Pin-Ching

    2016-01-01

    Ethylene is an important industrial compound for the production of a wide variety of plastics and chemicals. At present, ethylene production involves steam cracking of a fossil-based feedstock, representing the highest CO2-emitting process in the chemical industry. Biological ethylene production can be achieved via expression of a single protein, the ethylene-forming enzyme (EFE), found in some bacteria and fungi; it has the potential to provide a sustainable alternative to steam cracking, provided that significant increases in productivity can be achieved. A key barrier is determining factors that influence the availability of substrates for the EFE reaction in potential microbial hosts. In the presence of O2, EFE catalyzes ethylene formation from the substrates α-ketoglutarate (AKG) and arginine. The concentrations of AKG, a key TCA cycle intermediate, and arginine are tightly controlled by an intricate regulatory system that coordinates carbon and nitrogen metabolism. Therefore, reliably predicting which genetic changes will ultimately lead to increased AKG and arginine availability is challenging. We systematically explored the effects of media composition (rich versus defined), gene copy number, and the addition of exogenous substrates and other metabolites on the formation of ethylene in Escherichia coli expressing EFE. Guided by these results, we tested a number of genetic modifications predicted to improve substrate supply and ethylene production, including knockout of competing pathways and overexpression of key enzymes. Several such modifications led to higher AKG levels and higher ethylene productivity, with the best performing strain more than doubling ethylene productivity (from 81 ± 3 to 188 ± 13 nmol/OD600/mL). Both EFE activity and substrate supply can be limiting factors in ethylene production. Targeted modifications in central carbon metabolism, such as overexpression of isocitrate dehydrogenase, and deletion of glutamate synthase or the transcription regulator ArgR, can effectively enhance substrate supply and ethylene productivity. These results not only provide insight into the intricate regulatory network of the TCA cycle, but also guide future pathway and genome-scale engineering efforts to further boost ethylene productivity.

  11. DOE-GO-14154-1 OHIO FINAL report Velocys 30Sept08

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terry J. Mazanec

    2008-09-30

    The overall goal of the OHIO project was to develop a commercially viable high intensity process to produce ethylene by controlled catalytic reaction of ethane with oxygen in a microchannel reactor. Microchannel technology provides a breakthrough solution to the challenges identified in earlier development work on catalytic ethane oxidation. Heat and mass transfer limitations at the catalyst surface create destructively high temperatures that are responsible for increased production of waste products (CO, CO2, and CH4). The OHIO project focused on microscale energy and mass transfer management, designed to alleviate these transport limitations, thereby improving catalyst selectivity and saving energy-rich feedstock.more » The OHIO project evaluated ethane oxidation in small scale microchannel laboratory reactors including catalyst test units, and full commercial length single- and multi-channel reactors. Small scale catalyst and single channel results met target values for ethylene yields, demonstrating that the microchannel concept improves mass and heat transport compared to conventional reactors and results in improved ethylene yield. Earlier economic sensitivity studies of ethane oxidation processes suggested that only modest improvements were necessary to provide a system that provides significant feedstock, energy, and capital benefits compared to conventional steam ethane cracking. The key benefit derived from the OHIO process is energy savings. Ethylene production consumes more energy than any other U.S. chemical process.1 The OHIO process offers improved feedstock utilization and substantial energy savings due to a novel reaction pathway and the unique abilities of microchannel process technology to control the reaction temperature and other critical process parameters. Based on projected economic benefits of the process, the potential energy savings could reach 150 trillion Btu/yr by the year 2020, which is the equivalent of over 25 million barrels of oil.« less

  12. Increase in ACC oxidase levels and activities during paradormancy release of leafy spurge (Euphorbia esula) buds

    USDA-ARS?s Scientific Manuscript database

    The plant hormone ethylene is known to affect various developmental processes including dormancy and growth. Yet, little information is available about ethylene’s role during paradormancy break in adventitious buds of leafy spurge. In this study, we examined changes in ethylene evolution and the eth...

  13. Electron-cytochemical study of Ca2+ in cotyledon cells of soybean seedlings grown in microgravity

    NASA Technical Reports Server (NTRS)

    Nedukha, O.; Brown, C. S.; Kordyum, E.; Piastuch, W. C.; Guikema, J. A. (Principal Investigator)

    1999-01-01

    Microgravity and horizontal clinorotation are known to cause the rearrangement of the structural-functional organization of plant cells, leading to accelerated aging. Altered gravity conditions resulted in an increase in the droplets volume in cells and the destruction of chloroplast structure in Arabidopsis thaliana plants, an enhancement of cytosolic autophagaous processes, an increase in the respiration rate and a greater number of multimolecular forms of succinate- and malate dehydrogenases in cells of the Funaria hygrometrica protonema and Chlorella vulgaris, and changes in calcium balance of cells. Because ethylene is known to be involved in cell aging and microgravity appears to speed the process, and because soybean seedlings grown in space produce higher ethylene levels we asked: 1) does an acceleration of soybean cotyledon cell development and aging occur in microgravity? 2) what roles do Ca2+ ions and the enhanced ethylene level play in these events? Therefore, the goal of our investigation was to examine of the interaction of microgravity and ethylene on the localization of Ca2+ in cotyledon mesophyll of soybean seedlings.

  14. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation.

    PubMed

    Li, Juan; Xu, Heng-Hao; Liu, Wen-Cheng; Zhang, Xiao-Wei; Lu, Ying-Tang

    2015-08-01

    Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Synthesis of polyrotaxanes from acetyl-β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Ristić, I. S.; Nikolić, L.; Nikolić, V.; Ilić, D.; Budinski-Simendić, J.

    2011-12-01

    Polyrotaxanes are intermediary products in the synthesis of topological gels. They are created by inclusion complex formation of hydrophobic linear macromolecules with cyclodextrins or their derivatives. Then, pairs of cyclodextrin molecules with covalently linkage were practically forming the nodes of the semi-flexible polymer network. Such gels are called topological gels and they can absorb huge quantities of water due to the net flexibility allowing the poly(ethylene oxide) chains to slide through the cyclodextrin cavities, without being pulled out altogether. For polyrotaxane formation poly(ethylene oxide) was used like linear macromolecules. There are hydroxyl groups at poly(ethylene oxide) chains, whereby the linking of the voluminous molecules should be made. To avoid the reaction of cyclodextrin OH groups with stoppers, they should be protected by, e.g., acetylation. In this work, the acetylation of the OH groups of β-cyclodextrin was performed by acetic acid anhydride with iodine as the catalyst. The acetylation reaction was assessed by the FTIR and HPLC method. By the HPLC analysis was found that the acetylation was completed in 20 minutes. Inserting of poly(ethylene oxide) with 4000 g/mol molecule mass into acetyl-β-cyclodextrin with 2:1 poly(ethylene oxide) monomer unit to acetyl-β-cyclodextrin ratio was also monitored by FTIR, and it was found that the process was completed in 12 h at the temperature of 10°C. If the process is performed at temperatures above 10°C, or for periods longer than 12 hours, the process of uncontrolled hydrolysis of acetate groups was initiated.

  16. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones

    PubMed Central

    Iqbal, Noushina; Khan, Nafees A.; Ferrante, Antonio; Trivellini, Alice; Francini, Alessandra; Khan, M. I. R.

    2017-01-01

    The complex juvenile/maturity transition during a plant’s life cycle includes growth, reproduction, and senescence of its fundamental organs: leaves, flowers, and fruits. Growth and senescence of leaves, flowers, and fruits involve several genetic networks where the phytohormone ethylene plays a key role, together with other hormones, integrating different signals and allowing the onset of conditions favorable for stage progression, reproductive success and organ longevity. Changes in ethylene level, its perception, and the hormonal crosstalk directly or indirectly regulate the lifespan of plants. The present review focused on ethylene’s role in the development and senescence processes in leaves, flowers and fruits, paying special attention to the complex networks of ethylene crosstalk with other hormones. Moreover, aspects with limited information have been highlighted for future research, extending our understanding on the importance of ethylene during growth and senescence and boosting future research with the aim to improve the qualitative and quantitative traits of crops. PMID:28421102

  17. In-Situ Immobilization of Ni Complex on Amine-Grafted SiO₂ for Ethylene Polymerization.

    PubMed

    Lee, Sang Yun; Ko, Young Soo

    2018-02-01

    The results on the In-Situ synthesis of Ni complex on amine-grafted SiO2 and its ethylene polymerization were explained. SiO2/2NS/(DME)NiBr2 and SiO2/3NS/(DME)NiBr2(Ni(II) bromide ethylene glycol dimethyl ether) catalysts were active for ethylene polymerization. The highest activity was shown at the polymerization temperature of 25 °C, and SiO2/2NS/(DME)NiBr2 exhibited higher activity than SiO2/3NS/(DME)NiBr2. The PDI values of SiO2/2NS/(DME)NiBr2 were in the range of 8~18. The aminosilane compounds and Ni were evenly grafted and distributed in the silica. It was proposed that DME ligand was mostly removed during the supporting process, and only NiBr2 was complexed with the amine group of 2NS based on the results of FT-IR and ethylene polymerization.

  18. Ethylene thiourea: thyroid function in two groups of exposed workers.

    PubMed Central

    Smith, D M

    1984-01-01

    Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH). PMID:6743584

  19. Ethylene thiourea: thyroid function in two groups of exposed workers.

    PubMed

    Smith, D M

    1984-08-01

    Ethylene thiourea is manufactured at one factory in the United Kingdom and is mixed into masterbatch rubber at another. Clinical examinations and thyroid function tests were carried out over a period of three years on eight process workers and five mixers and on matched controls. The results show that the exposed mixers, but not exposed process workers, have significantly lower levels of total thyroxine (T4) than the controls. One mixer had an appreciably raised level of thyroid stimulation hormone (TSH).

  20. Enhanced Oxidative Dehydrogenation of Ethane with Facilitated Transport Membranes for Low Cost Production of Ethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemser, Stuart; Shangguan, Ning; Pennisi, Kenneth

    This SBIR program has been extremely successful. We have met or exceeded all of the key objectives. We have successfully demonstrated the product and process feasibility. Compact Membrane Systems proposed a membrane separation technology which can efficiently separate ethylene from ethane in the presence of H 2O and CO 2. The CMS ethylene/ethane separation will significantly improve the economics of the Oxidative Dehydrogenation (ODH) process. We have developed membranes with high ethylene flux and high ethylene/ethane selectivity. These membranes have also shown good resistance to high concentration CO 2 and CO. Economic analysis shows at least **% cost savings comparedmore » with conventional distillation used for ethylene/ethane separation. Given our success to date, we have been able to establish key direct partnerships with other collaborators. The primary objective of the Phase I program was to develop a stable membrane that is capable of providing very efficient and cost effective production of ethylene from ethane. The CMS fluorinated membrane developed during this program was found to be able to provide very good C 2H 4/C 2H 6 selectivity and outstanding C 2H 4 permeance. With the development of the fast and highly selective ethylene CMS membrane, we have achieved all our Phase I program objectives. This is especially true of the estimated cost of ethylene production that is projected to be over **% less than the conventional method (distillation) at scale applications (** Nm3/h). The final result is better than the Phase I goal of 30% less. In summary, during the Phase I, we developed a CMS membrane with a high C 2H 4 permeance good C 2H 4/C 2H 6 selectivity. The stability and anti-fouling ability of the CMS membrane was demonstrated by exposing the membrane to a C 2H 4/C 2H 6 mixture gas for 7 weeks. A membrane based ODH production and separation system was designed and the economic and engineering evaluation using the VMGSim models predicted a cost of $***. As previously stated this is at least a 35% cost reduction from the conventional methods and higher than the Phase I goal (25% cost reduction). The successful Phase I research attracted the interest from several major industrial players who are willing to provide partnership and support of further research. Successful development of the fluoropolymer membranes for C 2H 4/C 2H 6 separation in the process of ODH will provide significant benefits to the public: 1. Development of a highly economically profitable use of shale gas resource; 2. More economic growth and job creations based on the rich shale gas resource in US; 3. Huge energy savings compared with the conventional production of ethylene.« less

  1. Pesticide poisoning.

    PubMed

    Goel, Ashish; Aggarwal, Praveen

    2007-01-01

    Acute poisoning with pesticides is a global public health problem and accounts for as many as 300,000 deaths worldwide every year. The majority of deaths occur due to exposure to organophosphates, organochlorines and aluminium phosphide. Organophosphate compounds inhibit acetylcholinesterase resulting in acute toxicity. Intermediate syndrome can develop in a number of patients and may lead to respiratory paralysis and death. Management consists of proper oxygenation, atropine in escalating doses and pralidoxime in high doses. It is Important to decontaminate the skin while taking precautions to avoid secondary contamination of health personnel. Organochlorine pesticides are toxic to the central nervous system and sensitize the myocardium to catecholamines. Treatment involves supportive care and avoiding exogenous sympathomimetic agents. Ingestion of paraquat causes severe inflammation of the throat, corrosive injury to the gastrointestinal tract, renal tubular necrosis, hepatic necrosis and pulmonary fibrosis. Administration of oxygen should be avoided as it produces more fibrosis. Use of immunosuppressive agents have improved outcome in patients with paraquat poisoning. Rodenticides include thallium, superwarfarins, barium carbonate and phosphides (aluminium and zinc phosphide). Alopecia is an atypical feature of thallium toxicity. Most exposures to superwarfarins are harmless but prolonged bleeding may occur. Barium carbonate Ingestion can cause severe hypokalaemia and respiratory muscle paralysis. Aluminium phosphide is a highly toxic agent with mortality ranging from 37% to 100%. It inhibits mitochondrial cytochrome c oxidase and leads to pulmonary and cardiac toxicity. Treatment is supportive with some studies suggesting a beneficial effect of magnesium sulphate. Pyrethroids and insect repellants (e.g. diethyltoluamide) are relatively harmless but can cause toxic effects to pulmonary and central nervous systems. Ethylene dibromide-a highly toxic, fumigant pesticide-produces oral ulcerations, followed by liver and renal toxicity, and is almost uniformly fatal. Physicians working in remote and rural areas need to be educated about early diagnosis and proper management using supportive care and antidotes, wherever available.

  2. Rice Ethylene-Response AP2/ERF Factor OsEATB Restricts Internode Elongation by Down-Regulating a Gibberellin Biosynthetic Gene1[W][OA

    PubMed Central

    Qi, Weiwei; Sun, Fan; Wang, Qianjie; Chen, Mingluan; Huang, Yunqing; Feng, Yu-Qi; Luo, Xiaojin; Yang, Jinshui

    2011-01-01

    Plant height is a decisive factor in plant architecture. Rice (Oryza sativa) plants have the potential for rapid internodal elongation, which determines plant height. A large body of physiological research has shown that ethylene and gibberellin are involved in this process. The APETALA2 (AP2)/Ethylene-Responsive Element Binding Factor (ERF) family of transcriptional factors is only present in the plant kingdom. This family has various developmental and physiological functions. A rice AP2/ERF gene, OsEATB (for ERF protein associated with tillering and panicle branching) was cloned from indica rice variety 9311. Bioinformatic analysis suggested that this ERF has a potential new function. Ectopic expression of OsEATB showed that the cross talk between ethylene and gibberellin, which is mediated by OsEATB, might underlie differences in rice internode elongation. Analyses of gene expression demonstrated that OsEATB restricts ethylene-induced enhancement of gibberellin responsiveness during the internode elongation process by down-regulating the gibberellin biosynthetic gene, ent-kaurene synthase A. Plant height is negatively correlated with tiller number, and higher yields are typically obtained from dwarf crops. OsEATB reduces rice plant height and panicle length at maturity, promoting the branching potential of both tillers and spikelets. These are useful traits for breeding high-yielding crops. PMID:21753115

  3. Comparative Analysis of DNA Methylation Reveals Specific Regulations on Ethylene Pathway in Tomato Fruit

    PubMed Central

    Zuo, Jinhua; Wang, Yunxiang; Zhu, Benzhong; Luo, Yunbo; Wang, Qing; Gao, Lipu

    2018-01-01

    DNA methylation is an essential feature of epigenetic regulation and plays a role in various physiological and biochemical processes at CG, CHG, and CHH sites in plants. LeERF1 is an ethylene response factor (ERF) found in tomatoes which plays an important role in ethylene signal transduction. To explore the characteristics of DNA methylation in the ethylene pathway, sense-/antisense-LeERF1 transgenic tomato fruit were chosen for deep sequencing and bioinformatics parsing. The methylation type with the greatest distribution was CG, (71.60–72.80%) and CHH was found least frequently (10.70–12.50%). The level of DNA methylation was different among different tomato genomic regions. The differentially methylated regions (DMRs) and the differentially expressed genes (DEGs) were conjointly analyzed and 3030 different expressed genes were found, of which several are involved in ethylene synthesis and signaling transduction (such as ACS, ACO, MADS-Box, ERFs, and F-box). Furthermore, the relationships between DNA methylation and microRNAs (miRNAs) were also deciphered, providing basic information for the further study of DNA methylation and small RNAs involved in the ethylene pathway. PMID:29883429

  4. Effects of stress ethylene inhibitors on sweet clover (Melilotus Alba L.) seedling growth in microgravity

    NASA Technical Reports Server (NTRS)

    Gallegos, Gregory L.; Peterson, Barbara V.; Brown, Christopher S.; Guikema, James A.

    1995-01-01

    Previous experiments from our lab have shown that seeds of sweet clover, when germinated and grown within the Fluid Processing Apparatus (FPA) on a slow rotating clinostat produce significantly greater levels of the volatile stress hormone, ethylene, when compared to seeds treated the same but without clinorotation. In both conditions, carbon dioxide levels reached high levels and seedling growth was inhibited. However, clinorotation inhibited growth to a greater extent. To help determine to what extent microgravity influences stress ethylene production and to what extent ethylene inhibits seedling growth, we have extended the above experiments by growing sweet clover in the presence of aminooxyacetic acid (AOA) and silver nitrate (AgNO3), inhibitors of stress ethylene biosynthesis and action, respectively. Seeds of sweet clover were germinated and grown for five days in the FPA under two gravity conditions: under stationary conditions on Earth and in microgravity onboard the space shuttle, Discovery (STS-63), which launched Feb. 3, 1995. Upon recovery, gas samples were aspirated from the growth chambers and carbon dioxide and ethylene concentrations were measured using a gas chromatograph. Then the tissue was weighed, photographed and fixed, and is current undergoing further morphological and microscopic characterization.

  5. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis.

    PubMed

    Akagi, Aya; Dandekar, Abhaya M; Stotz, Henrik U

    2011-11-01

    The plant hormone ethylene regulates fruit ripening, other developmental processes, and a subset of defense responses. Here, we show that 1-aminocyclopropane-1-carboxylic acid synthase (ACS)-silenced apple (Malus domestica) fruit that express a sense construct of ACS were more susceptible to Botrytis cinerea than untransformed apple, demonstrating that ethylene strengthens fruit resistance to B. cinerea infection. Because ethylene response factors (ERFs) are known to contribute to resistance against B. cinerea via the ethylene-signaling pathway, we cloned four ERF cDNAs from fruit of M. domestica: MdERF3, -4, -5, and -6. Expression of all four MdERF mRNAs was ethylene dependent and induced by wounding or by B. cinerea infection. B. cinerea infection suppressed rapid induction of wound-related MdERF expression. MdERF3 was the only mRNA induced by wounding and B. cinerea infection in ACS-suppressed apple fruit, although its induction was reduced compared with wild-type apple. Promoter regions of all four MdERF genes were cloned and putative cis-elements were identified in each promoter. Transient expression of MdERF3 in tobacco increased expression of the GCC-box containing gene chitinase 48.

  6. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1998-01-01

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.

  7. Proteomes and Ubiquitylomes Analysis Reveals the Involvement of Ubiquitination in Protein Degradation in Petunias1

    PubMed Central

    Liu, Juanxu; Wei, Qian; Wang, Rongmin; Yang, Weiyuan; Ma, Yueyue; Chen, Guoju

    2017-01-01

    Petal senescence is a complex programmed process. It has been demonstrated previously that treatment with ethylene, a plant hormone involved in senescence, can extensively alter transcriptome and proteome profiles in plants. However, little is known regarding the impact of ethylene on posttranslational modification (PTM) or the association between PTM and the proteome. Protein degradation is one of the hallmarks of senescence, and ubiquitination, a major PTM in eukaryotes, plays important roles in protein degradation. In this study, we first obtained reference petunia (Petunia hybrida) transcriptome data via RNA sequencing. Next, we quantitatively investigated the petunia proteome and ubiquitylome and the association between them in petunia corollas following ethylene treatment. In total, 51,799 unigenes, 3,606 proteins, and 2,270 ubiquitination sites were quantified 16 h after ethylene treatment. Treatment with ethylene resulted in 14,448 down-regulated and 6,303 up-regulated unigenes (absolute log2 fold change > 1 and false discovery rate < 0.001), 284 down-regulated and 233 up-regulated proteins, and 320 up-regulated and 127 down-regulated ubiquitination sites using a 1.5-fold threshold (P < 0.05), indicating that global ubiquitination levels increase during ethylene-mediated corolla senescence in petunia. Several putative ubiquitin ligases were up-regulated at the protein and transcription levels. Our results showed that the global proteome and ubiquitylome were negatively correlated and that ubiquitination could be involved in the degradation of proteins during ethylene-mediated corolla senescence in petunia. Ethylene regulates hormone signaling transduction pathways at both the protein and ubiquitination levels in petunia corollas. In addition, our results revealed that ethylene increases the ubiquitination levels of proteins involved in endoplasmic reticulum-associated degradation. PMID:27810942

  8. Inhibition of biphasic ethylene production enhances tolerance to abiotic stress by reducing the accumulation of reactive oxygen species in Nicotiana tabacum.

    PubMed

    Wi, Soo Jin; Jang, Su Jin; Park, Ky Young

    2010-07-01

    Reactive oxygen species (ROS), such as H(2)O(2), are important plant cell signaling molecules involved in responses to biotic and abiotic stresses and in developmental and physiological processes. Despite the well-known physiological functions of ethylene production and stress signaling via ROS during stresses, whether ethylene acts alone or in conjunction with ROS has not yet been fully elucidated. Therefore, we investigated the relationship between ethylene production and ROS accumulation during the response to abiotic stress. We used three independent transgenic tobacco lines, CAS-AS-2, -3 and -4, in which an antisense transcript of the senescence-related ACC synthase (ACS) gene from carnation flower (CARACC, Gen-Bank accession No. M66619) was expressed heterologously. Biphasic ethylene biosynthesis was reduced significantly in these transgenic plants, with or without H(2)O(2) treatment. These plants exhibited significantly reduced H(2)O(2)-induced gene-specific expression of ACS members, which were regulated in a time-dependent manner. The higher levels of NtACS1 expression in wild-type plants led to a second peak in ethylene production, which resulted in a more severe level of necrosis and cell death, as determined by trypan blue staining. In the transgenic lines, upregulated transcription of CAB, POR1 and RbcS resulted in increased photosynthetic performance following salt stress. This stress tolerance of H(2)O(2)-treated transgenic plants resulted from reduced ethylene biosynthesis, which decreased ROS accumulation via increased gene expression and activity of ROS-detoxifying enzymes, including MnSOD, CuZnSOD, and catalase. Therefore, it is suggested that ethylene plays a potentially critical role as an amplifier for ROS accumulation, implying a synergistic effect between biosynthesis of ROS and ethylene.

  9. Development of Metal-Organic Framework for Gaseous Plant Hormone Encapsulation To Manage Ripening of Climacteric Produce.

    PubMed

    Zhang, Boce; Luo, Yaguang; Kanyuck, Kelsey; Bauchan, Gary; Mowery, Joseph; Zavalij, Peter

    2016-06-29

    Controlled ripening of climacteric fruits, such as bananas and avocados, is a critical step to provide consumers with high-quality products while reducing postharvest losses. Prior to ripening, these fruits can be stored for an extended period of time but are usually not suitable for consumption. However, once ripening is initiated, they undergo irreversible changes that lead to rapid quality loss and decay if not consumed within a short window of time. Therefore, technologies to slow the ripening process after its onset or to stimulate ripening immediately before consumption are in high demand. In this study, we developed a solid porous metal-organic framework (MOF) to encapsulate gaseous ethylene for subsequent release. We evaluated the feasibility of this technology for on-demand stimulated ripening of bananas and avocados. Copper terephthalate (CuTPA) MOF was synthesized via a solvothermal method and loaded with ethylene gas. Its crystalline structure and chemical composition were characterized by X-ray diffraction crystallography, porosity by N2 and ethylene isotherms, and morphology by electron microscopy. The MOF loaded with ethylene (MOF-ethylene) was placed inside sealed containers with preclimacteric bananas and avocados and stored at 16 °C. The headspace gas composition and fruit color and texture were monitored periodically. Results showed that this CuTPA MOF is highly porous, with a total pore volume of 0.39 cm(3)/g. A 50 mg portion of MOF-ethylene can absorb and release up to 654 μL/L of ethylene in a 4 L container. MOF-ethylene significantly accelerated the ripening-related color and firmness changes of treated bananas and avocados. This result suggests that MOF-ethylene technology could be used for postharvest application to stimulate ripening just before the point of consumption.

  10. Effects of overproduced ethylene on the contents of other phytohormones and expression of their key biosynthetic genes.

    PubMed

    Li, Weiqiang; Nishiyama, Rie; Watanabe, Yasuko; Van Ha, Chien; Kojima, Mikiko; An, Ping; Tian, Lei; Tian, Chunjie; Sakakibara, Hitoshi; Tran, Lam-Son Phan

    2018-05-10

    Ethylene is involved in regulation of various aspects of plant growth and development. Physiological and genetic analyses have indicated the existence of crosstalk between ethylene and other phytohormones, including auxin, cytokinin (CK), abscisic acid (ABA), gibberellin (GA), salicylic acid (SA), jasmonic acid (JA), brassinosteroid (BR) and strigolactone (SL) in regulation of different developmental processes. However, the effects of ethylene on the biosynthesis and contents of these hormones are not fully understood. Here, we investigated how overproduction of ethylene may affect the contents of other plant hormones using the ethylene-overproducing mutant ethylene-overproducer 1 (eto1-1). The contents of various hormones and transcript levels of the associated biosynthetic genes in the 10-day-old Arabidopsis eto1-1 mutant and wild-type (WT) plants were determined and compared. Higher levels of CK and ABA, while lower levels of auxin, SA and GA were observed in eto1-1 plants in comparison with WT, which was supported by the up- or down-regulation of their biosynthetic genes. Although we could not quantify the BR and SL contents in Arabidopsis, we observed that the transcript levels of the potential rate-limiting BR and SL biosynthetic genes were increased in the eto1-1 versus WT plants, suggesting that BR and SL levels might be enhanced by ethylene overproduction. JA level was not affected by overproduction of ethylene, which might be explained by unaltered expression level of the proposed rate-limiting JA biosynthetic gene allene oxide synthase. Taken together, our results suggest that ET affects the levels of auxin, CK, ABA, SA and GA, and potentially BR and SL, by influencing the expression of genes involved in the rate-limiting steps of their biosynthesis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. EIN2 mediates direct regulation of histone acetylation in the ethylene response.

    PubMed

    Zhang, Fan; Wang, Likai; Qi, Bin; Zhao, Bo; Ko, Eun Esther; Riggan, Nathaniel D; Chin, Kevin; Qiao, Hong

    2017-09-19

    Ethylene gas is essential for developmental processes and stress responses in plants. Although the membrane-bound protein EIN2 is critical for ethylene signaling, the mechanism by which the ethylene signal is transduced remains largely unknown. Here we show the levels of H3K14Ac and H3K23Ac are correlated with the levels of EIN2 protein and demonstrate EIN2 C terminus (EIN2-C) is sufficient to rescue the levels of H3K14/23Ac of ein2 -5 at the target loci, using CRISPR/dCas9-EIN2-C. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) and ChIP-reChIP-seq analyses revealed that EIN2-C associates with histone partially through an interaction with EIN2 nuclear-associated protein1 (ENAP1), which preferentially binds to the genome regions that are associated with actively expressed genes both with and without ethylene treatments. Specifically, in the presence of ethylene, ENAP1-binding regions are more accessible upon the interaction with EIN2, and more EIN3 proteins bind to the loci where ENAP1 is enriched for a quick response. Together, these results reveal EIN2-C is the key factor regulating H3K14Ac and H3K23Ac in response to ethylene and uncover a unique mechanism by which ENAP1 interacts with chromatin, potentially preserving the open chromatin regions in the absence of ethylene; in the presence of ethylene, EIN2 interacts with ENAP1, elevating the levels of H3K14Ac and H3K23Ac, promoting more EIN3 binding to the targets shared with ENAP1 and resulting in a rapid transcriptional regulation.

  12. Hypobaric Control of Ethylene-Induced Leaf Senescence in Intact Plants of Phaseolus vulgaris L. 1

    PubMed Central

    Nilsen, Karl N.; Hodges, Clinton F.

    1983-01-01

    A controlled atmospheric-environment system (CAES) designed to sustain normal or hypobaric ambient growing conditions was developed, described, and evaluated for its effectiveness as a research tool capable of controlling ethylene-induced leaf senescence in intact plants of Phaseolus vulgaris L. Senescence was prematurely-induced in primary leaves by treatment with 30 parts per million ethephon. Ethephon-derived endogenous ethylene reached peak levels within 6 hours at 26°C. Total endogenous ethylene levels then temporarily stabilized at approximately 1.75 microliters per liter from 6 to 24 hours. Thereafter, a progressive rise in ethylene resulted from leaf tissue metabolism and release. Throughout the study, the endogenous ethylene content of ethephon-treated leaves was greater than that of nontreated leaves. Subjecting ethephon-treated leaves to atmospheres of 200 millibars, with O2 and CO2 compositions set to approximate normal atmospheric partial pressures, prevented chlorophyll loss. Alternately, subjecting ethephon-treated plants to 200 millibars of air only partially prevented chlorophyll loss. Hypobaric conditions (200 millibars), with O2 and CO2 at normal atmospheric availability, could be delayed until 48 hours after ethephon treatment and still prevent most leaf senescence. In conclusion, hypobaric conditions established and maintained within the CAES prevented ethylene-induced senescence (chlorosis) in intact plants, provided O2 and CO2 partial pressures were maintained at levels approximating normal ambient availability. An unexpected increase in endogenous ethylene was detected within nontreated control leaves 48 hours subsequent to relocation from winter greenhouse conditions (latitude, 42°00″ N) to the CAES operating at normal ambient pressure. The longer photoperiod and/or higher temperature utilized within the CAES are hypothesized to influence ethylene metabolism directly and growth-promotive processes (e.g. response thresholds) indirectly. PMID:16662806

  13. Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development

    PubMed Central

    Trivellini, Alice; Ferrante, Antonio; Vernieri, Paolo; Serra, Giovanni

    2011-01-01

    The effect of the complex relationship between ethylene and abscisic acid (ABA) on flower development and senescence in Hibiscus rosa-sinensis L. was investigated. Ethylene biosynthetic (HrsACS and HrsACO) and receptor (HrsETR and HrsERS) genes were isolated and their expression evaluated in three different floral tissues (petals, style–stigma plus stamens, and ovaries) of detached buds and open flowers. This was achieved through treatment with 0.1 mM 1-aminocyclopropane-1-carboxylic acid (ACC) solution, 500 nl l−1 methylcyclopropene (1-MCP), and 0.1 mM ABA solution. Treatment with ACC and 1-MCP confirmed that flower senescence in hibiscus is ethylene dependent, and treatment with exogenous ABA suggested that ABA may play a role in this process. The 1-MCP impeded petal in-rolling and decreased ABA content in detached open flowers after 9 h. This was preceded by an earlier and sequential increase in ABA content in 1-MCP-treated petals and style–stigma plus stamens between 1 h and 6 h. ACC treatment markedly accelerated flower senescence and increased ethylene production after 6 h and 9 h, particularly in style–stigma plus stamens. Ethylene evolution was positively correlated in these floral tissues with the induction of the gene expression of ethylene biosynthetic and receptor genes. Finally, ABA negatively affected the ethylene biosynthetic pathway and tissue sensitivity in all flower tissues. Transcript abundance of HrsACS, HrsACO, HrsETR, and HrsERS was reduced by exogenous ABA treatment. This research underlines the regulatory effect of ABA on the ethylene biosynthetic and perception machinery at a physiological and molecular level when inhibitors or promoters of senescence are exogenously applied. PMID:21841180

  14. NREL Produces Ethylene via Photosynthesis | News | NREL

    Science.gov Websites

    process, by contrast, produces ethylene by using carbon dioxide, which is food for the bacteria. That three tons that would be emitted by tapping fossil fuels and another three tons absorbed by the bacteria currently hitting plants, algae and bacteria capable of producing fuels directly. Ten years ago, a group of

  15. Controllable Biotinylated Poly(Ethylene-co-Glycidyl Methacrylate) (PE-co-GMA) Nanofibers to Bind Streptavidin-Horseradish Peroxidase (HRP) for Potential Biosensor Applications

    USDA-ARS?s Scientific Manuscript database

    Poly(ethylene-co-glycidyl methacrylate) (PE-co-GMA) nanofibers with abundant active epoxy groups on surfaces were fabricated through a novel manufacturing process. The prepared PE-co-GMA nanofibers with different average diameters ranging from 100 to 400 nm were aminated by reacting the epoxy groups...

  16. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice.

    PubMed

    Yu, Yanwen; Yang, Dexin; Zhou, Shirong; Gu, Juntao; Wang, Fengru; Dong, Jingao; Huang, Rongfeng

    2017-01-01

    Drought is an important factor limiting plant development and crop production. Dissecting the factors involved in this process is the key for enhancement of plant tolerance to drought stress by genetic approach. Here, we evaluated the regulatory function of a novel rice ethylene response factor (ERF) OsERF109 in drought stress. Expression of OsERF109 was rapidly induced by stress and phytohormones. Subcellular localization and transactivation assay demonstrated that OsERF109 was localized in nucleus and possessed transactivation activity. Transgenic plants overexpressing (OE) and knockdown with RNA interfering (RI) OsERF109 exhibited significantly reduced and improved drought resistance, respectively, indicating that OsERF109 negatively regulates drought resistance in rice. Furthermore, measurement by gas chromatography showed that ethylene contents were less in OE while more in RI lines than these in wild types, supporting the data of drought tolerance and water loss in transgenic lines. Quantitative real-time PCR analysis also proved the regulation of OsERF109 in the expression of OSACS6, OSACO2, and OsERF3, which have been identified to play important roles in ethylene biosynthesis. Based on these results, our data evidence that OsERF109 regulates drought resistance by affecting the ethylene biosynthesis in rice. Overall, our study reveals the negative role of OsERF109 in ethylene biosynthesis and drought tolerance in rice.

  17. Modulated growth of nanoparticles. Application for sensing nerve gases.

    PubMed

    Virel, Ana; Saa, Laura; Pavlov, Valeri

    2009-01-01

    Hydrolysis of acetylthiocholine mediated by acetylcholine esterase yields the thiol-bearing compound thiocholine. At trace concentrations, thiocholine modulates the growth of Au-Ag nanoparticles on seeding gold nanoparticles in the presence of ascorbic acid. Inhibition of the enzyme by 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51) or by diethyl p-nitrophenyl phosphate (paraoxon) produces lower yields of thiocholine, promoting the catalytic growth of Au-Ag nanoparticles. Here, we describe the development of a simple and sensitive colorimetric assay for the detection of AChE inhibitors.

  18. New Synthetic Approach for the Incorporation of 3,2-Hydroxypyridinone (HOPO) Ligands: Synthesis of Structurally Diverse Poly HOPO Chelators

    PubMed Central

    Arumugam, Jayanthi; Brown, Hayley A.; Jacobs, Hollie K.; Gopalan, Aravamudan S.

    2011-01-01

    The HOPO sulfonamide reagent, 3, was prepared from commercial 2,3-dihydroxypyridine in four steps in good yields. Sulfonamide 3 readily underwent selective alkylation with dibromides in the presence of base or could be coupled to alcohols using Mitsunobu conditions. The utility of this nucleophilic HOPO reagent was demonstrated by the synthesis some tris and tetraHOPO chelators. This approach for tethering HOPO ligands is unique and flexible as shown by the preparation of HOPO/iminocarboxylic acid chelator 17. PMID:21709749

  19. An Approach to Vicinal t-Boc-Amino Dibromides via Catalytic Aminobromination of Nitrostyrenes without using Chromatography and Recrystallization

    PubMed Central

    Sun, Hao; Han, Jianlin; Kattamuri, Padmanabha V.; Pan, Yi; Li, Guigen

    2013-01-01

    1.0 % Mol of K3PO4·3H2O was found to catalyze aminohalogenation reaction of nitrostyrenes with N,N-dibromo-tert-butylcarbamate (t-Boc-NBr2) in dichloroethane system. Good to excellent yields and complete regioselectivity have been achieved by taking advantage of the GAP work-up without using traditional purification techniques such as column chromatography and recrystallization. New mechanism was proposed involving radical and ionic catalytic cycles and an intramolecular migration. PMID:23311641

  20. Geometric analysis of Arabidopsis root apex reveals a new aspect of the ethylene signal transduction pathway in development

    NASA Technical Reports Server (NTRS)

    Cervantes, Emilio; Tocino, Angel

    2005-01-01

    Structurally, ethylene is the simplest phytohormone and regulates multiple aspects of plant growth and development. Its effects are mediated by a signal transduction cascade involving receptors, MAP kinases and transcription factors. Many morphological effects of ethylene in plant development, including root size, have been previously described. In this article a combined geometric and algebraic approach has been used to analyse the shape and the curvature in the root apex of Arabidopsis seedlings. The process requires the fitting of Bezier curves that reproduce the root apex shape, and the calculation of the corresponding curvatures. The application of the method has allowed us to identify significant differences in the root curvatures of ethylene insensitive mutants (ein2-1 and etr1-1) with respect to the wild-type Columbia.

  1. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    PubMed

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and biomass-derived wastewater streams. Copyright © 2018. Published by Elsevier Inc.

  2. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be < 4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  3. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    PubMed

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be <4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. On the Radiolysis of Ethylene Ices by Energetic Electrons and Implications to the Extraterrestrial Hydrocarbon Chemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Li; Maity, Surajit; Abplanalp, Matt; Turner, Andrew; Kaiser, Ralf I.

    2014-07-01

    The chemical processing of ethylene ices (C2H4) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH4), the C2 species acetylene (C2H2), ethane (C2H6), the ethyl radical (C2H5), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C4H8) and n-butane (C4H10). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.

  5. Sterilization of medical devices by ethylene oxide, determination of the dissipation of residues, and use of Green Fluorescent Protein as an indicator of process control.

    PubMed

    Dias, Fábio N; Ishii, Marina; Nogaroto, Sergio L; Piccini, Bruno; Penna, Thereza C V

    2009-11-01

    Ethylene oxide (EO) is used to sterilize Oxygenator and Tubing applied to heart surgery. Residual levels of EO and its derivatives, ethylene chlorohydrin (ECH) and ethylene glycol (EG), may be hazardous to the patients. Therefore, it must be removed by the aeration process. This study aimed to estimate the minimum aeration time for these devices to attain safe limits for use (avoiding excessive aeration time) and to evaluate the Green Fluorescent Protein (GFP) as a biosensor capable of best indicating the distribution and penetration of EO gas throughout the sterilization chamber. Sterilization cycles of 2, 4, and 8 h were monitored by Bacillus atrophaeus ATCC 9372 as a biological indicator (BI) and by the GFP. Residual levels of EO, ECH, and EG were determined by gas chromatography (GC), and the residual dissipation was studied. Safe limits were reached right after the sterilization process for Oxygenator and after 204 h of aeration for Tubing. In the 2 h cycle, the GFP concentration decreased from 4.8 (+/-3.2)% to 7.5 (+/-2.5)%. For the 4 h cycle, the GFP concentration decreased from 17.4 (+/-3.0)% to 21.5 (+/-6.8)%, and in the 8 h cycle, it decreased from 22.5 (+/-3.2)% to 23.9 (+/-3.9)%. This finding showed the potentiality for GFP applications as an EO biosensor.

  6. Processing and characterization of recycled poly(ethylene terephthalate) blends with chain extenders, thermoplastic elastomer, and/or poly(butylene adipate-co-terephthalate)

    Treesearch

    Yottha Srithep; Alireza Javadi; Srikanth Pilla; Lih-Sheng Turng; Shaoqin Gong; Craig Clemons; Jun Peng

    2011-01-01

    Poly(ethylene terephthalate) (PET) resin is one of the most widely used thermoplastics, especially in packaging. Because thermal and hydrolytic degradations, recycled PET (RPET) exhibits poor mechanical properties and lacks moldability. The effects of adding elastomeric modifiers, chain extenders (CE), and poly(butylenes adipate-co-terephthalate), PBAT, as a toughener...

  7. Impacts of flare emissions from an ethylene plant shutdown to regional air quality

    NASA Astrophysics Data System (ADS)

    Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2016-08-01

    Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.

  8. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1999-01-01

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  9. Process for recovering chaotropic anions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1999-03-30

    A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.

  10. Backfilling-Free Strategy for Biopatterning on Intrinsically Dual-Functionalized Poly[2-Aminoethyl Methacrylate-co-Oligo(Ethylene Glycol) Methacrylate] Films.

    PubMed

    Lee, Bong Soo; Lee, Juno; Han, Gyeongyeop; Ha, EunRae; Choi, Insung S; Lee, Jungkyu K

    2016-07-20

    We demonstrated protein and cellular patterning with a soft lithography technique using poly[2-aminoethyl methacrylate-co-oligo(ethylene glycol) methacrylate] films on gold surfaces without employing a backfilling process. The backfilling process plays an important role in successfully generating biopatterns; however, it has potential disadvantages in several interesting research and technical applications. To overcome the issue, a copolymer system having highly reactive functional groups and bioinert properties was introduced through a surface-initiated controlled radical polymerization with 2-aminoethyl methacrylate hydrochloride (AMA) and oligo(ethylene glycol) methacrylate (OEGMA). The prepared poly(AMA-co-OEGMA) film was fully characterized, and among the films having different thicknesses, the 35 nm-thick biotinylated, poly(AMA-co-OEGMA) film exhibited an optimum performance, such as the lowest nonspecific adsorption and the highest specific binding capability toward proteins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals.

    PubMed

    Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  12. Protein Synthesis in Relation to Ripening of Pome Fruits 1

    PubMed Central

    Frenkel, Chaim; Klein, Isaac; Dilley, D. R.

    1968-01-01

    Protein synthesis by intact Bartlett pear fruits was studied with ripening as measured by flesh softening, chlorophyll degradation, respiration, ethylene synthesis, and malic enzyme activity. Protein synthesis is required for normal ripening, and the proteins synthesized early in the ripening process are, in fact, enzymes required for ripening. 14C-Phenylalanine is differentially incorporated into fruit proteins separated by acrylamide gel electrophoresis of pome fruits taken at successive ripening stages. Capacity for malic enzyme synthesis increases during the early stage of ripening. Fruit ripening and ethylene synthesis are inhibited when protein synthesis is blocked by treatment with cycloheximide at the early-climacteric stage. Cycloheximide became less effective as the climacteric developed. Ethylene did not overcome inhibition of ripening by cycloheximide. The respiratory climacteric is not inhibited by cycloheximide. It is concluded that normal ripening of pome fruits is a highly coordinated process of biochemical differentiation involving directed protein synthesis. PMID:16656897

  13. Process for separating and recovering an anionic dye from an aqueous solution

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1998-01-13

    A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.

  14. Testing fruit quality by photoacoustic spectroscopy assay

    NASA Astrophysics Data System (ADS)

    Popa, C.; Dumitras, D. C.; Patachia, M.; Banita, S.

    2014-10-01

    This study was conducted with the aim of testing the hypothesis that raspberry and strawberry fruits from nonorganic farming release more ethylene gas compounds compared to organic ones. At the same time, the experiments focused on evaluation of the potential and capabilities of the laser photoacoustic spectroscopy (LPAS) method in the assessment of fruit quality related to the effects of nitrogen. Ethylene gas can be harmful and carcinogenic, because it can accelerate the natural ripening process of physiologically mature fruits and makes the fruits more consistent in size. With the advantages of LPAS, we demonstrate that the concentration of ethylene from nonorganic raspberry and strawberry fruits is greater than from organic ones.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyvani, Majid; Ostroff, Craig

    The steam cracking of ethane to ethylene consumes the greatest amount energy of any process currently practiced by the US chemical industry. U.S. ethylene production consumed an estimated 450 trillion BTU of energy to produce nearly 53 billion pounds of ethylene in 2010. A significant portion of this energy consumption is to overcome the insulating effect of coke (carbonaceous deposits) on the internal surfaces of cracker furnace tubes. This buildup of coke is the result of both metal-catalyzed coke formation on the tube walls (“filamentous coke”), and deposition of gas-phase coke on the tube walls (“amorphous coke”). Coke buildup requiresmore » a continuous increase in energy input (firing of external coil tube wall) to achieve the same conversion of ethane feedstock to ethylene product, until the tubes must be taken out of service and the coke removed by steam treatment (“decoking”). This step interrupts production and increases the cost of ethylene. Coke buildup also shortens the coil life by increasing the rate of “creep” (sagging) that occurs due to higher temperature operation and migration of the deposited carbon into the coil metal.« less

  16. Electrodeposition of Fe{sub 3}O{sub 4} layer from solution of Fe{sub 2}(SO{sub 4}){sub 3} with addition ethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahlan, Dahyunir, E-mail: dahyunir@yahoo.com; Asrar, Allan

    2016-03-11

    The electrodeposition of Fe{sub 3}O{sub 4} layer from the solution Fe{sub 2}(SO{sub 4}){sub 3} with the addition of ethylene glycol on Indium Tin Oxide (ITO) substrate has been performed. The electrodeposition was carried out using a voltage of 5 volts for 120 seconds, with and without the addition of 2% wt ethylene glycol. Significant effects of temperature on the resulting the samples is observed when they are heated at 400 °C. Structural characterization using X-ray diffraction (XRD) shows that all samples produce a layer of Fe{sub 3}O{sub 4} with particle size less than 50 nanometers. The addition of ethylene glycolmore » and the heating of the sample causes a shrinkage in particle size. The scanning electron microscopy (SEM) characterization shows that Fe{sub 3}O{sub 4} layer resulting from the process of electrodeposition of Fe{sub 2}(SO{sub 4}){sub 3} without ethylene glycol, independent of whether the sample is heated or not, is uneven and buildup. Layer produced by the addition of ethylene glycol without heating produces spherical particles. On contrary, when the layer is heated the spherical particles transform to irregularly-shaped particles with smaller size.« less

  17. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Kanc, James A. (Inventor); Richard, II, Roy V. (Inventor)

    2000-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  18. Ethylene monitoring and control system

    NASA Technical Reports Server (NTRS)

    Nelson, Bruce N. (Inventor); Kane, James A. (Inventor); Richard, II, Roy V. (Inventor)

    2001-01-01

    A system that can accurately monitor and control low concentrations of ethylene gas includes a test chamber configured to receive sample gas potentially containing an ethylene concentration and ozone, a detector configured to receive light produced during a reaction between the ethylene and ozone and to produce signals related thereto, and a computer connected to the detector to process the signals to determine therefrom a value of the concentration of ethylene in the sample gas. The supply for the system can include a four way valve configured to receive pressurized gas at one input and a test chamber. A piston is journaled in the test chamber with a drive end disposed in a drive chamber and a reaction end defining with walls of the test chamber a variable volume reaction chamber. The drive end of the piston is pneumatically connected to two ports of the four way valve to provide motive force to the piston. A manifold is connected to the variable volume reaction chamber, and is configured to receive sample gasses from at least one of a plurality of ports connectable to degreening rooms and to supply the sample gas to the reactive chamber for reaction with ozone. The apparatus can be used to monitor and control the ethylene concentration in multiple degreening rooms.

  19. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, David R; Chen, Tsung-Liang

    2011-01-01

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  20. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water resultsmore » in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.« less

  1. The interaction of microgravity and ethylene on the ultrastructure cell and Ca2+ localization in soybean hook hypocotyl

    NASA Technical Reports Server (NTRS)

    Nedukha, O. M.; Kordyum, E. L.; Brown, C.; Chapman, D.

    2001-01-01

    Calcium ions are secondary messenger in numerous cellular processes of plant grown at 1 g. Ca2+ are connected with oxygen atoms, of pectin carboxy groups and/or with H(+)-groups of protein (Roux and Slocum, 1982; Hepler and Wayne, 1985). The influence of altered gravity on the calcium balance in some cells is established. The increased synthesis of ethylene in plant grown in microgravity caused the change of the structural-functional organization of cell (Hensel and Iversen, 1980; Hilaire et al., 1996). Available data put the new question: how do high ethylene level and microgravity influence on the redistribution of Ca2+ in cell of seedling in early stage of growth? Therefore, the goal of our data was the comparable study of the cell ulltrastructure and localization of Ca2+ in hook hypocotyl of soybean seedling under interaction of microgravity and ethylene.

  2. Hypersensitive Ethylene Signaling and ZMdPG1 Expression Lead to Fruit Softening and Dehiscence

    PubMed Central

    Li, Min; Zhang, Yanmin; Zhang, Zongying; Ji, Xiaohao; Zhang, Rui; Liu, Daliang; Gao, Liping; Zhang, Jing; Wang, Biao; Wu, Yusen; Wu, Shujing; Chen, Xiaoliu; Feng, Shouqian; Chen, Xuesen

    2013-01-01

    ‘Taishanzaoxia’ fruit rapid softening and dehiscence during ripening stage and this process is very sensitive to endogenous ethylene. In this study, we cloned five ethylene signal transcription factors (ZMdEIL1, ZMdEIL2, ZMdEIL3, ZMdERF1 and ZMdERF2) and one functional gene, ZMdPG1, encoding polygalacturonase that could loose the cell connection which associated with fruit firmness decrease and fruit dehiscence to illustrate the reasons for this specific fruit phenotypic and physiological changes. Expression analysis showed that ZMdERF1 and ZMdEIL2 transcription were more abundant in ‘Taishanzaoxia’ softening fruit and dehiscent fruit and their expression was inhibited by an ethylene inhibitor 1-methylcyclopropene. Therefore, ZMdERF1 and ZMdEIL2 expression were responses to endogenous ethylene and associated with fruit softening and dehiscence. ZMdPG1 expression was induced when fruit softening and dehiscence but this induction can be blocked by 1-MCP, indicating that ZMdPG1 was essential for fruit softening and dehiscence and its expression was mediated by the endogenously occurred ethylene. ZMdPG1 overexpression in Arabidopsis led to silique early dehiscence while suppressing ZMdPG1 expression by antisense ZMdPG1 prevented silique naturally opening. The result also suggested that ZMdPG1 related with the connection between cells that contributed to fruit softening and dehiscence. ZMdERF1 was more closely related with ethylene signaling but it was not directly regulated the ZMdPG1, which might be regulated by the synergic pattern of ethylene transcription factors because of both the ZMdERF1 and ZMdERF2 could interact with ZMdEIL2. PMID:23527016

  3. The ethylene response factor Pti5 contributes to potato aphid resistance in tomato independent of ethylene signalling

    PubMed Central

    Wu, Chengjun; Avila, Carlos A.; Goggin, Fiona L.

    2015-01-01

    Ethylene response factors (ERFs) comprise a large family of transcription factors that regulate numerous biological processes including growth, development, and response to environmental stresses. Here, we report that Pti5, an ERF in tomato [Solanum lycopersicum (Linnaeus)] was transcriptionally upregulated in response to the potato aphid Macrosiphum euphorbiae (Thomas), and contributed to plant defences that limited the population growth of this phloem-feeding insect. Virus-induced gene silencing of Pti5 enhanced aphid population growth on tomato, both on an aphid-susceptible cultivar and on a near-isogenic genotype that carried the Mi-1.2 resistance (R) gene. These results indicate that Pti5 contributes to basal resistance in susceptible plants and also can synergize with other R gene-mediated defences to limit aphid survival and reproduction. Although Pti5 contains the ERF motif, induction of this gene by aphids was independent of ethylene, since the ACC deaminase (ACD) transgene, which inhibits ethylene synthesis, did not diminish the responsiveness of Pti5 to aphid infestation. Furthermore, experiments with inhibitors of ethylene synthesis revealed that Pti5 and ethylene have distinctly different roles in plant responses to aphids. Whereas Pti5 contributed to antibiotic plant defences that limited aphid survival and reproduction on both resistant (Mi-1.2+) and susceptible (Mi-1.2–) genotypes, ethylene signalling promoted aphid infestation on susceptible plants but contributed to antixenotic defences that deterred the early stages of aphid host selection on resistant plants. These findings suggest that the antixenotic defences that inhibit aphid settling and the antibiotic defences that depress fecundity and promote mortality are regulated through different signalling pathways. PMID:25504643

  4. Ethylene and auxin interaction in the control of adventitious rooting in Arabidopsis thaliana.

    PubMed

    Veloccia, A; Fattorini, L; Della Rovere, F; Sofo, A; D'Angeli, S; Betti, C; Falasca, G; Altamura, M M

    2016-12-01

    Adventitious roots (ARs) are post-embryonic roots essential for plant survival and propagation. Indole-3-acetic acid (IAA) is the auxin that controls AR formation; however, its precursor indole-3-butyric acid (IBA) is known to enhance it. Ethylene affects many auxin-dependent processes by affecting IAA synthesis, transport and/or signaling, but its role in AR formation has not been elucidated. This research investigated the role of ethylene in AR formation in dark-grown Arabidopsis thaliana seedlings, and its interaction with IAA/IBA. A number of mutants/transgenic lines were exposed to various treatments, and mRNA in situ hybridizations were carried out and hormones were quantified In the wild-type, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at 0.1 μM enhanced AR formation when combined with IBA (10 μM), but reduced it when applied alone; this effect did not occur in the ein3eil1 ethylene-insensitive mutant. ACC inhibited the expression of the IAA-biosynthetic genes WEI2, WEI7, and YUC6, but enhanced IBA-to-IAA conversion, as shown by the response of the ech2ibr10 mutant and an increase in the endogenous levels of IAA. The ethylene effect was independent of auxin-signaling by TIR1-AFB2 and IBA-efflux by ABCG carriers, but it was dependent on IAA-influx by AUX1/LAX3.Taken together, the results demonstrate that a crosstalk involving ethylene signaling, IAA-influx, and IBA-to-IAA conversion exists between ethylene and IAA in the control of AR formation. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. The last step of the ethylene biosynthesis pathway in turnip tops (Brassica rapa) seeds: Alterations related to development and germination and its inhibition during desiccation.

    PubMed

    Rodriguez-Gacio Md, María del Carmen; Matilla, Angel Jesús

    2001-06-01

    The involvement of ethylene in zygotic embryogenesis is a little known aspect of the growth and development in higher plants. In the present work, we study the alterations of the last step of the ethylene biosynthesis pathway during the formation period of turnip tops (Brassica rapa cv. Rapa) seeds and its repercussions in the germination process and post-germinative growth. For this, we chose 11 different phases of silique development, the first being the recently fertilized pistil and the last being the silique just prior to its dehiscence (ca. 2 months post-anthesis). In the 11 phases, ethylene production was detected in both whole silique (with or without seeds) and in the seeds enclosed by the silique wall. The levels of ACC, ACO and ethylene production proved high in seeds belonging to: (1) the pod in the very early phases, when the seeds were growing but without photosynthetic competence; (2) the silique at maximum growth, in which the seeds will initiate desiccation and loss of photosynthetic activity. During the phases prior to dehiscence, there was a marked inhibition in the last step of the ethylene biosynthesis pathway. In viable dry seeds, no ACO activity was detected and the ACC levels were 4-fold lower than at the onset of the silique senescence. Germination brings about a net synthesis of ACC with respect of the stores dry seed. This fact, together with other results presented in this work, point towards, as in other seeds, a dependence of ethylene synthesis for radicle emergence. The possible role played by the silique wall in the control of ethylene biosynthesis during zygotic embryogenesis, as well as the participation of ethylene as a hormonal signal in the triggering of seed desiccation in Brassica rapa cv. Rapa, are discussed in depth.

  6. Engineering Pseudomonas putida KT2440 for Efficient Ethylene Glycol Utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T; Franden, Mary A; Thelhawadigedara, Lahiru Niroshan Jayakody

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylenemore » glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and biomass-derived wastewater streams.« less

  7. The ambiguous ripening nature of the fig (Ficus carica L.) fruit: a gene-expression study of potential ripening regulators and ethylene-related genes

    PubMed Central

    Freiman, Zohar E.; Rosianskey, Yogev; Dasmohapatra, Rajeswari; Kamara, Itzhak; Flaishman, Moshe A.

    2015-01-01

    The traditional definition of climacteric and non-climacteric fruits has been put into question. A significant example of this paradox is the climacteric fig fruit. Surprisingly, ripening-related ethylene production increases following pre- or postharvest 1-methylcyclopropene (1-MCP) application in an unexpected auto-inhibitory manner. In this study, ethylene production and the expression of potential ripening-regulator, ethylene-synthesis, and signal-transduction genes are characterized in figs ripening on the tree and following preharvest 1-MCP application. Fig ripening-related gene expression was similar to that in tomato and apple during ripening on the tree, but only in the fig inflorescence–drupelet section. Because the pattern in the receptacle is different for most of the genes, the fig drupelets developed inside the syconium are proposed to function as parthenocarpic true fruit, regulating ripening processes for the whole accessory fruit. Transcription of a potential ripening regulator, FcMADS8, increased during ripening on the tree and was inhibited following 1-MCP treatment. Expression patterns of the ethylene-synthesis genes FcACS2, FcACS4, and FcACO3 could be related to the auto-inhibition reaction of ethylene production in 1-MCP-treated fruit. Along with FcMADS8 suppression, gene expression analysis revealed upregulation of FcEBF1, and downregulation of FcEIL3 and several FcERFs by 1-MCP treatment. This corresponded with the high storability of the treated fruit. One FcERF was overexpressed in the 1-MCP-treated fruit, and did not share the increasing pattern of most FcERFs in the tree-ripened fig. This demonstrates the potential of this downstream ethylene-signal-transduction component as an ethylene-synthesis regulator, responsible for the non-climacteric auto-inhibition of ethylene production in fig. PMID:25956879

  8. A Novel Method of Measuring the Phase Behavior and Rheology of Polyethylene Solutions Using a Multi-Pass Rheometer

    NASA Astrophysics Data System (ADS)

    Lee, Karen; Lacombe, Y.; Cheluget, E.

    2008-07-01

    The Advanced SCLAIRTECH™ Technology process is used to manufacture Linear Low Density Polyethylene using solution polymerization. In this process ethylene is polymerized in an inert solvent, which is subsequently evaporated and recycled. The reactor effluent in the process is a polymer solution containing the polyethylene product, which is separated from the solvent and unconverted ethylene/co-monomer before being extruded and pelletized. The design of unit operations in this process requires a detailed understanding of the thermophysical properties, phase behaviour and rheology of polymer containing streams at high temperature and pressure, and over a wide range of composition. This paper describes a device used to thermo-rheologically characterize polymer solutions under conditions prevailing in polymerization reactors, downstream heat exchangers and attendant phase separation vessels. The downstream processing of the Advanced SCLAIRTECH™ Technology reactor effluent occurs at temperatures and pressures near the critical point of the solvent and co-monomer mixture. In addition, the process trajectory encompasses regions of liquid-liquid and liquid-liquid-vapour co-existence, which are demarcated by a `cloud point' curve. Knowing the location of this phase boundary is essential for the design of downstream devolatilization processes and for optimizing operating conditions in existing plants. In addition, accurate solution rheology data are required for reliable equipment sizing and design. At NOVA Chemicals, a robust high-temperature and high-pressure-capable version of the Multi-Pass Rheometer (MPR) is used to provide data on solution rheology and phase boundary location. This sophisticated piece of equipment is used to quantify the effects of solvent types, comonomer, and free ethylene concentration on the properties of the reactor effluent. An example of the experimental methodology to characterize a polyethylene solution with hexane solvent, and the ethylene dosing technique developed for the MPR will be described. ™Advanced SCLAIRTECH is a trademark of NOVA Chemicals.

  9. Designing supported palladium-on-gold bimetallic nano-catalysts for controlled hydrogenation of acetylene in large excess of ethylene

    NASA Astrophysics Data System (ADS)

    Malla, Pavani

    Ethylene is used as a starting point for many chemical intermediates in the petrochemical industry. It is predominantly produced through steam cracking of higher hydrocarbons (ethane, propane, butane, naphtha, and gas oil). During the cracking process, a small amount of acetylene is produced as a side product. However, acetylene must be removed since it acts as a poison for ethylene polymerization catalysts at even ppm concentrations (>5 ppm). Thus, the selective hydrogenation of acetylene to ethylene is an important process for the purification of ethylene. Conventional, low weight loading Pd catalysts are used for this selective reaction in high concentration ethylene streams. Gold was initially considered to be catalytically inactive for a long time. This changed when gold was seen in the context of the nanometric scale, which has indeed shown it to have excellent catalytic activity as a homogeneous or a heterogeneous catalyst. Gold is proved to have high selectivity to ethylene but poor at conversion. Bimetallic Au and Pd catalysts have exhibited superior activity as compared to Pd particles in semi-hydrogenation. Hydrogenation of acetylene was tested using this bimetallic combination. The Pd-on-Au bimetallic catalyst structure provides a new synthesis approach in improving the catalytic properties of monometallic Pd materials. TiO 2 as a support material and 0.05%Pd loading on 1%Au on titania support and used different treatment methods like washing plasma and reduction between the two metal loadings and was observed under 2:1 ratio. In my study there were two set of catalysts which were prepared by a modified incipient wetness impregnation technique. Out of all the reaction condition the catalyst which was reduced after impregnating gold and then impregnating palladium which was further treated in non-thermal hydrogen plasma and then pretreated in hydrogen till 250°C for 1 hour produced the best activity of 76% yield at 225°C. Stability tests were conducted on the catalysts which were followed by TGA analysis to analyze the coke formation on the catalyst in a period of time at a particular temperature. The catalysts were characterized by the hydrogen chemisorption and atomic absorption spectroscopy.

  10. Post-transcriptional regulation of ethylene perception and signaling in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaller, George Eric

    2014-03-19

    The simple gas ethylene functions as an endogenous regulator of plant growth and development, and modulates such energy relevant processes as photosynthesis and biomass accumulation. Ethylene is perceived in the plant Arabidopsis by a five-member family of receptors related to bacterial histidine kinases. Our data support a general model in which the receptors exist as parts of larger protein complexes. Our goals have been to (1) characterize physical interactions among members of the signaling complex; (2) the role of histidine-kinase transphosphorylation in signaling by the complex; and (3) the role of a novel family of proteins that regulate signal outputmore » by the receptors.« less

  11. Plasma polymerization of ethylene in an atmospheric pressure-pulsed discharge

    NASA Technical Reports Server (NTRS)

    Donohoe, K.; Wydeven, T.

    1979-01-01

    The polymerization of ethylene in an atmospheric pressure-pulsed discharge has been studied. Partial pressures of ethylene up to 4 kN/sq m were used with helium as a diluent. Deposition rates (on glass slides) were the same throughout the discharge volume over a wide range of operating conditions. These rates were in the 1-2 A/sec range. The films were clear, soft, and showed good adhesion to the glass substrates. Oligomers large enough to visibly scatter 637.8-nm light were observed in the gas phase under all conditions in which film deposition occurred. The experimental results suggest that Brownian diffusion of these oligomers was the rate-limiting step in the film deposition process.

  12. Assessing the allelotypic effect of two aminocyclopropane carboxylic acid synthase-encoding genes MdACS1 and MdACS3a on fruit ethylene production and softening in Malus

    PubMed Central

    Dougherty, Laura; Zhu, Yuandi; Xu, Kenong

    2016-01-01

    Phytohormone ethylene largely determines apple fruit shelf life and storability. Previous studies demonstrated that MdACS1 and MdACS3a, which encode 1-aminocyclopropane-1-carboxylic acid synthases (ACS), are crucial in apple fruit ethylene production. MdACS1 is well-known to be intimately involved in the climacteric ethylene burst in fruit ripening, while MdACS3a has been regarded a main regulator for ethylene production transition from system 1 (during fruit development) to system 2 (during fruit ripening). However, MdACS3a was also shown to have limited roles in initiating the ripening process lately. To better assess their roles, fruit ethylene production and softening were evaluated at five time points during a 20-day post-harvest period in 97 Malus accessions and in 34 progeny from 2 controlled crosses. Allelotyping was accomplished using an existing marker (ACS1) for MdACS1 and two markers (CAPS866 and CAPS870) developed here to specifically detect the two null alleles (ACS3a-G289V and Mdacs3a) of MdACS3a. In total, 952 Malus accessions were allelotyped with the three markers. The major findings included: The effect of MdACS1 was significant on fruit ethylene production and softening while that of MdACS3a was less detectable; allele MdACS1–2 was significantly associated with low ethylene and slow softening; under the same background of the MdACS1 allelotypes, null allele Mdacs3a (not ACS3a-G289V) could confer a significant delay of ethylene peak; alleles MdACS1–2 and Mdacs3a (excluding ACS3a-G289V) were highly enriched in M. domestica and M. hybrid when compared with those in M. sieversii. These findings are of practical implications in developing apples of low and delayed ethylene profiles by utilizing the beneficial alleles MdACS1-2 and Mdacs3a. PMID:27231553

  13. On the radiolysis of ethylene ices by energetic electrons and implications to the extraterrestrial hydrocarbon chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Li; Maity, Surajit; Abplanalp, Matt

    2014-07-20

    The chemical processing of ethylene ices (C{sub 2}H{sub 4}) by energetic electrons was investigated at 11 K to simulate the energy transfer processes and synthesis of new molecules induced by secondary electrons generated in the track of galactic cosmic ray particles. A combination of Fourier transform infrared spectrometry (solid state) and quadrupole mass spectrometry (gas phase) resulted in the identification of six hydrocarbon molecules: methane (CH{sub 4}), the C2 species acetylene (C{sub 2}H{sub 2}), ethane (C{sub 2}H{sub 6}), the ethyl radical (C{sub 2}H{sub 5}), and—for the very first time in ethylene irradiation experiments—the C4 hydrocarbons 1-butene (C{sub 4}H{sub 8}) andmore » n-butane (C{sub 4}H{sub 10}). By tracing the temporal evolution of the newly formed molecules spectroscopically online and in situ, we were also able to fit the kinetic profiles with a system of coupled differential equations, eventually providing mechanistic information, reaction pathways, and rate constants on the radiolysis of ethylene ices and the inherent formation of smaller (C1) and more complex (C2, C4) hydrocarbons involving carbon-hydrogen bond ruptures, atomic hydrogen addition processes, and radical-radical recombination pathways. We also discuss the implications of these results on the hydrocarbon chemistry on Titan's surface and on ice-coated, methane-bearing interstellar grains as present in cold molecular clouds such as TMC-1.« less

  14. Analysis of Volatile Organic Compounds in a Controlled Environment: Ethylene Gas Measurement Studies on Radish

    NASA Technical Reports Server (NTRS)

    Kong, Suk Bin

    2001-01-01

    Volatile organic compound(VOC), ethylene gas, was characterized and quantified by GC/FID. 20-50 ppb levels were detected during the growth stages of radish. SPME could be a good analytical tool for the purpose. Low temperature trapping method using dry ice/diethyl ether and liquid nitrogen bath was recommended for the sampling process for GC/PID and GC/MS analysis.

  15. A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit ripening and carotenoid accumulation.

    PubMed

    Zhu, Mingku; Chen, Guoping; Zhou, Shuang; Tu, Yun; Wang, Yi; Dong, Tingting; Hu, Zongli

    2014-01-01

    Fruit ripening in tomato (Solanum lycopersicum) is a complicated development process affected by both endogenous hormonal and genetic regulators and external signals. Although the role of NOR, a member of the NAC domain family, in mediating tomato fruit ripening has been established, its underlying molecular mechanisms remain unclear. To explore further the role of NAC transcription factors in fruit ripening, we characterized a new tomato NAC domain protein, named SlNAC4, which shows high accumulation in sepal and at the onset of fruit ripening. Various stress treatments including wounding, NaCl, dehydration and low temperature significantly increased the expression of SlNAC4. Reduced expression of SlNAC4 by RNA interference (RNAi) in tomato resulted in delayed fruit ripening, suppressed Chl breakdown and decreased ethylene synthesis mediated mainly through reduced expression of ethylene biosynthesis genes of system-2, and reduced carotenoids by alteration of the carotenoid pathway flux. Transgenic tomato fruits also displayed significant down-regulation of multiple ripening-associated genes, indicating that SlNAC4 functions as a positive regulator of fruit ripening by affecting ethylene synthesis and carotenoid accumulation. Moreover, we also noted that SlNAC4 could not be induced by ethylene and may function upstream of the ripening regulator RIN and positively regulate its expression. Yeast two-hybrid assay further revealed that SlNAC4 could interact with both RIN and NOR protein. These results suggested that ethylene-dependent and -independent processes are regulated by SlNAC4 in the fruit ripening regulatory network.

  16. AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua.

    PubMed

    Tang, Yueli; Li, Ling; Yan, Tingxiang; Fu, Xueqing; Shi, Pu; Shen, Qian; Sun, Xiaofen; Tang, Kexuan

    2018-01-01

    Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua . It's important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua , named AaEIN3 . Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua , indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1 , and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway.

  17. AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua

    PubMed Central

    Tang, Yueli; Li, Ling; Yan, Tingxiang; Fu, Xueqing; Shi, Pu; Shen, Qian; Sun, Xiaofen; Tang, Kexuan

    2018-01-01

    Artemisinin is an important drug for malaria treatment, which is exclusively produced in Artemisia annua. It’s important to dissect the regulatory mechanism of artemisinin biosynthesis by diverse plant hormones and transcription factors. Our study shows ethylene, a plant hormone which accelerates flower and leaf senescence and fruit ripening, suppressed the expression of genes encoding three key enzymes ADS, DBR2, CYP71AV1, and a positive regulator AaORA involved in artemisinin biosynthesis. Then we isolated the gene encoding ETHYLENE-INSENSITIVE3 (EIN3), a key transcription factor in ethylene signaling pathway, by screening the transcriptome and genome database from Artemisia annua, named AaEIN3. Overexpressing AaEIN3 suppressed artemisinin biosynthesis, while repressing its expression with RNAi enhanced artemisinin biosynthesis in Artemisia annua, indicating AaEIN3 negatively regulates artemisinin biosynthesis. Further study showed the downregulation of artemisinin biosynthesis by ethylene required the mediation of AaEIN3. AaEIN3 could accelerate leaf senescence, and leaf senescence attenuated the expression of ADS, DBR2, CYP71AV1, and AaORA that are involved in artemisinin biosynthesis. Collectively, our study demonstrated a negative correlation between ethylene signaling and artemisinin biosynthesis, which is ascribed to AaEIN3-induced senescence process of leaves. Our work provided novel knowledge on the regulatory network of plant hormones for artemisinin metabolic pathway. PMID:29675029

  18. In-Situ Generated Graphene as the Catalytic Site for Visible-Light Mediated Ethylene Epoxidation on AG Nanocatalysts

    NASA Astrophysics Data System (ADS)

    Zhang, Xueqiang Alex; Jain, Prashant

    2017-06-01

    Despite the harsh conditions for chemical conversion, ethylene oxide produced from ethylene epoxidation on Ag-based heterogeneous catalyst constitutes one of the largest volume chemicals in chemical industry. Recently, photocatalytic epoxidation of ethylene over plasmonic Ag nanoparticles enables the chemical conversion under significantly decreased temperature and ambient pressure conditions. Yet a detailed understanding of the photocatalytic process at the reactant/catalyst interface is under debate. Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique that enables the localized detection of rare and/or transient chemical species with high sensitivity under in situ and ambient conditions. Using SERS, we are able to monitor at individual sites of an Ag nanocatalyst the visible-light-mediated adsorption and epoxidation of ethylene. From detected intermediates, we find that the primary step in the photoepoxidation is the transient formation of graphene catalyzed by the Ag surface. Density functional theory (DFT) simulations that model the observed SERS spectra suggest that the defective edge sites of the graphene formed on Ag constitute the active site for C2H4 adsorption and epoxidation. Further studies with pre-formed graphene/Ag catalyst composites confirm the indispensable role of graphene in visible-light-mediated ethylene epoxidation. Carbon is often thought to be either an innocent support or a poison for metallic catalysts; however our studies reveal a surprising role for crystalline carbon layers as potential co-catalysts.

  19. A calmodulin binding protein from Arabidopsis is induced by ethylene and contains a DNA-binding motif

    NASA Technical Reports Server (NTRS)

    Reddy, A. S.; Reddy, V. S.; Golovkin, M.

    2000-01-01

    Calmodulin (CaM), a key calcium sensor in all eukaryotes, regulates diverse cellular processes by interacting with other proteins. To isolate CaM binding proteins involved in ethylene signal transduction, we screened an expression library prepared from ethylene-treated Arabidopsis seedlings with 35S-labeled CaM. A cDNA clone, EICBP (Ethylene-Induced CaM Binding Protein), encoding a protein that interacts with activated CaM was isolated in this screening. The CaM binding domain in EICBP was mapped to the C-terminus of the protein. These results indicate that calcium, through CaM, could regulate the activity of EICBP. The EICBP is expressed in different tissues and its expression in seedlings is induced by ethylene. The EICBP contains, in addition to a CaM binding domain, several features that are typical of transcription factors. These include a DNA-binding domain at the N terminus, an acidic region at the C terminus, and nuclear localization signals. In database searches a partial cDNA (CG-1) encoding a DNA-binding motif from parsley and an ethylene up-regulated partial cDNA from tomato (ER66) showed significant similarity to EICBP. In addition, five hypothetical proteins in the Arabidopsis genome also showed a very high sequence similarity with EICBP, indicating that there are several EICBP-related proteins in Arabidopsis. The structural features of EICBP are conserved in all EICBP-related proteins in Arabidopsis, suggesting that they may constitute a new family of DNA binding proteins and are likely to be involved in modulating gene expression in the presence of ethylene.

  20. Clinorotation affects morphology and ethylene production in soybean seedlings

    NASA Technical Reports Server (NTRS)

    Hilaire, E.; Peterson, B. V.; Guikema, J. A.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1996-01-01

    The microgravity environment of spaceflight influences growth, morphology and metabolism in etiolated germinating soybean. To determine if clinorotation will similarly impact these processes, we conducted ground-based studies in conjunction with two space experiment opportunities. Soybean (Glycine max [L.] Merr.) seeds were planted within BRIC (Biological Research In Canister) canisters and grown for seven days at 20 degrees C under clinorotation (1 rpm) conditions or in a stationary upright mode. Gas samples were taken daily and plants were harvested after seven days for measurement of growth and morphology. Compared to the stationary upright controls, plants exposed to clinorotation exhibited increased root length (125% greater) and fresh weight (42% greater), whereas shoot length and fresh weight decreased by 33% and 16% respectively. Plants grown under clinorotation produced twice as much ethylene as the stationary controls. Seedlings treated with triiodo benzoic acid (TIBA), an auxin transport inhibitor, under clinorotation produced 50% less ethylene than the untreated control subjected to the same gravity treatment, whereas a treatment with 2,4-D increased ethylene by five-fold in the clinorotated plants. These data suggest that slow clinorotation influences biomass partitioning and ethylene production in etiolated soybean plants.

  1. Understanding Variability To Reduce the Energy and GHG Footprints of U.S. Ethylene Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yuan; Graziano, Diane J.; Riddle, Matthew

    2015-11-18

    Recent growth in U.S. ethylene production due to the shale gas boom is affecting the U.S. chemical industry's energy and greenhouse gas (GHG) emissions footprints. To evaluate these effects, a systematic, first-principles model of the cradle-to-gate ethylene production system was developed and applied. The variances associated with estimating the energy consumption and GHG emission intensities of U.S. ethylene production, both from conventional natural gas,and from shale gas, are explicitly analyzed. A sensitivity analysis illustrates that the large variances in energy intensity are due to process parameters (e.g., compressor efficiency), and that large variances in GHG emissions intensity are due tomore » fugitive emissions from upstream natural gas production. On the basis of these results, the opportunities with the greatest leverage for reducing the energy and GHG footprints are presented. The model and analysis provide energy analysts and policy makers with a better understanding of the drivers of energy use and GHG emissions associated with U.S. ethylene production. They also constitute a rich data resource that can be used to evaluate options for managing the industry's footprints moving forward.« less

  2. RhMKK9, a rose MAP KINASE KINASE gene, is involved in rehydration-triggered ethylene production in rose gynoecia.

    PubMed

    Chen, Jiwei; Zhang, Qian; Wang, Qigang; Feng, Ming; Li, Yang; Meng, Yonglu; Zhang, Yi; Liu, Guoqin; Ma, Zhimin; Wu, Hongzhi; Gao, Junping; Ma, Nan

    2017-02-23

    Flower opening is an important process in the life cycle of flowering plants and is influenced by various endogenous and environmental factors. Our previous work demonstrated that rose (Rosa hybrida) flowers are highly sensitive to dehydration during flower opening and the water recovery process after dehydration induced ethylene production rapidly in flower gynoecia. In addition, this temporal- and spatial-specific ethylene production is attributed to a transient but robust activation of the rose MAP KINASE6-ACC SYNTHASE1 (RhMPK6-RhACS1) cascade in gynoecia. However, the upstream component of RhMPK6-RhACS1 is unknown, although RhMKK9 (MAP KINASE KINASE9), a rose homologue of Arabidopsis MKK9, could activate RhMPK6 in vitro. In this study, we monitored RhMKK2/4/5/9 expression, the potential upstream kinase to RhMPK6, in rose gynoecia during dehydration and rehydration. We found only RhMKK9 was rapidly and strongly induced by rehydration. Silencing of RhMKK9 significantly decreased rehydration-triggered ethylene production. Consistently, the expression of several ethylene-responsive genes was down regulated in the petals of RhMKK9-silenced flowers. Moreover, we detected the DNA methylation level in the promoter and gene body of RhMKK9 by Chop-PCR. The results showed that rehydration specifically elevated the DNA methylation level on the RhMKK9 gene body, whereas it resulted in hypomethylation in its promoter. Our results showed that RhMKK9 possibly acts as the upstream component of the RhMKK9-RhMPK6-RhACS1 cascade and is responsible for water recovery-triggered ethylene production in rose gynoecia, and epigenetic DNA methylation is involved in the regulation of RhMKK9 expression by rehydration.

  3. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings.

    PubMed

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.

  4. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings

    PubMed Central

    Druege, Uwe; Franken, Philipp; Lischewski, Sandra; Ahkami, Amir H.; Zerche, Siegfried; Hause, Bettina; Hajirezaei, Mohammad R.

    2014-01-01

    Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin. PMID:25400641

  5. Experimental evidence for glycolaldehyde and ethylene glycol formation by surface hydrogenation of CO molecules under dense molecular cloud conditions

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Cuppen, H. M.; Ioppolo, S.; Lamberts, T.; Linnartz, H.

    2015-04-01

    This study focuses on the formation of two molecules of astrobiological importance - glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - by surface hydrogenation of CO molecules. Our experiments aim at simulating the CO freeze-out stage in interstellar dark cloud regions, well before thermal and energetic processing become dominant. It is shown that along with the formation of H2CO and CH3OH - two well-established products of CO hydrogenation - also molecules with more than one carbon atom form. The key step in this process is believed to be the recombination of two HCO radicals followed by the formation of a C-C bond. The experimentally established reaction pathways are implemented into a continuous-time random-walk Monte Carlo model, previously used to model the formation of CH3OH on astrochemical time-scales, to study their impact on the solid-state abundances in dense interstellar clouds of glycolaldehyde and ethylene glycol.

  6. Shoot inversion inhibition of stem elongation in Pharbitis nil: a possible role for ethylene-induced glycoprotein and lignin

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1987-01-01

    Inversion of the upper shoot of Pharbitis nil results in the inhibition of elongation in the inverted stem. The objective of the present study was to determine how shoot inversion-induced gravity stress inhibited elongation and to elucidate the possible role of ethylene-induced glycoprotein and lignin in this process. Determinations of hydroxyproline, peroxidase, phenylalanine ammonia-lyase (PAL), phenol, and lignin content/activity were carried out by appropriate spectrophotometric methods. It was found that inversion and Ethrel treatments of upright shoots caused significant increases in hydroxyproline content, peroxidase, and PAL activity in 12 hours and in phenol and lignin contents in 24 hours. All of these increases except for that of cytoplasmic peroxidase activity were partially reversed by AgNO3, the ethylene action inhibitor. It is concluded that possible cross-linking associated with the accumulation of the ethylene-induced hydroxyproline-rich glycoprotein and lignin may be responsible for the later stages of cessation of elongation in the inverted Pharbitis shoot.

  7. Ethylene Control Technologies in Extending Postharvest Shelf Life of Climacteric Fruit.

    PubMed

    Zhang, Junhua; Cheng, Dong; Wang, Baobin; Khan, Iqbal; Ni, Yonghao

    2017-08-30

    Fresh fruit is important for a healthy diet. However, because of their seasonal production, regional specific cultivation, and perishable nature, it is essential to develop preservation technologies to extend the postharvest shelf life of fresh fruits. Climacteric fruit adopt spoilage because of ethylene, a key hormone associated with the ripening process. Therefore, controlling ethylene activity by following safe and effective approaches is a key to extend the postharvest shelf life of fruit. In this review, ethylene control technologies will be discussed aiming for the need of developing more innovative and effective approaches. The biosynthesis pathway will be given first. Then, the technologies determining the postharvest shelf life of climacteric fruit will be described with special attention to the latest and significant published works in this field. Special attention is given to 1-methylcyclopropene (1-MCP), which is effective in fruit preservation technologies. Finally, the encapsulation technology to improve the stability of 1-MCP will be proposed, using a potential encapsulation agent of 1-MCP, calixarene.

  8. Contrasting Transcriptional Programs Control Postharvest Development of Apples (Malus x domestica Borkh.) Submitted to Cold Storage and Ethylene Blockage.

    PubMed

    Storch, Tatiane Timm; Finatto, Taciane; Bruneau, Maryline; Orsel-Baldwin, Mathilde; Renou, Jean-Pierre; Rombaldi, Cesar Valmor; Quecini, Vera; Laurens, François; Girardi, César Luis

    2017-09-06

    Apple is commercially important worldwide. Favorable genomic contexts and postharvest technologies allow year-round availability. Although ripening is considered a unidirectional developmental process toward senescence, storage at low temperatures, alone or in combination with ethylene blockage, is effective in preserving apple properties. Quality traits and genome wide expression were integrated to investigate the mechanisms underlying postharvest changes. Development and conservation techniques were responsible for transcriptional reprogramming and distinct programs associated with quality traits. A large portion of the differentially regulated genes constitutes a program involved in ripening and senescence, whereas a smaller module consists of genes associated with reestablishment and maintenance of juvenile traits after harvest. Ethylene inhibition was associated with a reversal of ripening by transcriptional induction of anabolic pathways. Our results demonstrate that the blockage of ethylene perception and signaling leads to upregulation of genes in anabolic pathways. We also associated complex phenotypes to subsets of differentially regulated genes.

  9. The Arabidopsis EIN2 restricts organ growth by retarding cell expansion

    PubMed Central

    Feng, Guanping; Liu, Gang; Xiao, Jianhua

    2015-01-01

    The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion. PMID:26039475

  10. Optimatization of transient transformation methods to study gene expression in Musa acuminata (AAA group) cultivar Ambon Lumut

    NASA Astrophysics Data System (ADS)

    Prayuni, Kinasih; Dwivany, Fenny M.

    2015-09-01

    Banana is classified as a climateric fruit, whose ripening is regulated by ethylene. Ethylene is synthesized from ACC (1-aminocyclopropane-1-carboxylic acid) by ACC oxidase enzyme which is encoded by ACO gene. Controling an important gene expression in ethylene biosynthesis pathway has became a target to delay the ripening process. Therefore in the previous study we have designed a MaACO-RNAi construct to control MaACO gene expression. In this research, we study the effectiveness of different transient transformation methods to deliver the construct. Direct injection, with or no vaccum infiltration methods were used to deliver MaACO-RNAi construct. All of the methods succesfully deliver the construct into banana fruits based on RT-PCR result.

  11. Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop

    PubMed Central

    Hubert, Olivier; Mbéguié-A-Mbéguié, Didier

    2012-01-01

    Background and aims Banana finger drop is defined as dislodgement of individual fruits from the hand at the pedicel rupture area. For some banana varieties, this is a major feature of the ripening process, in addition to ethylene production and sugar metabolism. The few studies devoted to assessing the physiological and molecular basis of this process revealed (i) the similarity between this process and softening, (ii) the early onset of related molecular events, between the first and fourth day after ripening induction, and (iii) the putative involvement of ethylene as a regulatory factor. This study was conducted with the aim of identifying, through a candidate gene approach, a quality-related marker that could be used as a tool in breeding programmes. Here we examined the relationship between ripening ethylene biosynthesis (EB) and finger drop in order to gain further insight into the upstream regulatory steps of the banana finger drop process and to identify putative related candidate genes. Methods Postharvest ripening of green banana fruit was induced by acetylene treatment and fruit taken at 1–4 days after ripening induction, and total RNA extracted from the median area [control zone (CZ)] and the pedicel rupture area [drop zone (DZ)] of peel tissue. Then the expression patterns of EB genes (MaACO1, MaACO2, MaACS1, MaACS2, MaACS3 and MaACS4) were comparatively examined in CZ and DZ via real-time quantitative polymerase chain reaction. Principal results Differential expression of EB gene was observed in CZ and DZ during the postharvest period examined in this study. MaACO1, MaACS2 and MaACS1 were more highly induced in DZ than in the control, while a slight induction of the MaACS4 gene was observed. No marked differences between the two zones were observed for the MaACO2 gene. Conclusions The finger drop process enhanced EB gene expression including developmental- and ripening-induced genes (MaACO1), specific ripening-induced genes (MaACS1) and wound-induced genes (MaACS2). Thus, this process might be associated with a specific ethylene production in DZ of the pedicel area and the result of crosstalk between developmental, ripening and wound regulatory pathways. MaACO1, MaACS1, MaACS2, and to a lesser extent MaACS4 genes, which are more highly induced in DZ than in CZ, could be considered as putative candidates of the finger drop process. PMID:23267429

  12. Interaction of cetyltrimethylammonium bromide and its gemini homologue bis(cetyldimethylammonium)butane dibromide with xanthine oxidase.

    PubMed

    Mir, Mohammad Amin; Khan, Javed Masood; Khan, Rizwan Hasan; Dar, Aijaz Ahmad; Rather, Ghulam Mohammad

    2012-05-17

    The interaction of xanthine oxidase (XO), a key enzyme in purine metabolism, with cetyltrimethylammonium bromide (CTAB) and bis(cetyldimethylammonium)butane dibromide (C16C4C16Br2) has been studied using tensiometry, spectrofluorometry, spectrophotometry, and circular dichroism at pH 7.4 and 25 °C. The tensiometric profiles of CTAB and C16C4C16Br2 in the presence of XO exhibit a single break at a lower surfactant concentration termed as C1 compared to their CMC in the buffered solution and show the existence of interaction between the surfactants and the enzyme. The results of the multitechnique approach showed that, although both CTAB as well as C16C4C16Br2 interact with the XO, C16C4C16Br2 interacts more strongly than its conventional single chain counterpart. Fluorescence and absorption measurements revealed that, compared to CTAB, C16C4C16Br2 is more effective in unfolding the enzyme. Change in XO activity by the surfactants was in concurrence with the structural alterations monitored by circular dichroism and showed structural stabilization of XO at higher surfactant concentrations, consistent with the aggregation results. This stabilization has been explained in light of strong tendency of C16C4C16Br2 for micellar growth and membrane/water stabilization of proteins by membrane-like fragments provided by higher concentrations of C16C4C16Br2 . The results are related to the stronger electrostatic and hydrophobic forces in C16C4C16Br2, owing to the presence of two charged headgroups and two hydrophobic tails.

  13. Visible Light Driven Nanosecond Bromide Oxidation by a Ru Complex with Subsequent Br-Br Bond Formation.

    PubMed

    Li, Guocan; Ward, William M; Meyer, Gerald J

    2015-07-08

    Visible light excitation of [Ru(deeb)(bpz)2](2+) (deeb = 4,4'-diethylester-2,2'-bipyridine; bpz = 2,2'-bipyrazine), in Br(-) acetone solutions, led to the formation of Br-Br bonds in the form of dibromide, Br2(•-). This light reactivity stores ∼1.65 eV of free energy for milliseconds. Combined (1)H NMR, UV-vis and photoluminescence measurements revealed two distinct mechanisms. The first involves diffusional quenching of the excited state by Br(-) with a rate constant of (8.1 ± 0.1) × 10(10) M(-1) s(-1). At high Br(-) concentrations, an inner-sphere pathway is dominant that involves the association of Br(-), most likely with the 3,3'-H atoms of a bpz ligand, before electron transfer from Br(-) to the excited state, ket = (2.5 ± 0.3) × 10(7) s(-1). In both mechanisms, the direct photoproduct Br(•) subsequently reacts with Br(-) to yield dibromide, Br(•) + Br(-) → Br2(•-). Under pseudo-first-order conditions, this occurs with a rate constant of (1.1 ± 0.4) × 10(10) M(-1) s(-1) that was, within experimental error, the same as that measured when Br(•) were generated with ultraviolet light. Application of Marcus theory to the sensitized reaction provided an estimate of the Br(•) formal reduction potential E(Br(•)/Br(-)) = 1.22 V vs SCE in acetone, which is about 460 mV less positive than the accepted value in H2O. The results demonstrate that Br(-) oxidation by molecular excited states can be rapid and useful for solar energy conversion.

  14. Plasmid DNA partitioning and separation using poly(ethylene glycol)/poly(acrylate)/salt aqueous two-phase systems.

    PubMed

    Johansson, Hans-Olof; Matos, Tiago; Luz, Juliana S; Feitosa, Eloi; Oliveira, Carla C; Pessoa, Adalberto; Bülow, Leif; Tjerneld, Folke

    2012-04-13

    Phase diagrams of poly(ethylene glycol)/polyacrylate/Na(2)SO(4) systems have been investigated with respect to polymer size and pH. Plasmid DNA from Escherichia coli can depending on pH and polymer molecular weight be directed to a poly(ethylene glycol) or to a polyacrylate-rich phase in an aqueous two-phase system formed by these polymers. Bovine serum albumin (BSA) and E. coli homogenate proteins can be directed opposite to the plasmid partitioning in these systems. Two bioseparation processes have been developed where in the final step the pDNA is partitioned to a salt-rich phase giving a total process yield of 60-70%. In one of them the pDNA is partitioned between the polyacrylate and PEG-phases in order to remove proteins. In a more simplified process the plasmid is partitioned to a PEG-phase and back-extracted into a Na(2)SO(4)-rich phase. The novel polyacrylate/PEG system allows a strong change of the partitioning between the phases with relatively small changes in composition or pH. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents.

    PubMed

    Zhang, Guozhuang; Sun, Yonglin; Sheng, Hao; Li, Haichao; Liu, Xiping

    2018-04-01

    Crop growth and productivity are often impacted by the increased ethylene content induced by adverse environmental conditions such drought. Inoculations with bacteria producing ACC deaminase is considered as a potential biological approach to improve the growth and tolerance of stressed plants by lowering endogenous ethylene level. In this study, germinated wheat seeds were inoculated using three species of the rhizobacteria, which were isolated from the rhizosphere of wheat growing in dryland, and sown in pots. After three weeks, wheat seedlings were exposed to non-limiting water condition, medium drought and severe drought, respectively, for six weeks. The results showed that, irrespective of rhizobacterial inoculations, decreased soil water contents stimulated wheat ethylene metabolism, which was reflected by the significantly increased activity of ACC synthetase and ACC oxidase, besides an increased content of ACC both in the roots and leaves, and an enhanced capacity of leaves to release ethylene, concomitant with a significant decline in shoot and roots biomass. The inoculations of all three rhizobacterial species under each water condition reduced ACC content in wheat leaves, but effects of the inoculations on ACC synthase and ACC oxidase activity in the leaves and roots, ACC content in the roots, the capacity of leaves to release ethylene, and wheat growth varied with water conditions and bacterial species. Hence, both soil water conditions and rhizobacterial inoculations acted on all the processes of ethylene metabolism, with the former being dominant. The inoculations under non-limiting water condition and medium drought promoted shoot and root growth of wheat plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. Novel insights of ethylene role in strawberry cell wall metabolism.

    PubMed

    Villarreal, Natalia M; Marina, María; Nardi, Cristina F; Civello, Pedro M; Martínez, Gustavo A

    2016-11-01

    Due to its organoleptic and nutraceutical qualities, strawberry fruit (Fragaria x ananassa, Duch) is a worldwide important commodity. The role of ethylene in the regulation of strawberry cell wall metabolism was studied in fruit from Toyonoka cultivar harvested at white stage, when most changes associated with fruit ripening have begun. Fruit were treated with ethephon, an ethylene-releasing reagent, or with 1-methylcyclopropene (1-MCP), a competitive inhibitor of ethylene action, maintaining a set of non-treated fruit as controls for each condition. Ethephon treated-fruit showed higher contents of hemicelluloses, cellulose and neutral sugars regarding controls, while 1-MCP-treated fruit showed a lower amount of those fractions. On the other hand, ethephon-treated fruit presented a lower quantity of galacturonic acid from ionically and covalently bound pectins regarding controls, while 1-MCP-treated fruit showed higher contents of those components. We also explored the ethylene effect over the mRNA accumulation of genes related to pectins and hemicelluloses metabolism, and a relationship between gene expression patterns and cell wall polysaccharides contents was shown. Moreover, we detected that strawberry necrotrophic pathogens growth more easily on plates containing cell walls from ethephon-treated fruit regarding controls, while a lower growth rate was observed when cell walls from 1-MCP treated fruit were used as the only carbon source, suggesting an effect of ethylene on cell wall structure. Around 60% of strawberry cell wall is made up of pectins, which in turns is 70% made by homogalacturonans. Our findings support the idea of a central role for pectins on strawberry fruit softening and a participation of ethylene in the regulation of this process. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening.

    PubMed

    Böttcher, Christine; Burbidge, Crista A; Boss, Paul K; Davies, Christopher

    2013-12-23

    Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening.

  18. Interactions between ethylene and auxin are crucial to the control of grape (Vitis vinifera L.) berry ripening

    PubMed Central

    2013-01-01

    Background Fruit development is controlled by plant hormones, but the role of hormone interactions during fruit ripening is poorly understood. Interactions between ethylene and the auxin indole-3-acetic acid (IAA) are likely to be crucial during the ripening process, since both hormones have been shown to be implicated in the control of ripening in a range of different fruit species. Results Grapevine (Vitis vinifera L.) homologues of the TRYPTOPHAN AMINOTRANSFERASE RELATED (TAR) and YUCCA families, functioning in the only characterized pathway of auxin biosynthesis, were identified and the expression of several TAR genes was shown to be induced by the pre-ripening application of the ethylene-releasing compound Ethrel. The induction of TAR expression was accompanied by increased IAA and IAA-Asp concentrations, indicative of an upregulation of auxin biosynthesis and conjugation. Exposure of ex planta, pre-ripening berries to the ethylene biosynthesis inhibitor aminoethoxyvinylglycine resulted in decreased IAA and IAA-Asp concentrations. The delayed initiation of ripening observed in Ethrel-treated berries might therefore represent an indirect ethylene effect mediated by increased auxin concentrations. During berry development, the expression of three TAR genes and one YUCCA gene was upregulated at the time of ripening initiation and/or during ripening. This increase in auxin biosynthesis gene expression was preceded by high expression levels of the ethylene biosynthesis genes 1-aminocyclopropane-1-carboxylate synthase and 1-aminocyclopropane-1-carboxylate oxidase. Conclusions In grape berries, members of both gene families involved in the two-step pathway of auxin biosynthesis are expressed, suggesting that IAA is produced through the combined action of TAR and YUCCA proteins in developing berries. The induction of TAR expression by Ethrel applications and the developmental expression patterns of auxin and ethylene biosynthesis genes indicate that elevated concentrations of ethylene prior to the initiation of ripening might lead to an increased production of IAA, suggesting a complex involvement of this auxin and its conjugates in grape berry ripening. PMID:24364881

  19. Laboratory Studies on the Formation of Three C2H4O Isomers-Acetaldehyde (CH3CHO), Ethylene Oxide (c-C2H4O), and Vinyl Alcohol (CH2CHOH)-in Interstellar and Cometary Ices

    NASA Astrophysics Data System (ADS)

    Bennett, Chris J.; Osamura, Yoshihiro; Lebar, Matt D.; Kaiser, Ralf I.

    2005-11-01

    Laboratory experiments were conducted to unravel synthetic routes to form three C2H4O isomers-acetaldehyde (CH3CHO), ethylene oxide (c-C2H4O), and vinyl alcohol (CH2CHOH)-in extraterrestrial ices via electronic energy transfer processes initiated by electrons in the track of MeV ion trajectories. Here we present the results of electron irradiation on a 2:1 mixture of carbon dioxide (CO2) and ethylene (C2H4). Our studies suggest that suprathermal oxygen atoms can add to the carbon-carbon π bond of an ethylene molecule to form initially an oxirene diradical (addition to one carbon atom) and the cyclic ethylene oxide molecule (addition to two carbon atoms) at 10 K. The oxirene diradical can undergo a [1, 2]-H shift to the acetaldehyde molecule. Both the ethylene oxide and the acetaldehyde isomers can be stabilized in the surrounding ice matrix. To a minor amount, suprathermal oxygen atoms can insert into a carbon-hydrogen bond of the ethylene molecule, forming vinyl alcohol. Once these isomers have been synthesized inside the ice layers of the coated grains in cold molecular clouds, the newly formed molecules can sublime as the cloud reaches the hot molecular core stage. These laboratory investigations help to explain astronomical observations by Nummelin et al. and Ikeda et al. toward massive star-forming regions and hot cores, where observed fractional abundances of these isomers are higher than can be accounted for by gas-phase reactions alone. Similar synthetic routes could help explain the formation of acetaldehyde and ethylene oxide in comet C/1995 O1 (Hale-Bopp) and also suggest a presence of both isomers in Titan's atmosphere.

  20. Advanced Distillation Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena Fanelli; Ravi Arora; Annalee Tonkovich

    2010-03-24

    The Advanced Distillation project was concluded on December 31, 2009. This U.S. Department of Energy (DOE) funded project was completed successfully and within budget during a timeline approved by DOE project managers, which included a one year extension to the initial ending date. The subject technology, Microchannel Process Technology (MPT) distillation, was expected to provide both capital and operating cost savings compared to conventional distillation technology. With efforts from Velocys and its project partners, MPT distillation was successfully demonstrated at a laboratory scale and its energy savings potential was calculated. While many objectives established at the beginning of the projectmore » were met, the project was only partially successful. At the conclusion, it appears that MPT distillation is not a good fit for the targeted separation of ethane and ethylene in large-scale ethylene production facilities, as greater advantages were seen for smaller scale distillations. Early in the project, work involved flowsheet analyses to discern the economic viability of ethane-ethylene MPT distillation and develop strategies for maximizing its impact on the economics of the process. This study confirmed that through modification to standard operating processes, MPT can enable net energy savings in excess of 20%. This advantage was used by ABB Lumus to determine the potential impact of MPT distillation on the ethane-ethylene market. The study indicated that a substantial market exists if the energy saving could be realized and if installed capital cost of MPT distillation was on par or less than conventional technology. Unfortunately, it was determined that the large number of MPT distillation units needed to perform ethane-ethylene separation for world-scale ethylene facilities, makes the targeted separation a poor fit for the technology in this application at the current state of manufacturing costs. Over the course of the project, distillation experiments were performed with the targeted mixture, ethane-ethylene, as well as with analogous low relative volatility systems: cyclohexane-hexane and cyclopentane-pentane. Devices and test stands were specifically designed for these efforts. Development progressed from experiments and models considering sections of a full scale device to the design, fabrication, and operation of a single-channel distillation unit with integrated heat transfer. Throughout the project, analytical and numerical models and Computational Fluid Dynamics (CFD) simulations were validated with experiments in the process of developing this platform technology. Experimental trials demonstrated steady and controllable distillation for a variety of process conditions. Values of Height-to-an-Equivalent Theoretical Plate (HETP) ranging from less than 0.5 inch to a few inches were experimentally proven, demonstrating a ten-fold performance enhancement relative to conventional distillation. This improvement, while substantial, is not sufficient for MPT distillation to displace very large scale distillation trains. Fortunately, parallel efforts in the area of business development have yielded other applications for MPT distillation, including smaller scale separations that benefit from the flowsheet flexibility offered by the technology. Talks with multiple potential partners are underway. Their outcome will also help determine the path ahead for MPT distillation.« less

  1. Systematic theoretical study of ethylene adsorption on δ-MoC(001), TiC(001), and ZrC(001) surfaces

    DOE PAGES

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres; ...

    2016-05-31

    A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal likemore » Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp 2 to sp 3 with an elongation (0.16–0.31 Å) of the C=C bond. As a result, on the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis.« less

  2. Characterization of Ethylene Biosynthesis Associated with Ripening in Banana Fruit1

    PubMed Central

    Liu, Xuejun; Shiomi, Shinjiro; Nakatsuka, Akira; Kubo, Yasutaka; Nakamura, Reinosuke; Inaba, Akitsugu

    1999-01-01

    We investigated the characteristics of ethylene biosynthesis associated with ripening in banana (Musa sp. [AAA group, Cavendish subgroup] cv Grand Nain) fruit. MA-ACS1 encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase in banana fruit was the gene related to the ripening process and was inducible by exogenous ethylene. At the onset of the climacteric period in naturally ripened fruit, ethylene production increased greatly, with a sharp peak concomitant with an increase in the accumulation of MA-ACS1 mRNA, and then decreased rapidly. At the onset of ripening, the in vivo ACC oxidase activity was enhanced greatly, followed by an immediate and rapid decrease. Expression of the MA-ACO1 gene encoding banana ACC oxidase was detectable at the preclimacteric stage, increased when ripening commenced, and then remained high throughout the later ripening stage despite of a rapid reduction in the ACC oxidase activity. This discrepancy between enzyme activity and gene expression of ACC oxidase could be, at least in part, due to reduced contents of ascorbate and iron, cofactors for the enzyme, during ripening. Addition of these cofactors to the incubation medium greatly stimulated the in vivo ACC oxidase activity during late ripening stages. The results suggest that ethylene production in banana fruit is regulated by transcription of MA-ACS1 until climacteric rise and by reduction of ACC oxidase activity possibly through limited in situ availability of its cofactors once ripening has commenced, which in turn characterizes the sharp peak of ethylene production. PMID:10594112

  3. Local Transcriptional Control of YUCCA Regulates Auxin Promoted Root-Growth Inhibition in Response to Aluminium Stress in Arabidopsis.

    PubMed

    Liu, Guangchao; Gao, Shan; Tian, Huiyu; Wu, Wenwen; Robert, Hélène S; Ding, Zhaojun

    2016-10-01

    Auxin is necessary for the inhibition of root growth induced by aluminium (Al) stress, however the molecular mechanism controlling this is largely unknown. Here, we report that YUCCA (YUC), which encodes flavin monooxygenase-like proteins, regulates local auxin biosynthesis in the root apex transition zone (TZ) in response to Al stress. Al stress up-regulates YUC3/5/7/8/9 in the root-apex TZ, which we show results in the accumulation of auxin in the root-apex TZ and root-growth inhibition during the Al stress response. These Al-dependent changes in the regulation of YUCs in the root-apex TZ and YUC-regulated root growth inhibition are dependent on ethylene signalling. Increasing or disruption of ethylene signalling caused either enhanced or reduced up-regulation, respectively, of YUCs in root-apex TZ in response to Al stress. In addition, ethylene enhanced root growth inhibition under Al stress was strongly alleviated in yuc mutants or by co-treatment with yucasin, an inhibitor of YUC activity, suggesting a downstream role of YUCs in this process. Moreover, ethylene-insensitive 3 (EIN3) is involved into the direct regulation of YUC9 transcription in this process. Furthermore, we demonstrated that PHYTOCHROME INTERACTING FACTOR4 (PIF4) functions as a transcriptional activator for YUC5/8/9. PIF4 promotes Al-inhibited primary root growth by regulating the local expression of YUCs and auxin signal in the root-apex TZ. The Al-induced expression of PIF4 in root TZ acts downstream of ethylene signalling. Taken together, our results highlight a regulatory cascade for YUCs-regulated local auxin biosynthesis in the root-apex TZ mediating root growth inhibition in response to Al stress.

  4. Transcriptome Analysis of Cell Wall and NAC Domain Transcription Factor Genes during Elaeis guineensis Fruit Ripening: Evidence for Widespread Conservation within Monocot and Eudicot Lineages

    PubMed Central

    Tranbarger, Timothy J.; Fooyontphanich, Kim; Roongsattham, Peerapat; Pizot, Maxime; Collin, Myriam; Jantasuriyarat, Chatchawan; Suraninpong, Potjamarn; Tragoonrung, Somvong; Dussert, Stéphane; Verdeil, Jean-Luc; Morcillo, Fabienne

    2017-01-01

    The oil palm (Elaeis guineensis), a monocotyledonous species in the family Arecaceae, has an extraordinarily oil rich fleshy mesocarp, and presents an original model to examine the ripening processes and regulation in this particular monocot fruit. Histochemical analysis and cell parameter measurements revealed cell wall and middle lamella expansion and degradation during ripening and in response to ethylene. Cell wall related transcript profiles suggest a transition from synthesis to degradation is under transcriptional control during ripening, in particular a switch from cellulose, hemicellulose, and pectin synthesis to hydrolysis and degradation. The data provide evidence for the transcriptional activation of expansin, polygalacturonase, mannosidase, beta-galactosidase, and xyloglucan endotransglucosylase/hydrolase proteins in the ripening oil palm mesocarp, suggesting widespread conservation of these activities during ripening for monocotyledonous and eudicotyledonous fruit types. Profiling of the most abundant oil palm polygalacturonase (EgPG4) and 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) transcripts during development and in response to ethylene demonstrated both are sensitive markers of ethylene production and inducible gene expression during mesocarp ripening, and provide evidence for a conserved regulatory module between ethylene and cell wall pectin degradation. A comprehensive analysis of NAC transcription factors confirmed at least 10 transcripts from diverse NAC domain clades are expressed in the mesocarp during ripening, four of which are induced by ethylene treatment, with the two most inducible (EgNAC6 and EgNAC7) phylogenetically similar to the tomato NAC-NOR master-ripening regulator. Overall, the results provide evidence that despite the phylogenetic distance of the oil palm within the family Arecaceae from the most extensively studied monocot banana fruit, it appears ripening of divergent monocot and eudicot fruit lineages are regulated by evolutionarily conserved molecular physiological processes. PMID:28487710

  5. Effect of cytokinins on delaying petunia flower senescence: a transcriptome study approach.

    PubMed

    Trivellini, Alice; Cocetta, Giacomo; Vernieri, Paolo; Mensuali-Sodi, Anna; Ferrante, Antonio

    2015-01-01

    Flower senescence is a fascinating natural process that represents the final developmental stage in the life of a flower. Plant hormones play an important role in regulating the timing of flower senescence. Ethylene is a trigger and usually accelerates the senescence rate, while cytokinins are known to delay it. The aim of this work was to study the effect of 6-benzylaminopurine (BA) on petal senescence by transcript profile comparison after 3 or 6 h using a cross-species method by hybridizing petunia samples to a 4 × 44 K Agilent tomato array. The relative content of ethylene, abscisic acid, anthocyanins, total carotenoids and total phenols that determine the physiological behaviours of the petal tissue were measured. BA treatment prolonged the flower life and increased the concentrations of phenols and anthocyanins, while total carotenoids did not increase and were lower than the control. The ethylene biosynthetic and perception gene expressions were studied immediately after treatment until 24 h and all genes were repressed, while ethylene production was strongly induced after 4 days. The microarray analyses highlighted that BA strongly affected gene regulation after 3 h, but only 14% of genes remained differentially expressed after 6 h. The most affected pathways and genes were those related to stress, such as heat shock proteins, abscisic acid (ABA) catabolism and its signalling pathway, lipid metabolism and antioxidant defence systems. A gene annotation enrichment analysis using DAVID showed that the most important gene clusters were involved in energy generation and conservation processes. In addition to the ethylene pathway, cytokinins seem to be strongly involved the regulation of the ABA response in flower tissues.

  6. Expression of MdCAS1 and MdCAS2, encoding apple beta-cyanoalanine synthase homologs, is concomitantly induced during ripening and implicates MdCASs in the possible role of the cyanide detoxification in Fuji apple (Malus domestica Borkh.) fruits.

    PubMed

    Han, Sang Eun; Seo, Young Sam; Kim, Daeil; Sung, Soon-Kee; Kim, Woo Taek

    2007-08-01

    Fruit ripening involves complex biochemical and physiological changes. Ethylene is an essential hormone for the ripening of climacteric fruits. In the process of ethylene biosynthesis, cyanide (HCN), an extremely toxic compound, is produced as a co-product. Thus, most cyanide produced during fruit ripening should be detoxified rapidly by fruit cells. In higher plants, the key enzyme involved in the detoxification of HCN is beta-cyanoalanine synthase (beta-CAS). As little is known about the molecular function of beta-CAS genes in climacteric fruits, we identified two homologous genes, MdCAS1 and MdCAS2, encoding Fuji apple beta-CAS homologs. The structural features of the predicted polypeptides as well as an in vitro enzyme activity assay with bacterially expressed recombinant proteins indicated that MdCAS1 and MdCAS2 may indeed function as beta-CAS isozymes in apple fruits. RNA gel-blot studies revealed that both MdCAS1 and MdCAS2 mRNAs were coordinately induced during the ripening process of apple fruits in an expression pattern comparable with that of ACC oxidase and ethylene production. The MdCAS genes were also activated effectively by exogenous ethylene treatment and mechanical wounding. Thus, it seems like that, in ripening apple fruits, expression of MdCAS1 and MdCAS2 genes is intimately correlated with a climacteric ethylene production and ACC oxidase activity. In addition, beta-CAS enzyme activity was also enhanced as the fruit ripened, although this increase was not as dramatic as the mRNA induction pattern. Overall, these results suggest that MdCAS may play a role in cyanide detoxification in ripening apple fruits.

  7. Process Parameters for Successful Synthesis of Carbon Nanotubes by Chemical Vapor Deposition: Implications for Chemical Mechanisms and Life-cycle Assessment

    NASA Astrophysics Data System (ADS)

    Xue, Ke

    Manufacturing of carbon nanotubes (CNTs) via chemical vapor deposition (CVD) calls for thermal treatment associated with gas-phase rearrangement and catalyst deposition to achieve high cost efficiency and limited influence on environmental impact. Taking advantage of higher degree of structure control and economical efficiency, catalytic chemical vapor deposition (CCVD) has currently become the most prevailing synthesis approach for the synthesis of large-scale pure CNTs in past years. Because the synthesis process of CNTs dominates the potential ecotoxic impacts, materials consumption, energy consumption and greenhouse gas emissions should be further limited to efficiently reduce life cycle ecotoxicity of carbon naotubes. However, efforts to reduce energy and material requirements in synthesis of CNTs by CCVD are hindered by a lack of mechanistic understanding. In this thesis, the effect of operating parameters, especially the temperature, carbon source concentration, and residence time on the synthesis were studied to improve the production efficiency in a different angle. Thus, implications on the choice of operating parameters could be provided to help the synthesis of carbon nanotubes. Here, we investigated the typical operating parameters in conditions that have yielded successful CNT production in the published academic literature of over seventy articles. The data were filtered by quality of the resultant product and deemed either "successful" or "unsuccessful" according to the authors. Furthermore, growth rate data were tabulated and used as performance metric for the process whenever possible. The data provided us an opportunity to prompt possible and common methods for practioners in the synthesis of CNTs and motivate routes to achieve energy and material minimization. The statistical analysis revealed that methane and ethylene often rely on thermal conversion process to form direct carbon precursor; further, methane and ethylene could not be the direct CNT precursors by themselves. Acetylene does not show an additional energy demand or thermal conversion in the synthesis, and it could be the direct CNT precursors by itself; or at least, it would be most easily to get access to carbon nanotube growth while minimizing synthesis temperature. In detail, methane employs more energy demand (Tavg=883°C) than ethylene (Tavg=766°C), which in turn demands more energy than acetylene (Tavg=710°C) to successfully synthesize carbon nanotubes. The distinction in energy demand could be the result of kinetic energy requirements by the thermal conversion process of methane and ethylene to form direct CNT precursors, and methane employs the highest activation demand among three hydrocarbons. Thus, these results support the hypothesis that methane and ethylene could be thermally converted to form acetylene before CNT incorporation. In addition, methane and ethylene show the demand for hydrogen in thermal conversion process before CNT incorporation; whereas, hydrogen does not contribute to the synthesis via acetylene before CNT incorporation, except the reduction of catalyst. At relatively low hydrogen concentration, this work suggests that hydrogen prompts growth of carbon nanotubes via methane and ethylene, probably by reducing the catalysts or participating thermal reactions. In addition, "polymerization-like formation mechanism" could be supported by the higher growth rate of CNTs via ethylene than acetylene. There could be an optimum residence time to maintain a relatively higher growth rate. At too low residence time, carbon source could not be accumulated, causing a waste of material; while too high residence time may cause the limitation of carbon source supplement and accumulation of byproducts. At last, high concentration of carbon source and hydrogen could cause more energy consumption, while it helps to achieve a high growth rate, due to the more presence of direct carbon precursor.

  8. Cooperative ethylene receptor signaling

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The gaseous plant hormone ethylene is perceived by a family of five ethylene receptor members in the dicotyledonous model plant Arabidopsis. Genetic and biochemical studies suggest that the ethylene response is suppressed by ethylene receptor complexes, but the biochemical nature of the receptor signal is unknown. Without appropriate biochemical measures to trace the ethylene receptor signal and quantify the signal strength, the biological significance of the modulation of ethylene responses by multiple ethylene receptors has yet to be fully addressed. Nevertheless, the ethylene receptor signal strength can be reflected by degrees in alteration of various ethylene response phenotypes and in expression levels of ethylene-inducible genes. This mini-review highlights studies that have advanced our understanding of cooperative ethylene receptor signaling. PMID:22827938

  9. Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production.

    PubMed

    Besada, Cristina; Gil, Rebeca; Bonet, Luis; Quiñones, Ana; Intrigliolo, Diego; Salvador, Alejandra

    2016-03-01

    In recent years many hectares planted with persimmon trees in E Spain have been diagnosed with chloride toxicity. An effect of this abiotic stress on fruit quality has been reported in different crops. However, the impact of chloride stress on persimmon fruit quality is unknown. The harvest and postharvest quality of persimmons harvested from trees that manifest different intensities of chloride toxicity foliar symptoms was evaluated herein. Our results revealed that fruits from trees under chloride stress conditions underwent chloride accumulation in the calyx, which was more marked the greater the salt stress intensity trees were exposed to. Increased chloride concentrations in the calyx stimulated ethylene production in this tissue. In the fruits affected by slight and moderate chloride stress, calyx ethylene production accelerated the maturity process, as reflected by increased fruit colour and diminished fruit firmness. In the fruits under severe chloride stress, the high ethylene levels in the calyx triggered autocatalytic ethylene production in other fruit tissues, which led fruit maturity to drastically advance. In these fruits effectiveness of CO2 deastringency treatment was not complete and fruit softening enhanced during the postharvest period. Moreover, chloride stress conditions had a marked effect on reducing fruit weight, even in slightly stressed trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Promising SiC support for Pd catalyst in selective hydrogenation of acetylene to ethylene

    NASA Astrophysics Data System (ADS)

    Guo, Zhanglong; Liu, Yuefeng; Liu, Yan; Chu, Wei

    2018-06-01

    In this study, SiC supported Pd nanoparticles were found to be an efficient catalyst in acetylene selective hydrogenation reaction. The ethylene selectivity can be about 20% higher than that on Pd/TiO2 catalyst at the same acetylene conversion at 90%. Moreover, Pd/SiC catalyst showed a stable catalytic life at 65 °C with 80% ethylene selectivity. With the detailed characterization using temperature-programmed reduction (H2-TPR), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption analysis, CO-chemisorption and thermo-gravimetric analysis (TGA), it was found that SiC owns a lower surface area (22.9 m2/g) and a broad distribution of meso-/macro-porosity (from 5 to 65 nm), which enhanced the mass transfer during the chemical process at high reaction rate and decreased the residence time of ethylene on catalyst surface. Importantly, SiC support has the high thermal conductivity, which favored the rapid temperature homogenization through the catalyst bed and inhabited the over-hydrogenation of acetylene. The surface electronic density of Pd on Pd/SiC catalyst was higher than that on Pd/TiO2, which could promote desorption of ethylene from surface of the catalyst. TGA results confirmed a much less coke deposition on Pd/SiC catalyst.

  11. Gene expression in developing watermelon fruit

    PubMed Central

    Wechter, W Patrick; Levi, Amnon; Harris, Karen R; Davis, Angela R; Fei, Zhangjun; Katzir, Nurit; Giovannoni, James J; Salman-Minkov, Ayelet; Hernandez, Alvaro; Thimmapuram, Jyothi; Tadmor, Yaakov; Portnoy, Vitaly; Trebitsh, Tova

    2008-01-01

    Background Cultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR. Results High-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar phenotype, i.e. seeded, bright red flesh, dark green rind, etc., determined that ethylene levels were highest during the green fruit stage followed by a decrease during the white and pink fruit stages. Additionally, quantitative Real-Time PCR was used to validate modulation of 127 ESTs that were differentially expressed in developing and ripening fruits based on array analysis. Conclusion This study identified numerous ESTs with putative involvement in the watermelon fruit developmental and ripening process, in particular the involvement of the vascular system and ethylene. The production of ethylene during fruit development in watermelon gives further support to the role of ethylene in fruit development in non-climacteric fruits. PMID:18534026

  12. Dissociative excitation of the manganese atom quartet levels by collisions e-MnBr2

    NASA Astrophysics Data System (ADS)

    Smirnov, Yu M.

    2017-04-01

    Dissociative excitation of quartet levels of the manganese atom was studied in collisions of electrons with manganese dibromide molecules. Eighty-two cross-sections for transitions originating at odd levels and eleven cross-sections for transitions originating at even levels have been measured at an incident electron energy of 100 eV. An optical excitation function has been recorded in the electron energy range of 0-100 eV for transitions originating from 3d 64p z 4 F° levels. For the majority of transitions, a comparison of the resulting cross-section values to cross-sections produced by direct excitation is provided.

  13. Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes

    PubMed Central

    Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás

    2010-01-01

    In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.

  14. Analysis of Ethylene Receptors: Ethylene-Binding Assays.

    PubMed

    Binder, Brad M; Schaller, G Eric

    2017-01-01

    Plant ethylene receptors bind ethylene with high affinity. Most of the characterization of ethylene binding to the receptors has been carried out using a radioligand-binding assay on functional receptors expressed in yeast. In this chapter, we describe methods for expressing ethylene receptors in yeast and conducting ethylene-binding assays on intact yeast and yeast membranes. The ethylene-binding assays can be modified to analyze ethylene binding to intact plants and other organisms as well as membranes isolated from any biological source.

  15. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  16. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...

    EPA Pesticide Factsheets

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of EGBE that will appear on the Integrated Risk Information System (IRIS) database.

  17. Arabidopsis ETR1 and ERS1 Differentially Repress the Ethylene Response in Combination with Other Ethylene Receptor Genes1[W

    PubMed Central

    Liu, Qian; Wen, Chi-Kuang

    2012-01-01

    The ethylene response is negatively regulated by a family of five ethylene receptor genes in Arabidopsis (Arabidopsis thaliana). The five members of the ethylene receptor family can physically interact and form complexes, which implies that cooperativity for signaling may exist among the receptors. The ethylene receptor gene mutations etr1-1(C65Y)(for ethylene response1-1), ers1-1(I62P) (for ethylene response sensor1-1), and ers1C65Y are dominant, and each confers ethylene insensitivity. In this study, the repression of the ethylene response by these dominant mutant receptor genes was examined in receptor-defective mutants to investigate the functional significance of receptor cooperativity in ethylene signaling. We showed that etr1-1(C65Y), but not ers1-1(I62P), substantially repressed various ethylene responses independent of other receptor genes. In contrast, wild-type receptor genes differentially supported the repression of ethylene responses by ers1-1(I62P); ETR1 and ETHYLENE INSENSITIVE4 (EIN4) supported ers1-1(I62P) functions to a greater extent than did ERS2, ETR2, and ERS1. The lack of both ETR1 and EIN4 almost abolished the repression of ethylene responses by ers1C65Y, which implied that ETR1 and EIN4 have synergistic effects on ers1C65Y functions. Our data indicated that a dominant ethylene-insensitive receptor differentially repressed ethylene responses when coupled with a wild-type ethylene receptor, which supported the hypothesis that the formation of a variety of receptor complexes may facilitate differential receptor signal output, by which ethylene responses can be repressed to different extents. We hypothesize that plants can respond to a broad ethylene concentration range and exhibit tissue-specific ethylene responsiveness with differential cooperation of the multiple ethylene receptors. PMID:22227969

  18. Techno-economic assessment of a wood-based biorefinery concept for the production of polymer-grade ethylene, organosolv lignin and fuel.

    PubMed

    Nitzsche, Roy; Budzinski, Maik; Gröngröft, Arne

    2016-01-01

    Lignocellulose biorefineries are distinguished by an explicitly integrative, multi-functional concept that transforms biomass into multiple products, using a variety of conversion and separation processes. This study focuses on the technical design and economic evaluation of a lignocellulose biorefinery, that converts 400,000tDM/a (≙250MW) of beech wood into chemicals and fuel. A model was simulated with Aspen Plus® including the process steps pre-treatment, enzymatic hydrolysis, alcoholic fermentation, dehydration and biogas generation and upgrading. Mass and energy balances showed that 61,600t/a polymer-grade ethylene, 58,520tDM/a organosolv lignin, 38,400t/a biomethane and 90,800tDM/a hydrolysis lignin can be produced with a total energy efficiency of 87.1%. A discounted cash flow analysis indicated that the heat integrated biorefinery concept is not yet profitable. However, the economic results are greatly sensitive regarding various assumptions, in particular in terms of the prices for beech wood, ethylene and organosolv lignin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    NASA Astrophysics Data System (ADS)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  20. Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas to ethylene and propylene in a most energy-efficient and safe manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.; Rajput, A.M.

    1997-06-01

    Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas at 700--850 C in the presence of steam and limited oxygen yields ethylene and propylene with appreciable conversion and high selectivity but with almost no coke or tarlike product formation. In this process, the exothermic oxidative hydrocarbon conversion reactions are coupled directly with the endothermic cracking of C{sub 2+}-hydrocarbons by their simultaneous occurrence. Hence, the process operates in a most energy-efficient and safe (or nonhazardous) manner and also can be made almost thermoneutral or mildly endothermic/exothermic, thus requiring little or no external energy for the hydrocarbon conversion reactions.

  1. Efficient ejection of H3+ from hydrocarbon molecules induced by ultrashort intense lalifeser fields

    NASA Astrophysics Data System (ADS)

    Hoshina, Kennosuke; Furukawa, Yusuke; Okino, Tomoya; Yamanouchi, Kaoru

    2008-09-01

    The ejection processes of hydrogen molecular ion H3+ from 12 kinds of hydrocarbon molecular species, methanol, ethanol, 1-propanol, 2-propanol, acetone, acetaldehyde, methane, ethane, ethylene, allene, 1,3-butadiene, and cyclohexane, induced by intense laser fields (˜1014W/cm2) have been investigated by time-of-flight mass spectroscopy. The observation of the H3+ production with the kinetic energy range of 3.5-5.0eV from doubly ionized ethylene, allene, 1,3-butadiene, and cyclohexane, which have no methyl groups, showed the existence of the ultrafast hydrogen migration processes that enables three hydrogen atoms to come together to form H3+ within a hydrocarbon molecule.

  2. Methods for the synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J; Pharkya, Priti; Van Dien, Stephen J; Burgard, Anthony P; Schilling, Christophe H

    2013-06-04

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  3. Methods for the synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J [San Diego, CA; Pharkya, Priti [San Diego, CA; Van Dien, Stephen J [Encinitas, CA; Burgard, Anthony P [Bellefonte, PA; Schilling, Christophe H [San Diego, CA

    2011-09-27

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  4. Methods for synthesis of olefins and derivatives

    DOEpatents

    Burk, Mark J.; Pharkya, Priti; Van Dien, Stephen J.; Burgard, Anthony P.; Schilling, Christophe H.

    2016-06-14

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  5. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.

    1997-01-01

    A solid/liquid process for the separation and recovery of TcO.sub.4.sup.-1 ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO.sub.4.sup.-1 ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO.sub.4.sup.-1 ions in such an aqueous solution that is free from MoO.sub.4.sup.-2 ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.

  6. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA).

    PubMed

    Ma, Jie; Li, Haiyan; Spiese, Richard; Wilson, John; Yan, Guangxu; Guo, Shaohui

    2016-06-01

    Vapor intrusion of synthetic fuel additives represented a critical yet still neglected problem at sites impacted by petroleum fuel releases. This study used an advanced numerical model to simulate the vapor intrusion risk of lead scavengers 1,2-dibromoethane (ethylene dibromide, EDB) and 1,2-dichloroethane (DCA) under different site conditions. We found that simulated EDB and DCA indoor air concentrations can exceed USEPA screening level (4.7 × 10(-3) μg/m(3) for EDB and 1.1 × 10(-1) μg/m(3) for DCA) if the source concentration is high enough (is still within the concentration range found at leaking UST site). To evaluate the chance that vapor intrusion of EDB might exceed the USEPA screening levels for indoor air, the simulation results were compared to the distribution of EDB at leaking UST sites in the US. If there is no degradation of EDB or only abiotic degradation of EDB, from 15% to 37% of leaking UST sites might exceed the USEPA screening level. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the screening criteria for petroleum hydrocarbon may not provide sufficient protectiveness for fuel releases containing EDB and DCA. Based on a thorough literature review, we also compiled previous published data on the EDB and DCA groundwater source concentrations and their degradation rates. These data are valuable in evaluating EDB and DCA vapor intrusion risk. In addition, a set of refined attenuation factors based on site-specific information (e.g., soil types, source depths, and degradation rates) were provided for establishing site-specific screening criteria for EDB and DCA. Overall, this study points out that lead scavengers EDB and DCA may cause vapor intrusion problems. As more field data of EDB and DCA become available, we recommend that USEPA consider including these data in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2‐keto‐4‐methylthiobutyric acid production

    PubMed Central

    Xie, Yakun; Rolli, Eleonora; Guerard, Florence; Colcombet, Jean; Benhamed, Moussa; Depaepe, Thomas

    2018-01-01

    Several plant species require microbial associations for survival under different biotic and abiotic stresses. In this study, we show that Enterobacter sp. SA187, a desert plant endophytic bacterium, enhances yield of the crop plant alfalfa under field conditions as well as growth of the model plant Arabidopsis thaliana in vitro, revealing a high potential of SA187 as a biological solution for improving crop production. Studying the SA187 interaction with Arabidopsis, we uncovered a number of mechanisms related to the beneficial association of SA187 with plants. SA187 colonizes both the surface and inner tissues of Arabidopsis roots and shoots. SA187 induces salt stress tolerance by production of bacterial 2-keto-4-methylthiobutyric acid (KMBA), known to be converted into ethylene. By transcriptomic, genetic and pharmacological analyses, we show that the ethylene signaling pathway, but not plant ethylene production, is required for KMBA-induced plant salt stress tolerance. These results reveal a novel molecular communication process during the beneficial microbe-induced plant stress tolerance. PMID:29554117

  8. A solid-state [sup 13]C NMR study of the molecular motion of ethylene adsorbed on a silver surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jianxin Wang; Ellis, P.D.

    1993-01-13

    The reorientation of ethylene on a silver catalyst surface has been studied by solid-state [sup 13]C NMR. The static cross-polarization spectra at different temperatures have been measured. Different jump site models are proposed to simulate the experimental results. It was found that the models involving a low number of jump sites are more sensitive to the experimental details. By comparison of the simulated and experimental results, the 6- and 4-site jump models are chosen as the most satisfactory model to fit the experimental spectra. On the basis of this representation, the activation energy derived for the jump process is 4.3more » kJ/mol. From the simulated results, it was concluded that the symmetry axis for the motion of the ethylene at low temperatures ([minus]173 to ca. [minus]45[degrees]C) is perpendicular to the plane of the ethylene molecule. At higher temperatures motion about other axes is initiated such that at room temperature a nearly isotropically averaged [sup 13]C shielding tensor is observed. 20 refs., 9 figs.« less

  9. Synthesis and luminescent properties of the novel poly(ethylene-co-acrylic acid) films based on surface modification with lanthanide (Eu3+, Tb3+) complexes

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Chu, Yang; Yu, Zhenjiang; Hao, Haixia; Wu, Qingyao; Xie, Hongde

    2017-10-01

    Two kinds of novel fluorescent films have been successfully synthesized by surface modification on the poly(ethylene-co-acrylic acid) films using the lanthanide (Eu3+, Tb3+) complexes. The process consists of three steps: conversion of carboxylic acid groups on the surface of the poly(ethylene-co-acrylic acid) films to acid chloride groups, synthesis of the lanthanide complexes bearing amino groups, and amidation to form the modified films. To characterize the modified films, Fourier transform infrared, thermogravimetric analysis, static water contact angle measurements and photoluminescence tests have been employed. Fourier transform infrared verifies the successful preparation of the lanthanide complexes and the modified poly(ethylene-co-acrylic acid) films. These films can emit strong characteristic red and green light under UV light excitation. In addition, the films both have short lifetime (1.14 ms and 1.21 ms), high thermal stability (Td = 408 °C and 411 °C) and, compared with unmodified ones, increased hydrophilicity. All these results suggest that the modified films have potential application as luminescent materials under high temperature.

  10. Loss-of-function mutations in the ethylene receptor ETR1 cause enhanced sensitivity and exaggerated response to ethylene in Arabidopsis.

    PubMed

    Cancel, Jesse D; Larsen, Paul B

    2002-08-01

    Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response.

  11. Loss-of-Function Mutations in the Ethylene Receptor ETR1 Cause Enhanced Sensitivity and Exaggerated Response to Ethylene in Arabidopsis

    PubMed Central

    Cancel, Jesse D.; Larsen, Paul B.

    2002-01-01

    Ethylene signaling in Arabidopsis begins at a family of five ethylene receptors that regulate activity of a downstream mitogen-activated protein kinase kinase kinase, CTR1. Triple and quadruple loss-of-function ethylene receptor mutants display a constitutive ethylene response phenotype, indicating they function as negative regulators in this pathway. No ethylene-related phenotype has been described for single loss-of-function receptor mutants, although it was reported that etr1 loss-of-function mutants display a growth defect limiting plant size. In actuality, this apparent growth defect results from enhanced responsiveness to ethylene; a phenotype manifested in all tissues tested. The phenotype displayed by etr1 loss-of-function mutants was rescued by treatment with an inhibitor of ethylene perception, indicating that it is ethylene dependent. Identification of an ethylene-dependent phenotype for a loss-of-function receptor mutant gave a unique opportunity for genetic and biochemical analysis of upstream events in ethylene signaling, including demonstration that the dominant ethylene-insensitive phenotype of etr2-1 is partially dependent on ETR1. This work demonstrates that mutational loss of the ethylene receptor ETR1 alters responsiveness to ethylene in Arabidopsis and that enhanced ethylene response in Arabidopsis not only results in increased sensitivity but exaggeration of response. PMID:12177468

  12. Biological production of organic compounds

    DOEpatents

    Yu, Jianping; Wang, Bo; Paddock, Troy; Carrieri, Damian; Maness, Pin-Ching; Seibert, Michael

    2018-03-13

    Methods of producing ethylene oxide and ethylene glycol are disclosed herein. Ethylene produced by cyanobacteria engineered to express ethylene-forming enzymes may be converted to ethylene oxide by bacteria engineered to express a monooxygenase enzyme. Ethylene oxide may be converted to ethylene glycol by exposure to an acidic solution. The methods may be performed in a bioreactor.

  13. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana

    DOE PAGES

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; ...

    2015-03-26

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analysesmore » support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Lastly, we discuss implications of this model for ethylene signaling.« less

  14. Ethylene Regulates Levels of Ethylene Receptor/CTR1 Signaling Complexes in Arabidopsis thaliana*

    PubMed Central

    Shakeel, Samina N.; Gao, Zhiyong; Amir, Madiha; Chen, Yi-Feng; Rai, Muneeza Iqbal; Haq, Noor Ul; Schaller, G. Eric

    2015-01-01

    The plant hormone ethylene is perceived by a five-member family of receptors in Arabidopsis thaliana. The receptors function in conjunction with the Raf-like kinase CTR1 to negatively regulate ethylene signal transduction. CTR1 interacts with multiple members of the receptor family based on co-purification analysis, interacting more strongly with receptors containing a receiver domain. Levels of membrane-associated CTR1 vary in response to ethylene, doing so in a post-transcriptional manner that correlates with ethylene-mediated changes in levels of the ethylene receptors ERS1, ERS2, EIN4, and ETR2. Interactions between CTR1 and the receptor ETR1 protect ETR1 from ethylene-induced turnover. Kinetic and dose-response analyses support a model in which two opposing factors control levels of the ethylene receptor/CTR1 complexes. Ethylene stimulates the production of new complexes largely through transcriptional induction of the receptors. However, ethylene also induces turnover of receptors, such that levels of ethylene receptor/CTR1 complexes decrease at higher ethylene concentrations. Implications of this model for ethylene signaling are discussed. PMID:25814663

  15. Some ethylene biosynthesis and AP2/ERF genes reveal a specific pattern of expression during somatic embryogenesis in Hevea brasiliensis

    PubMed Central

    2012-01-01

    Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult. PMID:23268714

  16. Determination of ethylene oxide, ethylene chlorohydrin, and ethylene glycol in aqueous solutions and ethylene oxide residues in associated plastics.

    PubMed

    Ball, N A

    1984-09-01

    A gas chromatographic (GC) method was developed for the determination of ethylene oxide and its two reaction products, ethylene chlorohydrin and ethylene glycol, in aqueous ophthalmic solutions. Propylene oxide was used as an internal standard. All three components were determined in one isothermal chromatographic analysis in less than 15 min. An extraction method for the determination of ethylene oxide residues in plastic components was also developed, and certain plastics with different ethylene oxide retention characteristics were identified.

  17. Effects of ethylene on the kinetics of curvature and auxin redistribution in gravistimulated roots of Zea mays

    NASA Technical Reports Server (NTRS)

    Lee, J. S.; Evans, M. L.

    1990-01-01

    We tested the involvement of ethylene in maize (Zea mays L.) root gravitropism by measuring the kinetics of curvature and lateral auxin movement in roots treated with ethylene, inhibitors of ethylene synthesis, or inhibitors of ethylene action. In the presence of ethylene the latent period of gravitropic curvature appeared to be increased somewhat. However, ethylene-treated roots continued to curve after control roots had reached their final angle of curvature. Consequently, maximum curvature in the presence of ethylene was much greater in ethylene-treated roots than in controls. Inhibitors of ethylene biosynthesis or action had effects on the kinetics of curvature opposite to that of ethylene, i.e. the latent period appeared to be shortened somewhat while total curvature was reduced relative to that of controls. Label from applied 3H-indole-3-acetic acid was preferentially transported toward the lower side of stimulated roots. In parallel with effects on curvature, ethylene treatment delayed the development of gravity-induced asymmetric auxin movement across the root but extended its duration once initiated. The auxin transport inhibitor, 1-N-naphthylphthalamic acid reduced both gravitropic curvature and the effect of ethylene on curvature. Since neither ethylene nor inhibitors of ethylene biosynthesis or action prevented curvature, we conclude that ethylene does not mediate the primary differential growth response causing curvature. Because ethylene affects curvature and auxin transport in parallel, we suggest that ethylene modifies curvature by affecting gravity-induced lateral transport of auxin, perhaps by interfering with adaptation of the auxin transport system to the gravistimulus.

  18. High-resolution transcript profiling reveals shoot abscission process of spruce dwarf mistletoe Arceuthobium sichuanense in response to ethephon

    PubMed Central

    Wang, Yonglin; Xiong, Dianguang; Jiang, Ning; Li, Xuewu; Yang, Qiqing; Tian, Chengming

    2016-01-01

    Arceuthobium (dwarf mistletoes) are hemiparasites that may cause great damage to infected trees belonging to Pinaceae and Cupressaceae. Currently, dwarf mistletoe control involves the use of the ethylene-producing product ethephon (ETH), which acts by inducing dwarf mistletoe shoot abscission. However, the process by which ETH functions is mostly unknown. Therefore, the transcriptome of the ETH-exposed plants was compared to non-exposed controls to identify genes associated with the response to ethephon. In this study, the reference transcriptome was contained 120,316 annotated unigenes, with a total of 21,764 ETH-responsive differentially expressed unigenes were identified. These ETH-associated genes clustered into 20 distinctly expressed pattern groups, providing a view of molecular events with good spatial and temporal resolution. As expected, the greatest number of unigenes with changed expression were observed at the onset of abscission, suggesting induction by ethylene. ETH also affected genes associated with shoot abscission processes including hormone biosynthesis and signaling, cell wall hydrolysis and modification, lipid transference, and more. The comprehensive transcriptome data set provides a wealth of genomic resources for dwarf mistletoe communities and contributes to a better understanding of the molecular regulatory mechanism of ethylene-caused shoots abscission. PMID:27941945

  19. Effects of sterilisation method on surface topography and in-vitro cell behaviour of electrostatically spun scaffolds.

    PubMed

    Andrews, Kirstie D; Hunt, John A; Black, Richard A

    2007-02-01

    Electrostatic spinning is a potentially significant technique for scaffold production within the field of tissue engineering; however, the effect of sterilisation upon these structures is not known. This research investigated the extent of any topographical alteration to electrostatically spun scaffolds post-production through sterilisation, and examined any subsequent effect on contacting cells. Scaffolds made from Tecoflex SG-80A polyurethane were sterilised using ethylene oxide and UV-ozone. Scaffold topography was characterized in terms of inter-fibre separation (ifs), fibre diameter (f.dia) and surface roughness. Cell culture was performed over 7 days with both mouse L929 and human embryonic lung fibroblasts, the results of which were assessed using SEM, image analysis and confocal microscopy. Sterilisation by UV-ozone and ethylene oxide decreased ifs and increased f.dia; surface roughness was decreased by UV-ozone but increased by ethylene oxide. Possible mechanisms to explain these observations are discussed, namely photo-oxidative degradation in the case of UV-ozone and process-induced changes in surface roughness. UV-ozone sterilised scaffolds showed greater cell coverage than those treated with ethylene oxide, but lower coverage than all the controls. Changes in cell attachment and morphology were thought to be due to the changes in topography brought about by the sterilisation process. We conclude that surface modification by sterilisation could prove to be a useful tool at the final stage of scaffold production to enhance cell contact, phenotype or function.

  20. Leaf Abscission Induced by Ethylene in Water-Stressed Intact Seedlings of Cleopatra Mandarin Requires Previous Abscisic Acid Accumulation in Roots.

    PubMed Central

    Gomez-Cadenas, A.; Tadeo, F. R.; Talon, M.; Primo-Millo, E.

    1996-01-01

    The involvement of abscisic acid (ABA) in the process of leaf abscission induced by 1-aminocyclopropane-1-carboxylic acid (ACC) transported from roots to shoots in Cleopatra mandarin (Citrus reshni Hort. ex Tan.) seedlings grown under water stress was studied using norflurazon (NF). Water stress induced both ABA (24-fold) and ACC (16-fold) accumulation in roots and arrested xylem flow. Leaf bulk ABA also increased (8-fold), although leaf abscission did not occur. Shortly after rehydration, root ABA and ACC returned to their prestress levels, whereas sharp and transitory increases of ACC (17-fold) and ethylene (10-fold) in leaves and high percentages of abscission (up to 47%) were observed. NF suppressed the ABA and ACC accumulation induced by water stress in roots and the sharp increases of ACC and ethylene observed after rewatering in leaves. NF also reduced leaf abscission (7-10%). These results indicate that water stress induces root ABA accumulation and that this is required for the process of leaf abscission to occur. It was also shown that exogenous ABA increases ACC levels in roots but not in leaves. Collectively, the data suggest that ABA, the primary sensitive signal to water stress, modulates the levels of ethylene, which is the hormonal activator of leaf abscission. This assumption implies that root ACC levels are correlated with root ABA amounts in a dependent way, which eventually links water status to an adequate, protective response such as leaf abscission. PMID:12226398

  1. Autoinhibition of Ethylene Production in Citrus Peel Discs 1

    PubMed Central

    Riov, Joseph; Yang, Shang Fa

    1982-01-01

    Wound ethylene formation induced in flavede tissue of citrus fruit (Citrus paradisi MacFad. cv. Ruby Red) by slicing was almost completely inhibited by exogenous ethylene. The inhibition lasted for at least 6 hours after removal of exogenous ethylene and was then gradually relieved. The extent of inhibition was dependent upon the concentration of ethylene (1 to 10 microliters/liter) and the duration of treatment. The increase in wound ethylene production in control discs was paralleled by an increase in 1-aminocyclopropane-1-carboxylic acid (AAC) content, whereas in ethylene-treated discs there was little increase in ACC content. Application of ACC completely restored ethylene production in ethylene-pretreated discs, indicating that the conversion of ACC to ethylene is not impaired by the presence of ethylene. Thus, autoinhibition of ethylene synthesis was exerted by reducing the availability of ACC. Ethylene treatment resulted in a decrease in extractable ACC synthase activity, but this decrease was too small to account for the marked inhibition of ACC formation. The data indicate that autoinhibition of ethylene production in citrus flavede discs results from suppression of ACC formation through repression of the synthesis of ACC synthase and inhibition of its activity. PMID:16662276

  2. Ethylene and pollination decrease transcript abundance of an ethylene receptor gene in Dendrobium petals.

    PubMed

    Thongkum, Monthathip; Burns, Parichart; Bhunchoth, Anjana; Warin, Nuchnard; Chatchawankanphanich, Orawan; van Doorn, Wouter G

    2015-03-15

    We studied the expression of a gene encoding an ethylene receptor, called Ethylene Response Sensor 1 (Den-ERS1), in the petals of Dendrobium orchid flowers. Transcripts accumulated during the young floral bud stage and declined by the time the flowers had been open for several days. Pollination or exposure to exogenous ethylene resulted in earlier flower senescence, an increase in ethylene production and a lower Den-ERS1 transcript abundance. Treatment with 1-methylcyclopropene (1-MCP), an inhibitor of the ethylene receptor, decreased ethylene production and resulted in high transcript abundance. The literature indicates two kinds of ethylene receptor genes with regard to the effects of ethylene. One group shows ethylene-induced down-regulated transcription, while the other has ethylene-induced up-regulation. The present gene is an example of the first group. The 5' flanking region showed binding sites for Myb and myb-like, homeodomain, MADS domain, NAC, TCP, bHLH and EIN3-like transcription factors. The binding site for the EIN3-like factor might explain the ethylene effect on transcription. A few other transcription factors (RAV1 and NAC) seem also related to ethylene effects. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Simulation of ethane steam cracking with severity evaluation

    NASA Astrophysics Data System (ADS)

    Rosli, M. N.; Aziz, N.

    2016-11-01

    Understanding the influence of operating parameters towards cracking severity is paramount in ensuring optimum operation of an ethylene plant. However, changing the parameters in an actual plant for data collection can be dangerous. Thus, a simulation model for ethane steam cracking furnace is developed using ASPEN Plus for the assessment. The process performance is evaluated with cracking severity factors and main product yields. Three severity factors are used for evaluation due to their ease of measurement, which are methane yield (Ymet), Ethylene-Ethane Ratio (EER) and Propylene-Ethylene Ratio (PER). The result shows that cracking severity is primarily influenced by reactor temperature. Operating the furnace with coil outlet temperature ranging between 850°C to 950°C and steam-to-hydrocarbon ratio of 0.3 to 0.5 has led to optimum main product yield.

  4. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1995-12-19

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50 C to 300 C, using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered. 2 figs.

  5. Process for the preparation of ethyl benzene

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1995-01-01

    Ethyl benzene is produced in a catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 50.degree. C. to 300.degree. C., using as the catalyst a mole sieve characterized as acidic by feeding ethylene to the catalyst bed while benzene is conveniently added through the reflux to result in a molar excess present in the reactor to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene and diethyl benzene in the bottoms. The bottoms are fractionated, the ethyl benzene recovered and the bottoms are contacted with benzene in the liquid phase in a fixed bed straight pass reactor under conditions to transalkylate the benzene thereby converting most of the diethyl benzene to ethyl benzene which is again separated and recovered.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez-Orozco, Carlos; Florez, Elizabeth; Moreno, Andres

    A systematic study of ethylene adsorption over δ-MoC(001), TiC(001), and ZrC(001) surfaces was conducted by means of calculations based on periodic density functional theory. The structure and electronic properties of each carbide pristine surface had a strong influence in the bonding of ethylene. It was found that the metal and carbon sites of the carbide could participate in the adsorption process. As a consequence of this, very different bonding mechanisms were seen on δ-MoC(001) and TiC(001). The bonding of the molecule on the TMC(001) systems showed only minor similarities to the type of bonding found on a typical metal likemore » Pt(111). In general, the ethylene binding energy follow the trend in stability: ZrC(001) < TiC(001) < δ-MoC(001) < Pt(111). The van der Waals correction to the energy produces large binding energy values, modifies the stability orders and drives the ethylene closer to the surface but the adsorbate geometry parameters remain unchanged. Ethylene was activated on clearly defined binding geometries, changing its hybridization from sp 2 to sp 3 with an elongation (0.16–0.31 Å) of the C=C bond. As a result, on the basis of this theoretical study, δ-MoC(001) is proposed as a potential catalyst for the hydrogenation of olefins, whereas TiC(001) could be useful for their hydrogenolysis.« less

  7. Will ethylene oxide sterilization influence the application of novel Cu/LDPE nanocomposite intrauterine devices?

    PubMed

    Xia, Xianping; Wang, Yun; Cai, Shuizhou; Xie, Changsheng; Zhu, Changhong

    2009-01-01

    Copper/low-density polyethylene (Cu/LDPE) nanocomposite intrauterine device (IUD) is an implanted medicinal device that must be sterilized before use. Sterilization processes act either chemically or physically, leading to a lethal change in the structure or function of organic macromolecules in microorganisms. Given the nature of their action, sterilization might also attack the macromolecules of polymers by the same mechanisms, resulting in changes in surface functional groups and in the internal structure of the polymer. If sterilization leads to changes in surface functional groups and in the internal structure of the LDPE matrix, which will influence the mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs, potential clinical application will be limited. Therefore, it is necessary to study the influence of ethylene oxide sterilization on the potential clinical application of novel Cu/LDPE nanocomposite IUDs. The influence of ethylene oxide sterilization on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite IUDs was studied using differential scanning calorimetry, attenuated total reflection Fourier transform infrared spectroscopy, tensile testing and absorbance measurement. Ethylene oxide sterilization did not have any influence on the internal structure, surface functional groups, mechanical property and cupric ions release rate of novel Cu/LDPE nanocomposite intrauterine devices. Ethylene oxide sterilization will not affect the potential application of novel Cu/LDPE nanocomposite IUDs.

  8. Interaction of plant growth regulators and reactive oxygen species to regulate petal senescence in wallflowers (Erysimum linifolium).

    PubMed

    Salleh, Faezah Mohd; Mariotti, Lorenzo; Spadafora, Natasha D; Price, Anna M; Picciarelli, Piero; Wagstaff, Carol; Lombardi, Lara; Rogers, Hilary

    2016-04-02

    In many species floral senescence is coordinated by ethylene. Endogenous levels rise, and exogenous application accelerates senescence. Furthermore, floral senescence is often associated with increased reactive oxygen species, and is delayed by exogenously applied cytokinin. However, how these processes are linked remains largely unresolved. Erysimum linifolium (wallflower) provides an excellent model for understanding these interactions due to its easily staged flowers and close taxonomic relationship to Arabidopsis. This has facilitated microarray analysis of gene expression during petal senescence and provided gene markers for following the effects of treatments on different regulatory pathways. In detached Erysimum linifolium (wallflower) flowers ethylene production peaks in open flowers. Furthermore senescence is delayed by treatments with the ethylene signalling inhibitor silver thiosulphate, and accelerated with ethylene released by 2-chloroethylphosphonic acid. Both treatments with exogenous cytokinin, or 6-methyl purine (which is an inhibitor of cytokinin oxidase), delay petal senescence. However, treatment with cytokinin also increases ethylene biosynthesis. Despite the similar effects on senescence, transcript abundance of gene markers is affected differentially by the treatments. A significant rise in transcript abundance of WLS73 (a putative aminocyclopropanecarboxylate oxidase) was abolished by cytokinin or 6-methyl purine treatments. In contrast, WFSAG12 transcript (a senescence marker) continued to accumulate significantly, albeit at a reduced rate. Silver thiosulphate suppressed the increase in transcript abundance both of WFSAG12 and WLS73. Activity of reactive oxygen species scavenging enzymes changed during senescence. Treatments that increased cytokinin levels, or inhibited ethylene action, reduced accumulation of hydrogen peroxide. Furthermore, although auxin levels rose with senescence, treatments that delayed early senescence did not affect transcript abundance of WPS46, an auxin-induced gene. A model for the interaction between cytokinins, ethylene, reactive oxygen species and auxin in the regulation of floral senescence in wallflowers is proposed. The combined increase in ethylene and reduction in cytokinin triggers the initiation of senescence and these two plant growth regulators directly or indirectly result in increased reactive oxygen species levels. A fall in conjugated auxin and/or the total auxin pool eventually triggers abscission.

  9. Role of ethylene receptors during senescence and ripening in horticultural crops

    PubMed Central

    Agarwal, Gaurav; Choudhary, Divya; Singh, Virendra P.; Arora, Ajay

    2012-01-01

    The past two decades have been rewarding in terms of deciphering the ethylene signal transduction and functional validation of the ethylene receptor and downstream genes involved in the cascade. Our knowledge of ethylene receptors and its signal transduction pathway provides us a robust platform where we can think of manipulating and regulating ethylene sensitivity by the use of genetic engineering and making transgenic. This review focuses on ethylene perception, receptor mediated regulation of ethylene biosynthesis, role of ethylene receptors in flower senescence, fruit ripening and other effects induced by ethylene. The expression behavior of the receptor and downstream molecules in climacteric and non climacteric crops is also elaborated upon. Possible strategies and recent advances in altering the ethylene sensitivity of plants using ethylene receptor genes in an attempt to modulate the regulation and sensitivity to ethylene have also been discussed. Not only will these transgenic plants be a boon to post-harvest physiology and crop improvement but, it will also help us in discovering the mechanism of regulation of ethylene sensitivity. PMID:22751331

  10. CHEMICAL RECLAMATION OF SCRAP RUBBER

    EPA Science Inventory

    A conceptual, commercial-scale plant design was formulated for processing 22,500 t/yr of scrap rubber tires to hydrocarbon fuel gases, oils, petrochemicals (principally ethylene and aromatic liquids), and carbon black. The process is based upon molten salt (zinc chloride) pyrolys...

  11. 40 CFR 60.561 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... recovered for reuse in the process, off-site purification or treatment, or sale, at the time the process... polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable) or poly(ethylene... production of polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable), or poly...

  12. 40 CFR 60.561 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... recovered for reuse in the process, off-site purification or treatment, or sale, at the time the process... polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable) or poly(ethylene... production of polypropylene, polyethylene, polystyrene, (general purpose, crystal, or expandable), or poly...

  13. Characterisation of ethylene pathway components in non-climacteric capsicum.

    PubMed

    Aizat, Wan M; Able, Jason A; Stangoulis, James C R; Able, Amanda J

    2013-11-28

    Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the 'Breaker stage'. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may also exist in non-climacteric ripening as evidenced by the up-regulation of CaACO4 during ripening onset despite being negatively regulated by ethylene exposure. However, some level of ethylene perception may still be needed to induce ripening especially during the Breaker stage. A model of capsicum ripening is also presented to illustrate the probable role of ethylene in this non-climacteric fruit.

  14. Ethylene suppresses tomato (solanum lycopersicum) fruit set through modification of gibberellin metabolism

    USDA-ARS?s Scientific Manuscript database

    The plant hormone ethylene is probably best know as the “ripening hormone”. Ethylene also plays roles in senescence, stress responses and organ shedding (abscission). Regulation of ethylene synthesis, ethylene scavenging and genetic repression of ethylene synthesis and/or signaling are tactics dep...

  15. Ethylene Responses in Rice Roots and Coleoptiles Are Differentially Regulated by a Carotenoid Isomerase-Mediated Abscisic Acid Pathway[OPEN

    PubMed Central

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. PMID:25841037

  16. Ethylene Plays Multiple Nonprimary Roles in Modulating the Gravitropic Response in Tomato1

    PubMed Central

    Madlung, Andreas; Behringer, Friedrich J.; Lomax, Terri L.

    1999-01-01

    Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene. Ethylene inhibitors reduce wild-type gravicurvature, and extremely low (0.0005–0.001 μL L−1) ethylene concentrations can restore the reduced gravitropic response of the auxin-resistant dgt (diageotropica) mutant to wild-type levels. Slightly higher concentrations of ethylene inhibit the gravitropic response of all but the ethylene-insensitive nr (never-ripe) mutant. The gravitropic responses of nr and the constitutive-response mutant epi (epinastic) are slightly and significantly delayed, respectively, but otherwise normal. The reversal of shoot gravicurvature by red light in the lz-2(lazy-2) mutant is not affected by ethylene. Taken together, these data indicate that, although ethylene does not play a primary role in the gravitropic response of tomato, low levels of ethylene are necessary for a full gravitropic response, and moderate levels of the hormone specifically inhibit gravicurvature in a manner different from ethylene inhibition of overall growth. PMID:10398726

  17. Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato

    NASA Technical Reports Server (NTRS)

    Madlung, A.; Behringer, F. J.; Lomax, T. L.; Davies, E. (Principal Investigator)

    1999-01-01

    Ethylene is known to interact with auxin in regulating stem growth, and yet evidence for the role of ethylene in tropic responses is contradictory. Our analysis of four mutants of tomato (Lycopersicon esculentum) altered in their response to gravity, auxin, and/or ethylene revealed concentration-dependent modulation of shoot gravitropism by ethylene. Ethylene inhibitors reduce wild-type gravicurvature, and extremely low (0.0005-0.001 microliter L-1) ethylene concentrations can restore the reduced gravitropic response of the auxin-resistant dgt (diageotropica) mutant to wild-type levels. Slightly higher concentrations of ethylene inhibit the gravitropic response of all but the ethylene-insensitive nr (never-ripe) mutant. The gravitropic responses of nr and the constitutive-response mutant epi (epinastic) are slightly and significantly delayed, respectively, but otherwise normal. The reversal of shoot gravicurvature by red light in the lz-2 (lazy-2) mutant is not affected by ethylene. Taken together, these data indicate that, although ethylene does not play a primary role in the gravitropic response of tomato, low levels of ethylene are necessary for a full gravitropic response, and moderate levels of the hormone specifically inhibit gravicurvature in a manner different from ethylene inhibition of overall growth.

  18. Investigation of Test Methods, Material Properties and Processes for Solar Cell Encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P.; Baum, B.

    1982-01-01

    The evaluation of potentially useful low cost encapsulation materials is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost effective, long life solar cell modules. Technical investigations concerned the development of advanced cure chemistries for lamination type pottants; the continued evaluation of soil resistant surface treatment, and the results of an accelerated aging test program for the comparison of material stabilities. New compounds were evaluated for efficiency in curing both ethylene/vinyl acetate and ethylene/methyl acrylate pottants intended for vacuum bag lamination of solar cells. Two component aliphatic urethane casting syrups were evaluated for suitability as solar module pottants on the basis of optical, physical and fabrication characteristics.

  19. Process for recovering pertechnetate ions from an aqueous solution also containing other ions

    DOEpatents

    Rogers, R.; Horwitz, E.P.; Bond, A.H.

    1997-02-18

    A solid/liquid process for the separation and recovery of TcO{sub 4}{sup {minus}1} ions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups; whereas the aqueous solution from which the TcO{sub 4}{sup {minus}1} ions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt. A solid/liquid phase admixture of separation particles containing bound TcO{sub 4}{sup {minus}1} ions in such an aqueous solution that is free from MoO{sub 4}{sup {minus}2} ions is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 15 figs.

  20. 40 CFR 414.70 - Applicability; description of the bulk organic chemicals subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Monomethyl Ether *Dimer Acids Dioxane Ethane Ethylene Glycol Monophenyl Ether *Ethoxylates, Misc. Ethylene Glycol Dimethyl Ether Ethylene Glycol Monobutyl Ether Ethylene Glycol Monoethyl Ether Ethylene Glycol...

  1. Enhancement of RNA Synthesis, Protein Synthesis, and Abscission by Ethylene

    PubMed Central

    Abeles, F. B.; Holm, R. E.

    1966-01-01

    Ethylene stimulated RNA and protein synthesis in bean (Phaseolus vulgaris L. var. Red Kidney) abscission zone explants prior to abscission. The effect of ethylene on RNA synthesis and abscission was blocked by actinomycin D. Carbon dioxide, which inhibits the effect of ethylene on abscission, also inhibited the influence of ethylene on protein synthesis. An aging period appears to be essential before bean explants respond to ethylene. Stimulation of protein synthesis by ethylene occurred only in receptive or senescent explants. Treatment of juvenile explants with ethylene, which has no effect on abscission also has no effect on protein synthesis. Evidence in favor of a hormonal role for ethylene during abscission is discussed. PMID:16656405

  2. Ethylene binding site affinity in ripening apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, S.M.; Sisler, E.C.

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by applemore » tissue.« less

  3. 40 CFR 63.101 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical that is produced coincidentally during the production of another chemical. Chemical manufacturing... manufacture an intended product. A chemical manufacturing process unit consists of more than one unit... ethylene process does not include the manufacture of SOCMI chemicals such as the production of butadiene...

  4. The Role of Ethylene and Wound Signaling in Resistance of Tomato to Botrytis cinerea1

    PubMed Central

    Díaz, José; ten Have, Arjen; van Kan, Jan A.L.

    2002-01-01

    Ethylene, jasmonate, and salicylate play important roles in plant defense responses to pathogens. To investigate the contributions of these compounds in resistance of tomato (Lycopersicon esculentum) to the fungal pathogen Botrytis cinerea, three types of experiments were conducted: (a) quantitative disease assays with plants pretreated with ethylene, inhibitors of ethylene perception, or salicylate; (b) quantitative disease assays with mutants or transgenes affected in the production of or the response to either ethylene or jasmonate; and (c) expression analysis of defense-related genes before and after inoculation of plants with B. cinerea. Plants pretreated with ethylene showed a decreased susceptibility toward B. cinerea, whereas pretreatment with 1-methylcyclopropene, an inhibitor of ethylene perception, resulted in increased susceptibility. Ethylene pretreatment induced expression of several pathogenesis-related protein genes before B. cinerea infection. Proteinase inhibitor I expression was repressed by ethylene and induced by 1-methylcyclopropene. Ethylene also induced resistance in the mutant Never ripe. RNA analysis showed that Never ripe retained some ethylene sensitivity. The mutant Epinastic, constitutively activated in a subset of ethylene responses, and a transgenic line producing negligible ethylene were also tested. The results confirmed that ethylene responses are important for resistance of tomato to B. cinerea. The mutant Defenseless, impaired in jasmonate biosynthesis, showed increased susceptibility to B. cinerea. A transgenic line with reduced prosystemin expression showed similar susceptibility as Defenseless, whereas a prosystemin-overexpressing transgene was highly resistant. Ethylene and wound signaling acted independently on resistance. Salicylate and ethylene acted synergistically on defense gene expression, but antagonistically on resistance. PMID:12114587

  5. Ethylene hydrogenation catalysis on Pt(111) single-crystal surfaces studied by using mass spectrometry and in situ infrared absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Tillekaratne, Aashani; Simonovis, Juan Pablo; Zaera, Francisco

    2016-10-01

    The catalytic hydrogenation of ethylene promoted by a Pt(111) single crystal was studied by using a ultrahigh-vacuum surface-science instrument equipped with a so-called high-pressure cell. Kinetic data were acquired continuously during the catalytic conversion of atmospheric-pressure mixtures of ethylene and hydrogen by using mass spectrometry while simultaneously characterizing the surface species in operando mode by reflection-absorption infrared spectroscopy (RAIRS). Many observations reported in previous studies of this system were corroborated, including the presence of adsorbed alkylidyne intermediates during the reaction and the zero-order dependence of the rate of hydrogenation on the pressure of ethylene. In addition, the high quality of the kinetic data, which could be recorded continuously versus time and processed to calculate time-dependent turnover frequencies (TOFs), afforded a more detailed analysis of the mechanism. Specifically, deuterium labeling could be used to estimate the extent of isotope scrambling reached with mixed-isotope-substituted reactants (C2H4 + D2 and C2D4 + H2). Perhaps the most important new observation from this work is that, although extensive H-D exchange takes place on ethylene before being fully converted to ethane, the average stoichiometry of the final product retains the expected stoichiometry of the gas mixture, that is, four regular hydrogen atoms and two deuteriums per ethane molecule in the case of the experiments with C2H4 + D2. This means that no hydrogen atoms are removed from the surface via their inter-recombination to produce X2 (X = H or D). It is concluded that, under catalytic conditions, hydrogen surface recombination is much slower than ethylene hydrogenation and H-D exchange.

  6. Effects of abscisic acid, ethylene and sugars on the mobilization of storage proteins and carbohydrates in seeds of the tropical tree Sesbania virgata (Leguminosae).

    PubMed

    Tonini, Patricia Pinho; Purgatto, Eduardo; Buckeridge, Marcos Silveira

    2010-10-01

    Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, α-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased α-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased α-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.

  7. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor.

    PubMed

    Wang, Hong; Stier, Genevieve; Lin, Jing; Liu, Gang; Zhang, Zhen; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2013-01-01

    Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr1-1 gene was over-expressed under the control of a chemically-inducible promoter, which would allow expression of etr1-1 to be initiated at the desired time and stage of development. Here, we showed that transgenic plants grew and developed normally without a chemical inducer. Semi-quantitative RT-PCR demonstrated that the abundance of transcripts of Arabidopsis etr1-1 gene was substantially induced in flowers with 30 μM dexamethasone (DEX). Consequently, t he life of the flowers was almost doubled and the peak of ethylene production was delayed. We compared gene expression changes of petals with DEX to those without DEX at 24 h and 48 h by microarray. Our results indicated that transcripts of many putative genes encoding transcription factors were down-regulated by etr1-1 induced expression at the early stage. In addition, putative genes involved in gibberellin biosynthesis, response to jasmonic acid/gibberellins stimulus, cell wall modification, ethylene biosynthesis, and cell death were down-regulated associating with etr1-1 induced expression. We investigated time-course gene expression profiles and found two profiles which displayed totally opposite expression patterns under these two treatments. In these profiles, 'the regulation of transcription' was predominant in GO categories. Taking all results together, we concluded those transcription factors down-regulated at early stage might exert a major role in regulating the senescence process which were consequently characterized by cell wall modification and cell death.

  8. A Complex Molecular Interplay of Auxin and Ethylene Signaling Pathways Is Involved in Arabidopsis Growth Promotion by Burkholderia phytofirmans PsJN

    PubMed Central

    Poupin, María J.; Greve, Macarena; Carmona, Vicente; Pinedo, Ignacio

    2016-01-01

    Modulation of phytohormones homeostasis is one of the proposed mechanisms to explain plant growth promotion induced by beneficial rhizobacteria (PGPR). However, there is still limited knowledge about the molecular signals and pathways underlying these beneficial interactions. Even less is known concerning the interplay between phytohormones in plants inoculated with PGPR. Auxin and ethylene are crucial hormones in the control of plant growth and development, and recent studies report an important and complex crosstalk between them in the regulation of different plant developmental processes. The objective of this work was to study the role of both hormones in the growth promotion of Arabidopsis thaliana plants induced by the well-known PGPR Burkholderia phytofirmans PsJN. For this, the spatiotemporal expression patterns of several genes related to auxin biosynthesis, perception and response and ethylene biosynthesis were studied, finding that most of these genes showed specific transcriptional regulations after inoculation in roots and shoots. PsJN-growth promotion was not observed in Arabidopsis mutants with an impaired ethylene (ein2-1) or auxin (axr1–5) signaling. Even, PsJN did not promote growth in an ethylene overproducer (eto2), indicating that a fine regulation of both hormones signaling and homeostasis is necessary to induce growth of the aerial and root tissues. Auxin polar transport is also involved in growth promotion, since PsJN did not promote primary root growth in the pin2 mutant or under chemical inhibition of transport in wild type plants. Finally, a key role for ethylene biosynthesis was found in the PsJN-mediated increase in root hair number. These results not only give new insights of PGPR regulation of plant growth but also are also useful to understand key aspects of Arabidopsis growth control. PMID:27148317

  9. Transcriptome Changes Associated with Delayed Flower Senescence on Transgenic Petunia by Inducing Expression of etr1-1, a Mutant Ethylene Receptor

    PubMed Central

    Lin, Jing; Liu, Gang; Zhang, Zhen; Chang, Youhong; Reid, Michael S.; Jiang, Cai-Zhong

    2013-01-01

    Flowers of ethylene-sensitive ornamental plants transformed with ethylene-insensitive 1-1(etr1-1), a mutant ethylene receptor first isolated from Arabidopsis, are known to have longer shelf lives. We have generated petunia plants in which the etr1-1 gene was over-expressed under the control of a chemically-inducible promoter, which would allow expression of etr1-1 to be initiated at the desired time and stage of development. Here, we showed that transgenic plants grew and developed normally without a chemical inducer. Semi-quantitative RT-PCR demonstrated that the abundance of transcripts of Arabidopsis etr1-1 gene was substantially induced in flowers with 30 μM dexamethasone (DEX). Consequently, t he life of the flowers was almost doubled and the peak of ethylene production was delayed. We compared gene expression changes of petals with DEX to those without DEX at 24 h and 48 h by microarray. Our results indicated that transcripts of many putative genes encoding transcription factors were down-regulated by etr1-1 induced expression at the early stage. In addition, putative genes involved in gibberellin biosynthesis, response to jasmonic acid/gibberellins stimulus, cell wall modification, ethylene biosynthesis, and cell death were down-regulated associating with etr1-1 induced expression. We investigated time-course gene expression profiles and found two profiles which displayed totally opposite expression patterns under these two treatments. In these profiles, ‘the regulation of transcription’ was predominant in GO categories. Taking all results together, we concluded those transcription factors down-regulated at early stage might exert a major role in regulating the senescence process which were consequently characterized by cell wall modification and cell death. PMID:23874385

  10. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene

    PubMed Central

    Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L−1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2−), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2’-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway. PMID:28662156

  11. Hydrogen sulfide alleviates postharvest ripening and senescence of banana by antagonizing the effect of ethylene.

    PubMed

    Ge, Yun; Hu, Kang-Di; Wang, Sha-Sha; Hu, Lan-Ying; Chen, Xiao-Yan; Li, Yan-Hong; Yang, Ying; Yang, Feng; Zhang, Hua

    2017-01-01

    Accumulating evidence shows that hydrogen sulfide (H2S) acts as a multifunctional signaling molecule in plants, whereas the interaction between H2S and ethylene is still unclear. In the present study we investigated the role of H2S in ethylene-promoted banana ripening and senescence by the application of ethylene released from 1.0 g·L-1 ethephon solution or H2S with 1 mM sodium hydrosulfide (NaHS) as the donor or in combination. Fumigation with ethylene was found to accelerate banana ripening and H2S treatment effectively alleviated ethylene-induced banana peel yellowing and fruit softening in parallel with decreased activity of polygalacturonase (PG). Ethylene+H2S treatment also delayed the decreases in chlorophyll and total phenolics, and increased the accumulation of flavonoid, whereas decreased the contents of carotenoid, soluble protein in banana peel and reducing sugar in pulp compared with ethylene treatment alone. Besides, ethylene+H2S treatment suppressed the accumulation of superoxide radicals (·O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) which accumulated highly in ethylene-treated banana peels. Furthermore H2S enhanced total antioxidant capacity in ethylene-treated banana peels with the 2,2'-azobis(3-ethylbenz-thiazoline-6-sulfonic acid (ABTS) assay. The result of quantitative real-time PCR showed that the combined treatment of ethylene with H2S down-regulated the expression of ethylene synthesis genes MaACS1, MaACS2 and MaACO1 and pectate lyase MaPL compared with ethylene treatment, while the expression of ethylene receptor genes MaETR, MaERS1 and MaERS2 was enhanced in combination treatment compared with ethylene alone. In all, it can be concluded that H2S alleviates banana fruit ripening and senescence by antagonizing the effect of ethylene through reduction of oxidative stress and inhibition of ethylene signaling pathway.

  12. Characterisation of ethylene pathway components in non-climacteric capsicum

    PubMed Central

    2013-01-01

    Background Climacteric fruit exhibit high ethylene and respiration levels during ripening but these levels are limited in non-climacteric fruit. Even though capsicum is in the same family as the well-characterised climacteric tomato (Solanaceae), it is non-climacteric and does not ripen normally in response to ethylene or if harvested when mature green. However, ripening progresses normally in capsicum fruit when they are harvested during or after what is called the ‘Breaker stage’. Whether ethylene, and components of the ethylene pathway such as 1-aminocyclopropane 1-carboxylate (ACC) oxidase (ACO), ACC synthase (ACS) and the ethylene receptor (ETR), contribute to non-climacteric ripening in capsicum has not been studied in detail. To elucidate the behaviour of ethylene pathway components in capsicum during ripening, further analysis is therefore needed. The effects of ethylene or inhibitors of ethylene perception, such as 1-methylcyclopropene, on capsicum fruit ripening and the ethylene pathway components may also shed some light on the role of ethylene in non-climacteric ripening. Results The expression of several isoforms of ACO, ACS and ETR were limited during capsicum ripening except one ACO isoform (CaACO4). ACS activity and ACC content were also low in capsicum despite the increase in ACO activity during the onset of ripening. Ethylene did not stimulate capsicum ripening but 1-methylcyclopropene treatment delayed the ripening of Breaker-harvested fruit. Some of the ACO, ACS and ETR isoforms were also differentially expressed upon treatment with ethylene or 1-methylcyclopropene. Conclusions ACS activity may be the rate limiting step in the ethylene pathway of capsicum which restricts ACC content. The differential expression of several ethylene pathway components during ripening and upon ethylene or 1-methylclopropene treatment suggests that the ethylene pathway may be regulated differently in non-climacteric capsicum compared to the climacteric tomato. Ethylene independent pathways may also exist in non-climacteric ripening as evidenced by the up-regulation of CaACO4 during ripening onset despite being negatively regulated by ethylene exposure. However, some level of ethylene perception may still be needed to induce ripening especially during the Breaker stage. A model of capsicum ripening is also presented to illustrate the probable role of ethylene in this non-climacteric fruit. PMID:24286334

  13. Mechanism of the Enantioselective Oxidation of Racemic Secondary Alcohols Catalyzed by Chiral Mn(III)–Salen Complexes

    PubMed Central

    Brown, M. Kevin; Blewett, Megan M.; Colombe, James R.; Corey, E. J.

    2010-01-01

    The experiments described here clarify the mechanism and origin of the enantioselectivity of the oxidation of racemic secondary alcohols catalyzed by chiral Mn(III)–salen complexes using HOBr, Br2/H2O/KOAc or PhI(OAc)2/H2O/KBr as a stoichiometric oxidant. Key points of the proposed pathway include (1) the formation of a Mn(V)–salen dibromide, (2) its subsequent reaction with the alcohol to give an alkoxy-Mn(V) species, and (3) carbonyl-forming elimination to produce the ketone via a highly organized transition state with intramolecular transfer of hydrogen from carbon to an oxygen of the salen ligand. PMID:20666410

  14. The involvement of ethylene in regulation of Arabidopsis gravitropism

    NASA Astrophysics Data System (ADS)

    Li, Ning; Zhu, Lin

    Plant gravitropism is a directional response to gravity stimulus. This response involves a com-plex signaling network. Ethylene, a major plant hormone, has been found to modulate grav-itropism. The biosynthesis of ethylene is induced by the gravi-stimulus and the requirement for ethylene during gravitropism is tissue-dependent. While ethylene plays a modulating role in inflorescence stems, the light-grown hypocotyls of Arabidopsis requires ethylene to achieve a maximum gravicurvature. Because both inhibitory and stimulatory effects of ethylene on gravitropism have been overwhelmingly documented, there is a need to postulate a new theory to consolidate the apparently contradictory results. A dual-and-opposing effects (DOE) theory is therefore hypothesized to address how ethylene is involved in regulation of Arabidopsis grav-itropism, in which it is suggested that both stimulatory and inhibitory effects act on the same organ of a plant and co-exist at the same time in a mutually opposing manner. The final out-come of gravitropic response is determined by the dynamic display between the two opposing effects. A prolonged pretreatment of ethylene promotes the gravitropism in both inflorescence and light-grown hypocotyls, while a short ethylene pretreatment inhibits gravitropism. Gener-ally speaking, the inhibitory effect of ethylene is dominant over the expression of the stimula-tory effect in light-grown hypocotyls, whereas the stimulatory effect is dominant in inflorescence stem. Each effect is also positively correlated with concentrations of ethylene and in a time-dependent manner. The stimulatory effect occurs slowly but continues to react after the removal of ethylene, whereas the inhibitory effect takes place abruptly and diminishes shortly after its removal. Forward genetic screening based on the DOE phenotype of ethylene-treated Arabidop-sis has revealed a novel component in gravity signaling pathway: EGY1 (ethylene-dependent gravitropism-deficient and yellow green 1, Chen et al 2005; Guo et al 2008). To address the molecular mechanism by which ethylene regulates gravitropism, a cutting-edge phosphopro-teomics approach has been adopted to discover new components involved in ethylene signaling pathways (Li et al 2009). Two putative ethylene response transcription factors: EIL1 and ERF110, have been identified to contain ethylene-regulated phosphorylation sites, the phos-phorylation status of which are ethylene treatment-dependent but EIN2-independent, strongly suggestive of the existence of novel signaling components mediating an alternative ethylene signal pathway. Combination of the time-dependent ethylene treatments with the systematic profiling of protein phosphorylation using functional phosphoproteomics among Arabidopsis ethylene response mutants is able to provide more valuable information about the molecular mechanisms underlying ethylene and gravity signaling pathways. (This work is supported by grants: RPC07/08.SC16, 661408, 661207, N HKUST627/06, DAG04/05.SC08, HKUST6105/01M, and HKUST6413/06M)

  15. Abscission: The Phytogerontological Effects of Ethylene

    PubMed Central

    Abeles, F. B.; Craker, L. E.; Leather, G. R.

    1971-01-01

    The role of ethylene in the aging of bean (Phaseolus vulgaris L. cv. Red Kidney) petiole abscission zone explants was examined. The data indicate that ethylene does accelerate aging in addition to inducing changes in break strength. Application of ethylene during the aging stage (stage 1) promoted abscission when followed by a second ethylene treatment during the cell separating stage (stage 2). The half-maximal effective concentration of ethylene to induce aging was around 0.3 microliter per liter; 10 microliters per liter was a saturating dose. CO2 reversal of ethylene action during stage 1 was incomplete and gave ambiguous results. CO2 (10%) reversed the effect of 10 microliters per liter ethylene but not 1 microliter per liter ethylene. The possibility that ethylene not only accelerated aging but was also a requirement for it was tested, and experimental evidence in favor of this idea was obtained. It was concluded that ethylene plays a dual role in the abscission of bean petiole explants: a phytogerontological effect and a cellulase-inducing effect. PMID:16657581

  16. Role of Ethylene and Its Cross Talk with Other Signaling Molecules in Plant Responses to Heavy Metal Stress1

    PubMed Central

    Thao, Nguyen Phuong; Khan, M. Iqbal R.; Thu, Nguyen Binh Anh; Hoang, Xuan Lan Thi; Asgher, Mohd; Khan, Nafees A.; Tran, Lam-Son Phan

    2015-01-01

    Excessive heavy metals (HMs) in agricultural lands cause toxicities to plants, resulting in declines in crop productivity. Recent advances in ethylene biology research have established that ethylene is not only responsible for many important physiological activities in plants but also plays a pivotal role in HM stress tolerance. The manipulation of ethylene in plants to cope with HM stress through various approaches targeting either ethylene biosynthesis or the ethylene signaling pathway has brought promising outcomes. This review covers ethylene production and signal transduction in plant responses to HM stress, cross talk between ethylene and other signaling molecules under adverse HM stress conditions, and approaches to modify ethylene action to improve HM tolerance. From our current understanding about ethylene and its regulatory activities, it is believed that the optimization of endogenous ethylene levels in plants under HM stress would pave the way for developing transgenic crops with improved HM tolerance. PMID:26246451

  17. A natural frameshift mutation in Campanula EIL2 correlates with ethylene insensitivity in flowers.

    PubMed

    Jensen, Line; Hegelund, Josefine Nymark; Olsen, Andreas; Lütken, Henrik; Müller, Renate

    2016-05-23

    The phytohormone ethylene plays a central role in development and senescence of climacteric flowers. In ornamental plant production, ethylene sensitive plants are usually protected against negative effects of ethylene by application of chemical inhibitors. In Campanula, flowers are sensitive to even minute concentrations of ethylene. Monitoring flower longevity in three Campanula species revealed C. portenschlagiana (Cp) as ethylene sensitive, C. formanekiana (Cf) with intermediate sensitivity and C. medium (Cm) as ethylene insensitive. We identified key elements in ethylene signal transduction, specifically in Ethylene Response Sensor 2 (ERS2), Constitutive Triple Response 1 (CTR1) and Ethylene Insensitive 3- Like 1 and 2 (EIL1 and EIL2) homologous. Transcripts of ERS2, CTR1 and EIL1 were constitutively expressed in all species both throughout flower development and in response to ethylene. In contrast, EIL2 was found only in Cf and Cm. We identified a natural mutation in Cmeil2 causing a frameshift which resulted in difference in expression levels of EIL2, with more than 100-fold change between Cf and Cm in young flowers. This study shows that the naturally occurring 7 bp frameshift discovered in Cmeil2, a key gene in the ethylene signaling pathway, correlates with ethylene insensitivity in flowers. We suggest that transfer of the eil2 mutation to other plant species will provide a novel tool to engineer ethylene insensitive flowers.

  18. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus

    PubMed Central

    Love, Jonathan; Björklund, Simon; Vahala, Jorma; Hertzberg, Magnus; Kangasjärvi, Jaakko; Sundberg, Björn

    2009-01-01

    The plant hormone ethylene is an important signal in plant growth responses to environmental cues. In vegetative growth, ethylene is generally considered as a regulator of cell expansion, but a role in the control of meristem growth has also been suggested based on pharmacological experiments and ethylene-overproducing mutants. In this study, we used transgenic ethylene-insensitive and ethylene-overproducing hybrid aspen (Populus tremula × tremuloides) in combination with experiments using an ethylene perception inhibitor [1-methylcyclopropene (1-MCP)] to demonstrate that endogenous ethylene produced in response to leaning stimulates cell division in the cambial meristem. This ethylene-controlled growth gives rise to the eccentricity of Populus stems that is formed in association with tension wood. PMID:19293381

  19. Kinetic and thermodynamic studies of AISI 4130 steel alloy corrosion in ethylene glycol-water mixture in presence of inhibitors

    NASA Astrophysics Data System (ADS)

    Khomami, M. Niknejad; Danaee, I.; Attar, A. A.; Peykari, M.

    2013-05-01

    The electrochemical behavior of steel alloy in ethylene glycol-water mixture was investigated by electrochemical methods. The results obtained showed that corrosion rate was decreased with increasing ethylene glycol concentration. The effect of inorganic inhibitors including NO3 -, NO2 -, Cr2O7 2- and CrO4 2- were studied using electrochemical techniques where the highest inhibition efficiency was obtained for CrO4 2-. In the presence of chromate the inhibitor efficiency increased with its concentration. The inhibiting effect of the chromate was explained on the basis of the competitive adsorption between the inorganic anions and the aggressive Cl- ions, and the adsorption isotherm basically obeys the Langmuir adsorption isotherm. Thermodynamic parameters for steel corrosion and inhibitor adsorption were determined and reveal that the adsorption process is spontaneous. Also, a phenomenon of both physical and chemical adsorption is proposed.

  20. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    EPA has finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. This assessment addresses the potential carcinogenicity from long-term inhalation exposure to ethylene oxide. Now final, this assessment updates the carcinogenicity information in EPA’s 1985 Health Assessment Document. EPA’s program and regional offices may use this assessment to inform decisions to protect human health. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public release. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science consultation materials provided to other agencies, including interagency review drafts of the IRIS Toxicological Review of Ammonia and the charge to external peer reviewers, are posted on this site.

  1. Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media.

    PubMed

    Kloser, Elisabeth; Gray, Derek G

    2010-08-17

    Aqueous suspensions of poly(ethylene oxide)-grafted nanocrystalline cellulose (PEO-grafted NCC) were prepared in order to achieve steric instead of electrostatic stabilization. A two-step process was employed: in the first step NCC suspensions prepared by sulfuric acid hydrolysis were desulfated with sodium hydroxide, and in the second step the surfaces of the crystals were functionalized with epoxy-terminated poly(ethylene oxide) (PEO epoxide) under alkaline conditions. The PEO-grafted samples were analyzed by conductometric titration, ATR-IR, solid-state NMR, MALDI-TOF MS, SEC MALLS, and AFM. The covalent nature of the linkage was confirmed by weight increase and MALDI-TOF analysis. The PEO-grafted cellulose nanocrystals (CNCs) formed a stable colloidal suspension that remained well dispersed, while the desulfated nanoparticles aggregated and precipitated. Upon concentration of the PEO-grafted aqueous NCC suspension, a chiral nematic phase was observed.

  2. Synthesis of ethylene-propylene rubber graft copolymers by borane approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, T.C.; Janvikul, W.; Bernard, R.

    1994-01-01

    This paper describes a new method to prepare graft copolymers which have an EP rubber backbone and several free radical polymerized polymers grafted thereto. The process involves hydroboration of commercial EPDM rubbers, such as poly(ethylene-co-propylene-co-1,4-hexadiene) and poly(ethylene-co-propylene-co-5-ethylidene-2-norbornene), with 9-borabicyclononane (9-BBN). The resulting secondary alkyl-9-BBN moieties in the EPDM copolymer were then exposed to oxygen in the presence of free radical polymerizable monomers. Under certain conditions, the selective autoxidation reaction of secondary alkyl-9-BBN took place to create desirable polymeric radicals which can in situ initiate free radical polymerization. High graft efficiency was observed with controllable copolymer compositions. The graft copolymer ofmore » EP-g-PMMA is used to show the chemistry as well as some of the physical properties.« less

  3. Dominant gain-of-function mutations in transmembrane domain III of ERS1 and ETR1 suggest a novel role for this domain in regulating the magnitude of ethylene response in Arabidopsis.

    PubMed

    Deslauriers, Stephen D; Alvarez, Ashley A; Lacey, Randy F; Binder, Brad M; Larsen, Paul B

    2015-10-01

    Prior work resulted in identification of an Arabidopsis mutant, eer5-1, with extreme ethylene response in conjunction with failure to induce a subset of ethylene-responsive genes, including AtEBP. EER5, which is a TREX-2 homolog that is part of a nucleoporin complex, functions as part of a cryptic aspect of the ethylene signaling pathway that is required for regulating the magnitude of ethylene response. A suppressor mutagenesis screen was carried out to identify second site mutations that could restore the growth of ethylene-treated eer5-1 to wild-type levels. A dominant gain-of-function mutation in the ethylene receptor ETHYLENE RESPONSE SENSOR 1 (ERS1) was identified, with the ers1-4 mutation being located in transmembrane domain III at a point nearly equivalent to the previously described etr1-2 mutation in the other Arabidopsis subfamily I ethylene receptor, ETHYLENE RESPONSE 1 (ETR1). Although both ers1-4 and etr1-2 partially suppress the ethylene hypersensitivity of eer5-1 and are at least in part REVERSION TO ETHYLENE SENSITIVITY 1 (RTE1)-dependent, ers1-4 was additionally found to restore the expression of AtEBP in ers1-4;eer5-1 etiolated seedlings after ethylene treatment in an EIN3-dependent manner. Our work indicates that ERS1-regulated expression of a subset of ethylene-responsive genes is related to controlling the magnitude of ethylene response, with hyperinduction of these genes correlated with reduced ethylene-dependent growth inhibition. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  4. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications

    PubMed Central

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy. PMID:28174583

  5. Accumulation and Transport of 1-Aminocyclopropane-1-Carboxylic Acid (ACC) in Plants: Current Status, Considerations for Future Research and Agronomic Applications.

    PubMed

    Vanderstraeten, Lisa; Van Der Straeten, Dominique

    2017-01-01

    1-aminocyclopropane-1-carboxylic acid (ACC) is a non-protein amino acid acting as the direct precursor of ethylene, a plant hormone regulating a wide variety of vegetative and developmental processes. ACC is the central molecule of ethylene biosynthesis. The rate of ACC formation differs in response to developmental, hormonal and environmental cues. ACC can be conjugated to three derivatives, metabolized in planta or by rhizobacteria using ACC deaminase, and is transported throughout the plant over short and long distances, remotely leading to ethylene responses. This review highlights some recent advances related to ACC. These include the regulation of ACC synthesis, conjugation and deamination, evidence for a role of ACC as an ethylene-independent signal, short and long range ACC transport, and the identification of a first ACC transporter. Although unraveling the complex mechanism of ACC transport is in its infancy, new questions emerge together with the identification of a first transporter. In the light of the future quest for additional ACC transporters, this review presents perspectives of the novel findings and includes considerations for future research toward applications in agronomy.

  6. Induction of Senescence and Identification of Differentially Expressed Genes in Tomato in Response to Monoterpene

    PubMed Central

    Kumar, Vinay; Kumar, Anil; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2013-01-01

    Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH) approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS), ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr) suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process. PMID:24098759

  7. Economic feasibility of the sugar beet-to-ethylene value chain.

    PubMed

    Althoff, Jeroen; Biesheuvel, Kees; De Kok, Ad; Pelt, Henk; Ruitenbeek, Matthijs; Spork, Ger; Tange, Jan; Wevers, Ronald

    2013-09-01

    As part of a long-term strategy toward renewable feedstock, a feasibility study into options for the production of bioethylene by integrating the sugar beet-to-ethanol-to-ethylene value chain. Seven business cases were studied and tested for actual economic feasibility of alternative sugar-to-ethanol-to-ethylene routes in comparison to fossil-fuel alternatives. An elaborate model was developed to assess the relevant operational and financial aspects of each business case. The calculations indicate that bioethylene from sugar beet is not commercially viable under current market conditions. In light of expected global energy and feedstock prices it is also reasonable to expect that this will not change in the near future. To consider biorenewable sources as starting material, they need to be low in cost (compared to sugar beets) and also require less capital and energy-intensive methods for the conversion to chemicals. In general, European sugar prices will be too high for many chemical applications. Future efforts for in sugar-to-chemicals routes should, therefore, focus on integrated process routes and process intensification and/or on products that contain a significant part of the original carbohydrate backbone. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    In December 2016, EPA finalized its Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide. EPA’s evaluation was reviewed internally by EPA and by other federal agencies and White House Offices in October 2016, before public release. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science discussion materials provided to other agencies, including interagency review drafts of the EPA’s Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide, are posted on this site. Note: No major science comments were received on the Interagency Science Discussion Draft. The Toxicological Review and charge were reviewed internally by EPA and by other federal agencies and White House Offices before public release. Consistent with the May 2009 IRIS assessment development process, all written comments on IRIS assessments submitted by other federal agencies and White House Offices are made publicly available. Accordingly, interagency comments and the interagency science consultation materials provided to other agencies, including interagency review drafts of the IRIS Toxicological Review of Ammonia and the charge to external peer reviewers, are posted on this site.

  9. Ethylene-producing bacteria that ripen fruit.

    PubMed

    Digiacomo, Fabio; Girelli, Gabriele; Aor, Bruno; Marchioretti, Caterina; Pedrotti, Michele; Perli, Thomas; Tonon, Emil; Valentini, Viola; Avi, Damiano; Ferrentino, Giovanna; Dorigato, Andrea; Torre, Paola; Jousson, Olivier; Mansy, Sheref S; Del Bianco, Cristina

    2014-12-19

    Ethylene is a plant hormone widely used to ripen fruit. However, the synthesis, handling, and storage of ethylene are environmentally harmful and dangerous. We engineered E. coli to produce ethylene through the activity of the ethylene-forming enzyme (EFE) from Pseudomonas syringae. EFE converts a citric acid cycle intermediate, 2-oxoglutarate, to ethylene in a single step. The production of ethylene was placed under the control of arabinose and blue light responsive regulatory systems. The resulting bacteria were capable of accelerating the ripening of tomatoes, kiwifruit, and apples.

  10. Ethylene update

    USDA-ARS?s Scientific Manuscript database

    The gaseous plant hormone ethylene is required for many aspects of plant growth, development and responses to the environment. Potato tubers produce low amounts of ethylene and are highly sensitive to ethylene in the atmosphere. Several responses of potato tubers to endogenous and exogenous ethylene...

  11. Ethylene-induced transcriptional and hormonal responses at the onset of sugarcane ripening

    PubMed Central

    Cunha, Camila P.; Roberto, Guilherme G.; Vicentini, Renato; Lembke, Carolina G.; Souza, Glaucia M.; Ribeiro, Rafael V.; Machado, Eduardo C.; Lagôa, Ana M. M. A.; Menossi, Marcelo

    2017-01-01

    The effects of ethephon as a sugarcane ripener are attributed to ethylene. However, the role of this phytohormone at the molecular level is unknown. We performed a transcriptome analysis combined with the evaluation of sucrose metabolism and hormone profiling of sugarcane plants sprayed with ethephon or aminoethoxyvinylglycine (AVG), an ethylene inhibitor, at the onset of ripening. The differential response between ethephon and AVG on sucrose level and sucrose synthase activity in internodes indicates ethylene as a potential regulator of sink strength. The correlation between hormone levels and transcriptional changes suggests ethylene as a trigger of multiple hormone signal cascades, with approximately 18% of differentially expressed genes involved in hormone biosynthesis, metabolism, signalling, and response. A defence response elicited in leaves favoured salicylic acid over the ethylene/jasmonic acid pathway, while the upper internode was prone to respond to ethylene with strong stimuli on ethylene biosynthesis and signalling genes. Besides, ethylene acted synergistically with abscisic acid, another ripening factor, and antagonistically with gibberellin and auxin. We identified potential ethylene target genes and characterized the hormonal status during ripening, providing insights into the action of ethylene at the site of sucrose accumulation. A molecular model of ethylene interplay with other hormones is proposed. PMID:28266527

  12. Investigation of transient ignition process in a cavity based scramjet combustor using combined ethylene injectors

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Cai, Zun; Tong, Yiheng; Zheng, Hongtao

    2017-08-01

    Large Eddy Simulation (LES) and experiment were employed to investigate the transient ignition and flame propagation process in a rearwall-expansion cavity scramjet combustor using combined fuel injection schemes. The compressible supersonic solver and three ethylene combustion mechanisms were first validated against experimental data and results show in reasonably good agreement. Fuel injection scheme combining transverse and direct injectors in the cavity provides a benefit mixture distribution and could achieve a successful ignition. Four stages are illustrated in detail from both experiment and LES. After forced ignition in the cavity, initial flame kernel propagates upstream towards the cavity front edge and ignites the mixture, which acts as a continuous pilot flame, and then propagates downstream along the cavity shear layer rapidly to the combustor exit. Cavity shear layer flame stabilization mode can be concluded from the heat release rate and local high temperature distribution during the combustion process.

  13. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize[OPEN

    PubMed Central

    Shi, Jinrui; Habben, Jeffrey E.; Archibald, Rayeann L.; Drummond, Bruce J.; Chamberlin, Mark A.; Williams, Robert W.; Lafitte, H. Renee; Weers, Ben P.

    2015-01-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. PMID:26220950

  14. Overexpression of ARGOS Genes Modifies Plant Sensitivity to Ethylene, Leading to Improved Drought Tolerance in Both Arabidopsis and Maize.

    PubMed

    Shi, Jinrui; Habben, Jeffrey E; Archibald, Rayeann L; Drummond, Bruce J; Chamberlin, Mark A; Williams, Robert W; Lafitte, H Renee; Weers, Ben P

    2015-09-01

    Lack of sufficient water is a major limiting factor to crop production worldwide, and the development of drought-tolerant germplasm is needed to improve crop productivity. The phytohormone ethylene modulates plant growth and development as well as plant response to abiotic stress. Recent research has shown that modifying ethylene biosynthesis and signaling can enhance plant drought tolerance. Here, we report novel negative regulators of ethylene signal transduction in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). These regulators are encoded by the ARGOS gene family. In Arabidopsis, overexpression of maize ARGOS1 (ZmARGOS1), ZmARGOS8, Arabidopsis ARGOS homolog ORGAN SIZE RELATED1 (AtOSR1), and AtOSR2 reduced plant sensitivity to ethylene, leading to enhanced drought tolerance. RNA profiling and genetic analysis suggested that the ZmARGOS1 transgene acts between an ethylene receptor and CONSTITUTIVE TRIPLE RESPONSE1 in the ethylene signaling pathway, affecting ethylene perception or the early stages of ethylene signaling. Overexpressed ZmARGOS1 is localized to the endoplasmic reticulum and Golgi membrane, where the ethylene receptors and the ethylene signaling protein ETHYLENE-INSENSITIVE2 and REVERSION-TO-ETHYLENE SENSITIVITY1 reside. In transgenic maize plants, overexpression of ARGOS genes also reduces ethylene sensitivity. Moreover, field testing showed that UBIQUITIN1:ZmARGOS8 maize events had a greater grain yield than nontransgenic controls under both drought stress and well-watered conditions. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Gr and hp-1 tomato mutants unveil unprecedented interactions between arbuscular mycorrhizal symbiosis and fruit ripening.

    PubMed

    Chialva, Matteo; Zouari, Inès; Salvioli, Alessandra; Novero, Mara; Vrebalov, Julia; Giovannoni, James J; Bonfante, Paola

    2016-07-01

    Systemic responses to an arbuscular mycorrhizal fungus reveal opposite phenological patterns in two tomato ripening mutants depending whether ethylene or light reception is involved. The availability of tomato ripening mutants has revealed many aspects of the genetics behind fleshy fruit ripening, plant hormones and light signal reception. Since previous analyses revealed that arbuscular mycorrhizal symbiosis influences tomato berry ripening, we wanted to test the hypothesis that an interplay might occur between root symbiosis and fruit ripening. With this aim, we screened seven tomato mutants affected in the ripening process for their responsiveness to the arbuscular mycorrhizal fungus Funneliformis mosseae. Following their phenological responses we selected two mutants for a deeper analysis: Green ripe (Gr), deficient in fruit ethylene perception and high-pigment-1 (hp-1), displaying enhanced light signal perception throughout the plant. We investigated the putative interactions between ripening processes, mycorrhizal establishment and systemic effects using biochemical and gene expression tools. Our experiments showed that both mutants, notwithstanding a normal mycorrhizal phenotype at root level, exhibit altered arbuscule functionality. Furthermore, in contrast to wild type, mycorrhization did not lead to a higher phosphate concentration in berries of both mutants. These results suggest that the mutations considered interfere with arbuscular mycorrhiza inducing systemic changes in plant phenology and fruits metabolism. We hypothesize a cross talk mechanism between AM and ripening processes that involves genes related to ethylene and light signaling.

  16. Evaluation of the Inhalation Carcinogenicity of Ethylene Oxide ...

    EPA Pesticide Factsheets

    On September 22, 2006, the draft Evaluation of the Carinogenicity of Ethylene Oxide (EPA/635/R-06/003) and the draft charge to external peer reviewers were released for external peer review and public comment. This draft was reviewed by EPA’s Science Advisory Board (SAB) and the expert panel’s final report was made available December 21, 2007. Since that time the Agency implemented the May 2009 IRIS assessment development process in which other federal agencies and the Executive Offices of the President are provided two opportunities to comment on IRIS human health assessments; Interagency Science Consultation (Step 3) prior to public comment/peer review and Interagency Science Discussion (Step 6b) following peer review. In July, 2011, the draft assessment incorporating the SAB recommendations (December 2007) was sent to other federal agencies and Executive Offices of the President as part of Step 6 of the IRIS process. Following the May 2009 process, all written comments submitted by other agencies will be made publicly available. Accordingly, the interagency comments for ethylene oxide and the interagency science discussion materials provided to the other agencies are posted on this site. Note: After further consideration EPA has decided to undertake an additional peer review of the revised draft assessment on how the Agency responded to the SAB panel recommendations (December 2007), the exposure-response modeling of epidemiologic data, including n

  17. Detection of ethylene glycol - toward W51/e2 and G34.3+0.02

    NASA Astrophysics Data System (ADS)

    Lykke, Julie M.; Favre, Cécile

    2014-07-01

    Ethylene glycol (HOCH2CH2OH), also commenly known as antifreeze, is the reduced alcohol version of glycolaldehyde (CH2OHCHO). Glycoladehyde - the simplest possible aldehyde sugar (Marstokk and Møllendal 1973) - is the first intermediate step in the path toward forming more complex and biologically relevant molecules through the the formose reaction, which begins with formaldehyde (H2CO) and ends with the formation of sugars and ultimately ribose, the backbone of RNA (e.g., Larralde et al. 1995). The presence of glycolaldehyde is therefore an important indication that processes leading to biologically relevant molecules are taking place. It is however, still unclear as to how glycolaldehyde and ethylene glycol are formed in the ISM. It has been proposed that they share a common formation pathway through UV-irradiation of methanol (CH3OH) ices mixed with CO (Öberg et al. 2009). So far, ethylene glycol, in its lower energy con-former (g’Ga(CH2OH)2), has been detected toward SgrB2 (N) by Hollis et al. (2002), tentatively toward IRAS 16293-2422 (Jørgensen et al. 2012) and marginally by Kalenskii and Johansson (2010) toward W51 e1/e2. Here we present a firm detection of ethylene glycol toward W51/e2 as well as a first detection toward G34.3+0.02 at 1mm and 3mm using the IRAM 30m telescope.

  18. Co-ordination of early and late ripening events in apples is regulated through differential sensitivities to ethylene

    PubMed Central

    Johnston, Jason W.; Gunaseelan, Kularajathaven; Pidakala, Paul; Wang, Mindy; Schaffer, Robert J.

    2009-01-01

    In this study, it is shown that anti-sense suppression of Malus domestica 1-AMINO-CYCLOPROPANE-CARBOXYLASE OXIDASE (MdACO1) resulted in fruit with an ethylene production sufficiently low to be able to assess ripening in the absence of ethylene. Exposure of these fruit to different concentrations of exogenous ethylene showed that flesh softening, volatile biosynthesis, and starch degradation, had differing ethylene sensitivity and dependency. Early ripening events such as the conversion of starch to sugars showed a low dependency for ethylene, but a high sensitivity to low concentrations of ethylene (0.01 μl l−1). By contrast, later ripening events such as flesh softening and ester volatile production showed a high dependency for ethylene but were less sensitive to low concentrations (needing 0.1 μl l−1 for a response). A sustained exposure to ethylene was required to maintain ripening, indicating that the role of ethylene may go beyond that of ripening initiation. These results suggest a conceptual model for the control of individual ripening characters in apple, based on both ethylene dependency and sensitivity. PMID:19429839

  19. Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls

    NASA Technical Reports Server (NTRS)

    Harrison, M. A.; Pickard, B. G.

    1986-01-01

    Assessments of the participation of ethylene in gravitropism by hypocotyls of tomato (Lycopersicon esculentum Mill.) indicate that gravitropism can occur without substantial change in ethylene production. Moreover, lowering or evaluating ethylene over a considerable range, as well as inhibiting ethylene action, fails to influence gravitropic bending. This vitiates the possibility that ethylene is a mediator of the primary, negative gravitropic response of tomato shoots.

  20. Synthesis of light-selective poly(ethylene-co-vinyl acetate) nanofilms in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Xu, William (Zhiming)

    Due to the increased requirements of environmental protection, significant effort has been made to develop new "green" chemistry and engineering methods. Two effective approaches for "green" processes are: (1) to employ routes with fewer synthetic and separation steps, and (2) to replace volatile organic solvents with environmentally friendly solvents. Supercritical carbon dioxide (scCO2) has emerged as such a viable "green" alternative to organic solvents for several applications including extraction, polymerization, and nanotechnology, etc. In addition, it is an enabling solvent, allowing new types of chemistry and materials to be formed. In order to effectively utilize scCO2, it is required to study its effect on the relevant chemical process. This thesis focuses on the copolymerization of ethylene and vinyl acetate in scCO2, and the application of scCO2 in the synthesis of novel poly(vinyl acetate) (PVAc) and poly(ethylene-co-vinyl acetate) (PEVA) nanocomposites. Firstly, the kinetics of the process was investigated. The thermal decomposition of the free-radical initiator diethyl peroxydicarbonate (DEPDC) was monitored by in situ attenuate total reflection Fourier transform infrared spectroscopy (ATR-FTIR) in heptane, and in scCO2. The rate constant and activation energy of the thermal decomposition of DEPDC in scCO2 were determined, and a decomposition mechanism was proposed. Further, with a knowledge of the initiator kinetics, in situ ATR-FTIR was employed to monitor the initial formation of copolymers of ethylene and vinyl acetate during polymerization in scCO2. The reactivity ratios for the copolymerization of ethylene and vinyl acetate in scCO2 were determined using both the Kelen-Tudos and the non-linear least-squares methods. The potential of scCO2 was further examined to synthesize advanced and novel nanomaterials based on an understanding of the polymerization mechanism. A novel one-step synthesis route was developed for making silica-PVAc nanocomposites in scCO2, where the parallel reactions of free radical polymerization, hydrolysis/condensation, and linkage of the nanoparticles to the polymer chains, were found to take place simultaneously. This provides a new process featuring significant energy-saving, waste-reduction, and excellent distribution of nanoparticles in the polymer matrix. In addition, the incorporation of quantum dots (QDs) into a transparent polymer matrix was investigated to form light-selective nanofilms. Both CdS and CdS-ZnS core-shell QDs were synthesized, then functionalized with a methoxysilane group, and finally used to synthesize novel QD-PVAc and QD-PEVA nanocomposites in scCO2. The synthesized QD-PEVA nanofilms displayed significant absorption in the ultraviolet and violet regions of the electromagnetic spectrum, while providing a characteristic emission in the region from orange to red light. These materials have significant potential in green houses, and solar absorber films. Key words. supercritical CO2, initiator, thermal decomposition, kinetics, mechanism, ATR-FTIR, reactivity ratios, ethylene, vinyl acetate, silica, nanocomposite, one-pot synthesis, light-selective, nanofilm, quantum dots.

  1. Treatment of Plants with Gaseous Ethylene and Gaseous Inhibitors of Ethylene Action.

    PubMed

    Tucker, Mark L; Kim, Joonyup; Wen, Chi-Kuang

    2017-01-01

    The gaseous nature of ethylene affects not only its role in plant biology but also how you treat plants with the hormone. In many ways, it simplifies the treatment problem. Other hormones have to be made up in solution and applied to some part of the plant hoping the hormone will be taken up into the plant and translocated throughout the plant at the desired concentration. Because all plant cells are connected by an intercellular gas space the ethylene concentration you treat with is relatively quickly reached throughout the plant. In some instances, like mature fruit, treatment with ethylene initiates autocatalytic synthesis of ethylene. However, in most experiments, the exogenous ethylene concentration is saturating, usually >1 μL L -1 , and the synthesis of additional ethylene is inconsequential. Also facilitating ethylene research compared with other hormones is that there are inhibitors of ethylene action 1-MCP (1-methylcyclopropene) and 2,5-NBD (2,5-norbornadiene) that are also gases wherein you can achieve nearly 100% inhibition of ethylene action quickly and with few side effects. Inhibitors for other plant hormones are applied as a solution and their transport and concentration at the desired site is not always known and difficult to measure. Here, our focus is on how to treat plants and plant parts with the ethylene gas and the gaseous inhibitors of ethylene action.

  2. Implications for Extraterrestrial Hydrocarbon Chemistry: Analysis of Ethylene (C2H4) and D4-Ethylene (C2D4) Ices Exposed to Ionizing Radiation via Combined Infrared Spectroscopy and Reflectron Time-of-flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Abplanalp, Matthew J.; Kaiser, Ralf I.

    2017-02-01

    The processing of the hydrocarbon ice, ethylene (C2H4/C2D4), via energetic electrons, thus simulating the processes in the track of galactic cosmic-ray particles, was carried out in an ultrahigh vacuum apparatus. The chemical evolution of the ices was monitored online and in situ utilizing Fourier transform infrared spectroscopy (FTIR) and during temperature programmed desorption, via a quadrupole mass spectrometer utilizing electron impact ionization (EI-QMS) and a reflectron time-of-flight mass spectrometer utilizing a photoionization source (PI-ReTOF-MS). Several previous in situ studies of ethylene ice irradiation using FTIR were substantiated with the detection of six products: [CH4 (CD4)], acetylene [C2H2 (C2D2)], the ethyl radical [C2H5 (C2D5)], ethane [C2H6 (C2D6)], 1-butene [C4H8 (C4D8)], and n-butane [C4H10 (C4D10)]. Contrary to previous gas phase studies, the PI-ReTOF-MS detected several groups of hydrocarbon with varying degrees of saturation: C n H2n+2 (n = 4-10), C n H2n (n = 2-12, 14, 16), C n H2n-2 (n = 3-12, 14, 16), C n H2n-4 (n = 4-12, 14, 16), C n H2n-6 (n = 4-10, 12), C n H2n-8 (n = 6-10), and C n H2n-10 (n = 6-10). Multiple laboratory studies have shown the facile production of ethylene from methane, which is a known ice constituent in the interstellar medium. Various astrophysically interesting molecules can be associated with the groups detected here, such as allene/methylacetylene (C3H4) or 1, 3-butadiene (C4H6) and its isomers, which have been shown to lead to polycyclic aromatic hydrocarbons. Finally, several hydrocarbon groups detected here are unique to ethylene ice versus ethane ice and may provide understanding of how complex hydrocarbons form in astrophysical environments.

  3. Ethylene biosynthesis in detached young persimmon fruit is initiated in calyx and modulated by water loss from the fruit.

    PubMed

    Nakano, Ryohei; Ogura, Emi; Kubo, Yasutaka; Inaba, Akitsugu

    2003-01-01

    Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production.

  4. Ethylene Biosynthesis in Detached Young Persimmon Fruit Is Initiated in Calyx and Modulated by Water Loss from the Fruit1

    PubMed Central

    Nakano, Ryohei; Ogura, Emi; Kubo, Yasutaka; Inaba, Akitsugu

    2003-01-01

    Persimmon (Diospyros kaki Thunb.) fruit are usually classified as climacteric fruit; however, unlike typical climacteric fruits, persimmon fruit exhibit a unique characteristic in that the younger the stage of fruit detached, the greater the level of ethylene produced. To investigate ethylene induction mechanisms in detached young persimmon fruit, we cloned three cDNAs encoding 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (DK-ACS1, 2, and -3) and two encoding ACC oxidase (DK-ACO1 and -2) genes involved in ethylene biosynthesis, and we analyzed their expression in various fruit tissues. Ethylene production was induced within a few days of detachment in all fruit tissues tested, accompanied by temporally and spatially coordinated expression of all the DK-ACS and DK-ACO genes. In all tissues except the calyx, treatment with 1-methylcyclopropene, an inhibitor of ethylene action, suppressed ethylene production and ethylene biosynthesis-related gene expression. In the calyx, one ACC synthase gene (DK-ACS2) exhibited increased mRNA accumulation accompanied by a large quantity of ethylene production, and treatment of the fruit with 1-methylcyclopropene did not prevent either the accumulation of DK-ACS2 transcripts or ethylene induction. Furthermore, the alleviation of water loss from the fruit significantly delayed the onset of ethylene production and the expression of DK-ACS2 in the calyx. These results indicate that ethylene biosynthesis in detached young persimmon fruit is initially induced in calyx and is modulated by water loss through transcriptional activation of DK-ACS2. The ethylene produced in the calyx subsequently diffuses to other fruit tissues and acts as a secondary signal that stimulates autocatalytic ethylene biosynthesis in these tissues, leading to a burst of ethylene production. PMID:12529535

  5. Ethylene Emission and Responsiveness to Applied Ethylene Vary among Poa Species That Inherently Differ in Leaf Elongation Rates1

    PubMed Central

    Fiorani, Fabio; Bögemann, Gerard M.; Visser, Eric J.W.; Lambers, Hans; Voesenek, Laurentius A.C.J.

    2002-01-01

    A plant's ability to produce and respond to ethylene is essential for its vegetative growth. We studied whole-shoot ethylene emission and leaf growth responses to applied ethylene in four Poa spp. that differ inherently in leaf elongation rate and whole-plant relative growth rate. Compared with the fast-growing Poa annua and Poa trivialis, the shoots of the slow-growing species Poa alpina and Poa compressa emitted daily 30% to 50% less ethylene, and their leaf elongation rate was more strongly inhibited when ethylene concentration was increased up to 1 μL L−1. To our surprise, however, low ethylene concentrations (0.02–0.03 μL L−1) promoted leaf growth in the two slow-growing species; at the same concentrations, leaf elongation rate of the two fast-growing species was only slightly inhibited. All responses were observed within 20 min after ethylene applications. Although ethylene generally inhibits growth, our results show that in some species, it may actually stimulate growth. Moreover, in the two slow-growing Poa spp., both growth stimulation and inhibition occurred in a narrow ethylene concentration range, and this effect was associated with a much lower ethylene emission. These findings suggest that the regulation of ethylene production rates and perception of the gas may be more crucial during leaf expansion of these species under non-stressful conditions and that endogenous ethylene concentrations are not large enough to saturate leaf growth responses. In the two fast-growing species, a comparatively higher ethylene endogenous concentration may conversely be present and sufficiently high to saturate leaf elongation responses, invariably leading to growth inhibition. PMID:12114591

  6. Ethylene and 1-methylcyclopropene differentially regulate gene expression during onion sprout suppression.

    PubMed

    Cools, Katherine; Chope, Gemma A; Hammond, John P; Thompson, Andrew J; Terry, Leon A

    2011-07-01

    Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 μL L(-1) ethylene or 1 μL L(-1) 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 μL L(-1)) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene.

  7. Ethylene and 1-Methylcyclopropene Differentially Regulate Gene Expression during Onion Sprout Suppression1[W][OA

    PubMed Central

    Cools, Katherine; Chope, Gemma A.; Hammond, John P.; Thompson, Andrew J.; Terry, Leon A.

    2011-01-01

    Onion (Allium cepa) is regarded as a nonclimacteric vegetable. In onions, however, ethylene can suppress sprouting while the ethylene-binding inhibitor 1-methylcyclopropene (1-MCP) can also suppress sprout growth; yet, it is unknown how ethylene and 1-MCP elicit the same response. In this study, onions were treated with 10 μL L−1 ethylene or 1 μL L−1 1-MCP individually or in combination for 24 h at 20°C before or after curing (6 weeks) at 20°C or 28°C and then stored at 1°C. Following curing, a subset of these same onions was stored separately under continuous air or ethylene (10 μL L−1) at 1°C. Onions treated with ethylene and 1-MCP in combination after curing for 24 h had reduced sprout growth as compared with the control 25 weeks after harvest. Sprout growth following storage beyond 25 weeks was only reduced through continuous ethylene treatment. This observation was supported by a higher proportion of down-regulated genes characterized as being involved in photosynthesis, measured using a newly developed onion microarray. Physiological and biochemical data suggested that ethylene was being perceived in the presence of 1-MCP, since sprout growth was reduced in onions treated with 1-MCP and ethylene applied in combination but not when applied individually. A cluster of probes representing transcripts up-regulated by 1-MCP alone but down-regulated by ethylene alone or in the presence of 1-MCP support this suggestion. Ethylene and 1-MCP both down-regulated a probe tentatively annotated as an ethylene receptor as well as ethylene-insensitive 3, suggesting that both treatments down-regulate the perception and signaling events of ethylene. PMID:21593215

  8. Analysis of ethylene biosynthesis and perception during postharvest cold storage of Marsh and Star Ruby grapefruits.

    PubMed

    Lado, Joanna; Rodrigo, María Jesús; Zacarías, Lorenzo

    2015-10-01

    Grapefruits are among the citrus species more sensitive to cold and develop chilling injury symptoms during prolonged postharvest storage at temperatures lower than 8 ℃-10 ℃. The plant hormone ethylene has been described either to protect or potentiate chilling injury development in citrus whereas little is known about transcriptional regulation of ethylene biosynthesis, perception and response during cold storage and how the hormone is regulating its own perception and signaling cascade. Then, the objective of the present study was to explore the transcriptional changes in the expression of ethylene biosynthesis, receptors and response genes during cold storage of the white Marsh and the red Star Ruby grapefruits. The effect of the ethylene action inhibitor, 1-MCP, was evaluated to investigate the involvement of ethylene in the regulation of the genes of its own biosynthesis and perception pathway. Ethylene production was very low at the harvest time in fruits of both varieties and experienced only minor changes during storage. By contrast, inhibition of ethylene perception by 1-MCP markedly induced ethylene production, and this increase was highly stimulated during shelf-life at 20 ℃, as well as transcription of ACS and ACO. These results support the auto-inhibitory regulation of ethylene in grapefruits, which acts mainly at the transcriptional level of ACS and ACO genes. Moreover, ethylene receptor1 and ethylene receptor3 were induced by cold while no clear role of ethylene was observed in the induction of ethylene receptors. However, ethylene appears to be implicated in the transcriptional regulation of ERFs both under cold storage and shelf-life. © The Author(s) 2014.

  9. A comparative study of ethylene growth response kinetics in eudicots and monocots reveals a role for gibberellin in growth inhibition and recovery.

    PubMed

    Kim, Joonyup; Wilson, Rebecca L; Case, J Brett; Binder, Brad M

    2012-11-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa 'Nipponbare') seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics.

  10. Dielectric Properties of Generation 3 Pamam Dendrimer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Ristić, Sanja; Mijović, Jovan

    2008-08-01

    Broadband dielectric relaxation spectroscopy (DRS) was employed to study molecular dynamics of blends composed of generation 3 poly(amidoamine) (PAMAM) dendrimers with ethylenediamine core and amino surface groups and four linear polymers: poly(propylene oxide)—PPO, two block copolymers, poly(propylene oxide)/poly(ethylene oxide)—PPO/PEO with different mol ratios (29/6 and 10/31) and poly(ethylene oxide)—PEO. The results were generated over a broad range of frequency. Dielectric spectra of dendrimers in PPO matrix reveal slight shift of normal and segmental processes to higher frequency with increasing concentration of dendrimers. In the 29PPO/6PEO matrix, no effect of concentration on the average relaxation time for normal and segmental processes was observed. In the 10PPO/31PEO matrix the relaxation time of the segmental process increases with increasing dendrimer concentration, while in the PEO matrix, local processes in dendrimers slow down. A detailed analysis of the effect of concentration of dendrimers and morphology of polymer matrix on the dielectric properties of dendrimer nanocomposites will be presented.

  11. Cysteine-mediated aggregation of Au nanoparticles: the development of a H2O2 sensor and oxidase-based biosensors.

    PubMed

    Wang, Fuan; Liu, Xiaoqing; Lu, Chun-Hua; Willner, Itamar

    2013-08-27

    The cysteine-stimulated aggregation of Au nanoparticles (Au NPs) is used as an auxiliary reporting system for the optical detection of H2O2, for optical probing of the glucose oxidase (GOx) and the catalyzed oxidation of glucose, for probing the biocatalytic cascade composed of acetylcholine esterase/choline oxidase (AChE/ChOx), and for following the inhibition of AChE. The analytical paradigm is based on the I(-)-catalyzed oxidation of cysteine by H2O2 to cystine, a process that prohibits the cysteine-triggered aggregation of the Au NPs. The system enabled the analysis of H2O2 with a detection limit of 2 μM. As the GOx-biocatalyzed oxidation of glucose yields H2O2, and the AChE/ChOx cascade leads to the formation of H2O2, the two biocatalytic processes could be probed by the cysteine-stimulated aggregation of the Au NPs. Since AChE is inhibited by 1,5-bis(4-allyldimethylammonium phenyl)pentane-3-one dibromide, the biocatalytic AChE/ChOx cascade is inhibited by the inhibitor, thus leading to the enhanced cysteine-mediated aggregation of the NPs. The results suggest the potential implementation of the cysteine-mediated aggregation of Au NPs in the presence of AChE/ChOx as a sensing platform for the optical detection of chemical warfare agents.

  12. Evaluation of Ethylene as a Mediator of Gravitropism by Tomato Hypocotyls 1

    PubMed Central

    Harrison, Marcia A.; Pickard, Barbara G.

    1986-01-01

    Assessments of the participation of ethylene in gravitropism by hypocotyls of tomato (Lycopersicon esculentum Mill.) indicate that gravitropism can occur without substantial change in ethylene production. Moreover, lowering or evaluating ethylene over a considerable range, as well as inhibiting ethylene action, fails to influence gravitropic bending. This vitiates the possibility that ethylene is a mediator of the primary, negative gravitropic response of tomato shoots. PMID:11539038

  13. Ecotoxicity and biodegradability of antielectrostatic dicephalic cationic surfactants.

    PubMed

    Piętka-Ottlik, Magdalena; Frąckowiak, Renata; Maliszewska, Irena; Kołwzan, Barbara; Wilk, Kazimiera A

    2012-11-01

    Four series of dicephalic cationic surfactants, considered as new antielectrostatic agents have been investigated in order to establish their toxicity and biodegradability. Among them N,N-bis[3,3'-(dimethylamine)propyl]alkylamides, N,N-bis[3,3'-(dimethylamine)propyl]alkylamide dihydrochlorides, N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dimethylsulphates with different hydrophobic chain length (n-C(9)H(19) to n-C(15)H(31)) and type of counterion (chloride, bromide and methylsulfate) have been studied. The inhibitory effect against microorganisms has been examined using model gram-positive and gram-negative bacteria, and yeasts. None of the tested surfactants have shown antimicrobial activity against gram-negative bacteria (Escherichia coli, Pseudomonas putida) and yeasts (Saccharomyces cerevisiae, Rhodotorula glutinis) at a concentration below 1000 μg mL(-1), however some of them were moderately active against gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis). The Microtox® test was successfully applied to measure EC(50) values of the studied dicephalic cationic surfactants. Their toxicity to Vibrio fischeri depended upon the alkanoyl chain length with the EC(50) values in a range of 2.6-980 mg L(-1). N,N-bis[3,3'-(dimethylamine)propyl]alkylamide dihydrochlorides 2a-b and N,N-bis[3,3'-(trimethylammonio)propyl]alkylamide dibromides 3a-b comprising n-decanoyl and n-dodecanoyl hydrophobic tails appeared to be the least toxic. Furthermore, the biodegradability under aerobic conditions of 2a-b, 3a-b was evaluated using OECD Method 301F. According to the obtained results 2a, 3a-3b can be considered as almost readily biodegradable and they are not expected to be persistent in the environment. Additionally, partial biodegradation was observed for 2b, indicating its possible biodegradation in wastewater treatment systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The Role of Ethylene and Cold Temperature in the Regulation of the Apple POLYGALACTURONASE1 Gene and Fruit Softening1[W][OA

    PubMed Central

    Tacken, Emma; Ireland, Hilary; Gunaseelan, Kularajathevan; Karunairetnam, Sakuntala; Wang, Daisy; Schultz, Keith; Bowen, Judith; Atkinson, Ross G.; Johnston, Jason W.; Putterill, Jo; Hellens, Roger P.; Schaffer, Robert J.

    2010-01-01

    Fruit softening in apple (Malus × domestica) is associated with an increase in the ripening hormone ethylene. Here, we show that in cv Royal Gala apples that have the ethylene biosynthetic gene ACC OXIDASE1 suppressed, a cold treatment preconditions the apples to soften independently of added ethylene. When a cold treatment is followed by an ethylene treatment, a more rapid softening occurs than in apples that have not had a cold treatment. Apple fruit softening has been associated with the increase in the expression of cell wall hydrolase genes. One such gene, POLYGALACTURONASE1 (PG1), increases in expression both with ethylene and following a cold treatment. Transcriptional regulation of PG1 through the ethylene pathway is likely to be through an ETHYLENE-INSENSITIVE3-like transcription factor, which increases in expression during apple fruit development and transactivates the PG1 promoter in transient assays in the presence of ethylene. A cold-related gene that resembles a COLD BINDING FACTOR (CBF) class of gene also transactivates the PG1 promoter. The transactivation by the CBF-like gene is greatly enhanced by the addition of exogenous ethylene. These observations give a possible molecular mechanism for the cold- and ethylene-regulated control of fruit softening and suggest that either these two pathways act independently and synergistically with each other or cold enhances the ethylene response such that background levels of ethylene in the ethylene-suppressed apples is sufficient to induce fruit softening in apples. PMID:20237022

  15. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development.

    PubMed

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-06-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed.

  16. Modulation of ethylene responses by OsRTH1 overexpression reveals the biological significance of ethylene in rice seedling growth and development

    PubMed Central

    Zhang, Wei; Zhou, Xin; Wen, Chi-Kuang

    2012-01-01

    Overexpression of Arabidopsis Reversion-To-ethylene Sensitivity1 (RTE1) results in whole-plant ethylene insensitivity dependent on the ethylene receptor gene Ethylene Response1 (ETR1). However, overexpression of the tomato RTE1 homologue Green Ripe (GR) delays fruit ripening but does not confer whole-plant ethylene insensitivity. It was decided to investigate whether aspects of ethylene-induced growth and development of the monocotyledonous model plant rice could be modulated by rice RTE1 homologues (OsRTH genes). Results from a cross-species complementation test in Arabidopsis showed that OsRTH1 overexpression complemented the rte1-2 loss-of-function mutation and conferred whole-plant ethylene insensitivity in an ETR1-dependent manner. In contrast, OsRTH2 and OsRTH3 overexpression did not complement rte1-2 or confer ethylene insensitivity. In rice, OsRTH1 overexpression substantially prevented ethylene-induced alterations in growth and development, including leaf senescence, seedling leaf elongation and development, coleoptile elongation or curvature, and adventitious root development. Results of subcellular localizations of OsRTHs, each fused with the green fluorescent protein, in onion epidermal cells suggested that the three OsRTHs were predominantly localized to the Golgi. OsRTH1 may be an RTE1 orthologue of rice and modulate rice ethylene responses. The possible roles of auxins and gibberellins in the ethylene-induced alterations in growth were evaluated and the biological significance of ethylene in the early stage of rice seedling growth is discussed. PMID:22451723

  17. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-1, 4-cyclohexylene dimethylene... Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers. Ethylene-1, 4-cyclohexylene dimethylene... purposes of this section, ethylene-1,4-cyclohexylene dimethylene terephthalate copolymers (1,4-benzene...

  18. A DFT study and micro-kinetic analysis of acetylene selective hydrogenation on Pd-doped Cu(111) surfaces

    NASA Astrophysics Data System (ADS)

    Ma, Ling-Ling; Lv, Cun-Qin; Wang, Gui-Chang

    2017-07-01

    Semi-hydrogenation of acetylene in a hydrogen-rich stream is an industrially important process. Inspired by the recent experiments that Cu(111) surface doped by a small number of Pd atoms can exhibit excellent catalytic performance toward the dissociation of H2 molecule as well as the high selective hydrogenation of acetylene as compared with pure Cu and Pd metal alone at low-temperature, here we performed systematic first-principles calculations to investigate the corresponding reaction mechanism related to the acetylene hydrogenation processes on single atom alloys (SAAs) and monolayer Pd/Cu(111) (i.e.,1.00 ML Pd/Cu(111)) model catalysts in detail, and to explore the possible factors controlling the high selectivity on SAAs. Our results clearly demonstrate that the SAA catalyst has higher selectivity for the ethylene formation than that of 1.00 ML Pd/Cu(111), and lower activity for the acetylene conversion compared with that of 1.00 ML Pd/Cu(111). The relatively high selectivity on SAA is mainly due to the facile desorption of ethylene and moderate activity in the dissociation of molecular H2. The main factor which lowers the selectivity towards the ethylene formation on 1.00 ML Pd/Cu(111) is that this system has a higher capacity to promote the breaking of Csbnd H/Csbnd C bonds, which leads to the formation of carbonaceous deposits and polymers such as benzene, and thus reduces the selectivity for the ethylene formation. Meanwhile, it was found that the desorption energy of ethylene on these two surfaces was smaller than the energy barrier of further hydrogenation, which results in the absence of ethane on these two systems. Micro-kinetic model analysis provides a further valuable insight into the evidence for the key factors controlling the catalytic activity and selectivity towards the selective hydrogenation of acetylene. Our findings may help people to design a highly selective hydrogenation catalyst by controlling the balance between the H2 dissociation and Csbnd H/Csbnd C bond broken processes, and a good catalyst should be the one with the modest catalytic activity in the activation of molecular H2. At the same time, the present work provides an extremely significant mechanism of acetylene trimerization to form benzene and carbon formation.

  19. 40 CFR 61.62 - Emission standard for ethylene dichloride plants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Emission standard for ethylene... Standard for Vinyl Chloride § 61.62 Emission standard for ethylene dichloride plants. (a) Ethylene... used in ethylene dichloride purification is not to exceed 10 ppm (average for 3-hour period), except as...

  20. Ethylene induced shikonin biosynthesis in shoot culture of Lithospermum erythrorhizon.

    PubMed

    Touno, Kaori; Tamaoka, Jin; Ohashi, Yuko; Shimomura, Koichiro

    2005-02-01

    Lithospermum erythrorhizon shoots, cultured on phytohormone-free Murashige and Skoog solid medium, produced shikonin derivatives, whereas shoots cultured in well-ventilated petri dishes, produced small amount. Analysis by gas chromatography revealed the presence of ethylene in non-ventilated petri dishes where the shoots, producing shikonin derivatives, were cultured. Therefore, the possible involvement of ethylene in shikonin biosynthesis of shoot cultures was investigated. Treatment of ethylene or the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, resulted in increasing shikonin derivatives contents in cultured shoots. Silver ion, an ethylene-response inhibitor, or aminoethoxyvinylglycine, an ethylene biosynthesis inhibitor, decreased production of shikonin derivatives in cultured shoots. Our results indicate that ethylene is one of the regulatory elements of shikonin biosynthesis in L. erythrorhizon shoot culture.

  1. Gas Chromatography-Based Ethylene Measurement of Arabidopsis Seedlings.

    PubMed

    Yoon, Gyeong Mee; Chen, Yi-Chun

    2017-01-01

    Plants tightly regulate the biosynthesis of ethylene to control growth and development and respond to a wide range of biotic and abiotic stresses. To understand the molecular mechanism by which plants regulate ethylene biosynthesis as well as to identify stimuli triggering the alteration of ethylene production in plants, it is essential to have a reliable tool with which one can directly measure in vivo ethylene concentration. Gas chromatography is a routine detection technique for separation and analysis of volatile compounds with relatively high sensitivity. Gas chromatography has been widely used to measure the ethylene produced by plants, and has in turn become a valuable tool for ethylene research. Here, we describe a protocol for measuring the ethylene produced by dark-grown Arabidopsis seedlings using a gas chromatograph.

  2. Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate.

    PubMed

    Zhang, Zhihong; Smart, Tristan J; Choi, Hwanho; Hardy, Florence; Lohans, Christopher T; Abboud, Martine I; Richardson, Melodie S W; Paton, Robert S; McDonough, Michael A; Schofield, Christopher J

    2017-05-02

    Ethylene is important in industry and biological signaling. In plants, ethylene is produced by oxidation of 1-aminocyclopropane-1-carboxylic acid, as catalyzed by 1-aminocyclopropane-1-carboxylic acid oxidase. Bacteria catalyze ethylene production, but via the four-electron oxidation of 2-oxoglutarate to give ethylene in an arginine-dependent reaction. Crystallographic and biochemical studies on the Pseudomonas syringae ethylene-forming enzyme reveal a branched mechanism. In one branch, an apparently typical 2-oxoglutarate oxygenase reaction to give succinate, carbon dioxide, and sometimes pyrroline-5-carboxylate occurs. Alternatively, Grob-type oxidative fragmentation of a 2-oxoglutarate-derived intermediate occurs to give ethylene and carbon dioxide. Crystallographic and quantum chemical studies reveal that fragmentation to give ethylene is promoted by binding of l-arginine in a nonoxidized conformation and of 2-oxoglutarate in an unprecedented high-energy conformation that favors ethylene, relative to succinate formation.

  3. The Role of Ethylene in Plants Under Salinity Stress

    PubMed Central

    Tao, Jian-Jun; Chen, Hao-Wei; Ma, Biao; Zhang, Wan-Ke; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Although the roles of ethylene in plant response to salinity and other stresses have been extensively studied, there are still some obscure points left to be clarified. Generally, in Arabidopsis and many other terrestrial plants, ethylene signaling is indispensable for plant rapid response and tolerance to salinity stress. However, a few studies showed that functional knock-out of some ACSs increased plant salinity-tolerance, while overexpression of them caused more sensitivity. This seems to be contradictory to the known opinion that ethylene plays positive roles in salinity response. Differently, ethylene in rice may play negative roles in regulating seedling tolerance to salinity. The main positive ethylene signaling components MHZ7/OsEIN2, MHZ6/OsEIL1, and OsEIL2 all negatively regulate the salinity-tolerance of rice seedlings. Recently, several different research groups all proposed a negative feedback mechanism of coordinating plant growth and ethylene response, in which several ethylene-inducible proteins (including NtTCTP, NEIP2 in tobacco, AtSAUR76/77/78, and AtARGOS) act as inhibitors of ethylene response but activators of plant growth. Therefore, in addition to a summary of the general roles of ethylene biosynthesis and signaling in salinity response, this review mainly focused on discussing (i) the discrepancies between ethylene biosynthesis and signaling in salinity response, (ii) the divergence between rice and Arabidopsis in regulation of salinity response by ethylene, and (iii) the possible negative feedback mechanism of coordinating plant growth and salinity response by ethylene. PMID:26640476

  4. Simultaneous application of ethylene and 1-MCP affects banana ripening features during storage.

    PubMed

    Botondi, Rinaldo; De Sanctis, Federica; Bartoloni, Serena; Mencarelli, Fabio

    2014-08-01

    In order to avoid the ripening blocking effect of 1-MCP (1-methylcyclopropene) on bananas when applied before ethylene commercial treatment, 1-MCP in combination with 'CD ethylene' (ethylene-cyclodextrin complex) was used in gas formulations: 300 nmol mol(-1) 1-MCP + 1200, 2400 or 4800 nmol mol(-1) ethylene (ETH). Control bananas received 1-MCP alone or 4800 nmol mol(-1) ethylene alone or no treatment. Treatments were done on overseas shipped bananas, at 14 °C, 90% relative humidity (RH), for 16 h; the bananas were stored under the same atmospheric conditions. After 4 or 12 days the bananas were commercially treated with 500 µmol mol(-1) ethylene. A 300 nmol mol(-1) 1-MCP treatment significantly blocked banana ripening in terms of physiological and technological parameters, inhibiting ethylene production and respiration, despite the commercial ethylene treatment. The application of 300 nmol mol(-1) 1-MCP + 1200 or 2400 nmol mol(-1) ethylene delayed ripening but with a regular pattern. A 300 nmol mol(-1) 1-MCP + 4800 nmol mol(-1) ethylene application did not delay ripening as did 4800 nmol mol(-1) ethylene treatment. The development of black spots was closely associated with advanced ripening/senescence of fruits. The combined 300 nmol mol(-1) 1-MCP + 1200 or 2400 nmol mol(-1) ethylene treatment appears to be a promising treatment to extend banana storage, following overseas shipping. © 2014 Society of Chemical Industry.

  5. Presidential Green Chemistry Challenge: 2006 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2006 award winner, Professor Galen J. Suppes, developed a process to convert waste glycerin from biodiesel production into propylene glycol to replace ethylene glycol in antifreeze.

  6. Ethephon induced abscission in mango: physiological fruitlet responses

    PubMed Central

    Hagemann, Michael H.; Winterhagen, Patrick; Hegele, Martin; Wünsche, Jens N.

    2015-01-01

    Fruitlet abscission of mango is typically very severe, causing considerable production losses worldwide. Consequently, a detailed physiological and molecular characterization of fruitlet abscission in mango is required to describe the onset and time-dependent course of this process. To identify the underlying key mechanisms of abscission, ethephon, an ethylene releasing substance, was applied at two concentrations (600 and 7200 ppm) during the midseason drop stage of mango. The abscission process is triggered by ethylene diffusing to the abscission zone where it binds to specific receptors and thereby activating several key physiological responses at the cellular level. The treatments reduced significantly the capacity of polar auxin transport through the pedicel at 1 day after treatment and thereafter when compared to untreated pedicels. The transcript levels of the ethylene receptor genes MiETR1 and MiERS1 were significantly upregulated in the pedicel and pericarp at 1, 2, and 3 days after the ethephon application with 7200 ppm, except for MiETR1 in the pedicel, when compared to untreated fruitlet. In contrast, ethephon applications with 600 ppm did not affect expression levels of MiETR1 in the pedicel and of MiERS1 in the pericarp; however, MiETR1 in the pericarp at day 2 and MiERS1 in the pedicel at days 2 and 3 were significantly upregulated over the controls. Moreover, two novel short versions of the MiERS1 were identified and detected more often in the pedicel of treated than untreated fruitlets at all sampling times. Sucrose concentration in the fruitlet pericarp was significantly reduced to the control at 2 days after both ethephon treatments. In conclusion, it is postulated that the ethephon-induced abscission process commences with a reduction of the polar auxin transport capacity in the pedicel, followed by an upregulation of ethylene receptors and finally a decrease of the sucrose concentration in the fruitlets. PMID:26442021

  7. Inhibition of ethylene production by cobaltous ion. [Beans, apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, O.L; Yang, S.F.

    1976-07-01

    The effect of Co/sup 2 +/ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co/sup 2 +/, depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca/sup 2 +/, kinetin plus Ca/sup 2 +/, or Cu/sup 2 +/ treatments in mung bean hypocotyl segments. While Co/sup 2 +/ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co/sup 2 +/ does not exert its inhibitory effect as a general metabolicmore » inhibitor. Ni/sup 2 +/, which belongs to the same group as Co/sup 2 +/ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues. In a system in which kinetin and Ca/sup 2 +/ were applied together, kinetin greatly enhanced Ca/sup 2 +/ uptake, thus enhancing ethylene production. Co/sup 2 +/, however, slightly inhibited the uptake of Ca/sup 2 +/ but appreciably inhibited ethylene production, either in the presence or in the absence of kinetin. Tracer experiments using apple tissue indicated that Co/sup 2 +/ strongly inhibited the in vivo conversion of L-(U--/sup 14/C)methionine to /sup 14/C-ethylene. These data suggested that Co/sup 2 +/ inhibited ethylene production by inhibiting the conversion of methionine to ethylene, a common step which is required for ethylene formation by higher plants. Co/sup 2 +/ is known to promote elongation, leaf expansion, and hook opening in excised plant parts in response to applied auxins or cytokinins.Since ethylene is known to inhibit those growth phenomena, it is suggested that Co/sup 2 +/ exerts its promotive effect, at least in part, by inhibiting ethylene formation.« less

  8. Ethylene Inhibits Cell Proliferation of the Arabidopsis Root Meristem1[OPEN

    PubMed Central

    Street, Ian H.; Aman, Sitwat; Zubo, Yan; Ramzan, Aleena; Wang, Xiaomin; Shakeel, Samina N.; Kieber, Joseph J.; Schaller, G. Eric

    2015-01-01

    The root system of plants plays a critical role in plant growth and survival, with root growth being dependent on both cell proliferation and cell elongation. Multiple phytohormones interact to control root growth, including ethylene, which is primarily known for its role in controlling root cell elongation. We find that ethylene also negatively regulates cell proliferation at the root meristem of Arabidopsis (Arabidopsis thaliana). Genetic analysis indicates that the inhibition of cell proliferation involves two pathways operating downstream of the ethylene receptors. The major pathway is the canonical ethylene signal transduction pathway that incorporates CONSTITUTIVE TRIPLE RESPONSE1, ETHYLENE INSENSITIVE2, and the ETHYLENE INSENSITIVE3 family of transcription factors. The secondary pathway is a phosphorelay based on genetic analysis of receptor histidine kinase activity and mutants involving the type B response regulators. Analysis of ethylene-dependent gene expression and genetic analysis supports SHORT HYPOCOTYL2, a repressor of auxin signaling, as one mediator of the ethylene response and furthermore, indicates that SHORT HYPOCOTYL2 is a point of convergence for both ethylene and cytokinin in negatively regulating cell proliferation. Additional analysis indicates that ethylene signaling contributes but is not required for cytokinin to inhibit activity of the root meristem. These results identify key elements, along with points of cross talk with cytokinin and auxin, by which ethylene negatively regulates cell proliferation at the root apical meristem. PMID:26149574

  9. 21 CFR 172.770 - Ethylene oxide polymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene oxide polymer. 172.770 Section 172.770....770 Ethylene oxide polymer. The polymer of ethylene oxide may be safely used as a foam stabilizer in fermented malt beverages in accordance with the following conditions. (a) It is the polymer of ethylene...

  10. 46 CFR 154.1725 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide. 154.1725 Section 154.1725 Shipping COAST....1725 Ethylene oxide. (a) A vessel carrying ethylene oxide must: (1) Have cargo piping, vent piping, and... space of an ethylene oxide cargo tank for a period of 30 days under the condition of paragraph (e) of...

  11. 21 CFR 880.6860 - Ethylene oxide gas sterilizer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ethylene oxide gas sterilizer. 880.6860 Section... Miscellaneous Devices § 880.6860 Ethylene oxide gas sterilizer. (a) Identification. An ethylene gas sterilizer is a nonportable device intended for use by a health care provider that uses ethylene oxide (ETO) to...

  12. 21 CFR 172.808 - Copolymer condensates of ethylene oxide and propylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copolymer condensates of ethylene oxide and... ethylene oxide and propylene oxide. Copolymer condensates of ethylene oxide and propylene oxide may be... percent aqueous solution. (2) α-Hydro-omega-hydroxy-poly (oxy-ethylene)poly(oxypropylene)-(53-59 moles...

  13. 21 CFR 177.1570 - Poly-1-butene resins and butene/ethylene copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Poly-1-butene resins and butene/ethylene copolymers... resins and butene/ethylene copolymers. The poly-1-butene resins and butene/ethylene copolymers identified... the catalytic polymerization of 1-butene liquid monomer. Butene/ethylene copolymers are produced by...

  14. 21 CFR 177.1345 - Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene/1,3-phenylene oxyethylene isophthalate... Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer. Ethylene/1, 3-phenylene... polymers complying with § 177.1630. (a) Identity. For the purpose of this section, ethylene/1,3-phenylene...

  15. 46 CFR 151.50-12 - Ethylene oxide.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethylene oxide. 151.50-12 Section 151.50-12 Shipping... BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-12 Ethylene oxide. (a)(1) Ethylene... otherwise provided for in paragraph (a)(3) of this section. (2) Ethylene oxide shall be loaded at a...

  16. 40 CFR 63.1089 - What records must I keep?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...

  17. 40 CFR 63.1089 - What records must I keep?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...

  18. 40 CFR 63.1089 - What records must I keep?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...

  19. 40 CFR 63.1089 - What records must I keep?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...

  20. 40 CFR 63.1089 - What records must I keep?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...

  1. Thigmomorphogenesis: the role of ethylene in the response of Pinus taeda and Abies fraseri to mechanical perturbation

    NASA Technical Reports Server (NTRS)

    Telewski, F. W.; Jaffe, M. J.

    1986-01-01

    Ethylene production was monitored for 48 h in two half-sibs of Pinus taeda L. grown in the greenhouse and given mechanical perturbation (MP) by flexing; and for 22 h in Abies fraseri (Pursh) Poir. grown in the field and exposed to wind-mediated MP. Both species produced a peak of ethylene 18 h after MP. Seedlings of P. taeda exposed to MP for the duration of the growing season (preconditioned) produced less ethylene compared to non-MP controls, with a peak production at 8 h. One half-sib which responded to MP by an increase in radial growth produced 16 times more ethylene than another half-sib which had no significant change in radial growth. Preconditioned A. fraseri produced no significant quantities of ethylene after MP. The production of wound ethylene appears to be different from MP-induced ethylene. When an ethylene-generating solution was applied to P. taeda seedlings, it mimicked many of the morphological and mechanical characteristics of MP seedlings. The putative role of ethylene in the thigmomorphogenetic response is addressed.

  2. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection

    PubMed Central

    Wu, Jianguo; Wang, Yu; Ji, Shaoyi; Zhu, Shuyi; Wei, Chunhong; Zhang, Jinsong

    2017-01-01

    Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1, were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1-knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection. PMID:28994391

  3. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection.

    PubMed

    Zhao, Shanshan; Hong, Wei; Wu, Jianguo; Wang, Yu; Ji, Shaoyi; Zhu, Shuyi; Wei, Chunhong; Zhang, Jinsong; Li, Yi

    2017-10-10

    Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1 , were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1- knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection.

  4. Coupling of exothermic and endothermic reactions in oxidative conversion of natural gas into ethylene/olefins over diluted SrO/La{sub 2}O{sub 3}/SA5205 catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhary, V.R.; Mulla, S.A.R.

    1997-09-01

    In the oxidative conversion of natural gas to ethylene/lower olefins over SrO (17.3 wt.%)/La{sub 2}O{sub 3} (17.9 wt.%)/SA5205 catalyst diluted with inert solid particles (inerts/catalyst(w/w) = 2.0) in the presence of limited O{sub 2}, the exothermic oxidative conversion reactions of natural gas are coupled with the endothermic C{sub 2+} hydrocarbon thermal cracking reactions for avoiding hot spot formation and eliminating heat removal problems. Because of this, the process is operated in the most energy-efficient and safe manner. The influence of various process variables (viz. temperature, NG/O{sub 2} and steam/NG ratios in feed, and space velocity) on the conversion of carbonmore » and also of the individual hydrocarbons in natural gas, the selectivity for C{sub 2}-C{sub 4} olefins, and also on the net heat of reactions in the process has been thoroughly investigated. By carrying out the process at 800--850 C in the presence of steam (H{sub 2}O/NG {le} 0.2) and using limited O{sub 2} in the feed (NG/O{sub 2} = 12--18), high selectivity for ethylene (about 60%) or C{sub 2}-C{sub 4} olefins (above 80%) at the carbon conversion (>15%) of practical interest could be achieved at high space velocity ({ge}34,000 cm{sup 3}/g (catalyst) h), requiring no external energy and also without forming coke or tar-like products. The net heat of reactions can be controlled and the process can be made mildly exothermic or even close to thermoneutral by manipulating the O{sub 2} concentration in the feed.« less

  5. How to polymerize ethylene in a highly controlled fashion?

    PubMed

    Kempe, Rhett

    2007-01-01

    Very fast, reversible, polyethylene (PE) chain transfer or complex-catalysed "Aufbaureaktion" describes a "living" chain-growing process on a main-group metal or zinc atom; this process is catalysed by an organo-transition-metal or lanthanide complex. PE chains are transferred very fast between the two metal sites and chain growth takes place through ethylene insertion into the transition-metal- or lanthanide-carbon bond-coordinative chain-transfer polymerisation (CCTP). The transferred chains "rest" at the main-group or zinc centre, at which chain-termination processes like beta-H transfer/elimination are of low significance. Such protocols can be used to synthesise very narrowly distributed PE materials (M(w)/M(n)<1.1 up to a molecular weight of about 4000 g mol(-1)) with differently functionalised end groups. Higher molecular-weight polymers can be obtained with a slightly increased M(w)/M(n), since diffusion control and precipitation of the polymers influences the chain-transfer process. Recently, a few transition-metal- or lanthanide-based catalyst systems that catalyse such a highly reversible chain-growing process have been described. They are summarised and compared within this contribution.

  6. Process economics and safety considerations for the oxidative dehydrogenation of ethane using the M1 catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baroi, Chinmoy; Gaffney, Anne M.; Fushimi, Rebecca

    Olefins or unsaturated hydrocarbons play a vital role as feedstock for many industrially significant processes. Ethylene is the simplest olefin and a key raw material for consumer products. Oxidative Dehydrogenation (ODH) is one of the most promising new routes for ethylene production that can offer a significant advantage in energy efficiency over the conventional steam pyrolysis process. This study is focused on the ODH chemistry using the mixed metal oxide MoVTeNbOx catalysts, generally referred to as M1 for the key phase known to be active for dehydrogenation. Using performance results from the patent literature a series of process simulations weremore » conducted to evaluate the effect of feed composition on operating costs, profitability and process safety. The key results of this study indicate that the ODH reaction can be made safer and more profitable without use of an inert diluent and furthermore by replacing O2 with CO2 as an oxidant. Modifications of the M1 catalyst composition in order to adopt these changes are discussed.« less

  7. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 Regulate Ethylene Response of Roots and Coleoptiles and Negatively Affect Salt Tolerance in Rice1[OPEN

    PubMed Central

    Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-01-01

    Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326

  8. A Comparative Study of Ethylene Growth Response Kinetics in Eudicots and Monocots Reveals a Role for Gibberellin in Growth Inhibition and Recovery1[W][OA

    PubMed Central

    Kim, Joonyup; Wilson, Rebecca L.; Case, J. Brett; Binder, Brad M.

    2012-01-01

    Time-lapse imaging of dark-grown Arabidopsis (Arabidopsis thaliana) hypocotyls has revealed new aspects about ethylene signaling. This study expands upon these results by examining ethylene growth response kinetics of seedlings of several plant species. Although the response kinetics varied between the eudicots studied, all had prolonged growth inhibition for as long as ethylene was present. In contrast, with continued application of ethylene, white millet (Panicum miliaceum) seedlings had a rapid and transient growth inhibition response, rice (Oryza sativa ‘Nipponbare’) seedlings had a slow onset of growth stimulation, and barley (Hordeum vulgare) had a transient growth inhibition response followed, after a delay, by a prolonged inhibition response. Growth stimulation in rice correlated with a decrease in the levels of rice ETHYLENE INSENSTIVE3-LIKE2 (OsEIL2) and an increase in rice F-BOX DOMAIN AND LRR CONTAINING PROTEIN7 transcripts. The gibberellin (GA) biosynthesis inhibitor paclobutrazol caused millet seedlings to have a prolonged growth inhibition response when ethylene was applied. A transient ethylene growth inhibition response has previously been reported for Arabidopsis ethylene insensitive3-1 (ein3-1) eil1-1 double mutants. Paclobutrazol caused these mutants to have a prolonged response to ethylene, whereas constitutive GA signaling in this background eliminated ethylene responses. Sensitivity to paclobutrazol inversely correlated with the levels of EIN3 in Arabidopsis. Wild-type Arabidopsis seedlings treated with paclobutrazol and mutants deficient in GA levels or signaling had a delayed growth recovery after ethylene removal. It is interesting to note that ethylene caused alterations in gene expression that are predicted to increase GA levels in the ein3-1 eil1-1 seedlings. These results indicate that ethylene affects GA levels leading to modulation of ethylene growth inhibition kinetics. PMID:22977279

  9. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction[OPEN

    PubMed Central

    Shi, Jinrui; Wang, Hongyu; Habben, Jeffrey E.

    2016-01-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. PMID:27268962

  10. Maize and Arabidopsis ARGOS Proteins Interact with Ethylene Receptor Signaling Complex, Supporting a Regulatory Role for ARGOS in Ethylene Signal Transduction.

    PubMed

    Shi, Jinrui; Drummond, Bruce J; Wang, Hongyu; Archibald, Rayeann L; Habben, Jeffrey E

    2016-08-01

    The phytohormone ethylene regulates plant growth and development as well as plant response to environmental cues. ARGOS genes reduce plant sensitivity to ethylene when overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). A previous genetic study suggested that the endoplasmic reticulum and Golgi-localized maize ARGOS1 targets the ethylene signal transduction components at or upstream of CONSTITUTIVE TRIPLE RESPONSE1, but the mechanism of ARGOS modulating ethylene signaling is unknown. Here, we demonstrate in Arabidopsis that ZmARGOS1, as well as the Arabidopsis ARGOS homolog ORGAN SIZE RELATED1, physically interacts with Arabidopsis REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), an ethylene receptor interacting protein that regulates the activity of ETHYLENE RESPONSE1. The protein-protein interaction was also detected with the yeast split-ubiquitin two-hybrid system. Using the same yeast assay, we found that maize RTE1 homolog REVERSION-TO-ETHYLENE SENSITIVITY1 LIKE4 (ZmRTL4) and ZmRTL2 also interact with maize and Arabidopsis ARGOS proteins. Like AtRTE1 in Arabidopsis, ZmRTL4 and ZmRTL2 reduce ethylene responses when overexpressed in maize, indicating a similar mechanism for ARGOS regulating ethylene signaling in maize. A polypeptide fragment derived from ZmARGOS8, consisting of a Pro-rich motif flanked by two transmembrane helices that are conserved among members of the ARGOS family, can interact with AtRTE1 and maize RTL proteins in Arabidopsis. The conserved domain is necessary and sufficient to reduce ethylene sensitivity in Arabidopsis and maize. Overall, these results suggest a physical association between ARGOS and the ethylene receptor signaling complex via AtRTE1 and maize RTL proteins, supporting a role for ARGOS in regulating ethylene perception and the early steps of signal transduction in Arabidopsis and maize. © 2016 American Society of Plant Biologists. All Rights Reserved.

  11. Heat stress differentially modifies ethylene biosynthesis and signaling in pea floral and fruit tissues.

    PubMed

    Savada, Raghavendra P; Ozga, Jocelyn A; Jayasinghege, Charitha P A; Waduthanthri, Kosala D; Reinecke, Dennis M

    2017-10-01

    Ethylene biosynthesis is regulated in reproductive tissues in response to heat stress in a manner to optimize resource allocation to pollinated fruits with developing seeds. High temperatures during reproductive development are particularly detrimental to crop fruit/seed production. Ethylene plays vital roles in plant development and abiotic stress responses; however, little is known about ethylene's role in reproductive tissues during development under heat stress. We assessed ethylene biosynthesis and signaling regulation within the reproductive and associated tissues of pea during the developmental phase that sets the stage for fruit-set and seed development under normal and heat-stress conditions. The transcript abundance profiles of PsACS [encode enzymes that convert S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid (ACC)] and PsACO (encode enzymes that convert ACC to ethylene), and ethylene evolution were developmentally, environmentally, and tissue-specifically regulated in the floral/fruit/pedicel tissues of pea. Higher transcript abundance of PsACS and PsACO in the ovaries, and PsACO in the pedicels was correlated with higher ethylene evolution and ovary senescence and pedicel abscission in fruits that were not pollinated under control temperature conditions. Under heat-stress conditions, up-regulation of ethylene biosynthesis gene expression in pre-pollinated ovaries was also associated with higher ethylene evolution and lower retention of these fruits. Following successful pollination and ovule fertilization, heat-stress modified PsACS and PsACO transcript profiles in a manner that suppressed ovary ethylene evolution. The normal ethylene burst in the stigma/style and petals following pollination was also suppressed by heat-stress. Transcript abundance profiles of ethylene receptor and signaling-related genes acted as qualitative markers of tissue ethylene signaling events. These data support the hypothesis that ethylene biosynthesis is regulated in reproductive tissues in response to heat stress to modulate resource allocation dynamics.

  12. Ethylene biosynthesis and perception during ripening of loquat fruit (Eriobotrya japonica Lindl.).

    PubMed

    Alos, E; Martinez-Fuentes, A; Reig, C; Mesejo, C; Rodrigo, M J; Agustí, M; Zacarías, L

    2017-03-01

    In order to gain insights into the controversial ripening behavior of loquat fruits, in the present study we have analyzed the expression of three genes related to ethylene biosynthesis (ACS1, ACO1 and ACO2), two ethylene receptors (ERS1a and ERS1b), one signal transduction component (CTR1) and one transcription factor (EIL1) in peel and pulp of loquat fruit during natural ripening and also in fruits treated with ethylene (10μLL -1 ) and 1-MCP (10μLL -1 ), an ethylene action inhibitor. In fruits attached to or detached from the tree, a slight increase in ethylene production was detected at the yellow stage, but the respiration rate declined progressively during ripening. Accumulation of transcripts of ethylene biosynthetic genes did not correlate with changes in ethylene production, since the maximum accumulation of ACS1 and ACO1 mRNA was detected in fully coloured fruits. Expression of ethylene receptor and signaling genes followed a different pattern in peel and pulp tissues. After fruit detachment and incubation at 20°C for up to 6days, ACS1 mRNA slightly increased, ACO1 experienced a substantial increment and ACO2 declined. In the peel, these changes were advanced by exogenous ethylene and partially inhibited by 1-MCP. In the pulp, 1-MCP repressed most of the changes in the expression of biosynthetic genes, while ethylene had almost no effects. Expression of ethylene perception and signaling genes was barely affected by ethylene or 1-MCP. Collectively, a differential transcriptional regulation of ethylene biosynthetic genes operates in peel and pulp, and support the notion of non-climacteric ripening in loquat fruits. Ethylene action, however, appears to be required to sustain or maintain the expression of specific genes. Copyright © 2016. Published by Elsevier GmbH.

  13. Exogenous ethylene inhibits sprout growth in onion bulbs

    PubMed Central

    Bufler, Gebhard

    2009-01-01

    Background and Aims Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. Methods A cultivar (Allium cepa ‘Copra’) with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 °C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO2 and ethylene production of onion bulbs during storage were recorded. Key results Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO2 production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Conclusions Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy. PMID:18940850

  14. Exogenous ethylene inhibits sprout growth in onion bulbs.

    PubMed

    Bufler, Gebhard

    2009-01-01

    Exogenous ethylene has recently gained commercial interest as a sprouting inhibitor of onion bulbs. The role of ethylene in dormancy and sprouting of onions, however, is not known. A cultivar (Allium cepa 'Copra') with a true period of dormancy was used. Dormant and sprouting states of onion bulbs were treated with supposedly saturating doses of ethylene or with the ethylene-action inhibitor 1-methylcyclopropene (1-MCP). Initial sprouting was determined during storage at 18 degrees C by monitoring leaf blade elongation in a specific size class of leaf sheaths. Changes in ATP content and sucrose synthase activity in the sprout leaves, indicators of the sprouting state, were determined. CO(2) and ethylene production of onion bulbs during storage were recorded. Exogenous ethylene suppressed sprout growth of both dormant and already sprouting onion bulbs by inhibiting leaf blade elongation. In contrast to this growth-inhibiting effect, ethylene stimulated CO(2) production by the bulbs about 2-fold. The duration of dormancy was not significantly affected by exogenous ethylene. However, treatment of dormant bulbs with 1-MCP caused premature sprouting. Exogenous ethylene proved to be a powerful inhibitor of sprout growth in onion bulbs. The dormancy breaking effect of 1-MCP indicates a regulatory role of endogenous ethylene in onion bulb dormancy.

  15. GDSL LIPASE1 Modulates Plant Immunity through Feedback Regulation of Ethylene Signaling1[W

    PubMed Central

    Kim, Hye Gi; Kwon, Sun Jae; Jang, Young Jin; Nam, Myung Hee; Chung, Joo Hee; Na, Yun-Cheol; Guo, Hongwei; Park, Ohkmae K.

    2013-01-01

    Ethylene is a key signal in the regulation of plant defense responses. It is required for the expression and function of GDSL LIPASE1 (GLIP1) in Arabidopsis (Arabidopsis thaliana), which plays an important role in plant immunity. Here, we explore molecular mechanisms underlying the relationship between GLIP1 and ethylene signaling by an epistatic analysis of ethylene response mutants and GLIP1-overexpressing (35S:GLIP1) plants. We show that GLIP1 expression is regulated by ethylene signaling components and, further, that GLIP1 expression or application of petiole exudates from 35S:GLIP1 plants affects ethylene signaling both positively and negatively, leading to ETHYLENE RESPONSE FACTOR1 activation and ETHYLENE INSENSITIVE3 (EIN3) down-regulation, respectively. Additionally, 35S:GLIP1 plants or their exudates increase the expression of the salicylic acid biosynthesis gene SALICYLIC ACID INDUCTION-DEFICIENT2, known to be inhibited by EIN3 and EIN3-LIKE1. These results suggest that GLIP1 regulates plant immunity through positive and negative feedback regulation of ethylene signaling, and this is mediated by its activity to accumulate a systemic signal(s) in the phloem. We propose a model explaining how GLIP1 regulates the fine-tuning of ethylene signaling and ethylene-salicylic acid cross talk. PMID:24170202

  16. Distillation sequence for the purification and recovery of hydrocarbons

    DOEpatents

    Reyneke, Rian; Foral, Michael; Papadopoulos, Christos G.; Logsdon, Jeffrey S.; Eng, Wayne W. Y.; Lee, Guang-Chung; Sinclair, Ian

    2007-12-25

    This invention is an improved distillation sequence for the separation and purification of ethylene from a cracked gas. A hydrocarbon feed enters a C2 distributor column. The top of the C2 distributor column is thermally coupled to an ethylene distributor column, and the bottoms liquid of a C2 distributor column feeds a deethanizer column. The C2 distributor column utilizes a conventional reboiler. The top of the ethylene distributor is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor feeds a C2 splitter column. The ethylene distributor column utilizes a conventional reboiler. The deethanizer and C2 splitter columns are also thermally coupled and operated at a substantially lower pressure than the C2 distributor column, the ethylene distributor column, and the demethanizer column. Alternatively, a hydrocarbon feed enters a deethanizer column. The top of the deethanizer is thermally coupled to an ethylene distributor column, and the ethylene distributor column utilizes a conventional reboiler. The top of the ethylene distributor column is thermally coupled with a demethanizer column, and the bottoms liquid of the ethylene distributor column feeds a C2 splitter column. The C2 splitter column operates at a pressure substantially lower than the ethylene distributor column, the demethanizer column, and the deethanizer column.

  17. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor.

    PubMed

    Wang, Feifei; Wang, Lijuan; Qiao, Longfei; Chen, Jiacai; Pappa, Maria Belen; Pei, Haixia; Zhang, Tao; Chang, Caren; Dong, Chun-Hai

    2017-11-01

    The plant hormone ethylene plays various functions in plant growth, development and response to environmental stress. Ethylene is perceived by membrane-bound ethylene receptors, and among the homologous receptors in Arabidopsis, the ETR1 ethylene receptor plays a major role. The present study provides evidence demonstrating that Arabidopsis CPR5 functions as a novel ETR1 receptor-interacting protein in regulating ethylene response and signaling. Yeast split ubiquitin assays and bi-fluorescence complementation studies in plant cells indicated that CPR5 directly interacts with the ETR1 receptor. Genetic analyses indicated that mutant alleles of cpr5 can suppress ethylene insensitivity in both etr1-1 and etr1-2, but not in other dominant ethylene receptor mutants. Overexpression of Arabidopsis CPR5 either in transgenic Arabidopsis plants, or ectopically in tobacco, significantly enhanced ethylene sensitivity. These findings indicate that CPR5 plays a critical role in regulating ethylene signaling. CPR5 is localized to endomembrane structures and the nucleus, and is involved in various regulatory pathways, including pathogenesis, leaf senescence, and spontaneous cell death. This study provides evidence for a novel regulatory function played by CPR5 in the ethylene receptor signaling pathway in Arabidopsis. © 2017 Institute of Botany, Chinese Academy of Sciences.

  18. Biosynthesis of Ethylene from Methionine in Aminoethoxyvinylglycine-Resistant Avocado Tissue

    PubMed Central

    Baker, James E.; Anderson, James D.; Adams, Douglas O.; Apelbaum, Akiva; Lieberman, Morris

    1982-01-01

    This study was conducted to determine if aminoethoxyvinylglycine (AVG) insensitivity in avocado (Persea americana Mill., Lula, Haas, and Bacon) tissue was due to an alternate pathway of ethylene biosynthesis from methionine. AVG, at 0.1 millimolar, had little or no inhibitory effect on either total ethylene production or [14C] ethylene production from [14C]methionine in avocado tissue at various stages of ripening. However, aminoxyacetic acid (AOA), which inhibits 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (the AVG-sensitive enzyme of ethylene biosynthesis), inhibited ethylene production in avocado tissue. Total ethylene production was stimulated, and [14C]ethylene production from [14C]methionine was lowered by treating avocado tissue with 1 millimolar ACC. An inhibitor of methionine adenosyltransferase (EC 2.5.1.6), l-2-amino-4-hexynoic acid (AHA), at 1.5 millimolar, effectively inhibited [14C]ethylene production from [14C]methionine in avocado tissue but had no effect on total ethylene production during a 2-hour incubation. Rates of [14C]AVG uptake by avocado and apple (Malus domestica Borkh., Golden Delicious) tissues were similar, and [14C]AVG was the only radioactive compound in alcohol-soluble fractions of the tissues. Hence, AVG-insensitivity in avocado tissue does not appear to be due to lack of uptake or to metabolism of AVG by avocado tissue. ACC synthase activity in extracts of avocado tissue was strongly inhibited (about 60%) by 10 micromolar AVG. Insensitivity of ethylene production in avocado tissue to AVG may be due to inaccessibility of ACC synthase to AVG. AVG-resistance in the avocado system is, therefore, different from that of early climacteric apple tissue, in which AVG-insensitivity of total ethylene production appears to be due to a high level of endogenous ACC relative to its rate of conversion to ethylene. However, the sensitivity of the avocado system to AOA and AHA, dilution of labeled ethylene production by ACC, and stimulation of total ethylene production by ACC provide evidence for the methionine → SAM → ACC → ethylene pathway in avocado and do not suggest the operation of an alternate pathway. PMID:16662192

  19. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    PubMed

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that the plant hormone ethylene induces combinatorial effects of H3K9Ac, K14Ac and K23Ac histone acetylation in gene expression genome widely. Further, for a group of ethylene regulated genes, in the absence of ethylene the levels and the covered breadths of H3K9Ac are the preexist markers for distinguishing up- and down- regulated genes, the change in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expression in the presence of ethylene.

  20. 40 CFR 63.1080 - What is the purpose of this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... requirements for controlling emissions of hazardous air pollutants (HAP) from heat exchange systems and waste...

Top