Science.gov

Sample records for processing facility swpf

  1. SRS SWPF Construction Completion

    SciTech Connect

    Craig, Jack; Sheppard, Frank; Marks, Pam

    2016-08-04

    Now that construction is complete, DOE and construction contractor Parsons, are focusing on testing the Savannah River Site’s Salt Waste Processing Facility (SWPF) systems and training the workforce to operate the plant in preparation for the start of operations. Once in operation, the SWPF will significantly increase processing rates at SRS tank farms in an effort to empty the site’s high-level radioactive waste tanks.

  2. SRS SWPF Construction Completion

    ScienceCinema

    Craig, Jack; Sheppard, Frank; Marks, Pam

    2016-08-17

    Now that construction is complete, DOE and construction contractor Parsons, are focusing on testing the Savannah River Site’s Salt Waste Processing Facility (SWPF) systems and training the workforce to operate the plant in preparation for the start of operations. Once in operation, the SWPF will significantly increase processing rates at SRS tank farms in an effort to empty the site’s high-level radioactive waste tanks.

  3. Integration of SWPF into the DWPF Flowsheet: Gap Analysis and Test Matrix Development

    SciTech Connect

    Peeler, D. K.; Edwards, T. B.

    2014-12-10

    Based on Revision 19 of the High Level Waste (HLW) System Plan, it is anticipated that the Salt Waste Processing Facility (SWPF) will be integrated into the Defense Waste Processing Facility (DWPF) flowsheet in October 2018 (or with Sludge Batch 11 (SB11)). Given that, Savannah River Remediation (SRR) has requested a technical basis be developed that validates the current Product Composition Control System (PCCS) models for use during the processing of the SWPF-based coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that the models may be used during the processing of the SWPF-based coupled flowsheet. To support this objective, Savannah River National Laboratory (SRNL) has completed three key interim activities prior to validation of the current or development of refined PCCS models over the anticipated glass composition region for SWPF processing. These three key activities include: (1) defining the glass compositional region over which SWPF is anticipated to be processed, (2) comparing the current PCCS model validation ranges to the SWPF glass compositional region from which compositional gaps can be identified, and (3) developing a test matrix to cover the compositional gaps.

  4. PERFORMANCE PROPERTIES OF SALTSTONE PRODUCED USING SWPF SIMULANTS

    SciTech Connect

    Harbour, J.; Edwards, T.

    2010-02-16

    The overwhelming majority of waste to be immobilized at the Saltstone Production Facility will come from the waste stream exiting the Salt Waste Processing Facility (SWPF). These SWPF batches are salt solutions that result from pretreatment of the High Level Waste (HLW) supernate by an Actinide Removal Process followed by Caustic Side Solvent Extraction. The concentration of aluminate within these streams will vary and be determined by (1) the concentration in the incoming salt waste stream, (2) the degree of aluminum leaching from the HLW, (3) the method for introducing the aluminate into the waste stream (continuous or batch) and (4) and any operational or regulatory limitations. The overall Performance Assessment outcome for the Saltstone Disposal Facility will depend significantly on the performance properties of the SWPF Saltstone grouts. This report identifies and quantifies, when possible, those factors that drive the performance properties of the projected SWPF grouts. Previous work has identified aluminate concentration in the salt waste stream as a key factor in determining performance. Consequently, significant variation in the aluminate concentration to a maximum level of 0.65 M was investigated in this report. The SWPF baseline grout is a mix with a 0.60 water to cementitious ratio and a premix composition of 45 wt % slag, 45 wt % fly ash and 10 wt % portland cement. The key factors that drive performance of the SWPF mixes were determined to be (1) the time/temperature profile for curing, (2) water to cementitious materials ratio, (3) aluminate concentration in the waste stream, and (4) wt % slag in the premix. An increase in the curing temperature for mixes with 45 wt % slag resulted in a 2.5 times decrease in Young's modulus. The reduction of Young's modulus measured at 60 C versus 22 C was mitigated by an increase in the aluminate concentration but was still significant. For mixes containing 60 wt % slag, the reduction in Young's modulus between

  5. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  6. PRELIMINARY EVALUATION OF DWPF IMPACTS OF BORIC ACID USE IN CESIUM STRIP FOR SWPF AND MCU

    SciTech Connect

    Stone, M.

    2010-09-28

    A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the current dilute nitric acid strip solution with boric acid. To support this effort, the impact of using 0.01M, 0.1M, 0.25M and 0.5M boric acid in place of 0.001M nitric acid was evaluated for impacts on the DWPF facility. The evaluation only covered the impacts of boric acid in the strip effluent and does not address the other changes in solvents (i.e., the new extractant, called MaxCalix, or the new suppressor, guanidine). Boric acid additions may lead to increased hydrogen generation during the SRAT and SME cycles as well as change the rheological properties of the feed. The boron in the strip effluent will impact glass composition and could require each SME batch to be trimmed with boric acid to account for any changes in the boron from strip effluent additions. Addition of boron with the strip effluent will require changes in the frit composition and could lead to changes in melt behavior. The severity of the impacts from the boric acid additions is dependent on the amount of boric acid added by the strip effluent. The use of 0.1M or higher concentrations of boric acid in the strip effluent was found to significantly impact DWPF operations while the impact of 0.01M boric acid is expected to be relatively minor. Experimental testing is required to resolve the issues identified during the preliminary evaluation. The issues to be addressed by the testing are: (1) Impact on SRAT acid addition and hydrogen generation; (2) Impact on melter feed rheology; (3) Impact on glass composition control; (4) Impact on frit production; and (5) Impact on melter offgas. A new solvent system is being evaluated for use in the Modular Caustic-Side Solvent Extraction Unit (MCU) and in the Salt Waste Processing Facility (SWPF). The new system includes the option to replace the

  7. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    SciTech Connect

    CHANG, ROBERT

    2006-02-02

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

  8. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The capabilities of the Spacelab Data Processing Facility (SPDPF) are highlighted. The capturing, quality monitoring, processing, accounting, and forwarding of vital Spacelab data to various user facilities around the world are described.

  9. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    SciTech Connect

    Jantzen, C. M.; Edwards, T. B.

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  10. IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112

    SciTech Connect

    Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

    2011-11-07

    The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

  11. Spacelab Data Processing Facility

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Spacelab Data Processing Facility (SDPF) processes, monitors, and accounts for the payload data from Spacelab and other Shuttle missions and forwards relevant data to various user facilities worldwide. The SLDPF is divided into the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). The SIPS division demultiplexes, synchronizes, time tags, quality checks, accounts for the data, and formats the data onto tapes. The SOPS division further edits, blocks, formats, and records the data on tape for shipment to users. User experiments must conform to the Spacelab's onboard High Rate Multiplexer (HRM) format for maximum process ability. Audio, analog, instrumentation, high density, experiment data, input/output data, quality control and accounting, and experimental channel tapes along with a variety of spacelab ancillary tapes are provided to the user by SLDPF.

  12. Studsvik Processing Facility Update

    SciTech Connect

    Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

    2003-02-25

    Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

  13. Advanced Polymer Processing Facility

    SciTech Connect

    Muenchausen, Ross E.

    2012-07-25

    Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

  14. RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE

    SciTech Connect

    Peters, T.; Washington, A.; Fink, S.

    2012-01-09

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under

  15. The Facilities Audit. A Process for Improving Facilities Conditions.

    ERIC Educational Resources Information Center

    Kaiser, Harvey H.

    The problems of deferred maintenance and decaying campus infrastructure have troubled higher education for the past two decades. This book, designed to be a tool for facilities managers, describes a process for inspecting and reporting conditions of buildings and infrastructure. The audit process is meant to be a routine part of maintenance…

  16. Springfield Processing Plant (SPP) Facility Information

    SciTech Connect

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

  17. SRS Process Facility Significance Fire Frequency

    SciTech Connect

    Sarrack, A.G.

    1995-10-01

    This report documents the method and assumptions of a study performed to determine a site generic process facility significant fire initiator frequency and explains the proper way this value should be used.

  18. SALTSTONE PROCESSING FACILITY TRANSFER SAMPLE

    SciTech Connect

    Cozzi, A.; Reigel, M.

    2010-08-04

    On May 19, 2010, the Saltstone Production Facility inadvertently transferred 1800 gallons of untreated waste from the salt feed tank to Vault 4. During shut down, approximately 70 gallons of the material was left in the Saltstone hopper. A sample of the slurry in the hopper was sent to Savannah River National Laboratory (SRNL) to analyze the density, pH and the eight Resource Conservation and Recovery Act (RCRA) metals. The sample was hazardous for chromium, mercury and pH. The sample received from the Saltstone hopper was analyzed visually while obtaining sample aliquots and while the sample was allowed to settle. It was observed that the sample contains solids that settle in approximately 20 minutes (Figure 3-1). There is a floating layer on top of the supernate during settling and disperses when the sample is agitated (Figure 3-2). The untreated waste inadvertently transferred from the SFT to Vault 4 was toxic for chromium and mercury. In addition, the pH of the sample is at the regulatory limit. Visually inspecting the sample indicates solids present in the sample.

  19. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  20. Chemical process safety at fuel cycle facilities

    SciTech Connect

    Ayres, D.A.

    1997-08-01

    This NUREG provides broad guidance on chemical safety issues relevant to fuel cycle facilities. It describes an approach acceptable to the NRC staff, with examples that are not exhaustive, for addressing chemical process safety in the safe storage, handling, and processing of licensed nuclear material. It expounds to license holders and applicants a general philosophy of the role of chemical process safety with respect to NRC-licensed materials; sets forth the basic information needed to properly evaluate chemical process safety; and describes plausible methods of identifying and evaluating chemical hazards and assessing the adequacy of the chemical safety of the proposed equipment and facilities. Examples of equipment and methods commonly used to prevent and/or mitigate the consequences of chemical incidents are discussed in this document.

  1. Materials evaluation for a transuranic processing facility

    SciTech Connect

    Barker, S.A., Schwenk, E.B. ); Divine, J.R. )

    1990-11-01

    The Westinghouse Hanford Company, with the assistance of the Pacific Northwest Laboratory, is developing a transuranium extraction process for preheating double-shell tank wastes at the Hanford Site to reduce the volume of transuranic waste being sent to a repository. The bench- scale transuranium extraction process development is reaching a stage where a pilot plant design has begun for the construction of a facility in the existing B Plant. Because of the potential corrosivity of neutralized cladding removal waste process streams, existing embedded piping alloys in B Plant are being evaluated and new'' alloys are being selected for the full-scale plant screening corrosion tests. Once the waste is acidified with HNO{sub 3}, some of the process streams that are high in F{sup {minus}} and low in Al and zr can produce corrosion rates exceeding 30,000 mil/yr in austenitic alloys. Initial results results are reported concerning the applicability of existing plant materials to withstand expected process solutions and conditions to help determine the feasibility of locating the plant at the selected facility. In addition, process changes are presented that should make the process solutions less corrosive to the existing materials. Experimental work confirms that Hastelloy B is unsatisfactory for the expected process solutions; type 304L, 347 and 309S stainless steels are satisfactory for service at room temperature and 60{degrees}C, if process stream complexing is performed. Inconel 625 was satisfactory for all solutions. 17 refs., 5 figs., 8 tabs.

  2. Process, optimized acidizing reduce production facility upsets

    SciTech Connect

    Ali, S.A.; Hill, D.G.; McConnell, S.B.; Johnson, M.R.

    1997-02-10

    The filtration/absorption process, coupled with optimum treatments, prevent facility upsets that increase the time and resources required for bringing a well back on-line following an acid stimulation. Surface active agents, required in acidizing to improve well productivity, can form oil/water emulsions and cause unacceptable oil and grease levels during acid flowback. But recent offshore experiences after acidizing show that operators can achieve oil and grease discharge limits without facility upsets. To minimize oil and grease, the additives need to be optimized by adding a mutual breakout solvent (MBS). MBS has the dual function of being a mutual solvent and a sludge and emulsion control additive. The paper discusses acidizing problems, acid additives, handling options, and a case history of the Main Pass A field.

  3. Defense Waste Processing Facility (DWPF) Durability-Composition Models and the Applicability of the Associated Reduction of Constraints (ROC) Criteria for High TiO2 Containing Glasses

    SciTech Connect

    Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO2-, Na2O-, and Cs2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and

  4. Facilities for pyrochemical process studies at ENEA

    SciTech Connect

    De Angelis, G.; Fedeli, C.; Tiranti, G.; Baicchi, E.

    2013-07-01

    Some facilities have successfully been installed at ENEA laboratories for pyrochemical process studies under inactive conditions. PYREL III, MECRYP and OGATA plants allow to perform experiments about electrorefining and electroreduction of simulated fuel, melt crystallization of lithium chloride containing impurities from electroreduction campaigns, and trapping of volatile and semi-volatile fission products. Moreover, an argon-atmosphere glove-box is used for conditioning of chloride salt wastes with sodalite or SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) matrix.

  5. Process auditing in long term care facilities.

    PubMed

    Hewitt, S M; LeSage, J; Roberts, K L; Ellor, J R

    1985-01-01

    The ECC tool development and audit experiences indicated that there is promise in developing a process audit tool to monitor quality of care in nursing homes; moreover, the tool selected required only one hour per resident. Focusing on the care process and resident needs provided useful information for care providers at the unit level as well as for administrative personnel. Besides incorporating a more interdisciplinary focus, the revised tool needs to define support services most appropriate for nursing homes, includes items related to discharge planning and increases measurement of significant others' involvement in the care process. Future emphasis at the ECC will focus on developing intervention plans to maintain strengths and correct deficiencies identified in the audits. Various strategies to bring about desired changes in the quality of care will be evaluated through regular, periodic monitoring. Having a valid and reliable measure of quality of care as a tool will be an important step forward for LTC facilities.

  6. Defense waste processing facility startup progress report

    SciTech Connect

    Iverson, D.C.; Elder, H.H.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing.

  7. Defense waste processing facility startup progress report

    SciTech Connect

    Iverson, D.C.; Elder, H.H.

    1992-07-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950`s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing.

  8. 10 CFR 95.17 - Processing facility clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Processing facility clearance. 95.17 Section 95.17 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.17 Processing facility clearance....

  9. 76 FR 44049 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-22

    ... COMMISSION Guidance for Fuel Cycle Facility Change Processes AGENCY: Nuclear Regulatory Commission. ACTION... for Fuel Cycle Facility Change Processes'' in the Federal Register for a 30 day public comment period.... DG-3037 describes the types of changes for fuel cycle facilities for which licensees are to...

  10. Pinellas Plant facts. [Products, processes, laboratory facilities

    SciTech Connect

    Not Available

    1986-09-01

    This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

  11. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  12. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  13. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  14. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  15. 15 CFR 923.13 - Energy facility planning process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Energy facility planning process. 923... RESOURCE MANAGEMENT COASTAL ZONE MANAGEMENT PROGRAM REGULATIONS Uses Subject to Management § 923.13 Energy facility planning process. The management program must contain a planning process for energy...

  16. Safeguards Approaches for Black Box Processes or Facilities

    SciTech Connect

    Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

    2013-09-25

    The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

  17. Conceptual Design of a Simplified Skid-Mounted Caustic-Side Solvent Extraction Process for Removal of Cesium from Savannah Rive Site High-Level Waste

    SciTech Connect

    Birdwell, JR.J.F.

    2004-05-12

    This report presents the results of a conceptual design of a solvent extraction process for the selective removal of {sup 137}Cs from high-level radioactive waste currently stored in underground tanks at the U.S. Department of Energy's Savannah River Site (SRS). This study establishes the need for and feasibility of deploying a simplified version of the Caustic-Side Solvent Extraction (CSSX) process; cost/benefit ratios ranging from 33 to 55 strongly support the considered deployment. Based on projected compositions, 18 million gallons of dissolved salt cake waste has been identified as having {sup 137}Cs concentrations that are substantially lower than the worst-case design basis for the CSSX system that is to be deployed as part of the Salt Waste Processing Facility (SWPF) but that does not meet the waste acceptance criteria for immobilization as grout in the Saltstone Manufacturing and Disposal Facility at SRS. Absent deployment of an alternative cesium removal process, this material will require treatment in the SWPF CSSX system, even though the cesium decontamination factor required is far less than that provided by that system. A conceptual design of a CSSX processing system designed for rapid deployment and having reduced cesium decontamination factor capability has been performed. The proposed accelerated-deployment CSSX system (CSSX-A) has been designed to have a processing rate of 3 million gallons per year, assuming 90% availability. At a more conservative availability of 75% (reflecting the novelty of the process), the annual processing capacity is 2.5 million gallons. The primary component of the process is a 20-stage cascade of centrifugal solvent extraction contactors. The decontamination and concentration factors are 40 and 15, respectively. The solvent, scrub, strip, and wash solutions are to have the same compositions as those planned for the SWPF CSSX system. As in the SWPF CSSX system, the solvent and scrub flow rates are equal. The system is

  18. Northwestern University Facility for Clean Catalytic Process Research

    SciTech Connect

    Marks, Tobin Jay

    2013-05-08

    Northwestern University with DOE support created a Facility for Clean Catalytic Process Research. This facility is designed to further strengthen our already strong catalysis research capabilities and thus to address these National challenges. Thus, state-of-the art instrumentation and experimentation facility was commissioned to add far greater breadth, depth, and throughput to our ability to invent, test, and understand catalysts and catalytic processes, hence to improve them via knowledge-based design and evaluation approaches.

  19. An Overview of the Facilities Master Plan Process Purpose.

    ERIC Educational Resources Information Center

    2002

    This paper provides a description of facilities master plans and the process of creating one. According to the paper, the purpose of the plan is to develop and communicate an efficient process to change a district's school facilities to better accommodate and support its current and future educational programs on a regularly updated basis. The…

  20. 10 CFR 1016.9 - Processing security facility approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Processing security facility approval. 1016.9 Section 1016.9 Energy DEPARTMENT OF ENERGY (GENERAL PROVISIONS) SAFEGUARDING OF RESTRICTED DATA Physical Security § 1016.9 Processing security facility approval. The following receipt of an acceptable request...

  1. 10 CFR 95.17 - Processing facility clearance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... related classified information, or process the facility for a facility clearance. Processing will include... concerning the foreign intelligence threat, risk of unauthorized technology transfer, type and sensitivity of... acceptable security review conducted by the NRC; (3) Submitting key management personnel for...

  2. 47 CFR 3.42 - Location of processing facility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Location of processing facility. 3.42 Section 3.42 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION AND ADMINISTRATION OF... Location of processing facility. Settlement of maritime mobile and maritime mobile-satellite...

  3. Managing the Rural School Facility Construction Process.

    ERIC Educational Resources Information Center

    Passarelli, Angelo; Goehring, Wade; Harley, Anne

    The decision to renovate or replace a school building is the starting point for a long and challenging journey with many phases: planning, development, and project delivery and construction. Each phase requires different levels of expertise, skills, and activities. The challenge of a rural facility project is to find leadership to provide guidance…

  4. Automation in a material processing/storage facility

    SciTech Connect

    Peterson, K.; Gordon, J.

    1997-05-01

    The Savannah River Site (SRS) is currently developing a new facility, the Actinide Packaging and Storage Facility (APSF), to process and store legacy materials from the United States nuclear stockpile. A variety of materials, with a variety of properties, packaging and handling/storage requirements, will be processed and stored at the facility. Since these materials are hazardous and radioactive, automation will be used to minimize worker exposure. Other benefits derived from automation of the facility include increased throughput capacity and enhanced security. The diversity of materials and packaging geometries to be handled poses challenges to the automation of facility processes. In addition, the nature of the materials to be processed underscores the need for safety, reliability and serviceability. The application of automation in this facility must, therefore, be accomplished in a rational and disciplined manner to satisfy the strict operational requirements of the facility. Among the functions to be automated are the transport of containers between process and storage areas via an Automatic Guided Vehicle (AGV), and various processes in the Shipping Package Unpackaging (SPU) area, the Accountability Measurements (AM) area, the Special Isotope Storage (SIS) vault and the Special Nuclear Materials (SNM) vault. Other areas of the facility are also being automated, but are outside the scope of this paper.

  5. Saltstone studies using the scaled continuous processing facility

    SciTech Connect

    Fowley, M. D.; Cozzi, A. D.; Hansen, E. K.

    2015-08-01

    The Savannah River National Laboratory (SRNL) has supported the Saltstone Facility since its conception with bench-scale laboratory experiments, mid-scale testing at vendor facilities, and consultations and testing at the Saltstone Facility. There have been minimal opportunities for the measurement of rheological properties of the grout slurry at the Saltstone Production Facility (SPF); thus, the Scaled Continuous Processing Facility (SCPF), constructed to provide processing data related to mixing, transfer, and other operations conducted in the SPF, is the most representative process data for determining the expected rheological properties in the SPF. These results can be used to verify the laboratory scale experiments that support the SPF using conventional mixing processes that appropriately represent the shear imparted to the slurry in the SPF.

  6. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    SciTech Connect

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-12-31

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling.

  7. Integration Process for Payloads in the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Free, James M.; Nall, Marsha M.

    2001-01-01

    The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

  8. Insect pest management decisions in food processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management decision making in food processing facilities such as flour mills, rice mills, human and pet food manufacturing facilities, distribution centers and warehouses, and retail stores is a challenging undertaking. Insect pest management programs require an understanding of the food facili...

  9. Development of a Microwave Facility for Processing Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Hays, Charles C.; Meek, T. T.

    2006-01-01

    This viewgraph presentation reviews in this Roadmap for Developing a Lunar Microwave Facility an approach to determine the source of the enhanced microwave heating of Lunar Regolith. A set of microwave heating studies were proposed for a specially designed realistic simulant to determine optimum processing parameters. Apollo lunar soil will be used to validate the heating features found for the simulant. We have also introduced several possible designs for a future lunar microwave processing facility. In the future when sufficient funds become available, a microwave facility for processing regolith on the lunar surface will be ready to be built

  10. TEMPUS: A facility for containerless electromagnetic processing onboard spacelab

    NASA Technical Reports Server (NTRS)

    Lenski, H.; Willnecker, R.

    1990-01-01

    The electromagnetic containerless processing facility TEMPUS was recently assigned for a flight on the IML-2 mission. In comparison to the TEMPUS facility already flown on a sounding rocket, several improvements had to be implemented. These are in particular related to: safety; resource management; and the possibility to process different samples with different requirements in one mission. The basic design of this facility as well as the expected processing capabilities are presented. Two operational aspects turned out to strongly influence the facility design: control of the sample motion (first experimental results indicate that crew or ground interaction will be necessary to minimize residual sample motions during processing); and exchange of RF-coils (during processing in vacuum, evaporated sample materials will condense at the cold surface and may force a coil exchange, when a critical thickness is exceeded).

  11. Skylab M512 Materials Processing Facility (MPF) with the M518 Multipurpose Electric Facility (MEF)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The M512 Materials Processing Facility (MPF) with the M518 Multipurpose Electric Facility (MEF) tested and demonstrated a facility approach for materials process experimentation in space. It also provided a basic apparatus and a common interface for a group of metallic and nonmetallic materials experiments. The MPF consisted of a vacuum work chamber and associated mechanical and electrical controls. The M518 Multipurpose Electric Furnace (MEF) was an electric furnace system in which solidification, crystal growth, and other experiments involving phase changes were performed.

  12. Receipt of the Observatory at the Orbital Processing Facility

    NASA Video Gallery

    These series of photos show the receipt of the observatory at the Orbital processing facility at VAFB. The observatory was received on April 16, 2013 and transferred to its handling fixture and the...

  13. Design criteria for Waste Coolant Processing Facility and preliminary proposal 722 for Waste Coolant Processing Facility

    SciTech Connect

    Not Available

    1991-09-27

    This document contains the design criteria to be used by the architect-engineer (A-E) in the performance of Titles 1 and 2 design for the construction of a facility to treat the biodegradable, water soluble, waste machine coolant generated at the Y-12 plant. The purpose of this facility is to reduce the organic loading of coolants prior to final treatment at the proposed West Tank Farm Treatment Facility.

  14. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes have been developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  15. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes were developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. The SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  16. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... management system to evaluate, implement, and track each change to the site, structures, processes, systems... in the integrated safety analysis summary; or (ii) Use new processes, technologies, or control... 10 Energy 2 2012-01-01 2012-01-01 false Facility changes and change process. 70.72 Section...

  17. Opportunities for Process Monitoring Techniques at Delayed Access Facilities

    SciTech Connect

    Curtis, Michael M.; Gitau, Ernest TN; Johnson, Shirley J.; Schanfein, Mark; Toomey, Christopher

    2013-09-20

    Except for specific cases where the International Atomic Energy Agency (IAEA) maintains a continuous presence at a facility (such as the Japanese Rokkasho Reprocessing Plant), there is always a period of time or delay between the moment a State is notified or aware of an upcoming inspection, and the time the inspector actually enters the material balance area or facility. Termed by the authors as “delayed access,” this period of time between inspection notice and inspector entrance to a facility poses a concern. Delayed access also has the potential to reduce the effectiveness of measures applied as part of the Safeguards Approach for a facility (such as short-notice inspections). This report investigates the feasibility of using process monitoring to address safeguards challenges posed by delayed access at a subset of facility types.

  18. Mock Nuclear Processing Facility-Safeguards Training Requirements

    SciTech Connect

    Gibbs, Philip; Hasty, Tim; Johns, Rissell; Baum, Gregory

    2014-08-31

    This document outlines specific training requirements in the topical areas of Material Control and Accounting (MC&A) and Physical Protection(PP) which are to be used as technical input for designing a mock Integrated Security Facility (ISF) at Sandia National Laboratories (SNL). The overall project objective for these requirements is to enhance the ability to deliver training on Material Protection Control and Accounting (MC&A) concepts regarding hazardous material such as irradiated materials with respect to bulk processing facilities.

  19. Overview of the Facility Safeguardability Analysis (FSA) Process

    SciTech Connect

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Shirley J.; Wigeland, Roald; Zentner, Michael D.

    2011-10-10

    The safeguards system of the International Atomic Energy Agency (IAEA) provides the international community with credible assurance that a State is fulfilling its nonproliferation obligations. The IAEA draws such conclusions from the evaluation of all available information. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of this “State-level” approach. Efficiently used, the Safeguards by Design (SBD) methodologies , , , now being developed can contribute to effective and cost-efficient facility-level safeguards. The Facility Safeguardability Assessment (FSA) introduced here supports SBD in three areas. 1. It describes necessary interactions between the IAEA, the State regulator, and the owner / designer of a new or modified facility to determine where SBD efforts can be productively applied, 2. It presents a screening approach intended to identify potential safeguard issues for; a) design changes to existing facilities; b) new facilities similar to existing facilities with approved safeguards approaches, and c) new designs, 3. It identifies resources (the FSA toolkit), such as good practice guides, design guidance, and safeguardability evaluation methods that can be used by the owner/designer to develop solutions for potential safeguards issues during the interactions with the State regulator and IAEA. FSA presents a structured framework for the application of the SBD tools developed in other efforts. The more a design evolves, the greater the probability that new safeguards issues could be introduced. Likewise, for first-of-a-kind facilities or research facilities that involve previously unused processes or technologies, it is reasonable to expect that a number of possible safeguards issues might exist. Accordingly, FSA is intended to help the designer and its safeguards experts identify early in the design process: • Areas where elements of previous accepted safeguards approach(es) may be applied

  20. Defense waste processing facility radioactive operations. Part 1 - operating experience

    SciTech Connect

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-12-31

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation`s first and the world`s largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge{trademark} level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs.

  1. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    SciTech Connect

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-06-01

    The Savannah River Site`s Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation`s first and world`s largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage.

  2. NASA Construction of Facilities Validation Processes - Total Building Commissioning (TBCx)

    NASA Technical Reports Server (NTRS)

    Hoover, Jay C.

    2004-01-01

    Key Atributes include: Total Quality Management (TQM) System that looks at all phases of a project. A team process that spans boundaries. A Commissioning Authority to lead the process. Commissioning requirements in contracts. Independent design review to verify compliance with Facility Project Requirements (FPR). Formal written Commissioning Plan with Documented Results. Functional performance testing (FPT) against the requirements document.

  3. Facility Effluent Monitoring Plan for the 325 Radiochemical Processing Laboratory

    SciTech Connect

    Shields, K.D.; Ballinger, M.Y.

    1999-04-02

    This Facility Effluent Monitoring Plan (FEMP) has been prepared for the 325 Building Radiochemical Processing Laboratory (RPL) at the Pacific Northwest National Laboratory (PNNL) to meet the requirements in DOE Order 5400.1, ''General Environmental Protection Programs.'' This FEMP has been prepared for the RPL primarily because it has a ''major'' (potential to emit >0.1 mrem/yr) emission point for radionuclide air emissions according to the annual National Emission Standards for Hazardous Air Pollutants (NESHAP) assessment performed. This section summarizes the airborne and liquid effluents and the inventory based NESHAP assessment for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements. The RPL at PNNL houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and radioactive mixed waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities within the building include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials and a waste treatment facility for processing hazardous, mixed radioactive, low-level radioactive, and transuranic wastes generated by PNNL activities.

  4. Standard process for the roles and responsibilities for facility reuse of DOE Oak Ridge Reservation Facilities

    SciTech Connect

    Loebl, A.S.; Trost, D.G.; Pastel, J.A.; Payne, S.G.; Fleenor, R.M.

    1996-04-01

    The purpose of this report is to provide an understanding of the standard process for the lease or sale of facilities, equipment, and real property for the Oak Ridge Reservation (ORR). The objective of this process is to facilitate the reindustrialization of the ORR for the Department of Energy (DOE). The roles and responsibilities in this standard, as defined in the attached narrative and flow diagrams, were agreed upon among various representatives from the DOE-Oak Ridge Operations Office (DOE-ORO), Lockheed Martin Energy Systems, Inc. (LMES), and the Community Reuse Organization of East Tennessee (CROET). Reindustrialization for the DOE encompasses several areas which include: facilities reuse, materials and equipment recycling, and worker transition activities. The DOE-ORO`s vision for the ORR is to have completed the reindustrialization activities for the K-25 Site by the year 2010. Several steps have already been taken to aggressively pursue this vision, such as determining the most efficient and cost-effective ways to expedite the facilities reuse process. This report provides the time-phased, step-by-step, process for the lease or sale of facilities, equipment, land, and suggestions on streamlining the required regulatory processes.

  5. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... material. (6) Emergency capability. The design must provide for emergency capability to maintain control of... LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special Nuclear Material § 70.64 Requirements for new facilities or new processes...

  6. The Defense Waste Processing Facility: Two Years of Radioactive Operation

    SciTech Connect

    Marra, S.L.; Gee, J.T.; Sproull, J.F.

    1998-05-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site in Aiken, SC is currently immobilizing high level radioactive sludge waste in borosilicate glass. The DWPF began vitrification of radioactive waste in May, 1996. Prior to that time, an extensive startup test program was completed with simulated waste. The DWPF is a first of its kind facility. The experience gained and data collected during the startup program and early years of operation can provide valuable information to other similar facilities. This experience involves many areas such as process enhancements, analytical improvements, glass pouring issues, and documentation/data collection and tracking. A summary of this experience and the results of the first two years of operation will be presented.

  7. ANALYTICAL PLANS SUPPORTING THE SWPF GAP ANALYSIS BEING CONDUCTED WITH ENERGYSOLUTIONS AND THE VITREOUS STATE LABORATORY AT THE CUA

    SciTech Connect

    Edwards, T.; Peeler, D.

    2014-10-28

    EnergySolutions (ES) and its partner, the Vitreous State Laboratory (VSL) of The Catholic University of America (CUA), are to provide engineering and technical services support to Savannah River Remediation, LLC (SRR) for ongoing operation of the Defense Waste Processing Facility (DWPF) flowsheet as well as for modifications to improve overall plant performance. SRR has requested that the glass formulation team of Savannah River National Laboratory (SRNL) and ES-VSL develop a technical basis that validates the current Product Composition Control System models for use during the processing of the coupled flowsheet or that leads to the refinements of or modifications to the models that are needed so that they may be used during the processing of the coupled flowsheet. SRNL has developed a matrix of test glasses that are to be batched and fabricated by ES-VSL as part of this effort. This document provides two analytical plans for use by ES-VSL: one plan is to guide the measurement of the chemical composition of the study glasses while the second is to guide the measurement of the durability of the study glasses based upon the results of testing by ASTM’s Product Consistency Test (PCT) Method A.

  8. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Basile, Lisa R.; Kelly, Angelita C.

    1987-01-01

    The Spacelab Data Processing Facility (SLDPF) is an integral part of the Space Shuttle data network for missions that involve attached scientific payloads. Expert system prototypes were developed to aid in the performance of the quality assurance function of the Spacelab and/or Attached Shuttle Payloads processed telemetry data. The Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS), two expert systems, were developed to determine their feasibility and potential in the quality assurance of processed telemetry data. The capabilities and performance of these systems are discussed.

  9. Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility

    SciTech Connect

    DAVIS, W.E.

    2000-03-08

    A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

  10. PROCESS AND EQUIPMENT CHANGES FOR CLEANER PRODUCTION IN FEDERAL FACILITIES

    EPA Science Inventory

    The paper discusses process and equipment changes for cleaner production in federal facilities. During the 1990s, DoD and EPA conducted joint research and development, aimed at reducing the discharge of hazardous and toxic pollutants from military production and maintenance faci...

  11. General view from outside the Orbiter Processing Facility at the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view from outside the Orbiter Processing Facility at the Kennedy Space Center with the bay doors open as the Orbiter Discovery is atop the transport vehicle prepared to be moved over to the Vehicle Assembly Building. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Facility changes and change process. 70.72 Section 70.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special...

  13. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Facility changes and change process. 70.72 Section 70.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special...

  14. 10 CFR 70.72 - Facility changes and change process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Facility changes and change process. 70.72 Section 70.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DOMESTIC LICENSING OF SPECIAL NUCLEAR MATERIAL Additional Requirements for Certain Licensees Authorized To Possess a Critical Mass of Special...

  15. 9 CFR 590.540 - Spray process drying facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Spray process drying facilities. 590.540 Section 590.540 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF..., if used, shall be equipped with approved air filters at blower intake. (f) High-pressure pump...

  16. 9 CFR 590.540 - Spray process drying facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Spray process drying facilities. 590.540 Section 590.540 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF..., if used, shall be equipped with approved air filters at blower intake. (f) High-pressure pump...

  17. 9 CFR 590.546 - Albumen flake process drying facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Albumen flake process drying facilities. 590.546 Section 590.546 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG...

  18. 9 CFR 590.546 - Albumen flake process drying facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Albumen flake process drying facilities. 590.546 Section 590.546 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG...

  19. 9 CFR 590.546 - Albumen flake process drying facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Albumen flake process drying facilities. 590.546 Section 590.546 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION INSPECTION OF EGGS AND EGG PRODUCTS (EGG...

  20. Unity connecting module in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Unity connecting module, part of the International Space Station, awaits processing in the Space Station Processing Facility (SSPF). On the end at the right can be seen the Pressurized Mating Adapter 2, which provides entry into the module. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.

  1. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  2. Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility

    SciTech Connect

    Gates, R.; Glukhov, A.; Markowski, F.

    1996-06-01

    This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

  3. APET methodology for Defense Waste Processing Facility: Mode C operation

    SciTech Connect

    Taylor, R.P. Jr.; Massey, W.M.

    1995-04-01

    Safe operation of SRS facilities continues to be the highest priority of the Savannah River Site (SRS). One of these facilities, the Defense Waste Processing Facility or DWPF, is currently undergoing cold chemical runs to verify the design and construction preparatory to hot startup in 1995. The DWPFF is a facility designed to convert the waste currently stored in tanks at the 200-Area tank farm into a form that is suitable for long term storage in engineered surface facilities and, ultimately, geologic isolation. As a part of the program to ensure safe operation of the DWPF, a probabilistic Safety Assessment of the DWPF has been completed. The results of this analysis are incorporated into the Safety Analysis Report (SAR) for DWPF. The usual practice in preparation of Safety Analysis Reports is to include only a conservative analysis of certain design basis accidents. A major part of a Probabilistic Safety Assessment is the development and quantification of an Accident Progression Event Tree or APET. The APET provides a probabilistic representation of potential sequences along which an accident may progress. The methodology used to determine the risk of operation of the DWPF borrows heavily from methods applied to the Probabilistic Safety Assessment of SRS reactors and to some commercial reactors. This report describes the Accident Progression Event Tree developed for the Probabilistic Safety Assessment of the DWPF.

  4. Control system for BCP processing facility at FNAL

    SciTech Connect

    Cristian Boffo et al.

    2003-09-11

    The surface processing is one of the key elements of superconducting RF cavity fabrication. Safety and reliability are the main requirements for the chemical surface treatment facility being developed at FNAL. Accepting the Buffered Chemical Polishing (BCP) as the baseline process, a ''gravity feed and open etching tank'' approach has been chosen at this stage. This choice resulted in the introduction of a control system with a strong automation since the number of elements to be controlled at different steps of the process is rather big. In order to allow for maximum flexibility, two operational modes were defined within the control system: semi-automatic, which requires an operator's decision to move from one stage to another, and manual. This paper describes the main features of the control system for the BCP facility that is under development at FNAL.

  5. Design characteristics for facilities which process hazardous particulate

    SciTech Connect

    Abeln, S.P.; Creek, K.; Salisbury, S.

    1998-12-01

    Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

  6. The development of Enron`s Teesside gas processing facilities

    SciTech Connect

    Meckna, R.D.; Oliver, J.R.

    1996-12-31

    This paper will provide a brief overview of the changing nature of gas processing in the United Kingdom. Geographical changes in the gas supply and Legislative changes are discussed. Market demands require that a gas processing facility meet gas quality specifications, be reliable and flexible. A detailed description of the Train 1 plant design and operation will be addressed. A comparison of Train 2 and Train 1 will be made and differences in design will be highlighted. Special features of each plant such as the Drizo glycol dehydration and the Puraspec H{sub 2}S removal will be reviewed. Construction/operation interfaces were very important during the Train 2 construction because Train 1 was a live operating plant. A review of safety and environmental requirements with emphasis on how the Control of Industrial Major Accident Hazards Regulation 1984 (CIMAH) affect the design, construction and operation of the facilities are included in the paper.

  7. Master slave manipulator maintenance at the Defense Waste Processing Facility

    SciTech Connect

    Lethco, A.J.; Beasley, K.M.

    1991-12-31

    Equipment has been developed and tested to provide transport, installation, removal, decontamination, and repair for the master slave manipulators that are required for thirty-five discrete work locations in the 221-S Vitrification Building of the Defense Waste Processing Facility at the Westinghouse Savannah River Company. This specialized equipment provides a standardized scheme for work locations at different elevations with two types of manipulators.

  8. Master slave manipulator maintenance at the Defense Waste Processing Facility

    SciTech Connect

    Lethco, A.J.; Beasley, K.M.

    1991-01-01

    Equipment has been developed and tested to provide transport, installation, removal, decontamination, and repair for the master slave manipulators that are required for thirty-five discrete work locations in the 221-S Vitrification Building of the Defense Waste Processing Facility at the Westinghouse Savannah River Company. This specialized equipment provides a standardized scheme for work locations at different elevations with two types of manipulators.

  9. Cleaner production opportunity assessment for a milk processing facility.

    PubMed

    Ozbay, A; Demirer, G N

    2007-09-01

    Possible cleaner production (CP) opportunities for a milk processing facility were examined in this study. The CP concept and its key tools of implementation were used to assess the potential CP opportunities in the facility studied. The general production process and its resulting environmental loads were investigated by taking possible CP opportunities as the basis of study. The methodology developed for CP opportunity assessment in the milk processing facility covered two major steps: preparation of checklists to assist auditing and CP opportunity assessment, and implementation of the mass-balance analysis. For mass-balance analysis, measurements and experimental analysis of the mass flows were utilized to determine the inputs and outputs. Prepared checklists were utilized to determine waste reduction options that could be implemented. Selected opportunities were evaluated considering their environmental benefits and economic feasibility. The results of the study indicated that 50% of the service water used, 9.3% of the current wastewater (WW) discharge, 65.36% of the chemical use and the discharge of 181.9 kg/day of chemical oxygen demand (COD) and 20.7 kg/day of total suspended solids (TSS) could be eliminated and 19.6% of the service water used could be recycled/reused.

  10. NASA Regional Planetary Image Facility image retrieval and processing system

    NASA Technical Reports Server (NTRS)

    Slavney, Susan

    1986-01-01

    The general design and analysis functions of the NASA Regional Planetary Image Facility (RPIF) image workstation prototype are described. The main functions of the MicroVAX II based workstation will be database searching, digital image retrieval, and image processing and display. The uses of the Transportable Applications Executive (TAE) in the system are described. File access and image processing programs use TAE tutor screens to receive parameters from the user and TAE subroutines are used to pass parameters to applications programs. Interface menus are also provided by TAE.

  11. DYMAC digital electronic balance. [LASL Plutonium Processing Facility

    SciTech Connect

    Stephens, M.M.

    1980-06-01

    The Dynamic Materials Accountability (DYMAC) System at LASL integrates nondestructive assay (NDA) instruments with interactive data-processing equipment to provide near-real-time accountability of the nuclear material in the LASL Plutonium Processing Facility. The most widely used NDA instrument in the system is the DYMAC digital electronic balance. The DYMAC balance is a commercial instrument that has been modified at LASL for weighing material in gloveboxes and for transmitting the weight data directly to a central computer. This manual describes the balance components, details the LASL modifications, reviews a DYMAC measurement control program that monitors balance performance, and provides instructions for balance operation and maintenance.

  12. Accident Fault Trees for Defense Waste Processing Facility

    SciTech Connect

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  13. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    SciTech Connect

    Datskos, Panos G; Joshi, Pooran C; List III, Frederick Alyious; Duty, Chad E; Armstrong, Beth L; Ivanov, Ilia N; Jacobs, Christopher B; Graham, David E; Moon, Ji Won

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  14. The Sodium Process Facility at Argonne National Laboratory-West

    SciTech Connect

    Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

    1998-07-01

    Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

  15. Hardware development process for Human Research facility applications

    NASA Astrophysics Data System (ADS)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. .

  16. Orbiter processing facility service platform failure and redesign

    NASA Technical Reports Server (NTRS)

    Harris, Jesse L.

    1988-01-01

    In a high bay of the Orbiter Processing Facility (OPF) at the Kennedy Space Center, technicians were preparing the space shuttle orbiter Discovery for rollout to the Vehicle Assembly Building (VAB). A service platform, commonly referred to as an OPF Bucket, was being retracted when it suddenly fell, striking a technician and impacting Discovery's payload bay door. A critical component in the OPF Bucket hoist system had failed, allowing the platform to fall. The incident was thoroughly investigated by both NASA and Lockheed, revealing many design deficiencies within the system. The deficiencies and the design changes made to correct them are reviewed.

  17. Operational readiness: an integral part of the facility planning process.

    PubMed

    Kidd, LeeAnne; Howe, Rob

    2014-01-01

    Large capital building projects benefit from an operational readiness strategy prior to new facility occupancy. St. Joseph's Healthcare used a structured approach for their readiness planning that included individual work plan meetings, tools for ensuring integration across programs and services and process improvement support to ensure a smooth transition. Over 1100 staff were oriented using a Train-the-Trainer model. Significant effort was required to co-ordinate the customized training, which involved "staffing up" to ensure sufficient resources for backfill. Operational readiness planning places additional demands on managers, requiring support and assistance from dedicated resources both prior to occupancy and several months post-move.

  18. Tributylphosphate in the In-Tank Precipitation Process Facilities

    SciTech Connect

    Barnes, M.J.; Hobbs, D.T.; Swingle, R.F.

    1993-11-23

    A material balance investigation and evaluation of n- tributylphosphate (TBP) recycle throughout ITP and its carryover to Defense Waste Processing Facility (DWPF) was performed. Criticality and DWPF-related issues were determined to pose no adverse consequences due to TBP addition. Effects of decomposition products were also considered. Flammability of 1-butanol, a TBP decomposition product, in Tank 22 was investigated. Calculations show that Tank 22 would be ventilated with air at a rate sufficient to maintain a 1-butanol concentration (volume percent) well below 25 percent of the lower flammability limit (LFL) for 1-butanol.

  19. ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT

    SciTech Connect

    Ziehm, Ronny; Pichurin, Sergey Grigorevich

    2003-02-27

    As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwaste Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian

  20. Criticality assessment of the Defense Waste Processing Facility

    SciTech Connect

    Ha, B.C.; Williamson, T.G.; Clemmons, J.S.; Chandler, M.C.

    1996-08-01

    Assessment of nuclear criticality potential of the S-Area Defense Waste Processing Facility (DWPF) is required to ensure the safe processing of radioactive waste for final disposal. At the Savannah River Site (SRS), high-level radioactive wastes are stored as caustic slurries. During storage, the wastes separate into a supernate layer and a sludge layer. The radionuclides from the sludge and supernate will be immobilized into borosilicate glass for storage and eventual disposal. The DWPF will initially immobilize sludge only, with simulated non-radioactive Precipitate Hydrolysis Aqueous (PHA) product. This paper demonstrates that criticality poses only a negligible risk in the DWPF process because of the characteristics of the waste and the DWPF process. The waste contains low concentration of fissile material and many elements which act as neutron poisons. Also, the DWPF process chemistry does not affect separation and accumulation of fissile materials. Experiments showed that DWPF can process all the high-level radioactive wastes currently stored at SRS with negligible criticality risk under normal and abnormal/process upset operation.

  1. Risk assessment on processing facility of raw organic garbage.

    PubMed

    Li, Xin-Rui; Koseki, Hiroshi; Iwata, Yusaku

    2008-06-15

    To investigate the cause of an explosion during disposal processing of raw garbage, the property of the raw garbage was primarily examined by a thermo gravimetry-differential thermal analyzer. With mutable oil concentration, the results showed variable onset temperatures of the exothermal reaction for the samples, for example, decreasing from 150 degrees C in the samples typically containing 10.9-14.1% oil to 114 degrees C when the oil content was raised to 40%. The disposal process was then simulated in a laboratory-scale facility being heated by hot air of 150 degrees C, which was blown into the bottom through nozzles. In the case of the dried garbage containing 14.1% oil, white smoke emitted after several hours, accompanying with an abrupt rise of the temperatures in particular at the bottom of the facility. The maximum temperature reached to 1070 degrees C. Meanwhile, gases, including flammable ones, whose amounts were CO2 approximately CO>H2>methane>ethane in order, were yielded. It indicated that smoldering developed from the zones near the hot air supply nozzle and propagated along the pathway of the imposed air. The continuously released gases possibly induced the transition of smoldering to flame or explosion after accumulating for hours.

  2. Leonardo MPLM in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    (Center) The Multi-Purpose Launch Module, named Leonardo, awaits processing in the Space Station Processing Facility (SSPF). At left is a Rack Insertion Device. Above the Leonardo are the windows of the tour room where visitors can watch the activities in the SSPF. Scheduled to be launched on STS-100 on Dec. 2, 1999, the Italian-built MPLM will be carried in the payload bay of the Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the International Space Station. The Leonardo is the first of three modules being provided by Alenia Aerospazio. The second MPLM, to be handed over in April 1999, is named Raffaello. A third module, to be named Donatello, is due to be delivered in October 2000 for launch in January 2001.

  3. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  4. Materials evaluation programs at the Defense Waste Processing Facility

    SciTech Connect

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-12-31

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

  5. Nuclear criticality safety evaluation -- DWPF Late Wash Facility, Salt Process Cell and Chemical Process Cell

    SciTech Connect

    Williamson, T.G.

    1994-10-17

    The Savannah River Site (SRS) High Level Nuclear Waste will be vitrified in the Defense Waste Processing Facility (DWPF) for long term storage and disposal. This is a nuclear criticality safety evaluation for the Late Wash Facility (LWF), the Salt Processing Cell (SPC) and the Chemical Processing Cell (CPC). of the DWPF. Waste salt solution is processed in the Tank Farm In-Tank Precipitation (ITP) process and is then further washed in the DWPF Late Wash Facility (LWF) before it is fed to the DWPF Salt Processing Cell. In the Salt Processing Cell the precipitate slurry is processed in the Precipitate Reactor (PR) and the resultant Precipitate Hydrolysis Aqueous (PHA) produce is combined with the sludge feed and frit in the DWPF Chemical Process Cell to produce a melter feed. The waste is finally immobilized in the Melt Cell. Material in the Tank Farm and the ITP and Extended Sludge processes have been shown to be safe against a nuclear criticality by others. The precipitate slurry feed from ITP and the first six batches of sludge feed are safe against a nuclear criticality and this evaluation demonstrates that the processes in the LWF, the SPC and the CPC do not alter the characteristics of the materials to compromise safety.

  6. Waste receiving and processing facility module 1, detailed design report

    SciTech Connect

    Not Available

    1993-10-01

    WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design.

  7. [Design of an HACCP program for a cocoa processing facility].

    PubMed

    López D'Sola, Patrizia; Sandia, María Gabriela; Bou Rached, Lizet; Hernández Serrano, Pilar

    2012-12-01

    The HACCP plan is a food safety management tool used to control physical, chemical and biological hazards associated to food processing through all the processing chain. The aim of this work is to design a HACCP Plan for a Venezuelan cocoa processing facility.The production of safe food products requires that the HACCP system be built upon a solid foundation of prerequisite programs such as Good Manufacturing Practices (GMP) and Sanitation Standard Operating Procedures (SSOP). The existence and effectiveness of these prerequisite programs were previously assessed.Good Agriculture Practices (GAP) audit to cocoa nibs suppliers were performed. To develop the HACCP plan, the five preliminary tasks and the seven HACCP principles were accomplished according to Codex Alimentarius procedures. Three Critical Control Points (CCP) were identified using a decision tree: winnowing (control of ochratoxin A), roasting (Salmonella control) and metallic particles detection. For each CCP, Critical limits were established, the Monitoring procedures, Corrective actions, Procedures for Verification and Documentation concerning all procedures and records appropriate to these principles and their application was established. To implement and maintain a HACCP plan for this processing plant is suggested. Recently OchratoxinA (OTA) has been related to cocoa beans. Although the shell separation from the nib has been reported as an effective measure to control this chemical hazard, ochratoxin prevalence study in cocoa beans produced in the country is recommended, and validate the winnowing step as well

  8. Containerless Processing in Reduced Gravity Using the TEMPUS Facility

    NASA Technical Reports Server (NTRS)

    Roger, Jan R.; Robinson, Michael B.

    1996-01-01

    Containerless processing provides a high purity environment for the study of high-temperature, very reactive materials. It is an important method which provides access to the metastable state of an undercooled melt. In the absence of container walls, the nucleation rate is greatly reduced and undercooling up to (Tm-Tn)/Tm approx. 0.2 can be obtained, where Tm and Tn are the melting and nucleation temperatures, respectively. Electromagnetic levitation represents a method particularly well-suited for the study of metallic melts. The TEMPUS facility is a research instrument designed to perform electromagnetic levitation studies in reduced gravity. It provides temperatures up to 2600 C, levitation of several grams of material and access to the undercooled state for an extended period of time (up to hours).

  9. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... review process for LNG terminal facilities and other natural gas facilities prior to filing of applications. (a) LNG terminal facilities and related jurisdictional natural gas facilities. A...

  10. A survey of decontamination processes applicable to DOE nuclear facilities

    SciTech Connect

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  11. OVERVIEW OF TESTING TO SUPPORT PROCESSING OF SLUDGE BATCH 4 IN THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Herman, C

    2006-09-20

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site began processing of its third sludge batch in March 2004. To avoid a feed outage in the facility, the next sludge batch will have to be prepared and ready for transfer to the DWPF by the end of 2006. The next sludge batch, Sludge Batch 4 (SB4), will consist of a significant volume of HM-type sludge. HM-type sludge is very high in aluminum compared to the mostly Purex-type sludges that have been processed to date. The Savannah River National Laboratory (SRNL) has been working with Liquid Waste Operations to define the sludge preparation plans and to perform testing to support qualification and processing of SB4. Significant challenges have arisen during SB4 preparation and testing to include poor sludge settling behavior and lower than desired projected melt rates. An overview of the testing activities is provided.

  12. Defense Waste Processing Facility wasteform and canister description: Revision 2

    SciTech Connect

    Baxter, R.G.

    1988-12-01

    This document describes the reference wasteform and canister for the Defense Waste Processing Facility (DWPF). The principal changes include revised feed and glass product compositions, an estimate of glass product characteristics as a function of time after the start of vitrification, and additional data on glass leaching performance. The feed and glass product composition data are identical to that described in the DWPF Basic Data Report, Revision 90/91. The DWPF facility is located at the Savannah River Plant in Aiken, SC, and it is scheduled for construction completion during December 1989. The wasteform is borosilicate glass containing approximately 28 wt % sludge oxides, with the balance consisting of glass-forming chemicals, primarily glass frit. Borosilicate glass was chosen because of its stability toward reaction with potential repository groundwaters, its relatively high ability to incorporate nuclides found in the sludge into the solid matrix, and its reasonably low melting temperature. The glass frit contains approximately 71% SiO/sub 2/, 12% B/sub 2/O/sub 3/, and 10% Na/sub 2/O. Tests to quantify the stability of DWPF waste glass have been performed under a wide variety of conditions, including simulations of potential repository environments. Based on these tests, DWPF waste glass should easily meet repository criteria. The canister is filled with about 3700 lb of glass which occupies 85% of the free canister volume. The filled canister will generate approximately 690 watts when filled with oxides from 5-year-old sludge and precipitate from 15-year-old supernate. The radionuclide activity of the canister is about 233,000 curies, with an estimated radiation level of 5600 rad/hour at the canister surface. 14 figs., 28 tabs.

  13. New Waste Calcining Facility Non-radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael Clair

    2001-09-01

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre-decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with hotographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  14. New Waste Calcining Facility Non-Radioactive Process Decontamination

    SciTech Connect

    Swenson, Michael C.

    2001-09-30

    This report documents the results of a test of the New Calcining Facility (NWCF) process decontamination system. The decontamination system test occurred in December 1981, during non-radioactive testing of the NWCF. The purpose of the decontamination system test was to identify equipment whose design prevented effective calcine removal and decontamination. Effective equipment decontamination was essential to reduce radiation fields for in-cell work after radioactive processing began. The decontamination system test began with a pre-decontamination inspection of the equipment. The pre- decontamination inspection documented the initial condition and cleanliness of the equipment. It provided a basis for judging the effectiveness of the decontamination. The decontamination consisted of a series of equipment flushes using nitric acid and water. A post-decontamination equipment inspection determined the effectiveness of the decontamination. The pre-decontamination and post-decontamination equipment inspections were documented with photographs. The decontamination system was effective in removing calcine from most of the NWCF equipment as evidenced by little visible calcine residue in the equipment after decontamination. The decontamination test identified four areas where the decontamination system required improvement. These included the Calciner off-gas line, Cyclone off-gas line, fluidizing air line, and the Calciner baffle plates. Physical modifications to enhance decontamination were made to those areas, resulting in an effective NWCF decontamination system.

  15. Participative Facility Planning for Obstetrical and Neonatal Care Processes: Beginning of Life Process

    PubMed Central

    Karvonen, Sauli; Petäjä, Hanna; Reijula, Kari; Lehtonen, Liisa

    2016-01-01

    Introduction. Old hospitals may promote inefficient patient care processes and safety. A new, functionally planned hospital presents a chance to create an environment that supports streamlined, patient-centered healthcare processes and adapts to users' needs. This study depicts the phases of a facility planning project for pregnant women and newborn care processes (beginning of life process) at Turku University Hospital. Materials and Methods. Project design reports and meeting documents were utilized to assess the beginning of life process as well as the work processes of the Women's and Children's Hospital. Results. The main elements of the facility design (FD) project included rigorous preparation for the FD phase, functional planning throughout the FD process, and setting key values: (1) family-centered care, (2) Lean thinking and Lean tools as the framework for the FD process, (3) safety, and (4) cooperation. Conclusions. A well-prepared FD project with sufficient insight into functional planning, Lean thinking, and user-centricity seemed to facilitate the actual FD process. Although challenges occurred, the key values were not forgone and were successfully incorporated into the new hospital building.

  16. The National Shipbuilding Research Program. Automated Process Application in Steel Fabrication and Subassembly Facilities; Phase I (Process Analysis)

    DTIC Science & Technology

    1999-05-01

    6 Automated Process Application in Steel Fabrication and Subassembly Facilities; Phase I ( Process Analysis ) U.S. DEPARTMENT OF THE NAVY CARDEROCK...Subassembly Facilities; Phase I ( Process Analysis ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e

  17. Estimating and bidding for the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    Brown, Joseph A.

    1993-01-01

    This new, unique Cost Engineering Report introduces the 800-page, C-100 government estimate for the Space Station Processing Facility (SSPF) and Volume IV Aerospace Construction Price Book. At the January 23, 1991, bid opening for the SSPF, the government cost estimate was right on target. Metric, Inc., Prime Contractor, low bid was 1.2 percent below the government estimate. This project contains many different and complex systems. Volume IV is a summary of the cost associated with construction, activation and Ground Support Equipment (GSE) design, estimating, fabrication, installation, testing, termination, and verification of this project. Included are 13 reasons the government estimate was so accurate; abstract of bids, for 8 bidders and government estimate with additive alternates, special labor and materials, budget comparison and system summaries; and comments on the energy credit from local electrical utility. This report adds another project to our continuing study of 'How Does the Low Bidder Get Low and Make Money?' which was started in 1967, and first published in the 1973 AACE Transaction with 10 more ways the low bidder got low. The accuracy of this estimate proves the benefits of our Kennedy Space Center (KSC) teamwork efforts and KSC Cost Engineer Tools which are contributing toward our goals of the Space Station.

  18. Design Considerations for the Construction and Operation of Flour Milling Facilities. Part II: Process Design Considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flour milling facilities have been the cornerstone of agricultural processing for centuries. Like most agri-industrial production facilities, flour milling facilities have a number of unique design requirements. Design information, to date, has been limited. In an effort to summarize state of the ...

  19. EUPHORE: Research facility to study tropospheric transformation processes

    NASA Astrophysics Data System (ADS)

    Wirtz, K.

    2003-04-01

    The EUPHORE simulation chamber consists of two half-spherical Teflon bags, each with a volume of 200 m^3 and a base diameter of 9.2 m. The FEP Teflon has a transmission of about 75% at 280 nm and of more than 80% above 300 nm. Purified and dried ambient air is used to fill the chamber and flush it between experiments. The humidity in the chamber is measured by a dew point hygrometer, and the temperature is monitored by several thermocouples located at different positions inside the chamber. The solar flux is monitored with spectral resolution in the photochemically active spectral region. The simulation chamber is equipped with a number of analytical instruments for the measurement of single VOC components, NO, NO_2, O_3 and other species. In-situ measurements in the ppb range are performed using long-path absorption spectroscopy, in the UV/VIS by DOAS and in the IR by FT-IR. A GC-MS system is used for the sensitive analysis of a variety of reaction products. A newly installed LIF technique allows the in situ measurement of OH and HO_2 radicals during the reaction processes. The technological concept and the organisation structure of the EUPHORE facility will be presented. The integration of quality control measures is an obvious and necessary second step for the successful exploitation of the technically advanced outdoor smog chamber EUPHORE as a research tool. This will underline the leadership of the European scientific community in the important research areas of investigating transformation processes in the troposphere and tracking the influence of human activities on photooxidant formation and its interaction with processes related to global change. In the coming years the main scientific focus will be on testing chemical mechanisms in order to improve the models which describe the atmospheric processes of complex chemical systems. The collaborative work at the EUPHORE outdoor simulation chamber will provide all the users of the installation with a basic

  20. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    SciTech Connect

    Mirro, G.A.

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  1. 75 FR 71733 - Requirements for Measurement Facilities Used for the Royalty Valuation of Processed Natural Gas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-24

    ... Bureau of Ocean Energy Management, Regulation and Enforcement Requirements for Measurement Facilities... measurement equipment at gas plants and other processing facilities. SUMMARY: This notice provides information... measurement of Federal production at gas processing plants when royalty is reported and paid on processed...

  2. 62 FR 46525 - Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG

    Federal Register 2010, 2011, 2012, 2013, 2014

    1997-09-03

    ... COMMISSION Chemical Process Safety at Fuel Cycle Facilities; Availability of NUREG AGENCY: Nuclear Regulatory... completion and availability of NUREG-1601, ``Chemical Process Safety at Fuel Cycle Facilities,'' dated July.... SUPPLEMENTARY INFORMATION: NRC is announcing the availability of NUREG-1601, ``Chemical Process Safety at...

  3. Development and Validation of Pathogen Environmental Monitoring Programs for Small Cheese Processing Facilities.

    PubMed

    Beno, Sarah M; Stasiewicz, Matthew J; Andrus, Alexis D; Ralyea, Robert D; Kent, David J; Martin, Nicole H; Wiedmann, Martin; Boor, Kathryn J

    2016-12-01

    Pathogen environmental monitoring programs (EMPs) are essential for food processing facilities of all sizes that produce ready-to-eat food products exposed to the processing environment. We developed, implemented, and evaluated EMPs targeting Listeria spp. and Salmonella in nine small cheese processing facilities, including seven farmstead facilities. Individual EMPs with monthly sample collection protocols were designed specifically for each facility. Salmonella was detected in only one facility, with likely introduction from the adjacent farm indicated by pulsed-field gel electrophoresis data. Listeria spp. were isolated from all nine facilities during routine sampling. The overall Listeria spp. (other than Listeria monocytogenes ) and L. monocytogenes prevalences in the 4,430 environmental samples collected were 6.03 and 1.35%, respectively. Molecular characterization and subtyping data suggested persistence of a given Listeria spp. strain in seven facilities and persistence of L. monocytogenes in four facilities. To assess routine sampling plans, validation sampling for Listeria spp. was performed in seven facilities after at least 6 months of routine sampling. This validation sampling was performed by independent individuals and included collection of 50 to 150 samples per facility, based on statistical sample size calculations. Two of the facilities had a significantly higher frequency of detection of Listeria spp. during the validation sampling than during routine sampling, whereas two other facilities had significantly lower frequencies of detection. This study provides a model for a science- and statistics-based approach to developing and validating pathogen EMPs.

  4. Plantwide Energy Assessment of a Sugarcane Farming and Processing Facility

    SciTech Connect

    Jakeway, L.A.; Turn, S.Q.; Keffer, V.I.; Kinoshita, C.M.

    2006-02-27

    A plantwide energy assessment was performed at Hawaiian Commercial & Sugar Co., an integrated sugarcane farming and processing facility on the island of Maui in the State of Hawaii. There were four main tasks performed for the plantwide energy assessment: 1) pump energy assessment in both field and factory operations, 2) steam generation assessment in the power production operations, 3) steam distribution assessment in the sugar manufacturing operation, and 4) electric power distribution assessment of the company system grid. The energy savings identified in each of these tasks were summarized in terms of fuel savings, electricity savings, or opportunity revenue that potentially exists mostly from increased electric power sales to the local electric utility. The results of this investigation revealed eight energy saving projects that can be implemented at HC&S. These eight projects were determined to have potential for $1.5 million in annual fuel savings or 22,337 MWh equivalent annual electricity savings. Most of the savings were derived from pump efficiency improvements and steam efficiency improvements both in generation and distribution. If all the energy saving projects were implemented and the energy savings were realized as less fuel consumed, there would be corresponding reductions in regulated air pollutants and carbon dioxide emissions from supplemental coal fuel. As HC&S is already a significant user of renewable biomass fuel for its operations, the projected reductions in air pollutants and emissions will not be as great compared to using only coal fuel for example. A classification of implementation priority into operations was performed for the identified energy saving projects based on payback period and ease of implementation.

  5. Process monitoring concepts for safeguards and demonstrations at an Oak Ridge National Laboratory test facility

    SciTech Connect

    Ehinger, M.H.

    1986-01-01

    As part of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL), the Integrated Equipment Test (IET) facility has been constructed to demonstrate advanced equipment, processes, and controls for use in future reprocessing plants. The facility contains full-size plant equipment for shear and dissolution, feed preparation solvent extraction and product recovery. The facility is integrated with chemical recovery systems to allow continuous operation using depleted uranium feed solutions to simulate operations. The IET facility features computer interface to instrumentation and equipment for process control and information. Part of the CFRP has been the development of a safeguards systems to make use of extensive process monitoring data available from ''next-generation'' reprocessing and fuel facilities. This paper describes the IET facility and tests conducted to demonstrate sensitivities of process monitoring safeguards applications.

  6. Process monitoring concepts for safeguards and demonstrations at an Oak Ridge National Laboratory test facility

    SciTech Connect

    Ehinger, M.H.

    1986-01-01

    As part of the Consolidated Fuel Reprocessing Program (CFRP) at the Oak Ridge National Laboratory (ORNL), the Integrated Equipment Test (IET) facility has been constructed to demonstrate advanced equipment, processes, and controls for use in future reprocessing plants. The facility contains full-size plant equipment for shear and dissolution, feed preparation solvent extraction, and product recovery. The facility is integrated with chemical recovery systems to allow continuous operation using depleted uranium feed solutions to simulate operations. The IET facility features computer interface to instrumentation and equipment for process control and information. Part of the CFRP has been the development of a safeguards system to make use of extensive process monitoring data available from ''next-generation'' reprocessing and fuel facilities. This paper describes the IET facility and tests conducted to demonstrate sensitivities of process monitoring safeguards applications.

  7. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... safety or does not require adherence to the specified criteria. (1) Quality standards and records. The... throughout the life of the facility. (2) Natural phenomena hazards. The design must provide for adequate... design must provide for inclusion of instrumentation and control systems to monitor and control...

  8. 10 CFR 70.64 - Requirements for new facilities or new processes at existing facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... throughout the life of the facility. (2) Natural phenomena hazards. The design must provide for adequate protection against natural phenomena with consideration of the most severe documented historical events for... selection of engineered controls over administrative controls to increase overall system reliability; and...

  9. 71 FR 56344 - Facility Change Process Involving Items Relied on for Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-09-27

    ... COMMISSION 10 CFR Part 70 RIN 3150-AH96 Facility Change Process Involving Items Relied on for Safety AGENCY... facility change process involving items relied on for safety. Additionally, the 10 CFR part 70 subpart H...) is amending its regulations to clarify a requirement pertaining to items relied on for safety...

  10. Process Control Manual for Aerobic Biological Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This Environmental Protection Agency (EPA) publication is an operations manual for activated sludge and trickling filter wastewater treatment facilities. The stated purpose of the manual is to provide an on-the-job reference for operators of these two types of treatment plants. The overall objective of the manual is to aid the operator in…

  11. Facilities and the Air Force Systems Acquisition Process.

    DTIC Science & Technology

    1985-05-01

    to provide es- senti-l fLcilitio-s by, system Initial Cperatlcnal Capability (’-0C) . And secondly, vince the systems ;acjui. tior proceso is event...funds exclusively for systems acquisition. This change will remove the current military construction calendar constraint and allow facilities to be

  12. Integrating Sustainability Programs into the Facilities Capital Planning Process

    ERIC Educational Resources Information Center

    Buchanan, Susan

    2011-01-01

    With detailed information about the costs and benefits of potential green investments, educational facilities can effectively evaluate which initiatives will ultimately provide the greatest results over the short and long term. Based on its overall goals, every school, college, or university will have different values and therefore different…

  13. 77 FR 823 - Guidance for Fuel Cycle Facility Change Processes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-06

    ... electronically under ADAMS Accession Number ML100890016. The regulatory analysis may be found in ADAMS under.... FOR FURTHER INFORMATION CONTACT: R. A. Jervey, U.S. Nuclear Regulatory Commission, Washington, DC... for tracking, evaluating, and documenting changes made to fuel cycle facilities, and to...

  14. Facilities

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An expansion of medical data collection facilities was necessary to implement the Extended Duration Orbiter Medical Project (EDOMP). The primary objective of the EDOMP was to ensure the capability of crew members to reenter the Earth's atmosphere, land, and egress safely following a 16-day flight. Therefore, access to crew members as soon as possible after landing was crucial for most data collection activities. Also, with the advent of EDOMP, the quantity of investigations increased such that the landing day maximum data collection time increased accordingly from two hours to four hours. The preflight and postflight testing facilities at the Johnson Space Center (JSC) required only some additional testing equipment and minor modifications to the existing laboratories in order to fulfill EDOMP requirements. Necessary modifications at the landing sites were much more extensive.

  15. Overview of the Facility Safeguardability Analysis (FSA) Process

    SciTech Connect

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

    2012-08-01

    Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

  16. Metal nanofoams via a facile microwave-assisted solvothermal process.

    PubMed

    Kreder, K J; Manthiram, A

    2017-01-16

    A novel, facile, non-hazardous, low temperature/pressure microwave solvothermal method of producing pure copper, silver, and nickel metal nanofoams is presented. The nanofoams have been produced using inexpensive metal acetates and polyglycol solvent. The nanofoam formation proceeds in two steps within a single-pot synthesis: formation of metal nanoparticles, followed by the sintering of nanoparticles into nanofoams. The nanofoams have many potential uses in clean energy applications, particularly lithium-ion batteries.

  17. Hardware Development Process for Human Research Facility Applications

    NASA Technical Reports Server (NTRS)

    Bauer, Liz

    2000-01-01

    The simple goal of the Human Research Facility (HRF) is to conduct human research experiments on the International Space Station (ISS) astronauts during long-duration missions. This is accomplished by providing integration and operation of the necessary hardware and software capabilities. A typical hardware development flow consists of five stages: functional inputs and requirements definition, market research, design life cycle through hardware delivery, crew training, and mission support. The purpose of this presentation is to guide the audience through the early hardware development process: requirement definition through selecting a development path. Specific HRF equipment is used to illustrate the hardware development paths. The source of hardware requirements is the science community and HRF program. The HRF Science Working Group, consisting of SCientists from various medical disciplines, defined a basic set of equipment with functional requirements. This established the performance requirements of the hardware. HRF program requirements focus on making the hardware safe and operational in a space environment. This includes structural, thermal, human factors, and material requirements. Science and HRF program requirements are defined in a hardware requirements document which includes verification methods. Once the hardware is fabricated, requirements are verified by inspection, test, analysis, or demonstration. All data is compiled and reviewed to certify the hardware for flight. Obviously, the basis for all hardware development activities is requirement definition. Full and complete requirement definition is ideal prior to initiating the hardware development. However, this is generally not the case, but the hardware team typically has functional inputs as a guide. The first step is for engineers to conduct market research based on the functional inputs provided by scientists. CommerCially available products are evaluated against the science requirements as

  18. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement results.

    PubMed

    Mitchell, Austin L; Tkacik, Daniel S; Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Martinez, David M; Vaughn, Timothy L; Williams, Laurie L; Sullivan, Melissa R; Floerchinger, Cody; Omara, Mark; Subramanian, R; Zimmerle, Daniel; Marchese, Anthony J; Robinson, Allen L

    2015-03-03

    Facility-level methane emissions were measured at 114 gathering facilities and 16 processing plants in the United States natural gas system. At gathering facilities, the measured methane emission rates ranged from 0.7 to 700 kg per hour (kg/h) (0.6 to 600 standard cubic feet per minute (scfm)). Normalized emissions (as a % of total methane throughput) were less than 1% for 85 gathering facilities and 19 had normalized emissions less than 0.1%. The range of methane emissions rates for processing plants was 3 to 600 kg/h (3 to 524 scfm), corresponding to normalized methane emissions rates <1% in all cases. The distributions of methane emissions, particularly for gathering facilities, are skewed. For example, 30% of gathering facilities contribute 80% of the total emissions. Normalized emissions rates are negatively correlated with facility throughput. The variation in methane emissions also appears driven by differences between inlet and outlet pressure, as well as venting and leaking equipment. Substantial venting from liquids storage tanks was observed at 20% of gathering facilities. Emissions rates at these facilities were, on average, around four times the rates observed at similar facilities without substantial venting.

  19. Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition

    SciTech Connect

    Leach, C.E.; Galbraith, J.D.; Grant, P.R.; Francuz, D.J.; Schroeder, P.J.

    1995-11-01

    This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

  20. Alaska Synthetic Aperture Radar (SAR) Facility science data processing architecture

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Bicknell, Thomas; Miller, Carol L.

    1991-01-01

    The paper describes the architecture of the Alaska SAR Facility (ASF) at Fairbanks, being developed to generate science data products for supporting research in sea ice motion, ice classification, sea-ice-ocean interaction, glacier behavior, ocean waves, and hydrological and geological study areas. Special attention is given to the individual substructures of the ASF: the Receiving Ground Station (RGS), the SAR Processor System, and the Interactive Image Analysis System. The SAR data will be linked to the RGS by the ESA ERS-1 and ERS-2, the Japanese ERS-1, and the Canadian Radarsat.

  1. Safety and environmental process for the design and construction of the National Ignition Facility

    SciTech Connect

    Brereton, S.J., LLNL

    1998-05-27

    The National Ignition Facility (NIF) is a U.S. Department of Energy (DOE) laser fusion experimental facility currently under construction at the Lawrence Livermore National Laboratory (LLNL). This paper describes the safety and environmental processes followed by NIF during the design and construction activities.

  2. Simulation of mass storage systems operating in a large data processing facility

    NASA Technical Reports Server (NTRS)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  3. 10 CFR 1016.8 - Approval for processing access permittees for security facility approval.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RESTRICTED DATA Physical Security § 1016.8 Approval for processing access permittees for security facility... Restricted Data at any location in connection with its permit shall promptly request a DOE security facility... proposed security procedures and controls for the protection of Restricted Data, including a floor plan...

  4. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A.; Duncan, D.R.

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  5. Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System

    SciTech Connect

    KESSLER, S.F.

    2000-08-10

    This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

  6. Facility Siting as a Decision Process at the Savannah River Site

    SciTech Connect

    Wike, L.D.

    2001-07-24

    This document is based upon previous site selection exercises conducted for a variety of proposed facilities. It develops the logic and basis for the methods employed, and standardizes the process and terminology for future site selection efforts.

  7. Plutonium production story at the Hanford site: processes and facilities history

    SciTech Connect

    Gerber, M.S., Westinghouse Hanford

    1996-06-20

    This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

  8. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    SciTech Connect

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  9. Evaluation of the antipsychotic medication review process at four long-term facilities in Alberta

    PubMed Central

    Birney, Arden; Charland, Paola; Cole, Mollie; Aslam Arain, Mubashir

    2016-01-01

    Purpose The goal of this evaluation was to understand how four long-term care (LTC) facilities in Alberta have implemented medication reviews for the Appropriate Use of Antipsychotics (AUA) initiative. We aimed to determine how interprofessional (IP) collaboration was incorporated in the antipsychotic medication reviews and how the reviews had been sustained. Methods Four LTC facilities in Alberta participated in this evaluation. We conducted semistructured interviews with 18 facility staff and observed one antipsychotic medication review at each facility. We analyzed data according to the following key components that we identified as relevant to the antipsychotic medication reviews: the structure of the reviews, IP interactions between the staff members, and strategies for sustaining the reviews. Results The duration of antipsychotic medication reviews ranged from 1 to 1.5 hours. The number of professions in attendance ranged from 3 to 9; a pharmacist led the review at two sites, while a registered nurse led the review at one site and a nurse practitioner at the remaining site. The number of residents discussed during the review ranged from 6 to 20. The process at some facilities was highly IP, demonstrating each of the six IP competencies. Other facilities conducted the review in a less IP manner due to challenges of physician involvement and staff workload, particularly of health care aides. Facilities that had an nurse practitioner on site were more efficient with the process of implementing recommendations resulting from the medication reviews. Conclusion The LTC facilities were successful in implementing the medication review process and the process seemed to be sustainable. A few challenges were observed in the implementation process at two facilities. IP practice moved forward the goals of the AUA initiative to reduce the inappropriate use of antipsychotics. PMID:27785044

  10. Lax regulation of oil vessels and processing facilities continues

    SciTech Connect

    Sankovitch, N.

    1993-12-31

    Four years after the grounding of the Exxon Valdez on Bligh Reef in 1989, oil spills continue to occur with alarming frequency: In 1992 the Shoko Maru spilled more than 96,000 gallons of crude oil into the Texas City Channel and a leak at an offshore well in Louisiana spilled at least 30,000 gallons; in 1991 alone, there were 677 spills in the Port of New Orleans, 398 spills in New York Harbor, 239 spills in Port of Hampton Roads, 235 spills in Port of Philadelphia, 130 spills in Seattle, and 116 spills in Boston Harbor. The amount of oil spilled in these ports alone in one year exceeded 300,000 gallons. The recent huge spills off foreign coasts-the Shetland Islands, the coasts of Spain and Indonesia-reinforce the importance of regulation. The Oil Pollution Act, passed in August 1992 mandates that all vessels traveling in US waters and all oil transfer and storage facilities take measurable and enforceable actions to reduce spills. However, major problems remain, both with the act and with enforcing it. This article discusses both the problems and the solutions to pollution control of oil spills.

  11. A new design concept for an automated peanut processing facility

    SciTech Connect

    Ertas, A.; Tanju, B.T.; Fair, W.T.; Butts, C.

    1996-12-31

    Peanut quality is a major concern in all phases of the peanut industry from production to manufacturing. Postharvest processing of peanuts can have profound effects on the quality and safety of peanut food products. Curing is a key step in postharvest processing. Curing peanuts improperly can significantly reduce quality, and result in significant losses to both farmers and processors. The conventional drying system designed in the 1960`s is still being used in the processing of the peanuts today. The objectives of this paper is to design and develop a new automated peanut drying system for dry climates capable of handling approximately 20 million lbm of peanuts per harvest season.

  12. REPORT ON TWO PROCESS EQUIPMENT CHANGES FOR FEDERAL PAINTING FACILITIES

    EPA Science Inventory

    EPA's National Risk Management Research Laboratory (NRMRL) has actively participated in the Strategic Environmental Research and Development Program (SERDP) to develop innovative technologies and processes for the reduction of environmental pollution. Technology developments fro...

  13. Bulk processing of radionuclide generator parents at the Los Alamos Hot Cell Facility

    SciTech Connect

    Fassbender, M. E.; Nortier, F. M.; Phillips, Dennis R.; Peterson, E. J.

    2004-01-01

    Bulk radionuclide processing at Los Alamos includes isotopes with short-lived radioactive daughter nuclides ('generator parents') for medical applications. The generator radionuclide parents {sup 68}Ge, {sup 82}Sr, {sup 88}Zr and {sup 109}Cd are regularly processed at the Los Alamos Hot Cell Facility. Nuclear chemical aspects related to the production and processing of these generator parents are briefly outlined.

  14. Application of artificial intelligence to melter control: Realtime process advisor for the scale melter facility

    SciTech Connect

    Edwards, Jr, R E

    1988-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP) is currently under construction and when completed will process high-level radioactive waste into a borosilicate glass wasteform. This facility will consist of numerous batch chemical processing steps as well as the continuous operation of a joule-heated melter and its off-gas treatment system. A realtime process advisor system based on Artificial Intelligence (AI) techniques has been developed and is currently in use at the semiworks facility, which is operating a 2/3 scale of the DWPF joule-heated melter. The melter advisor system interfaces to the existing data collection and control system and monitors current operations of this facility. The advisor then provides advice to operators and engineers when it identifies process problems. The current system is capable of identifying process problems such as feed system pluggages and thermocouple failures and providing recommended actions. The system also provides facilities normally with distributed control systems. These include the ability to display process flowsheets, monitor alarm conditions, and check the status of process interlocks. 7 figs.

  15. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    SciTech Connect

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  16. Zero-Release Mixed Waste Process Facility Design and Testing

    SciTech Connect

    Richard D. Boardman; John A. Deldebbio; Robert J. Kirkham; Martin K. Clemens; Robert Geosits; Ping Wan

    2004-02-01

    A zero-release offgas cleaning system for mixed-waste thermal treatment processes has been evaluated through experimental scoping tests and process modeling. The principles can possibly be adapted to a fluidized-bed calcination or stream reforming process, a waste melter, a rotarykiln process, and possibly other waste treatment thermal processes. The basic concept of a zero-release offgas cleaning system is to recycle the bulk of the offgas stream to the thermal treatment process. A slip stream is taken off the offgas recycle to separate and purge benign constituents that may build up in the gas, such as water vapor, argon, nitrogen, and CO2. Contaminants are separated from the slip stream and returned to the thermal unit for eventual destruction or incorporation into the waste immobilization media. In the current study, a standard packed-bed scrubber, followed by gas separation membranes, is proposed for removal of contaminants from the offgas recycle slipstream. The scrub solution is continuously regenerated by cooling and precipitating sulfate, nitrate, and other salts that reach a solubility limit in the scrub solution. Mercury is also separated by the scrubber. A miscible chemical oxidizing agent was shown to effectively oxidize mercury and also NO, thus increasing their removal efficiency. The current study indicates that the proposed process is a viable option for reducing offgas emissions. Consideration of the proposed closed-system offgas cleaning loop is warranted when emissions limits are stringent, or when a reduction in the total gas emissions volume is desired. Although the current closed-loop appears to be technically feasible, economical considerations must be also be evaluated on a case-by-case basis.

  17. SSOPs and GMPs for commercial shell egg processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hazard analysis and critical control programs (HACCP) will eventually be required for commercial shell egg processing plants. Sanitation is an essential prerequisite program for HACCP and is based upon current Good Manufacturing Practices (cGMPs) as listed in the Code of Federal Regulations. Good ...

  18. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1

    SciTech Connect

    Not Available

    1994-03-01

    This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

  19. Implementation of the DYMAC system at the new Los Alamos Plutonium Processing Facility. Phase II report

    SciTech Connect

    Malanify, J.J.; Amsden, D.C.

    1982-08-01

    The DYnamic Materials ACcountability System - called DYMAC - performs accountability functions at the new Los Alamos Plutonium Processing Facility where it began operation when the facility opened in January 1978. A demonstration program, DYMAC was designed to collect and assess inventory information for safeguards purposes. It accomplishes 75% of its design goals. DYMAC collects information about the physical inventory through deployment of nondestructive assay instrumentation and video terminals throughout the facility. The information resides in a minicomputer where it can be immediately sorted and displayed on the video terminals or produced in printed form. Although the capability now exists to assess the collected data, this portion of the program is not yet implemented. DYMAC in its present form is an excellent tool for process and quality control. The facility operator relies on it exclusively for keeping track of the inventory and for complying with accountability requirements of the US Department of Energy.

  20. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    SciTech Connect

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  1. 324 Facility B-Cell quality process plan

    SciTech Connect

    Carlson, J.L.

    1998-06-10

    B-Cell is currently being cleaned out (i.e., removal of equipment, fixtures and residual radioactive materials) and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/99. The following sections describe the major activities that remain for completion of the TPA milestone. This includes: (1) Size Reduce Tank 119 and Miscellaneous Equipment. This activity is the restart of hotwork in B-Cell to size reduce the remainder of Tank 119 and other miscellaneous pieces of equipment into sizes that can be loaded into a grout container. This activity also includes the process of preparing the containers for shipment from the cell. The specific activities and procedures used are detailed in a table. (2) Load and Ship Low-Level Waste. This activity covers the process of taking a grouted LLW container from B-Cell and loading it into the cask in the REC airlock and Cask Handling Area (CHA) for shipment to the LLBG. The detailed activities and procedures for this part of cell cleanout are included in second table.

  2. 30 CFR 947.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... § 947.827 Special performance standards—coal processing plants and support facilities not located at or... Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or Near...

  3. 30 CFR 910.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... § 910.827 Special performance standards—coal processing plants and support facilities not located at or... Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or Near...

  4. 30 CFR 922.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... § 922.827 Special performance standards—coal processing plants and support facilities not located at or... Program Performance Standards—Coal Processing Plants and Support Facilities not Located at or near...

  5. 30 CFR 921.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... MASSACHUSETTS § 921.827 Special performance standards—coal processing plants and support facilities not located... Permanent Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or...

  6. 30 CFR 939.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... ISLAND § 939.827 Special performance standards—coal processing plants and support facilities not located... Permanent Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or...

  7. 30 CFR 910.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... § 910.827 Special performance standards—coal processing plants and support facilities not located at or... Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or Near...

  8. 30 CFR 941.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... DAKOTA § 941.827 Special performance standards—coal processing plants and support facilities not located... Permanent Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or...

  9. 30 CFR 912.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... § 912.827 Special performance standards—coal processing plants and support facilities not located at or... Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or Near...

  10. 30 CFR 933.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... CAROLINA § 933.827 Special performance standards—coal processing plants and support facilities not located... Permanent Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or...

  11. 30 CFR 921.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... MASSACHUSETTS § 921.827 Special performance standards—coal processing plants and support facilities not located... Permanent Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or...

  12. 30 CFR 937.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... § 937.827 Special performance standards—coal processing plants and support facilities not located at or... Program Performance Standards—Coal Processing plants and Support Facilities Not Located at or Near...

  13. 30 CFR 922.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... § 922.827 Special performance standards—coal processing plants and support facilities not located at or... Program Performance Standards—Coal Processing Plants and Support Facilities not Located at or near...

  14. 30 CFR 912.827 - Special performance standards-coal processing plants and support facilities not located at or...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plants and support facilities not located at or near the minesite or not within the permit area for a... § 912.827 Special performance standards—coal processing plants and support facilities not located at or... Program Performance Standards—Coal Processing Plants and Support Facilities Not Located at or Near...

  15. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-01-01

    Design and construction of the world's largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy's Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  16. High level nuclear waste treatment in the Defense Waste Processing Facility: Overview and integrated flowsheet model

    SciTech Connect

    Choi, A.S.; Fowler, J.R.; Edwards, R.E. Jr.; Randall, C.T.

    1991-12-31

    Design and construction of the world`s largest vitrification facility for high level nuclear waste has been nearly completed at the US Department of Energy`s Savannah River Site. Equipment testing and calibration are currently being performed in preparation for the nonradioactive Chemical Runs in the late 1991. In 1993, the Defense Waste Processing Facility (DWPF) will begin producing 100 kg/hr of radioactive waste glass at 28 wt% waste oxide loading. This paper describes all phases of waste processing operations in DWPF and waste tank farms using the integrated flowsheet modeling approach. Particular emphases are given to recent developments in the DWPF processes and design.

  17. Data reduction complex analog-to-digital data processing requirements for onsite test facilities

    NASA Technical Reports Server (NTRS)

    Debbrecht, J. D.

    1976-01-01

    The analog to digital processing requirements of onsite test facilities are described. The source and medium of all input data to the Data Reduction Complex (DRC) and the destination and medium of all output products of the analog-to-digital processing are identified. Additionally, preliminary input and output data formats are presented along with the planned use of the output products.

  18. Enterobacteriaceae and related organisms isolated from nest run cart shelves in commercial shell egg processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterobacteriaceae, including Salmonella may be recovered from foods and processing facilities. High levels of Enterobacteriaceae in the processing plant environment can be an indication of inadequate sanitation. This experiment was designed to determine if nest run egg carts serve as reservoirs ...

  19. AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP627) ADJOINING FUEL PROCESSING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL SHOWING COMPLETED REMOTE ANALYTICAL FACILITY (CPP-627) ADJOINING FUEL PROCESSING BUILDING AND EXCAVATION FOR HOT PILOT PLANT TO RIGHT (CPP-640). INL PHOTO NUMBER NRTS-60-1221. J. Anderson, Photographer, 3/22/1960 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID

  20. Inline Monitors for Measuring Cs-137 in the SRS Caustic Side Solvent Extraction Process

    SciTech Connect

    Casella, V

    2006-04-24

    The Department of Energy (DOE) selected Caustic-Side Solvent Extraction (CSSX) as the preferred technology for the removal of radioactive cesium from High-Level Waste (HLW) at the Savannah River Site (SRS). Before the full-scale Salt Waste Processing Facility (SWPF) becomes operational, a portion of dissolved saltcake waste will be processed through a Modular CSSX Unit (MCU). The MCU employs the CSSX process, a continuous process that uses a novel solvent to extract cesium from waste and concentrate it in dilute nitric acid. Of primary concern is Cs-137 which makes the solution highly radioactive. Since the MCU does not have the capacity to wait for sample results while continuing to operate, the Waste Acceptance Strategy is to perform inline analyses. Gamma-ray monitors are used to: measure the Cs-137 concentration in the decontaminated salt solution (DSS) before entering the DSS Hold Tank; measure the Cs-137 concentration in the strip effluent (SE) before entering the SE Hold Tank; and verify proper operation of the solvent extraction system by verifying material balance within the process. Since this gamma ray monitoring system application is unique, specially designed shielding was developed and software was written and acceptance tested by Savannah River National Laboratory (SRNL) personnel. The software is a LabView-based application that serves as a unified interface for controlling the monitor hardware and communicating with the host Distributed Control System. This paper presents the design, fabrication and implementation of this monitoring system.

  1. Nonradioactive air emissions notice of construction for the Waste Receiving And Processing facility

    SciTech Connect

    Not Available

    1993-02-01

    The mission of the Waste Receiving And Processing (WRAP) Module 1 facility (also referred to as WRAP 1) is to examine assay, characterize, treat, and repackage solid radioactive and mixed waste to enable permanent disposal of the wastes in accordance with all applicable regulations. WRAP 1 will contain equipment and facilities necessary for non-destructive examination (NDE) of wastes and to perform a non-destructive examination assay (NDA) of the total radionuclide content of the wastes, without opening the outer container (e.g., 55-gal drum). WRAP 1 will also be equipped to open drums which do not meet waste acceptance and shipping criteria, and to perform limited physical treatment of the wastes to ensure that storage, shipping, and disposal criteria are met. The solid wastes to be handled in the WRAP 1 facility include low level waste (LLW), transuranic (TRU) waste, and transuranic and low level mixed wastes (LLMW). The WRAP 1 facility will only accept contact handler (CH) waste containers. A Best Available Control Technology for Toxics (TBACT) assessment has been completed for the WRAP 1 facility (WHC 1993). Because toxic emissions from the WRAP 1 facility are sufficiently low and do not pose any health or safety concerns to the public, no controls for volatile organic compounds (VOCs), and installation of HEPA filters for particulates satisfy TBACT for the facility.

  2. Radon Reduction Experience at a Former Uranium Processing Facility

    SciTech Connect

    Eger, K. J.; Rutherford, L.; Rickett, K.; Fellman, R.; Hungate, S.

    2004-02-29

    Approximately 6,200 cubic meters of waste containing about 2.0E8 MBq of radium-226 are stored in two large silos at the Fernald Site in southwest Ohio. The material is scheduled for retrieval, packaging, off site shipment and disposal by burial. Air in the silos above the stored material contained radon-222 at a concentration of 7.4 E5 Bq/L. Short-lived daughters formed by decay in these headspaces generated dose rates at contact with the top of the silos up to 1.05 mSv/hr and there complicate the process of retrieval. A Radon Control System (RCS) employing carbon adsorption beds has been designed under contract with the Fluor Fernald to remove most of the radon in the headspaces and maintain lower concentrations during periods when work on or above the domes is needed. Removing the radon also removes the short-lived daughters and reduces the dose rate near the domes to 20 to 30 {mu}Sv/hr. Failing to remove the radon would be costly, in the exposure of personnel needed to work extended periods at these moderate dose rates, or in dollars for the application of remote retrieval techniques. In addition, the RCS minimizes the potential for environmental releases. This paper describes the RCS, its mode of operation, and early experiences. The results of the test described herein and the experience gained from operation of the RCS during its first phase of continuous operation, will be used to determine the best air flow, and air flow distribution, the most desirable number and sequence number and sequence of adsorption beds to be used and the optimum application of air recycle within the RCS.

  3. Facility siting as a decision process at the Savannah River Site

    SciTech Connect

    Wike, L.D.

    1995-12-31

    Site selection for new facilities at Savannah River Site (SRS) historically has been a process dependent only upon specific requirements of the facility. While this approach is normally well suited to engineering and operational concerns, it can have serious deficiencies in the modern era of regulatory oversight and compliance requirements. There are many issues related to the site selection for a facility that are not directly related to engineering or operational requirements; such environmental concerns can cause large schedule delays and budget impact,s thereby slowing or stopping the progress of a project. Some of the many concerns in locating a facility include: waste site avoidance, National Environmental Policy Act requirements, Clean Water Act, Clean Air Act, wetlands conservation, US Army Corps of Engineers considerations, US Fish and Wildlife Service statutes including threatened and endangered species issues, and State of South Carolina regulations, especially those of the Department of Health and Environmental Control. In addition, there are SRS restrictions on research areas set aside for National Environmental Research Park (NERP), Savannah River Ecology Laboratory, Savannah River Forest Station, University of South Carolina Institute of Archaeology and Anthropology, Southeastern Forest Experimental Station, and Savannah River Technology Center (SRTC) programs. As with facility operational needs, all of these siting considerations do not have equal importance. The purpose of this document is to review recent site selection exercises conducted for a variety of proposed facilities, develop the logic and basis for the methods employed, and standardize the process and terminology for future site selection efforts.

  4. Providing security for automated process control systems at hydropower engineering facilities

    NASA Astrophysics Data System (ADS)

    Vasiliev, Y. S.; Zegzhda, P. D.; Zegzhda, D. P.

    2016-12-01

    This article suggests the concept of a cyberphysical system to manage computer security of automated process control systems at hydropower engineering facilities. According to the authors, this system consists of a set of information processing tools and computer-controlled physical devices. Examples of cyber attacks on power engineering facilities are provided, and a strategy of improving cybersecurity of hydropower engineering systems is suggested. The architecture of the multilevel protection of the automated process control system (APCS) of power engineering facilities is given, including security systems, control systems, access control, encryption, secure virtual private network of subsystems for monitoring and analysis of security events. The distinctive aspect of the approach is consideration of interrelations and cyber threats, arising when SCADA is integrated with the unified enterprise information system.

  5. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  6. Radioactive Air Emissions Notice of Construction (NOC) for Characterization of the 224-T Facility Process Cells

    SciTech Connect

    HOMAN, N.A.

    2001-03-14

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.07, for entering and characterizing the 224-T Facility process cells. The 224-T Facility is a small canyon building with six process cells separated from three levels of operating galleries by a 0.3-meter thick concrete wall. The original mission was to concentrate dilute solutions of plutonium received from the 221-T Plutonium Separation Facility from 1945 until 1956. Various shutdown activities were carried out including flushing the tanks and piping during the 1960s. During the second mission from 1975 to 1985, the operating gallery areas of the structure were converted into a storage area for plutonium-bearing scrap and liquids. The third and final mission converted the operating galleries for use as the 224-T Transuranic Waste Storage and Assay Facility (224-T TRUSAF). All stored waste from the gallery areas was removed in the late 1990s. The process cells were not considered part of the waste storage areas and were isolated from storage activities. The 224-T Facility has been excessed with no anticipated plans for further missions. The purpose of the characterization effort is to determine the condition and contents of the cells, tanks, and vessels. This information is needed to update the Facility's Authorization Basis, maintain appropriate managing practices, and ensure there is no potential threat to the public or environment. The information also will be used to establish operational criteria for the decontamination and decommissioning of this facility. Using the currently approved unit dose conversion factors in HNF-3602, the estimated potential total effective dose equivalent (TEDE) to the maximally exposed individual (MEI) resulting from the unabated, fugitive emissions from characterization of the 224-T process cells is 7

  7. Cutting the Cost of New Community College Facilities: Streamlining the Facilities Approval Process. Commission on Innovation Policy Discussion Paper Number 3.

    ERIC Educational Resources Information Center

    BW Associates, Berkeley, CA.

    Intended to provide background information and preliminary options for the California Community Colleges' Commission on Innovation, this document proposes that approval processes for new facilities be simplified and that restrictions on the lease or purchase of off-campus facilities be eased. Following introductory materials detailing the…

  8. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2

    SciTech Connect

    Not Available

    1994-03-01

    This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

  9. The Establishment of a New Friction Stir Welding Process Development Facility at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Carter, Robert W.

    2009-01-01

    Full-scale weld process development is being performed at MSFC to develop the tools, fixtures, and facilities necessary for Ares I production. Full scale development in-house at MSFC fosters technical acuity within the NASA engineering community, and allows engineers to identify and correct tooling and equipment shortcomings before they become problems on the production floor. Finally, while the new weld process development facility is currently being outfitted in support of Ares I development, it has been established to support all future Constellation Program needs. In particular, both the RWT and VWT were sized with the larger Ares V hardware in mind.

  10. Critical Protection Item classification for a waste processing facility at Savannah River Site

    SciTech Connect

    Ades, M.J.; Garrett, R.J.

    1993-10-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are not required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.

  11. Onboard experiment data support facility. Task 2 report: Definition of onboard processing requirements

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.

  12. Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description

    SciTech Connect

    IRWIN, J.J.

    1998-11-30

    This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  13. A 60Co multipurpose radiation processing facility at Bahia Blanca, Argentina

    NASA Astrophysics Data System (ADS)

    Curzio, O. A.; Croci, C. A.

    The aim of the project is to have a multipurpose facility which will enable us to show the techno-economic viability of the irradiation process applied to regional products, important from the economic point of view. The topics will fundamentally be connected with regional themes such as food preservation and the modification of polymer structures. This project will make it possible to carry out basic and applied studies related to radiation chemistry, dosimetry and engineering irradiation processes. The facility will operate in the Universidad Nacional del Sur (UNS) with a maximum activity of 18.5 PBq of Co-60. The viability and design of the irradiation facility is supported by the Government of the Buenos Aires Province since it is interested in the socio-economic benefit of this technology at the regional level.

  14. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect

    Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

    2012-11-09

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  15. Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design

    SciTech Connect

    Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

    2013-01-26

    FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

  16. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods

    NASA Astrophysics Data System (ADS)

    Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; Mitchell, A. L.; Tkacik, D. S.; Subramanian, R.; Martinez, D. M.; Vaughn, T. L.; Williams, L.; Zimmerle, D.; Robinson, A. L.; Herndon, S. C.; Marchese, A. J.

    2015-05-01

    Increased natural gas production in recent years has spurred intense interest in methane (CH4) emissions associated with its production, gathering, processing, transmission, and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH4 emissions from the natural gas G&P facilities between October 2013 and April 2014. Dual-tracer flux measurements and on-site observations were used to address the magnitude and origins of CH4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20-47%, depending upon plume classification. Combining downwind methane, ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), and tracer gas measurements with on-site tracer gas release allows for quantification of facility emissions and in some cases a more detailed picture of source locations.

  17. Measurements of methane emissions from natural gas gathering facilities and processing plants: measurement methods

    NASA Astrophysics Data System (ADS)

    Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; Mitchell, A. L.; Tkacik, D. S.; Subramanian, R.; Martinez, D. M.; Vaughn, T. L.; Williams, L.; Zimmerle, D.; Robinson, A. L.; Herndon, S. C.; Marchese, A. J.

    2014-12-01

    Increased natural gas production in recent years has spurred intense interest in methane (CH4) emissions associated with its production, gathering, processing, transmission and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH4 emissions from the natural gas G&P facilities between October 2013 and April 2014. Dual tracer flux measurements and onsite observations were used to address the magnitude and origins of CH4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20-47%, depending upon plume classification. Combining downwind methane, ethane (C2H6), carbon monoxide (CO), carbon dioxide (CO2), and tracer gas measurements with onsite tracer gas release allows for quantification of facility emissions, and in some cases a more detailed picture of source locations.

  18. How work context affects operating room processes: using data mining and computer simulation to analyze facility and process design.

    PubMed

    Baumgart, André; Denz, Christof; Bender, Hans-Joachim; Schleppers, Alexander

    2009-01-01

    The complexity of the operating room (OR) requires that both structural (eg, department layout) and behavioral (eg, staff interactions) patterns of work be considered when developing quality improvement strategies. In our study, we investigated how these contextual factors influence outpatient OR processes and the quality of care delivered. The study setting was a German university-affiliated hospital performing approximately 6000 outpatient surgeries annually. During the 3-year-study period, the hospital significantly changed its outpatient OR facility layout from a decentralized (ie, ORs in adjacent areas of the building) to a centralized (ie, ORs in immediate vicinity of each other) design. To study the impact of the facility change on OR processes, we used a mixed methods approach, including process analysis, process modeling, and social network analysis of staff interactions. The change in facility layout was seen to influence OR processes in ways that could substantially affect patient outcomes. For example, we found a potential for more errors during handovers in the new centralized design due to greater interdependency between tasks and staff. Utilization of the mixed methods approach in our analysis, as compared with that of a single assessment method, enabled a deeper understanding of the OR work context and its influence on outpatient OR processes.

  19. 40 CFR 372.20 - Process for modifying covered chemicals and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemicals and facilities. 372.20 Section 372.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SUPERFUND, EMERGENCY PLANNING, AND COMMUNITY RIGHT-TO-KNOW PROGRAMS TOXIC CHEMICAL RELEASE REPORTING: COMMUNITY RIGHT-TO-KNOW Reporting Requirements § 372.20 Process for modifying covered...

  20. Enterobacteriaceae and related organisms recovered from biofilms in a commercial shell egg processing facility.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During six visits, biofilms from egg contact and non-contact surfaces in a commercial shell egg processing facility were sampled. Thirty-five different sample sites were selected: Pre-wash and wash tanks (lids, screens, tank interiors, nozzle guards), post-wash spindles, blower filters, belts (far...

  1. 71 FR 56413 - Facility Change Process Involving Items Relied on for Safety

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-09-27

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 70 RIN 3150-AH96 Facility Change Process Involving Items Relied on for Safety AGENCY: Nuclear Regulatory Commission. ACTION: Proposed rule. SUMMARY: The Nuclear... on for safety (IROFS). This rulemaking corrects an inconsistency in the regulations pertaining...

  2. 71 FR 69430 - Facility Change Process Involving Items Relied on for Safety: Confirmation of Effective Date

    Federal Register 2010, 2011, 2012, 2013, 2014

    2006-12-01

    ... COMMISSION 10 CFR Part 70 RIN 3150-AH96 Facility Change Process Involving Items Relied on for Safety... requirement pertaining to items relied on for safety (IROFS). This rulemaking corrected an inconsistency in... for safety (IROFS). In the direct final rule, NRC stated that if no significant adverse comments...

  3. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    SciTech Connect

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  4. Skylab experiment performance evaluation manual. Appendix E: Experiment M512 Materials processing facility (MSFC)

    NASA Technical Reports Server (NTRS)

    Thomas, O. H., Jr.

    1973-01-01

    Analyses for Experiment M512, Materials Processing Facility (MSFC), to be used for evaluating the performance of the Skylab corollary experiments under preflight, inflight, and post-flight conditions are presented. Experiment contingency plan workaround procedure and malfunction analyses are presented in order to assist in making the experiment operationally successful.

  5. 7 CFR 319.40-8 - Processing at facilities operating under compliance agreements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Processing at facilities operating under compliance agreements. 319.40-8 Section 319.40-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES...

  6. 7 CFR 319.40-8 - Processing at facilities operating under compliance agreements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Processing at facilities operating under compliance agreements. 319.40-8 Section 319.40-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES...

  7. 7 CFR 319.40-8 - Processing at facilities operating under compliance agreements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Processing at facilities operating under compliance agreements. 319.40-8 Section 319.40-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES...

  8. 7 CFR 319.40-8 - Processing at facilities operating under compliance agreements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Processing at facilities operating under compliance agreements. 319.40-8 Section 319.40-8 Agriculture Regulations of the Department of Agriculture (Continued) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE FOREIGN QUARANTINE NOTICES...

  9. Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States

    SciTech Connect

    Scherer, Carolynn P; Long, Jon D

    2010-09-28

    In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD

  10. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  11. Use of process monitoring for verifying facility design of large-scale reprocessing plants

    SciTech Connect

    Hakkila, E.A.; Zack, N.R. ); Ehinger, M.H. ); Franssen, F. )

    1991-01-01

    During the decade of the 1990s, the International Atomic Energy Agency (IAEA) faces the challenge of implementing safeguards in large, new reprocessing facilities. The Agency will be involved in the design, construction, checkout and initial operation of these new facilities to ensure effective safeguards are implemented. One aspect of the Agency involvement is in the area of design verification. The United States Support Program has initiated a task to develop methods for applying process data collection and validation during the cold commissioning phase of plant construction. This paper summarizes the results of this task. 14 refs., 1 tab.

  12. Unity connecting module viewed from above in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Unity connecting module is viewed from above while it awaits processing in the Space Station Processing Facility (SSPF). On the side can be seen the connecting hatch. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station.

  13. Process cost and facility considerations in the selection of primary cell culture clarification technology.

    PubMed

    Felo, Michael; Christensen, Brandon; Higgins, John

    2013-01-01

    The bioreactor volume delineating the selection of primary clarification technology is not always easily defined. Development of a commercial scale process for the manufacture of therapeutic proteins requires scale-up from a few liters to thousands of liters. While the separation techniques used for protein purification are largely conserved across scales, the separation techniques for primary cell culture clarification vary with scale. Process models were developed to compare monoclonal antibody production costs using two cell culture clarification technologies. One process model was created for cell culture clarification by disc stack centrifugation with depth filtration. A second process model was created for clarification by multi-stage depth filtration. Analyses were performed to examine the influence of bioreactor volume, product titer, depth filter capacity, and facility utilization on overall operating costs. At bioreactor volumes <1,000 L, clarification using multi-stage depth filtration offers cost savings compared to clarification using centrifugation. For bioreactor volumes >5,000 L, clarification using centrifugation followed by depth filtration offers significant cost savings. For bioreactor volumes of ∼ 2,000 L, clarification costs are similar between depth filtration and centrifugation. At this scale, factors including facility utilization, available capital, ease of process development, implementation timelines, and process performance characterization play an important role in clarification technology selection. In the case study presented, a multi-product facility selected multi-stage depth filtration for cell culture clarification at the 500 and 2,000 L scales of operation. Facility implementation timelines, process development activities, equipment commissioning and validation, scale-up effects, and process robustness are examined.

  14. Evaluation of Mercury in Liquid Waste Processing Facilities - Phase I Report

    SciTech Connect

    Jain, V.; Occhipinti, J.; Shah, H.; Wilmarth, B.; Edwards, R.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  15. Evaluation of mercury in liquid waste processing facilities - Phase I report

    SciTech Connect

    Jain, V.; Occhipinti, J. E.; Shah, H.; Wilmarth, W. R.; Edwards, R. E.

    2015-07-01

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  16. Waste Receiving and Processing Facility Module 1 Data Management System Software Requirements Specification

    SciTech Connect

    Brann, E.C. II

    1994-09-09

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  17. Waste Receiving and Processing Facility Module 1 Data Management System software requirements specification

    SciTech Connect

    Rosnick, C.K.

    1996-04-19

    This document provides the software requirements for Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-0126). The DMS will collect, store and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  18. Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system

    SciTech Connect

    Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

    1989-11-11

    The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

  19. Electromagnetic containerless processing requirements and recommended facility concept and capabilities for space lab

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Bloom, H. L.; Napaluch, L. J.; Stockhoff, E. H.; Wouch, G.

    1974-01-01

    Containerless melting, reaction, and solidification experiments and processes which potentially can lead to new understanding of material science and production of new or improved materials in the weightless space environment are reviewed in terms of planning for spacelab. Most of the experiments and processes discussed are amenable to the employment of electromagnetic position control and electromagnetic induction or electron beam heating and melting. The spectrum of relevant properties of materials, which determine requirements for a space laboratory electromagnetic containerless processing facility are reviewed. Appropriate distributions and associated coil structures are analyzed and compared on the basis of efficiency, for providing the functions of position sensing, control, and induction heating. Several coil systems are found capable of providing these functions. Exchangeable modular coils in appropriate sizes are recommended to achieve the maximum power efficiencies, for a wide range of specimen sizes and resistivities, in order to conserve total facility power.

  20. Human Engineering Operations and Habitability Assessment: A Process for Advanced Life Support Ground Facility Testbeds

    NASA Technical Reports Server (NTRS)

    Connolly, Janis H.; Arch, M.; Elfezouaty, Eileen Schultz; Novak, Jennifer Blume; Bond, Robert L. (Technical Monitor)

    1999-01-01

    Design and Human Engineering (HE) processes strive to ensure that the human-machine interface is designed for optimal performance throughout the system life cycle. Each component can be tested and assessed independently to assure optimal performance, but it is not until full integration that the system and the inherent interactions between the system components can be assessed as a whole. HE processes (which are defining/app lying requirements for human interaction with missions/systems) are included in space flight activities, but also need to be included in ground activities and specifically, ground facility testbeds such as Bio-Plex. A unique aspect of the Bio-Plex Facility is the integral issue of Habitability which includes qualities of the environment that allow humans to work and live. HE is a process by which Habitability and system performance can be assessed.

  1. Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility

    SciTech Connect

    TRINER, G.C.

    1999-11-01

    The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

  2. Development of a safeguards data acquisition system for the process monitoring of a simulated reprocessing facility

    SciTech Connect

    Wachter, J.W.

    1986-01-01

    As part of the Consolidated Fuel Reprocessing Program of the Fuel Recycle Division at the Oak Ridge National Laboratory (ORNL), an Integrated Process Demonstration (IPD) facility has been constructed for development of reprocessing plant technology. Through the use of cold materials, the IPD facility provides for the integrated operation of the major equipment items of the chemical-processing portion of a nuclear fuel reprocessing plant. The equipment, processes, and the extensive use of computers in data acquisition and control are prototypical of future reprocessing facilities and provide a unique test-bed for nuclear safeguards demonstrations. The data acquisition and control system consists of several microprocessors that communicate with one another and with a host minicomputer over a common data highway. At intervals of a few minutes, a ''snapshot'' is taken of the process variables, and the data are transmitted to a safeguards computer and minicomputer work station for analysis. This paper describes this data acquisition system and the data-handling procedures leading to microscopic process monitoring for safeguards purposes.

  3. Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while

  4. Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)

    SciTech Connect

    Angelini, P

    2004-04-27

    The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge

  5. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    SciTech Connect

    Sullivan, N.

    1995-05-02

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

  6. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  7. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  8. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  9. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  10. 40 CFR 63.1037 - Alternative means of emission limitation: Enclosed-vented process units or affected facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... regulated materials they handle. (2) A schematic of the process unit or affected facility, enclosure, and... limitation: Enclosed-vented process units or affected facilities. 63.1037 Section 63.1037 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION...

  11. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    SciTech Connect

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  12. The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes

    SciTech Connect

    Streit, R.D.; Couture, S.A.

    1995-03-01

    The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

  13. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    SciTech Connect

    Forest, Cary B.

    2013-09-19

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

  14. Payload/GSE/data system interface: Users guide for the VPF (Vertical Processing Facility)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Payload/GSE/data system interface users guide for the Vertical Processing Facility is presented. The purpose of the document is three fold. First, the simulated Payload and Ground Support Equipment (GSE) Data System Interface, which is also known as the payload T-0 (T-Zero) System is described. This simulated system is located with the Cargo Integration Test Equipment (CITE) in the Vertical Processing Facility (VPF) that is located in the KSC Industrial Area. The actual Payload T-0 System consists of the Orbiter, Mobile Launch Platforms (MLPs), and Launch Complex (LC) 39A and B. This is referred to as the Pad Payload T-0 System (Refer to KSC-DL-116 for Pad Payload T-0 System description). Secondly, information is provided to the payload customer of differences between this simulated system and the actual system. Thirdly, a reference guide of the VPF Payload T-0 System for both KSC and payload customer personnel is provided.

  15. Critical Protection Item Classification for a waste processing facility at Savannah River Site. Revision 1

    SciTech Connect

    Ades, M.J.; Garrett, R.J.

    1993-12-31

    As a part of its compliance with the Department of Energy requirements for safety of nuclear facilities at the Savannah River Site (SRS), Westinghouse Savannah River Company (WSRC) assigns functional classifications to structures, systems and components (SSCs). As a result, changes in design, operations, maintenance, testing, and inspections of SSCs are performed and backfit requirements are established. This paper describes the Critical Protection Item (CPI) Classification for waste processing facility (WPF) at SRS. The descriptions of the WPF and the processes considered are provided elsewhere. The proposed CPI classification methodology includes the evaluation of the onsite radiological consequences, and the onsite and offsite non-radiological consequences from postulated accidents at the WPF, and comparison of these consequences with allowable frequency-dependent limits. When allowable limits are exceeded, CPIs are identified for accident mitigation.

  16. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    SciTech Connect

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K.

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  17. Studies of Plasma Instability Processes Excited by Ground Based High Power HF ("Heating") Facilities

    DTIC Science & Technology

    2001-04-01

    by ground based high power HF (’ heating ’) facilities 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Dr. Alexander...Prescribed by ANSI Std. Z39-18 Grant SPC 00-4010 Final Report STUDIES OF PLASMA INSTABILITY PROCESSES EXCITED BY GROUND BASED HIGH POWER HF (" HEATING ...growing field of ionospheric HF heating . The main new results can be summarized as following: 1. Two sets of observations of suprathermal electrons

  18. Design and verification of shielding for the advanced spent fuel conditioning process facility.

    PubMed

    Cho, I J; Kook, D H; Kwon, K C; Lee, E P; Choung, W M; You, G S

    2008-05-01

    An Advanced spent fuel Conditioning Process Facility (ACPF) has recently been constructed by a modification of previously unused cells. ACPF is a hot cell with two rooms located in the basement of the Irradiated Materials Experiment Facility (IMEF) at the Korea Atomic Energy Research Institute. This is for demonstrating the advanced spent fuel conditioning process being proposed in Korea, which is an electrolytic reduction process of spent oxide fuels into a metallic form. The ACPF was designed with a more than 90 cm thick high density concrete shield wall to handle 1.38 PBq (37,430 Ci) of radioactive materials with dose rates lower than 10 muSv h in the operational areas (7,000 zone) and 150 muSv h in the service areas (8,000 zone). In Monte Carlo calculations with a design basis source inventory, the results for the bounding wall showed a maximum of 3 muSv h dose rate at an exterior surface of the ACPF for gamma radiation and 0.76 muSv h for neutrons. All the bounding structures of the ACPF were investigated to check on the shielding performance of the facility to ensure the radiation safety of the facility. A test was performed with a 2.96 TBq (80 Ci) 60Co source unit and the test results were compared with the calculation results. A few failure points were discovered and carefully fixed to meet the design criteria. After fixing the problems, the failure points were rechecked and the safety of the shielding structures was confirmed. In conclusion, it was confirmed that all the investigated parts of the ACPF passed the shielding safety limits by using this program and the ACPF is ready to fulfill its tasks for the advanced spent fuel conditioning process.

  19. Multi-Isotope Process (MIP) Monitor: A Near-Real-Time Monitor For Reprocessing Facilities

    SciTech Connect

    Schwantes, Jon M.; Douglas, Matthew; Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard

    2008-06-01

    INTRODUCTION The threat of protracted diversion of Pu from commercial reprocessing operations is perhaps the greatest concern to national and international agencies tasked with safeguarding these facilities. While it is generally understood that a method for direct monitoring of process on-line and in near-real time (NRT) would be the best defense against protracted diversion scenarios, an effective method with these qualities has yet to be developed. Here, we attempt to bridge this gap by proposing an on-line NRT process monitoring method that should be sensitive to minor alterations in process conditions and compatible with small, easily deployable, detection systems. This Approach is known as the Multi-Isotope Process (MIP) Monitor and involves the determination and recognition of the contaminant pattern within a process stream for a suite of indicator (radioactive) elements present in the spent fuel as a function of process variables. Utilization of a suite of radio-elements, including ones with multiple oxidation states, decreases the likelihood that attempts to divert Pu by altering the ReDox environment within the process would go undetected. In addition, by identifying gamma-emitting indicator isotopes, this Approach might eliminate the need for bulky neutron detection systems, relying instead on small, portable, high-resolution gamma detectors easily deployable throughout the facility.

  20. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    SciTech Connect

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R.; Carson, S.D.; Peterson, P.K.

    1997-11-30

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

  1. Compressed Air System Renovation Project Improves Production at a Food Processing Facility (Mead-Johnson Nutritionals, Bristol-Myers Squib)

    SciTech Connect

    2001-06-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the food processing facility project.

  2. Advanced system experimental facility: solid waste to methane gas. Background and process description

    SciTech Connect

    Isaacson, R.; Pfeffer, J.

    1981-03-01

    The Refuse Conversion to Methane Facility in Pompano Beach, Florida, a 100-ton/day experimental plant to convert municipal solid waste (MSW) to methane for fuel, has been built and is being tested. The facility has been designed to assess the technical merit of anaerobic digestion of the MSW process. Approximately 40 ton/day of volatile solids are fed to the digesters; of this, about 25 ton/day will be converted to gases. For each pound of volatile solids destroyed, 6.6 std. ft/sup 3/ of methane gas and 6.6 std. ft/sup 3/ of CO/sub 2/ will be produced. Thus, the plant will yield approximately 330,000 std. ft/sup 3//day each of methane and CO/sub 2/. This project provides a critical test of the most important process variables, thus allowing judgments to be made on scale-up considerations. The successful operation of this facility will yield information with a significant impact on potential commercial-scale plant developments. The background and theory involved in applying this technology to MSW, as well as details of the specific process line, are presented.

  3. Potential applications of fusion neutral beam facilities for advanced material processing

    SciTech Connect

    Williams, J.M.; Tsai, C.C.; Stirling, W.L.; Whealton, J.H.

    1994-01-01

    Surface processing techniques involving high energy ion implantation have achieved commercial success for semiconductors and biomaterials. However, wider use has been limited in good part by economic factors, some of which are related to the line-of-sight nature of the beam implantation process. Plasma source ion implantation is intended to remove some of the limitations imposed by directionality of beam systems and also to help provide economies of scale. The present paper will outline relevant technologies and areas of expertise that exist at Oak Ridge National Laboratory in relation to possible future needs in materials processing. Experience in generation of plasmas, control of ionization states, pulsed extraction, and sheath physics exists. Contributions to future technology can be made either for the immersion mode or for the extracted beam mode. Existing facilities include the High Power Test Facility, which could conservatively operate at 1 A of continuous current at 100 kV delivered to areas of about 1 m{sup 2}. Higher instantaneous voltages and currents are available with a reduced duty cycle. Another facility, the High Heat Flux Facility can supply a maximum of 60 kV and currents of up to 60 A for 2 s on a 10% duty cycle. Plasmas may be generated by use of microwaves, radio-frequency induction or other methods and plasma properties may be tailored to suit specific needs. In addition to ion implantation of large steel components, foreseeable applications include ion implantation of polymers, ion implantation of Ti alloys, Al alloys, or other reactive surfaces.

  4. Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory

    SciTech Connect

    Shanahan, K.L.

    1992-02-01

    A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning.

  5. A process for establishing a financial assurance plan for LLW disposal facilities

    SciTech Connect

    Smith, P.

    1993-04-01

    This document describes a process by which an effective financial assurance program can be developed for new low-level radioactive waste (LLW) disposal facilities. The report identifies examples of activities that might cause financial losses and the types of losses they might create, discusses mechanisms that could be used to quantify and ensure against the various types of potential losses identified and describes a decision process to formulate a financial assurance program that takes into account the characteristics of both the potential losses and available mechanisms. A sample application of the concepts described in the report is provided.

  6. Startup of Savannah River`s Defense Waste Processing Facility to produce radioactive glass

    SciTech Connect

    Bennett, W.M.

    1997-08-06

    The Savannah River Site (SRS) began production of radioactive glass in the Defense Waste Process Facility (DWPF) in 1996 following an extensive test program discussed earlier. Currently DWPF is operating in a `sludge only` mode to produce radioactive glass consisting of washed high-level waste sludge and glass frit. Future operations will produce radioactive glass consisting of washed high-level waste sludge, precipitated cesium, and glass frit. This paper provides an update of processing activities to date, operational problems encountered since entering radioactive operations, and the programs underway to solve them.

  7. DWPF (Defense Waste Processing Facility) glass composition control based on glass properties

    SciTech Connect

    Carter, J T; Brown, K G; Bickford, D F

    1988-01-01

    The Defense Waste Processing Facility (DWPF) will immobilize Savannah River Plant (SRP) High Level Waste as a durable borosilicate glass for permanent disposal in a civilian repository. The DWPF will be controlled based on glass composition. The waste glass physical and chemical properties, such as viscosity, liquidus temperature, and durability are functions of glass chemistry. Preliminary models have been developed to evaluate the effects of feed composition variability on the glass properties. These properties are presently being related to the waste glass composition in order to develop process control paradigms that include batching algorithms, hold points, and transfer limits. 3 refs., 6 tabs.

  8. Space Station microgravity and materials processing facility A national laboratory dedicated to U.S. interests

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Pevey, E. R.; Mookherji, T.

    1986-01-01

    The Microgravity and Materials Processing Facility (MMPF) of the Space Station is examined. The MMPF is designed to accommodate individual experiments and associated hardware and is to be housed in the Manufacturing and Technology Laboratory Module. The objectives of the microgravity and materials processing study and the user, experiment/equipment, MMPF system requirements, and programmatics and planning development tasks of the study are described. Consideration is given to the acceleration environment, on-orbit sample preparation and analysis, mission-time-line analyses, and payload complement trades. Diagrams of the MMPF are presented.

  9. DOE final report, phase one startup, Waste Receiving and Processing Facility (WRAP)

    SciTech Connect

    Jasen, W.G.

    1998-01-07

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented.

  10. Solid waste facilities location using of analytical network process and data envelopment analysis approaches.

    PubMed

    Khadivi, M R; Fatemi Ghomi, S M T

    2012-06-01

    Selection of the appropriate site for solid waste facilities is a complex problem and requires an extensive evaluation process, because it is very difficult to develop a selection criterion that can precisely describe the preference of one location over another. Therefore selection of these sites can be viewed as a multiple criteria decision-making or multiple attributes decision-making problem. For this purpose, we propose a technique that can effectively take managerial preferences and subjective data into consideration, along with quantitative factors. The tool proposed here relies on the use of the analytical network process (ANP) and to help integrate managerial evaluations into a more quantitatively based decision tool, data envelopment analysis (DEA) is applied. In this paper, a location selection procedure is presented to construct an undesirable facility applying ANP and DEA approaches in two stages. In the first stage ANP approach is used, results of this stage are inputs for the second stage. In this stage, DEA is applied to select the best location. Finally, to illustrate the proposed framework, at "Results and discussion" section, a total of four undesirable facility locations are evaluated.

  11. A knowledge acquisition process to analyse operational problems in solid waste management facilities.

    PubMed

    Dokas, Ioannis M; Panagiotakopoulos, Demetrios C

    2006-08-01

    The available expertise on managing and operating solid waste management (SWM) facilities varies among countries and among types of facilities. Few experts are willing to record their experience, while few researchers systematically investigate the chains of events that could trigger operational failures in a facility; expertise acquisition and dissemination, in SWM, is neither popular nor easy, despite the great need for it. This paper presents a knowledge acquisition process aimed at capturing, codifying and expanding reliable expertise and propagating it to non-experts. The knowledge engineer (KE), the person performing the acquisition, must identify the events (or causes) that could trigger a failure, determine whether a specific event could trigger more than one failure, and establish how various events are related among themselves and how they are linked to specific operational problems. The proposed process, which utilizes logic diagrams (fault trees) widely used in system safety and reliability analyses, was used for the analysis of 24 common landfill operational problems. The acquired knowledge led to the development of a web-based expert system (Landfill Operation Management Advisor, http://loma.civil.duth.gr), which estimates the occurrence possibility of operational problems, provides advice and suggests solutions.

  12. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    SciTech Connect

    Williams, M.; Jantzen, C.; Burket, P.

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  13. Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings

    SciTech Connect

    HUMPHRYS, K.L.

    1999-11-03

    Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

  14. Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)

    SciTech Connect

    Hsu, R.H.; Oji, L.N.

    1997-11-14

    Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

  15. The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Vertical Processing Facility (VPF), the overhead crane lifts Chandra X-ray Observatory completely out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  16. The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Inside the Vertical Processing Facility (VPF), workers begin lifting the Chandra X-ray Observatory out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  17. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  18. Risk-based process safety assessment and control measures design for offshore process facilities.

    PubMed

    Khan, Faisal I; Sadiq, Rehan; Husain, Tahir

    2002-09-02

    Process operation is the most hazardous activity next to the transportation and drilling operation on an offshore oil and gas (OOG) platform. Past experiences of onshore and offshore oil and gas activities have revealed that a small mis-happening in the process operation might escalate to a catastrophe. This is of especial concern in the OOG platform due to the limited space and compact geometry of the process area, less ventilation, and difficult escape routes. On an OOG platform, each extra control measure, which is implemented, not only occupies space on the platform and increases congestion but also adds extra load to the platform. Eventualities in the OOG platform process operation can be avoided through incorporating the appropriate control measures at the early design stage. In this paper, the authors describe a methodology for risk-based process safety decision making for OOG activities. The methodology is applied to various offshore process units, that is, the compressor, separators, flash drum and driers of an OOG platform. Based on the risk potential, appropriate safety measures are designed for each unit. This paper also illustrates that implementation of the designed safety measures reduces the high Fatal accident rate (FAR) values to an acceptable level.

  19. FACILITY UPGRADES FOR RECEIPT FROM ACTINIDE REMOVAL AND MODULAR CAUSTIC SIDE SOLVENT EXTRACTION PROCESSES AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Fellinger, T; Stephen Phillips, S; Benjamin Culbertson, B; Beverly02 Davis, B; Aaron Staub, A

    2007-02-13

    The Savannah River Site (SRS) is currently on an aggressive program to empty its High Level Waste (HLW) tanks and immobilize its radioactive waste into a durable borosilicate glass in the Defense Waste Processing Facility (DWPF). As a part of that program, two new processes will be brought on-line to assist in emptying the HLW tanks. These processes are in addition to the current sludge removal process and are called the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction (MCU) Process. In order to accept and process the streams generated from these two new processes, several facility modifications are required and are broken down into several projects. These projects are handling the facility modifications required for the Tank Farm (241-96H), and DWPF vitrification facility (221-S), and DWPF ancillary facilities (511-S, and 512-S). Additional modifications to the 221-S building were required to address the flammability concern from the solvent carryover from the MCU process. This paper will describe a summary of the modifications impacting the 511-S, 512-S, and the 221-S facilities in order to receive the new streams from the ARP and MCU processes at the DWPF.

  20. Data management in the cell therapy production facility: the batch process record (BPR).

    PubMed

    Janssen, We

    2008-01-01

    The activities of cell therapy establishments are associated with substantial amounts of information. For reasons of best practice, regulation and adherence to prevailing standards, the data generated in the course of cell therapy product processing must be recorded and retained in an organized manner. Because cell therapy products are functionally pharmaceuticals, the paradigm of the pharmaceutical manufacturing batch process record (BPR) is proposed as a unit for collecting the data resulting from processing. Considerations for cell-processing facilities for the design of BPR and possible selection of electronic data-recording tools are reviewed, including data to collect in response to regulatory or accreditation mandates and different types of electronic data management tools that may be employed. Additionally, considerations for selection, qualification and validation of computer software for maintenance of the BPR are addressed.

  1. Maximizing Production Capacity from an Ultrafiltration Process at the Hanford Department of Waste Treatment Facility

    SciTech Connect

    Foust, Henry C.; Holton, Langdon K.; Demick, Laurence E.

    2005-12-31

    The Department of Energy has contracted Bechtel National, Inc. to design, construct and commission a Waste Treatment and Immobilization Plant (WTP) to treat radioactive slurry currently stored in underground waste storage tanks. A critical element of the waste treatment capacity for the WTP is the proper operation of an ultrafiltration process (UFP). The UFP separates supernate solution from radioactive solids. The solution and solid phases are separately immobilized. An oversight review of the UFP design and operation has identified several methods to improve the capacity of the ultrafiltration process, which will also improve the capacity of the WTP. Areas explored were the basis of design, an analysis of the WTP capacity, process chemistry within the UFP, and UFP process control. This article discusses some of the findings of this oversight review in terms of sodium and solid production, which supports the treatment of low activity waste (LAW) associated with the facility, and solid production, which supports the treatment of high level waste (HLW) associated with the facility.

  2. Darlington tritium removal facility and station upgrading plant dynamic process simulation

    SciTech Connect

    Busigin, A.; Williams, G. I. D.; Wong, T. C. W.; Kulczynski, D.; Reid, A.

    2008-07-15

    Ontario Power Generation Nuclear (OPGN) has a 4 x 880 MWe CANDU nuclear station at its Darlington Nuclear Div. located in Bowmanville. The station has been operating a Tritium Removal Facility (TRF) and a D{sub 2}O station Upgrading Plant (SUP) since 1989. Both facilities were designed with a Distributed Control System (DCS) and programmable logic controllers (PLC) for process control. This control system was replaced with a DCS only, in 1998. A dynamic plant simulator was developed for the Darlington TRF (DTRF) and the SUP, as part of the computer control system replacement. The simulator was used to test the new software, required to eliminate the PLCs. The simulator is now used for operator training and testing of process control software changes prior to field installation. Dynamic simulation will be essential for the ITER isotope separation system, where the process is more dynamic than the relatively steady-state DTRF process. This paper describes the development and application of the DTRF and SUP dynamic simulator, its benefits, architecture, and the operational experience with the simulator. (authors)

  3. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended, Concerning Any...

  4. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended, Concerning Any...

  5. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended, Concerning Any...

  6. 18 CFR 157.21 - Pre-filing procedures and review process for LNG terminal facilities and other natural gas...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC... and Approving Abandonment under Section 7 of the Natural Gas Act, as Amended, Concerning Any...

  7. The Chandra X-ray Observatory arrives at Vertical Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory waits to be moved inside the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  8. The Chandra X-ray Observatory arrives at Vertical Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory reaches the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  9. The Chandra X-ray Observatory arrives at Vertical Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the Vertical Processing Facility (VPF), workers (left) drive, by remote control, the rear bogie away from the VPF. The bogie is part of the tractor-trailer rig called the Space Cargo Transportation System that helped move the Chandra X-ray Observatory (right) from the Shuttle Landing Facility into the VPF. Chandra arrived at KSC on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.

  10. Radioactive Air Emmission Notice of Construction (NOC) for the Waste Receiving and Processing Facility (WRAP)

    SciTech Connect

    MENARD, N.M.

    2000-12-01

    This document serves as a notice of construction (NOC) pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to modify pursuant to 40 Code of Federal Regulations (CFR) 61.07 for the Waste Receiving and Processing (WRAP) Facility. The rewrite of this NOC incorporates all the approved revisions (Sections 5.0, 6.0, 8.0, and 9.0), a revised potential to emit (PTE) based on the revised maximally exposed individual (MEI) (Sections 8.0, 10.0, 11.0, 12.0, 13.0, 14.0, and 15.0), the results of a study on fugitive emissions (Sections 6.0, 10.0, and 15.0), and reflects the current operating conditions at the WRAP Facility (Section 5.0). This NOC replaces DOE/RL-93-15 and DOE/RL-93-16 in their entirety. The primary function of the WRAP Facility is to examine, assay, characterize, treat, verify, and repackage radioactive material and mixed waste. There are two sources of emissions from the WRAP Facility: stack emissions and fugitive emissions. The stack emissions have an unabated total effective dose equivalent (TEDE) estimate to the hypothetical offsite MEI of 1.13 E+02 millirem per year. The abated TEDE for the stack emissions is estimated at 5.63 E-02 millirem per year to the MEI. The fugitive emissions have an unabated TEDE estimate to the hypothetical offsite MEI of 5.87 E-04. There is no abatement for the fugitive emissions.

  11. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    PubMed

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas

    2014-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  12. [The 'ideal therapy process': testing a new approach for assessing process quality in inpatient parent-child facilities].

    PubMed

    Musekamp, G; Lukasczik, M; Gerlich, C; Saupe-Heide, M; Löbmann, R; Vogel, H; Neuderth, S

    2014-12-01

    Instruments for external quality assurance in inpatient parent-child rehabilitation and prevention facilities were developed in 2 projects. For the assessment of process quality, we sought an alternative test to the peer review procedure which also places a stronger emphasis on patient perspectives. The aim was to define an "ideal process" as a standard, to develop quantifiable criteria, and to test a multimethod approach which involves different data levels. On the basis of different sources, the "ideal process" for parent-child rehabilitation and prevention and associated criteria were defined by involving an accompanying expert group during a consensus process. Criteria were assessed on different levels: on the rehabilitation/prevention centre level, a questionnaire of process-relevant structural features was used; on the patient level, a case-related routine documentation filled in by clinic staff and an incident-related patient questionnaire were applied. Data were collected in 37 centres (prevention: 19; rehabilitation: 11; 7 offering both types of programmes). Analysis of patient-related data is based on a sample of 1 513 prevention patients and 286 rehabilitation patients. The resulting "ideal process" consists of the stages "preparation", "arrival", "treatment planning", "treatment", "completion of treatment", and "organisation", each containing specific criteria. Exemplarily, the outcomes for the stages "treatment planning" and "treatment" are presented. There is variability both between features and between clinics. The majority of the patients report that the criteria are fulfilled while there are medium to high levels of fulfillment regarding the routine documentation. The criteria of the questionnaire of process-relevant structural features are mostly fulfilled according to the clinics. Agreement between the 3 data levels can be observed. On the basis of the defined "ideal process", the methods that were tested seem to be appropriate to illustrate

  13. An ecological perspective of Listeria monocytogenes biofilms in food processing facilities.

    PubMed

    Valderrama, Wladir B; Cutter, Catherine N

    2013-01-01

    Listeria monocytogenes can enter the food chain at virtually any point. However, food processing environments seem to be of particular importance. From an ecological point of view, food processing facilities are microbial habitats that are constantly disturbed by cleaning and sanitizing procedures. Although L. monocytogenes is considered ubiquitous in nature, it is important to recognize that not all L. monocytogenes strains appear to be equally distributed; the distribution of the organism seems to be related to certain habitats. Currently, no direct evidence exists that L. monocytogenes-associated biofilms have played a role in food contamination or foodborne outbreaks, likely because biofilm isolation and identification are not part of an outbreak investigation, or the definition of biofilm is unclear. Because L. monocytogenes is known to colonize surfaces, we suggest that contamination patterns may be studied in the context of how biofilm formation is influenced by the environment within food processing facilities. In this review, direct and indirect epidemiological and phenotypic evidence of lineage-related biofilm formation capacity to specific ecological niches will be discussed. A critical view on the development of the biofilm concept, focused on the practical implications, strengths, and weaknesses of the current definitions also is discussed. The idea that biofilm formation may be an alternative surrogate for microbial fitness is proposed. Furthermore, current research on the influence of environmental factors on biofilm formation is discussed.

  14. INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER

    SciTech Connect

    Smith, M.; Iverson, D.

    2010-12-08

    Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

  15. Design analysis of levitation facility for space processing applications. [Skylab program, space shuttles

    NASA Technical Reports Server (NTRS)

    Frost, R. T.; Kornrumpf, W. P.; Napaluch, L. J.; Harden, J. D., Jr.; Walden, J. P.; Stockhoff, E. H.; Wouch, G.; Walker, L. H.

    1974-01-01

    Containerless processing facilities for the space laboratory and space shuttle are defined. Materials process examples representative of the most severe requirements for the facility in terms of electrical power, radio frequency equipment, and the use of an auxiliary electron beam heater were used to discuss matters having the greatest effect upon the space shuttle pallet payload interfaces and envelopes. Improved weight, volume, and efficiency estimates for the RF generating equipment were derived. Results are particularly significant because of the reduced requirements for heat rejection from electrical equipment, one of the principal envelope problems for shuttle pallet payloads. It is shown that although experiments on containerless melting of high temperature refractory materials make it desirable to consider the highest peak powers which can be made available on the pallet, total energy requirements are kept relatively low by the very fast processing times typical of containerless experiments and allows consideration of heat rejection capabilities lower than peak power demand if energy storage in system heat capacitances is considered. Batteries are considered to avoid a requirement for fuel cells capable of furnishing this brief peak power demand.

  16. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    SciTech Connect

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

  17. Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.

  18. Ohio Senator John Glenn tours the Space Station Processing Facility at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at right, enjoys a tour of the Space Station Processing Facility at Kennedy Space Center. With Senator Glenn is Stephen Francois, director, Space Station and Shuttle Payloads, NASA. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  19. A facile water-based process for preparation of stabilized Bi nanoparticles

    SciTech Connect

    Wang Yi; Zhao Jingzhe Zhao Xu; Tang Lanqin; Li Yunling; Wang Zichen

    2009-01-08

    Stabilized bismuth nanoparticles have been prepared by reducing bismuth chloride with hydrazine hydrate in the presence of sodium oleate under a facile water-based process. The obtained samples are investigated by X-ray diffraction, transmission electron microscopy (TEM) and differential thermal analysis and thermogravimetry (DTA/TG). The present results indicate that the bismuth nanoparticles are spherical, small diameter and in a high purity. In addition, measurement of water contact angle indicates that Bi samples are hydrophobic, which gives defense to samples from further oxidation, samples are steady in 6 months without obvious oxidation.

  20. Implementation of nondestructive assay instrumentation in the Rocky Flats Processing Facility

    SciTech Connect

    Haas, F.X.; Gilmer, J.E.; Goebel, G.R.; Lawless, J.L.; Pigg, J.L.; Scott, D.L.; Tindall, A.L.

    1983-01-01

    Nondestructive assay equipment for the Rocky Flats Processing Facility is described. In-line assay equipment includes calorimeters, passive gamma-ray counters for measurement of residues, a segmented gamma-ray scanner for the assay of electrorefined salts, a liquid assay system, and a thermal neutron coincidence counter for measurement of oxide. Bismuth germanate detectors are used in the inventory station to verify material type using a gamma-ray signature. A portable assay instrument was developed which employs a detector and single channel analyzer whose functions and output are controlled by a programmable calculator. This instrument is applied primarily to hold-up measurements. 5 references, 4 figures.

  1. Vitrification of Rocky Flats ash followed by encapsulation in the Defense Waste Processing Facility

    SciTech Connect

    McKibben, J.M.; Land, B.; Strachan, D.M.; Perez, J.M.

    1995-12-31

    Approximately 10 to 20 metric tons of plutonium in the US is in the form of scrap, residues, oxides, ash, metal, sludge, compounds, etc. This paper describes a relatively simple concept of stabilizing most of this type of plutonium by converting it into encapsulated glass. A full-scale hot demonstration of the concept is proposed, in which Rocky Flats ash would be vitrified and sealed in small cans, followed by encapsulation of the cans in Defense Waste Processing Facility (DWPF) canisters with high-level waste glass. The proposal described in this paper offers an integrated national approach for early stabilization and disposition of the nation`s plutonium-bearing residues.

  2. First Results from the CARIBU Facility: Mass Measurements on the r-Process Path

    NASA Astrophysics Data System (ADS)

    Van Schelt, J.; Lascar, D.; Savard, G.; Clark, J. A.; Bertone, P. F.; Caldwell, S.; Chaudhuri, A.; Levand, A. F.; Li, G.; Morgan, G. E.; Orford, R.; Segel, R. E.; Sharma, K. S.; Sternberg, M. G.

    2013-08-01

    The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade facility at Argonne National Laboratory. The studied region includes the Sn132 double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A=135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

  3. Design of a lunar propellant processing facility. NASA/USRA advanced program

    NASA Technical Reports Server (NTRS)

    Batra, Rajesh; Bell, Jason; Campbell, J. Matt; Cash, Tom; Collins, John; Dailey, Brian; France, Angelique; Gareau, Will; Gleckler, Mark; Hamilton, Charles

    1993-01-01

    Mankind's exploration of space will eventually lead to the establishment of a permanent human presence on the Moon. Essential to the economic viability of such an undertaking will be prudent utilization of indigenous lunar resources. The design of a lunar propellant processing system is presented. The system elements include facilities for ore processing, ice transportation, water splitting, propellant storage, personnel and materials transportation, human habitation, power generation, and communications. The design scenario postulates that ice is present in the lunar polar regions, and that an initial lunar outpost was established. Mining, ore processing, and water transportation operations are located in the polar regions. Water processing and propellant storage facilities are positioned near the equator. A general description of design operations is outlined below. Regolith containing the ice is mined from permanently-shaded polar craters. Water is separated from the ore using a microwave processing technique, and refrozen into projectiles for launch to the equatorial site via railgun. A mass-catching device retrieves the ice. This ice is processed using fractional distillation to remove impurities, and the purified liquid water is fed to an electrolytic cell that splits the water into vaporous hydrogen and oxygen. The hydrogen and oxygen are condensed and stored separately in a tank farm. Electric power for all operations is supplied by SP-100 nuclear reactors. Transportation of materials and personnel is accomplished primarily using chemical rockets. Modular living habitats are used which provide flexibility for the placement and number of personnel. A communications system consisting of lunar surface terminals, a lunar relay satellite, and terrestrial surface stations provides capabilities for continuous Moon-Moon and Moon-Earth transmissions of voice, picture, and data.

  4. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O. ); Weir, T.J. )

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  5. Adjustment of automatic control systems of production facilities at coal processing plants using multivariant physico- mathematical models

    NASA Astrophysics Data System (ADS)

    Evtushenko, V. F.; Myshlyaev, L. P.; Makarov, G. V.; Ivushkin, K. A.; Burkova, E. V.

    2016-10-01

    The structure of multi-variant physical and mathematical models of control system is offered as well as its application for adjustment of automatic control system (ACS) of production facilities on the example of coal processing plant.

  6. Fact Sheet - Final Air Toxics Rule for Steel Pickling and HCI Process Facilities and Hydrochloric Acid Regeneration Plants

    EPA Pesticide Factsheets

    Fact Sheet summarizing the main points of the national emssions standard for hazaradous air pollutants (NESHAP) for Steel Pickling— HCl Process Facilities and Hydrochloric Acid Regeneration Plants as promulgated on June 22, 1999.

  7. Review of Catalytic Hydrogen Generation in the Defense Waste Processing Facility (DWPF) Chemical Processing Cell

    SciTech Connect

    Koopman, D. C.

    2004-12-31

    This report was prepared to fulfill the Phase I deliverable for HLW/DWPF/TTR-98-0018, Rev. 2, ''Hydrogen Generation in the DWPF Chemical Processing Cell'', 6/4/2001. The primary objective for the preliminary phase of the hydrogen generation study was to complete a review of past data on hydrogen generation and to prepare a summary of the findings. The understanding was that the focus should be on catalytic hydrogen generation, not on hydrogen generation by radiolysis. The secondary objective was to develop scope for follow-up experimental and analytical work. The majority of this report provides a summary of past hydrogen generation work with radioactive and simulated Savannah River Site (SRS) waste sludges. The report also includes some work done with Hanford waste sludges and simulants. The review extends to idealized systems containing no sludge, such as solutions of sodium formate and formic acid doped with a noble metal catalyst. This includes general information from the literature, as well as the focused study done by the University of Georgia for the SRS. The various studies had a number of points of universal agreement. For example, noble metals, such as Pd, Rh, and Ru, catalyze hydrogen generation from formic acid and formate ions, and more acid leads to more hydrogen generation. There were also some points of disagreement between different sources on a few topics such as the impact of mercury on the noble metal catalysts and the identity of the most active catalyst species. Finally, there were some issues of potential interest to SRS that apparently have not been systematically studied, e.g. the role of nitrite ion in catalyst activation and reactivity. The review includes studies covering the period from about 1924-2002, or from before the discovery of hydrogen generation during simulant sludge processing in 1988 through the Shielded Cells qualification testing for Sludge Batch 2. The review of prior studies is followed by a discussion of proposed

  8. Salmonella collected from nest run cart shelves in commercial shell egg processing facilities.

    PubMed

    Musgrove, M T; Shaw, J D; Harrison, M A

    2012-09-01

    Salmonella, a member of the bacterial family Enterobacteriaceae, may be recovered from foods and processing facilities. High levels of Enterobacteriaceae in the processing plant environment can be an indication of inadequate sanitation. This experiment was designed to determine if nest run egg carts serve as reservoirs for Salmonella. Eggs that are produced by hens not housed in buildings connected to the processing plant are referred to as nest run. Many of these eggs are transported to a central processing facility before they are washed, graded, and packed. Two plants in the Southeastern United States were sampled; one was a mixed operation and the other was an off-line operation. On each of 3 visits, 5 shelves on each of 5 carts were sampled (n = 25/visit). A 12 × 12 cm area on each shelf was swabbed with a sterile gauze pad moistened with PBS and transported on ice back to the laboratory. Each swab was preenriched in buffered peptone at 37°C for 24 h, selectively enriched using TT and Rappaport-Vassiliadis broth at 42°C overnight, then plated onto brilliant green sulfa and XLT-4 incubated at 37°C for 24 h. Presumptive colonies were transferred to lysine iron agar and triple sugar iron slants for 24 h at 37°C. Isolates with presumptive reactions were confirmed using commercial polyclonal antisera. After initial confirmation, serogrouping was performed using commercial antisera. Mixed-operation swab samples were 12% positive for Salmonella, whereas off-line samples were 36% positive for Salmonella; isolates were confirmed as serogroups B, C1, and C2. Kauffman-White serotyping was performed by a contract laboratory. Serotypes (n = 30) recovered were Anatum, Heidelberg, Infantis, Kentucky, Mbandanka, and Typhimurium. This work demonstrated that nest run egg carts may serve as reservoirs for Salmonella in the shell egg processing environment.

  9. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

    2008-01-15

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

  10. Radon gas distribution in natural gas processing facilities and workplace air environment.

    PubMed

    Al-Masri, M S; Shwiekani, R

    2008-04-01

    Evaluation was made of the distribution of radon gas and radiation exposure rates in the four main natural gas treatment facilities in Syria. The results showed that radiation exposure rates at contact of all equipment were within the natural levels (0.09-0.1 microSvh(-1)) except for the reflex pumps where a dose rate value of 3 microSvh(-1) was recorded. Radon concentrations in Syrian natural gas varied between 15.4 Bq m(-3) and 1141 Bq m(-3); natural gas associated with oil production was found to contain higher concentrations than the non-associated natural gas. In addition, radon concentrations were higher in the central processing facilities than the wellheads; these high levels are due to pressurizing and concentrating processes that enhance radon gas and its decay products. Moreover, the lowest 222Rn concentration was in the natural gas fraction used for producing sulfur; a value of 80 Bq m(-3) was observed. On the other hand, maximum radon gas and its decay product concentrations in workplace air environments were found to be relatively high in the gas analysis laboratories; a value of 458 Bq m(-3) was observed. However, all reported levels in the workplaces in the four main stations were below the action level set by IAEA for chronic exposure situations involving radon, which is 1000 Bq m(-3).

  11. Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511

    SciTech Connect

    Behrouzi, Aria; Zamecnik, Jack

    2012-07-01

    The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively

  12. Feasibility Study for Monitoring Actinide Elements in Process Materials Using FO-LIBS at Advanced spent fuel Conditioning Process Facility

    SciTech Connect

    Han, Bo-Young; Choi, Daewoong; Park, Se Hwan; Kim, Ho-Dong; Dae, Dongsun; Whitehouse, Andrew I.

    2015-07-01

    Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in the target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)

  13. Facile synthesis of single-crystal silver nanowires through a tannin-reduction process

    NASA Astrophysics Data System (ADS)

    Tian, Xuelin; Li, Juan; Pan, Shilie

    2009-10-01

    A facile aqueous-phase approach for the synthesis of silver nanowires is reported, in which tannin (C76H52O46) is used as a mild reducing agent for silver nitrate. This synthesis is a root-temperature, seedless process, and does not need any surfactant or capping agent to direct the anisotropic growth of the nanoparticles. The obtained silver nanowires are about 25 nm in diameter and up to 20 μm in length. Unlike the usually reported cases of silver nanowires or nanorods, in which the silver nanocrystals were often generated with a multi-twinned structure, in our experiments the nanowires adopt a single-crystal structure with their growth direction along the [100] axis. Investigations on the influence of different experimental conditions indicate that slow rate of the reduction process is a key factor for inducing the anisotropic growth of the nanowires.

  14. Idaho Chemical Processing Plant Liquid Effluent Treatment and Disposal Facility hot test report

    SciTech Connect

    Hastings, R.L.

    1993-09-01

    Prior to initial operation with radioactive feed or ``hot`` operation, the Liquid Effluent Treatment and Disposal (LET&D) Facility underwent extensive testing. This report provides a detailed description and analysis of this testing. Testing has determined that LET&D is capable of processing radioactive solutions between the design flowrates of 275 gph to 550 gph. Modifications made to prevent condensation on the off-gas HEPA filters, to the process vacuum control, bottoms cooler rupture disks, and feed control system operation were successful. Unfortunately, two mixers failed prior to ``hot`` testing due to manufacturer`s error which limited operation of the PEW Evaporator System and sampling was not able to prove that design removal efficiencies for Mercury, Cadmium, Plutonium, and Non-Volatile Radionuclides.

  15. A Guide for Developing Standard Operating Job Procedures for the Sludge Thickening Process Wastewater Treatment Facility. SOJP No. 9.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  16. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  17. Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1995-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.

  18. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed.

  19. People, Process and Technology: Strategies for Assuring Sustainable Implementation of EMRs at Public-Sector Health Facilities in Kenya.

    PubMed

    Kang'a, Samuel G; Muthee, Veronica M; Liku, Nzisa; Too, Diana; Puttkammer, Nancy

    2016-01-01

    The Ministry of Health (MoH) rollout of electronic medical record systems (EMRs) has continuously been embraced across health facilities in Kenya since 2012. This has been driven by a government led process supported by PEPFAR that recommended standardized systems for facilities. Various strategies were deployed to assure meaningful and sustainable EMRs implementation: sensitization of leadership; user training, formation of health facility-level multi-disciplinary teams; formation of county-level Technical Working Groups; data migration; routine data quality assessments; point of care adoption; successive release of software upgrades; and power provision. Successes recorded include goodwill and leadership from the county management (22 counties), growth in the number of EMR trained users (2561 health care workers), collaboration in among other things, data migration(90 health facilities completed) and establishment of county TWGs (13 TWGs). Sustenance of EMRs demand across facilities is possible through; county TWGs oversight, timely resolution of users' issues and provision of reliable power.

  20. People, Process and Technology: Strategies for Assuring Sustainable Implementation of EMRs at Public-Sector Health Facilities in Kenya

    PubMed Central

    Kang’a, Samuel G.; Muthee, Veronica M.; Liku, Nzisa; Too, Diana; Puttkammer, Nancy

    2016-01-01

    The Ministry of Health (MoH) rollout of electronic medical record systems (EMRs) has continuously been embraced across health facilities in Kenya since 2012. This has been driven by a government led process supported by PEPFAR that recommended standardized systems for facilities. Various strategies were deployed to assure meaningful and sustainable EMRs implementation: sensitization of leadership; user training, formation of health facility-level multi-disciplinary teams; formation of county-level Technical Working Groups; data migration; routine data quality assessments; point of care adoption; successive release of software upgrades; and power provision. Successes recorded include goodwill and leadership from the county management (22 counties), growth in the number of EMR trained users (2561 health care workers), collaboration in among other things, data migration(90 health facilities completed) and establishment of county TWGs (13 TWGs). Sustenance of EMRs demand across facilities is possible through; county TWGs oversight, timely resolution of users’ issues and provision of reliable power. PMID:28269864

  1. Tracking implementation and (un)intended consequences: a process evaluation of an innovative peripheral health facility financing mechanism in Kenya.

    PubMed

    Waweru, Evelyn; Goodman, Catherine; Kedenge, Sarah; Tsofa, Benjamin; Molyneux, Sassy

    2016-03-01

    In many African countries, user fees have failed to achieve intended access and quality of care improvements. Subsequent user fee reduction or elimination policies have often been poorly planned, without alternative sources of income for facilities. We describe early implementation of an innovative national health financing intervention in Kenya; the health sector services fund (HSSF). In HSSF, central funds are credited directly into a facility's bank account quarterly, and facility funds are managed by health facility management committees (HFMCs) including community representatives. HSSF is therefore a finance mechanism with potential to increase access to funds for peripheral facilities, support user fee reduction and improve equity in access. We conducted a process evaluation of HSSF implementation based on a theory of change underpinning the intervention. Methods included interviews at national, district and facility levels, facility record reviews, a structured exit survey and a document review. We found impressive achievements: HSSF funds were reaching facilities; funds were being overseen and used in a way that strengthened transparency and community involvement; and health workers' motivation and patient satisfaction improved. Challenges or unintended outcomes included: complex and centralized accounting requirements undermining efficiency; interactions between HSSF and user fees leading to difficulties in accessing crucial user fee funds; and some relationship problems between key players. Although user fees charged had not increased, national reduction policies were still not being adhered to. Finance mechanisms can have a strong positive impact on peripheral facilities, and HFMCs can play a valuable role in managing facilities. Although fiduciary oversight is essential, mechanisms should allow for local decision-making and ensure that unmanageable paperwork is avoided. There are also limits to what can be achieved with relatively small funds in

  2. Solid Oxide Membrane (SOM) Process for Facile Electrosynthesis of Metal Carbides and Composites

    NASA Astrophysics Data System (ADS)

    Zou, Xingli; Chen, Chaoyi; Lu, Xionggang; Li, Shangshu; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong

    2017-02-01

    Metal carbides (MCs) and composites including TiC, SiC, TaC, ZrC, NbC, Ti5Si3/TiC, and Nb/Nb5Si3 have been directly electrosynthesized from their stoichiometric metal oxides/carbon (MOs/C) mixture precursors by an innovative solid oxide membrane (SOM)-assisted electrochemical process. MOs/C mixture powders including TiO2/C, SiO2/C, Ta2O5/C, ZrO2/C, Nb2O5/C, TiO2/SiO2/C, Nb2O5/SiO2 were pressed to form porous pellets and then served as cathode precursors. A SOM-based anode, made from yttria-stabilized zirconia (YSZ)-based membrane, was used to control the electroreduction process. The SOM electrochemical process was performed at 1273 K (1000 °C) and 3.5 to 4.0 V in molten CaCl2. The oxygen component contained in the MOs/C precursors was gradually removed during electroreduction process, and thus, MOs/C can be directly converted into MCs and composites at the cathode. The reaction mechanism of the electroreduction process and the characteristics of the obtained MCs and composites products were systematically investigated. The results show that the electrosynthesis process typically involves compounding, electroreduction, dissolution-electrodeposition, and in situ carbonization processes. The products can be predesigned and controlled to form micro/nanostructured MCs and composites. Multicomponent multilayer composites (MMCs) have also been tried to electrosynthesize in this work. It is suggested that the SOM-assisted electroreduction process has great potential to be used for the facile and green synthesis of various MCs and composites.

  3. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    SciTech Connect

    SK Sundaram; JM Perez, Jr.

    2000-09-06

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement.

  4. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    SciTech Connect

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  5. Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

  6. Improvement of the Computing - Related Procurement Process at a Government Research Facility

    SciTech Connect

    Gittins, C.

    2000-04-03

    The purpose of the project was to develop, implement, and market value-added services through the Computing Resource Center in an effort to streamline computing-related procurement processes across the Lawrence Livermore National Laboratory (LLNL). The power of the project was in focusing attention on and value of centralizing the delivery of computer related products and services to the institution. The project required a plan and marketing strategy that would drive attention to the facility's value-added offerings and services. A significant outcome of the project has been the change in the CRC internal organization. The realignment of internal policies and practices, together with additions to its product and service offerings has brought an increased focus to the facility. This movement from a small, fractious organization into one that is still small yet well organized and focused on its mission and goals has been a significant transition. Indicative of this turnaround was the sharing of information. One-on-one and small group meetings, together with statistics showing work activity was invaluable in gaining support for more equitable workload distribution, and the removal of blame and finger pointing. Sharing monthly reports on sales and operating costs also had a positive impact.

  7. USING STATISTICAL PROCESS CONTROL TO MONITOR RADIOACTIVE WASTE CHARACTERIZATION AT A RADIOACTIVE FACILITY

    SciTech Connect

    WESTCOTT, J.L.

    2006-11-15

    Two facilities for storing spent nuclear fuel underwater at the Hanford site in southeastern Washington State being removed from service, decommissioned, and prepared for eventual demolition. The fuel-storage facilities consist of two separate basins called K East (KE) and K West (KW) that are large subsurface concrete pools filled with water, with a containment structure over each. The basins presently contain sludge, debris, and equipment that have accumulated over the years. The spent fuel has been removed from the basins. The process for removing the remaining sludge, equipment, and structure has been initiated for the basins. Ongoing removal operations generate solid waste that is being treated as required, and then disposed. The waste, equipment and building structures must be characterized to properly manage, ship, treat (if necessary), and dispose as radioactive waste. As the work progresses, it is expected that radiological conditions in each basin may change as radioactive materials are being moved within and between the basins. It is imperative that these changing conditions be monitored so that radioactive characterization of waste is adjusted as necessary.

  8. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE

    SciTech Connect

    Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

    2011-03-14

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

  9. Testing of the Defense Waste Processing Facility Cold Chemical Dissolution Method in Sludge Batch 9 Qualification

    SciTech Connect

    Edwards, T.; Pareizs, J.; Coleman, C.; Young, J.; Brown, L.

    2016-05-10

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt or SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.

  10. Vendor assessments of radioactive/mixed waste processing/disposal facilities

    SciTech Connect

    Bourassa, J.; Piscitello, T.

    1996-10-01

    This paper was developed based on Yankee Atomic Electric Company experiences gained through the performance of vendor assessments of radioactive and mixed waste processing and disposal facilities. This paper will provide insights to companies or organizations who have radioactive and/or mixed waste which requires disposal. The paper will discuss the technical, legal and programmatic issues which should be considered when evaluating waste processing and/or disposal options. The discussion focuses on the methods utilized for the preparation, performance and reporting of assessments of waste disposal vendors. The paper includes a discussion of the scope and purpose of the assessment process, and the methodologies and approach taken to evaluate the technical and programmatic areas. This paper provides guidance and direction to those individuals involved in evaluating the capabilities of the waste processing and or disposal vendors. The paper is also a resource which identifies regulatory and industry guidance available for consideration in the planning for a waste disposal/processing vendor assessment. The company needs to determine what is the most practical disposal method. This disposal method may be a combination of waste processing and direct disposal, which is consistent with the methodologies utilized by the Yankee Atomic Electric Company at the Yankee Nuclear Power Station and by other Yankee plants. Due to the anticipated/active need for utilizing a number of vendors for performing these activities, the determination has been made that assessments of the vendors supplying the services are required to ensure that activities are being effectively performed in order to minimize potential liabilities. The assessments need to consider not only the technical aspects of the operations, but also require an evaluation of the quality system(s) being utilized to ensure the consistent and effective implementation of applicable process controls.

  11. A panoramic view of the Space Station Processing Facility with Unity connecting module

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In this panoramic view of the Space Station Processing Facility (SSPF) can be seen (left to right) Unity connecting module, the Rack Insertion Device and the first Multi-Purpose Launch Module, the Leonardo. Windows at the right above Leonardo allow visitors on tour to watch the activities in the SSPF. The Unity, scheduled to be launched on STS-88 in December 1998, will be mated to the Russian-built Zarya control module which will already be in orbit. STS-88 will be the first Space Shuttle launch for the International Space Station. The Italian-built MPLM, scheduled to be launched on STS-100 on Dec. 2, 1999, will be carried in the payload bay of the Shuttle orbiter, and will provide storage and additional work space for up to two astronauts when docked to the International Space Station.

  12. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, center, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. On his immediate left is Dale Steffey, SPACEHAB vice president, operations, and at the right of the photograph is Michael Lounge, SPACEHAB vice president, flight systems development. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  13. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, David Rossi, SPACEHAB president and chief operating officer (extreme left); Michael Lounge, SPACEHAB vice president, flight systems development; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  14. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences, and Dale Steffey, SPACEHAB vice president, operations. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  15. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  16. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, second from right, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences; Dale Steffey, SPACEHAB vice president, operations; and Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  17. Ohio Senator John Glenn tours the SPACEHAB Payload Processing Facility in Cape Canaveral

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at left, enjoys a tour of the SPACEHAB Payload Processing Facility in Cape Canaveral. Joining Senator Glenn are, left to right, Dale Steffey, SPACEHAB vice president, operations; Dr. Shelley Harrison, SPACEHAB chairman and chief executive officer; and Dr. Bernard Harris, SPACEHAB vice president, microgravity and life sciences. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89 later this week. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  18. Facile microwave synthesis of uniform magnetic nanoparticles with minimal sample processing

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas; Löwa, Anna; Karagiozov, Stoyan; Sprenger, Lisa; Gutiérrez, Lucía; Esposito, Tullio; Marten, Gernot; Saatchi, Katayoun; Häfeli, Urs O.

    2017-01-01

    We present a simple and rapid method for the synthesis of small magnetic nanoparticles (diameters in the order of 5-20 nm) and narrow size distributions (CV's of 20-40%). The magnetite nanoparticles were synthesized in green solvents within minutes and the saturation magnetization of the particles was tunable by changes in the reaction conditions. We show that this particle synthesis method requires minimal processing steps and we present the successful coating of the particles with reactive bisphosphonates after synthesis without washing or centrifugation. We found minimal batch-to-batch variability and show the scalability of the particle synthesis method. We present a full characterization of the particle properties and believe that this synthesis method holds great promise for facile and rapid generation of magnetic nanoparticles with defined surface coatings for magnetic targeting applications.

  19. Detailed results of ASTP experiment MA-011. [biological processing facility in space

    NASA Technical Reports Server (NTRS)

    Seaman, G. V. F.; Allen, R. E.; Barlow, G. H.; Bier, M.

    1976-01-01

    This experiment was developed in order to conduct engineering and operational tests of electrokinetic equipment in a micro-gravity environment. The experimental hardware in general functioned as planned and electrophoretic separations were obtained in space. The results indicated the development of satisfactory sample collection, return, and preservation techniques. The application of a near-zero zeta potential interior wall coating to the experimental columns, confirmation of biocompatibility of all appropriate hardware components, and use of a sterile operating environment provided a significant step forward in the development of a biological processing facility in space. A separation of a test of aldehyde-fixed rabbit, human, and horse red blood cells was obtained. Human kidney cells were separated into several components and viable cells returned to earth. The isotachophoretic separation of red cells was also demonstrated. Problems associated with the hardware led to a lack of success in the attempt to separate subpopulations of human lymphocytes.

  20. Environmental monitoring of the orbiter payload bay and Orbiter Processing Facilities

    NASA Technical Reports Server (NTRS)

    Bartelson, D. W.; Johnson, A. M.

    1985-01-01

    Contamination control in the Orbiter Processing Facility (OPF) is studied. The clean level required in the OPF is generally clean, which means no residue, dirt, debris, or other extraneous contamination; various methods of maintaining this level of cleanliness are described. The monitoring and controlling of the temperature, relative humidity, and air quality in the OPF are examined. Additional modifications to the OPF to improve contamination control are discussed. The methods used to maintain the payload changeout room at a level of visually clean, no particulates are to be detected by the unaided eye, are described. The payload bay (PLB) must sustain the cleanliness level required for the specific Orbiter's mission; the three levels of clean are defined as: (1) standard, (2) sensitive, and (3) high sensitive. The cleaning and inspection verification required to achieve the desired cleanliness level on a variety of PLB surface types are examined.

  1. QA Objectives for Nondestructive Assay at the Waste Receiving & Processing (WRAP) Facility

    SciTech Connect

    CANTALOUB, M.G.

    2000-08-01

    The Waste Receiving and Processing (WRAP) facility, located on the Word Site in southeast Washington, is a key link in the certification of transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization. The Waste Acceptance Criteria for the Waste Isolation Pilot Plant, DOE/WIPP-069 (WIPP-WAC) delineates the quality assurance objectives which have been established for NDA measurement systems. Sites must demonstrate that the quality assurance objectives can be achieved for each radioassay system over the applicable ranges of measurement. This report summarizes the validation of the WRAP NDA systems against the radioassay quality assurance objectives or QAOs. A brief description of the each test and significant conclusions are included. Variables that may have affected test outcomes and system response are also addressed.

  2. Tracking implementation and (un)intended consequences: a process evaluation of an innovative peripheral health facility financing mechanism in Kenya

    PubMed Central

    Waweru, Evelyn; Goodman, Catherine; Kedenge, Sarah; Tsofa, Benjamin; Molyneux, Sassy

    2016-01-01

    In many African countries, user fees have failed to achieve intended access and quality of care improvements. Subsequent user fee reduction or elimination policies have often been poorly planned, without alternative sources of income for facilities. We describe early implementation of an innovative national health financing intervention in Kenya; the health sector services fund (HSSF). In HSSF, central funds are credited directly into a facility’s bank account quarterly, and facility funds are managed by health facility management committees (HFMCs) including community representatives. HSSF is therefore a finance mechanism with potential to increase access to funds for peripheral facilities, support user fee reduction and improve equity in access. We conducted a process evaluation of HSSF implementation based on a theory of change underpinning the intervention. Methods included interviews at national, district and facility levels, facility record reviews, a structured exit survey and a document review. We found impressive achievements: HSSF funds were reaching facilities; funds were being overseen and used in a way that strengthened transparency and community involvement; and health workers’ motivation and patient satisfaction improved. Challenges or unintended outcomes included: complex and centralized accounting requirements undermining efficiency; interactions between HSSF and user fees leading to difficulties in accessing crucial user fee funds; and some relationship problems between key players. Although user fees charged had not increased, national reduction policies were still not being adhered to. Finance mechanisms can have a strong positive impact on peripheral facilities, and HFMCs can play a valuable role in managing facilities. Although fiduciary oversight is essential, mechanisms should allow for local decision-making and ensure that unmanageable paperwork is avoided. There are also limits to what can be achieved with relatively small funds in

  3. Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility

    SciTech Connect

    Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

    1997-12-31

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950`s to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life.

  4. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    SciTech Connect

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  5. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    SciTech Connect

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  6. Collaborative survey on the colonization of different types of cheese-processing facilities with Listeria monocytogenes.

    PubMed

    Stessl, Beatrix; Fricker, Martina; Fox, Edward; Karpiskova, Renata; Demnerova, Katarina; Jordan, Kieran; Ehling-Schulz, Monika; Wagner, Martin

    2014-01-01

    Cross-contamination via equipment and the food-processing environment has been implicated as the main cause of Listeria monocytogenes transmission. The aim of this study, therefore, was to determine the occurrence and potential persistence of L. monocytogenes in 19 European cheese-processing facilities. A sampling approach in 2007-2008 included, respectively, 11 and two industrial cheese producers in Austria and the Czech Republic, as well as six Irish on-farm cheese producers. From some of the producers, isolates were available from sampling before 2007. All isolates from both periods were included in a strain collection consisting of 226 L. monocytogenes isolates, which were then typed by serotyping and pulsed-field gel electrophoresis (PFGE). In addition, metabolic fingerprints from a subset of isolates were obtained by means of Fourier-transform infrared (FTIR) spectroscopy. PFGE typing showed that six processing environments were colonized with seven persistent PFGE types of L. monocytogenes. Multilocus sequence typing undertaken on representatives of the seven persisting PFGE types grouped them into distinct clades on the basis of country and origin; however, two persistent strains from an Austrian and an Irish food processor were shown to be clonal. It was concluded that despite the fact that elaborate Hazard Analysis and Critical Control Point concepts and cleaning programs are applied, persistent occurrence of L. monocytogenes can take place during cheese making. L. monocytogenes sanitation programs could be strengthened by including rapid analytical tools, such as FTIR, which allow prescreening of potentially persistent L. monocytogenes contaminants.

  7. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  8. A Guide for Developing Standard Operating Job Procedures for the Digestion Process Wastewater Treatment Facility. SOJP No. 10.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the digestion process of wastewater treatment facilities. This process is for reducing the volume of sludge to be treated in subsequent units and to reduce the volatile content of sludge. The guide gives step-by-step instructions for pre-startup, startup, continuous operating, shutdown,…

  9. 40 CFR 60.5400 - What equipment leak standards apply to affected facilities at an onshore natural gas processing...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... affected facilities at an onshore natural gas processing plant? 60.5400 Section 60.5400 Protection of... NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas Production, Transmission... natural gas processing plant? This section applies to the group of all equipment, except...

  10. 40 CFR 60.5400 - What equipment leak standards apply to affected facilities at an onshore natural gas processing...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... affected facilities at an onshore natural gas processing plant? 60.5400 Section 60.5400 Protection of... NEW STATIONARY SOURCES Standards of Performance for Crude Oil and Natural Gas Production, Transmission... natural gas processing plant? This section applies to the group of all equipment, except...

  11. Advanced Distributed Measurements and Data Processing at the Vibro-Acoustic Test Facility, GRC Space Power Facility, Sandusky, Ohio - an Architecture and an Example

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.; Evans, Richard K.

    2009-01-01

    A large-scale, distributed, high-speed data acquisition system (HSDAS) is currently being installed at the Space Power Facility (SPF) at NASA Glenn Research Center s Plum Brook Station in Sandusky, OH. This installation is being done as part of a facility construction project to add Vibro-acoustic Test Capabilities (VTC) to the current thermal-vacuum testing capability of SPF in support of the Orion Project s requirement for Space Environments Testing (SET). The HSDAS architecture is a modular design, which utilizes fully-remotely managed components, enables the system to support multiple test locations with a wide-range of measurement types and a very large system channel count. The architecture of the system is presented along with details on system scalability and measurement verification. In addition, the ability of the system to automate many of its processes such as measurement verification and measurement system analysis is also discussed.

  12. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    SciTech Connect

    Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.; Missimer, D. M.

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  13. ANION ANALYSES BY ION CHROMATOGRAPHY FOR THE ALTERNATE REDUCTANT DEMONSTRATION FOR THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Best, D.

    2010-08-04

    The Process Science Analytical Laboratory (PSAL) at the Savannah River National Laboratory was requested by the Defense Waste Processing Facility (DWPF) to develop and demonstrate an Ion Chromatography (IC) method for the analysis of glycolate, in addition to eight other anions (fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate and phosphate) in Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) samples. The method will be used to analyze anions for samples generated from the Alternate Reductant Demonstrations to be performed for the DWPF at the Aiken County Technology Laboratory (ACTL). The method is specific to the characterization of anions in the simulant flowsheet work. Additional work will be needed for the analyses of anions in radiological samples by Analytical Development (AD) and DWPF. The documentation of the development and demonstration of the method fulfills the third requirement in the TTQAP, SRNL-RP-2010-00105, 'Task Technical and Quality Assurance Plan for Glycolic-Formic Acid Flowsheet Development, Definition and Demonstrations Tasks 1-3'.

  14. Image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Leach, Richard R.; Awwal, Abdul A. S.; Lowe-Webb, Roger; Miller-Kamm, Victoria; Orth, Charles; Roberts, Randy; Wilhelmsen, Karl

    2016-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short-pulse kilo-Joule laser pulses with controllable delays that generate X-rays to provide backlighting for high-density internal confinement fusion (ICF) capsule targets. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. ARC is designed to employ up to eight backlighters with tens-of-picosecond temporal resolution, to record the dynamics and produce an X-ray "motion picture" of the compression and ignition of cryogenic deuterium-tritium targets. ARC will generate tens-of-picosecond temporal resolution during the critical phases of ICF shots. Additionally, ARC supports a variety of other high energy density experiments including fast ignition studies on NIF. The automated alignment image analysis algorithms use digital camera sensor images to direct ARC beams onto the tens-of-microns scale metal wires. This paper describes the ARC automatic alignment sequence throughout the laser chain from pulse initiation to target with an emphasis on the image processing algorithms that generate the crucial alignment positions for ARC. The image processing descriptions and flow diagrams detail the alignment control loops throughout the ARC laser chain beginning in the ARC high-contrast front end (HCAFE), on into the ARC main laser area, and ending in the ARC target area.

  15. STATUS OF THE DEVELOPMENT OF IN-TANK/AT-TANK SEPARATIONS TECHNOLOGIES FOR FOR HIGH-LEVEL WASTE PROCESSING FOR THE U.S. DEPARTMENT OF ENERGY

    SciTech Connect

    Aaron, G.; Wilmarth, B.

    2011-09-19

    Within the U.S. Department of Energy's (DOE) Office of Technology Innovation and Development, the Office of Waste Processing manages a research and development program related to the treatment and disposition of radioactive waste. At the Savannah River (South Carolina) and Hanford (Washington) Sites, approximately 90 million gallons of waste are distributed among 226 storage tanks (grouped or collocated in 'tank farms'). This waste may be considered to contain mixed and stratified high activity and low activity constituent waste liquids, salts and sludges that are collectively managed as high level waste (HLW). A large majority of these wastes and associated facilities are unique to the DOE, meaning many of the programs to treat these materials are 'first-of-a-kind' and unprecedented in scope and complexity. As a result, the technologies required to disposition these wastes must be developed from basic principles, or require significant re-engineering to adapt to DOE's specific applications. Of particular interest recently, the development of In-tank or At-Tank separation processes have the potential to treat waste with high returns on financial investment. The primary objective associated with In-Tank or At-Tank separation processes is to accelerate waste processing. Insertion of the technologies will (1) maximize available tank space to efficiently support permanent waste disposition including vitrification; (2) treat problematic waste prior to transfer to the primary processing facilities at either site (i.e., Hanford's Waste Treatment and Immobilization Plant (WTP) or Savannah River's Salt Waste Processing Facility (SWPF)); and (3) create a parallel treatment process to shorten the overall treatment duration. This paper will review the status of several of the R&D projects being developed by the U.S. DOE including insertion of the ion exchange (IX) technologies, such as Small Column Ion Exchange (SCIX) at Savannah River. This has the potential to align the salt

  16. Microgravity and Materials Processing Facility study (MMPF): Requirements and Analyses of Commercial Operations (RACO) preliminary data release

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This requirements and analyses of commercial operations (RACO) study data release reflects the current status of research activities of the Microgravity and Materials Processing Facility under Modification No. 21 to NASA/MSFC Contract NAS8-36122. Section 1 includes 65 commercial space processing projects suitable for deployment aboard the Space Station. Section 2 contains reports of the R:BASE (TM) electronic data base being used in the study, synopses of the experiments, and a summary of data on the experimental facilities. Section 3 is a discussion of video and data compression techniques used as well as a mission timeline analysis.

  17. GIS analysis of the siting criteria for the Mixed and Low-Level Waste Treatment Facility and the Idaho Waste Processing Facility

    SciTech Connect

    Hoskinson, R.L.

    1994-01-01

    This report summarizes a study conducted using the Arc/Info{reg_sign} geographic information system (GIS) to analyze the criteria used for site selection for the Mixed and Low-Level Waste Treatment Facility (MLLWTF) and the Idaho Waste Processing Facility (IWPF). The purpose of the analyses was to determine, based on predefined criteria, the areas on the INEL that best satisfied the criteria. The coverages used in this study were produced by importing the AutoCAD files that produced the maps for a pre site selection draft report into the GIS. The files were then converted to Arc/Info{reg_sign} GIS format. The initial analysis was made by considering all of the criteria as having equal importance in determining the areas of the INEL that would best satisfy the requirements. Another analysis emphasized four of the criteria as ``must`` criteria which had to be satisfied. Additional analyses considered other criteria that were considered for, but not included in the predefined criteria. This GIS analysis of the siting criteria for the IWPF and MLLWTF provides a logical, repeatable, and defensible approach to the determination of candidate locations for the facilities. The results of the analyses support the location of the Candidate Locations.

  18. Processes in the Vicinity of an Injection Well of a Geothermal Facility in the Malm Aquifer

    NASA Astrophysics Data System (ADS)

    Baumann, Thomas; Lafogler, Mark; Wenderoth, Frank; Bartels, Jörn

    2016-04-01

    With high temperatures, high transmissivities and low salinities the Malm Aquifer in the Bavarian Molasse Basin offers ideal conditions for the exploration of geothermal energy. In 2011 the Pullach geothermal facility was extended with a third geothermal well to account for the increasing heat demand. In the course of this extension an injection well was converted to a production well. Hence, for the first time in the history of geothermal exploration of the Malm Aquifer, data became accessible from the surrounding of an injection well which has been in operation for more than 5 years. This data, together with data froma a push-pull tracer test started 9 months before the conversion, allows unique access to the processes at the injection well and sets the baseline for an assessment of the long term behavior of geothermal heat and power plants in the Molasse Basin. The development of the production temperatures went faster than expected, after 4 years of production the initial temperatures have almost been reached. This can only be explained with a vertically heterogeneous distribution of the transmissivity. In this setting, the cold water forms a thin disc which extends much further from the injection well. Thus, the effective area of the heat exchange with the matrix of the aquifer is larger than in a homogeneous setting. The breakthrough of the tracers was affected by an unexpected delay of the start of the production. The regional flow led to a shift of the injected tracer pulses with the innermost tracer pulse being entirely transposed downstream of the injection well. The recovery rates mirror the sorption coefficients of the individual tracers as determined in batch tests and column tests. It became apparent, that the stagnation phase led to a bias towards sorption with slow kinetics and diffusion-limited matrix interactions. The hydrochemical data showed a significant increase of the concentrations of calcium, magnesium, and bicarbonate indicating a

  19. Qualification of the Nippon Instrumentation for use in Measuring Mercury at the Defense Waste Processing Facility

    SciTech Connect

    Edwards, T.; Mahannah, R.

    2011-07-05

    The Nippon Mercury/RA-3000 system installed in 221-S M-14 has been qualified for use. The qualification was a side-by-side comparison of the Nippon Mercury/RA-3000 system with the currently used Bacharach Mercury Analyzer. The side-by-side testing included standards for instrument calibration verifications, spiked samples and unspiked samples. The standards were traceable back to the National Institute of Standards and Technology (NIST). The side-by-side work included the analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples. With the qualification of the Nippon Mercury/RA-3000 system in M-14, the DWPF lab will be able to perform a head to head comparison of a second Nippon Mercury/RA-3000 system once the system is installed. The Defense Waste Processing Facility (DWPF) analyzes receipt and product samples from the Sludge Receipt and Adjustment Tank (SRAT) to determine the mercury (Hg) concentration in the sludge slurry. The SRAT receipt is typically sampled and analyzed for the first ten SRAT batches of a new sludge batch to obtain an average Hg concentration. This average Hg concentration is then used to determine the amount of steam stripping required during the concentration/reflux step of the SRAT cycle to achieve a less than 0.6 wt% Hg in the SRAT product solids. After processing is complete, the SRAT product is sampled and analyzed for mercury to ensure that the mercury concentration does not exceed the 0.45 wt% limit in the Slurry Mix Evaporator (SME). The DWPF Laboratory utilizes Bacharach Analyzers to support these Hg analyses at this facility. These analyzers are more than 10 years old, and they are no longer supported by the manufacturer. Due to these difficulties, the Bacharach Analyzers are to be replaced by new Nippon Mercury/RA-3000 systems. DWPF issued a Technical Task Request (TTR) for the Savannah River National Laboratory (SRNL) to assist in the qualification of the new systems. SRNL

  20. The high moisture western coal processing system at the UTSI-DOE Coal Fired Flow Facility. Topical report

    SciTech Connect

    Sanders, M.E.

    1996-02-01

    The original eastern coal processing system at the Department of Energy`s Coal Fired Flow Facility (CFFF), located at the University of Tennessee Space Institute in Tullahoma, Tennessee, was modified to pulverize and dry Montana Rosebud, a western coal. Significant modifications to the CFFF coal processing system were required and the equipment selection criteria are reviewed. Coal processing system performance parameters are discussed. A summary of tests conducted and significant events are included.

  1. L. monocytogenes in a cheese processing facility: Learning from contamination scenarios over three years of sampling.

    PubMed

    Rückerl, I; Muhterem-Uyar, M; Muri-Klinger, S; Wagner, K-H; Wagner, M; Stessl, B

    2014-10-17

    The aim of this study was to analyze the changing patterns of Listeria monocytogenes contamination in a cheese processing facility manufacturing a wide range of ready-to-eat products. Characterization of L. monocytogenes isolates included genotyping by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). Disinfectant-susceptibility tests and the assessment of L. monocytogenes survival in fresh cheese were also conducted. During the sampling period between 2010 and 2013, a total of 1284 environmental samples were investigated. Overall occurrence rates of Listeria spp. and L. monocytogenes were 21.9% and 19.5%, respectively. Identical L. monocytogenes genotypes were found in the food processing environment (FPE), raw materials and in products. Interventions after the sampling events changed contamination scenarios substantially. The high diversity of globally, widely distributed L. monocytogenes genotypes was reduced by identifying the major sources of contamination. Although susceptible to a broad range of disinfectants and cleaners, one dominant L. monocytogenes sequence type (ST) 5 could not be eradicated from drains and floors. Significantly, intense humidity and steam could be observed in all rooms and water residues were visible on floors due to increased cleaning strategies. This could explain the high L. monocytogenes contamination of the FPE (drains, shoes and floors) throughout the study (15.8%). The outcome of a challenge experiment in fresh cheese showed that L. monocytogenes could survive after 14days of storage at insufficient cooling temperatures (8 and 16°C). All efforts to reduce L. monocytogenes environmental contamination eventually led to a transition from dynamic to stable contamination scenarios. Consequently, implementation of systematic environmental monitoring via in-house systems should either aim for total avoidance of FPE colonization, or emphasize a first reduction of L. monocytogenes to sites where

  2. Implementing comprehensive de-licensing process for the West Jefferson North Facility

    SciTech Connect

    Anderson, Keith

    2007-07-01

    Available in abstract form only. Full text of publication follows: Implementation of the comprehensive de-licensing process for the West Jefferson North (WJN) facility was documented through the Final Certification of Completion. The Final Certification of Completion summarizes the performance and results of the final status surveys of the affected and unaffected areas of the West Jefferson North (WJN) site as part of the completion of the Columbus Closure Project (CCP). Final status survey processes adhered to the requirements of the 'Radiological Characterization and Final Status Plan for Battelle Columbus Laboratories Decommissioning Project, West Jefferson Site' DD-97-02, Rev. 0 (hereinafter DD-97-02), as reflecting the requirements of draft NUREG 5849. Surveys were performed throughout the decommissioning and remediation activities performed at the WJN and documented in Final Status Survey Reports (FSSR). Throughout the project, the CCP activity engaged the oversight of the US Department of Energy (DOE), the Battelle Memorial Institute (BMI), and the Environmental Survey and Site Assessment Program (ESSAP) of the Oak Ridge Institute for Science and Education (ORISE). The ESSAP of the ORISE fulfilled the Independent Verification Contractor (IVC) role for the CCP under contract to the Oak Ridge Office of the DOE. The US Nuclear Regulatory Commission (NRC) also performed independent review of the in-process final status surveys. The FSSR, in conjunction with the IVC Letter Reports and the NRC inspection reports, document that the endpoint criteria objectives of the NRC-approved Decommissioning Plan have been met for WJN site as covered by the CCP. (author)

  3. 78 FR 69539 - Removal of Attestation Process for Facilities Using H-1A Registered Nurses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-20

    ... Facilities Using H-1A Registered Nurses AGENCY: Employment and Training Administration, Department of Labor... governing health care facilities using nonimmigrant foreign workers as registered nurses under the H-1A visa... exclusively for the temporary admission and employment of registered nurses, which permitted employers...

  4. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat

  5. Qualification of a Carbon Analyzer to Support the Defense Waste Processing Facility

    SciTech Connect

    Edwards, T.; Feller, M.

    2011-07-05

    The I-O Model 1030 carbon analyzer has been qualified for use at the Defense Waste Processing Facility (DWPF). The qualification was a side-by-side comparison of the Model 1030 system with the currently used Model 1010 Analyzer. This recommendation is based on side-by-side comparisons of the new unit to the currently used Model 1010 analyzer that are presented in this report. The side-by-side testing included standards and process samples. The standards, which were used for instrument calibration verifications in the measurement of total inorganic carbon (TIC) and of total organic carbon (TOC), were traceable back to the National Institute of Standards and Technology. The process samples included TIC analyses of Sludge Receipt and Adjustment Tank samples and TOC analyses for Slurry Mix Evaporator (SME) samples. After the Model 1030 has been used for production reporting, DWPF should consider an investigation into the uncertainties associated with the TOC measurements to determine how far below the 18,916 ppm limit DWPF must control the average of the measurements for a set of SME samples to account for the uncertainties of the measurements from this new analyzer. Based upon the results presented in this report, it is recommended that the Model 1030 carbon analyzer is qualified for use. This recommendation is based on side-by-side comparisons of the new unit to the currently used Model 1010 analyzer that are presented in this report. The side-by-side testing included standards for instrument calibration verifications for TIC and TOC, and process samples. The standards were traceable back to NIST. The process samples included TIC analyses of SRAT Receipt samples and TOC analyses for SME samples. At some point in the future, after the Model 1030 has been used for production reporting, DWPF should consider an investigation into the uncertainties associated with the TOC measurements to determine how far below the 18,916 ppm limit DWPF must control the average of the

  6. Facile Synthesis of Nb3Sn Via a Hydrogen Reduction Process

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Jiao, Shuqiang; Zhang, Long; Li, Yanxiang; Zhu, Hongmin

    2017-02-01

    A controllable and facile process for the preparation of Nb3Sn intermetallic compound nanopowders using NbCl5 and SnCl2 vapors reduced by hydrogen has been developed. The vaporizing rates of the two chlorides are controlled by measuring their mass loss as a function of carrier gas (argon) flow rate at certain vaporization temperatures, respectively. X-ray diffraction (XRD) patterns indicate that hydrogenous Nb3Sn products are obtained under the vaporizing rate of 0.155 g min-1 for NbCl5 and 0.036 g min-1 for SnCl2 with the hydrogen flow rate of 2100 ml min-1 at 1273 K (1000 °C). Results of semi-quantitative analysis by X-ray fluorescence (XRF) demonstrate that the atomic ratio of Nb to Sn in the as-synthesized products is 3.48:1, and the content of (Nb + Sn) is taken up to 89.61 wt pct from the total weight of the products. The products can be purified by vacuum heat treatment. Images of transmission electron microscopy (TEM) show that the products are homogenous particles with a mean diameter of 31 nm. In addition, the reaction ratio of the chlorides and the powder yield are controllable by hydrogen flow rate.

  7. CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    SciTech Connect

    Crawford, C.; Bannochie, C.

    2014-05-12

    A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD

  8. Operation of Bubblers in the Savannah River Site Defense Waste Processing Facility Melter - 12166

    SciTech Connect

    Hodges, Brandon C.; Iverson, Daniel C.; Diener, Glenn

    2012-07-01

    Savannah River Remediation (SRR) LLC acquired the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. In order to achieve the main goal of the contract, closing of High Level Waste (HLW) tanks, it was necessary to process more waste throughout the SRS liquid waste facilities. The Defense Waste Processing Facility (DWPF) would need to increase its production rate of radioactive waste glass filled canisters as a part of the plan to achieve this commitment. To attain the increased production rate, four bubblers were installed in the DWPF Melter in September 2010 to agitate the DWPF Melter glass pool. The four bubblers were designed to be installed in existing nozzles on the top-head of the DWPF Melter. The design and fabrication of the four (4) bubblers was accomplished through SRR critical subcontractor EnergySolutions LLC. In addition to the existing bubbler design, a new design concept has been approved and is in the process of fabrication. The new design will allow for the lower end (inside melter) of the bubbler to be replaced while the upper end (outside melter) of the bubbler is reused to minimize cost and waste at the DWPF. The bubblers have been operating in the DWPF Melter for approximately 1 year. The originally installed bubbler set was replaced in January 2011. The bubblers were visually examined once removed from the melter and showed minimal signs of wear. Material testing of the Inconel 690 is being performed to determine if the bubblers operational life can be extended. The use of the bubblers has changed the dynamics within the melter glass pool. This is shown through indications that the bubblers have increased the glass pool circulation. Overall, performance of the bubblers has been encouraging and the DWPF Melter has seen a significant improvement in its ability to process waste since the bubbler installation. The installation of the bubblers accomplished the goal of increasing the glass production capability of DWPF

  9. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report

    SciTech Connect

    1995-08-01

    This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

  10. VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 6 QUALIFICATION SAMPLE

    SciTech Connect

    Click, D.; Jones, M.; Edwards, T.

    2010-06-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) confirms applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples.1 DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem (CC) Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICPAES). In addition to the CC method confirmation, the DWPF lab's mercury (Hg) digestion method was also evaluated for applicability to SB6 (see DWPF procedure 'Mercury System Operating Manual', Manual: SW4-15.204. Section 6.1, Revision 5, Effective date: 12-04-03). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 6 (SB6) SRAT Receipt and SB6 SRAT Product samples. For validation of the DWPF lab's Hg method, only SRAT receipt material was used and compared to AR digestion results. The SB6 SRAT Receipt and SB6 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB6 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 5 (SB5), to form the SB6 Blend composition. In addition to the 16 elements currently measured by the DWPF, this report includes Hg and thorium (Th) data (Th comprising {approx}2.5 - 3 Wt% of the total solids in SRAT Receipt and SRAT Product, respectively) and provides specific details of ICP-AES analysis of Th. Thorium was found to interfere with the U 367.007 nm emission line, and an inter-element correction (IEC) had to be applied to U data, which is also

  11. Mechanical design and fabrication of a prototype facility for processing NaK using a chlorine reaction method

    SciTech Connect

    Dafoe, R.; Keller, D.; Stoll, F.

    1990-01-01

    A prototype facility has been built at the Idaho National Engineering Laboratory (INEL) to dispose of 180 gal(0.68 m{sup 3}) of radioactively contaminated NaK (sodium-potassium) that have been stored on site for 35 years. The NaK was used as primary coolant for the Experimental Breeder Reactor I (EBR-I) at the INEL and was contaminated during a meltdown of the Mark II core in November 1955. The NaK then was transferred to four containers for temporary storage. The facility process will react the NaK with elemental chlorine using a batch process to produce chemically stable sodium chloride and potassium chloride salts. The first use of the facility will be on a prototype level to verify the method. If results are favorable, the facility will be modified to eventually dispose of the EBR-I NaK. The design and intended operation of the prototype facility are described. 2 figs.

  12. Evaluation of employee exposure to organic tin compounds used as stabilizers at PVC processing facilities.

    PubMed

    Boraiko, Carol; Batt, John

    2005-02-01

    Organic tin compounds are primary substances used as heat stabilizers by the polyvinyl chloride (PVC) industry. The use of these compounds in the PVC industry is generally well controlled, usually by automated processes. This study was conducted to provide an overview of worker exposure to organic tin compounds at PVC processing facilities and to verify that these exposures are below the threshold limit value (TLV((R))) set by the American Conference of Governmental Industrial Hygienists for organic tin. The basis of the TLV indicates the principal concern is to minimize adverse effects on immune function and the central nervous system from airborne exposure to organic tin. The TLV has a skin designation based on the potential for percutaneous absorption; the TLVs for inhalation exposures are based on the presumption that there is no concurrent exposure via the skin and oral ingestion routes. Personal exposure monitoring was conducted following the National Institute for Occupational Safety and Health (NIOSH) 5504 sampling method and a modified version of the NIOSH analytical method. The results were reported as"total tin."The data indicated no average exposure levels for individual tasks exceeded the organic tin TLV, and 96%of results the samples were less than 20%of the TLV. Only 1 sample of 102 exceeded the TLV, and the individual was wearing appropriate respiratory protection. Subsequent investigation indicated the highest exposures occurred while the operators were conducting tasks that included manual handling of the organic tin compounds. These data suggest manual operations may have a greater potential for organic tin exposure.

  13. Uranium Exposures in a Community near a Uranium Processing Facility: Relationship with Hypertension and Hematologic Markers

    PubMed Central

    Wagner, Sara E.; Burch, James B.; Bottai, Matteo; Pinney, Susan M.; Puett, Robin; Porter, Dwayne; Vena, John E.; Hébert, James R.

    2010-01-01

    Background Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods Data from 8,216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolic blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results Of 8,216 adult FMMP participants 4,187 (51%) had low cumulative uranium exposure, 1,273 (15%) had moderate exposure, and 2,756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited

  14. Hypertension and hematologic parameters in a community near a uranium processing facility

    SciTech Connect

    Wagner, Sara E.; Burch, James B.; Bottai, Matteo; Pinney, Susan M.; Puett, Robin; Porter, Dwayne; Vena, John E.; Hebert, James R.

    2010-11-15

    Background: Environmental uranium exposure originating as a byproduct of uranium processing can impact human health. The Fernald Feed Materials Production Center functioned as a uranium processing facility from 1951 to 1989, and potential health effects among residents living near this plant were investigated via the Fernald Medical Monitoring Program (FMMP). Methods: Data from 8216 adult FMMP participants were used to test the hypothesis that elevated uranium exposure was associated with indicators of hypertension or changes in hematologic parameters at entry into the program. A cumulative uranium exposure estimate, developed by FMMP investigators, was used to classify exposure. Systolic and diastolic blood pressure and physician diagnoses were used to assess hypertension; and red blood cells, platelets, and white blood cell differential counts were used to characterize hematology. The relationship between uranium exposure and hypertension or hematologic parameters was evaluated using generalized linear models and quantile regression for continuous outcomes, and logistic regression or ordinal logistic regression for categorical outcomes, after adjustment for potential confounding factors. Results: Of 8216 adult FMMP participants 4187 (51%) had low cumulative uranium exposure, 1273 (15%) had moderate exposure, and 2756 (34%) were in the high (>0.50 Sievert) cumulative lifetime uranium exposure category. Participants with elevated uranium exposure had decreased white blood cell and lymphocyte counts and increased eosinophil counts. Female participants with higher uranium exposures had elevated systolic blood pressure compared to women with lower exposures. However, no exposure-related changes were observed in diastolic blood pressure or hypertension diagnoses among female or male participants. Conclusions: Results from this investigation suggest that residents in the vicinity of the Fernald plant with elevated exposure to uranium primarily via inhalation exhibited

  15. 40 CFR 80.513 - What provisions apply to transmix processing facilities and pipelines that produce diesel fuel...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... processing facilities and pipelines that produce diesel fuel from pipeline interface? 80.513 Section 80.513... pipelines that produce diesel fuel from pipeline interface? For purposes of this section, transmix means a mixture of finished fuels, such as pipeline interface, that no longer meets the specifications for a...

  16. 40 CFR 80.513 - What provisions apply to transmix processing facilities and pipelines that produce diesel fuel...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... processing facilities and pipelines that produce diesel fuel from pipeline interface? 80.513 Section 80.513... pipelines that produce diesel fuel from pipeline interface? For purposes of this section, transmix means a mixture of finished fuels, such as pipeline interface, that no longer meets the specifications for a...

  17. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    SciTech Connect

    Husler, R.O.; Weir, T.J.

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  18. 78 FR 33605 - Process for a Designated Contract Market or Swap Execution Facility To Make a Swap Available to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ...The Commodity Futures Trading Commission (``Commission'') is adopting regulations that establish a process for a designated contract market (``DCM'') or swap execution facility (``SEF'') to make a swap subject to the trade execution requirement pursuant to the Commodity Exchange Act (``CEA''). The Commission is also adopting regulations to establish a schedule to phase in compliance with the......

  19. Development of a portable hyperspectral imaging system for monitoring the efficacy of sanitation procedures in food processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cleaning and sanitation in food processing facilities is a critical step in reducing the risk of transfer of pathogenic organisms to food consumed by the public. Current methods to check the effectiveness of sanitation procedures rely on visual observation and sub-sampling tests such as ATP biolumin...

  20. A Microsoft Project-Based Planning, Tracking, and Management Tool for the National Transonic Facility's Model Changeover Process

    NASA Technical Reports Server (NTRS)

    Vairo, Daniel M.

    1998-01-01

    The removal and installation of sting-mounted wind tunnel models in the National Transonic Facility (NTF) is a multi-task process having a large impact on the annual throughput of the facility. Approximately ten model removal and installation cycles occur annually at the NTF with each cycle requiring slightly over five days to complete. The various tasks of the model changeover process were modeled in Microsoft Project as a template to provide a planning, tracking, and management tool. The template can also be used as a tool to evaluate improvements to this process. This document describes the development of the template and provides step-by-step instructions on its use and as a planning and tracking tool. A secondary role of this document is to provide an overview of the model changeover process and briefly describe the tasks associated with it.

  1. The Shock Compression Laboratory at Harvard: A New Facility for Planetary Impact Processes

    NASA Technical Reports Server (NTRS)

    Stewart, S. T.

    2004-01-01

    The Shock Compression Laboratory in the Department of Earth and Planetary Sciences at Harvard is a new facility for the study of impact and collisional phenomena. The following describes the experimental capabilities of the laboratory.

  2. Process Determination and Plant Layout for Western Demilitarization Facility Hawthorne, Nevada

    DTIC Science & Technology

    1974-09-01

    carts and driverless tow tractors which con- nected each primary structure, the off-loading dock, and the ready service magazines. b. Facility layout...indicate two related conveyance systems to be the most feasible for the facility. The driverless tractor/ component cart system is the better of the two... driverless configuration should be adopted. The system would require a pave- ment path between buildings and would be controlled by the latest 28

  3. Analysis of the process applied to end-of-life vehicles in Authorised Treatment Facilities

    NASA Astrophysics Data System (ADS)

    Muñoz, C.; Garraín, D.; Franco, V.; Royo, M.; Justel, D.; Vidal, R.

    2009-11-01

    Authorised treatment facilities (ATFs) play a key role in the process undergone by vehicles when they reach their end of life (EoL) within the context of Directive 2000/53/EC. Whenever an EoL vehicle is received at an ATF, a certificate of destruction is issued. The process continues with the depollution of hazardous waste materials from the vehicle and dismantling of parts that will be reused or recycled. Finally, the remaining parts of the vehicle are transported to a shredding plant. Directive 2000/53/EC sets a number of environmental goals regarding the reuse and recycling of vehicle parts and the recovery of waste materials at the EoL of vehicles. These goals will condition the evolution of ATFs as they gradually become more restrictive. As of today, the goals set by Directive 2000/53/EC for the year 2006 are being met (1). However, it would be necessary to assess the situation of those parts that comprise the fraction of the vehicle that is not recycled, reused or recovered in order to predict the degree of compliance with the goals set for the year 2015 (recycling, reusing or recovering 95% by weight of EoL vehicles). The use of lighter materials—light alloys and reinforced plastics—as a vehicle weight-reducing strategy should be coordinated with the process carried out at ATFs in order to ensure compliance with the aforementioned goals. The results of our study seem to indicate that the most usual EoL scenario today—that in which practically all of the ferrous and non-ferrous metals are recycled and the lightweight fraction of vehicles and remaining inert materials are sent to a landfill—should be revised in order to reach the environmental goals set for the year 2015. To that avail, new strategies will have to be developed to allow for an adequate treatment—recycling, reuse or recovery—of those vehicle components that are presently sent to a landfill.

  4. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    SciTech Connect

    Jantzen, C.; Edwards, T.

    2015-09-25

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  5. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    SciTech Connect

    Pechmann, J.H.K.; Scott, D.E.; McGregor, J.H.; Estes, R.A.; Chazal, A.C.

    1993-02-01

    The Defense Waste Processing Facility (DWPF) was built on the Savannah River Site (SRS) during the mid-1980's. The Savannah River Ecology Laboratory (SREL) has completed 12 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Research conducted by the SREL has focused primarily on four questions related to these wetlands: (1) Prior to construction, what fauna and flora were present at the DWPF site and at similar, yet undisturbed, alternative sites (2) By comparing the Carolina bay at the DWPF site (Sun Bay) with an undisturbed control Carolina bay (Rainbow Bay), what effect is construction having on the organisms that inhabited the DWPF site (3) By comparing control streams with streams on the periphery of the DWPF site, what effect is construction having on the peripheral streams (4) How effective have efforts been to lessen the impacts of construction, both with respect to erosion control measures and the construction of refuge ponds'' as alternative breeding sites for amphibians that formerly bred at Sun Bay Through the long-term census-taking of biota at the DWPF site and Rainbow Bay, SREL has begun to evaluate the impact of construction on the biota and the effectiveness of mitigation efforts. Similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive Orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10CFR1022).

  6. Fabrication of biodegradable polyurethane microspheres by a facile and green process.

    PubMed

    Lin, Cheng-Yen; Hsu, Shan-hui

    2015-05-01

    Two different compositions of water-based biodegradable polyurethane (PU) in the form of homogeneous nanoparticles (NPs) were synthesized using biodegradable polyesters as the soft segment. The first PU (PU01) was based on poly(ε-caprolactone) (PCL) diol and the second PU (PU02) was based on 40% PCL diol and 60% polyethylene butylene adipate diol. The PU NP dispersions with different solid contents were sprayed into liquid nitrogen and resuspended in water to generate elastic microspheres (50-60 µm) with different nanoporosities. In vitro degradation analysis revealed that microspheres of PU02 (i.e., PU02 MS) degraded faster than those of PU01 (PU01 MS). Methylene blue was encapsulated during microsphere formation and the release was investigated. Microspheres made from a lower content (10%) of PU02 dispersion (i.e., PU02 MS_10) showed a greater burst release of methylene blue in 6 h, whereas those made from a higher content (30%) of PU01 dispersion (i.e., PU01 MS_30) revealed a prolonged release with a significantly lower burst release. Biocompatibility evaluation using L929 fibroblasts demonstrated that cells were attached and proliferated on microspheres after 24 h. On the other hand, microspheres may further self-assemble into films and scaffolds. Surface modification of microspheres by chitosan may modify the self-assembly behavior of microspheres. Microspheres could be stacked to form scaffolds with different macroporosities. Fibroblasts were successfully seeded and grown in the microsphere-stacked scaffolds. We concluded that the biodegradable and elastic microspheres may be facilely produced from a green and sustainable process with potential applications in drug release and three-dimensional cell culture.

  7. Molecular and Genomic Characterization of Vibrio mimicus Isolated from a Frozen Shrimp Processing Facility in Mexico

    PubMed Central

    Guardiola-Avila, Iliana; Acedo-Felix, Evelia; Sifuentes-Romero, Itzel; Yepiz-Plascencia, Gloria; Gomez-Gil, Bruno; Noriega-Orozco, Lorena

    2016-01-01

    Vibrio mimicus is a gram-negative bacterium responsible for diseases in humans. Three strains of V. mimicus identified as V. mimicus 87, V. mimicus 92 and V. mimicus 93 were isolated from a shrimp processing facility in Guaymas, Sonora, Mexico. The strains were analyzed using several molecular techniques and according to the cluster analysis they were different, their similarities ranged between 51.3% and 71.6%. ERIC-PCR and RAPD (vmh390R) were the most discriminatory molecular techniques for the differentiation of these strains. The complete genomes of two strains (V. mimicus 87, renamed as CAIM 1882, and V. mimicus 92, renamed as CAIM 1883) were sequenced. The sizes of the genomes were 3.9 Mb in both strains, with 2.8 Mb in ChI and 1.1 Mb in ChII. A 12.7% difference was found in the proteome content (BLAST matrix). Several virulence genes were detected (e.g. capsular polysaccharide, an accessory colonization factor and genes involved in quorum-sensing) which were classified in 16 categories. Variations in the gene content between these genomes were observed, mainly in proteins and virulence genes (e.g., hemagglutinin, mobile elements and membrane proteins). According to these results, both strains were different, even when they came from the same source, giving an insight of the diversity of V. mimicus. The identification of various virulence genes, including a not previously reported V. mimicus gene (acfD) in ChI in all sequenced strains, supports the pathogenic potential of this species. Further analysis will help to fully understand their potential virulence, environmental impact and evolution. PMID:26730584

  8. Airborne concentrations of chrysotile asbestos in serpentine quarries and stone processing facilities in Valmalenco, Italy.

    PubMed

    Cattaneo, Andrea; Somigliana, Anna; Gemmi, Mauro; Bernabeo, Ferruccio; Savoca, Domenico; Cavallo, Domenico M; Bertazzi, Pier A

    2012-07-01

    Asbestos may be naturally present in rocks and soils. In some cases, there is the possibility of releasing asbestos fibres into the atmosphere from the rock or soil, subsequently exposing workers and the general population, which can lead to an increased risk of developing asbestos-related diseases. In the present study, air contaminated with asbestos fibres released from serpentinites was investigated in occupational settings (quarries and processing factories) and in the environment close to working facilities and at urban sites. The only naturally occurrence of asbestos found in Valmalenco area was chrysotile; amphibole fibres were never detected. An experimental cut-off diameter of 0.25 μm was established for distinguishing between Valmalenco chrysotile and antigorite single fibres using selected area electron diffraction analyses. Air contamination from chrysotile fibres in the examined occupational settings was site-dependent as the degree of asbestos contamination of Valmalenco serpentinites is highly variable from place to place. Block cutting of massive serpentinites with multiple blades or discs and drilling at the quarry sites that had the highest levels of asbestos contamination generated the highest exposures to (i.e. over the occupational exposure limits) asbestos. Conversely, working activities on foliated serpentinites produced airborne chrysotile concentrations comparable with ambient levels. Environmental chrysotile concentrations were always below the Italian limit for life environments (0.002 f ml(-1)), except for one sample collected at a quarry property boundary. The present exposure assessment study should encourage the development of an effective and concordant policy for proper use of asbestos-bearing rocks and soils as well as for the protection of public health.

  9. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    SciTech Connect

    Koopman, D. C.

    2013-01-22

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the

  10. Description of Defense Waste Processing Facility reference waste form and canister. Revision 1

    SciTech Connect

    Baxter, R.G.

    1983-08-01

    The Defense Waste Processing Facility (DWPF) will be located at the Savannah River Plant in Aiken, SC, and is scheduled for construction authorization during FY-1984. The reference waste form is borosilicate glass containing approx. 28 wt % sludge oxides, with the balance glass frit. Borosilicate glass was chosen because of its high resistance to leaching by water, its relatively high solubility for nuclides found in the sludge, and its reasonably low melting temperature. The glass frit contains about 58% SiO/sub 2/ and 15% B/sub 2/O/sub 3/. Leachabilities of SRP waste glasses are expected to approach 10/sup -8/ g/m/sup 2/-day based upon 1000-day tests using glasses containing SRP radioactive waste. Tests were performed under a wide variety of conditions simulating repository environments. The canister is filled with 3260 lb of glass which occupies about 85% of the free canister volume. The filled canister will generate approx. 470 watts when filled with oxides from 5-year-old sludge and 15-year-old supernate from the sludge and supernate processes. The radionuclide content of the canister is about 177,000 ci, with a radiation level of 5500 rem/h at canister surface contact. The reference canister is fabricated of standard 24-in.-OD, Schedule 20, 304L stainless steel pipe with a dished bottom, domed head, and a combined lifting and welding flange on the head neck. The overall canister length is 9 ft 10 in. with a 3/8-in. wall thickness. The 3-m canister length was selected to reduce equipment cell height in the DWPF to a practical size. The canister diameter was selected as an optimum size from glass quality considerations, a logical size for repository handling and to ensure that a filled canister with its double containment shipping cask could be accommodated on a legal-weight truck. The overall dimensions and weight appear to be compatible with preliminary assessments of repository requirements. 10 references.

  11. Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites. [Metal smelting facility

    SciTech Connect

    Mack, J.E.; Williams, L.C.

    1982-01-01

    Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986.

  12. SHORT CIRCUIT COORDINATION STUDY & ARC FLASH EVALUATION FOR LIQUID PROCESSING & CAPSULE STORAGE 310 FACILITY

    SciTech Connect

    TOWNE, C.M.

    2003-12-26

    The objective of this study is to provide a design basis document for the electrical distribution system for the 310 Facility in the 300 Area. The study must assure that electrical equipment is rated to withstand the available fault current under abnormal (short circuit) conditions. Under-rated equipment would result in property damage, prolonged facility outages, and possible personal injury. Also to be considered, is the coordination of protective devices. This assures that the protection device nearest a fault will open and isolate the problem area from the remainder of facility systems. The study must specify what settings are required on adjustable protective devices to achieve optimum coordination. Lastly, the study must calculate Arc Blast energies at all parts of the system so that proper Personal Protective Equipment (PPE) can be specified for energized work.

  13. Chemical hazards database and detection system for Microgravity and Materials Processing Facility (MMPF)

    NASA Technical Reports Server (NTRS)

    Steele, Jimmy; Smith, Robert E.

    1991-01-01

    The ability to identify contaminants associated with experiments and facilities is directly related to the safety of the Space Station. A means of identifying these contaminants has been developed through this contracting effort. The delivered system provides a listing of the materials and/or chemicals associated with each facility, information as to the contaminant's physical state, a list of the quantity and/or volume of each suspected contaminant, a database of the toxicological hazards associated with each contaminant, a recommended means of rapid identification of the contaminants under operational conditions, a method of identifying possible failure modes and effects analysis associated with each facility, and a fault tree-type analysis that will provide a means of identifying potential hazardous conditions related to future planned missions.

  14. Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste

    SciTech Connect

    Jantzen, C.M.

    1992-06-30

    The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs){sub 2}SO{sub 4}, (Na, K, Cs)BF{sub 4}, (Na, K){sub 2}B{sub 4}O{sub 7} and (Na,K)CrO{sub 4} species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK){sub 2}SO{sub 4}, (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na{sub 2}BF{sub 4}) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur.

  15. Wetland and Sensitive Species Survey Report for Y-12: Proposed Uranium Processing Facility (UPF)

    SciTech Connect

    Giffen, N.; Peterson, M.; Reasor, S.; Pounds, L.; Byrd, G.; Wiest, M. C.; Hill, C. C.

    2009-11-01

    This report summarizes the results of an environmental survey conducted at sites associated with the proposed Uranium Processing Facility (UPF) at the Y-12 National Security Complex in September-October 2009. The survey was conducted in order to evaluate potential impacts of the overall project. This project includes the construction of a haul road, concrete batch plant, wet soil storage area and dry soil storage area. The environmental surveys were conducted by natural resource experts at ORNL who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). Natural resource staff assistance on this project included the collection of environmental information that can aid in project location decisions that minimize impacts to sensitive resource such as significant wildlife populations, rare plants and wetlands. Natural resources work was conducted in various habitats, corresponding to the proposed areas of impact. Thc credentials/qualifications of the researchers are contained in Appendix A. The proposed haul road traverses a number of different habitats including a power-line right-of-way. wetlands, streams, forest and mowed areas. It extends from what is known as the New Salvage Yard on the west to the Polaris Parking Lot on the east. This haul road is meant to connect the proposed concrete batch plant to the UPF building site. The proposed site of the concrete batch plant itself is a highly disturbed fenced area. This area of the project is shown in Fig. 1. The proposed Wet Soils Disposal Area is located on the north side of Bear Creek Road at the former Control Burn Study Area. This is a second growth arce containing thick vegetation, and extensive dead and down woody material. This area of the project is shown in Fig. 2. Thc dry soils storage area is proposed for what is currently known as the West Borrow Area. This site is located on the west side of Reeves Road south of Bear Creek Road. The site is an early successional

  16. EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Mahannah, R.; Edwards, T.

    2013-06-04

    Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the

  17. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    SciTech Connect

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  18. DEFENSE WASTE PROCESSING FACILITY ANALYTICAL METHOD VERIFICATION FOR THE SLUDGE BATCH 5 QUALIFICATION SAMPLE

    SciTech Connect

    Click, D; Tommy Edwards, T; Henry Ajo, H

    2008-07-25

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO3 acid dissolution (i.e., DWPF Cold Chem Method, see Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium Peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestion of Sludge Batch 5 (SB5) SRAT Receipt and SB5 SRAT Product samples. The SB5 SRAT Receipt and SB5 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB5 Batch composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 4 (SB4), to form the SB5 Blend composition. The results for any one particular element should not be used in any way to identify the form or speciation of a particular element in the sludge or used to estimate ratios of compounds in the sludge. A statistical comparison of the data validates the use of the DWPF CC method for SB5 Batch composition. However, the difficulty that was encountered in using the CC method for SB4 brings into question the adequacy of CC for the SB5 Blend. Also, it should be noted that visible solids remained in the final diluted solutions of all samples digested by this method at SRNL (8 samples total), which is typical for the DWPF CC method but not seen in the other methods. Recommendations to the DWPF for application to SB5 based on studies to date: (1) A dissolution study should be performed on the WAPS

  19. Qualification of the First ICS-3000 ION Chromatograph for use at the Defense Waste Processing Facility

    SciTech Connect

    Edwards, T; Mahannah, R.

    2011-07-05

    The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-13 has been qualified for use. The qualification was a head to head comparison of the ICS-3000 with the currently used DX-500 IC system. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. Based upon the successful qualification of the ICS-3000 in M-13, it is recommended that this task proceed in developing the data to qualify, by a head to head comparison of the two ICS-3000 instruments, a second ICS-3000 to be installed in M-14. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, organic acid constituents, etc. The DWPF Laboratory (Lab) has been using Dionex DX-500 ion chromatography (IC) systems since 1998. The vendor informed DWPF in 2006 that the instruments would no longer be supported by service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance

  20. QUALIFICATION OF THE SECOND ICS-3000 ION CHROMATOGRAPH FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Edwards, T.; Mahannah, R.

    2009-12-03

    The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-14 has been qualified for use. The qualification testing was a head to head comparison of the second ICS-3000 with the initial ICS-3000 system that was installed in 221-S M-13. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, etc. The DWPF Laboratory (Lab) has recently replaced the Dionex DX-500 ion chromatography (IC) systems that had been used since 1998 by the first of two new ICS-3000 systems. The replacement effort was necessary due to the vendor of the DX-500 systems no longer supporting service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance due to the pump configuration only using water versus the current system where the pump uses various hydroxide concentrations. The ICS-3000

  1. Design-Build Process for the Research Support Facility (RSF) (Book)

    SciTech Connect

    Not Available

    2012-06-01

    An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

  2. Building Information Modeling (BIM) Primer. Report 1: Facility Life-Cycle Process and Technology Innovation

    DTIC Science & Technology

    2012-08-01

    Facilities Web Reports (Bentley Systems). .......................................................... 36  Figure D1. National Aquarium project summary...design elements on a scheme. - Clash-free, coordinated model - Lower design cost - Less burden on design team 5% saved in design cost Material ...schedules Component and material schedules are generated automatically and accurately from the 3-D model, and can be transferred easily to and from

  3. Improving the Quality of Services in Residential Treatment Facilities: A Strength-Based Consultative Review Process

    ERIC Educational Resources Information Center

    Pavkov, Thomas W.; Lourie, Ira S.; Hug, Richard W.; Negash, Sesen

    2010-01-01

    This descriptive case study reports on the positive impact of a consultative review methodology used to conduct quality assurance reviews as part of the Residential Treatment Center Evaluation Project. The study details improvement in the quality of services provided to youth in unmonitored residential treatment facilities. Improvements were…

  4. Applying the OSHA Process Safety Management Standard to Manufacturing Explosives at U.S. Government Facilities

    DTIC Science & Technology

    2010-07-01

    employee participation. Employee participation should begin at the inception of PSM implementation. Such participation not only improves employee commitment to...should begin at the inception of PSM implementation. Such participation not only improves employee commitment to PSM, but a facility will end up

  5. Military Personnel: Enhanced Collaboration and Process Improvements Needed for Determining Military Treatment Facility Medical Personnel Requirements

    DTIC Science & Technology

    2010-07-01

    dentists, medical service corps, and veterinarians , to name a few, at the work center level across Army fixed military treatment facilities. The model uses...1072 - 896 903 Hematology /Oncology 41 40 43 - 12 17 - 18 14 Infectious Disease 63 59 62 - 29 34 - 16 17 Internal Medicine 315 e 254 e 277 e

  6. A Guide for Planning Facilities for Occupational Preparation Programs in Data Processing. Interim Report. Research 25.

    ERIC Educational Resources Information Center

    McIntosh, William A.

    This guide lists a series of pivotal questions about the educational program to be offered, and the answers to these questions bear directly on the numbers and kinds of instructional areas needed in the contemplated facilities. Much of the material is presented in a checklist format which allows for consideration of alternatives in facility…

  7. 10 CFR 95.15 - Approval for processing licensees and others for facility clearance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... clearance. 95.15 Section 95.15 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FACILITY SECURITY CLEARANCE AND SAFEGUARDING OF NATIONAL SECURITY INFORMATION AND RESTRICTED DATA Physical Security § 95.15... involved and they meet the security requirements of the other agency. If NRC classified information...

  8. Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile microwave-assisted process.

    PubMed

    Pang, Min; Liu, Dapeng; Lei, Yongqian; Song, Shuyan; Feng, Jing; Fan, Weiqiang; Zhang, Hongjie

    2011-06-20

    Rare-earth-doped magnetic-optic bifunctional alkaline-earth metal fluoride nanocrystals have been successfully synthesized via a facile microwave-assisted process. The as-prepared nanocrystals were monodisperse and could form stable colloidal solutions in polar solvents, such as water and ethanol. They show bright-green fluorescence emisson. Furthermore, Gd(3+)-doped ones exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 K.

  9. Vectorial diffusion for facile solution-processed self-assembly of insoluble semiconductors: a case study on metal phthalocyanines.

    PubMed

    Wang, Chengliang; Fang, Yaoguo; Wen, Liaoyong; Zhou, Min; Xu, Yang; Zhao, Huaping; De Cola, Luisa; Hu, Wenping; Lei, Yong

    2014-08-25

    Solution processibility is one of the most intriguing properties of organic semiconductors. However, it is difficult to find a suitable solvent and solution process for most semiconductors. For example, metal phthalocyanines (MPcs) are only soluble in non-volatile solvents, which prevent their applications from solution process. For the first time, vectorial diffusion is utilized for solution processing of MPcs. The obtained large F16CuPc and α-phase CuPc crystals and the efficient phase separation of them suggest the vectorial diffusion process is as slow as a self-assembly process, which is helpful to yield large crystals and purify the semiconductors. This method, which only uses common commercial solvents without any complex and expensive instruments and high-temperature operation, provides a facile approach for purification of organic semiconductors and growth of their crystals in large quantities.

  10. The Fuel Processing Research Facility - A Platform for the Conduct of Synthesis Gas Technology R&D

    SciTech Connect

    Monahan, Michael J.; Berry, David A.; Gardner, Todd H.; Lyons, K. David

    2001-11-06

    Vision 21 is the U. S. Department of Energy's initiative to deploy high efficiency, ultraclean co-production coal conversion power plants in the twenty-first century. These plants will consist of power and co-production modules, which are integrated to meet specific power and chemical markets. A variety of fuel gas processing technology issues involving gas separations, cleanup, gas-to-liquid fuels production and chemical synthesis, to mention a few, will be addressed by the program. The overall goal is to effectively eliminate, at competitive costs, environmental concerns associated with the use of fossil fuels for producing electricity and transportation fuels. The Fuel Processing Research Facility (FPRF) was developed as a fuel-flexible platform to address many of these technology needs. The facility utilizes a simplified syngas generator that is capable of producing 2,000 standard cubic feet per hour of 900 degree Celsius and 30 atmosphere synthesis gas that can be tailored to the gas composition of interest. It was built on a ''mid-scale'' level in an attempt to successfully branch the traditionally difficult scale-up from laboratory to pilot scale. When completed, the facility will provide a multi-faceted R&D area for the testing of fuel cells, gas separation technologies, and other gas processing unit operations.

  11. Ecological survey for the siting of the Mixed and Low-Level Waste Treatment Facility and the Idaho Waste Processing Facility

    SciTech Connect

    Hoskinson, R.L.

    1994-05-01

    This report summarizes the results of field ecological surveys conducted by the Center for Integrated Environmental Technologies (CIET) on the Idaho National Engineering Laboratory (INEL) at four candidate locations for the siting of the Mixed and Low-Level Waste Treatment Facility (MLLWTF) and the Idaho Waste Processing Facility (IWPF). The purpose of these surveys was to comply with all Federal laws and Executive Orders to identify and evaluate any potential environmental impacts because of the project. The boundaries of the candidate location were marked with blaze-orange lath survey marker stakes by the project management. Global Positioning System (GPS) measurements of the marker stakes were made, and input to the Arc/Info{reg_sign} geographic information system (GIS). Field surveys were conducted to assess any potential impact to any important species, important habitats, and to any environmental study areas. The GIS location data was overlayed onto the INEL vegetation map and an analysis of vegetation classes on the locations was done. Results of the field surveys indicate use of Candidate Location {number_sign}1 by pygmy rabbits (Sylvilagus idahoensis) and expected use by them of Candidate Locations {number_sign}3 and {number_sign}9. Pygmy rabbits are categorized as a C2 species by the US Fish and Wildlife Service (USFWS). Two other C2 species, the ferruginous hawk (Buteo regalis) and the loggerhead shrike (Lanius ludovicianus) would also be expected to frequent the candidate locations. Candidate Location {number_sign}5 at the north end of the INEL is in the winter range of a large number of pronghorn antelope (Antilocapra americana).

  12. Downgrading Nuclear Facilities to Radiological Facilities

    SciTech Connect

    Jarry, Jeffrey F.; Farr, Jesse Oscar; Duran, Leroy

    2015-08-01

    Based on inventory reductions and the use of alternate storage facilities, the Sandia National Laboratories (SNL) downgraded 4 SNL Hazard Category 3 (HC-3) nuclear facilities to less-than-HC-3 radiological facilities. SNL’s Waste Management and Pollution Prevention Department (WMPPD) managed the HC-3 nuclear facilities and implemented the downgrade. This paper will examine the downgrade process,

  13. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    SciTech Connect

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  14. Integration of the CERCLA and RCRA processes at an industrial facility using Texas risk reduction standards

    SciTech Connect

    Crossley, D.B.; Rogers, W.J.

    1995-12-31

    Industrial facilities in Texas that use, store and/or treat hazardous materials operate pursuant to the conditions of a Resource Conservation and Recovery Act (RCRA) permit and must also ensure compliance with provisions of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) if nominated to the National Priorities List of contaminated sites. While the CERCLA and RCRA programs have differing approaches, their objective is similar, i.e., mitigation of releases or threatened releases of toxic substances that may adversely impact human health or the environment. Recognizing the similarities in regulatory intent, a regulated facility may use Texas-promulgated risk reduction standards to establish risk-based contaminant specific cleanup levels for corrective actions pursuant to RCRA authority. Simultaneously, the facility will be evaluated for risk to human and ecological endpoints pursuant to CERCLA. A Baseline Risk Assessment (BRA) must be conducted to establish site-wide objectives that will be applied to individual solid waste management units ensuring compliance with all substantive requirements of CERCLA. The authors conclude that the parallel, integrated approach to these regulatory requirements will accelerate characterization/remediation of potential waste disposal sites, thereby reducing Environmental Restoration program expenditures.

  15. Development of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) Process for Cesium Removal from High-Level Tank Waste

    SciTech Connect

    Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene; Sloop Jr, Frederick {Fred} V; Williams, Neil J; Birdwell Jr, Joseph F; Lee, Denise L; Leonard, Ralph; Fink, Samuel D; Peters, Thomas B.; Geeting, Mark W

    2011-01-01

    This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet that boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.

  16. Mines and mineral processing facilities in the vicinity of the March 11, 2011, earthquake in northern Honshu, Japan

    USGS Publications Warehouse

    Menzie, W. David; Baker, Michael S.; Bleiwas, Donald I.; Kuo, Chin

    2011-01-01

    U.S. Geological Survey data indicate that the area affected by the March 11, 2011, magnitude 9.0 earthquake and associated tsunami is home to nine cement plants, eight iodine plants, four iron and steel plants, four limestone mines, three copper refineries, two gold refineries, two lead refineries, two zinc refineries, one titanium dioxide plant, and one titanium sponge processing facility. These facilities have the capacity to produce the following percentages of the world's nonfuel mineral production: 25 percent of iodine, 10 percent of titanium sponge (metal), 3 percent of refined zinc, 2.5 percent of refined copper, and 1.4 percent of steel. In addition, the nine cement plants contribute about one-third of Japan's cement annual production. The iodine is a byproduct from production of natural gas at the Miniami Kanto gas field, east of Tokyo in Chiba Prefecture. Japan is the world's second leading (after Chile) producer of iodine, which is processed in seven nearby facilities.

  17. Risk-Based Disposal Plan for PCB Paint in the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Canal

    SciTech Connect

    R. A. Montgomery

    2008-05-01

    This Toxic Substances Control Act Risk-Based Polychlorinated Biphenyl Disposal plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex, Idaho National Laboratory Site, to address painted surfaces in the empty canal under 40 CFR 761.62(c) for paint, and under 40 CFR 761.61(c) for PCBs that may have penetrated into the concrete. The canal walls and floor will be painted with two coats of contrasting non-PCB paint and labeled as PCB. The canal is covered with open decking; the access grate is locked shut and signed to indicate PCB contamination in the canal. Access to the canal will require facility manager permission. Protective equipment for personnel and equipment entering the canal will be required. Waste from the canal, generated during ultimate Decontamination and Decommissioning, shall be managed and disposed as PCB Bulk Product Waste.

  18. Nuclear Weapons. National Nuclear Security Administration’s Plans for Its Uranium Processing Facility Should Better Reflect Funding Estimates and Technology Readiness

    DTIC Science & Technology

    2010-11-01

    metal. Recovery extraction centrifugal contactors A process that uses solvent to extract uranium for purposes of purification. Agile machining A...Appropriations, U.S. Senate NUCLEAR WEAPONS National Nuclear Security Administration’s Plans for Its Uranium Processing Facility Should Better...00-2010 4. TITLE AND SUBTITLE Nuclear Weapons: National Nuclear Security Administration’s Plans for Its Uranium Processing Facility Should Better

  19. Laser beam smoothing and backscatter saturation processes in plasmas relevant to National Ignition Facility hohlraums

    SciTech Connect

    Berger, R L; Cohen, B I; Decker, C D; Dixit, S; Glenzer, S H; Hinkel, D E; Kirkwood, R K; Langdon, A B; Lefebvre, E; MacGowan, B J; Moody, J D; Rothenberg, J E; Rousseuax, C; Still, C H; Suter, L J; Williams, E A

    1998-10-01

    We have used gas-filled targets irradiated at the Nova laser to simulate National Ignition Facility (NlF) hohlraum plasmas and to study the dependence of Stimulated Raman (SRS) and Brillouin (SBS) Scattering on beam smoothing at a range of laser intensities (3{omega}, 2 - 4 10{sup 15}Wcm{sup -2}) and plasma conditions. We have demonstrated the effectiveness of polarization smoothing as a potential upgrade to the NIF. Experiments with higher intensities and higher densities characteristic of 350eV hohlraum designs indicate that with appropriate beam smoothing the backscatter from such hohlraums may be tolerable.

  20. Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China.

    PubMed

    Mo, Ziwei; Shao, Min; Lu, Sihua; Qu, Hang; Zhou, Mengyi; Sun, Jin; Gou, Bin

    2015-11-15

    Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities were investigated in the Yangtze River Delta, China. Source samples were collected from various process units in the petrochemical, basic chemical, and chlorinated chemical plants, and were measured using gas chromatography-mass spectrometry/flame ionization detection. The results showed that propane (19.9%), propene (11.7%), ethane (9.5%) and i-butane (9.2%) were the most abundant species in the petrochemical plant, with propene at much higher levels than in petrochemical profiles measured in other regions. Styrene (15.3%), toluene (10.3%) and 1,3-butadiene (7.5%) were the major species in the basic chemical industry, while halocarbons, especially dichloromethane (15.2%) and chloromethane (7.5%), were substantial in the chlorinated chemical plant. Composite profiles were calculated using a weight-average approach based on the VOC emission strength of various process units. Emission profiles for an entire petrochemical-related industry were found to be process-oriented and should be established considering the differences in VOC emissions from various manufacturing facilities. The VOC source reactivity and carcinogenic risk potential of each process unit were also calculated in this study, suggesting that process operations mainly producing alkenes should be targeted for possible controls with respect to reducing the ozone formation potential, while process units emitting 1,3-butadiene should be under priority control in terms of toxicity. This provides a basis for further measurements of process-specific VOC emissions from the entire petrochemical industry. Meanwhile, more representative samples should be collected to reduce the large uncertainties.

  1. Features, events, processes, and safety factor analysis applied to a near-surface low-level radioactive waste disposal facility

    SciTech Connect

    Stephens, M.E.; Dolinar, G.M.; Lange, B.A.

    1995-12-31

    An analysis of features, events, processes (FEPs) and other safety factors was applied to AECL`s proposed IRUS (Intrusion Resistant Underground Structure) near-surface LLRW disposal facility. The FEP analysis process which had been developed for and applied to high-level and transuranic disposal concepts was adapted for application to a low-level facility for which significant efforts in developing a safety case had already been made. The starting point for this process was a series of meetings of the project team to identify and briefly describe FEPs or safety factors which they thought should be considered. At this early stage participants were specifically asked not to screen ideas. This initial list was supplemented by selecting FEPs documented in other programs and comments received from an initial regulatory review. The entire list was then sorted by topic and common issues were grouped, and issues were classified in three priority categories and assigned to individuals for resolution. In this paper, the issue identification and resolution process will be described, from the initial description of an issue to its resolution and inclusion in the various levels of the safety case documentation.

  2. Using the ABLE facility to observe urbanization effects on planetary boundary layer processes

    SciTech Connect

    Coulter, R.L.; Klazura, J.; Lesht, B.M.; Shannon, J.D.; Sisterson, D.L.; Wesely, M.L.

    1998-12-31

    The Argonne Boundary Layer Experiments (ABLE) facility, located in south central Kansas, east of Wichita, is devoted primarily to investigations of and within the planetary boundary layer (PBL), including the dynamics of the mixed layer during both day and night; effects of varying land use and landform; the interactive role of precipitation, runoff, and soil moisture; storm development; and energy budgets on scales of 10 to 100 km. With an expected lifetime of 10--15 years, the facility is well situated to observe the effects of gradual urbanization on PBL dynamics and structure as the Wichita urban area expands to the east and several small municipalities located within the study area expand. Combining the continuous measurements of ABLE with (1) ancillary continuous measurements of, for example, the Atmospheric Radiation Measurement (ARM) program and the Global Energy Water Cycle Experiment (GEWEX) programs and with (2) shorter, more intensive studies within ABLE, such as the Cooperative Atmosphere Surface Exchange Studies (CASES) Program, allows hypothesized features of urbanization, including heat island effects, precipitation enhancement, and modification of the surface energy budget partitioning, to be studied.

  3. Socioeconomic assessment of defense waste processing facility impacts in the Savannah River Plant region

    SciTech Connect

    Peelle, E.; Reed, J.H.; Stevenson, R.H.

    1981-09-01

    The DWPF will immobilize highly radioactive defense wastes for storage on site until shipment to an approved federal repository for radioactive wastes. This document assesses the socioeconomic impacts of constructing and operating the proposed facility and presents the assessment methodology. Because various schedules and various ways of staging the construction of the DWPF are considered and because in some of these instances a large nearby construction project (the Vogtle Nuclear Power Station) may influence the socioeconomic impacts, four scenarios involving different facility options and schedules are assessed. In general, the impacts were found not to be large. In the scenario where the socioeconomic effects were the greatest, it was found that there are likely to be some impacts on schools in Barnwell County as well as a shortage of mobile homes in that county. Aiken, Allendale, and Bamberg counties are also likely to experience slight-to-moderate housing shortages. Minor impacts are anticipated for fire and police services, roads, traffic, and land use. There will be noticeable economic impact from the project. Other scenarios had fewer socioeconomic impacts.

  4. RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)

    SciTech Connect

    MINETTE, M.J.

    2007-05-30

    The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

  5. Dispersion calculations for non-radiological hazardous chemical emissions from the Defense Waste Processing Facility and related activities

    SciTech Connect

    Hunter, C.H.

    1990-10-22

    The Environmental Protection Agency's (EPA) Industrial Source Complex -- Short Term (ISCST) air dispersion model was used to examine potential atmospheric impacts of routine benzene and mercury emissions from the Defense Waste Processing Facility (DWPF), In-Tank Precipitation (ITP) facilities, and the Saltstone Facility. The highest model estimated 8-hour average ground-level benzene concentrations were found to occur in the immediate vicinity of the ITP filter/stripper building (241-96H). Subsequent model calculations were used to determine minimum stack release heights that would be necessary to achieve compliance with this workplace exposure standard for currently anticipated emission levels. The highest 24-hour average site boundary concentrations of benzene and mercury generally occurred to the north of S and H areas. Concentrations were well below the ambient concentration standards that have been identified for these substances in an air toxics policy proposed by the State of South Carolina. Estimates of annual average benzene concentrations for offsite locations were used to estimate the excess lifetime cancer risk. Assuming continuous 70-year exposure to the estimated annual benzene concentrations, the excess cancer risk to the maximum exposed individual was estimated to be 3 {times} 10{sup {minus}7}. Similar lifetime exposure summed over the surrounding population resulted in an estimated average of 6 {times} 10{sup {minus}4} excess cancers per year. 14 refs., 1 fig., 7 tabs.

  6. Effect of processing method on bacterial community recovered from scalder and chiller water tanks in a commercial broiler processing facility.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In poultry processing plants, chicken carcasses were processed through a succession of steps including their immersion in scalder and chiller water tanks. Water tank microbiota may impact the microbiological quality of carcasses and the occurrence of pathogens or spoilage bacteria may lead to their ...

  7. HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System

    SciTech Connect

    K. Winterholler

    2007-01-31

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

  8. A facile process for preparing superhydrophobic PBZ-PTFE coating with excellent stable properties

    NASA Astrophysics Data System (ADS)

    Lei, Sheng; Shi, Zhongqi; Ou, Junfei; Li, Wen; Qiao, Guanjun; Yu, Xinhua

    2016-12-01

    We present a facile way to fabricate superhydrophobic PBZ-PTFE coating which can be easily prepared in large scale. The superhydrophobic PBZ-PTFE coating was prepared by spraying the PTFE condensed dispersion solution and the benzoxazine mixture solution on the substrate. The water contact angle on the prepared coating reaches 166.5°, and the sliding angle is only 1°. The PTFE weight fraction is optimized to 60% which provides high surface roughness of 3.54 μm required for superhydrophobicity. Importantly, the superhydrophobic coating exhibits excellent temperature stability and corrosion resistance. In addition, the stability of the superhydrophobic coating was evaluated by adhesive tape peeling experiment, bend test, crosscut test and water impact test. We expect that this fabrication technique will have great prospects for industrial applications.

  9. Aerobic biodegradation of sludge with high hydrocarbon content generated by a Mexican natural gas processing facility.

    PubMed

    Roldán-Carrillo, T; Castorena-Cortés, G; Zapata-Peñasco, I; Reyes-Avila, J; Olguín-Lora, P

    2012-03-01

    The biodegradation of oil sludge from Mexican sour gas and petrochemical facilities contaminated with a high content of hydrocarbons, 334.7 ± 7.0 g kg(-1) dry matter (dm), was evaluated. Studies in microcosm systems were carried out in order to determine the capacity of the native microbiota in the sludge to reduce hydrocarbon levels under aerobic conditions. Different carbon/nitrogen/phosphorous (C/N/P) nutrient ratios were tested. The systems were incubated at 30 °C and shaken at 100 rpm. Hydrocarbon removals from 32 to 51% were achieved in the assays after 30 days of incubation. The best assay had C/N/P ratio of 100/1.74/0.5. The results of the Microtox(®) and Ames tests indicated that the original sludge was highly toxic and mutagenic, whereas the best assay gave a final product that did not show toxicity or mutagenicity.

  10. Introduction to Production Processes and Facilities in the Steel Shipbuilding and Repair Industry

    DTIC Science & Technology

    1993-02-01

    Surface Preparation 4.2.6 Wet Abrasive and Hydro Blasting 4.2.7 Chemical Surface Preparation 4-1 4-1 4-2 4-3 4-3 4-4 4-4 4-5 4-7 4-7 4-7 4-8 4-8 4-9 4.3...quantity, size, and type of docking facilities they possess. Ships can be either wet -docked or drydocked. A wet -dock or berth, as it is commonly...called, is a pier or a wet slip position that a ship can dock next to and tie up. A ship that has its entire hull exposed to the atmosphere is said to be

  11. Enforcement Alert: Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

    EPA Pesticide Factsheets

    This is the enforcement alert for Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

  12. Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG).

    PubMed

    Nilsson Påledal, S; Arrhenius, K; Moestedt, J; Engelbrektsson, J; Stensen, K

    2016-02-01

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty. Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L.

  13. Phase 2 Report--Mercury Behavior In The Defense Waste Processing Facility

    SciTech Connect

    Bannochie, C.; Fellinger, T.

    2016-07-27

    The purpose of this report is to provide a summary of the DWPF processing history in regards to mercury, document the mercury results obtained on the product and condensate samples, and provide further recommendations based on the data obtained.

  14. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  15. Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches.

    PubMed

    Subianto, Surya; Dutta, Naba; Andersson, Mats; Choudhury, Namita Roy

    2016-09-01

    Organic thin film photovoltaics based on bulk-heterojunction donor-acceptor combinations have received significant interest due to their potential for low-cost, large-scale solution processing. However, current state-of-the-art cells utilise materials soluble mainly in halogenated solvents which pose processing challenges due to their toxicity and thus environmental hazards. In this contribution, we look at various nanomaterials, and alternative processing of these solar cells using environmentally friendly solvents, and review recently reported different strategies and approaches that are making inroads in this field. Specifically, we focus on the use of water-dispersible donors and acceptors, use of aqueous solvents for fabrication and discuss the merits of the two main approaches of water-processable solar cells; namely, through the use of water-soluble materials and the use of aqueous dispersion rather than a solution, as well as review some of the recent advances in alternative fabrication techniques.

  16. Development of an Analytical Hierarchy Process (AHP) Model for Siting of Municipal Solid Waste Facilities

    DTIC Science & Technology

    1994-09-01

    of the model in Chapter 3. The Analytical Hierarchy Process (AHP), sometimes referred as a subset of the Multi-Attribute Utility Theory , will be...stated goods or objectives." (26:2-5) At the forefront of this concept 18 is Multi-attribute utility theory (MAUT). Ralph L. Keeney, sometimes regarded as...Process and Utility Theory . The two schools of thought have gone to great extent to prove and disprove each other.. .so much that the literature appear

  17. Treating wastewater from a pharmaceutical formulation facility by biological process and ozone.

    PubMed

    Lester, Yaal; Mamane, Hadas; Zucker, Ines; Avisar, Dror

    2013-09-01

    Wastewater from a pharmaceutical formulation facility (TevaKS, Israel) was treated with a biological activated-sludge system followed by ozonation. The goal was to reduce the concentrations of the drugs carbamazepine (CBZ) and venlafaxine (VLX) before discharging the wastewater to the municipal wastewater treatment plant (WWTP). Both drugs were detected at extremely high concentrations in TevaKS raw wastewater ([VLX]=11.72 ± 2.2mg/L, [CBZ]=0.84 ± 0.19 mg/L), and resisted the biological treatment. Ozone efficiently degraded CBZ: at an O3 dose-to-dissolved organic carbon ratio of 0.55 (O3/DOC), the concentration of CBZ was reduced by >99%. A lower removal rate was observed for VLX, which was decreased by ≈ 98% at the higher O3/DOC ratio of 0.87. Decreasing the pH of the biologically treated effluent from 7 to 5 significantly increased the ozone degradation rate of CBZ, while decreasing the degradation rate of VLX. Ozone treatment did not alter the concentration of the effluent's DOC and filtered chemical oxygen demand (CODf). However, a significant increase was recorded (following ozonation) in the effluent's biological oxygen demand (BOD5) and the BOD5/CODf ratio. This implies an increase in the effluent's biodegradability, which is highly desirable if ozonation is followed by a domestic biological treatment. Different organic byproducts were formed following ozone reaction with the target pharmaceuticals and with the effluent organic matter; however, these byproducts are expected to be removed during biological treatment in the municipal WWTP.

  18. A Radiological Image Processing Facility and some of its Three-Dimensional Data Manipulation Capabilities

    PubMed Central

    Huang, H.K.; Mankovich, Nicholas J.; Chuang, K.S.; Papin, Patrick; Lo, S. B.; Wong, C. K.; Hernandez-Armas, Jose

    1983-01-01

    In anticipation of the arrival of a digital radiology department, a dedicated image processing laboratory has been established within the Department of Radiological Sciences, UCLA. This laboratory consists of a multiple user computer, an image processor, a communication system, and an image mass storage device. Three major areas of activities in the laboratory are the development of a radiological image archiving and communication system, installation of a multiple digital viewing station, and research on picture processing techniques to enhance the image diagnostic value. This paper describes the system configuration of the laboratory and some of its capabilities in manipulating three-dimensional medical images. ImagesFigure 2Figure 3Figure 4

  19. A facile process for soak-and-peel delamination of CVD graphene from substrates using water

    PubMed Central

    Gupta, Priti; Dongare, Pratiksha D.; Grover, Sameer; Dubey, Sudipta; Mamgain, Hitesh; Bhattacharya, Arnab; Deshmukh, Mandar M.

    2014-01-01

    We demonstrate a simple technique to transfer chemical vapour deposited (CVD) graphene from copper and platinum substrates using a soak-and-peel delamination technique utilizing only hot deionized water. The lack of chemical etchants results in cleaner CVD graphene films minimizing unintentional doping, as confirmed by Raman and electrical measurements. The process allows the reuse of substrates and hence can enable the use of oriented substrates for growth of higher quality graphene, and is an inherently inexpensive and scalable process for large-area production. PMID:24457558

  20. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    SciTech Connect

    Lambert, Dan P.; Woodham, Wesley H.; Williams, Matthew S.; Newell, J. David; Luther, Michelle C.; Brandenburg, Clayton H.

    2016-09-27

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  1. Final deactivation report on the Radioactive Gas Processing Facility, Building 3033, and the Actinide Fabrication Facility, Building 3033A, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1997-09-01

    The purpose of this report is to document the condition of Buildings 3033 and 3033A, after completion of deactivation activities as outlined by the Department of Energy Office of Nuclear Materials and Facility Stabilization Program (EM-60) guidance documentation. This report outlines the activities conducted to place the facility in a safe and environmentally sound condition for transfer to the Department of Energy Office of Environmental Restoration Program (EM-40). This report provides a history and profile of Buildings 3033 and 3033A prior to commencing deactivation activities and a profile of the building after completion of deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation provided in the Office of Nuclear Materials and Facility Stabilization Program (EM-60) Turnover package are discussed. Buildings 3033 and 3033A will require access to facilitate required S and M activities to maintain the building safety envelope. Buildings 3033 and 3033A were stabilized during deactivation so that when transferred to the EM-40 program, only a minimal S and M effort would be required to maintain the building safety envelope. Other than the minimal S and M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S and M. All materials have been removed from the building, and all utility systems, piping, and alarms have been deactivated.

  2. APPLICATIONS OF MULTICOMPONENT ASSEMBLY PROCESSES TO THE FACILE SYNTHESES OF DIVERSELY FUNCTIONALIZED NITROGEN HETEROCYCLES.

    PubMed

    Donald, James R; Granger, Brett A; Hardy, Simon; Sahn, James J; Martin, Stephen F

    2012-01-01

    Several multicomponent assembly processes have been developed for the synthesis of intermediates that may be elaborated by a variety of cyclizations to generate a diverse array of highly functionalized heterocycles from readily-available starting materials. The overall approach enables the efficient preparation of libraries of small molecules derived from fused, privileged scaffolds.

  3. ASSESSMENT OF THE BACTERIOLOGICAL QUALITY OF COMPOST FROM A YARD WASTE PROCESSING FACILITY

    EPA Science Inventory

    Citizen concern over possible pathogenic microorganism contamination in compost and in a runoff collection pond prompted a U.S. Environmental Protection Agency (EPA) investigation. One out of eight samples collected from the distribution pile at a yard waste compost processing f...

  4. Guide to research facilities

    SciTech Connect

    Not Available

    1993-06-01

    This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

  5. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    SciTech Connect

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  6. Facile fabrication of superhydrophobic surfaces on wood substrates via a one-step hydrothermal process

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Qing, Yan; Wu, Yiqiang; Liang, Jin; Luo, Sha

    2015-03-01

    Superhydrophobic nanocomposite surfaces were successfully fabricated on wood substrates via a one-step hydrothermal process. The morphology of the nanocomposite surfaces was characterized using scanning electron microscopy (SEM), and the elemental composition was determined via energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD) analysis, and Fourier transform infrared (FTIR) spectroscopy. The results indicated that the crystallization of the anatase phase of TiO2 was prevented because of the presence of vinyltriethoxysilane [VTES, CH2CHSi(OC2H5)3] during the hydrothermal process. In addition, the nanocomposite contained Ti/Si particles with diameters ranging from 50 to 100 nm that thoroughly covered the wood substrate. Furthermore, the roughness coupled with the presence of low surface free energy groups led to superhydrophobicity; the static water contact angle (WCA) was as high as 153°, and the sliding angle was very low.

  7. The LHEA PDP 11/70 graphics processing facility users guide

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A compilation of all necessary and useful information needed to allow the inexperienced user to program on the PDP 11/70. Information regarding the use of editing and file manipulation utilities as well as operational procedures are included. The inexperienced user is taken through the process of creating, editing, compiling, task building and debugging his/her FORTRAN program. Also, documentation on additional software is included.

  8. Sol-Gel Processing Science Using a Sol-Gel Optics Research Facility (SGORF)

    DTIC Science & Technology

    1989-09-10

    property of the sol-gel process can be used to make optics with special shapes and surface features such as lightweight mirrors, Fresnel lenses and...lightweight mirrors, Fresnel lenses and aspheric optical components.I Acknowledgements The authors gratefully acknowledge financial support of Air Force...e.g. Fresnel lenses ) - internal structures3 - reduced grinding - reduced polishing ! Improved Physical Properties (Type V) - lower coefficient of

  9. Feed Acceptance for the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect

    Jacobs, R.A.; Elder, H.H.

    1998-03-01

    The DWPF at the Department of Energy`s (DOE) Savannah River Site (SRS) began radioactive operations in December of 1995. The High Level Waste Tank Farm at SRS contains approximately thirty three million gallons of salt, supernate, and insoluble sludge wastes accumulated during more than three decades of weapons manufacture. In the DWPF, the radioactive components from this waste will ultimately be processed into a stable, borosilicate glass for long-term storage in a geological repository.The feeds to the DWPF are pretreated in a number of steps. Insoluble sludges, primarily aluminum, iron and other transition metals, are combined from several tanks, treated by caustic dissolution of aluminum and washed to remove soluble salts; these materials are removed to increase waste loading in the glass produced by the DWPF.The water soluble radioactive species in the salt and supernate, primarily cesium and actinides, are precipitated by sodium tetraphenylborate (NaTPB) or adsorbed onto sodium titanate. The resulting solids are also washed to remove excessive soluble salts before feeding to the DWPF. The soluble species removed by washing are disposed of as low level radioactive waste in a concrete form known as Saltstone. The presentation includes a brief overview of the High Level Waste system, pretreatment, and disposition of the various streams.The washed tetraphenylborate precipitates of cesium and potassium are hydrolyzed by copper catalyzed formic acid hydrolysis in the Salt Processing Cell (SPC) to yield soluble formates, boric acid, benzene and minor organic byproducts.The benzene and most of the organic byproducts are then steam stripped. The resulting aqueous hydrolysis product, including the still insoluble actinides adsorbed onto sodium titanate, is combined in the Chemical Processing Cell (CPC) with the insoluble sludge which has been treated with nitric acid and formic acid to remove mercury and to adjust the glass redox. Borosilicate glass frit is added and

  10. Goldratt's thinking process applied to the budget constraints of a Texas MHMR facility.

    PubMed

    Taylor, Lloyd J; Churchwell, Lana

    2004-01-01

    Managers for years have known that the best way to run a business is to constantly be looking for ways to improve the way to do business. The barrier has been the ability to identify and solve the right problems. Eliyahu Goldratt (1992c), in his book The Goal, uses a love story format to illustrate his "Theory of Constraints." In Goldratt's (1994) next book, It's Not Luck, he further illustrates this powerful technique called "The Thinking Process" which is based on the Socratic method, using the "if ... then" reasoning process, The first step is to identify UDEs or undesirable effects within the organization and then use these UDEs to create a Current Reality Tree (CRT) which helps to identify the core problem. Next, use an Evaporating Cloud to come up with ideas and a way to break the constraint. Finally, use the injections in the Evaporating Cloud to create a Future Reality Tree, further validating the idea and making sure it does not create any negative effects. In this article, the "Thinking Process" will be used to identify and solve problems related to the General Medical Department of an MHMR State Hospital.

  11. A facile method to determine pore size distribution in porous scaffold by using image processing.

    PubMed

    Lo Re, G; Lopresti, F; Petrucci, G; Scaffaro, R

    2015-09-01

    Image processing permits scientists to investigate morphological properties of three-dimensional structures starting from their bi-dimensional gray-scale representation. In many cases porous structure with complex architecture has to be designed in order to attempt specific properties such in the case of scaffold for tissue engineering. Traditional morphological characterization, like scanning electron microscopy, should be coupled with quantitative information such as pore size distribution (PSD) in order to get a deeper understanding of the influence of the porous structure on tissue regeneration processes and on other related applications, it is remarkable to study a quantitative analysis of porosity and of pores dimension. In this work it was developed as a software able to accomplish the segmentation of images containing pores of any geometry in a semi-automatic way with the aim to measure the PSD. Case study constituted by PLA porous scaffolds with different pore size was adopted. Results indicate that image processing methods well fit the pore size features of PLA scaffolds, overcoming the limits of the more invasive porosimetry techniques.

  12. Risk-Based Decision Process for Accelerated Closure of a Nuclear Weapons Facility

    SciTech Connect

    Butler, L.; Norland, R. L.; DiSalvo, R.; Anderson, M.

    2003-02-25

    Nearly 40 years of nuclear weapons production at the Rocky Flats Environmental Technology Site (RFETS or Site) resulted in contamination of soil and underground systems and structures with hazardous substances, including plutonium, uranium and hazardous waste constituents. The Site was placed on the National Priority List in 1989. There are more than 370 Individual Hazardous Substance Sites (IHSSs) at RFETS. Accelerated cleanup and closure of RFETS is being achieved through implementation and refinement of a regulatory framework that fosters programmatic and technical innovations: (1) extensive use of ''accelerated actions'' to remediate IHSSs, (2) development of a risk-based screening process that triggers and helps define the scope of accelerated actions consistent with the final remedial action objectives for the Site, (3) use of field instrumentation for real time data collection, (4) a data management system that renders near real time field data assessment, and (5) a regulatory agency consultative process to facilitate timely decisions. This paper presents the process and interim results for these aspects of the accelerated closure program applied to Environmental Restoration activities at the Site.

  13. CHALLENGES OF PRESERVING HISTORIC RESOURCES DURING THE D & D OF HIGHLY CONTAMINATED HISTORICALLY SIGNIFICANT PLUTONIUM PROCESS FACILITIES

    SciTech Connect

    HOPKINS, A.M.

    2006-03-17

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that ere included or eligible for inclusion in the National Register. In an agreement between the DOE'S Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Sitewide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  14. The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities

    SciTech Connect

    Hopkins, A.; Minette, M.; Sorenson, D.; Heineman, R.; Gerber, M.; Charboneau, S.; Bond, F.

    2006-07-01

    The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They

  15. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect

    Ray, J.W.; Marra, S.L.; Herman, C.C.

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  16. A facile one-step process for 3D N-doped noncovalent functionalization PS/rGO composites

    NASA Astrophysics Data System (ADS)

    Huang, Weiqi; Wang, Hua; Su, Zheng; Tian, Konghu; Ye, Xianzhu; Bao, Chao; Guo, Yulan; He, Jing; Tian, Xingyou

    2017-03-01

    This work reports a simple, versatile and facile one-step process to prepare the three-dimensional (3D) N-doped noncovalent functionalization polystyrene/reduced graphene oxide (PS/rGO) composites. In this, N, N-dimethylformamide (DMF) acts as the solvent, reducing agent, and more importantly, the N-doping agent. Various measurements have been carried out to characterize the structure and morphology of PS/rGO composites, in particular for the excellent electrical conductivity of PS/rGO composites compared with virgin PS, which was attributed to the 3D pores structure and the N-doping. With regards to the unique properties of graphene, the 3D framework structure and the N-doping, this composite material has great potential properties such as electro-magnetic interference shielding effectiveness (EMI) to be explored.

  17. Investigation of cosmic-ray muon induced processes by the MIREDO facility.

    PubMed

    Bikit, K; Mrdja, D; Bikit, I; Veskovic, M

    2014-05-01

    The MIREDO (Muon Induced Rare Event Dynamic Observatory) spectrometer system is primarily developed for the study of cosmic muon induced processes in different materials. Exploration of such interactions can be important for ultra-low background experiments. The system is based on the 100% relative efficiency ultra-low-background HPGe spectrometer. With the addition of two plastic scintillators and a fast-slow coincidence circuit, the coincidence events between the plastic detectors and the HPGe spectrometer have been investigated. First results derived for a CaO powder sample, placed in a Marinelli beaker, are presented and discussed.

  18. Supercritical water oxidation technology for DWPF. [Defense Waste Processing Facility (DWPF)

    SciTech Connect

    Carter, J.T.; Gentilucci, J.A.

    1992-02-07

    At the request of Mr. H.L. Brandt and others in the Savannah River Field Office High Level Waste Division office, DWPF, and SRL personnel have reviewed two potential applications for supercritical water oxidation technology in DWPF. The first application would replace the current hydrolysis process by destroying the organic fractions of the precipitated cesium / potassium tetraphenylborate slurry. The second application pertains to liquid benzene destruction. After a thorough evaluation the first application is not recommended. The second is ready to be tested if needed.

  19. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR THE SAVANNAH RIVER SITE'S DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Krementz, D

    2007-11-27

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) requested development of tooling for remote replacement of gaskets in mechanical Hanford connectors. The facility has compressed air supply, two master-slave manipulators (MSM's) and a lightweight robotic arm for operation of the remote tools. The Savannah River National Laboratory (SRNL) developed and tested multiple tools to perform the gasket replacement tasks. Separate pneumatic snap-ring removal tools that use the connector skirt as a reaction surface were developed for removal of the snap ring and spent gasket on both vertical and horizontal Hanford connectors. A pneumatic tool that clamps and centers on the jumper pipe ID was developed to simultaneously install the new gasket and snap ring. A pneumatic snap-ring-loading tool was developed that compresses the snap ring and places it in a groove in the installation tool. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. The entire system has been successfully tested using MSM's to manipulate the various tools. Deployment of the entire system is expected during FY08. The Hanford connector gasket replacement tooling has been successfully tested using MSM's to manipulate the various tools. Nitric acid is used in many of the decontamination processes performed in the REDC, where the tooling will be deployed. Although most of the tool components were fabricated/purchased with nitric acid and radioactive service in mind, some of the prototype parts must be replaced with parts that are more compatible with nitric acid/radioactive service. Several modifications to the various tools are needed to facilitate maintenance and replacement of failed components. Development of installation tools for replacement of 1-inch, 2-inch and multi-hole gaskets is being considered. Deployment of the existing system in the DWPF REDC is expected during FY

  20. Standard for metal/nonmetal mining and metal mineral processing facilities. 2004 ed.

    SciTech Connect

    2004-07-01

    This standard addresses the protection of diesel-powered equipment and the storage and handling of flammable and combustible liquids at these specialized sites. The 2004 edition consolidates requirements from NFPA 122 and 121 : Standard on Fire Protection for Self-Propelled and Mobile Surface Mining Equipment. Major changes include a new chapter on fire protection of surface metal mineral processing plants. The Standard is also revised to emphasize the use of a fire risk assessment when determining fire protection criteria. Chapter headings are: Administration; Referenced publications; Definitions; General; Fire risk assessment and risk reduction; Fire detection and suppression equipment; Fire protection for diesel-powered equipment in underground mines; Transfer of flammable or combustible liquids in underground mines; Flammable liquid storage in underground mines; Combustible liquid storage in underground mines; Fire suppression for flammable or combustible liquid storage areas in underground mines; Fire protection of surface mobile and self-propelled equipment; and Fire protection of surface metal mineral processing plants. 3 annexes.

  1. Process agitator operating problems and equipment failures, F-Canyon Reprocessing Facility

    SciTech Connect

    Durant, W.S.; Starks, J.B.; Low, J.M.; Galloway, W.D.

    1988-09-01

    The Savannah River Laboratory (SRL) maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing areas of the Savannah River Plant (SRP). At present, the data bank contains more than 200,000 entries ranging from minor equipment malfunctions to incidents with the potential for injury or contamination of personnel, or for economic loss. The data bank has been used extensively for a wide variety of purposes, such as failure analyses, trend analyses, and preparation of safety analyses. Typical of the data are problems associated with the F-Canyon process agitators. This report contains a compilation of the agitator operating problems and equipment failures primarily as an aid to organizations with related equipment. Publication of these data was prompted by a number of requests for this information by other Department of Energy (DOE) sites. 4 figs., 4 tabs.

  2. DEVELOPMENT OF NOVEL, ALTERNATIVE, FACILE, ECOFRIENDLY, HIGH YIELD SYNTHETIC PROCESS FOR PRAZOSIN

    PubMed Central

    Patil, D. A.; Jain, K. S.; Deodhar, M. N.; Patil, P. O.; Patil, G. B.; Patil, D. D.

    2010-01-01

    Industrial chemistry in the new millennium is widely adopting the concept of “Green chemistry” to meet the fundamental scientific challenges. Antihypertensive drugs include several of the most widely prescribed drugs like diuretics, beta-blockers, ACE inhibitors, calcium channel blockers, and α-1 adrenoreceptor blockers. The discovery of prazosin, with very high index of α1/α2 affinity has triggered off a renaissance of interest in α1-adrenoceptor antagonist drugs for treatment of hypertension. The three reported routes for synthesis and manufacture of the α-adrenoceptor antagonist- prazosin had some disadvantages. In present study we had developed new methods for the synthesis of prazosin by using microwave. The most important aspect is the overall yield of this process was ~25 % higher than the other reported methods excluding the use of banned substances PMID:24825992

  3. In-situ wastewater treatment and groundwater remediation at a sugar beet processing facility

    SciTech Connect

    Olson, J.L.; Fuller-Pratt, P.R.; Mielke, R.A.

    1996-06-01

    Groundwater monitoring data collected at the Western Sugar Company sugar beet processing plant, in Billings, Montana identified groundwater mounding and groundwater nitrogen concentration increases associated with lime slurry discharge to an on-site storage pile. The nitrogen impacts (primarily ammonia) likely originated through decomposition of organic matter in the slurry. Initially, Western Sugar considered constructing an expensive anaerobic and nitrification-denitrification wastewater treatment system. However, further investigation of the lime pile revealed that it was already serving as an efficient filter and anaerobic reactor. Comparisons of slurry application with other land application systems suggested that groundwater nitrogen impacts could be minimized through groundwater capture, re-application, and improved slurry management. The resultant system required little capitol and maintenance cost. The immediate effect was to substantially decrease the groundwater mound. Subsequent monitoring has demonstrated a gradual decline in nitrogen concentrations under the lime pile and a considerable concentration decrease downgradient of the groundwater recovery system.

  4. W-007H B Plant Process Condensate Treatment Facility. Revision 3

    SciTech Connect

    Rippy, G.L.

    1995-01-20

    B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into the soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.

  5. Modeling community asbestos exposure near a vermiculite processing facility: Impact of human activities on cumulative exposure.

    PubMed

    Adgate, John L; Cho, Sook Ja; Alexander, Bruce H; Ramachandran, Gurmurthy; Raleigh, Katherine K; Johnson, Jean; Messing, Rita B; Williams, A L; Kelly, James; Pratt, Gregory C

    2011-01-01

    Contaminated vermiculite ore from Libby, Montana was processed in northeast Minneapolis from 1936 to 1989 in a densely populated urban residential neighborhood, resulting in non-occupational exposure scenarios from plant stack and fugitive emissions as well as from activity-based scenarios associated with use of the waste rock in the surrounding community. The objective of this analysis was to estimate potential cumulative asbestos exposure for all non-occupationally exposed members of this community. Questionnaire data from a neighborhood-exposure assessment ascertained frequency of potential contact with vermiculite processing waste. Monte Carlo simulation was used to develop exposure estimates based on activity-based concentration estimates and contact durations for four scenarios: S1, moved asbestos-contaminated waste; S2, used waste at home, on lawn or garden; S3, installed/removed vermiculite insulation; S4, played in or around waste piles at the plant. The simulation outputs were combined with air-dispersion model results to provide total cumulative asbestos exposure estimates for the cohort. Fiber emissions from the plant were the largest source of exposure for the majority of the cohort, with geometric mean cumulative exposures of 0.02 fibers/cc × month. The addition of S1, S2 and S3 did not significantly increase total cumulative exposure above background exposure estimates obtained from dispersion modeling. Activity-based exposures were a substantial contributor to the upper end of the exposure distribution: 90th percentile S4 exposure estimates are ∼10 times higher than exposures from plant emissions. Pile playing is the strongest source of asbestos exposure in this cohort, with other activity scenarios contributing less than from plant emissions.

  6. An engineering and economic evaluation of quick germ-quick fiber process for dry-grind ethanol facilities: analysis.

    PubMed

    Rodríguez, Luis F; Li, Changying; Khanna, Madhu; Spaulding, Aslihan D; Lin, Tao; Eckhoff, Steven R

    2010-07-01

    An engineering economic model, which is mass balanced and compositionally driven, was developed to compare the conventional corn dry-grind process and the pre-fractionation process called quick germ-quick fiber (QQ). In this model, documented in a companion article, the distillers dried grains with solubles (DDGS) price was linked with its protein and fiber content as well as with the long-term average relationship with the corn price. The detailed economic analysis showed that the QQ plant retrofitted from conventional dry-grind ethanol plant reduces the manufacturing cost of ethanol by 13.5 cent/gallon and has net present value of nearly $4 million greater than the conventional dry-grind plant at an interest rate of 4% in 15years. Ethanol and feedstock price sensitivity analysis showed that the QQ plant gains more profits when ethanol price increases than conventional dry-grind ethanol plant. An optimistic analysis of the QQ process suggests that the greater value of the modified DDGS would provide greater resistance to fluctuations in corn price for QQ facilities. This model can be used to provide decision support for ethanol producers.

  7. Spacelab data processing facility (SLDPF) quality assurance (QA)/data accounting (DA) expert systems - Transition from prototypes to operational systems

    NASA Technical Reports Server (NTRS)

    Basile, Lisa

    1988-01-01

    The SLDPF is responsible for the capture, quality monitoring processing, accounting, and shipment of Spacelab and/or Attached Shuttle Payloads (ASP) telemetry data to various user facilities. Expert systems will aid in the performance of the quality assurance and data accounting functions of the two SLDPF functional elements: the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). Prototypes were developed for each as independent efforts. The SIPS Knowledge System Prototype (KSP) used the commercial shell OPS5+ on an IBM PC/AT; the SOPS Expert System Prototype used the expert system shell CLIPS implemented on a Macintosh personal computer. Both prototypes emulate the duties of the respective QA/DA analysts based upon analyst input and predetermined mission criteria parameters, and recommended instructions and decisions governing the reprocessing, release, or holding for further analysis of data. These prototypes demonstrated feasibility and high potential for operational systems. Increase in productivity, decrease of tedium, consistency, concise historical records, and a training tool for new analyses were the principal advantages. An operational configuration, taking advantage of the SLDPF network capabilities, is under development with the expert systems being installed on SUN workstations. This new configuration in conjunction with the potential of the expert systems will enhance the efficiency, in both time and quality, of the SLDPF's release of Spacelab/AST data products.

  8. Spacelab data processing facility (SLDPF) Quality Assurance (QA)/Data Accounting (DA) expert systems: Transition from prototypes to operational systems

    NASA Technical Reports Server (NTRS)

    Basile, Lisa

    1988-01-01

    The SLDPF is responsible for the capture, quality monitoring processing, accounting, and shipment of Spacelab and/or Attached Shuttle Payloads (ASP) telemetry data to various user facilities. Expert systems will aid in the performance of the quality assurance and data accounting functions of the two SLDPF functional elements: the Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS). Prototypes were developed for each as independent efforts. The SIPS Knowledge System Prototype (KSP) used the commercial shell OPS5+ on an IBM PC/AT; the SOPS Expert System Prototype used the expert system shell CLIPS implemented on a Macintosh personal computer. Both prototypes emulate the duties of the respective QA/DA analysts based upon analyst input and predetermined mission criteria parameters, and recommended instructions and decisions governing the reprocessing, release, or holding for further analysis of data. These prototypes demonstrated feasibility and high potential for operational systems. Increase in productivity, decrease of tedium, consistency, concise historial records, and a training tool for new analyses were the principal advantages. An operational configuration, taking advantage of the SLDPF network capabilities, is under development with the expert systems being installed on SUN workstations. This new configuration in conjunction with the potential of the expert systems will enhance the efficiency, in both time and quality, of the SLDPF's release of Spacelab/AST data products.

  9. Pretreatment Engineering Platform--Reducing Technical Risks for the Waste Treatment Plant Pretreatment Facility through Scaled Process Testing

    SciTech Connect

    Musick, Chris A.; Barnes, Steven M.; Huckaby, James L.; Josephson, Gary B.; Gilbert, Robert A.

    2008-02-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) will separate and vitrify (immobilize in glass) millions of gallons of radioactive and chemical wastes stored at the Hanford Site. Pretreatment of the waste by caustic and oxidative leaching processes will minimize the volume of high-level waste (HLW) to be vitrified, and cross-flow ultrafiltration will be used to remove liquids from the HLW solid slurry. An extensive and critical review of the WTP technical bases and design identified the need to demonstrate of the integrated leaching and ultrafiltration processes at greater than bench scale. To respond to this need, the WTP prime contractor, Bechtel National, Inc., and their principle subcontractor Washington Group International concluded a 1/4.5 scale facility to treat non-radioactive waste simulants was needed to demonstrate the process. This paper describes the technical bases and design of the scaled Pretreatment Engineering Platform (PEP) and the strategy to develop waste simulants to be used in the PEP

  10. Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process

    NASA Astrophysics Data System (ADS)

    Bian, Hao; Wei, Yang; Yang, Qing; Chen, Feng; Zhang, Fan; Du, Guangqing; Yong, Jiale; Hou, Xun

    2016-11-01

    We report a direct fabrication of an omnidirectional negative microlens array on a curved substrate by a femtosecond laser enhanced chemical etching process, which is utilized as a molding template for duplicating bioinspired compound eyes. The femtosecond laser treatment of the curved glass substrate employs a common x-y-z stage without rotating the sample surface perpendicular to the laser beam, and uniform, omnidirectional-aligned negative microlenses are generated after a hydrofluoric acid etching. Using the negative microlens array on the concave glass substrate as a molding template, we fabricate an artificial compound eye with 3000 positive microlenses of 95-μm diameter close-packed on a 5-mm polymer hemisphere. Compared to the transferring process, the negative microlenses directly fabricated on the curved mold by our method are distortion-free, and the duplicated artificial eye presents clear and uniform imaging capabilities. This work provides a facile and efficient route to the fabrication of microlenses on any curved substrates without complicated alignment and motion control processes, which has the potential for the development of new microlens-based devices and systems.

  11. A macro-ergonomic work system analysis of the diagnostic testing process in an outpatient health care facility for process improvement and patient safety.

    PubMed

    Hallock, M L; Alper, S J; Karsh, B

    The diagnosis of illness is important for quality patient care and patient safety and is greatly aided by diagnostic testing. For diagnostic tests, such as pathology and radiology, to positively impact patient care, the tests must be processed and the physician and patient must be notified of the results in a timely fashion. There are many steps in the diagnostic testing process, from ordering to result dissemination, where the process can break down and therefore delay patient care and reduce patient safety. This study was carried out to examine the diagnostic testing process (i.e. from ordering to result notification) and used a macro-ergonomic work system analysis to uncover system design flaws that contributed to delayed physician and patient notification of results. The study was carried out in a large urban outpatient health-care facility made up of 30 outpatient clinics. Results indicated a number of variances that contributed to delays, the majority of which occurred across the boundaries of different systems and were related to poor or absent feedback structures. Recommendations for improvements are discussed.

  12. A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.

    ERIC Educational Resources Information Center

    Mason, George J.

    This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

  13. A facile method for improving the covalent crosslinking adsorption process of catalase immobilization.

    PubMed

    Ran, Jingyu; Jia, Shaoyi; Liu, Yong; Zhang, Wei; Wu, Songhai; Pan, Xiaolei

    2010-08-01

    In this paper, we introduced a polydiol (mixture of 1,2-propanediol, 1,3-propanediol, and 2,3-butanediol) to improve the covalent crosslinking adsorption process of immobilized catalase onto chitosan beads. The adsorption behavior was investigated by means of adsorption kinetics and adsorption isotherm. The protein content in crosslinking agent required for approximately 45 min to reach the relative equilibrium, and the protein content in solution of the control group and the pretreated group were 6.63 microg/mL and 6.20 microg/mL, respectively. The maximum catalase adsorption capacity of the control group and the pretreated group were observed as 23.118 microg/g and 25.688 microg/g at pH 7.0, respectively. Temperature profiles showed that 40 degrees C was the ideal temperature for active domain of catalase, and the relative activity of pretreated group was 1.12 times higher than that of the control group. The K(m) value of the control group (67 mM) was higher than that of the pretreated group (54 mM). Thermal stability, operational stability, and the effect of surfactant on catalase adsorption were also explored in this study.

  14. HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT

    SciTech Connect

    LOCKREM, L L

    2005-07-13

    Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

  15. Facility Focus: Science Facilities.

    ERIC Educational Resources Information Center

    College Planning & Management, 2001

    2001-01-01

    Discusses design and architectural features of two new science facilities at the Florida Institute of Technology in Melbourne, Florida, and a new graduate research tower the University of Wisconsin at Madison. Notes the important convenience associated with interior windows in these facilities, which allow researchers, faculty, and students to see…

  16. Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study

    SciTech Connect

    Edwards, T.; Click, D.; Feller, M.

    2011-02-28

    The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME

  17. 3D Geospatial Models for Visualization and Analysis of Groundwater Contamination at a Nuclear Materials Processing Facility

    NASA Astrophysics Data System (ADS)

    Stirewalt, G. L.; Shepherd, J. C.

    2003-12-01

    Analysis of hydrostratigraphy and uranium and nitrate contamination in groundwater at a former nuclear materials processing facility in Oklahoma were undertaken employing 3-dimensional (3D) geospatial modeling software. Models constructed played an important role in the regulatory decision process of the U.S. Nuclear Regulatory Commission (NRC) because they enabled visualization of temporal variations in contaminant concentrations and plume geometry. Three aquifer systems occur at the site, comprised of water-bearing fractured shales separated by indurated sandstone aquitards. The uppermost terrace groundwater system (TGWS) aquifer is composed of terrace and alluvial deposits and a basal shale. The shallow groundwater system (SGWS) aquifer is made up of three shale units and two sandstones. It is separated from the overlying TGWS and underlying deep groundwater system (DGWS) aquifer by sandstone aquitards. Spills of nitric acid solutions containing uranium and radioactive decay products around the main processing building (MPB), leakage from storage ponds west of the MPB, and leaching of radioactive materials from discarded equipment and waste containers contaminated both the TGWS and SGWS aquifers during facility operation between 1970 and 1993. Constructing 3D geospatial property models for analysis of groundwater contamination at the site involved use of EarthVision (EV), a 3D geospatial modeling software developed by Dynamic Graphics, Inc. of Alameda, CA. A viable 3D geohydrologic framework model was initially constructed so property data could be spatially located relative to subsurface geohydrologic units. The framework model contained three hydrostratigraphic zones equivalent to the TGWS, SGWS, and DGWS aquifers in which groundwater samples were collected, separated by two sandstone aquitards. Groundwater data collected in the three aquifer systems since 1991 indicated high concentrations of uranium (>10,000 micrograms/liter) and nitrate (> 500 milligrams

  18. New Applications of Gamma Spectroscopy: Characterization Tools for D&D Process Development, Inventory Reduction Planning & Shipping, Safety Analysis & Facility Management During the Heavy Element Facility Risk Reduction Program

    SciTech Connect

    Mitchell, M; Anderson, B; Gray, L; Vellinger, R; West, M; Gaylord, R; Larson, J; Jones, G; Shingleton, J; Harris, L; Harward, N

    2006-01-23

    Novel applications of gamma ray spectroscopy for D&D process development, inventory reduction, safety analysis and facility management are discussed in this paper. These applications of gamma spectroscopy were developed and implemented during the Risk Reduction Program (RPP) to successfully downgrade the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL) from a Category II Nuclear Facility to a Radiological Facility. Non-destructive assay in general, gamma spectroscopy in particular, were found to be important tools in project management, work planning, and work control (''Expect the unexpected and confirm the expected''), minimizing worker dose, and resulted in significant safety improvements and operational efficiencies. Inventory reduction activities utilized gamma spectroscopy to identify and confirm isotopics of legacy inventory, ingrowth of daughter products and the presence of process impurities; quantify inventory; prioritize work activities for project management; and to supply information to satisfy shipper/receiver documentation requirements. D&D activities utilize in-situ gamma spectroscopy to identify and confirm isotopics of legacy contamination; quantify contamination levels and monitor the progress of decontamination efforts; and determine the point of diminishing returns in decontaminating enclosures and glove boxes containing high specific activity isotopes such as {sup 244}Cm and {sup 238}Pu. In-situ gamma spectroscopy provided quantitative comparisons of several decontamination techniques (e.g. TLC-free Stripcoat{trademark}, Radiac{trademark} wash, acid wash, scrubbing) and was used as a part of an iterative process to determine the appropriate level of decontamination and optimal cost to benefit ratio. Facility management followed a formal, rigorous process utilizing an independent, state certified, peer-reviewed gamma spectroscopy program, in conjunction with other characterization techniques, process knowledge, and

  19. QUALIFICATION OF A RADIOACTIVE HIGH ALUMINUM GLASS FOR PROCESSINGIN THE DEFENSE WASTE PROCESSING FACILITY AT THE SAVANNAH RIVER SITE

    SciTech Connect

    Bibler, N; John Pareizs, J; Tommy Edwards,T; Charles02 Coleman, C; Charles Crawford, C

    2008-01-29

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a borosilicate glass for approximately eleven years. Currently the DWPF is immobilizing HLW sludge in Sludge Batch 4 (SB4). Each sludge batch is nominally two million liters of HLW and produces nominally five hundred stainless steel canisters 0.6 meters in diameter and 3 meters tall filled with the borosilicate glass. In SB4 and earlier sludge batches, the Al concentration has always been rather low, (less than 9.5 weight percent based on total dried solids). It is expected that in the future the Al concentrations will increase due to the changing composition of the HLW. Higher Al concentrations could introduce problems because of its known effect on the viscosity of glass melts and increase the possibility of the precipitation of nepheline in the final glass and decrease its durability. In 2006 Savannah River National Laboratory (SRNL) used DWPF processes to immobilize a radioactive HLW slurry containing 14 weight percent Al to ensure that this waste is viable for future DWPF processing. This paper presents results of the characterization of the high Al glass prepared in that demonstration. At SRNL, a sample of the processed high Al HLW slurry was mixed with an appropriate glass frit as performed in the DWPF to make a waste glass containing nominally 30% waste oxides. The glass was prepared by melting the frit and waste remotely at 1150 C. The glass was then characterized by: (1) determining the chemical composition of the glass including the concentrations of several actinide and U-235 fission products; (2) calculating the oxide waste loading of the glass based on the chemical composition and comparing it to that of the target; (3) determining if the glass composition met the DWPF processing constraints such as glass melt viscosity and liquidus temperature along with a waste form affecting constraint that

  20. Mass measurements in the vicinity of the r p-process and the {nu} p-process paths with the Penning trap facilities JYFLTRAP and SHIPTRAP

    SciTech Connect

    Weber, C.; Elomaa, V.-V.; Aeystoe, J.; Eronen, T.; Hager, U.; Hakala, J.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Penttilae, H.; Rahaman, S.; Rissanen, J.; Saastamoinen, A.; Sonoda, T.; Ferrer, R.; Froehlich, C.; Ackermann, D.; Block, M.; Dworschak, M.; Herfurth, F.

    2008-11-15

    The masses of very neutron-deficient nuclides close to the astrophysical r p- and {nu} p-process paths have been determined with the Penning trap facilities JYFLTRAP at JYFL/Jyvaeskylae and SHIPTRAP at GSI/Darmstadt. Isotopes from yttrium (Z=39) to palladium (Z=46) have been produced in heavy-ion fusion-evaporation reactions. In total, 21 nuclides were studied, and almost half of the mass values were experimentally determined for the first time: {sup 88}Tc, {sup 90-92}Ru, {sup 92-94}Rh, and {sup 94,95}Pd. For the {sup 95}Pd{sup m}, (21/2{sup +}) high-spin state, a first direct mass determination was performed. Relative mass uncertainties of typically {delta}m/m=5x10{sup -8} were obtained. The impact of the new mass values has been studied in {nu} p-process nucleosynthesis calculations. The resulting reaction flow and the final abundances are compared with those obtained with the data of the Atomic Mass Evaluation 2003.

  1. Tritium dynamics in soils and plants grown under three irrigation regimes at a tritium processing facility in Canada.

    PubMed

    Mihok, S; Wilk, M; Lapp, A; St-Amant, N; Kwamena, N-O A; Clark, I D

    2016-03-01

    The dynamics of tritium released from nuclear facilities as tritiated water (HTO) have been studied extensively with results incorporated into regulatory assessment models. These models typically estimate organically bound tritium (OBT) for calculating public dose as OBT itself is rarely measured. Higher than expected OBT/HTO ratios in plants and soils are an emerging issue that is not well understood. To support the improvement of models, an experimental garden was set up in 2012 at a tritium processing facility in Pembroke, Ontario to characterize the circumstances under which high OBT/HTO ratios may arise. Soils and plants were sampled weekly to coincide with detailed air and stack monitoring. The design included a plot of native grass/soil, contrasted with sod and vegetables grown in barrels with commercial topsoil under natural rain and either low or high tritium irrigation water. Air monitoring indicated that the plume was present infrequently at concentrations of up to about 100 Bq/m(3) (the garden was not in a major wind sector). Mean air concentrations during the day on workdays (HTO 10.3 Bq/m(3), HT 5.8 Bq/m(3)) were higher than at other times (0.7-2.6 Bq/m(3)). Mean Tissue Free Water Tritium (TFWT) in plants and soils and OBT/HTO ratios were only very weakly or not at all correlated with releases on a weekly basis. TFWT was equal in soils and plants and in above and below ground parts of vegetables. OBT/HTO ratios in above ground parts of vegetables were above one when the main source of tritium was from high tritium irrigation water (1.5-1.8). Ratios were below one in below ground parts of vegetables when irrigated with high tritium water (0.4-0.6) and above one in vegetables rain-fed or irrigated with low tritium water (1.3-2.8). In contrast, OBT/HTO ratios were very high (9.0-13.5) when the source of tritium was mainly from the atmosphere. TFWT varied considerably through time as a result of SRBT's operations; OBT/HTO ratios showed no clear temporal

  2. Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287

    SciTech Connect

    Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina

    2013-07-01

    Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

  3. Containerless processing of hypermonotectic and glass forming alloys using the Marshall Space Flight Center 100 meter drop tube facility

    NASA Technical Reports Server (NTRS)

    Andrews, J. B.

    1986-01-01

    Two separate projects were carried out to study alloys whose solidification structures can be strongly influenced by the presence of a container during melting and solidifications. One project involved containerless solidification of hypermonotectic Au35Rh65 alloys. This alloy exhibits liquid immiscibility over a temperature range. It has been suggested that containerless melting might be one solution to the problem of sedimentation in the dispersions of immiscible liquid phases. However, surface tension driven flows could also lead to accumulation of the minority liquid phase at the external surface of a containerlessly melted alloy. The research underway is a first step in determining the influence of containerless, microgravity processing on immiscible alloys. Nickel-niobium alloys were studied using the drop tube facility. One alloy in this system, a Ni60Nb40 alloy, is a good candidate for the formation of a bulk metallic glass. Amorphous alloys of this composition were produced using thin film and mechanical alloying techniques. However, theory indicates that if heterogeneous nucleation can be avoided, it should be possible to produce an amorphous structure in this system using a moderate cooling rate from the melt. The containerless melting and solidification capabilities of the drop tube faciltiy provide ideal conditions for a study of this type. To date, several Ni60Nb40 samples have been levitated, melted and cooled during 4.6 seconds of free fall in the 100 meter drop tube. Structures obtained are discussed.

  4. Sample registration software for process automation in the Neutron Activation Analysis (NAA) Facility in Malaysia nuclear agency

    SciTech Connect

    Rahman, Nur Aira Abd Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Mokhtar, Mukhlis B.; Soh Shaari, Syirrazie Bin Che; Azman, Azraf B.; Salim, Nazaratul Ashifa Bt. Abdullah; Ismail, Nadiah Binti

    2015-04-29

    Neutron Activation Analysis (NAA) had been established in Nuclear Malaysia since 1980s. Most of the procedures established were done manually including sample registration. The samples were recorded manually in a logbook and given ID number. Then all samples, standards, SRM and blank were recorded on the irradiation vial and several forms prior to irradiation. These manual procedures carried out by the NAA laboratory personnel were time consuming and not efficient. Sample registration software is developed as part of IAEA/CRP project on ‘Development of Process Automation in the Neutron Activation Analysis (NAA) Facility in Malaysia Nuclear Agency (RC17399)’. The objective of the project is to create a pc-based data entry software during sample preparation stage. This is an effective method to replace redundant manual data entries that needs to be completed by laboratory personnel. The software developed will automatically generate sample code for each sample in one batch, create printable registration forms for administration purpose, and store selected parameters that will be passed to sample analysis program. The software is developed by using National Instruments Labview 8.6.

  5. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site. Annual report, FY 1993

    SciTech Connect

    1994-11-01

    Construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site (SRS) began during FY-1984. The Savannah River Ecology Laboratory (SREL) has completed 15 years of ecological studies related to the construction of the DWPF complex. Prior to construction, the 600-acre site (S-Area) contained a Carolina bay and the headwaters of a stream. Through the long-term census taking of biota at the DWPF site and Rainbow Bay, SREL has been evaluating the impact of construction on the biota and the effectiveness of mitigation efforts. similarly, the effects of erosion from the DWPF site on the water quality of S-Area peripheral streams are being assessed. This research provides supporting data relevant to the National Environmental Policy Act (NEPA) of 1969, the Endangered Species Act of 1973, Executive orders 11988 (Floodplain Management) and 11990 (Protection of Wetlands), and United States Department of Energy (DOE) Guidelines for Compliance with Floodplain/Wetland Environmental Review Requirements (10 CFR 1022).

  6. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report

    SciTech Connect

    1995-08-01

    The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

  7. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    SciTech Connect

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  8. Screening study for waste biomass to ethanol production facility using the amoco process in New York State. Appendices to the final report

    SciTech Connect

    Gastwirth, H.

    1995-08-01

    In 1994, the New York City Department of Sanitation (NYCDOS) intended to solicit proposals for a City-based recycling facility using mixed waste paper. Because Amoco was interested in manufacturing ethanol from biomass, it proposed to do a siting screen in NYC, after which the study was expanded to include upstate locations as well. The objective was to identify and evaluate two sites in New York City and three sites in other New York State urban centers that would be appropriate for construction and long-term operation of a financially attractive and environmentally sound waste biomass-to-ethanol production facility using Amoco`s biomass conversion technology (the `Amoco Process`).

  9. Decommissioning of the Hematite Former Fuel Cycle Facility using a decision flow logic based work control process

    SciTech Connect

    Anderson, Keith D.

    2013-07-01

    The remediation and decommissioning of the Hematite Former Fuel Cycle Facility (FFCF), the Hematite Facility, is currently being carried out by Westinghouse Electric Company LLC under the Hematite Decommissioning Project (HDP). The Hematite Facility is located near the town of Hematite, Missouri, USA. The Hematite Facility consists of 228 acres of land with primary operations historically being conducted within the central portion of the property that is roughly 10 acres including Burial Pits and the Site Pond area. Decommissioning and remediation activities are being performed with the eventual objective of the release of the property. Primary contaminants include the legacy disposal and contamination of natural and enriched uranium from the nuclear fuel cycle, as well as chemicals used during the facility operations. Two major regulatory bodies, the U.S. Nuclear Regulatory Commission (NRC) and the Missouri Department of Natural Resources (MDNR), provide critical roles in the approval and oversight of the current regulatory path to remediation, decommissioning and eventual release. Further, remediation and decommissioning activities are performed under the implementing policies, plans, and procedures under the Hematite Decommissioning Plan (DP) and the Record of Decision (ROD). Remediation and decommissioning tasks at the Hematite Former Fuel Cycle Facility, referred to as the Hematite Facility, are performed against a disciplined decision logic flow that applies accumulated technical and monitoring data to determine each step of the excavation, exhumation, and removal of wastes from the Burial Pits and the remaining Areas of Concern (AOC). Decision flow logic is based upon the nuclear criticality safety controls and threshold conditions, relative level of radioactive and chemical contamination, security protocol, and final waste stream disposition. The end result is to remediate the residual radioactive and chemical contamination to approved dose-based and risk

  10. Earth Observatory Satellite system definition study. Report 5: System design and specifications. Volume 6: Specification for EOS Central Data Processing Facility (CDPF)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The specifications and functions of the Central Data Processing (CDPF) Facility which supports the Earth Observatory Satellite (EOS) are discussed. The CDPF will receive the EOS sensor data and spacecraft data through the Spaceflight Tracking and Data Network (STDN) and the Operations Control Center (OCC). The CDPF will process the data and produce high density digital tapes, computer compatible tapes, film and paper print images, and other data products. The specific aspects of data inputs and data processing are identified. A block diagram of the CDPF to show the data flow and interfaces of the subsystems is provided.

  11. Facilities maintenance handbook

    NASA Technical Reports Server (NTRS)

    1991-01-01

    develop management information in order to statistically identify and analyze variances from those plans. It will also add credibility to the NASA facilities maintenance budgeting process. The key to a successful maintenance program is the understanding and support of the senior Center managers.

  12. Intensive archeological survey of the proposed Saltcrete area of the Defense Waste Processing Facility, Savannah River Plant, Aiken County, South Carolina. Research manuscript series 172

    SciTech Connect

    Brooks, R.D.

    1981-06-01

    An intensive archeological survey of the proposed Saltcrete (200-Z) area of the Defense Waste Processing Facility on the Savannah River Plant, Aiken County, South Carolina was conducted. The purpose was to locate, describe and assess the archeological resources within the proposed construction area and to provide the Department of Energy with the recommendations as to the significance of the resources. This report presents a summary of the background, methods, results and recommendations resulting from the Saltcrete area intensive survey.

  13. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). A description of the sensor, ground data processing facility, laboratory calibration, and first results

    NASA Technical Reports Server (NTRS)

    Vane, Gregg (Editor)

    1987-01-01

    The papers in this document were presented at the Imaging Spectroscopy 2 Conference of the 31st International Symposium on Optical and Optoelectronic Applied Science and Engineering, in San Diego, California, on 20 and 21 August 1987. They describe the design and performance of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor and its subsystems, the ground data processing facility, laboratory calibration, and first results.

  14. Facility Microgrids

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

    2005-05-01

    Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

  15. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    SciTech Connect

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  16. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect

    CHARBONEAU, S.L.

    2006-02-01

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones

  17. Proof of concept simulations of the Multi-Isotope Process monitor: An online, nondestructive, near-real-time safeguards monitor for nuclear fuel reprocessing facilities

    NASA Astrophysics Data System (ADS)

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard N.; Schwantes, Jon M.

    2011-02-01

    The International Atomic Energy Agency will require the development of advanced technologies to effectively safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of nondestructive, near-real-time, autonomous process monitoring. This paper describes recent results from model simulations designed to test the Multi-Isotope Process (MIP) monitor, a novel addition to a safeguards system for reprocessing facilities. The MIP monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in near-real-time. Three computer models including ORIGEN-ARP, AMUSE, and SYNTH were used in series to predict spent nuclear fuel composition, estimate element partitioning during separation, and simulate spectra from product and raffinate streams using a variety of gamma detectors, respectively. Simulations were generated for fuel with various irradiation histories and under a variety of plant operating conditions. Principal component analysis was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup, and cooling time. Hierarchical cluster analysis and partial least squares (PLS) were also used in the analysis. The MIP monitor was found to be sensitive to induced variations of several operating parameters including distinguishing ±2.5% variation from normal process acid concentrations. The ability of PLS to predict burnup levels from simulated spectra was also demonstrated to be within 3.5% of measured values.

  18. Rendezvous facilities

    SciTech Connect

    Gehani, N.H.; Roome, W.D.

    1988-11-01

    The concurrent programming facilities in both Concurrent C and the Ada language are based on the rendezvous concept. Although these facilities are similar, there are substantial differences. Facilities in Concurrent C were designed keeping in perspective the concurrent programming facilities in the Ada language and their limitations. Concurrent C facilities have also been modified as a result of experience with its initial implementations. In this paper, the authors compare the concurrent programming facilities in Concurrent C and Ada, and show that it is easier to write a variety of concurrent programs in Concurrent C than in Ada.

  19. Health Facilities

    MedlinePlus

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, ... psychiatric care centers. When you choose a health facility, you might want to consider How close it ...

  20. Developing a facility strategy.

    PubMed

    Capps, D M

    1994-05-01

    Successful planning for capital investment relies upon the ability of the management team to establish a cogent and comprehensive direction for facility development. The selection of an appropriate strategy integrates multiple issues: mission, service needs of the community, the external environment, the organization's ethos, current physical resources, operational systems, and vision. This paper will identify and discuss key components and data integral to formulating a facility strategy that outlines the basic direction for developing a facility master plan. The process itself will be presented as a working methodology that can be applied to the organization's resources and vision to generate a coherent facility strategy.

  1. National Institutes of Health-Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities.

    PubMed

    Ricordi, Camillo; Goldstein, Julia S; Balamurugan, A N; Szot, Gregory L; Kin, Tatsuya; Liu, Chengyang; Czarniecki, Christine W; Barbaro, Barbara; Bridges, Nancy D; Cano, Jose; Clarke, William R; Eggerman, Thomas L; Hunsicker, Lawrence G; Kaufman, Dixon B; Khan, Aisha; Lafontant, David-Erick; Linetsky, Elina; Luo, Xunrong; Markmann, James F; Naji, Ali; Korsgren, Olle; Oberholzer, Jose; Turgeon, Nicole A; Brandhorst, Daniel; Friberg, Andrew S; Lei, Ji; Wang, Ling-Jia; Wilhelm, Joshua J; Willits, Jamie; Zhang, Xiaomin; Hering, Bernhard J; Posselt, Andrew M; Stock, Peter G; Shapiro, A M James

    2016-11-01

    Eight manufacturing facilities participating in the National Institutes of Health-sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed.

  2. An engineering and economic evaluation of wet and dry pre-fractionation processes for dry-grind ethanol facilities.

    PubMed

    Lin, Tao; Rodríguez, Luis F; Li, Changying; Eckhoff, Steven R

    2011-10-01

    An engineering-economic model was developed to compare the profitability of the wet fractionation process, a generic dry fractionation process, and the conventional dry grind process. Under market conditions as of January 2011, only fractionation processes generated a positive cash flow. Reduced unit manufacturing costs and increased ethanol production capacity were two major contributions. Corn and ethanol price sensitivity analysis showed that the wet fractionation process always outperformed a generic dry fractionation process at any scenario considered in this research. A generic dry fractionation process would provide better economic performance than the conventional dry grind process if corn price was low and ethanol price was high. All three processes would perform more resiliently if the DDGS price was determined by its composition.

  3. Impact of Dust from Ore Processing Facilities on Rain Water Collection Tanks in a Tropical Environment—The Obvious Source “Ain’t Necessarily So”

    PubMed Central

    Gulson, Brian; Korsch, Michael; Bradshaw, Anthony

    2016-01-01

    Concerns have been expressed that dust from the minerals processing facilities at Karumba Queensland Australia have resulted in elevated lead (Pb) concentrations in rain water tanks. The ores derived from the Century mine some 304 km from the port. High precision Pb isotopic measurements on environmental samples have been undertaken to evaluate the source of Pb in rainwaters and acid digests from roof wipes and gutter wipes. There does not appear to be any relationship between sample location and the processing facility but samples from the area subject to the prevailing winds show the highest contribution of Century Pb. All gutter wipes (82 to 1270 µg Pb/wipe) have contributions of Century ore ranging from 87% to 96%. The contribution of Century ore to five roof wipes (22 to 88 µg Pb/wipe) ranges from 89% to 97% and in the other two samples there is a mix of Century and Broken Hill Pb. Three of the seven rainwater have contributions of Century ore Pb ranging from 33% to 75%. Two of the other four rainwater samples have the highest water Pb concentrations of 88 and 100 µg/L and their isotopic data show Broken Hill Pb contributions ranging from 77% to 80%. The source of the Broken Hill Pb is probably from the galvanized roofing material and/or brass fittings in the rainwater tanks. The discrimination between various sources is only detectable using high precision 204Pb-based isotopic ratios and not the now common inductively coupled plasma mass spectrometry (ICP-MS ) data presentations of the higher abundance isotopes 208Pb, 207Pb and 206Pb. Isotopic results for the waters demonstrate that apportioning blame where there is an obvious point source may not always be the correct conclusion. Nevertheless the isotopic data for the gutter wipes indicates that there was widespread contamination from the processing facilities throughout the town. PMID:26907319

  4. Impact of Dust from Ore Processing Facilities on Rain Water Collection Tanks in a Tropical Environment--The Obvious Source "Ain't Necessarily So".

    PubMed

    Gulson, Brian; Korsch, Michael; Bradshaw, Anthony

    2016-02-22

    Concerns have been expressed that dust from the minerals processing facilities at Karumba Queensland Australia have resulted in elevated lead (Pb) concentrations in rain water tanks. The ores derived from the Century mine some 304 km from the port. High precision Pb isotopic measurements on environmental samples have been undertaken to evaluate the source of Pb in rainwaters and acid digests from roof wipes and gutter wipes. There does not appear to be any relationship between sample location and the processing facility but samples from the area subject to the prevailing winds show the highest contribution of Century Pb. All gutter wipes (82 to 1270 µg Pb/wipe) have contributions of Century ore ranging from 87% to 96%. The contribution of Century ore to five roof wipes (22 to 88 µg Pb/wipe) ranges from 89% to 97% and in the other two samples there is a mix of Century and Broken Hill Pb. Three of the seven rainwater have contributions of Century ore Pb ranging from 33% to 75%. Two of the other four rainwater samples have the highest water Pb concentrations of 88 and 100 µg/L and their isotopic data show Broken Hill Pb contributions ranging from 77% to 80%. The source of the Broken Hill Pb is probably from the galvanized roofing material and/or brass fittings in the rainwater tanks. The discrimination between various sources is only detectable using high precision (204)Pb-based isotopic ratios and not the now common inductively coupled plasma mass spectrometry (ICP-MS ) data presentations of the higher abundance isotopes (208)Pb, (207)Pb and (206)Pb. Isotopic results for the waters demonstrate that apportioning blame where there is an obvious point source may not always be the correct conclusion. Nevertheless the isotopic data for the gutter wipes indicates that there was widespread contamination from the processing facilities throughout the town.

  5. Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility

    SciTech Connect

    Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

    2013-07-31

    The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

  6. Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site

    SciTech Connect

    1995-04-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

  7. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    SciTech Connect

    Smith, T.

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  8. Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454

    SciTech Connect

    Lambrecht, Bill; Dixon, Joe; Neuville, John R.

    2012-07-01

    One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

  9. Linkage Between Post-Closure Safety Case Review and the Authorization Process for Radioactive Waste Disposal Facilities

    SciTech Connect

    Streatfield, I. J.; Duerden, S. L.; Yearsley, R. A.; Bennett, D. G.

    2003-02-27

    The Environment Agency (the Agency) has responsibilities under the Radioactive Substances Act of 1993 for regulating the disposal and storage of radioactive wastes in England and Wales, including regulation of the disposal site for UK solid low-level waste (LLW) at Drigg in Cumbria, NW England. To help inform the next review of the Drigg disposal authorization, the Agency has required the operator, British Nuclear Fuels plc to submit a Post-Closure Safety Case which will assess the potential long-term impacts from the site. With the aim of using best practice to determine authorization conditions, the Agency contracted Galson Sciences, Ltd to undertake an international survey of authorization procedures for comparable facilities in other countries. This paper provides an overview of the findings from the international survey.

  10. Final Rule to Reduce Toxic Air Emissions from Asphalt Processing and Asphalt Roofing Manufacturing Facilities Fact Sheet

    EPA Pesticide Factsheets

    This page contains a February 2003 fact sheet with information regarding the National Emissions Standards for Hazardous Air Pollutants (NESHAP) for Asphalt Processing and Asphalt Roofing Manufacturing.

  11. Development and Validation of an Index to Measure the Quality of Facility-Based Labor and Delivery Care Processes in Sub-Saharan Africa

    PubMed Central

    Tripathi, Vandana; Stanton, Cynthia; Strobino, Donna; Bartlett, Linda

    2015-01-01

    Background High quality care is crucial in ensuring that women and newborns receive interventions that may prevent and treat birth-related complications. As facility deliveries increase in developing countries, there are concerns about service quality. Observation is the gold standard for clinical quality assessment, but existing observation-based measures of obstetric quality of care are lengthy and difficult to administer. There is a lack of consensus on quality indicators for routine intrapartum and immediate postpartum care, including essential newborn care. This study identified key dimensions of the quality of the process of intrapartum and immediate postpartum care (QoPIIPC) in facility deliveries and developed a quality assessment measure representing these dimensions. Methods and Findings Global maternal and neonatal care experts identified key dimensions of QoPIIPC through a modified Delphi process. Experts also rated indicators of these dimensions from a comprehensive delivery observation checklist used in quality surveys in sub-Saharan African countries. Potential QoPIIPC indices were developed from combinations of highly-rated indicators. Face, content, and criterion validation of these indices was conducted using data from observations of 1,145 deliveries in Kenya, Madagascar, and Tanzania (including Zanzibar). A best-performing index was selected, composed of 20 indicators of intrapartum/immediate postpartum care, including essential newborn care. This index represented most dimensions of QoPIIPC and effectively discriminated between poorly and well-performed deliveries. Conclusions As facility deliveries increase and the global community pays greater attention to the role of care quality in achieving further maternal and newborn mortality reduction, the QoPIIPC index may be a valuable measure. This index complements and addresses gaps in currently used quality assessment tools. Further evaluation of index usability and reliability is needed. The

  12. Proof of concept experiments of the multi-isotope process monitor: An online, nondestructive, near real-time monitor for spent nuclear fuel reprocessing facilities

    NASA Astrophysics Data System (ADS)

    Orton, Christopher R.; Fraga, Carlos G.; Christensen, Richard N.; Schwantes, Jon M.

    2012-04-01

    Operators, national regulatory agencies and the IAEA will require the development of advanced technologies to efficiently control and safeguard nuclear material at increasingly large-scale nuclear recycling facilities. Ideally, the envisioned technologies would be capable of non-destructive, near real-time (NRT), autonomous process monitoring. This paper describes results from proof-of-principle experiments designed to test the multi-isotope process (MIP) monitor, a novel approach to monitoring and safeguarding reprocessing facilities. The MIP Monitor combines the detection of intrinsic gamma ray signatures emitted from process solutions with multivariate analysis to detect off-normal conditions in process streams nondestructively and in NRT. Commercial spent nuclear fuel of various irradiation histories was dissolved and separated using a PUREX-based batch solvent extraction. Extractions were performed at various nitric acid concentrations to mimic both normal and off-normal industrial plant operating conditions. Principal component analysis (PCA) was applied to the simulated gamma spectra to investigate pattern variations as a function of acid concentration, burnup and cooling time. Partial least squares (PLS) regression was applied to attempt to quantify both the acid concentration and burnup of the dissolved spent fuel during the initial separation stage of recycle. The MIP Monitor demonstrated sensitivity to induced variations of acid concentration, including the distinction of ±1.3 M variation from normal process conditions by way of PCA. Acid concentration was predicted using measurements from the organic extract and PLS resulting in predictions with <0.7 M relative error. Quantification of burnup levels from dissolved fuel spectra using PLS was demonstrated to be within 2.5% of previously measured values.

  13. A Guide for Developing Standard Operating Job Procedures for the Tertiary Multimedia Filtration Process Wastewater Treatment Facility. SOJP No. 7.

    ERIC Educational Resources Information Center

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary multimedia filtration process of wastewater treatment plants. The major objective of the filtration process is the removal of suspended solids from the reclaimed wastewater. The guide gives step-by-step instructions for pre-start up, start-up, continuous operation, and…

  14. A Guide for Developing Standard Operating Job Procedures for the Primary Sedimentation Process Wastewater Treatment Facility. SOJP No. 4.

    ERIC Educational Resources Information Center

    Charles County Community Coll., La Plata, MD.

    This guide describes standard operating job procedures for the primary sedimentation process of wastewater treatment plants. The primary sedimentation process involves removing settleable and suspended solids, in part, from wastewater by gravitational forces, and scum and other floatable solids from wastewater by mechanical means. Step-by-step…

  15. Regional efficiency in the organization of agricultural processing facilities: an application to oilseeds industry in the Sudan

    SciTech Connect

    Babiker, B.I.

    1982-01-01

    There has been an increase in the production of oilseeds in the Sudan during the last few years following a policy of diversifying production. The increase in supply has also been accompanied by an export policy that is directed towards exporting processed products rather than seeds. Assuming that the present trend of increased production and exports of processed oilseeds will continue, and knowing that the present marketing services of oilseeds in the country are rather inefficient, economic information is needed to give more precise direction to the expected changes in marketing services. The present research used an economic framework to analyze the costs of transportation, storage, and processing of oilseeds in the Sudan. The objectives of the study were to describe the present marketing system of oilseeds and evaluate the performance of the institutions involved, to determine the optimum location, number and size of processing plants for 1979/80 and 1989/90, and to analyze the impact of changes in selected variables in the model on plant location, marketing costs and product flow. Results of the analysis showed that increasing the present processing capacity of 50 to 70% as expected did not increase the per unit cost of processing. The 70% processing capacity was considered the basic solution. Optimum plant location was obtained by removing the constraints on processing capacity.

  16. Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint

    SciTech Connect

    Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

    2011-02-01

    This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

  17. A Guide for Developing Standard Operating Job Procedures for the Grit Removal Process Wastewater Treatment Facility. SOJP No. 2.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the grit removal process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up, continuous operation, and shut-down procedures. A description of the equipment used in the process is given. Some theoretical material is presented. (BB)

  18. A Guide for Developing Standard Operating Job Procedures for the Pump Station Process Wastewater Treatment Facility. SOJP No. 3.

    ERIC Educational Resources Information Center

    Perley, Gordon F.

    This is a guide for standard operating job procedures for the pump station process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up procedures, continuous routine operation procedures, and shut-down procedures. A general description of the equipment used in the process is given. Two…

  19. Conferring Natural-Derived Porous Microspheres with Surface Multifunctionality through Facile Coordination-Enabled Self-Assembly Process.

    PubMed

    Han, Pingping; Shi, Jiafu; Nie, Teng; Zhang, Shaohua; Wang, Xueyan; Yang, Pengfei; Wu, Hong; Jiang, Zhongyi

    2016-03-01

    In this study, multifunctional chitin microspheres are synthesized and utilized as a platform for multiple potential applications in enzyme immobilization, catalytic reduction and adsorption. Porous chitin microspheres with an average diameter of 111.5 μm and a porous architecture are fabricated through a thermally induced phase separation method. Then, the porous chitin microspheres are conferred with surface multifunctionality through facile coordination-enabled self-assembly of tannic acid (TA) and titanium (Ti(IV)) bis(ammonium lactate)dihydroxide (Ti-BALDH). The multipoint hydrogen bonds between TA and chitin microspheres confer the TA-Ti(IV) coating with high adhesion capability to adhere firmly to the surface of the chitin microspheres. In view of the biocompatibility, porosity and surface activity, the multifunctional chitin microspheres are used as carriers for enzyme immobilization. The enzyme-conjugated multifunctional porous microspheres exhibit high catalytic performance (102.8 U·mg(-1) yeast alcohol dehydrogenase). Besides, the multifunctional chitin microspheres also find potential applications in the catalytic reduction (e.g., reduction of silver ions to silver nanoparticles) and efficient adsorption of heavy metal ions (e.g., Pb(2+)) taking advantages of their porosity, reducing capability and chelation property.

  20. Alignment mask design and image processing for the Advanced Radiographic Capability (ARC) at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Leach, Richard R.; Awwal, Abdul; Cohen, Simon; Lowe-Webb, Roger; Roberts, Randy; Salmon, Thad; Smauley, David; Wilhelmsen, Karl

    2015-09-01

    The Advance Radiographic Capability (ARC) at the National Ignition Facility (NIF) is a laser system that employs up to four petawatt (PW) lasers to produce a sequence of short pulses that generate X-rays which backlight high-density inertial confinement fusion (ICF) targets. ARC is designed to produce multiple, sequential X-ray images by using up to eight back lighters. The images will be used to examine the compression and ignition of a cryogenic deuterium-tritium target with tens-of-picosecond temporal resolution during the critical phases of an ICF shot. Multi-frame, hard-X-ray radiography of imploding NIF capsules is a capability which is critical to the success of NIF's missions. As in the NIF system, ARC requires an optical alignment mask that can be inserted and removed as needed for precise positioning of the beam. Due to ARC's split beam design, inserting the nominal NIF main laser alignment mask in ARC produced a partial blockage of the mask pattern. Requirements for a new mask design were needed. In this paper we describe the ARC mask requirements, the resulting mask design pattern, and the image analysis algorithms used to detect and identify the beam and reference centers required for ARC alignment.