Sample records for processing heterogeneous waste

  1. Plasma filtering techniques for nuclear waste remediation

    DOE PAGES

    Gueroult, Renaud; Hobbs, David T.; Fisch, Nathaniel J.

    2015-04-24

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. As a result, this advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste.

  2. Effect of heterogeneity and anisotropy related to the construction method on transfer processes in waste rock piles.

    PubMed

    Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno

    2016-01-01

    Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize AMD, while controlling gas flow and oxygen supply. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Plasma filtering techniques for nuclear waste remediation.

    PubMed

    Gueroult, Renaud; Hobbs, David T; Fisch, Nathaniel J

    2015-10-30

    Nuclear waste cleanup is challenged by the handling of feed stocks that are both unknown and complex. Plasma filtering, operating on dissociated elements, offers advantages over chemical methods in processing such wastes. The costs incurred by plasma mass filtering for nuclear waste pretreatment, before ultimate disposal, are similar to those for chemical pretreatment. However, significant savings might be achieved in minimizing the waste mass. This advantage may be realized over a large range of chemical waste compositions, thereby addressing the heterogeneity of legacy nuclear waste. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Biodiesel Production using Heterogeneous Catalyst in CSTR: Sensitivity Analysis and Optimization

    NASA Astrophysics Data System (ADS)

    Keong, L. S.; Patle, D. S.; Shukor, S. R.; Ahmad, Z.

    2016-03-01

    Biodiesel as a renewable fuel has emerged as a potential replacement for petroleum-based diesels. Heterogeneous catalyst has become the focus of researches in biodiesel production with the intention to overcome problems associated with homogeneous catalyzed processes. The simulation of heterogeneous catalyzed biodiesel production has not been thoroughly studied. Hence, a simulation of carbon-based solid acid catalyzed biodiesel production from waste oil with high FFA content (50 weight%) was developed in the present work to study the feasibility and potential of the simulated process. The simulated process produces biodiesel through simultaneous transesterification and esterification with the consideration of reaction kinetics. The developed simulation is feasible and capable to produce 2.81kmol/hr of FAME meeting the international standard (EN 14214). Yields of 68.61% and 97.19% are achieved for transesterification and esterification respectively. Sensitivity analyses of FFA composition in waste oil, methanol to oil ratio, reactor pressure and temperature towards FAME yield from both reactions were carried out. Optimization of reactor temperature was done to maximize FAME products.

  5. Process simulation and economic analysis of biodiesel production from waste cooking oil with membrane bioreactor

    NASA Astrophysics Data System (ADS)

    Abdurakhman, Yuanita Budiman; Putra, Zulfan Adi; Bilad, Muhammad Roil

    2017-10-01

    Pollution and shortage of clean energy supply are among major problems that are caused by rapid population growth. Due to this growth, waste cooking oil is one of the pollution sources. On the other hand, biodiesel appears to be one of the most promising and feasible energy sources as it emits less toxic pollutants and greenhouse gases than petroleum diesel. Thus, biodiesel production using waste cooking oil offers a two-in-one solution to cater pollution and energy issues. However, the conventional biodiesel production process using homogeneous base catalyst and stirred tank reactor is unable to produce high purity of biodiesel from waste cooking oil. It is due its sensitivity to free fatty acid (FFA) content in waste cooking oil and purification difficulties. Therefore, biodiesel production using heterogeneous acid catalyst in membrane reactor is suggested. The product of this process is fatty acid methyl esters (FAME) or biodiesel with glycerol as by-product. This project is aimed to study techno-economic feasibility of biodiesel production from waste cooking oil via heterogeneous acid catalyst in membrane reactor. Aspen HYSYS is used to accomplish this aim. Several cases, such as considering different residence times and the production of pharmaceutical (USP) grade glycerol, are evaluated and compared. Economic potential of these cases is calculated by considering capital expenditure, utilities cost, product and by-product sales, as well as raw material costs. Waste cooking oil, inorganic pressure-driven membrane and WAl is used as raw material, type of membrane and heterogeneous acid catalyst respectively. Based on literature data, FAME yield formulation is developed and used in the reactor simulation. Simulation results shows that economic potential increases by 30% if pharmaceutical (USP) grade glycerol is produced regardless the residence time of the reactor. In addition, there is no significant effect of residence time on the economic potential.

  6. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Z.H.I.; Xiao, Y.; Sietsma, J.

    2015-01-15

    Highlights: • New characterisation methodology has been established to understand an industrially processed ICT waste. • Particle size distribution, composition, thermal–chemical behaviour and occurrence of metals were considered. • The characterisation provides direct guidelines for values recovery from the waste. - Abstract: Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for themore » characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process.« less

  7. Applying Nightingale charts to evaluate the heterogeneity of biomedical waste in a Hospital

    PubMed Central

    Paiz, Janini Cristina; Bigolin, Marcio; Schneider, Vania Elisabete; Stedile, Nilva Lúcia Rech

    2014-01-01

    OBJECTIVES: to evaluate the heterogeneity of biomedical waste (BW) using Nightingale charts. METHOD: cross-sectional study consisting of data collection on wastes (direct observation of receptacles, physical characterisation, and gravimetric composition), development of a Management Information System, and creation of statistical charts. RESULTS: the wastes with the greatest degree of heterogeneity are, in order, recyclable, infectious, and organic wastes; chemical waste had the most efficient segregation; Nightingale charts are useful for quick visualisation and systematisation of information on heterogeneity. CONCLUSION: the development of a management information system and the use of Nightingale charts allows for the identification and correction of errors in waste segregation, which increase health risks and contamination by infectious and chemical wastes and reduce the sale and profit from recyclables. PMID:25591088

  8. Corrosion assessment of refractory materials for high temperature waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.

    1995-11-01

    A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosionmore » coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.« less

  9. Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: a review.

    PubMed

    Lam, Man Kee; Lee, Keat Teong; Mohamed, Abdul Rahman

    2010-01-01

    In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.

  10. Characterisation of metals in the electronic waste of complex mixtures of end-of-life ICT products for development of cleaner recovery technology.

    PubMed

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Visser, G; Yang, Y

    2015-01-01

    Recycling of valuable metals from electronic waste, especially complex mixtures of end-of-life information and communication technology (ICT) products, is of great difficulty due to their complexity and heterogeneity. One of the important reasons is the lack of comprehensive characterisation on such materials, i.e. accurate compositions, physical/chemical properties. In the present research, we focus on developing methodologies for the characterisation of metals in an industrially processed ICT waste. The morphology, particle size distribution, compositional distribution, occurrence, liberation as well as the thermo-chemical properties of the ICT waste were investigated with various characterisation techniques, including X-ray Fluorescence Spectrometry (XRF), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) with energy dispersed spectroscopy (EDS). Due to the high heterogeneity of the material, special sample preparation procedures were introduced to minimise the discrepancies during compositional analyses. As a result, a clearer overview of the ICT waste has been reached. This research provides better understanding of the extractability of each metal and improves the awareness of potential obstacles for extraction. It will lead to smarter decisions during further development of a clean and effective recovery process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Life-Cycle Assessment of Biodiesel Produced from Grease Trap Waste.

    PubMed

    Hums, Megan E; Cairncross, Richard A; Spatari, Sabrina

    2016-03-01

    Grease trap waste (GTW) is a low-quality waste material with variable lipid content that is an untapped resource for producing biodiesel. Compared to conventional biodiesel feedstocks, GTW requires different and additional processing steps for biodiesel production due to its heterogeneous composition, high acidity, and high sulfur content. Life-cycle assessment (LCA) is used to quantify greenhouse gas emissions, fossil energy demand, and criteria air pollutant emissions for the GTW-biodiesel process, in which the sensitivity to lipid concentration in GTW is analyzed using Monte Carlo simulation. The life-cycle environmental performance of GTW-biodiesel is compared to that of current GTW disposal, the soybean-biodiesel process, and low-sulfur diesel (LSD). The disposal of the water and solid wastes produced from separating lipids from GTW has a high contribution to the environmental impacts; however, the impacts of these processed wastes are part of the current disposal practice for GTW and could be excluded with consequential LCA system boundaries. At lipid concentrations greater than 10%, most of the environmental metrics studied are lower than those of LSD and comparable to soybean biodiesel.

  12. The impacts of pore-scale physical and chemical heterogeneities on the transport of radionuclide-carrying colloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ning

    Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less

  13. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay.

    PubMed

    Oribe-Garcia, Iraia; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M; Alonso-Vicario, Ainhoa

    2015-05-01

    The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. EFFICIENT MONITORING OF HETEROGENEOUS MEDIA AND ELECTRONIC WASTES

    EPA Science Inventory

    The Agency's Office of Solid Waste and Emergency Response (OSWER) has recently issued improved guidance for the collection of "representative" samples from heterogeneous media. The Technology Innovation Office (TIO) has begun the development of a web-based handbook which advocat...

  15. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  16. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    PubMed

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  17. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oribe-Garcia, Iraia, E-mail: iraia.oribe@deusto.es; Kamara-Esteban, Oihane; Martin, Cristina

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The presentmore » works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation.« less

  18. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site.

    PubMed

    Peterson, Reid A; Buck, Edgar C; Chun, Jaehun; Daniel, Richard C; Herting, Daniel L; Ilton, Eugene S; Lumetta, Gregg J; Clark, Sue B

    2018-01-16

    This Critical Review reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micro scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiation fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and the high aluminum content must be reduced prior to vitrification for the manufacture of waste glass of acceptable durability. However, caustic leaching indicates that boehmite dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations generally only describe material balances and have not effectively predicted process performance. Recent advances in the areas of in situ microscopy, aberration-corrected transmission electron microscopy, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.

  19. Modeling the combustion behavior of hazardous waste in a rotary kiln incinerator.

    PubMed

    Yang, Yongxiang; Pijnenborg, Marc J A; Reuter, Markus A; Verwoerd, Joep

    2005-01-01

    Hazardous wastes have complex physical forms and chemical compositions and are normally incinerated in rotary kilns for safe disposal and energy recovery. In the rotary kiln, the multifeed stream and wide variation of thermal, physical, and chemical properties of the wastes cause the incineration system to be highly heterogeneous, with severe temperature fluctuations and unsteady combustion chemistry. Incomplete combustion is often the consequence, and the process is difficult to control. In this article, modeling of the waste combustion is described by using computational fluid dynamics (CFD). Through CFD simulation, gas flow and mixing, turbulent combustion, and heat transfer inside the incinerator were predicted and visualized. As the first step, the waste in various forms was modeled to a hydrocarbon-based virtual fuel mixture. The combustion of the simplified waste was then simulated with a seven-gas combustion model within a CFD framework. Comparison was made with previous global three-gas combustion model with which no chemical behavior can be derived. The distribution of temperature and chemical species has been investigated. The waste combustion model was validated with temperature measurements. Various operating conditions and the influence on the incineration performance were then simulated. Through this research, a better process understanding and potential optimization of the design were attained.

  20. Review of the Scientific Understanding of Radioactive Waste at the U.S. DOE Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Reid A.; Buck, Edgar C.; Chun, Jaehun

    This paper reviews the origin and chemical and rheological complexity of radioactive waste at the U.S. Department of Energy’s Hanford Site. The waste, stored in underground tanks, was generated via three distinct processes over decades of plutonium extraction operations. Although close records were kept of original waste disposition, tank-to-tank transfers and conditions that impede equilibrium complicate our understanding of the chemistry, phase composition, and rheology of the waste. Tank waste slurries comprise particles and aggregates from nano to micron scales, with varying densities, morphologies, heterogeneous compositions, and complicated responses to flow regimes and process conditions. Further, remnant or changing radiationmore » fields may affect the stability and rheology of the waste. These conditions pose challenges for transport through conduits or pipes to treatment plants for vitrification. Additionally, recalcitrant boehmite degrades glass quality and must be reduced prior to vitrification, but dissolves much more slowly than predicted given surface normalized rates. Existing empirical models based on ex situ experiments and observations lack true predictive capabilities. Recent advances in in situ microscopy, aberration corrected TEM, theoretical modeling across scales, and experimental methods for probing the physics and chemistry at mineral-fluid and mineral-mineral interfaces are being implemented to build robustly predictive physics-based models.« less

  1. Environmental Management vitrification activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumrine, P.H.

    1996-05-01

    Both the Mixed Waste and Landfill Stabilization Focus Areas as part of the Office of Technology Development efforts within the Department of Energy`s (DOE) Environmental Management (EM) Division have been developing various vitrification technologies as a treatment approach for the large quantities of transuranic (TRU), TRU mixed and Mixed Low Level Wastes that are stored in either landfills or above ground storage facilities. The technologies being developed include joule heated, plasma torch, plasma arc, induction, microwave, combustion, molten metal, and in situ methods. There are related efforts going into development glass, ceramic, and slag waste form windows of opportunity formore » the diverse quantities of heterogeneous wastes needing treatment. These studies look at both processing parameters, and long term performance parameters as a function of composition to assure that developed technologies have the right chemistry for success.« less

  2. Metals bioleaching from electronic waste by Chromobacterium violaceum and Pseudomonads sp.

    PubMed

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2012-11-01

    These days, electronic waste needs to be taken into consideration due to its materials content, but due to the heterogeneity of the metals present, reprocessing of electronic waste is quite limited. The bioleaching of metals from electronic waste was investigated by using cyanogenic bacterial strains (Chromobacterium violaceum, Pseudomonas aeruginosa and Pseudomonas fluorescens). A two-step bioleaching process was followed under cyanide-forming conditions for maximum metals mobilization. Both single and mixed cultures of cyanogenic bacteria were able to mobilize metals from electronic waste with different efficiencies. In all the flasks in which high metal mobilizations were observed, the consequent biomass productions were also high. Pseudomonas aeruginosa was applied in the bioleaching process for the first time and this achieved its bioleaching ability of mobilization of metals from electronic waste. Chromobacterium violaceum as a single culture and a mixture of C. violaceum and P. aeruginosa exhibited maximum metal mobilization. Chromobacterium violaceum was capable of leaching more than 79, 69, 46, 9 and 7% of Cu, Au, Zn, Fe and Ag, respectively at an electronic waste concentration of 1% w/v. Moreover, the mixture of C. violaceum and P. aeruginosa exhibited metals leaching of more than 83, 73, 49, 13 and 8% of total Cu, Au, Zn, Fe, and Ag, respectively. Precious metals were mobilized through bioleaching which might be considered as an industrial application for recycling of electronic waste in the near future.

  3. Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst.

    PubMed

    Gurunathan, Baskar; Ravi, Aiswarya

    2015-01-01

    A novel CZO nanocomposite was synthesized and used as heterogeneous catalyst for transesterification of waste cooking oil into biodiesel using methanol as acyl acceptor. The synthesized CZO nanocomposite was characterized in FESEM with an average size of 80 nm as nanorods. The XRD patterns indicated the substitution of ZnO in the hexagonal lattice of Cu nanoparticles. The 12% (w/w) nanocatalyst concentration, 1:8 (v:v) O:M ratio, 55 °C temperature and 50 min of reaction time were found as optimum for maximum biodiesel yield of 97.71% (w/w). Hence, the use of CZO nanocomposite can be used as heterogeneous catalyst for biodiesel production from waste cooking oil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Catalytic methods using molecular oxygen for treatment of PMMS and ECLSS waste streams, volume 2

    NASA Technical Reports Server (NTRS)

    Akse, James R.

    1992-01-01

    Catalytic oxidation has proven to be an effective addition to the baseline sorption, ion exchange water reclamation technology which will be used on Space Station Freedom (SSF). Low molecular weight, polar organics such as alcohols, aldehydes, ketones, amides, and thiocarbamides which are poorly removed by the baseline multifiltration (MF) technology can be oxidized to carbon dioxide at low temperature (121 C). The catalytic oxidation process by itself can reduce the Total Organic Carbon (TOC) to below 500 ppb for solutions designed to model these waste waters. Individual challenges by selected contaminants have shown only moderate selectivity towards particular organic species. The combined technology is applicable to the more complex waste water generated in the Process Materials Management System (PMMS) and Environmental Control and Life Support System (ECLSS) aboard SSF. During the phase 3 Core Module Integrated Facility (CMIF) water recovery tests at NASA MSFC, real hygiene waste water and humidity condensate were processed to meet potable specifications by the combined technology. A kinetic study of catalytic oxidation demonstrates that the Langmuir-Hinshelwood rate equation for heterogeneous catalysts accurately represent the kinetic behavior. From this relationship, activation energy and rate constants for acetone were determined.

  5. Renewable High-Performance Fibers from the Chemical Recycling of Cotton Waste Utilizing an Ionic Liquid.

    PubMed

    Asaadi, Shirin; Hummel, Michael; Hellsten, Sanna; Härkäsalmi, Tiina; Ma, Yibo; Michud, Anne; Sixta, Herbert

    2016-11-23

    A new chemical recycling method for waste cotton is presented that allows the production of virgin textile fibers of substantially higher quality than that from the mechanical recycling methods that are used currently. Cotton postconsumer textile wastes were solubilized fully in the cellulose-dissolving ionic liquid 1,5-diazabicyclo[4.3.0]non-5-enium acetate ([DBNH]OAc) to be processed into continuous filaments. As a result of the heterogeneous raw material that had a different molar mass distribution and degree of polymerization, pretreatment to adjust the cellulose degree of polymerization by acid hydrolysis, enzyme hydrolysis, or blending the waste cotton with birch prehydrolyzed kraft pulp was necessary to ensure spinnability. The physical properties of the spun fibers and the effect of the processing parameters on the ultrastructural changes of the fibers were measured. Fibers with a tenacity (tensile strength) of up to 58 cN tex -1 (870 MPa) were prepared, which exceeds that of native cotton and commercial man-made cellulosic fibers. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Influence of feeding mixture composition in batch anaerobic co-digestion of stabilized municipal sludge and waste from dairy farms.

    PubMed

    Trulli, Ettore; Torretta, Vincenzo

    2015-01-01

    Waste anaerobic co-digestion applications are particularly useful in Southern Mediterranean areas where large quantities of agricultural waste materials and waste from agro-industries are produced. This waste can be added to urban waste together with the sludge produced by wastewater treatment processes, which, when combined, guarantee the supply of organic matrixes for treatment throughout the year. The implementation of facilities to service vast areas of the agricultural economy and which are heterogeneous in terms of production can provide a good solution. We present an experimental investigation into the anaerobic co-digestion of municipal sludge and bio-waste produced in the Mediterranean area. We conducted anaerobic treatability tests, with measures of biogas production and pH of the mixture in digestion. Our main aims were to identify an optimal mix of substrates for the production of biogas, and to analyse the influence on the composition of biogas and the variation in pH values of the substrates. This analysis was conducted considering the variation of the input, in particular due to the addition of waste acids, such as biological sewage sludge.

  7. Segmented Gamma Scanner for Small Containers of Uranium Processing Waste- 12295

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, K.E.; Smith, S.K.; Gailey, S.

    2012-07-01

    The Segmented Gamma Scanner (SGS) is commonly utilized in the assay of 55-gallon drums containing radioactive waste. Successfully deployed calibration methods include measurement of vertical line source standards in representative matrices and mathematical efficiency calibrations. The SGS technique can also be utilized to assay smaller containers, such as those used for criticality safety in uranium processing facilities. For such an application, a Can SGS System is aptly suited for the identification and quantification of radionuclides present in fuel processing wastes. Additionally, since the significant presence of uranium lumping can confound even a simple 'pass/fail' measurement regimen, the high-resolution gamma spectroscopymore » allows for the use of lump-detection techniques. In this application a lump correction is not required, but the application of a differential peak approach is used to simply identify the presence of U-235 lumps. The Can SGS is similar to current drum SGSs, but differs in the methodology for vertical segmentation. In the current drum SGS, the drum is placed on a rotator at a fixed vertical position while the detector, collimator, and transmission source are moved vertically to effect vertical segmentation. For the Can SGS, segmentation is more efficiently done by raising and lowering the rotator platform upon which the small container is positioned. This also reduces the complexity of the system mechanism. The application of the Can SGS introduces new challenges to traditional calibration and verification approaches. In this paper, we revisit SGS calibration methodology in the context of smaller waste containers, and as applied to fuel processing wastes. Specifically, we discuss solutions to the challenges introduced by requiring source standards to fit within the confines of the small containers and the unavailability of high-enriched uranium source standards. We also discuss the implementation of a previously used technique for identifying the presence of uranium lumping. The SGS technique is a well-accepted NDA technique applicable to containers of almost any size. It assumes a homogenous matrix and activity distribution throughout the entire container; an assumption that is at odds with the detection of lumps within the assay item typical of uranium-processing waste. This fact, in addition to the difficultly in constructing small reference standards of uranium-bearing materials, required the methodology used for performing an efficiency curve calibration to be altered. The solution discussed in this paper is demonstrated to provide good results for both the segment activity and full container activity when measuring heterogeneous source distributions. The application of this approach will need to be based on process knowledge of the assay items, as biases can be introduced if used with homogenous, or nearly homogenous, activity distributions. The bias will need to be quantified for each combination of container geometry and SGS scanning settings. One recommended approach for using the heterogeneous calibration discussed here is to assay each item using a homogenous calibration initially. Review of the segment activities compared to the full container activity will signal the presence of a non-uniform activity distribution as the segment activity will be grossly disproportionate to the full container activity. Upon seeing this result, the assay should either be reanalyzed or repeated using the heterogeneous calibration. (authors)« less

  8. Pilot installation for the thermo-chemical characterisation of solid wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marculescu, C.; Antonini, G.; Badea, A.

    The increasing production and the large variety of wastes require operators of thermal treatment units to continuously adapt the installations or the functioning parameters to the different physical and chemical properties of the wastes. Usually, the treated waste is encountered in the form of heterogeneous mixtures. The classical tests such as thermogravimetry and calorimetric bomb operate component by component, separately. In addition to this, they can analyse only small quantities of waste at a time (a few grams). These common tests are necessary but insufficient in the global waste analysis in the view further thermal treatment. This paper presents anmore » experimental installation, which was designed and built at the CNRS Science Division, Department of Industrial Methods, Compiegne University of Technology, France. It allows the determination of waste thermal and chemical properties by means of thermal treatment. Also, it is capable of continuously analysing significant quantities of waste (up to 50 kg/h) as compared to the classical tests and it can work under various conditions: {center_dot}oxidant or reductive atmosphere (on choice); {center_dot}variable temperature between 400 and 1000 deg. C; {center_dot}independently set residence time of treated sample in the installation and flow conditions. The installation reproduces the process conditions from incinerators or pyrolysis reactors. It also provides complete information on the kinetics of the waste thermal degradation and on the pollutant emissions. Using different mixtures of components present in the municipal solid waste and also in the reconstituted MSW samples, we defined a series of criteria for characterising waste behaviour during the stages of the main treatment process such as: feeding, devolatilisation/oxidation, advancement, solid residue evacuation, and pollutants emission.« less

  9. Photocatalytic degradation of pharmaceutical wastes by alginate supported TiO2 nanoparticles in packed bed photo reactor (PBPR).

    PubMed

    Sarkar, Santanu; Chakraborty, Sudip; Bhattacharjee, Chiranjib

    2015-11-01

    In recent years deposal of pharmaceutical wastes has become a major problem globally. Therefore, it is necessary to removes pharmaceutical waste from the municipal as well as industrial effluents before its discharge. The convectional wastewater and biological treatments are generally failed to separate different drugs from wastewater streams. Thus, heterogeneous photocatalysis process becomes lucrative method for reduction of detrimental effects of pharmaceutical compounds. The main disadvantage of the process is the reuse or recycle of photocatalysis is a tedious job. In this work, the degradation of aqueous solution of chlorhexidine digluconate (CHD), an antibiotic drug, by heterogeneous photocatalysis was study using supported TiO2 nanoparticle. The major concern of this study is to bring down the limitations of suspension mode heterogeneous photocatalysis by implementation of immobilized TiO2 with help of calcium alginate beads. The alginate supported catalyst beads was characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDAX) as well as the characteristic crystalline forms of TiO2 nanoparticle was confirmed by XRD. The degradation efficiency of TiO2 impregnated alginate beads (TIAB) was compared with the performance of free TiO2 suspension. Although, the degradation efficiency was reduced considerably using TIAB but the recycle and reuse of catalyst was increased quite appreciably. The kinetic parameters related to this work have also been measure. Moreover, to study the susceptibility of the present system photocatalysis of other three drugs ibuprofen (IBP), atenolol (ATL) and carbamazepine (CBZ) has been carried out using immobilized TiO2. The continuous mode operation in PBPR has ensured the applicability of alginate beads along with TiO2 in wastewater treatment. The variation of residence time has significant impact on the performance of PBPR. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Optimization of municipal solid waste collection and transportation routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less

  11. Food waste-to-energy conversion technologies: current status and future directions.

    PubMed

    Pham, Thi Phuong Thuy; Kaushik, Rajni; Parshetti, Ganesh K; Mahmood, Russell; Balasubramanian, Rajasekhar

    2015-04-01

    Food waste represents a significantly fraction of municipal solid waste. Proper management and recycling of huge volumes of food waste are required to reduce its environmental burdens and to minimize risks to human health. Food waste is indeed an untapped resource with great potential for energy production. Utilization of food waste for energy conversion currently represents a challenge due to various reasons. These include its inherent heterogeneously variable compositions, high moisture contents and low calorific value, which constitute an impediment for the development of robust, large scale, and efficient industrial processes. Although a considerable amount of research has been carried out on the conversion of food waste to renewable energy, there is a lack of comprehensive and systematic reviews of the published literature. The present review synthesizes the current knowledge available in the use of technologies for food-waste-to-energy conversion involving biological (e.g. anaerobic digestion and fermentation), thermal and thermochemical technologies (e.g. incineration, pyrolysis, gasification and hydrothermal oxidation). The competitive advantages of these technologies as well as the challenges associated with them are discussed. In addition, the future directions for more effective utilization of food waste for renewable energy generation are suggested from an interdisciplinary perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Modelling of composting process of different organic waste at pilot scale: Biodegradability and odor emissions.

    PubMed

    Gutiérrez, M C; Siles, J A; Diz, J; Chica, A F; Martín, M A

    2017-01-01

    The composting process of six different compostable substrates and one of these with the addition of bacterial inoculums carried out in a dynamic respirometer was evaluated. Despite the heterogeneity of the compostable substrates, cumulative oxygen demand (OD, mgO 2 kgVS) was fitted adequately to an exponential regression growing until reaching a maximum in all cases. According to the kinetic constant of the reaction (K) values obtained, the wastes that degraded more slowly were those containing lignocellulosic material (green wastes) or less biodegradable wastes (sewage sludge). The odor emissions generated during the composting processes were also fitted in all cases to a Gaussian regression with R 2 values within the range 0.8-0.9. The model was validated representing real odor concentration near the maximum value against predicted odor concentration of each substrate, (R 2 =0.9314; 95% prediction interval). The variables of maximum odor concentration (ou E /m 3 ) and the time (h) at which the maximum was reached were also evaluated statistically using ANOVA and a post-hoc Tukey test taking the substrate as a factor, which allowed homogeneous groups to be obtained according to one or both of these variables. The maximum oxygen consumption rate or organic matter degradation during composting was directly related to the maximum odor emission generation rate (R 2 =0.9024, 95% confidence interval) when only the organic wastes with a low content in lignocellulosic materials and no inoculated waste (HRIO) were considered. Finally, the composting of OFMSW would produce a higher odor impact than the other substrates if this process was carried out without odor control or open systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Ireson, A. M.; Keim, D.

    2015-12-01

    A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.

  14. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James R

    2014-11-04

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  15. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  16. An overview on characterization, utilization and leachate analysis of biomedical waste incinerator ash.

    PubMed

    Rajor, Anita; Xaxa, Monika; Mehta, Ratika; Kunal

    2012-10-15

    Solid waste management is one of the major global environmental issues, as there is continuous increase in industrial globalization and generation of waste. Solid wastes encompass the heterogeneous mass of throwaways from the urban community as well as the homogeneous accumulations of agricultural, industrial and mineral wastes. Biomedical waste pose a significant impact on health and environment. A proper waste management system should be required to dispose hazardous biomedical waste and incineration should be the best available technology to reduce the volume of this hazardous waste. The incineration process destroys pathogens and reduces the waste volume and weight but leaves a solid material called biomedical waste ash as residue which increases the levels of heavy metals, inorganic salts and organic compounds in the environment. Disposal of biomedical waste ash in landfill may cause contamination of groundwater as metals are not destroyed during incineration. The limited space and the high cost for land disposal led to the development of recycling technologies and the reuse of ash in different systems. In order to minimize leaching of its hazardous components into the environment several studies confirmed the successful utilization of biomedical waste ash in agriculture and construction sector. This paper presents the overview on the beneficial use of ash in agriculture and construction materials and its leachate characteristics. This review also stressed on the need to further evaluate the leachate studies of the ashes and slag for their proper disposal and utilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Simultaneous production of oil enriched in ω-3 polyunsaturated fatty acids and biodiesel from fish wastes.

    PubMed

    Enascuta, Cristina Emanuela; Stepan, Emil; Bolocan, Ion; Bombos, Dorin; Calin, Catalina; Oprescu, Elena-Emilia; Lavric, Vasile

    2018-05-01

    The waste resulted from fish processing industries are discarded into the environment around the world, causing environmental pollution. The main problem of fish oil extracted from waste is the high content in free fatty acids (FFA) which decrease the yield in fatty acids esters during transesterification reactions. Therefore, to correct the fish-oil properties, a new environmentally friendly heterogeneous superacid catalyst (SO 4 2- /SnO 2 -ZrO 2 ) was tested in the esterification reaction of FFA with ethanol. The catalyst was characterized by different techniques (XRD, FT-IR, FT-IR of adsorbed pyridine, BET, SEM-EDX, TGA and acidity measurements). The reaction was found to follow a Langmuir-Hinshelwood (L-H) dual-site mechanism with the novelty that both Brönsted and Lewis acid centers participate equally in the esterification reaction. The pre-treated oil was subjected to transesterification reaction with ethanol over a heterogeneous base catalyst and then, the saturated and unsaturated fractions of fatty acid ethyl esters (FAEE) were separated using a vacuum rectification unit with falling film. The saturated content can be used as biofuel, while the unsaturated FAEE are further transesterified with glycerol in order to obtain oil with high content in polyunsaturated fatty acids (PUFA). A detailed study of the intrinsic kinetic process at the surface of the superacid catalyst and a thorough mathematical model of the fixed bed reactor were written and validated by an experimental program, designed according to the D-optimal methodology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review.

    PubMed

    Ahmed, Syed Nabeel; Haider, Waseem

    2018-08-24

    There has been a considerable amount of research in the development of sustainable water treatment techniques capable of improving the quality of water. Unavailability of drinkable water is a crucial issue especially in regions where conventional drinking water treatment systems fail to eradicate aquatic pathogens, toxic metal ions and industrial waste. The research and development in this area have given rise to a new class of processes called advanced oxidation processes, particularly in the form of heterogeneous photocatalysis, which converts photon energy into chemical energy. Advances in nanotechnology have improved the ability to develop and specifically tailor the properties of photocatalytic materials used in this area. This paper discusses many of those photocatalytic nanomaterials, both metal-based and metal-free, which have been studied for water and waste water purification and treatment in recent years. It also discusses the design and performance of the recently studied photocatalytic reactors, along with the recent advancements in the visible-light photocatalysis. Additionally, the effects of the fundamental parameters such as temperature, pH, catalyst-loading and reaction time have also been reviewed. Moreover, different techniques that can increase the photocatalytic efficiency as well as recyclability have been systematically presented, followed by a discussion on the photocatalytic treatment of actual wastewater samples and the future challenges associated with it.

  19. Prospects of effective microorganisms technology in wastes treatment in Egypt.

    PubMed

    Shalaby, Emad A

    2011-06-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future.

  20. A research park for studying processes in unsaturated fractured media

    NASA Astrophysics Data System (ADS)

    Baker, Kristine; McLing, Travis; Street, Leah; Schafer, Annette; Ansley, Shannon; Hull, Larry; Holt, Robert; Roback, Robert; Jones, Catherine

    A field research site has been developed to explore the combined use of physical experiments and mathematical modeling to analyze large-scale infiltration and chemical transport through the unsaturated media overlying the Snake River Plain Aquifer in southeastern Idaho. This site offers opportunities to observe water and contaminant migration influenced by fluid dynamics and microbial activity through heterogeneous-porous and fractured media.At many waste disposal facilities, the presence of toxic or radioactive wastes between the land surface and underlying aquifers poses a serious and ongoing threat to public health and safety.To reduce the risk associated with these industrial and Cold War by-products, a combination of remediation and long-term monitoring will be required.

  1. Aqueous Electrochemical Mechanisms in Actinide Residue Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, David E.; Burns, Carol J.; Smith, Wayne H.

    2000-12-31

    Plutonium and uranium residues (e.g., incinerator ash, combustibles, and sand/slag/crucibles) resulting from the purification and processing of nuclear materials constitute an enormous volume of ''lean'' processing waste and represent a significant fraction of the U. S. Department of Energy's (DOE) legacy waste from fifty years of nuclear weapons production activities. Much of this material is presently in storage at sites throughout the DOE weapons production complex (most notably Rocky Flats, Savannah River and Hanford) awaiting further processing and/or final disposition. The chemical and physical stability of much of this material has been called into question recently by the Defense Nuclearmore » Facility Safety Board (DNFSB) and resulted in the issuance of a mandate by the DNFSB to undertake a program to stabilize these materials [1]. The ultimate disposition for much of these materials is anticipated to be geologic repositories such as the proposed Waste Isolation Pilot Plant in New Mexico. However, in light of the mandate to stabilize existing residues and the probable concomitant increase in the volume of material to be disposed as a result of stabilization (e.g., from repackaging at lower residue densities), the projected storage volume for these wastes within anticipated geologic repositories will likely be exceeded simply to handle existing wastes. Additional processing of some of these residue waste streams to reduce radionuclide activity levels, matrix volume, or both is a potentially important strategy to achieve both stabilization and volume reduction so that the anticipated geologic repositories will provide adequate storage volume. In general, the plutonium and uranium that remains in solid residue materials exists in a very stable chemical form (e.g., as binary oxides), and the options available to remove the actinides are limited. However, there have been some demonstrated successes in this vain using aqueous phase electrochemical methods such as the Catalyzed Electrochemical Plutonium Oxide Dissolution (CEPOD) process pioneered by workers at Pacific Northwest National Laboratory in the mid-1970s [2]. The basis for most of these mediated electrochemical oxidation/reduction (MEO/R) processes is the generation of a dissolved electrochemical catalyst, such as Ag2+, which is capable of oxidizing or reducing solid-phase actinide species or actinide sorbates via 7 heterogeneous electron transfer to oxidation states that have significantly greater solubilities (e.g., PuO2(s) to PuO2 2+ (dissolved)). The solubilized actinide can then be recovered by ion exchange or other mechanisms. These aqueous electrochemical methods for residue treatment have been considered in many of the ''trade studies'' to evaluate options for stabilization of the various categories of residue materials. While some concerns generally arise (e.g., large secondary waste volumes could results since the process stream normally goes th rough anion exchange or precipitation steps to remove the actinide), the real utility and versatility of these methods should not be overlooked. They are low temperature, ambient pressure processes that operate in a non-corrosive environment. In principle, they can be designed to be highly selective for the actinides (i.e., no substrate degradation occurs), they can be utilized for many categories of residue materials with little or no modification in hardware or operating conditions, and they can conceivably be engineered to minimize secondary waste stream volume. However, some fundamental questions remain concerning the mechanisms through which these processes act, and how the processes might be optimized to maximize efficiency while minimizing secondary waste. In addition, given the success achieved to date on the limited set of residues, further research is merited to extend the range of applicability of these electrochemical methods to other residue and waste streams. The principal goal of the work described here is to develop a fundamental understanding of the heterogeneous electron transfer thermodynamics and kinetics that lie at the heart of the MEO/R processes for actinide solids and actinide species entrained in or surface-bound to residue substrates. This has been accomplished as described in detail below through spectroscopic characterization of actinide-bearing substrates and electrochemical investigations of electron transfer reactions between uranium- and plutonium- (or surrogates) bearing solids (dispersed actinide solid phases and actinides sorbed to inorganic and organic colloids) and polarizable electrode materials. In general, the actinide solids or substrate-supported species were chosen to represent relevant residue materials (e.g., incinerator ash, sand/slag/crucible, and combustibles).« less

  2. Analysis of Combustion Process of Sewage Sludge in Reference to Coals and Biomass

    NASA Astrophysics Data System (ADS)

    Środa, Katarzyna; Kijo-Kleczkowska, Agnieszka

    2016-06-01

    Production of sewage sludge is an inseparable part of the treatment process. The chemical and sanitary composition of sewage sludge flowing into the treatment plant is a very important factor determining the further use of the final product obtained in these plants. The sewage sludge is characterized by heterogeneity and multi-components properties, because they have characteristics of the classical and fertilizer wastes and energetic fuels. The thermal utilization of sewage sludge is necessary due to the unfavorable sanitary characteristics and the addition of the industrial sewage. This method ensures use of sewage sludge energy and return of expenditure incurred for the treatment of these wastes and their disposal. Sewage sludge should be analyzed in relation to conventional fuels (coals and biomass). They must comply with the applicable requirements, for example by an appropriate degree of dehydration, which guarantee the stable and efficient combustion. This paper takes the issue of the combustion process of the different sewage sludge and their comparison of the coal and biomass fuels.

  3. Prospects of effective microorganisms technology in wastes treatment in Egypt

    PubMed Central

    Shalaby, Emad A

    2011-01-01

    Sludge dewatering and treatment may cost as much as the wastewater treatment. Usually large proportion of the pollutants in wastewater is organic. They are attacked by saprophytic microorganisms, i.e. organisms that feed upon dead organic matter. Activity of organisms causes decomposition of organic matter and destroys them, where the bacteria convert the organic matter or other constituents in the wastewater to new cells, water, gases and other products. Demolition activities, including renovation/remodeling works and complete or selective removal/demolishing of existing structures either by man-made processes or by natural disasters, create an extensive amount of wastes. These demolition wastes are characterized as heterogeneous mixtures of building materials that are usually contaminated with chemicals and dirt. In developing countries, it is estimated that demolition wastes comprise 20% to 30% of the total annual solid wastes. In Egypt, the daily quantity of construction and demolition (C&D) waste has been estimated as 10 000 tones. That is equivalent to one third of the total daily municipal solid wastes generated per day in Egypt. The zabbaliin have since expanded their activities and now take the waste they collect back to their garbage villages where it is sorted into recyclable components: paper, plastics, rags, glass, metal and food. The food waste is fed to pigs and the other items are sold to recycling centers. This paper summarizes the wastewater and solid wastes management in Egypt now and future. PMID:23569767

  4. Calcium Oxide Derived from Waste Shells of Mussel, Cockle, and Scallop as the Heterogeneous Catalyst for Biodiesel Production

    PubMed Central

    Chaiyut, Nattawut; Worawanitchaphong, Phatsakon

    2013-01-01

    The waste shell was utilized as a bioresource of calcium oxide (CaO) in catalyzing a transesterification to produce biodiesel (methyl ester). The economic and environmen-friendly catalysts were prepared by a calcination method at 700–1,000°C for 4 h. The heterogeneous catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and the Brunauer-Emmett-Teller (BET) method. The effects of reaction variables such as reaction time, reaction temperature, methanol/oil molar ratio, and catalyst loading on the yield of biodiesel were investigated. Reusability of waste shell catalyst was also examined. The results indicated that the CaO catalysts derived from waste shell showed good reusability and had high potential to be used as biodiesel production catalysts in transesterification of palm oil with methanol. PMID:24453854

  5. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  6. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.

    PubMed

    Long, Laishou; Sun, Shuiyu; Zhong, Sheng; Dai, Wencan; Liu, Jingyong; Song, Weifeng

    2010-05-15

    The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 degrees C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  7. Chemistry Division: Annual progress report for period ending March 31, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-08-01

    This report is divided into the following sections: coal chemistry; aqueous chemistry at high temperatures and pressures; geochemistry of crustal processes to high temperatures and pressures; chemistry of advanced inorganic materials; structure and dynamics of advanced polymeric materials; chemistry of transuranium elements and compounds; separations chemistry; reactions and catalysis in molten salts; surface science related to heterogeneous catalysis; electron spectroscopy; chemistry related to nuclear waste disposal; computational modeling of security document printing; and special topics. (DLC)

  8. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  9. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  10. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  11. Accumulation of heavy metals by vegetables grown in mine wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, G.P.; Sands, K.; Waters, M.

    2000-03-01

    Lead, cadmium, arsenic, and zinc were quantified in mine wastes and in soils mixed with mine wastes. Metal concentrations were found to be heterogeneous in the wastes. Iceberg lettuce, Cherry Belle radishes, Roma bush beans, and Better Boy tomatoes were cultivated in mine wastes and in waste-amended soils. Lettuce and radishes had 100% survival in the 100% mine waste treatments compared to 0% and 25% survival for tomatoes and beans, respectively. Metal concentrations were determined in plant tissues to determine uptake and distribution of metals in the edible plant parts. Individual soil samples were collected beneath each plant to assessmore » metal content in the immediate plant environment. This analysis verified heterogeneous metal content of the mine wastes. The four plant species effectively accumulated and translocated lead, cadmium, arsenic, and zinc. Tomato and bean plants contained the four metals mainly in the roots and little was translocated to the fruits. Radish roots accumulated less metals compared to the leaves, whereas lettuce roots and leaves accumulated similar concentrations of the four metals. Lettuce leaves and radish roots accumulated significantly more metals than bean and tomato fruits. This accumulation pattern suggests that consumption of lettuce leaves or radish roots from plants grown in mine wastes would pose greater risks to humans and wildlife than would consumption of beans or tomatoes grown in the same area. The potential risk may be mitigated somewhat in humans, as vegetables grown in mine wastes exhibited stunted growth and chlorosis.« less

  12. Finite element analysis of ion transport in solid state nuclear waste form materials

    NASA Astrophysics Data System (ADS)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  13. Mixing-controlled uncertainty in long-term predictions of acid rock drainage from heterogeneous waste-rock piles

    NASA Astrophysics Data System (ADS)

    Pedretti, D.; Beckie, R. D.; Mayer, K. U.

    2015-12-01

    The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.

  14. A procedure to estimate proximate analysis of mixed organic wastes.

    PubMed

    Zaher, U; Buffiere, P; Steyer, J P; Chen, S

    2009-04-01

    In waste materials, proximate analysis measuring the total concentration of carbohydrate, protein, and lipid contents from solid wastes is challenging, as a result of the heterogeneous and solid nature of wastes. This paper presents a new procedure that was developed to estimate such complex chemical composition of the waste using conventional practical measurements, such as chemical oxygen demand (COD) and total organic carbon. The procedure is based on mass balance of macronutrient elements (carbon, hydrogen, nitrogen, oxygen, and phosphorus [CHNOP]) (i.e., elemental continuity), in addition to the balance of COD and charge intensity that are applied in mathematical modeling of biological processes. Knowing the composition of such a complex substrate is crucial to study solid waste anaerobic degradation. The procedure was formulated to generate the detailed input required for the International Water Association (London, United Kingdom) Anaerobic Digestion Model number 1 (IWA-ADM1). The complex particulate composition estimated by the procedure was validated with several types of food wastes and animal manures. To make proximate analysis feasible for validation, the wastes were classified into 19 types to allow accurate extraction and proximate analysis. The estimated carbohydrates, proteins, lipids, and inerts concentrations were highly correlated to the proximate analysis; correlation coefficients were 0.94, 0.88, 0.99, and 0.96, respectively. For most of the wastes, carbohydrate was the highest fraction and was estimated accurately by the procedure over an extended range with high linearity. For wastes that are rich in protein and fiber, the procedure was even more consistent compared with the proximate analysis. The new procedure can be used for waste characterization in solid waste treatment design and optimization.

  15. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  16. Design of structure and simulation of the three-zone gasifier of dense layer of the inverted process

    NASA Astrophysics Data System (ADS)

    Zagrutdinov, R. Sh; Negutorov, V. N.; Maliykhin, D. G.; Nikishanin, M. S.; Senachin, P. K.

    2017-11-01

    Experts of LLC “New Energy Technologies” have developed gasifiers designs, with the implementation of the three-zone gasification method, which satisfy the following conditions: 1) the generated gas must be free from tar, soot and hydrocarbons, with a given ratio of CO/H2; 2) to use as the fuel source a wide range of low-grade low-value solid fuels, including biomass and various kinds of carbonaceous wastes; 3) have high reliability in operation, do not require qualified operating personnel, be relatively inexpensive to produce and use steam-air blowing instead of expensive steam-oxygen one; 4) the line of standard sizes should be sufficiently wide (with a single unit capacity of fuel from 1 to 50-70 MW). Two models of gas generators of the inverted gasification process with three combustion zones operating under pressure have been adopted for design: 1) gas generator with a remote combustion chamber type GOP-VKS (two-block version) and 2) a gas generator with a common combustion chamber of the GOP-OK type (single-block version), which is an almost ideal model for increasing the unit capacity. There have been worked out various schemes for the preparation of briquettes from practically the entire spectrum of low-grade fuel: high-ash and high-moisture coals, peat and biomass, including all types of waste - solid household waste, crop, livestock, poultry, etc. In the gas generators there are gasified the cylindrical briquettes with a diameter of 20-25 mm and a length of 25-35 mm. There have been developed a mathematical model and computer code for numerical simulation of synthesis gas generation processes in a gasifier of a dense layer of inverted process during a steam-air blast, including: continuity equations for the 8 gas phase components and for the solid phase; the equation of the heat balance for the entire heterogeneous system; the Darcy law equation (for porous media); equation of state for 8 components of the gas phase; equations for the rates of 3 gas-phase and 4 heterogeneous reactions; macro kinetics law of coke combustion; other equations and boundary conditions.

  17. Characterizing variable biogeochemical changes during the treatment of produced oilfield waste.

    PubMed

    Hildenbrand, Zacariah L; Santos, Inês C; Liden, Tiffany; Carlton, Doug D; Varona-Torres, Emmanuel; Martin, Misty S; Reyes, Michelle L; Mulla, Safwan R; Schug, Kevin A

    2018-09-01

    At the forefront of the discussions about climate change and energy independence has been the process of hydraulic fracturing, which utilizes large amounts of water, proppants, and chemical additives to stimulate sequestered hydrocarbons from impermeable subsurface strata. This process also produces large amounts of heterogeneous flowback and formation waters, the subsurface disposal of which has most recently been linked to the induction of anthropogenic earthquakes. As such, the management of these waste streams has provided a newfound impetus to explore recycling alternatives to reduce the reliance on subsurface disposal and fresh water resources. However, the biogeochemical characteristics of produced oilfield waste render its recycling and reutilization for production well stimulation a substantial challenge. Here we present a comprehensive analysis of produced waste from the Eagle Ford shale region before, during, and after treatment through adjustable separation, flocculation, and disinfection technologies. The collection of bulk measurements revealed significant reductions in suspended and dissolved constituents that could otherwise preclude untreated produced water from being utilized for production well stimulation. Additionally, a significant step-wise reduction in pertinent scaling and well-fouling elements was observed, in conjunction with notable fluctuations in the microbiomes of highly variable produced waters. Collectively, these data provide insight into the efficacies of available water treatment modalities within the shale energy sector, which is currently challenged with improving the environmental stewardship of produced water management. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Waste separation: Does it influence municipal waste combustor emissions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandler, A.J.; Rigo, H.G.

    1996-09-01

    It has been suggested that MSW incinerator emissions show significant variations because of the heterogeneous nature of the waste fed to the furnace. This argument has even been used to propose banning certain materials from incinerators. However, data previously reported by the authors suggests that a large portion of the trace metals come from natural sources. Furthermore, full scale incinerator spiking experiments suggest that certain forms of trace metals have minimal effects on stack emissions. Similar studies with chlorinated plastics have failed to identify a significant effect on incinerator dioxin emissions. The implication of segregating the lawn and garden wastemore » and other fines from the furnace feed is explored using data from a 400 tpd mass burn facility equipped with a conditioning tower, dry reactor and fabric filter air pollution control system (APCS) preceded by an NRT separation system. The stack emissions have been tested periodically since commissioning to characterize emissions for various seasons using both processed fuel and raw MSW. Front end processing to remove selected portions of the waste stream based upon size or physical properties, i.e. fines, grass, or ferrous materials, did not result in a statistically significant difference in stack emissions. System operating regime, and in particular those that effect the effective air to cloth ratio in the fabric filter, appear to be the principal influence on emission levels.« less

  19. Development of a New Analog Test System Capable of Modeling Tectonic Deformation Incorporating the Effects of Pore Fluid Pressure

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Nakajima, H.; Takeda, M.; Aung, T. T.

    2005-12-01

    Understanding and predicting the tectonic deformation within geologic strata has been a very important research subject in many fields such as structural geology and petroleum geology. In recent years, such research has also become a fundamental necessity for the assessment of active fault migration, site selection for geological disposal of radioactive nuclear waste and exploration for methane hydrate. Although analog modeling techniques have played an important role in the elucidation of the tectonic deformation mechanisms, traditional approaches have typically used dry materials and ignored the effects of pore fluid pressure. In order for analog models to properly depict the tectonic deformation of the targeted, large-prototype system within a small laboratory-scale configuration, physical properties of the models, including geometry, force, and time, must be correctly scaled. Model materials representing brittle rock behavior require an internal friction identical to the prototype rock and virtually zero cohesion. Granular materials such as sand, glass beads, or steel beads of dry condition have been preferably used for this reason in addition to their availability and ease of handling. Modeling protocols for dry granular materials have been well established but such model tests cannot account for the pore fluid effects. Although the concept of effective stress has long been recognized and the role of pore-fluid pressure in tectonic deformation processes is evident, there have been few analog model studies that consider the effects of pore fluid movement. Some new applications require a thorough understanding of the coupled deformation and fluid flow processes within the strata. Taking the field of waste management as an example, deep geological disposal of radioactive waste has been thought to be an appropriate methodology for the safe isolation of the wastes from the human environment until the toxicity of the wastes decays to non-hazardous levels. For the deep geological disposal concept, besides containing the wastes with engineering methods such as the glassification of the radioactive wastes, the geological formation itself is expected to serve as a natural barrier that retards migration of radionuclides. To evaluate the long-term safety of deep geological disposal, a better understanding of the fate and transport of radionuclides in a geologically heterogeneous environment is necessary. To meet such requirements, a new analog test sandbox model system was developed. This model system allows the pore fluid flows to be controlled during the model tests and permits the study of flow and transport phenomena in the deformed heterogeneous model. One- or two-dimensional fluid flow is controlled using a side-wall piston. Deformation processes can be observed through a transparent front panel, and pore fluid movement can be also visualized using a color tracer. In this study, the scaling requirements for analog modeling, including pore water pressure, are discussed based on the theory of dimensional analysis, supplemented by data from a series of laboratory shear tests, and a detailed description of the model system. Preliminary experimental results are presented.

  20. Waste receiving and processing plant control system; system design description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANE, M.P.

    1999-02-24

    The Plant Control System (PCS) is a heterogeneous computer system composed of numerous sub-systems. The PCS represents every major computer system that is used to support operation of the Waste Receiving and Processing (WRAP) facility. This document, the System Design Description (PCS SDD), includes several chapters and appendices. Each chapter is devoted to a separate PCS sub-system. Typically, each chapter includes an overview description of the system, a list of associated documents related to operation of that system, and a detailed description of relevant system features. Each appendice provides configuration information for selected PCS sub-systems. The appendices are designed asmore » separate sections to assist in maintaining this document due to frequent changes in system configurations. This document is intended to serve as the primary reference for configuration of PCS computer systems. The use of this document is further described in the WRAP System Configuration Management Plan, WMH-350, Section 4.1.« less

  1. Recovery of PET from packaging plastics mixtures by wet shaking table.

    PubMed

    Carvalho, M T; Agante, E; Durão, F

    2007-01-01

    Recycling requires the separation of materials appearing in a mass of wastes of heterogeneous composition and characteristics, into single, almost pure, component/material flows. The separation of materials (e.g., some types of plastics) with similar physical properties (e.g., specific gravity) is often accomplished by human sorting. This is the case of the separation of packaging plastics in municipal solid wastes (MSW). The low cost of virgin plastics and low value of recycled plastics necessitate the utilization of low cost techniques and processes in the recycling of packaging plastics. An experimental study was conducted to evaluate the feasibility of production of a PET product, cleaned from PVC and PS, using a wet shaking table. The wet shaking table is an environmentally friendly process, widely used to separate minerals, which has low capital and operational costs. Some operational variables of the equipment, as well as different feed characteristics, were considered. The results show that the separation of these plastics is feasible although, similarly to the mineral field, in somewhat complex flow sheets.

  2. Palladium Nanoparticles Immobilized on Individual Calcium Carbonate Plates Derived from Mussel Shell Waste: An Ecofriendly Catalyst for the Copper-Free Sonogashira Coupling Reaction.

    PubMed

    Saetan, Trin; Lertvachirapaiboon, Chutiparn; Ekgasit, Sanong; Sukwattanasinitt, Mongkol; Wacharasindhu, Sumrit

    2017-09-05

    The conversion of waste into high-value materials is considered an important sustainability strategy in modern chemical industries. A large volume of shell waste is generated globally from mussel cultivation. In this work, mussel shell waste (Perna viridis) is transformed into individual calcium carbonate plates (ICCPs) and is applied as a support for a heterogeneous catalyst. Palladium nanoparticles (3-6 nm) are deposited with an even dispersion on the ICCP surface, as demonstrated by X-ray diffraction and scanning electron microscopy. Using this system, Sonogashira cross-coupling reactions between aryl iodides and terminal acetylenes were accomplished in high yields with the use of 1 % Pd/ICCP in the presence of potassium carbonate without the use of any copper metal or external ligand. The Pd/ICCP catalyst could also be reused up to three times and activity over 90 % was maintained with negligible Pd-metal leaching. This work demonstrates that mussel shell waste can be used as an inexpensive and effective support for metal catalysts in coupling reactions, as demonstrated by the successful performance of the Pd-catalyzed, copper-free Sonogashira cross-coupling process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Application of spatial time domain reflectometry measurements in heterogeneous, rocky substrates

    NASA Astrophysics Data System (ADS)

    Gonzales, C.; Scheuermann, A.; Arnold, S.; Baumgartl, T.

    2016-10-01

    Measurement of soil moisture across depths using sensors is currently limited to point measurements or remote sensing technologies. Point measurements have limitations on spatial resolution, while the latter, although covering large areas may not represent real-time hydrologic processes, especially near the surface. The objective of the study was to determine the efficacy of elongated soil moisture probes—spatial time domain reflectometry (STDR)—and to describe transient soil moisture dynamics of unconsolidated mine waste rock materials. The probes were calibrated under controlled conditions in the glasshouse. Transient soil moisture content was measured using the gravimetric method and STDR. Volumetric soil moisture content derived from weighing was compared with values generated from a numerical model simulating the drying process. A calibration function was generated and applied to STDR field data sets. The use of elongated probes effectively assists in the real-time determination of the spatial distribution of soil moisture. It also allows hydrologic processes to be uncovered in the unsaturated zone, especially for water balance calculations that are commonly based on point measurements. The elongated soil moisture probes can potentially describe transient substrate processes and delineate heterogeneity in terms of the pore size distribution in a seasonally wet but otherwise arid environment.

  4. High-temperature photochemical destruction of toxic organic wastes using concentrated solar radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dellinger, B.; Graham, J.L.; Berman, J.M.

    1994-05-01

    Application of concentrated solar energy has been proposed to be a viable waste disposal option. Specifically, this concept of solar induced high-temperature photochemistry is based on the synergistic contribution of concentrated infrared (IR) radiation, which acts as an intense heating source, and near ultraviolet and visible (UV-VIS) radiation, which can induce destructive photochemical processes. Some significant advances have been made in the theoretical framework of high-temperature photochemical processes (Section 2) and development of experimental techniques for their study (Section 3). Basic thermal/photolytic studies have addressed the effect of temperature on the photochemical destruction of pure compounds (Section 4). Detailed studiesmore » of the destruction of reaction by-products have been conducted on selected waste molecules (Section 5). Some very limited results are available on the destruction of mixtures (Section 6). Fundamental spectroscopic studies have been recently initiated (Section 7). The results to date have been used to conduct some relatively simple scale-up studies of the solar detoxification process. More recent work has focused on destruction of compounds that do not directly absorb solar radiation. Research efforts have focused on homogeneous as well as heterogeneous methods of initiating destructive reaction pathways (Section 9). Although many conclusions at this point must be considered tentative due to lack of basic research, a clearer picture of the overall process is emerging (Section 10). However, much research remains to be performed and most follow several veins, including photochemical, spectroscopic, combustion kinetic, and engineering scale-up (Section 11).« less

  5. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fracturedmore » rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.« less

  6. Application of Vadose Zone Monitoring Technology for Characterization of Leachate Generation in Landfills

    NASA Astrophysics Data System (ADS)

    aharoni, imri; dahan, ofer

    2016-04-01

    Ground water contamination due to landfill leachate percolation is considered the most severe environmental threat related to municipal solid waste landfills. Natural waste degradation processes in landfills normally produce contaminated leachates up to decades after the waste has been buried. Studies have shown that understanding the mechanisms which govern attenuation processes and the fate of pollutants in the waste and in the underlying unsaturated zone is crucial for evaluation of environmental risks and selection of a restoration strategy. This work focuses on a closed landfill in the coastal plain of Israel that was active until 2002 without any lining infrastructure. A vadose zone monitoring system (VMS) that was implemented at the site enables continuous measurements across the waste body (15 m thick) and underlying sandy vadose zone (16 m thick). Data collected by the VMS included continuous measurements of water content as well as chemical composition of the leachates across the entire waste and vadose zone cross section. Results indicated that winter rain percolated through the waste, generating wetting waves which were observed across the waste and unsaturated sediment from land surface until groundwater at 31 m bls. Quick percolation and high fluxes were observed in spite of the clay cover that was implemented at the site as part of the rehabilitation scheme. The results show that the flow pattern is controlled by a preferential mechanism within the waste body. Specific sections showed rapid fluxes in response to rain events, while other sections remained unaffected. In the underlying sandy vadose zone the flow pattern exhibited characteristics of matrix flow. Yet, some sections received higher fluxes due to the uneven discharge of leachates from the overlying waste body. Water samples collected from the waste layer indicate production of highly polluted leachates over 14 years after the landfill was closed. The chemical composition within the waste body shows extreme variability between sampling ports with respect to DOC (407-31,464 mg/L), BOD/COD ratios (0.07-0.55), Fe2+ (6.8-1154 mg/L), NH4+ (68-2924 mg/L) and heavy metal concentrations. The results show for the first time the magnitude of heterogeneity inside a single landfill unit. Waste degradation hot-spots creating concentrated aggressive 'acid phase' leachates exist only 2m away from a 'stable methanogenic' environment which create basic and less polluted leachates. In the underlying vadose zone, contaminant concentrations decrease significantly especially with respect to organic matter and metals. The results suggest that biogeochemical attenuation processes are taking place in the deep unsaturated zone, changing the chemical characteristics of the solute before reaching the groundwater. On the other hand, the chemical composition is highly affected by the distribution of fluxes coming from the above waste layer.

  7. Application of Radiation Chemistry to Some Selected Technological Issues Related to the Development of Nuclear Energy.

    PubMed

    Bobrowski, Krzysztof; Skotnicki, Konrad; Szreder, Tomasz

    2016-10-01

    The most important contributions of radiation chemistry to some selected technological issues related to water-cooled reactors, reprocessing of spent nuclear fuel and high-level radioactive wastes, and fuel evolution during final radioactive waste disposal are highlighted. Chemical reactions occurring at the operating temperatures and pressures of reactors and involving primary transients and stable products from water radiolysis are presented and discussed in terms of the kinetic parameters and radiation chemical yields. The knowledge of these parameters is essential since they serve as input data to the models of water radiolysis in the primary loop of light water reactors and super critical water reactors. Selected features of water radiolysis in heterogeneous systems, such as aqueous nanoparticle suspensions and slurries, ceramic oxides surfaces, nanoporous, and cement-based materials, are discussed. They are of particular concern in the primary cooling loops in nuclear reactors and long-term storage of nuclear waste in geological repositories. This also includes radiation-induced processes related to corrosion of cladding materials and copper-coated iron canisters, dissolution of spent nuclear fuel, and changes of bentonite clays properties. Radiation-induced processes affecting stability of solvents and solvent extraction ligands as well oxidation states of actinide metal ions during recycling of the spent nuclear fuel are also briefly summarized.

  8. Methane production by attached film

    DOEpatents

    Jewell, William J.

    1981-01-01

    A method for purifying wastewater of biodegradable organics by converting the organics to methane and carbon dioxide gases is disclosed, characterized by the use of an anaerobic attached film expanded bed reactor for the reaction process. Dilute organic waste material is initially seeded with a heterogeneous anaerobic bacteria population including a methane-producing bacteria. The seeded organic waste material is introduced into the bottom of the expanded bed reactor which includes a particulate support media coated with a polysaccharide film. A low-velocity upward flow of the organic waste material is established through the bed during which the attached bacterial film reacts with the organic material to produce methane and carbon dioxide gases, purified water, and a small amount of residual effluent material. The residual effluent material is filtered by the film as it flows upwardly through the reactor bed. In a preferred embodiment, partially treated effluent material is recycled from the top of the bed to the bottom of the bed for further treatment. The methane and carbon dioxide gases are then separated from the residual effluent material and purified water.

  9. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, R., E-mail: remi.clement@hmg.inpg.fr; Grenoble Universite, B.P. 53, 38041 Grenoble Cedex 9; Oxarango, L.

    2011-03-15

    Leachate recirculation is a key process in the operation of municipal waste landfills as bioreactors. It aims at increasing the moisture content to optimise the biodegradation. Because waste is a very heterogeneous and anisotropic porous media, the geometry of the leachate plume recirculation is difficult to delineate from the surface at the scale of the bioreactor site. In this study, 3-D time-lapse electrical resistivity tomography (ERT) was used to obtain useful information for understanding leachate recirculation hydrodynamics. The ERT inversion methodology and the electrode arrays were optimised using numerical modelling simulating a 3-D leachate injection scenario. Time-lapse ERT was subsequentlymore » applied at the field scale during an experimental injection. We compared ERT images with injected volumes to evaluate the sensitivity of time-lapse ERT to delineate the plume migration. The results show that time-lapse ERT can accomplish the following: (i) accurately locate the injection plume, delineating its depth and lateral extension; (ii) be used to estimate some hydraulic properties of waste.« less

  10. Comparative metagenomics reveals different hydrocarbon degradative abilities from enriched oil-drilling waste.

    PubMed

    Napp, Amanda P; Pereira, José Evandro S; Oliveira, Jorge S; Silva-Portela, Rita C B; Agnez-Lima, Lucymara F; Peralba, Maria C R; Bento, Fátima M; Passaglia, Luciane M P; Thompson, Claudia E; Vainstein, Marilene H

    2018-06-11

    The oil drilling process generates large volumes of waste with inadequate treatments. Here, oil drilling waste (ODW) microbial communities demonstrate different hydrocarbon degradative abilities when exposed to distinct nutrient enrichments as revealed by comparative metagenomics. The ODW was enriched in Luria Broth (LBE) and Potato Dextrose (PDE) media to examine the structure and functional variations of microbial consortia. Two metagenomes were sequenced on Ion Torrent platform and analyzed using MG-RAST. The STAMP software was used to analyze statistically significant differences amongst different attributes of metagenomes. The microbial diversity presented in the different enrichments was distinct and heterogeneous. The metabolic pathways and enzymes were mainly related to the aerobic hydrocarbons degradation. Moreover, our results showed efficient biodegradation after 15 days of treatment for aliphatic hydrocarbons (C8-C33) and polycyclic aromatic hydrocarbons (PAHs), with a total of about 50.5% and 46.4% for LBE and 44.6% and 37.9% for PDE, respectively. The results obtained suggest the idea that the enzymatic apparatus have the potential to degrade petroleum compounds. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Environmental pollution from illegal waste disposal and health effects: a review on the "triangle of death".

    PubMed

    Triassi, Maria; Alfano, Rossella; Illario, Maddalena; Nardone, Antonio; Caporale, Oreste; Montuori, Paolo

    2015-01-22

    The term "triangle of death" was used for the first time by Senior and Mazza in the journal The Lancet Oncology referring to the eastern area of the Campania Region (Southern Italy) which has one of the worst records of illegal waste dumping practices. In the past decades, many studies have focused on the potential of illegal waste disposal to cause adverse effects on human health in this area. The great heterogeneity in the findings, and the bias in media communication has generated great healthcare doubts, anxieties and alarm. This paper addresses a review of the up-to-date literature on the "triangle of death", bringing together the available information on the occurrence and severity of health effects related to illegal waste disposal. The Scopus database was searched using the search terms "waste", "Campania", "Naples", "triangle of death" and "human biomonitoring". Despite the methodological and sampling heterogeneity between the studies, this review examines the evidence from published data concerning cancer incidence, childhood mortality and birth defects, so that the current situation, knowledge gaps and research priorities can be established. The review aims to provide a contribution to the scientific community, and to respond to the concerns of the general population.

  12. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.

    PubMed

    Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain

    2017-03-01

    Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.

  13. Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA

    EPA Science Inventory

    Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...

  14. Porous nitrogen-enriched carbonaceous material from marine waste: chitosan-derived layered CNX catalyst for aerial oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid

    EPA Science Inventory

    Chitosan derived porous layered nitrogen-enriched carbonaceous CNx catalyst (PLCNx) has been synthesized from marine waste and its use demonstrated in a metal-free heterogeneous selective oxidation of 5-hydroxymethyl-furfural (HMF) to 2,5-furandicarboxylic acid (FDCA) using aeria...

  15. Evaluation of single- and dual-porosity models for reproducing the release of external and internal tracers from heterogeneous waste-rock piles.

    PubMed

    Blackmore, S; Pedretti, D; Mayer, K U; Smith, L; Beckie, R D

    2018-05-30

    Accurate predictions of solute release from waste-rock piles (WRPs) are paramount for decision making in mining-related environmental processes. Tracers provide information that can be used to estimate effective transport parameters and understand mechanisms controlling the hydraulic and geochemical behavior of WRPs. It is shown that internal tracers (i.e. initially present) together with external (i.e. applied) tracers provide complementary and quantitative information to identify transport mechanisms. The analysis focuses on two experimental WRPs, Piles 4 and Pile 5 at the Antamina Mine site (Peru), where both an internal chloride tracer and externally applied bromide tracer were monitored in discharge over three years. The results suggest that external tracers provide insight into transport associated with relatively fast flow regions that are activated during higher-rate recharge events. In contrast, internal tracers provide insight into mechanisms controlling solutes release from lower-permeability zones within the piles. Rate-limited diffusive processes, which can be mimicked by nonlocal mass-transfer models, affect both internal and external tracers. The sensitivity of the mass-transfer parameters to heterogeneity is higher for external tracers than for internal tracers, as indicated by the different mean residence times characterizing the flow paths associated with each tracer. The joint use of internal and external tracers provides a more comprehensive understanding of the transport mechanisms in WRPs. In particular, the tracer tests support the notion that a multi-porosity conceptualization of WRPs is more adequate for capturing key mechanisms than a dual-porosity conceptualization. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. A performative definition of waste prevention.

    PubMed

    Corvellec, Hervé

    2016-06-01

    The increasing importance being placed on waste prevention in European waste governance raises the question of how waste prevention is defined in practice. This paper presents a qualitative analysis of a sample of fifty-one Swedish waste prevention initiatives with the purpose of identifying which kind of actions are imagined, promoted, and set into motion under the label of waste prevention. The analysis shows that despite their apparent variety, the initiatives in the sample boil down to three main types of actions: raising awareness about the need to prevent waste, increasing material efficiency, and developing sustainable consumption. In contradistinction to the formal definition of waste prevention in the European Waste Framework Directive (2008/98/EC), what emerges from analyzing the initiatives in the sample is a performative definition of waste prevention as something heterogeneous, contradictory, and evolving. Such a definition of waste prevention in practice provides an understanding of the organizational dynamics of waste prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    PubMed

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  18. Analysis of Pelletizing of Granulometric Separation Powder from Cork Industries

    PubMed Central

    Montero, Irene; Miranda, Teresa; Sepúlveda, Francisco José; Arranz, José Ignacio; Nogales, Sergio

    2014-01-01

    Cork industries generate a considerable amount of solid waste during their processing. Its management implies a problem for companies that should reconsider its reuse for other purposes. In this work, an analysis of pelletizing of granulometric separation powder, which is one of the major wastes in cork industries and which presents suitable properties (as an raw material) for its thermal use, is studied. However, its characteristic heterogeneity, along with its low bulk density (which makes its storage and transportation difficult) are restrictive factors for its energy use. Therefore, its densified form is a real alternative in order to make the product uniform and guarantee its proper use in boiler systems. Thus, the cork pellets (from granulometric separation powder) in the study met, except for ash content specification, the specifications in standard European Norm EN-Plus (B) for its application as fuel for domestic use. PMID:28788207

  19. Analysis of Pelletizing of Granulometric Separation Powder from Cork Industries.

    PubMed

    Montero, Irene; Miranda, Teresa; Sepúlveda, Francisco José; Arranz, José Ignacio; Nogales, Sergio

    2014-09-18

    Cork industries generate a considerable amount of solid waste during their processing. Its management implies a problem for companies that should reconsider its reuse for other purposes. In this work, an analysis of pelletizing of granulometric separation powder, which is one of the major wastes in cork industries and which presents suitable properties (as an raw material) for its thermal use, is studied. However, its characteristic heterogeneity, along with its low bulk density (which makes its storage and transportation difficult) are restrictive factors for its energy use. Therefore, its densified form is a real alternative in order to make the product uniform and guarantee its proper use in boiler systems. Thus, the cork pellets (from granulometric separation powder) in the study met, except for ash content specification, the specifications in standard European Norm EN-Plus (B) for its application as fuel for domestic use.

  20. A continuous time random walk model for Darcy-scale anomalous transport in heterogeneous porous media.

    NASA Astrophysics Data System (ADS)

    Comolli, Alessandro; Hakoun, Vivien; Dentz, Marco

    2017-04-01

    Achieving the understanding of the process of solute transport in heterogeneous porous media is of crucial importance for several environmental and social purposes, ranging from aquifers contamination and remediation, to risk assessment in nuclear waste repositories. The complexity of this aim is mainly ascribable to the heterogeneity of natural media, which can be observed at all the scales of interest, from pore scale to catchment scale. In fact, the intrinsic heterogeneity of porous media is responsible for the arising of the well-known non-Fickian footprints of transport, including heavy-tailed breakthrough curves, non-Gaussian spatial density profiles and the non-linear growth of the mean squared displacement. Several studies investigated the processes through which heterogeneity impacts the transport properties, which include local modifications to the advective-dispersive motion of solutes, mass exchanges between some mobile and immobile phases (e.g. sorption/desorption reactions or diffusion into solid matrix) and spatial correlation of the flow field. In the last decades, the continuous time random walk (CTRW) model has often been used to describe solute transport in heterogenous conditions and to quantify the impact of point heterogeneity, spatial correlation and mass transfer on the average transport properties [1]. Open issues regarding this approach are the possibility to relate measurable properties of the medium to the parameters of the model, as well as its capability to provide predictive information. In a recent work [2] the authors have shed new light on understanding the relationship between Lagrangian and Eulerian dynamics as well as on their evolution from arbitrary initial conditions. On the basis of these results, we derive a CTRW model for the description of Darcy-scale transport in d-dimensional media characterized by spatially random permeability fields. The CTRW approach models particle velocities as a spatial Markov process, which is characterized by a velocity transition probability and the steady state velocity distribution. These are related to the Eulerian velocity distribution and the distribution and spatial organization of hydraulic conductivity. The CTRW model is used for the prediction of transport data (particle dispersion and breakthrough curves) from direct numerical flow and transport simulations in heterogeneous hydraulic conductivity fields. References: [1] Comolli, A., Hidalgo, J. J., Moussey, C., & Dentz, M. (2016). Non-Fickian Transport Under Heterogeneous Advection and Mobile-Immobile Mass Transfer. Transport in Porous Media, 1-25. [2] Dentz, M., Kang, P. K., Comolli, A., Le Borgne, T., & Lester, D. R. (2016). Continuous time random walks for the evolution of Lagrangian velocities. Physical Review Fluids, 1(7), 074004.

  1. Effect of saline waste solution infiltration rates on uranium retention and spatial distribution in Hanford sediments.

    PubMed

    Wan, Jiamin; Tokunaga, Tetsu K; Kim, Yongman; Wang, Zheming; Lanzirotti, Antonio; Saiz, Eduardo; Serne, R Jeffrey

    2008-03-15

    The accidental overfilling of waste liquid from tank BX-102 at the Hanford Site in 1951 put about 10 t of U(VI) into the vadose zone. In order to understand the dominant geochemical reactions and transport processes that occurred during the initial infiltration and to help understand current spatial distribution, we simulated the waste liquid spilling event in laboratory sediment columns using synthesized metal waste solution. We found that, as the plume propagated through sediments, pH decreased greatly (as much as 4 units) at the moving plume front. Infiltration flow rates strongly affect U behavior. Slower flow rates resulted in higher sediment-associated U concentrations, and higher flow rates (> or =5 cm/day) permitted practically unretarded U transport. Therefore, given the very high Ksat of most of Hanford formation, the low permeability zones within the sediment could have been most important in retaining high concentrations of U during initial release into the vadose zone. Massive amount of colloids, including U-colloids, formed at the plume fronts. Total U concentrations (aqueous and colloid) within plume fronts exceeded the source concentration by up to 5-fold. Uranium colloid formation and accumulation at the neutralized plume front could be one mechanism responsible for highly heterogeneous U distribution observed in the contaminated Hanford vadose zone.

  2. Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.

    2009-12-01

    Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.

  3. An investigation of biodiesel production from wastes of seafood restaurants.

    PubMed

    El-Gendy, Nour Sh; Hamdy, A; Abu Amr, Salem S

    2014-01-01

    This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp.) in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield) and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst.

  4. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.

    PubMed

    Dong, Jun; Tang, Yuanjun; Nzihou, Ange; Chi, Yong; Weiss-Hortala, Elsa; Ni, Mingjiang

    2018-06-01

    Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Principles of Product Quality Control of German Radioactive Waste Forms from the Reprocessing of Spent Fuel: Vitrification, Compaction and Numerical Simulation - 12529

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze-Jaensch, Holger; Schneider, Stephan; Aksyutina, Yuliya

    2012-07-01

    The German product quality control is inter alia responsible for control of two radioactive waste forms of heat generating waste: a) homogeneous vitrified HLW and b) heterogeneous compacted hulls, end-pieces and technological metallic waste. In either case, significantly different metrology is employed at the site of the conditioning plant for the obligatory nuclide inventory declaration. To facilitate an independent evaluation and checking of the accompanying documentation numerical simulations are carried out. The physical and chemical properties of radioactive waste residues are used to assess the data consistency and uncertainty margins, as well as to predict the long-term behavior of themore » radioactive waste. This is relevant for repository acceptance and safety considerations. Our new numerical approach follows a bottom-up simulation starting from the burn-up behavior of the fuel elements in the reactor core. The output of these burn-up calculations is then coupled with a program that simulates the material separation in the subsequent dissolution and extraction processes normalized to the mass balance. Follow-up simulations of the separated reprocessing lines of a) the vitrification of highly-active liquid and b) the compaction of residual intermediate-active metallic hulls remaining after fuel pellets dissolution, end-pieces and technological waste, allows calculating expectation values for the various repository relevant properties of either waste stream. The principles of the German product quality control of radioactive waste residues from the spent fuel reprocessing have been introduced and explained. Namely, heat generating homogeneous vitrified HLW and heterogeneous compacted metallic MLW have been discussed. The advantages of a complementary numerical property simulation have been made clear and examples of benefits are presented. We have compiled a new program suite to calculate the physical and radio-chemical properties of common nuclear waste residues. The immediate benefit is the independent assessment of radio-active inventory declarations and much facilitated product quality control of waste residues that need to be returned to Germany and submitted to a German HLW-repository requirements. Wherever possible, internationally accepted standard programs are used and embedded. The innovative coupling of burn-up calculations (SCALE) with neutron and gamma transport codes (MCPN-X) allows an application in the world of virtual waste properties. If-then-else scenarios of hypothetical waste material compositions and distributions provide valuable information of long term nuclide property propagation under repository conditions over a very long time span. Benchmarking the program with real residue data demonstrates the power and remarkable accuracy of this numerical approach, boosting the reliability of the confidence aforementioned numerous applications, namely the proof tool set for on-the-spot production quality checking and data evaluation and independent verification. Moreover, using the numerical bottom-up approach helps to avoid the accumulation of fake activities that may gradually build up in a repository from the so-called conservative or penalizing nuclide inventory declarations. The radioactive waste properties and the hydrolytic and chemical stability can be predicted. The interaction with invasive chemicals can be assessed and propagation scenarios can be developed from reliable and sound data and HLW properties. Hence, the appropriate design of a future HLW repository can be based upon predictable and quality assured waste characteristics. (authors)« less

  6. Thermo-chemical extraction of fuel oil from waste lubricating grease.

    PubMed

    Pilusa, Tsietsi Jefrey; Muzenda, Edison; Shukla, Mukul

    2013-06-01

    This study investigated the recovery of oil from waste grease through the process of thermal degradation in an aqueous solution of potassium hydroxide (KOH) followed by solvent extraction. Waste high temperature metal bearing grease was dissolved in a 15 w/w% KOH solution at 80°C while being agitated at 2000 rpm using a shear action agitator for a period of 15 min. Two distinct layers were observed after 8 min of settling time. The top layer being of dark brown oil and the bottom layer was a heterogeneous mixture. The two layers were separated by decantation. The bottom layer was cooled down to 45°C followed by slow addition of toluene (C7H8) while agitating at 1200 rpm for 15 min to prevent solids settling and minimise rapid volatilisation of the organic compounds in the mixture. Two distinct layers were also formed, the top homogeneous mixture of light brown oil-toluene mixture and the bottom sludge layer. The solvent was recovered from the oil for re-use by fractional distillation of the homogenous mixture. It was observed that 15 w/w% potassium hydroxide solution can chemically degrade the soap matrix in the grease and extract up to 49 w/w% of the fuel oil when subjected to high shear stress at a temperature of 80°C. The 26 w/w% extraction of oil in the remaining sludge was obtained by solvent extraction process with mass ratios of sludge to solvent of 2:1. Solvent recovery of 88% by mass was obtained via fractional distillation method. The combined extraction processes brought an overall oil yield of 75 w/w% from the waste grease. The fuel oil obtained from this process has similar properties to paraffin oil and can be blended with other oils as an alternative energy source. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Disposal of Kitchen Waste from High Rise Apartment

    NASA Astrophysics Data System (ADS)

    Ori, Kirki; Bharti, Ajay; Kumar, Sunil

    2017-09-01

    The high rise building has numbers of floor and rooms having variety of users or tenants for residential purposes. The huge quantities of heterogenous mixtures of domestic food waste are generated from every floor of the high rise residential buildings. Disposal of wet and biodegradable domestic kitchen waste from high rise buildings are more expensive in regards of collection and vertical transportation. This work is intended to address the technique to dispose of the wet organic food waste from the high rise buildings or multistory building at generation point with the advantage of gravity and vermicomposting technique. This innovative effort for collection and disposal of wet organic solid waste from high rise apartment is more economical and hygienic in comparison with present system of disposal.

  8. Fungal Biorecovery of Gold From E-waste.

    PubMed

    Bindschedler, Saskia; Vu Bouquet, Thi Quynh Trang; Job, Daniel; Joseph, Edith; Junier, Pilar

    2017-01-01

    Waste electric and electronic devices (e-waste) represent a source of valuable raw materials of great interest, and in the case of metals, e-waste might become a prized alternative source. Regarding gold, natural ores are difficult to mine due to their refractory nature and the richest ores have almost all been exploited. Additionally, some gold mining areas are present in geopolitically unstable regions. Finally, the gold mining industry produces toxic compounds, such as cyanides. As a result, the gold present in e-waste represents a nonnegligible resource (urban mining). Extraction methods of gold from natural ores (pyro- and hydrometallurgy) have been adapted to this particular type of matrix. However, to propose novel approaches with a lower environmental footprint, biotechnological methods using microorganisms are being developed (biometallurgy). These processes use the extensive metabolic potential of microbes (algae, bacteria, and fungi) to mobilize and immobilize gold from urban and industrial sources. In this review, we focus on the use of fungi for gold biomining. Fungi interact with gold by mobilizing it through mechanical attack as well as through biochemical leaching by the production of cyanides. Moreover, fungi are also able to release Au through the degradation of cyanide from aurocyanide complexes. Finally, fungi immobilize gold through biosorption, bioaccumulation, and biomineralization, in particular, as gold nanoparticles. Overall, the diversity of mechanisms of gold recycling using fungi combined with their filamentous lifestyle, which allows them to thrive in heterogeneous and solid environments such as e-waste, makes fungi an important bioresource to be harnessed for the biorecovery of gold. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer.

    PubMed

    Joshi, Saurabh; Gogate, Parag R; Moreira, Paulo F; Giudici, Reinaldo

    2017-11-01

    In the present work, high speed homogenizer has been used for the intensification of biodiesel synthesis from soybean oil and waste cooking oil (WCO) used as a sustainable feedstock. High acid value waste cooking oil (27mg of KOH/g of oil) was first esterified with methanol using sulphuric acid as catalyst in two stages to bring the acid value to desired value of 1.5mg of KOH/g of oil. Transesterification of soybean oil (directly due to lower acid value) and esterified waste cooking oil was performed in the presence of heterogeneous catalyst (CaO) for the production of biodiesel. Various experiments were performed for understanding the effect of operating parameters viz. molar ratio, catalyst loading, reaction temperature and speed of rotation of the homogenizer. For soybean oil, the maximum biodiesel yield as 84% was obtained with catalyst loading of 3wt% and molar ratio of oil to methanol of 1:10 at 50°C with 12,000rpm as the speed of rotation in 30min. Similarly biodiesel yield of 88% was obtained from waste cooking oil under identical operating conditions except for the catalyst loading which was 1wt%. Significant increase in the rate of biodiesel production with yields from soybean oil as 84% (in 30min) and from WCO as 88% (30min) was established due to the use of high speed homogenizer as compared to the conventional stirring method (requiring 2-3h for obtaining similar biodiesel yield). The observed intensification was attributed to the turbulence caused at microscale and generation of fine emulsions due to the cavitational effects. Overall it can be concluded from this study that high speed homogenizer can be used as an alternate cavitating device to efficiently produce biodiesel in the presence of heterogeneous catalysts. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part II: scheme analysis and mechanism revelation.

    PubMed

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Jiapei; Chen, Xiujuan; Li, Kailong

    2017-03-01

    As presented in the first companion paper, distributed mixed-integer fuzzy hierarchical programming (DMIFHP) was developed for municipal solid waste management (MSWM) under complexities of heterogeneities, hierarchy, discreteness, and interactions. Beijing was selected as a representative case. This paper focuses on presenting the obtained schemes and the revealed mechanisms of the Beijing MSWM system. The optimal MSWM schemes for Beijing under various solid waste treatment policies and their differences are deliberated. The impacts of facility expansion, hierarchy, and spatial heterogeneities and potential extensions of DMIFHP are also discussed. A few of findings are revealed from the results and a series of comparisons and analyses. For instance, DMIFHP is capable of robustly reflecting these complexities in MSWM systems, especially for Beijing. The optimal MSWM schemes are of fragmented patterns due to the dominant role of the proximity principle in allocating solid waste treatment resources, and they are closely related to regulated ratios of landfilling, incineration, and composting. Communities without significant differences among distances to different types of treatment facilities are more sensitive to these ratios than others. The complexities of hierarchy and heterogeneities pose significant impacts on MSWM practices. Spatial dislocation of MSW generation rates and facility capacities caused by unreasonable planning in the past may result in insufficient utilization of treatment capacities under substantial influences of transportation costs. The problems of unreasonable MSWM planning, e.g., severe imbalance among different technologies and complete vacancy of ten facilities, should be gained deliberation of the public and the municipal or local governments in Beijing. These findings are helpful for gaining insights into MSWM systems under these complexities, mitigating key challenges in the planning of these systems, improving the related management practices, and eliminating potential socio-economic and eco-environmental issues resulting from unreasonable management.

  12. Geochemistry and the Understanding of Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Glynn, P. D.; Plummer, L. N.; Weissmann, G. S.; Stute, M.

    2009-12-01

    Geochemical techniques and concepts have made major contributions to the understanding of groundwater systems. Advances continue to be made through (1) development of measurement and characterization techniques, (2) improvements in computer technology, networks and numerical modeling, (3) investigation of coupled geologic, hydrologic, geochemical and biologic processes, and (4) scaling of individual observations, processes or subsystem models into larger coherent model frameworks. Many applications benefit from progress in these areas, such as: (1) understanding paleoenvironments, in particular paleoclimate, through the use of groundwater archives, (2) assessing the sustainability (recharge and depletion) of groundwater resources, and (3) their vulnerability to contamination, (4) evaluating the capacity and consequences of subsurface waste isolation (e.g. geologic carbon sequestration, nuclear and chemical waste disposal), (5) assessing the potential for mitigation/transformation of anthropogenic contaminants in groundwater systems, and (6) understanding the effect of groundwater lag times in ecosystem-scale responses to natural events, land-use changes, human impacts, and remediation efforts. Obtaining “representative” groundwater samples is difficult and progress in obtaining “representative” samples, or interpreting them, requires new techniques in characterizing groundwater system heterogeneity. Better characterization and simulation of groundwater system heterogeneity (both physical and geochemical) is critical to interpreting the meaning of groundwater “ages”; to understanding and predicting groundwater flow, solute transport, and geochemical evolution; and to quantifying groundwater recharge and discharge processes. Research advances will also come from greater use and progress (1) in the application of environmental tracers to ground water dating and in the analysis of new geochemical tracers (e.g. compound specific isotopic analyses, noble gas isotopes, analyses of natural organic tracers), (2) in inverse geochemical and hydrological modeling, (3) in the understanding and simulation of coupled biological, geological, geochemical and hydrological processes, and (4) in the description and quantification of processes occurring at the boundaries of groundwater systems (e.g. unsaturated zone processes, groundwater/surface water interactions, impacts of changing geomorphology and vegetation). Improvements are needed in the integration of widely diverse information. Better techniques are needed to construct coherent conceptual frameworks from individual observations, simulated or reconstructed information, process models, and intermediate scale models. Iterating between data collection, interpretation, and the application of forward, inverse, and statistical modeling tools is likely to provide progress in this area. Quantifying groundwater system processes by using an open-system thermodynamic approach in a common mass- and energy-flow framework will also facilitate comparison and understanding of diverse processes.

  13. Spatial and temporal patterns of chronic wasting disease: Fine-scale mapping of a wildlife epidemic in Wisconsin

    USGS Publications Warehouse

    Osnas, E.E.; Heisey, D.M.; Rolley, R.E.; Samuel, M.D.

    2009-01-01

    Emerging infectious diseases threaten wildlife populations and human health. Understanding the spatial distributions of these new diseases is important for disease management and policy makers; however, the data are complicated by heterogeneities across host classes, sampling variance, sampling biases, and the space-time epidemic process. Ignoring these issues can lead to false conclusions or obscure important patterns in the data, such as spatial variation in disease prevalence. Here, we applied hierarchical Bayesian disease mapping methods to account for risk factors and to estimate spatial and temporal patterns of infection by chronic wasting disease (CWD) in white-tailed deer (Odocoileus virginianus) of Wisconsin, USA. We found significant heterogeneities for infection due to age, sex, and spatial location. Infection probability increased with age for all young deer, increased with age faster for young males, and then declined for some older animals, as expected from disease-associated mortality and age-related changes in infection risk. We found that disease prevalence was clustered in a central location, as expected under a simple spatial epidemic process where disease prevalence should increase with time and expand spatially. However, we could not detect any consistent temporal or spatiotemporal trends in CWD prevalence. Estimates of the temporal trend indicated that prevalence may have decreased or increased with nearly equal posterior probability, and the model without temporal or spatiotemporal effects was nearly equivalent to models with these effects based on deviance information criteria. For maximum interpretability of the role of location as a disease risk factor, we used the technique of direct standardization for prevalence mapping, which we develop and describe. These mapping results allow disease management actions to be employed with reference to the estimated spatial distribution of the disease and to those host classes most at risk. Future wildlife epidemiology studies should employ hierarchical Bayesian methods to smooth estimated quantities across space and time, account for heterogeneities, and then report disease rates based on an appropriate standardization. ?? 2009 by the Ecological Society of America.

  14. Environmental Pollution from Illegal Waste Disposal and Health Effects: A Review on the “Triangle of Death”

    PubMed Central

    Triassi, Maria; Alfano, Rossella; Illario, Maddalena; Nardone, Antonio; Caporale, Oreste; Montuori, Paolo

    2015-01-01

    The term “triangle of death” was used for the first time by Senior and Mazza in the journal The Lancet Oncology referring to the eastern area of the Campania Region (Southern Italy) which has one of the worst records of illegal waste dumping practices. In the past decades, many studies have focused on the potential of illegal waste disposal to cause adverse effects on human health in this area. The great heterogeneity in the findings, and the bias in media communication has generated great healthcare doubts, anxieties and alarm. This paper addresses a review of the up-to-date literature on the “triangle of death”, bringing together the available information on the occurrence and severity of health effects related to illegal waste disposal. The Scopus database was searched using the search terms “waste”, “Campania”, “Naples”, “triangle of death” and “human biomonitoring”. Despite the methodological and sampling heterogeneity between the studies, this review examines the evidence from published data concerning cancer incidence, childhood mortality and birth defects, so that the current situation, knowledge gaps and research priorities can be established. The review aims to provide a contribution to the scientific community, and to respond to the concerns of the general population. PMID:25622140

  15. Genetic heterogeneity in familial renal magnesium wasting.

    PubMed

    Kantorovich, Vitaly; Adams, John S; Gaines, Jade E; Guo, Xiuqing; Pandian, Murugan R; Cohn, Daniel H; Rude, Robert K

    2002-02-01

    Isolated hereditary renal magnesium (Mg) wasting may result from mutations in the renal tubular epithelial cell tight junction protein paracellin-1 gene or the tubular Na(+),K(+)-ATPase gamma-subunit gene FXYD2. The FXYD2 gene mutation was discovered in two Dutch families as an autosomal dominant disorder. It is characterized by isolated renal Mg wasting with resultant symptomatic hypomagnesemia. The defective FXYD2 gene in these families mapped to chromosome 11q23. Here, we describe an American family with a similar phenotype but without linkage to the 11q23 locus; in testing 22 individuals in the pedigree multipoint LOD scores for five different loci from the 11q23 region were equal to -2.97. Compared with unaffected family members and normal controls, affected family members harbored significant reductions in the serum and lymphocyte Mg concentrations and in the serum immunoreactive PTH level with a 4-fold increase in the mean fractional urinary Mg excretion rate during a normomagnesemic clamp. Bone mineral density at the lumbar spine and proximal femur was significantly reduced in affected family members. In conclusion, our data demonstrate locus heterogeneity for the phenotype of isolated renal Mg wasting with hypomagnesemia and suggest that hypomagnesemia, at least in this pedigree, may be associated with low bone mass.

  16. Decontamination of unsymmetrical dimethylhydrazine waste water by hydrodynamic cavitation-induced advanced Fenton process.

    PubMed

    Torabi Angaji, Mahmood; Ghiaee, Reza

    2015-03-01

    A pilot scale hydrodynamic cavitation (HC) reactor, using iron metal blades, as the heterogeneous catalyst, with no external source of H₂O₂ was developed for catalytic decontamination of unsymmetrical dimethylhydrazine (UDMH) waste water. In situ generation of Fenton reagents suggested an induced advanced Fenton process (IAFP) to explain the enhancing effect of the used catalyst in the HC process. The effects of the applied catalyst, pH of the initial solution (1.0-9.7), initial UDMH concentration (2-15 mg/l), inlet pressure (5.5-7.8bar), and downstream pressure (2-6 bar), have been investigated. The results showed that the highest cavitation yield can be obtained at pH 3 and initial UDMH concentration of 10mg/l. Also, an increase in the inlet pressure would lead to an increase in the extent of UDMH degradation. In addition, the optimum value of 3 bar was determined for the downstream pressure that resulted to 98.6% degradation of UDMH after 120 min of processing time. Neither n-nitrosodimethylamine (NDMA) nor any other toxic byproduct (/end-product) was observed in the investigated samples. Formic acid and acetic acid, as well as nitromethane, were identified as oxidation by-products. The present work has conclusively established that hydrodynamic cavitation in combination with Fenton's chemistry can be effectively used for the degradation of UDMH. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Murt user`s guide: A hybrid Lagrangian-Eulerian finite element model of multiple-pore-region solute transport through subsurface media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwo, J.P.; Jardine, P.M.; Yeh, G.T.

    Matrix diffusion, a diffusive mass transfer process,in the structured soils and geologic units at ORNL, is believe to be an important subsurface mass transfer mechanism; it may affect off-site movement of radioactive wastes and remediation of waste disposal sites by locally exchanging wastes between soil/rock matrix and macropores/fractures. Advective mass transfer also contributes to waste movement but is largely neglected by researchers. This report presents the first documented 2-D multiregion solute transport code (MURT) that incorporates not only diffusive but also advective mass transfer and can be applied to heterogeneous porous media under transient flow conditions. In this report, theoreticalmore » background is reviewed and the derivation of multiregion solute transport equations is presented. Similar to MURF (Gwo et al. 1994), a multiregion subsurface flow code, multiplepore domains as suggested by previous investigators (eg, Wilson and Luxmoore 1988) can be implemented in MURT. Transient or steady-state flow fields of the pore domains can be either calculated by MURF or by modelers. The mass transfer process is briefly discussed through a three-pore-region multiregion solute transport mechanism. Mass transfer equations that describe mass flux across pore region interfaces are also presented and parameters needed to calculate mass transfer coefficients detailed. Three applications of MURT (tracer injection problem, sensitivity analysis of advective and diffusive mass transfer, hillslope ponding infiltration and secondary source problem) were simulated and results discussed. Program structure of MURT and functions of MURT subroutiness are discussed so that users can adapt the code; guides for input data preparation are provided in appendices.« less

  18. Surficial geology of Mars: A study in support of a penetrator mission to Mars

    NASA Technical Reports Server (NTRS)

    Spudis, P.; Greeley, R.

    1976-01-01

    Physiographic and surficial cover information were combined into unified surficial geology maps (30 quadrangles and 1 synoptic map). The surface of Mars is heterogeneous and is modified by wind, water, volcanism, tectonism, mass wasting and other processes. Surficial mapping identifies areas modified by these processes on a regional basis. Viking I mission results indicate that, at least in the landing site area, the surficial mapping based on Mariner data is fairly accurate. This area was mapped as a lightly cratered plain with thin or discontinuous eolian sediment. Analysis of lander images indicates that this interpretation is very close to actual surface conditions. These initial results do not imply that all surficial units are mapped correctly, but they do increase confidence in estimates based on photogeologic interpretations of orbital pictures.

  19. Characterization of Sweetmeat Waste and Its Suitability for Sorption of As(III) in Aqueous Media.

    PubMed

    Islam, Md Mirajul; Adak, Asok; Paul, Prabir K

    2017-04-01

      Presence of arsenic in effluents from mining, mineral processing, and metal plating industries pose a serious health hazard to human beings. In this research, suitability of cheap sweetmeat waste (SMW), which is sweet industry byproduct, was investigated for the treatment of As(III). The physicochemical properties of the sorbent were characterized. The SEM images revealed highly heterogeneous sorbent surface. XRD analysis showed the presence of different polysaccharides mainly containing hydroxyl functional group. FTIR analysis was also performed to confirm the functional groups present in the sorbent. Batch experiments were conducted for kinetic analysis, effect of initial As(III) concentration, sorbent dose, electrolytes, pH, and temperature in order to understand sorption behavior. Presence of electrolyte, solution pH, and temperature were found to affect the performance of the sorbent. The sorption followed pseudo-second order reaction and Langmuir isotherm model best. The studies revealed SMW to be an efficient media for removal of As(III) from aqueous environment.

  20. Thermo-Catalytic Reforming of municipal solid waste.

    PubMed

    Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas

    2017-10-01

    Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H 2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content <7wt.% and water content <4wt.%. Due to the bio-oil's chemical and physical properties, the bio-oil was found to be directly miscible with fossil diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H 2 content of 36vol% and HHV of 17.23MJ/Nm 3 , and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H 2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Optimization of municipal solid waste collection and transportation routes.

    PubMed

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Factors determining waste generation in Spanish towns and cities.

    PubMed

    Prades, Miriam; Gallardo, Antonio; Ibàñez, Maria Victoria

    2015-01-01

    This paper analyzes the generation and composition of municipal solid waste in Spanish towns and cities with more than 5000 inhabitants, which altogether account for 87% of the Spanish population. To do so, the total composition and generation of municipal solid waste fractions were obtained from 135 towns and cities. Homogeneity tests revealed heterogeneity in the proportions of municipal solid waste fractions from one city to another. Statistical analyses identified significant differences in the generation of glass in cities of different sizes and in the generation of all fractions depending on the hydrographic area. Finally, linear regression models and residuals analysis were applied to analyze the effect of different demographic, geographic, and socioeconomic variables on the generation of waste fractions. The conclusions show that more densely populated towns, a hydrographic area, and cities with over 50,000 inhabitants have higher waste generation rates, while certain socioeconomic variables (people/car) decrease that generation. Other socioeconomic variables (foreigners and unemployment) show a positive and null influence on that waste generation, respectively.

  3. Basin-scale hydrogeologic modeling

    NASA Astrophysics Data System (ADS)

    Person, Mark; Raffensperger, Jeff P.; Ge, Shemin; Garven, Grant

    1996-02-01

    Mathematical modeling of coupled groundwater flow, heat transfer, and chemical mass transport at the sedimentary basin scale has been increasingly used by Earth scientists studying a wide range of geologic processes including the formation of excess pore pressures, infiltration-driven metamorphism, heat flow anomalies, nuclear waste isolation, hydrothermal ore genesis, sediment diagenesis, basin tectonics, and petroleum generation and migration. These models have provided important insights into the rates and pathways of groundwater migration through basins, the relative importance of different driving mechanisms for fluid flow, and the nature of coupling between the hydraulic, thermal, chemical, and stress regimes. The mathematical descriptions of basin transport processes, the analytical and numerical solution methods employed, and the application of modeling to sedimentary basins around the world are the subject of this review paper. The special considerations made to represent coupled transport processes at the basin scale are emphasized. Future modeling efforts will probably utilize three-dimensional descriptions of transport processes, incorporate greater information regarding natural geological heterogeneity, further explore coupled processes, and involve greater field applications.

  4. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application.

    PubMed

    Fernández, José M; Plaza, César; Polo, Alfredo; Plante, Alain F

    2012-01-01

    The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO(2) respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Humic Substances in Organic Wastes and their Effects on Amended Soils

    NASA Astrophysics Data System (ADS)

    Senesi, N.; Ciavatta, C.; Plaza, C.

    2009-04-01

    Soil humic substances (HS) are universally recognized to play a major role in a wide number of agronomic and environmental processes. For example, soil HS are able to bind mineral particles together, thus promoting a good soil structure, constitute an important source of nutrients for plants and microorganisms, contribute largely to the acid-base buffering capacity of soils, and exert a marked control on the biological availability, physico-chemical behavior, and environmental fate of toxic metal ions and xenobiotics. For these reasons, the knowledge of the short- and long-term effects of organic amendments on the status, quality, and reactivity of indigenous soil HS is of paramount importance. The objective of this presentation is to provide an overview of the chemical and physico-chemical data available in the literature for the evaluation of the effects of organic wastes of various origin and nature used as soil amendments on the composition, structure, and chemical reactivity of native soil HS. In general, HS-like components of organic wastes are typically characterized by a relatively larger presence of aliphatic, amide, and polysaccharide structures, simple structural components of wide molecular heterogeneity, smaller contents of oxygen, acidic functional groups, and organic free radicals, and smaller degrees of aromatic ring polycondensation, polymerization, and humification than native soil HS. Further, with respect to native soil HS, HS-like fractions from organic wastes generally exhibit smaller binding capacities and affinities for metal ions and organic xenobiotics. Appropriate treatment processes of raw organic wastes able to produce environmentally safe and agronomically efficient soil amendments, such as composting, yield HS-like fractions characterized by chemical and physico-chemical features that approach those of native soil HS. In general, aliphatic, polysaccharide, and lignin structures and S- and N-containing groups of the HS-like fractions of organic wastes can be partially incorporated into native soil HS determining modifications at various extents of their composition, structure, and chemistry. The changes occurred in amended soil HS are more evident when untreated organic materials are used. However, with increasing time after land application, the effects observed become less and less apparent with a clear trend to approach the molecular properties typical of native soil HS.

  6. [Distal hereditary motor neuropathy].

    PubMed

    Devic, P; Petiot, P

    2011-11-01

    Distal hereditary motor neuropathy (dHMN), also known as spinal muscular atrophy, represents a group of clinically and genetically heterogeneous diseases caused by degenerations of spinal motor neurons and leading to distal muscle weakness and wasting. Nerve conduction studies reveal a pure motor axonopathy and needle examination shows chronic denervation. dHMN were initially subdivided into seven subtypes according to mode of inheritance, age at onset, and clinical evolution. Recent studies have shown that these subtypes are still heterogeneous at the molecular genetic level and novel clinical and genetic entities have been characterized. To date, mutations in 11 different genes have been identified for autosomal-dominant, autosomal-recessive, and X-linked recessive dHMN. Most of the genes encode protein involved in housekeeping functions, endosomal trafficking, axonal transport, translation synthesis, RNA processing, oxidative stress response and apoptosis. The pathophysiological mechanisms underlying dHMN seem to be related to the "length-dependent" death of motor neurons of the anterior horn of the spinal cord, likely because their large axons have higher metabolic requirements for maintenance. dHMN remain heterogeneous at the clinical and molecular genetic level. The molecular pathomechanisms explaining why mutations in these ubiquitously expressed housekeeping genes result in the selective involvement of spinal motor neurons remain to be unravelled. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  7. A new thermo-mechanical coupled DEM model with non-spherical grains for thermally induced damage of rocks

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiang; Jin, Xu; Wang, Moran

    2018-07-01

    Thermally induced damage often occurs in rocks in geophysical systems. Discrete element method (DEM) is a useful tool to model this thermo-mechanical coupled process owing to its explicit representation of fracture initiation and propagation. However, the previous DEM models for this are mostly based on spherical discrete elements, which are not able to capture all consequences (e.g. high ratio of compressive to tensile strength) of real rocks (e.g. granite) composed of complex-geometry grains. In order to overcome this intrinsic limitation, we present a new model allowing to mimick thermally induced damage of brittle rock with non-spherical grains. After validations, the new model is used to study thermal gradient cracking with a special emphasis on the effects from rock heterogeneity. The obtained fracture initiation and propagation are consistent with experimental observations, which demonstrates the ability of current model to reproduce the thermally induced damage of rocks. Meanwhile, the results show that rock heterogeneity influences thermal gradient cracking significantly, and more micro cracks uniformly scattering around the borehole are induced in the heterogeneous sample, which is not good for applications such as nuclear waste disposal. The present model provides a promising approach at micro-scale to explore mechanisms of thermally induced damage of rocks in geological engineering.

  8. West Valley demonstration project: Alternative processes for solidifying the high-level wastes

    NASA Astrophysics Data System (ADS)

    Holton, L. K.; Larson, D. E.; Partain, W. L.; Treat, R. L.

    1981-10-01

    Two pretreatment approaches and several waste form processes for radioactive wastes were selected for evaluation. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  9. Effects of air flow directions on composting process temperature profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperaturemore » distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.« less

  10. Leaching, geochemical modelling and field verification of a municipal solid waste and a predominantly non-degradable waste landfill.

    PubMed

    van der Sloot, H A; Kosson, D S; van Zomeren, A

    2017-05-01

    In spite of the known heterogeneity, wastes destined for landfilling can be characterised for their leaching behaviour by the same protocols as soil, contaminated soil, sediments, sludge, compost, wood, waste and construction products. Characterisation leaching tests used in conjunction with chemical speciation modelling results in much more detailed insights into release controlling processes and factors than single step batch leaching tests like TCLP (USEPA) and EN12457 (EU Landfill Directive). Characterisation testing also can provide the potential for mechanistic impact assessments by making use of a chemical speciation fingerprint (CSF) derived from pH dependence leaching test results. This CSF then forms the basis for subsequent chemical equilibrium and reactive transport modelling to assess environmental impact in a landfill scenario under relevant exposure conditions, including conditions not readily evaluated through direct laboratory testing. This approach has been applied to municipal solid waste (MSW) and predominantly non-degradable waste (PNW) that is representative of a significant part of waste currently being landfilled. This work has shown that a multi-element modelling approach provides a useful description of the release from each of these matrices because relevant release controlling properties and parameters (mineral dissolution/precipitation, sorption on Fe and Al oxides, clay interaction, interaction with dissolved and particulate organic carbon and incorporation in solid solutions) are taken into consideration. Inclusion of dissolved and particulate organic matter in the model is important to properly describe release of the low concentration trace constituents observed in the leachate. The CSF allows the prediction of release under different redox and degradation conditions in the landfill by modifying the redox status and level of dissolved and particulate organic matter in the model runs. The CSF for MSW provides a useful starting point for comparing leachate data from other MSW landfills. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. TOUGHREACT: a new code of the TOUGH Family for Non-Isothermal multiphase reactive geochemical transport in variably saturated geologic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport and chemical reactions can be used for the assessment of acid mine drainage remediation, waste disposal sites, hydrothermal convection, contaminant transport, and groundwater quality. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers non-isothermal multi-component chemical transport in both liquid and gas phases. A wide range of subsurface thermo-physical-chemical processes is considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity.

  12. Modeling coupled thermal-hydrological-chemical processes in theunsaturated fractured rock of Yucca Mountain, Nevada: Heterogeneity andseepage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sumit; Sonnenthal, Eric L.; Spycher, Nicolas

    An understanding of processes affecting seepage intoemplacement tunnels is needed for correctly predicting the performance ofunderground radioactive waste repositories. It has been previouslyestimated that the capillary and vaporization barriers in the unsaturatedfractured rock of Yucca Mountain are enough to prevent seepage underpresent day infiltration conditions. It has also been thought that asubstantially elevated infiltration flux will be required to causeseepage after the thermal period is over. While coupledthermal-hydrological-chemical (THC) changes in Yucca Mountain host rockdue to repository heating has been previously investigated, those THCmodels did not incorporate elements of the seepage model. In this paper,we combine the THC processes inmore » unsaturated fractured rock with theprocesses affecting seepage. We observe that the THC processes alter thehydrological properties of the fractured rock through mineralprecipitation and dissolution. We show that such alteration in thehydrological properties of the rock often leads to local flow channeling.We conclude that such local flow channeling may result in seepage undercertain conditions, even with nonelevated infiltrationfluxes.« less

  13. Topic III - Infiltration and Drainage: A section in Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings (WRI 95-4015)

    USGS Publications Warehouse

    Prudic, David E.; Gee, Glendon; Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    Infiltration into and drainage from facilities for the disposal of low-level radioactive wastes is considered the major process by which non-volatile contaminants are transported away from the facilities. The session included 10 papers related to the processes of infiltration and drainage, and to the simulation of flow and transport through the unsaturated zone. The first paper, presented by David Stonestrom, was an overview regarding the application of unsaturated flow theory to infiltration and drainage. Stonestrom posed three basic questions, which are:How well do we know the relevant processes affecting flow and transport?How well can we measure the parametric functions used to quantify flow and transport?How do we treat complexities inherent in field settings?The other nine papers presented during the session gave some insight to these questions. Topics included: laboratory measurement of unsaturated hydraulic conductivities at low water contents, by John Nimmo; use of environmental tracers to identify preferential flow through fractured media and to quantify drainage, by Edmund Prych and Edwin Weeks; field experiments to evaluate relevant processes affecting infiltration and drainage, by Brian Andraski, Glendon Gee, and Peter Wierenga; and the use of determinist'c and stochastic models for simulating flow and transport through heterogeneous sediments, by Richard Hills, Lynn Gelhar, and Shlomo Neuman.

  14. Does industrial waste taxation contribute to reduction of landfilled waste? Dynamic panel analysis considering industrial waste category in Japan.

    PubMed

    Sasao, Toshiaki

    2014-11-01

    Waste taxes, such as landfill and incineration taxes, have emerged as a popular option in developed countries to promote the 3Rs (reduce, reuse, and recycle). However, few studies have examined the effectiveness of waste taxes. In addition, quite a few studies have considered both dynamic relationships among dependent variables and unobserved individual heterogeneity among the jurisdictions. If dependent variables are persistent, omitted variables cause a bias, or common characteristics exist across the jurisdictions that have introduced waste taxes, the standard fixed effects model may lead to biased estimation results and misunderstood causal relationships. In addition, most existing studies have examined waste in terms of total amounts rather than by categories. Even if significant reductions in total waste amounts are not observed, some reduction within each category may, nevertheless, become evident. Therefore, this study analyzes the effects of industrial waste taxation on quantities of waste in landfill in Japan by applying the bias-corrected least-squares dummy variable (LSDVC) estimators; the general method of moments (difference GMM); and the system GMM. In addition, the study investigates effect differences attributable to industrial waste categories and taxation types. This paper shows that industrial waste taxes in Japan have minimal, significant effects on the reduction of final disposal amounts thus far, considering dynamic relationships and waste categories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ferrocene-modified chitosan as an efficient and green heterogeneous catalyst for sulfate-radical-based advanced oxidation process.

    PubMed

    Lin, Kun-Yi Andrew; Lin, Jyun-Ting; Yang, Hongta

    2017-10-01

    While ferrocene (Fc) is a promising heterogeneous catalyst for activating persulfate (PS) to degrade organic contaminants, chemical reagent-grade Fc is nanoscale and direct usage of Fc leads to operational and recovery issues. In this study, chitosan (CS) is selected as a support to immobilize Fc as CS is abundant, and environmental benign fishery waste. The amine group of CS also allows the formation of covalent bond between Fc-based reagent (i.e., Fc-CHO) and CS to form Fc-modified CS (Fc-CS). This Fc-CS can be more advantageous than Fc because of its easier recovery by precipitation and filtration. To evaluate Fc-CS for PS activation, degradation of Amaranth (AMR) dye by PS is selected as a model test. The resulting Fc-CS exhibits a higher catalytic activity than pristine Fc possibly because Fc can be evenly dispersed on CS and CS can also exhibit affinity toward AMR. AMR can be also fully decomposed by Fc-CS activated PS. Through the Electron paramagnetic resonance (EPR) spectroscopic analysis, the AMR degradation can be attributed to both sulfate and hydroxyl radicals. Fc-CS had been also proven to activate PS for AMR degradation over multiple times without loss of catalytic activity. These features indicate that Fc-CS can be a promising catalyst and CS appears to be a naturally available and environmentally friendly waste-derived support for immobilizing Fc. The results and findings in this study are essential for CS-supported metal catalysts in environmental applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Understanding leachate flow in municipal solid waste landfills by combining time-lapse ERT and subsurface flow modelling - Part II: Constraint methodology of hydrodynamic models.

    PubMed

    Audebert, M; Oxarango, L; Duquennoi, C; Touze-Foltz, N; Forquet, N; Clément, R

    2016-09-01

    Leachate recirculation is a key process in the operation of municipal solid waste landfills as bioreactors. To ensure optimal water content distribution, bioreactor operators need tools to design leachate injection systems. Prediction of leachate flow by subsurface flow modelling could provide useful information for the design of such systems. However, hydrodynamic models require additional data to constrain them and to assess hydrodynamic parameters. Electrical resistivity tomography (ERT) is a suitable method to study leachate infiltration at the landfill scale. It can provide spatially distributed information which is useful for constraining hydrodynamic models. However, this geophysical method does not allow ERT users to directly measure water content in waste. The MICS (multiple inversions and clustering strategy) methodology was proposed to delineate the infiltration area precisely during time-lapse ERT survey in order to avoid the use of empirical petrophysical relationships, which are not adapted to a heterogeneous medium such as waste. The infiltration shapes and hydrodynamic information extracted with MICS were used to constrain hydrodynamic models in assessing parameters. The constraint methodology developed in this paper was tested on two hydrodynamic models: an equilibrium model where, flow within the waste medium is estimated using a single continuum approach and a non-equilibrium model where flow is estimated using a dual continuum approach. The latter represents leachate flows into fractures. Finally, this methodology provides insight to identify the advantages and limitations of hydrodynamic models. Furthermore, we suggest an explanation for the large volume detected by MICS when a small volume of leachate is injected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Assessing metal contamination from construction and demolition (C&D) waste used to infill wetlands: using Deroceras reticulatum (Mollusca: Gastropoda).

    PubMed

    Staunton, John A; Mc Donnell, Rory J; Gormally, Michael J; Williams, Chris D; Henry, Tiernan; Morrison, Liam

    2014-11-01

    Large quantities of construction and demolition waste (C&D) are produced globally every year, with little known about potential environmental impacts. In the present study, the slug, Deroceras reticulatum (Mollusca: Gastropoda) was used as the first biomonitor of metals (Ag, As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb, Se, Ti, Tl, V and Zn) on wetlands post infilling with construction and demolition (C&D) waste. The bioaccumulation of As, Ba, Cd, Co, Sb, Se and Tl were found to be significantly elevated in slugs collected on C&D waste when compared to unimproved pastures (control sites), while Mo, Se and Sr had significantly higher concentrations in slugs collected on C&D waste when compared to known contaminated sites (mining locations), indicating the potential hazardous nature of C&D waste to biota. Identifying exact sources for these metals within the waste can be problematic, due to its heterogenic nature. Biomonitors are a useful tool for future monitoring and impact studies, facilitating policy makers and regulations in other countries regarding C&D waste infill. In addition, improving separation of C&D waste to allow increased reuse and recycling is likely to be effective in reducing the volume of waste being used as infill, subsequently decreasing potential metal contamination.

  18. New characterisation method of electrical and electronic equipment wastes (WEEE).

    PubMed

    Menad, N; Guignot, S; van Houwelingen, J A

    2013-03-01

    Innovative separation and beneficiation techniques of various materials encountered in electrical and electronic equipment wastes (WEEE) is a major improvement for its recycling. Mechanical separation-oriented characterisation of WEEE was conducted in an attempt to evaluate the amenability of mechanical separation processes. Properties such as liberation degree of fractions (plastics, metals ferrous and non-ferrous), which are essential for mechanical separation, are analysed by means of a grain counting approach. Two different samples from different recycling industries were characterised in this work. The first sample is a heterogeneous material containing different types of plastics, metals (ferrous and non-ferrous), printed circuit board (PCB), rubber and wood. The second sample contains a mixture of mainly plastics. It is found for the first sample that all aluminium particles are free (100%) in all investigated size fractions. Between 92% and 95% of plastics are present as free particles; however, 67% in average of ferromagnetic particles are liberated. It can be observed that only 42% of ferromagnetic particles are free in the size fraction larger than 20mm. Particle shapes were also quantified manually particle by particle. The results show that the particle shapes as a result of shredding, turn out to be heterogeneous, thereby complicating mechanical separation processes. In addition, the separability of various materials was ascertained by a sink-float analysis and eddy current separation. The second sample was separated by automatic sensor sorting in four different products: ABS, PC-ABS, PS and rest product. The fractions were characterised by using the methodology described in this paper. The results show that the grade and liberation degree of the plastic products ABS, PC-ABS and PS are close to 100%. Sink-float separation and infrared plastic identification equipment confirms the high plastic quality. On the basis of these findings, a global separation flow sheet is proposed to improve the plastic separation of WEEE. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Horvitz-Thompson survey sample methods for estimating large-scale animal abundance

    USGS Publications Warehouse

    Samuel, M.D.; Garton, E.O.

    1994-01-01

    Large-scale surveys to estimate animal abundance can be useful for monitoring population status and trends, for measuring responses to management or environmental alterations, and for testing ecological hypotheses about abundance. However, large-scale surveys may be expensive and logistically complex. To ensure resources are not wasted on unattainable targets, the goals and uses of each survey should be specified carefully and alternative methods for addressing these objectives always should be considered. During survey design, the impoflance of each survey error component (spatial design, propofiion of detected animals, precision in detection) should be considered carefully to produce a complete statistically based survey. Failure to address these three survey components may produce population estimates that are inaccurate (biased low), have unrealistic precision (too precise) and do not satisfactorily meet the survey objectives. Optimum survey design requires trade-offs in these sources of error relative to the costs of sampling plots and detecting animals on plots, considerations that are specific to the spatial logistics and survey methods. The Horvitz-Thompson estimators provide a comprehensive framework for considering all three survey components during the design and analysis of large-scale wildlife surveys. Problems of spatial and temporal (especially survey to survey) heterogeneity in detection probabilities have received little consideration, but failure to account for heterogeneity produces biased population estimates. The goal of producing unbiased population estimates is in conflict with the increased variation from heterogeneous detection in the population estimate. One solution to this conflict is to use an MSE-based approach to achieve a balance between bias reduction and increased variation. Further research is needed to develop methods that address spatial heterogeneity in detection, evaluate the effects of temporal heterogeneity on survey objectives and optimize decisions related to survey bias and variance. Finally, managers and researchers involved in the survey design process must realize that obtaining the best survey results requires an interactive and recursive process of survey design, execution, analysis and redesign. Survey refinements will be possible as further knowledge is gained on the actual abundance and distribution of the population and on the most efficient techniques for detection animals.

  20. Monitoring the excavation damaged zone by three-dimensional reconstruction of electrical resistivity

    NASA Astrophysics Data System (ADS)

    Lesparre, Nolwenn; Gibert, Dominique; Nicollin, Florence; Nussbaum, Christophe; Adler, Andy

    2013-11-01

    A damaged zone is formed during the excavation of underground galleries, altering the rock properties. From a perspective of nuclear waste storage in deep geological sites, there is a clear interest to monitor the rock properties in such zones. We constructed electrical resistivity tomograms as a function of time to monitor the damaged area in gallery 04 of the Mont Terri underground rock laboratory (Switzerland). Measurements were performed using electrode rings surrounding the gallery. The experience showed a heterogeneous distribution of damages around the gallery and their fast formation after the excavation. Two main areas were concerned by damage formation, located in regions where the bedding was tangential to the excavated gallery. Such regions represented an extension of about 2 m along the gallery walls and reached a depth of 1.5 m. Main damages were created during the next months following the excavation process. Slight variations were still observed 3 yr after the excavation that may be related to the gallery environmental condition fluctuation. The method applied here demonstrates the interest to monitor the whole region surrounding excavated galleries dedicated to host nuclear wastes.

  1. Consolidation process for producing ceramic waste forms

    DOEpatents

    Hash, Harry C.; Hash, Mark C.

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  2. Sustainable hybrid photocatalysts: titania immobilized on carbon materials derived from renewable and biodegradable resources

    EPA Science Inventory

    This review comprises the preparation, properties and heterogeneous photocatalytic applications of TiO2 immobilized on carbon materials derived from earth-abundant, renewable and biodegradable agricultural residues and sea food waste resources. The overview provides key scientifi...

  3. FORMATION OF CHLORINATED ORGANICS DURING SOLID WASTE COMBUSTION

    EPA Science Inventory

    The formation mechanisms of the precursors of polychlorinated dibenzo-p-dioxin (PCDD) and polychlorinated dibenzofuran (PCDF) were examined in a laboratory reactor. Both homogeneous and heterogeneous reactions were studied between 200 and 800°C with HCl, Cl2, and pheno...

  4. Batching alternatives for Phase I retrieval wastes to be processed in WRAP Module 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayancsik, B.A.

    1994-10-13

    During the next two decades, the transuranic (TRU) waste now stored in the 200 Area burial trenches and storage buildings is to be retrieved, processed in the Waste Receiving and Processing (WRAP) Module 1 facility, and shipped to a final disposal facility. The purpose of this document is to identify the criteria that can be used to batch suspect TRU waste, currently in retrievable storage, for processing through the WRAP Module 1 facility. These criteria are then used to generate a batch plan for Phase 1 Retrieval operations, which will retrieve the waste located in Trench 4C-04 of the 200more » West Area burial ground. The reasons for batching wastes for processing in WRAP Module 1 include reducing the exposure of workers and the environment to hazardous material and ionizing radiation; maximizing the efficiency of the retrieval, processing, and disposal processes by reducing costs, time, and space throughout the process; reducing analytical sampling and analysis; and reducing the amount of cleanup and decontamination between process runs. The criteria selected for batching the drums of retrieved waste entering WRAP Module 1 are based on the available records for the wastes sent to storage as well as knowledge of the processes that generated these wastes. The batching criteria identified in this document include the following: waste generator; type of process used to generate or package the waste; physical waste form; content of hazardous/dangerous chemicals in the waste; radiochemical type and quantity of waste; drum weight; and special waste types. These criteria were applied to the waste drums currently stored in Trench 4C-04. At least one batching scheme is shown for each of the criteria listed above.« less

  5. Current and potential uses of bioactive molecules from marine processing waste.

    PubMed

    Suleria, Hafiz Ansar Rasul; Masci, Paul; Gobe, Glenda; Osborne, Simone

    2016-03-15

    Food industries produce huge amounts of processing waste that are often disposed of incurring expenses and impacting upon the environment. For these and other reasons, food processing waste streams, in particular marine processing waste streams, are gaining popularity amongst pharmaceutical, cosmetic and nutraceutical industries as sources of bioactive molecules. In the last 30 years, there has been a gradual increase in processed marine products with a concomitant increase in waste streams that include viscera, heads, skins, fins, bones, trimmings and shellfish waste. In 2010, these waste streams equated to approximately 24 million tonnes of mostly unused resources. Marine processing waste streams not only represent an abundant resource, they are also enriched with structurally diverse molecules that possess a broad panel of bioactivities including anti-oxidant, anti-coagulant, anti-thrombotic, anti-cancer and immune-stimulatory activities. Retrieval and characterisation of bioactive molecules from marine processing waste also contributes valuable information to the vast field of marine natural product discovery. This review summarises the current use of bioactive molecules from marine processing waste in different products and industries. Moreover, this review summarises new research into processing waste streams and the potential for adoption by industries in the creation of new products containing marine processing waste bioactives. © 2015 Society of Chemical Industry.

  6. The presence of zinc in Swedish waste fuels.

    PubMed

    Jones, Frida; Bisaillon, Mattias; Lindberg, Daniel; Hupa, Mikko

    2013-12-01

    Zinc (Zn) is a chemical element that has gained more attention lately owing to its possibility to form corrosive deposits in large boilers, such as Waste-to-Energy plants. Zn enters the boilers in many different forms and particularly in waste, the amount of Zn is hard to determine due to both the heterogeneity of waste in general but also due to the fact that little is yet published specifically about the Zn levels in waste. This study aimed to determine the Zn in Swedish waste fuels by taking regular samples from seven different and geographically separate waste combustion plants over a 12-month period. The analysis shows that there is a relation between the municipal solid waste (MSW) content and the Zn-content; high MSW-content gives lower Zn-content. This means that waste combustion plants with a higher share of industrial and commercial waste and/or building and demolition waste would have a higher share of Zn in the fuel. The study also shows that in Sweden, the geographic location of the plant does not have any effect on the Zn-content. Furthermore, it is concluded that different seasons appear not to affect the Zn concentrations significantly. In some plants there was a clear correlation between the Zn-content and the content of other trace metals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Visualising reacting single atoms under controlled conditions: Advances in atomic resolution in situ Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM)

    NASA Astrophysics Data System (ADS)

    Boyes, Edward D.; Gai, Pratibha L.

    2014-02-01

    Advances in atomic resolution Environmental (Scanning) Transmission Electron Microscopy (E(S)TEM) for probing gas-solid catalyst reactions in situ at the atomic level under controlled reaction conditions of gas environment and temperature are described. The recent development of the ESTEM extends the capability of the ETEM by providing the direct visualisation of single atoms and the atomic structure of selected solid state heterogeneous catalysts in their working states in real-time. Atomic resolution E(S)TEM provides a deeper understanding of the dynamic atomic processes at the surface of solids and their mechanisms of operation. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes with substantial economic benefits, improved healthcare, reductions in energy needs and the management of environmental waste generation. xml:lang="fr"

  8. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part I: System identification and methodology development.

    PubMed

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei

    2017-03-01

    Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.

  9. Impact of Scale-Dependent Coupled Processes on Solute Fate and Transport in the Critical Zone: Case Studies Involving Inorganic and Radioactive Contaminants

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Gentry, R. W.

    2011-12-01

    Soil, the thin veneer of matter covering the Earths surface that supports a web of living diversity, is often abused through anthropogenic inputs of toxic waste. This subsurface regime, coupled with life sustaining surface water and groundwater is known as the "Critical Zone". The disposal of radioactive and toxic organic and inorganic waste generated by industry and various government agencies has historically involved shallow land burial or the use of surface impoundments in unsaturated soils and sediments. Presently, contaminated sites have been closing rapidly and many remediation strategies have chosen to leave contaminants in-place. As such, contaminants will continue to interact with the geosphere and investigations on long term changes and interactive processes is imperative to verify risks. In this presentation we provide a snap-shot of subsurface science research from the past 25 y that seeks to provide an improved understanding and predictive capability of multi-scale contaminant fate and transport processes in heterogeneous unsaturated and saturated environments. Investigations focus on coupled hydrological, geochemical, and microbial processes that control reactive contaminant transport and that involve multi-scale fundamental research ranging from the molecular scale (e.g. synchrotrons, electron sources, arrays) to in situ plume interrogation strategies at the macroscopic scale (e.g. geophysics, field biostimulation, coupled processes monitoring). We show how this fundamental research is used to provide multi-process, multi-scale predictive monitoring and modeling tools that can be used at contaminated sites to (1) inform and improve the technical basis for decision making, and (2) assess which sites are amenable to natural attenuation and which would benefit from source zone remedial intervention.

  10. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...

  11. 40 CFR 268.34 - Waste specific prohibitions-toxicity characteristic metal wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... characteristic wastes from elemental phosphorus processing; radioactive wastes mixed with EPA Hazardous wastes... identified characteristic wastes from elemental phosphorus processing, radioactive waste mixed with D004-D011...

  12. Remediation of Highland Drive Landfill: Technical Challenges of Segregating Co-Mingled LLRW and Municipal Solid Waste in an Urbanized Area - 13319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel, Jeff; Lawrence, Dave; Case, Glenn

    Highland Drive Landfill is an inactive Municipal Solid Waste (MSW) Landfill which received waste from the 1940's until its closure in 1991. During a portion of its active life, the Landfill received low-level radioactive waste (LLRW) which currently exists both in a defined layer and co-mingled with MSW. Remediation of this site to remove the LLRW to meet established cleanup criteria, forms part of the Port Hope Project being undertaken by Atomic Energy Canada Limited (AECL) and Public Works and Government Services Canada (PWGSC) as part of the Port Hope Area Initiative (PHAI). The total volume of LLRW and co-mingledmore » LLRW/MSW estimated to require removal from the Highland Drive Landfill is approximately 51,900 cubic metres (m{sup 3}). The segregation and removal of LLRW at the Highland Drive Landfill presents a number of unique technical challenges due to the co-mingled waste and location of the Landfill in an urbanized area. Key challenges addressed as part of the design process included: delineation of the extent of LLRW, development of cut lines, and estimation of the quantity of co-mingled LLRW in a heterogeneous matrix; protection of adjacent receptors in a manner which would not impact the use of adjacent facilities which include residences, a recreational facility, and a school; coordination and phasing of the work to allow management of six separate material streams including clean soil, MSW, co-mingled LLRW/MSW, LLRW, un-impacted water, and impacted water/leachate within a confined environment; and development of a multi-tiered and adaptive program of monitoring and control measures for odour, dust, and water including assessment of risk of exceedance of monitoring criteria. In addition to ensuring public safety and protection of the environment during remedy implementation, significant effort in the design process was paid to balancing the advantages of increased certainty, including higher production rates, against the costs of attaining increased certainty. Many of these lessons may be applicable to other projects. (authors)« less

  13. Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst.

    PubMed

    Pukale, Dipak D; Maddikeri, Ganesh L; Gogate, Parag R; Pandit, Aniruddha B; Pratap, Amit P

    2015-01-01

    Transesterification based biodiesel production from waste cooking oil in the presence of heterogeneous solid catalyst has been investigated in the present work. The effect of different operating parameters such as type of catalyst, catalyst concentration, oil to methanol molar ratio and the reaction temperature on the progress of the reaction was studied. Some studies related to catalyst reusability have also been performed. The important physicochemical properties of the synthesized biodiesel have also been investigated. The results showed that tri-potassium phosphate exhibits high catalytic activity for the transesterification of waste cooking oil. Under the optimal conditions, viz. catalyst concentration of 3wt% K3PO4, oil to methanol molar ratio of 1:6 and temperature of 50°C, 92.0% of biodiesel yield was obtained in 90min of reaction time. Higher yield was obtained in the presence of ultrasound as compared to conventional approach under otherwise similar conditions, which can be attributed to the cavitational effects. Kinetic studies have been carried out to determine the rate constant at different operating temperatures. It was observed that the kinetic rate constant increased with an increase in the temperature and the activation energy was found to be 64.241kJ/mol. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Mechanisms contributing to the thermal analysis of waste incineration bottom ash and quantification of different carbon species.

    PubMed

    Rocca, Stefania; van Zomeren, André; Costa, Giulia; Dijkstra, Joris J; Comans, Rob N J; Lombardi, Francesco

    2013-02-01

    The focus of this study was to identify the main compounds affecting the weight changes of bottom ash (BA) in conventional loss on ignition (LOI) tests and to obtain a better understanding of the individual processes in heterogeneous (waste) materials such as BA. Evaluations were performed on BA samples from a refuse derived fuel incineration (RDF-I) plant and a hospital waste incineration (HW-I) plant using thermogravimetric analysis and subsequent mass spectrometry (TG-MS) analysis of the gaseous thermal decomposition products. Results of TG-MS analysis on RDF-I BA indicated that the LOI measured at 550°C was due to moisture evaporation and dehydration of Ca(OH)(2) and hydrocalumite. Results for the HW-I BA showed that LOI at 550°C was predominantly related to the elemental carbon (EC) content of the sample. Decomposition of CaCO(3) around 700°C was identified in both materials. In addition, we have identified reaction mechanisms that underestimate the EC and overestimate the CaCO(3) contents of the HW-I BA during TG-MS analyses. These types of artefacts are expected to occur also when conventional LOI methods are adopted, in particular for materials that contain CaO/Ca(OH)(2) in combination with EC and/or organic carbon, such as e.g. municipal solid waste incineration (MSWI) bottom and fly ashes. We suggest that the same mechanisms that we have found (i.e. in situ carbonation) can also occur during combustion of the waste in the incinerator (between 450 and 650°C) demonstrating that the presence of carbonate in bottom ash is not necessarily indicative for weathering. These results may also give direction to further optimization of waste incineration technologies with regard to stimulating in situ carbonation during incineration and subsequent potential improvement of the leaching behavior of bottom ash. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Rapid measurement of the yield stress of anaerobically-digested solid waste using slump tests.

    PubMed

    Garcia-Bernet, D; Loisel, D; Guizard, G; Buffière, P; Steyer, J P; Escudié, R

    2011-04-01

    The anaerobic digestion of solid waste is usually performed using dry or semi-dry technology. Incoming waste and fermenting digestate are pasty media and thus, at the industrial scale, their suitability for pumping and mixing is a prerequisite at the industrial scale. However, their rheology has been poorly characterised in the literature because there is no suitable experimental system for analysing heterogeneous media composed of coarse particles. We have developed a practical rheometrical test, a "slump test", for the analysis of actual digested solid waste. It makes it possible to estimate yield stress from the final slump height. From the slump behavior, we conclude that digestates behave as visco-elastic materials. The yield stress of different digested waste was measured between 200 and 800Pa. We show that the media containing smaller particles or with higher moisture content are characterised by smaller yield stresses. This study thus demonstrates the impact of the origin of the digestate on the yield stress. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Energy performance of an integrated bio-and-thermal hybrid system for lignocellulosic biomass waste treatment.

    PubMed

    Kan, Xiang; Yao, Zhiyi; Zhang, Jingxin; Tong, Yen Wah; Yang, Wenming; Dai, Yanjun; Wang, Chi-Hwa

    2017-03-01

    Lignocellulosic biomass waste, a heterogeneous complex of biodegradables and non-biodegradables, accounts for large proportion of municipal solid waste. Due to limitation of single-stage treatment, a two-stage hybrid AD-gasification system was proposed in this work, in which AD acted as pre-treatment to convert biodegradables into biogas followed by gasification converting solid residue into syngas. Energy performance of single and two-stage systems treating 3 typical lignocellulosic wastes was studied using both experimental and numerical methods. In comparison with conventional single-stage gasification treatment, this hybrid system could significantly improve the quality of produced gas for all selected biomass wastes and show its potential in enhancing total gas energy production by a maximum value of 27% for brewer's spent grain treatment at an organic loading rate (OLR) of 3gVS/L/day. The maximum overall efficiency of the hybrid system for horticultural waste treatment was 75.2% at OLR of 11.3gVS/L/day, 5.5% higher than conventional single-stage system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. DEVELOPMENT OF A RECYCLABLE HETEROGENEOUS CATALYST FOR BIODIESEL SYNTHESIS UTILIZING WASTE GREASE AS FEEDSTOCK

    EPA Science Inventory

    As fuel consumption continues depleting nonrenewable energy sources and environmental health concerns heighten due to its use, a movement toward sustainable alternatives is necessary for the stewardship of future generations. Biodiesel (BD) is one renewable resource being deve...

  19. Molybdenum and zinc stable isotope variation in mining waste rock drainage and waste rock at the Antamina mine, Peru.

    PubMed

    Skierszkan, E K; Mayer, K U; Weis, D; Beckie, R D

    2016-04-15

    The stable isotope composition of molybdenum (Mo) and zinc (Zn) in mine wastes at the Antamina Copper-Zn-Mo mine, Peru, was characterized to investigate whether isotopic variation of these elements indicated metal attenuation processes in mine drainage. Waste rock and ore minerals were analyzed to identify the isotopic composition of Mo and Zn sources, namely molybdenites (MoS2) and sphalerites (ZnS). Molybdenum and Zn stable isotope ratios are reported relative to the NIST-SRM-3134 and PCIGR-1 Zn standards, respectively. δ(98)Mo among molybdenites ranged from -0.6 to +0.6‰ (n=9) while sphalerites showed no δ(66)Zn variations (0.11±0.01‰, 2 SD, n=5). Mine drainage samples from field waste rock weathering experiments were also analyzed to examine the extent of isotopic variability in the dissolved phase. Variations spanned 2.2‰ in δ(98)Mo (-0.1 to +2.1‰) and 0.7‰ in δ(66)Zn (-0.4 to +0.3‰) in mine drainage over a wide pH range (pH2.2-8.6). Lighter δ(66)Zn signatures were observed in alkaline pH conditions, which was consistent with Zn adsorption and/or hydrozincite (Zn5(OH)6(CO3)2) formation. However, in acidic mine drainage Zn isotopic compositions reflected the value of sphalerites. In addition, molybdenum isotope compositions in mine drainage were shifted towards heavier values (0.89±1.25‰, 2 SD, n=16), with some overlap, in comparison to molybdenites and waste rock (0.13±0.82‰, 2 SD, n=9). The cause of heavy Mo isotopic signatures in mine drainage was more difficult to resolve due to isotopic heterogeneity among ore minerals and a variety of possible overlapping processes including dissolution, adsorption and secondary mineral precipitation. This study shows that variation in metal isotope ratios are promising indicators of metal attenuation. Future characterization of isotopic fractionation associated to key environmental reactions will improve the power of Mo and Zn isotope ratios to track the fate of these elements in mine drainage. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Recovery of ferrous and nonferrous metal from ASR by physical separation

    NASA Astrophysics Data System (ADS)

    Kim, Min-gyu; Han, Oh-hyung; Park, Chul-hyun

    2017-04-01

    A recycle ratio of waste automobiles in Korea is low, compared to that of the advanced countries. Especially in its recycle, separation of automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, is needed. However ASR is cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then is largely deposited in land-fill sites as waste. In this study ASR was separated by a series of physical processing operations such as comminution, air classification and magnetic separation and electrostatic separations. In particular it focuses on estimating the optimal conditions of magnetic and electrostatic separations for improving the separation efficiency of valuable ferrous and non-ferrous metals such as iron (Fe), aluminum, copper and etc. In magnetic separation, 91.5% Fe grade and 91% recovery could be obtained at conditions of particle size under 10mm and magnetic intensity of 400 gauss. In corona electrostatic separation for recovering nonferrous metals, a grade of 79.2% and recovery of 90.7% could be successfully achieved under conditions of -6mm particle size, 50kV electrode potential, 35rpm drum speed and 20 degree splitter position, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. 2016002250001)

  1. Meat, Fish, and Poultry Processing Wastes.

    ERIC Educational Resources Information Center

    Litchfield, J. H.

    1978-01-01

    Presents a literature review of industrial wastes, covering publications of 1976-77. This review includes studies on: (1) meat industry wastes; (2) fish-processing waste treatment; and (3) poultry-processing waste treatment. A list of 76 references is also presented. (HM)

  2. The extent of food waste generation across EU-27: different calculation methods and the reliability of their results.

    PubMed

    Bräutigam, Klaus-Rainer; Jörissen, Juliane; Priefer, Carmen

    2014-08-01

    The reduction of food waste is seen as an important societal issue with considerable ethical, ecological and economic implications. The European Commission aims at cutting down food waste to one-half by 2020. However, implementing effective prevention measures requires knowledge of the reasons and the scale of food waste generation along the food supply chain. The available data basis for Europe is very heterogeneous and doubts about its reliability are legitimate. This mini-review gives an overview of available data on food waste generation in EU-27 and discusses their reliability against the results of own model calculations. These calculations are based on a methodology developed on behalf of the Food and Agriculture Organization of the United Nations and provide data on food waste generation for each of the EU-27 member states, broken down to the individual stages of the food chain and differentiated by product groups. The analysis shows that the results differ significantly, depending on the data sources chosen and the assumptions made. Further research is much needed in order to improve the data stock, which builds the basis for the monitoring and management of food waste. © The Author(s) 2014.

  3. Technical assessment of processing plants as exemplified by the sorting of beverage cartons from lightweight packaging wastes.

    PubMed

    Feil, A; Thoden van Velzen, E U; Jansen, M; Vitz, P; Go, N; Pretz, T

    2016-02-01

    The recovery of beverage cartons (BC) in three lightweight packaging waste processing plants (LP) was analyzed with different input materials and input masses in the area of 21-50Mg. The data was generated by gravimetric determination of the sorting products, sampling and sorting analysis. Since the particle size of beverage cartons is larger than 120mm, a modified sampling plan was implemented and targeted multiple sampling (3-11 individual samplings) and a total sample size of respectively 1200l (ca. 60kg) for the BC-products and of about 2400l (ca. 120kg) for material-heterogeneous mixed plastics (MP) and sorting residue products. The results infer that the quantification of the beverage carton yield in the process, i.e., by including all product-containing material streams, can be specified only with considerable fluctuation ranges. Consequently, the total assessment, regarding all product streams, is rather qualitative than quantitative. Irregular operation conditions as well as unfavorable sampling conditions and capacity overloads are likely causes for high confidence intervals. From the results of the current study, recommendations can basically be derived for a better sampling in LP-processing plants. Despite of the suboptimal statistical results, the results indicate very clear that the plants show definite optimisation potentials with regard to the yield of beverage cartons as well as the required product purity. Due to the test character of the sorting trials the plant parameterization was not ideal for this sorting task and consequently the results should be interpreted with care. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Conversion of post consumer waste polystyrene into a high value adsorbent and its sorptive properties for Congo Red removal from aqueous solution.

    PubMed

    Chaukura, Nhamo; Mamba, Bhekie B; Mishra, Shivani B

    2017-05-15

    Using post-consumer waste polystyrene (WPS), a conjugated microporous polymer (CMP) was synthesised and activated into a sulphonic-group carrying resin (SCMP). The surface chemistry of the materials showed a decline in both the aromatic CH and aliphatic CH 2 stretching vibrations confirming successful crosslinking. The synthesised polymers were thermally stable with decomposition temperatures above 300 °C, had surface heterogeneity, and BET surface areas of 752 and 510 m 2 /g, respectively. A distribution of pores ranging from meso- to micro-pores was comparable to other CMPs. The materials had maximum adsorption capacities of 500 and 357 mg/g for Congo Red (CR) on CMP and SCMP, respectively. Converting waste polystyrene to an adsorbent is a cost effective way of handling waste and simultaneously providing material for wastewater remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Ceramics in nuclear waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T D; Mendel, J E

    1979-05-01

    Seventy-three papers are included, arranged under the following section headings: national programs for the disposal of radioactive wastes, waste from stability and characterization, glass processing, ceramic processing, ceramic and glass processing, leaching of waste materials, properties of nuclear waste forms, and immobilization of special radioactive wastes. Separate abstracts were prepared for all the papers. (DLC)

  6. CO-FIRING COAL: FEEDLOT AND LITTER BIOMASS FUELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyan Annamalai; John Sweeten; Saqib Mukhtar

    2003-06-01

    Reburn with animal waste yield NO{sub x} reduction of the order of 70-80%, which is much higher than those previously reported in the literature for natural gas, coal and agricultural biomass as reburn fuels. Further, the NO{sub x} reduction is almost independent of stoichiometry from stoichiometric to upto 10% deficient air in reburn zone. As a first step towards understanding the reburn process in a boiler burner, a simplified zero-dimensional model has been developed for estimating the NO{sub x} reduction in the reburn process using simulated animal waste based biomass volatiles. However the first model does not include the gradualmore » heat up of reburn fuel particle, pyrolysis and char combustion. Hence there is a need for more rigorous treatment of the model with animal waste as reburn fuel. To address this issue, an improved zero-dimensional model is being developed which can handle any solid reburn fuel, along with more detailed heterogeneous char reactions and homogeneous global reactions. The model on ''NO{sub x} Reduction for Reburn Process using Feedlot Biomass,'' incorporates; (a) mixing between reburn fuel and main-burner gases, (b) gradual heat-up of reburn fuel accompanied by pyrolysis, oxidation of volatiles and char oxidation, (c) fuel-bound nitrogen (FBN) pyrolysis, and FBN including both forward and backward reactions, (d) prediction of NO{sub x} as a function of time in the reburn zone, and (e) gas phase and solid phase temperature as a function of time. The fuel bound nitrogen is assumed to be released to the gas phase by two processes, (a) FBN evolution to N{sub 2}, HCN, and NH{sub 3}, and (b) FBN oxidation to NO at the char surface. The formulation has been completed, code has been developed, and preliminary runs have been made to test the code. Note that, the current model does not incorporate the overfire air. The results of the simulation will be compared with the experimental results. During this quarter, three journal and four conference publications dealing with utilization of animal waste as fuel have been published. In addition a presentation was made to a utility company interested in the new reburn technology for NO{sub x} reduction.« less

  7. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.

    PubMed

    Claes, Laurens; Verduyckt, Jasper; Stassen, Ivo; Lagrain, Bert; De Vos, Dirk E

    2015-04-18

    Oxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  9. Biosorption studies on waste cotton seed for cationic dyes sequestration: equilibrium and thermodynamics

    NASA Astrophysics Data System (ADS)

    Sivarajasekar, N.; Baskar, R.; Ragu, T.; Sarika, K.; Preethi, N.; Radhika, T.

    2017-07-01

    The immature Gossypium hirsutum seeds—an agricultural waste was converted into a novel adsorbent and its effectiveness for cationic dyes removal was discussed in this study. Characterization revealed that sulfuric acid activated waste Gossypium hirsutum seed (WGSAB) contains surface area 496 m2 g-1. The ability of WGSAB to adsorb basic red 2 (BR2) and basic violet 3 (BV3) from aqueous solutions has been studied. Batch adsorption studies were carried out at different initial dye concentrations (100-300 mg l-1), contact time (1-5 h), pH (2-12) and temperature (293-323 K) to understand the adsorption mechanism. Adsorption data were modeled using Langmuir, Freundlich and Toth adsorption isotherms. Equilibrium data of the adsorption process fitted very well to the Toth model for both dyes. The Langmuir maximum adsorption capacity was 66.69 mg g-1 for BV3 and 50.11 mg g-1 for BR2 at optimum conditions. The near unity value of Toth isotherm constant (BR2: 0.999 and BV3: 1.0) indicates that WGSAB surface is heterogeneous in nature. The maximum adsorption capacity predicted by Toth isotherm of BV3 (66.699 mg g-1) is higher than BR2 (50.310 mg g-1). The kinetic investigation revealed that the BR2 and BV3 were chemisorbed on WGSAB surface following Avrami fractional order kinetics. Further, the fractional order and rate constant values are almost similar for every concentration in both the dyes. The thermodynamic parameters such as Δ H 0, Δ S 0 and Δ G 0 were evaluated. The dye adsorption process was found to be spontaneous and endothermic for the two dyes. Regeneration of WGSAB exhausted by the two dyes could be possible via acetic acid as elutant.

  10. NASA GSFC Perspective on Heterogeneous Processing

    NASA Technical Reports Server (NTRS)

    Powell, Wesley A.

    2016-01-01

    This presentation provides an overview of NASA GSFC, our onboard processing applications, the applicability heterogeneous processing to these applications, and necessary developments to enable heterogeneous processing to be infused into our missions.

  11. Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Mayer, K. Ulrich; Beckie, Roger D.

    2017-06-01

    In mining environmental applications, it is important to assess water quality from waste rock piles (WRPs) and estimate the likelihood of acid rock drainage (ARD) over time. The mineralogical heterogeneity of WRPs is a source of uncertainty in this assessment, undermining the reliability of traditional bulk indicators used in the industry. We focused in this work on the bulk neutralizing potential ratio (NPR), which is defined as the ratio of the content of non-acid-generating minerals (typically reactive carbonates such as calcite) to the content of potentially acid-generating minerals (typically sulfides such as pyrite). We used a streamtube-based Monte-Carlo method to show why and to what extent bulk NPR can be a poor indicator of ARD occurrence. We simulated ensembles of WRPs identical in their geometry and bulk NPR, which only differed in their initial distribution of the acid generating and acid neutralizing minerals that control NPR. All models simulated the same principal acid-producing, acid-neutralizing and secondary mineral forming processes. We show that small differences in the distribution of local NPR values or the number of flow paths that generate acidity strongly influence drainage pH. The results indicate that the likelihood of ARD (epitomized by the probability of occurrence of pH< 4 in a mixing boundary) within the first 100 years can be as high as 75% for a NPR = 2 and 40% for NPR = 4. The latter is traditionally considered as a ;universally safe; threshold to ensure non-acidic waters in practical applications. Our results suggest that new methods that explicitly account for mineralogical heterogeneity must be sought when computing effective (upscaled) NPR values at the scale of the piles.

  12. Central waste processing system

    NASA Technical Reports Server (NTRS)

    Kester, F. L.

    1973-01-01

    A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.

  13. Monitoring extent of moisture variations due to leachate recirculation in an ELR/bioreactor landfill using resistivity imaging.

    PubMed

    Manzur, Shahed Rezwan; Hossain, Md Sahadat; Kemler, Vance; Khan, Mohammad Sadik

    2016-09-01

    Bioreactor or enhanced leachate recirculation (ELR) landfills are designed and operated for accelerated waste stabilization, accelerated decomposition, and an increased rate of gas generation. The major aspects of a bioreactor landfill are the addition of liquid and the recirculation of collected leachate back into the waste mass through the subsurface leachate recirculation system (LRS). The performance of the ELR landfill largely depends on the existing moisture content within the waste mass; therefore, it is of utmost importance to determine the moisture variations within the landfill. Traditionally, the moisture variation of the ELR landfill is determined by collecting samples through a bucket auger boring from the landfill, followed by laboratory investigation. Collecting the samples through a bucket auger boring is time consuming, labor intensive, and cost prohibitive. Moreover, it provides the information for a single point within the waste mass, but not for the moisture distribution within the landfill. Fortunately, 2D resistivity imaging (RI) can be performed to assess the moisture variations within the landfill and provide a continuous image of the subsurface, which can be utilized to evaluate the performance of the ELR landfill. During this study, the 2D resistivity imaging technique was utilized to determine the moisture distribution and moisture movement during the recirculation process of an ELR landfill in Denton, Texas, USA. A horizontal recirculation pipe was selected and monitored periodically for 2.5years, using the RI technique, to investigate the performance of the leachate recirculation. The RI profile indicated that the resistivity of the solid waste decreased as much as 80% with the addition of water/leachate through the recirculation pipe. In addition, the recirculated leachate traveled laterally between 11m and 16m. Based on the resistivity results, it was also observed that the leachate flow throughout the pipe was non-uniform. The non-uniformity of the leachate flow confirms that the flow of leachate through waste is primarily through preferential flow paths due the heterogeneous nature of the waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Designing and examining e-waste recycling process: methodology and case studies.

    PubMed

    Li, Jinhui; He, Xin; Zeng, Xianlai

    2017-03-01

    Increasing concerns on resource depletion and environmental pollution have largely obliged electrical and electronic waste (e-waste) should be tackled in an environmentally sound manner. Recycling process development is regarded as the most effective and fundamental to solve the e-waste problem. Based on global achievements related to e-waste recycling in the past 15 years, we first propose a theory to design an e-waste recycling process, including measuring e-waste recyclability and selection of recycling process. And we summarize the indicators and tools in terms of resource dimension, environmental dimension, and economic dimension, to examine the e-waste recycling process. Using the sophisticated experience and adequate information of e-waste management, spent lithium-ion batteries and waste printed circuit boards are chosen as case studies to implement and verify the proposed method. All the potential theory and obtained results in this work can contribute to future e-waste management toward best available techniques and best environmental practices.

  15. From fly ash waste slurry to functional adsorbent for valuable rare earth ion separation: An ingenious combination process involving modification, dewatering and grafting.

    PubMed

    Zhou, Qi; Luo, Tiantian; Yang, Heng; Liang, Cheng; Jing, Luru; Luo, Wenjun

    2018-03-01

    Acid extracting aluminum from fly ash would produce pestilent secondary fly ash slurry with strong acidity, high content of Cl - and residual Al 3+ that is difficult to be further used. In order to achieve the zero emission, a potential integrated treatment process for reutilization was proposed in this paper. By intelligent use of residual Al 3+ in sludge as catalyst, hydrophobic modification of solid particle was taken with fatty acid via a heterogeneous esterification at normal temperature. Due to the solvophobic force, moisture content of its filter cake was 36.46%, which reduced 11.14% compared with the unmodified one, hydrophobicity scale can achieve 100% with modifier accounting for only 0.8% of solid content and the Cl - concentrations decreased from 20 to 0.102 g/L in wash liquor, thus greatly saving water for washing and energy for drying. Subsequently, based on the appearance of hydrocarbon chains on particle surface, a high-efficiency ultraviolet-induced grafting polymerization was implemented to fabricate density polyacrylic acid decorated fly ash particles from the surface "CH" sites, the resultant composite was proved to efficiently separate valuable rare-earth Gd 3+ from wastewater with outstanding adsorption and regeneration performance, hence bringing high added-value utilization for these hazardous waste. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Monitoring and modeling of long-term settlements of an experimental landfill in Brazil.

    PubMed

    Simões, Gustavo Ferreira; Catapreta, Cícero Antônio Antunes

    2013-02-01

    Settlement evaluation in sanitary landfills is a complex process, due to the waste heterogeneity, time-varying properties and influencing factors and mechanisms, such as mechanical compression due to load application and creep, and physical-chemical and biological processes caused by the wastes decomposition. Many empirical models for the analysis of long-term settlement in landfills are reported in the literature. This paper presents the results of a settlement monitoring program carried out during 6 years in Belo Horizonte experimental landfill. Different sets of field data were used to calibrate three long-term settlement prediction models (rheological, hyperbolic and composite). The parameters obtained in the calibration were used to predict the settlements and to compare with actual field data. During the monitoring period of 6 years, significant vertical strains were observed (of up to 31%) in relation to the initial height of the experimental landfill. The results for the long-term settlement prediction obtained by the hyperbolic and rheological models significantly underestimate the settlements, regardless the period of data used in the calibration. The best fits were obtained with the composite model, except when 1 year field data were used in the calibration. The results of the composite model indicate settlements stabilization at larger times and with larger final settlements when compared to the hyperbolic and rheological models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Best Practices for Environmental Site Management: A Practical Guide for Applying Environmental Sequence Stratigraphy to Improve Conceptual Site Models

    EPA Science Inventory

    Presented here is a practical guide on the application of the geologic principles of sequence stratigraphy and facies models to the characterization of stratigraphic heterogeneity at hazardous waste sites. This technology is applicable to sites underlain by clastic aquifers (int...

  18. Solid waste treatment processes for space station

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.

    1983-01-01

    The purpose of this study was to evaluate the state-of-the-art of solid waste(s) treatment processes applicable to a Space Station. From the review of available information a source term model for solid wastes was determined. An overall system is proposed to treat solid wastes under constraints of zero-gravity and zero-leakage. This study contains discussion of more promising potential treatment processes, including supercritical water oxidation, wet air (oxygen) oxidation, and chemical oxidation. A low pressure, batch-type treament process is recommended. Processes needed for pretreatment and post-treatment are hardware already developed for space operations. The overall solid waste management system should minimize transfer of wastes from their collection point to treatment vessel.

  19. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support.

  20. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Jose M., E-mail: joseman@sas.upenn.edu; Plaza, Cesar; Polo, Alfredo

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and providesmore » a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.« less

  1. Integrated geophysical characterisation of Sunyani municipal solid waste disposal site using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography

    NASA Astrophysics Data System (ADS)

    Appiah, Isaac; Wemegah, David Dotse; Asare, Van-Dycke Sarpong; Danuor, Sylvester K.; Forson, Eric Dominic

    2018-06-01

    Non-invasive geophysical investigation using magnetic gradiometry, magnetic susceptibility survey and electrical resistivity tomography (ERT) was carried out on the Sunyani Municipal Assembly (SMA) solid waste disposal (SWD) site. The study was aimed at delineating the physical boundaries and the area extent of the waste deposit, mapping the distribution of the waste at the site, detecting and delineating zones of leachate contamination and its preferential migration pathways beneath the waste deposit and its surroundings. The results of both magnetic susceptibility and gradiometric methods displayed in anomaly maps clearly delineated the physical boundaries of the waste deposit with an approximate area extent of 82,650 m2 that are characterised by high magnetic susceptibilities between 426 × 10-5 SI and 9890 × 10-5 SI. They also revealed high magnetic anomalies erratically distributed within the waste deposit attributable to its heterogeneous and uncontrolled nature. The high magnetic anomalies outside the designated waste boundaries were also attributed to indiscriminate deposition of the waste. Similarly, the ERT sections delineated and characterised zones of leachate contamination beneath the waste body and its close surroundings as well as pathways for leachate migration with low resistivity signatures up to 43.9 Ωm. In spite of the successes reported herein using the ERT, this research also revealed that the ERT is less effective in estimating the thickness of the waste deposit in unlined SWD sites due to leachate infiltration into the ground beneath it that masks the resistivities of the top level ground and makes it indistinguishable from the waste body.

  2. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less

  3. Separating and stabilizing phosphate from high-level radioactive waste: process development and spectroscopic monitoring.

    PubMed

    Lumetta, Gregg J; Braley, Jenifer C; Peterson, James M; Bryan, Samuel A; Levitskaia, Tatiana G

    2012-06-05

    Removing phosphate from alkaline high-level waste sludges at the Department of Energy's Hanford Site in Washington State is necessary to increase the waste loading in the borosilicate glass waste form that will be used to immobilize the highly radioactive fraction of these wastes. We are developing a process which first leaches phosphate from the high-level waste solids with aqueous sodium hydroxide, and then isolates the phosphate by precipitation with calcium oxide. Tests with actual tank waste confirmed that this process is an effective method of phosphate removal from the sludge and offers an additional option for managing the phosphorus in the Hanford tank waste solids. The presence of vibrationally active species, such as nitrate and phosphate ions, in the tank waste processing streams makes the phosphate removal process an ideal candidate for monitoring by Raman or infrared spectroscopic means. As a proof-of-principle demonstration, Raman and Fourier transform infrared (FTIR) spectra were acquired for all phases during a test of the process with actual tank waste. Quantitative determination of phosphate, nitrate, and sulfate in the liquid phases was achieved by Raman spectroscopy, demonstrating the applicability of Raman spectroscopy for the monitoring of these species in the tank waste process streams.

  4. Evaluation of the biomethane potential from multiple waste streams for a proposed community scale anaerobic digester.

    PubMed

    Browne, James D; Allen, Eoin; Murphy, Jerry D

    2013-01-01

    This paper examines the biomethane potential from organic waste for a proposed community scale anaerobic digester in a rural town. The biomethane potential test is used to assess the suitability of waste streams for biomethane production and to examine the variation in biomethane potential between waste sub-streams. A methodology for accurately estimating the biomethane potential from multiple heterogeneous organic waste substrates is sought. Five main waste streams were identified as possible substrates for biogas production, namely Abattoir waste (consisting of paunch and de-watered activated sludge); cheese factory effluent; commercial and domestic food waste; pig slurry and waste water treatment sludge. The biomethane potential of these waste streams ranged from as low as 99 L CH4 kg VS(-1) for pig slurry to as high as 787 L CH4 kg VS(-1) for dissolved air floatation (DAF) sludge from a cheese effluent treatment plant. The kinetic behaviour of the biomethane production in the batch test is also examined. The objective of the paper is to suggest an optimum substrate mix in terms of biomethane yield per unit substrate for the proposed anaerobic digester. This should maximize the yield of biomethane per capital investment. Food waste displayed the highest biomethane yield (128 m(n)(3) t(-1)) followed by cheese waste (38 m(n)(3) t(-1)) and abattoir waste (36 m(n)(3) t(-1)). It was suggested that waste water sludge (16 m(n)(3) t(-1)) and pig slurry (4 m(n)(3) t(-1)) should not be digested. However, the biomethane potential test does not give information on the continuous operation of an anaerobic digester.

  5. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    PubMed Central

    2011-01-01

    Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885

  6. Process Waste Assessment for the Diana Laser Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-12-01

    This Process Waste Assessment was conducted to evaluate the Diana Laser Laboratory, located in the Combustion Research Facility. It documents the hazardous chemical waste streams generated by the laser process and establishes a baseline for future waste minimization efforts. This Process Waste Assessment will be reevaluated in approximately 18 to 24 months, after enough time has passed to implement recommendations and to compare results with the baseline established in this assessment.

  7. Heterogeneity of the electron exchange capacity of kitchen waste compost-derived humic acids based on fluorescence components.

    PubMed

    Yuan, Ying; Tan, Wen-Bing; He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Zhang, Hui; Dang, Qiu-Ling; Li, Dan

    2016-11-01

    Composting is widely used for recycling of kitchen waste to improve soil properties, which is mainly attributed to the nutrient and structural functions of compost-derived humic acids (HAs). However, the redox properties of compost-derived HAs are not fully explored. Here, a unique framework is employed to investigate the electron exchange capacity (EEC) of HAs during kitchen waste composting. Most components of compost-derived HAs hold EEC, but nearly two-thirds of them are found to be easily destroyed by Shewanella oneidensis MR-1 and thus result in an EEC lower than the electron - donating capacity in compost-derived HAs. Fortunately, a refractory component also existed within compost-derived HAs and could serve as a stable and effective electron shuttle to promote the MR-1 involved in Fe(III) reduction, and its EEC was significantly correlated with the aromaticity and the amount of quinones. Nevertheless, with the increase of composting time, the EEC of the refractory component did not show an increasing trend. These results implied that there was an optimal composting time to maximize the production of HAs with more refractory and redox molecules. Recognition of the heterogeneity of EEC of the compost-derived HAs enables an efficient utilization of the composts for a variety of environmental applications. Graphical abstract Microbial reduction of compost-derived HAs.

  8. Modelling of Two-Stage Methane Digestion With Pretreatment of Biomass

    NASA Astrophysics Data System (ADS)

    Dychko, A.; Remez, N.; Opolinskyi, I.; Kraychuk, S.; Ostapchuk, N.; Yevtieieva, L.

    2018-04-01

    Systems of anaerobic digestion should be used for processing of organic waste. Managing the process of anaerobic recycling of organic waste requires reliable predicting of biogas production. Development of mathematical model of process of organic waste digestion allows determining the rate of biogas output at the two-stage process of anaerobic digestion considering the first stage. Verification of Konto's model, based on the studied anaerobic processing of organic waste, is implemented. The dependencies of biogas output and its rate from time are set and may be used to predict the process of anaerobic processing of organic waste.

  9. Recycling of mixed wastes using Quantum-CEP{trademark}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sameski, B.

    1997-02-01

    The author describes the process that M4 Environmental Management, Inc., is commercializing for the treatment of mixed wastes. He summarizes the types of wastes which the process can be applied to, the products which come out of the process, and examples of various waste streams which have been processed. The process is presently licensed to treat mixed wastes and the company has in place contracts for such services. The process uses a molten metal bath to catalyze reactions which break the incoming products down to an atomic level, and allow different process steams to be tapped at the output end.

  10. A simplified approach for slope stability analysis of uncontrolled waste dumps.

    PubMed

    Turer, Dilek; Turer, Ahmet

    2011-02-01

    Slope stability analysis of municipal solid waste has always been problematic because of the heterogeneous nature of the waste materials. The requirement for large testing equipment in order to obtain representative samples has identified the need for simplified approaches to obtain the unit weight and shear strength parameters of the waste. In the present study, two of the most recently published approaches for determining the unit weight and shear strength parameters of the waste have been incorporated into a slope stability analysis using the Bishop method to prepare slope stability charts. The slope stability charts were prepared for uncontrolled waste dumps having no liner and leachate collection systems with pore pressure ratios of 0, 0.1, 0.2, 0.3, 0.4 and 0.5, considering the most critical slip surface passing through the toe of the slope. As the proposed slope stability charts were prepared by considering the change in unit weight as a function of height, they reflect field conditions better than accepting a constant unit weight approach in the stability analysis. They also streamline the selection of slope or height as a function of the desired factor of safety.

  11. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swain, Basudev, E-mail: swain@iae.re.kr; Mishra, Chinmayee; Kang, Leeseung

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium,more » two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na{sub 2}CO{sub 3}, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na{sub 2}CO{sub 3}, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4 M HCl, 100 °C and pulp density of 20 g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. - Highlights: • Simplest process for treatment of GaN an LED industry waste developed. • The process developed recovers gallium from waste LED waste dust. • Thermal analysis and phase properties of GaN to Ga{sub 2}O{sub 3} and GaN to NaGaO{sub 2} revealed. • Solid-state chemistry involved in this process reported. • Quantitative leaching of the GaN was achieved.« less

  12. Achieving Continuous Manufacturing for Final Dosage Formation: Challenges and How to Meet Them May 20-21 2014 Continuous Manufacturing Symposium.

    PubMed

    Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L

    2015-03-01

    We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  13. Modelling municipal solid waste generation: a review.

    PubMed

    Beigl, Peter; Lebersorger, Sandra; Salhofer, Stefan

    2008-01-01

    The objective of this paper is to review previously published models of municipal solid waste generation and to propose an implementation guideline which will provide a compromise between information gain and cost-efficient model development. The 45 modelling approaches identified in a systematic literature review aim at explaining or estimating the present or future waste generation using economic, socio-demographic or management-orientated data. A classification was developed in order to categorise these highly heterogeneous models according to the following criteria--the regional scale, the modelled waste streams, the hypothesised independent variables and the modelling method. A procedural practice guideline was derived from a discussion of the underlying models in order to propose beneficial design options concerning regional sampling (i.e., number and size of observed areas), waste stream definition and investigation, selection of independent variables and model validation procedures. The practical application of the findings was demonstrated with two case studies performed on different regional scales, i.e., on a household and on a city level. The findings of this review are finally summarised in the form of a relevance tree for methodology selection.

  14. Use of Optical and Imaging Techniques for Inspection of Off-Line Joule-Heated Melter at the West Valley Demonstration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plodinec, M. J.; Jang, P-R; Long, Z.

    2003-02-25

    The West Valley melter has been taken out of service. Its design is the direct ancestor of the current melter design for the Hanford Waste Treatment Plant. Over its eight years of service, the West Valley melter has endured many of the same challenges that the Hanford melter will encounter with feeds that are similar to many of the Hanford double shell tank wastes. Thus, inspection of the West Valley melter prior to its disposal could provide valuable--even crucial--information to the designers of the melters to be used at the Hanford Site, particularly if quantitative information can be obtained. Themore » objective of Mississippi State University's Diagnostic Instrumentation and Analysis Laboratory's (DIAL) efforts is to develop, fabricate, and deploy inspection tools for the West Valley melter that will (i) be remotely operable in the West Valley process cell; (ii) provide quantitative information on melter refractory wear and deposits on the refractory; and (iii) indicate areas of heterogeneity (e.g., deposits) requiring more detailed characterization. A collaborative arrangement has been established with the West Valley Demonstration Project (WVDP) to inspect their melter.« less

  15. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, Jhon T.; Krenzien, Susan K.

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  16. Technology Readiness Assessment of a Large DOE Waste Processing Facility

    DTIC Science & Technology

    2007-09-12

    Waste Generation at Hanford – Waste Treatment and Immobilization Plant ( WTP ) Project • Motivation to Conduct TRA • TRA Approach • Actions to ensure...Hanford’s WTP will be the world’s largest radioactive waste treatment plant to treat Hanford’s underground tank waste Waste Treatment Plant ( WTP ) Major...Mass Maximize Activity WTP Flow Sheet – Key Process Flows Hanford Tank Waste 10 How is the Vitrified Waste Dispositioned? High Level Waste Canisters

  17. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving significant amounts of radionuclides are limited. To limit the radiological dose assessment, analyses should be focused to and more detailed in such landscape areas in which doses are expected to be high. Due to the similarities among deep groundwater discharge areas, one can make site-specific analyses of those areas, which have a broad applicability for migration of radionuclides originating from a nuclear waste repository.

  18. Consumption patterns and household hazardous solid waste generation in an urban settlement in México.

    PubMed

    Otoniel, Buenrostro Delgado; Liliana, Márquez-Benavides; Francelia, Pinette Gaona

    2008-01-01

    Mexico is currently facing a crisis in the waste management field. Some efforts have just commenced in urban and in rural settlements, e.g., conversion of open dumps into landfills, a relatively small composting culture, and implementation of source separation and plastic recycling strategies. Nonetheless, the high heterogeneity of components in the waste, many of these with hazardous properties, present the municipal collection services with serious problems, due to the risks to the health of the workers and to the impacts to the environment as a result of the inadequate disposition of these wastes. A generation study in the domestic sector was undertaken with the aim of finding out the composition and the generation rate of household hazardous waste (HHW) produced at residences. Simultaneously to the generation study, a socioeconomic survey was applied to determine the influence of income level on the production of HHW. Results from the solid waste generation analysis indicated that approximately 1.6% of the waste stream consists of HHW. Correspondingly, it was estimated that in Morelia, a total amount of 442ton/day of domestic waste are produced, including 7.1ton of HHW per day. Furthermore, the overall amount of HHW is not directly related to income level, although particular byproducts do correlate. However, an important difference was observed, as the brands and the presentation sizes of goods and products used in each socioeconomic stratum varied.

  19. Modeling Coupled Thermal-Hydrological-Chemical Processes in the Unsaturated Fractured Rock of Yucca Mountain, Nevada: Heterogeneity and Seepage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Mukhopadhyay; E.L. Donnenthal; N. Spycher

    An understanding of processes affecting seepage into emplacement tunnels is needed for correctly predicting the performance of underground radioactive waste repositories. It has been previously estimated that the capillary and vaporization barriers in the unsaturated fractured rock of Yucca Mountain are enough to prevent seepage under present day infiltration conditions. It has also been thought that a substantially elevated infiltration flux will be required to cause seepage after the thermal period is over. While coupled thermal-hydrological-chemical (THC) changes in Yucca Mountain host rock due to repository heating has been previously investigated, those THC models did not incorporate elements of themore » seepage model. In this paper, we combine the THC processes in unsaturated fractured rock with the processes affecting seepage. We observe that the THC processes alter the hydrological properties of the fractured rock through mineral precipitation and dissolution. We show that such alteration in the hydrological properties of the rock often leads to local flow channeling. We conclude that such local flow channeling may result in seepage under certain conditions, even with nonelevated infiltration fluxes.« less

  20. Food waste and food processing waste for biohydrogen production: a review.

    PubMed

    Yasin, Nazlina Haiza Mohd; Mumtaz, Tabassum; Hassan, Mohd Ali; Abd Rahman, Nor'Aini

    2013-11-30

    Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in gas composition, production yield and rate. The carbon composition in food waste also plays a crucial role in determining high biohydrogen yield. Physicochemical factors such as pre-treatment to seed culture, pH, temperature (mesophilic/thermophilic) and etc. are also important to ensure the dominance of hydrogen-producing bacteria in dark fermentation. This review demonstrates the potential of food waste and food processing waste for biohydrogen production and provides a brief overview of several physicochemical factors that affect biohydrogen production in dark fermentation. The economic viability of biohydrogen production from food waste is also discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Hazardous Waste Minimization Assessment: Fort Campbell, Kentucky

    DTIC Science & Technology

    1991-03-01

    Used Oii - Better Operating Practices . Selective Segregation 97 Used Oil - Process Change - Fast Lube Oil Change System (FLOCS) 98 Caustic Wastes...Product Substitution 98 Caustic Wastes - Process Change - Hot Tank (Equipment) Modifications 98 Aqueous or Caustic Wastes - Process Change - Dry Ovens...Aqueous or Caustic Wastes - Equipment Leasiag 102 Dirty Rags/Uniforms • Onsite/Offsite Recycling - Laundry Service 103 Treatment 103 Used Oil - Onsite

  2. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema

    None

    2018-05-23

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  3. Transaction Costs and the Collection of Information: Presale Measurement on Private Timber Sales

    Treesearch

    Keith B. Leffler; Randal R. Rucker; Ian A. Munn

    2000-01-01

    Measurement efforts to reduce the uncertainty concerning the attributes of heterogeneous goods may simply redistribute wealth and result in social waste. Individuals bearing the cost of such distributional measurement have incentives to develop buying and selling practices that limit such measurement. We examine, both theoretically and empirically, the determinants...

  4. Process control plan for 242-A Evaporator Campaign 95-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le, E.Q.; Guthrie, M.D.

    1995-05-18

    The wastes from tanks 106-AP, 107-AP, and 106-AW have been selected to be candidate feed wastes for Evaporator Campaign 95-1. The wastes in tank 106-AP and 107-AP are primarily from B-Plant strontium processing and PUREX neutralized cladding removal, respectively. The waste in tank 106-AW originated primarily from the partially concentrated product from 242-A Evaporator Campaign 94-2. Approximately 8.67 million liters of waste from these tanks will be transferred to tank 102-AW during the campaign. Tank 102-AW is the dedicated waste feed tank for the evaporator and currently contains 647,000 liters of processable waste. The purpose of the 242-A Evaporator Campaignmore » 95-1 Process Control Plan (hereafter referred to as PCP) is to certify that the wastes in tanks 106-AP, 107-AP, 102-AW, and 106-AW are acceptable for processing through evaporator and provide a general description of process strategies and activities which will take place during Campaign 95-1. The PCP also summarizes and presents a comprehensive characterization of the wastes in these tanks.« less

  5. Modeling the effect of soil structure on water flow and isoproturon dynamics in an agricultural field receiving repeated urban waste compost application.

    PubMed

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2014-11-15

    Transport processes in soils are strongly affected by heterogeneity of soil hydraulic properties. Tillage practices and compost amendments can modify soil structure and create heterogeneity at the local scale within agricultural fields. The long-term field experiment QualiAgro (INRA-Veolia partnership 1998-2013) explores the impact of heterogeneity in soil structure created by tillage practices and compost application on transport processes. A modeling study was performed to evaluate how the presence of heterogeneity due to soil tillage and compost application affects water flow and pesticide dynamics in soil during a long-term period. The study was done on a plot receiving a co-compost of green wastes and sewage sludge (SGW) applied once every 2 years since 1998. The plot was cultivated with a biannual rotation of winter wheat-maize (except 1 year of barley) and a four-furrow moldboard plow was used for tillage. In each plot, wick lysimeter outflow and TDR probe data were collected at different depths from 2004, while tensiometer measurements were also conducted during 2007/2008. Isoproturon concentration was measured in lysimeter outflow since 2004. Detailed profile description was used to locate different soil structures in the profile, which was then implemented in the HYDRUS-2D model. Four zones were identified in the plowed layer: compacted clods with no visible macropores (Δ), non-compacted soil with visible macroporosity (Γ), interfurrows created by moldboard plowing containing crop residues and applied compost (IF), and the plow pan (PP) created by plowing repeatedly to the same depth. Isoproturon retention and degradation parameters were estimated from laboratory batch sorption and incubation experiments, respectively, for each structure independently. Water retention parameters were estimated from pressure plate laboratory measurements and hydraulic conductivity parameters were obtained from field tension infiltrometer experiments. Soil hydraulic properties were optimized on one calibration year (2007/08) using pressure head, water content and lysimeter outflow data, and then tested on the whole 2004/2010 period. Lysimeter outflow and water content dynamics in the soil profile were correctly described for the whole period (model efficiency coefficient: 0.99) after some correction of LAI estimates for wheat (2005/06) and barley (2006/07). Using laboratory-measured degradation rates and assuming degradation only in the liquid phase caused large overestimation of simulated isoproturon losses in lysimeter outflow. A proper order of magnitude of isoproturon losses was obtained after considering that degradation occurred in solid (sorbed) phase at a rate 75% of that in liquid phase. Isoproturon concentrations were found to be highly sensitive to degradation rates. Neither the laboratory-measured isoproturon fate parameters nor the independently-derived soil hydraulic parameters could describe the actual multiannual field dynamics of water and isoproturon without calibration. However, once calibrated on a limited period of time (9 months), HYDRUS-2D was able to simulate the whole 6-year time series with good accuracy. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Lean manufacturing and Toyota Production System terminology applied to the procurement of vascular stents in interventional radiology.

    PubMed

    de Bucourt, Maximilian; Busse, Reinhard; Güttler, Felix; Wintzer, Christian; Collettini, Federico; Kloeters, Christian; Hamm, Bernd; Teichgräber, Ulf K

    2011-08-01

    OBJECTIVES: To apply the economic terminology of lean manufacturing and the Toyota Production System to the procurement of vascular stents in interventional radiology. METHODS: The economic- and process-driven terminology of lean manufacturing and the Toyota Production System is first presented, including information and product flow as well as value stream mapping (VSM), and then applied to an interdisciplinary setting of physicians, nurses and technicians from different medical departments to identify wastes in the process of endovascular stent procurement in interventional radiology. RESULTS: Using the so-called seven wastes approach of the Toyota Production System (waste of overproducing, waiting, transport, processing, inventory, motion and waste of defects and spoilage) as well as further waste characteristics (gross waste, process and method waste, and micro waste), wastes in the process of endovascular stent procurement in interventional radiology were identified and eliminated to create an overall smoother process from the procurement as well as from the medical perspective. CONCLUSION: Economic terminology of lean manufacturing and the Toyota Production System, especially VSM, can be used to visualise and better understand processes in the procurement of vascular stents in interventional radiology from an economic point of view.

  7. LEATHER TANNERY WASTE MANAGEMENT THROUGH PROCESS CHANGE, REUSE AND PRETREATMENT

    EPA Science Inventory

    Reduction of tannery waste, i.e., trivalent chromium, sulfide and oil and grease components has been accomplished by process change. Protein recovery and hydroclonic separation of solids was shown to be possible in tannery processing in reducing waste loading. All waste load redu...

  8. 40 CFR 421.13 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of process waste water pollutants to navigable waters. (b) During any calendar month there may be discharged from the overflow of a process waste water impoundment either a volume of process waste water... the evaporation within the impoundment for that month, or, if greater, a volume of process waste water...

  9. Minimally processed beetroot waste as an alternative source to obtain functional ingredients.

    PubMed

    Costa, Anne Porto Dalla; Hermes, Vanessa Stahl; Rios, Alessandro de Oliveira; Flôres, Simone Hickmann

    2017-06-01

    Large amounts of waste are generated by the minimally processed vegetables industry, such as those from beetroot processing. The aim of this study was to determine the best method to obtain flour from minimally processed beetroot waste dried at different temperatures, besides producing a colorant from such waste and assessing its stability along 45 days. Beetroot waste dried at 70 °C originates flour with significant antioxidant activity and higher betalain content than flour produced from waste dried at 60 and 80 °C, while chlorination had no impact on the process since microbiological results were consistent for its application. The colorant obtained from beetroot waste showed color stability for 20 days and potential antioxidant activity over the analysis period, thus it can be used as a functional additive to improve nutritional characteristics and appearance of food products. These results are promising since minimally processed beetroot waste can be used as an alternative source of natural and functional ingredients with high antioxidant activity and betalain content.

  10. Annual Report 1998: Chemical Structure and Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generatedmore » can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).« less

  11. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium

    NASA Astrophysics Data System (ADS)

    Putri, D.; Ulhidayati, A.; Musthofa, I. A.; Wardani, A. K.

    2018-03-01

    The aim of this study was to investigate the effect of various food processing wastes on the production of single cell protein by Chlorella sp. Three various food processing wastes i.e. tofu waste, tempeh waste and cheese whey waste were used as cultivation medium for Chlorella sp. growth. Sea water was used as a control of cultivation medium. The addition of waste into cultivation medium was 10%, 20%, 30%, 40%, and 50%. The result showed that the highest yield of cell mass and protein content was found in 50% tofu waste cultivation medium was 47.8 × 106 cell/ml with protein content was 52.24%. The 50% tofu waste medium showed improved cell yield as nearly as 30% than tempeh waste medium. The yield of biomass and protein content when 30% tempeh waste was used as cultivation medium was 37.1 × 106 cell/ml and 52%, respectively. Thus, food processing waste especially tofu waste would be a promising candidate for cultivation medium for single cell production from Chlorella sp. Moreover, the utilization of waste can reduce environmental pollution and increase protein supply for food supplement or animal feed.

  12. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  13. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  14. Municipal waste processing apparatus

    DOEpatents

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  15. Enzymes and microorganisms in food industry waste processing and conversion to useful products: a review of the literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroad, P.A.; Wilke, C.R.

    1976-12-01

    Bioconversion of food processing wastes is receiving increased attention with the realization that waste components represent an available and utilizable resource for conversion to useful products. Liquid wastes are characterized as dilute streams containing sugars, starches, proteins, and fats. Solid wastes are generally cellulosic, but may contain other biopolymers. The greatest potential for economic bioconversion is represented by processes to convert cellulose to glucose, glucose to alcohol and protein, starch to invert sugar, and dilute waste streams to methane by anaerobic digestion. Microbial or enzymatic processes to accomplish these conversions are described.

  16. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  17. Secondary Waste Form Down-Selection Data Package—Fluidized Bed Steam Reforming Waste Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Nikolla; Westsik, Joseph H.; Strachan, Denis M.

    2011-09-12

    The Hanford Site in southeast Washington State has 56 million gallons of radioactive and chemically hazardous wastes stored in 177 underground tanks (ORP 2010). The U.S. Department of Energy (DOE), Office of River Protection (ORP), through its contractors, is constructing the Hanford Tank Waste Treatment and Immobilization Plant (WTP) to convert the radioactive and hazardous wastes into stable glass waste forms for disposal. Within the WTP, the pretreatment facility will receive the retrieved waste from the tank farms and separate it into two treated process streams. These waste streams will be vitrified, and the resulting waste canisters will be sentmore » to offsite (high-level waste [HLW]) and onsite (immobilized low-activity waste [ILAW]) repositories. As part of the pretreatment and ILAW processing, liquid secondary wastes will be generated that will be transferred to the Effluent Treatment Facility (ETF) on the Hanford Site for further treatment. These liquid secondary wastes will be converted to stable solid waste forms that will be disposed of in the Integrated Disposal Facility (IDF). To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions (WRPS) has initiated secondary waste form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is developing data packages to support that down-selection. The objective of the data packages is to identify, evaluate, and summarize the existing information on the four waste forms being considered for stabilizing and solidifying the liquid secondary wastes. At the Hanford Site, the FBSR process is being evaluated as a supplemental technology for treating and immobilizing Hanford LAW radioactive tank waste and for treating secondary wastes from the WTP pretreatment and LAW vitrification processes.« less

  18. Vadose zone transport field study: Detailed test plan for simulated leak tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL Ward; GW Gee

    2000-06-23

    The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from thesemore » uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.« less

  19. Solid recovered fuel production from biodegradable waste in grain processing industry.

    PubMed

    Kliopova, Irina; Staniskis, Jurgis Kazimieras; Petraskiene, Violeta

    2013-04-01

    Management of biodegradable waste is one of the most important environmental problems in the grain-processing industry since this waste cannot be dumped anymore due to legal requirements. Biodegradable waste is generated in each stage of grain processing, including the waste-water and air emissions treatment processes. Their management causes some environmental and financial problems. The majority of Lithuanian grain-processing enterprises own and operate composting sites, but in Lithuania the demand for compost is not given. This study focused on the analysis of the possibility of using biodegradable waste for the production of solid recovered fuel, as a local renewable fuel with the purpose of increasing environmental performance and decreasing the direct costs of grain processing. Experimental research with regard to a pilot grain-processing plant has proven that alternative fuel production will lead to minimizing of the volume of biodegradable waste by 75% and the volume of natural gas for heat energy production by 62%. Environmental indicators of grain processing, laboratory analysis of the chemical and physical characteristics of biodegradable waste, mass and energy balances of the solid recovered fuel production, environmental and economical benefits of the project are presented and discussed herein.

  20. 40 CFR 436.21 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... natural deposits. (e) The term “process generated waste water” shall mean any waste water used in the... of the mine operator. However, if a mine is also used for treatment of process generated waste water, discharges of commingled water from the facilities shall be deemed discharges of process generated waste...

  1. Hallmarks of mechanochemistry: from nanoparticles to technology.

    PubMed

    Baláž, Peter; Achimovičová, Marcela; Baláž, Matej; Billik, Peter; Cherkezova-Zheleva, Zara; Criado, José Manuel; Delogu, Francesco; Dutková, Erika; Gaffet, Eric; Gotor, Francisco José; Kumar, Rakesh; Mitov, Ivan; Rojac, Tadej; Senna, Mamoru; Streletskii, Andrey; Wieczorek-Ciurowa, Krystyna

    2013-09-21

    The aim of this review article on recent developments of mechanochemistry (nowadays established as a part of chemistry) is to provide a comprehensive overview of advances achieved in the field of atomistic processes, phase transformations, simple and multicomponent nanosystems and peculiarities of mechanochemical reactions. Industrial aspects with successful penetration into fields like materials engineering, heterogeneous catalysis and extractive metallurgy are also reviewed. The hallmarks of mechanochemistry include influencing reactivity of solids by the presence of solid-state defects, interphases and relaxation phenomena, enabling processes to take place under non-equilibrium conditions, creating a well-crystallized core of nanoparticles with disordered near-surface shell regions and performing simple dry time-convenient one-step syntheses. Underlying these hallmarks are technological consequences like preparing new nanomaterials with the desired properties or producing these materials in a reproducible way with high yield and under simple and easy operating conditions. The last but not least hallmark is enabling work under environmentally friendly and essentially waste-free conditions (822 references).

  2. The potential use of activated carbon prepared from Ziziphus species for removing dyes from waste waters

    NASA Astrophysics Data System (ADS)

    Regti, Abdelmajid; Laamari, My Rachid; Stiriba, Salah-Eddine; El Haddad, Mohammadine

    2017-11-01

    In this study, the adsorption potential of activated carbon prepared from Ziziphus mauritiana nuts for the removal of methylene blue (MB) from aqueous solution has been investigated using batch mode experiments. The effects of some operating parameters on the removal dye such as, initial pH (2-12), temperature (298-328 K), initial MB concentration (20-100 mg L-1), and contact time (5-70 min) were investigated. Adsorption kinetic showed that the rate adsorption followed the pseudo-second-order kinetic model. Four adsorption isotherms models were applied to experimental equilibrium data (Langmuir, Freundlich, Redlich-Peterson, and Fritz-Schlunder) and the different constants were calculated using non-linear equations models. Fritz-Schlunder model was found the best one to describe the adsorption process which suggests that the adsorption of MB onto activated carbon derived from Ziziphus mauritiana is heterogeneous with a multilayer. Thermodynamic adsorption showed that the process was endothermic and spontaneous in nature.

  3. Hazardous Waste Cleanup: Frontier Chemical Waste Process Incorporated in Pendleton, New York

    EPA Pesticide Factsheets

    Frontier Chemical Waste Process, Inc. is located at 7025 Townline Road, Pendleton, New York. This site was used for the treatment of industrial wastes from 1959 to 1974, with many wastes being discharged to the lake on the property (Quarry Lake).

  4. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  5. Long-term simulations of water and isoproturon dynamics in a heterogeneous soil receiving different urban waste composts

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Coquet, Yves; Pot, Valérie; Romić, Davor; Benoit, Pierre; Houot, Sabine

    2016-04-01

    Implementing various compost amendments and tillage practices has a large influence on soil structure and can create heterogeneities at the plot/field scale. While tillage affects soil physical properties, compost application influences also chemical properties like pesticide sorption and degradation. A long-term field experiment called "QualiAgro" (https://www6.inra.fr/qualiagro_eng/), conducted since 1998 aims at characterizing the agronomic value of urban waste composts and their environmental impacts. A modeling study was carried out using HYDRUS-2D for the 2004-2010 period to confront the effects of two different compost types combined with the presence of heterogeneities due to tillage in terms of water and isoproturon dynamics in soil. A municipal solid waste compost (MSW) and a co-compost of sewage sludge and green wastes (SGW) have been applied to experimental plots and compared to a control plot without any compost addition (CONT). Two wick lysimeters, 5 TDR probes, and 7 tensiometers were installed per plot to monitor water and isoproturon dynamics. In the ploughed layer, four zones with differing soil structure were identified: compacted clods (Δ), non-compacted soil (Γ), interfurrows (IF), and the plough pan (PP). These different soil structural zones were implemented into HYDRUS-2D according to field observation and using measured soil hydraulic properties. Lysimeter data showed (2004 -2010 period) that the CONT plot had the largest cumulative water outflow (1388 mm) compared to the MSW plot (962 mm) and SGW plot (979 mm). HYDRUS-2D was able to describe cumulative water outflow after calibration of soil hydraulic properties, for the whole 2004-2010 period with a model efficiency value of 0.99 for all three plots. Isoproturon leaching showed had the largest cumulative value in the CONT plot (21.31 μg) while similar cumulated isoproturon leachings were measured in the SGW (0.663 μg) and MSW (0.245 μg) plots. The model was able to simulate isoproturon leaching patterns except for the large preferential flow events that were observed in the MSW and CONT plots. The timing of these preferential flow events could be reproduced by the model but not their magnitude. Additional simulations were carried out, assuming temporal variation of the IPU degradation rate to explain the leaching events observed at the end of the monitoring period (2010). Modeling results indicate that spatial and temporal variations in pesticide degradation rate due to tillage and compost application play a major role in the dynamics of isoproturon leaching. Both types of compost were found to reduce isoproturon leaching on the long-term (6 years) duration of the field experiment. Keywords: Compost amendment; Soil heterogeneity; Conventional tillage; Water flow; Isoproturon; HYDRUS-2D

  6. Application of Plasma Arcs to the to the Remediation of Shipboard Waste(Supported by ONR and NSWC.)

    NASA Astrophysics Data System (ADS)

    Giuliani, John L.

    1996-10-01

    The Naval Research Laboratory (B. Sartwell, (Chemistry Division NRL); J. Apruzese, (Plasma Physics Division NRL); S. Peterson, D. Counts, (Geo-Centers Inc.),and Q. Han (U. Minn.)) (NRL) is investigating the application of plasma arc technology for the on-board remediation of waste material generated by sea faring ships. A 150kW DC arc torch within a 1 meter diameter chamber has been used for the pyrolysis of liquid and solid material which simulate the waste stream from a naval ship. A general discussion of the materials treated and the associated problems arising from their pyrolysis in a plasma torch will be presented. The greatest challenge for a shipboard plasma remediation, including any exhaust gas treatment, is the overall size of the system imposed by the limited confines of a ship. Connected with this issue are choices of the arc configuration: transfered vs non-transfered; and the feed stock gas: reducing vs oxidizing. The research component of NRL's program is to characterize the gaseous by-products, the remnant slag, and the plasma arc through systematic experiments, as well as to model the plasma dynamics and chemistry within the chamber. The environment within the chamber is primarily defined by several temperature measurements. Two color pyrometry is used to determine the molten slag temperature ( ~2200 degK) and a suite of thermocouples within the chamber indicate a slighter cooler gas phase temperature. Synthetic spectra were generated from radiation transport calculations and compared with optical emission spectroscopy to map the gas temperature around the plasma arc itself ( ~ 5000 degK). Spectroscopy offers the potential of a non-invasive diagnostic to eventually be used for on-line process control, a necessary feature for an operating system due to the heterogeneous waste stream. Other studies will be described including the addition of O2 through a ring to achieve combustion of hydrocarbon wastes, residual gas analysis of the exhaust for different waste material, the voltage-current characteristic at various plasma arc lengths to estimate plasma conductivity, and the surface shape of the molten slag given the pitch and roll of a ship.

  7. Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling

    DTIC Science & Technology

    2008-09-01

    ER D C/ CE R L TR -0 8 -1 3 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling Gary L. Gerdes, Deborah...release; distribution is unlimited. ERDC/CERL TR-08-13 September 2008 Hydrothermal Processing of Base Camp Solid Wastes To Allow Onsite Recycling...a technology to process domestic solid waste using a unique hydrothermal system. The process was successfully demonstrated at Forts Benning and

  8. Installation and Setup of Whole School Food Waste Composting Program

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Forder, S. E.

    2014-12-01

    Hong Kong, one of the busiest trading harbors in the world, is also a city of 8 million of people. The biggest problem that the government faces is the lack of solid waste landfill space. Hong Kong produces around 13,500 tons of waste per day. There are three landfills in Hong Kong in operation. These three landfills will soon be exhausted in around 2020, and the solid waste in Hong Kong is still increasing. Out of the 13,500 tons of solid waste, 9,000 tons are organic solid waste or food waste. Food waste, especially domestic waste, is recyclable. The Independent Schools Foundation Academy has a project to collect domestic food waste (from the school cafeteria) for decomposition. Our school produces around 15 tons of food waste per year. The project includes a sub-project in the Primary school, which uses the organic soil produced by an aerobic food waste machine, the Rocket A900, to plant vegetables in school. This not only helps our school to process the waste, but also helps the Primary students to study agriculture and have greater opportunities for experimental learning. For this project, two types of machines will be used for food waste processing. Firstly, the Dehydra made by Tiny Planet reduces the volume and the mass of the food waste, by dehydrating the food waste and separating the ground food waste and the excessive water inside machine for further decomposition. Secondly, the A900 Rocket, also made by Tidy Planet; this is used to process the dehydrated ground food waste for around 14 days thereby producing usable organic soil. It grinds the food waste into tiny pieces so that it is easier to decompose. It also separates the wood chips inside the ground food waste. This machine runs an aerobic process, which includes O2 and will produce CO2 during the process and is less harmful to the environment. On the other hand, if it is an anaerobic process occurs during the operation, it will produce a greenhouse gas- CH4 -and smells bad.

  9. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  10. Bioprocessing of a stored mixed liquid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, J.H.; Rogers, R.D.; Finney, R.

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is an unique microbial strain which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for the processing of stored liquid scintillation wastes. During the past year a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSC). Based on data obtained from this demonstration, the Ohio EPA granted the Mound Applied Technologies Lab a treatability permit allowing the limited processing of actualmore » mixed waste. Since August 1994, the system has been successfully processing stored, {open_quotes}hot{close_quotes} LSC waste. The initial LSC waste fed into the system contained 11% pseudocumene and detectable quantities of plutonium. Another treated waste stream contained pseudocumene and tritium. Data from this initial work shows that the hazardous organic solvent, and pseudocumene have been removed due to processing, leaving the aqueous low level radioactive waste. Results to date have shown that living cells are not affected by the dissolved plutonium and that 95% of the plutonium was sorbed to the biomass. This paper discusses the bioprocess, rates of processing, effluent, and the implications of bioprocessing for mixed waste management.« less

  11. Sustainable solutions for solid waste management in Southeast Asian countries.

    PubMed

    Ngoc, Uyen Nguyen; Schnitzer, Hans

    2009-06-01

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  12. Verification of the Accountability Method as a Means to Classify Radioactive Wastes Processed Using THOR Fluidized Bed Steam Reforming at the Studsvik Processing Facility in Erwin, Tennessee, USA - 13087

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olander, Jonathan; Myers, Corey

    2013-07-01

    Studsviks' Processing Facility Erwin (SPFE) has been treating Low-Level Radioactive Waste using its patented THOR process for over 13 years. Studsvik has been mixing and processing wastes of the same waste classification but different chemical and isotopic characteristics for the full extent of this period as a general matter of operations. Studsvik utilizes the accountability method to track the movement of radionuclides from acceptance of waste, through processing, and finally in the classification of waste for disposal. Recently the NRC has proposed to revise the 1995 Branch Technical Position on Concentration Averaging and Encapsulation (1995 BTP on CA) with additionalmore » clarification (draft BTP on CA). The draft BTP on CA has paved the way for large scale blending of higher activity and lower activity waste to produce a single waste for the purpose of classification. With the onset of blending in the waste treatment industry, there is concern from the public and state regulators as to the robustness of the accountability method and the ability of processors to prevent the inclusion of hot spots in waste. To address these concerns and verify the accountability method as applied by the SPFE, as well as the SPFE's ability to control waste package classification, testing of actual waste packages was performed. Testing consisted of a comprehensive dose rate survey of a container of processed waste. Separately, the waste package was modeled chemically and radiologically. Comparing the observed and theoretical data demonstrated that actual dose rates were lower than, but consistent with, modeled dose rates. Moreover, the distribution of radioactivity confirms that the SPFE can produce a radiologically homogeneous waste form. The results of the study demonstrate: 1) the accountability method as applied by the SPFE is valid and produces expected results; 2) the SPFE can produce a radiologically homogeneous waste; and 3) the SPFE can effectively control the waste package classification. (authors)« less

  13. Identification of the bioactive compounds and antioxidant, antimutagenic and antimicrobial activities of thermally processed agro-industrial waste.

    PubMed

    Vodnar, Dan Cristian; Călinoiu, Lavinia Florina; Dulf, Francisc Vasile; Ştefănescu, Bianca Eugenia; Crişan, Gianina; Socaciu, Carmen

    2017-09-15

    The purpose of the research was to identify the bioactive compounds and to evaluate the antioxidant, antimutagenic and antimicrobial activities of the major Romanian agro-industrial wastes (apple peels, carrot pulp, white- and red-grape peels and red-beet peels and pulp) for the purpose of increasing the wastes' value. Each type of waste material was analyzed without (fresh) and with thermal processing (10min, 80°C). Based on the obtained results, the thermal process enhanced the total phenolic content. The highest antioxidant activity was exhibited by thermally processed red-grape waste followed by thermally processed red-beet waste. Linoleic acid was the major fatty acid in all analyzed samples, but its content decreased significantly during thermal processing. The carrot extracts have no antimicrobial effects, while the thermally processed red-grape waste has the highest antimicrobial effect against the studied strains. The thermally processed red-grape sample has the highest antimutagenic activity toward S. typhimurium TA98 and TA100. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Substrate Diffusion Heterogeneity Controls Bacterial Competition and Coexistence

    NASA Astrophysics Data System (ADS)

    Dechesne, A.; Or, D.; Smets, B. F.

    2005-12-01

    Diffusion has long been recognized as a key process affecting bacterial physiological functions ranging from nutrient uptake to removal of metabolic waste products. In the vadose zone, significant convective flows are limited and bacteria rely primarily on diffusion for nutrient supply. Even under relatively "wet" conditions (e.g. matric potentials -20 J/kg), soil water is fragmented and exists as thin liquid films or held in crevices imposing constraints on substrate diffusion. Our objective was to investigate the role of diffusion on soil microbial diversity, by focusing on one of the processes that shapes the structure of bacterial communities: competitive interactions. We used a simplified setup, in which the substrate (citrate) fluxes were controlled by different agar gels thicknesses and spatially heterogeneous diffusive pathways were created by an impermeable film with prescribed hole sizes and patterns. Our competition experiments involved two soil bacteria: Burkholderia xenovorans LB400 and Pseudomonas putida KT2440, which were tagged with different constitutive fluorescent markers, allowing for their on line microscopic detection. The growth parameters on citrate of these strains were thoroughly assessed. B. xenovorans LB400 is the weaker competitor. As a result, this strain was outcompeted by KT2440 under high substrate diffusivity and homogeneous conditions. Conversely, the disadvantage of the weakest competitor was not so marked under low substrate diffusivity condition. These results suggest that dry conditions in soil would provide conditions allowing the sustaining of weak bacterial competitors, resulting in the maintenance of high bacterial diversity.

  15. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings

    USGS Publications Warehouse

    Lowry, G.V.; Shaw, S.; Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings-New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit-were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having ???100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCl) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (???78%) of the mercury is present in the form of HgS. SB calcines also produced HgS colloids. The colloids generated from the SB waste rock were heterogeneous and varied in composition according to the column influent composition. ATEM and XAFS results indicate that Hg is entirely in the HgS form. Data from this study identify colloidal HgS as the dominant transported form of Hg from these mine waste materials.

  16. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom.

    PubMed

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. 40 CFR 412.12 - Effluent limitations attainable by the application of the best practicable control technology...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... effluent limitations representing the application of BPT: There shall be no discharge of process waste water pollutants to navigable waters. (b) Process waste pollutants in the overflow may be discharged to... waste water from a facility designed, constructed and operated to contain all process generated waste...

  18. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  19. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  20. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  1. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  2. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, Paul D.; Colombo, Peter

    1997-01-01

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogenous molten matrix. The molten matrix may be directed in a "clean" polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment.

  3. Metallurgical recovery of metals from electronic waste: a review.

    PubMed

    Cui, Jirang; Zhang, Lifeng

    2008-10-30

    Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the topic are presented. In addition, mechanisms and models of biosorption of precious metal ions from solutions are discussed.

  4. Bio-hydrogen production from tempeh and tofu processing wastes via fermentation process using microbial consortium: A mini-review

    NASA Astrophysics Data System (ADS)

    Rengga, Wara Dyah Pita; Wati, Diyah Saras; Siregar, Riska Yuliana; Wulandari, Ajeng Riswanti; Lestari, Adela Ayu; Chafidz, Achmad

    2017-03-01

    One of alternative energies that can replace fossil fuels is hydrogen. Hydrogen can be used to generate electricity and to power combustion engines for transportation. Bio-hydrogen produced from tempeh and tofu processing waste can be considered as a renewable energy. Bio-hydrogen produced from tempeh and tofu processing waste is beneficial because the waste of soybean straw and tofu processing waste is plentiful, cheap, renewable and biodegradable. Specification of tempeh and tofu processing waste were soybean straw and sludge of tofu processing. They contain carbohydrates (cellulose, hemicellulose, and lignin) and methane. This paper reviews the optimal condition to produce bio-hydrogen from tempeh and tofu processing waste. The production of bio-hydrogen used microbial consortium which were enriched from cracked cereals and mainly dominated by Clostridium butyricum and Clostridium roseum. The production process of bio-hydrogen from tempeh and tofu processing waste used acid pre-treatment with acid catalyzed hydrolysis to cleave the bond of hemicellulose and cellulose chains contained in biomass. The optimal production of bio-hydrogen has a yield of 6-6.8 mL/g at 35-60 °C, pH 5.5-7 in hydraulic retention time (HRT) less than 16 h. The production used a continuous system in an anaerobic digester. This condition can be used as a reference for the future research.

  5. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  6. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics)more » over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on “Processing technologies for high level waste, formulation of matrices and characterization of waste forms” (T21027), and specific task “Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles” (17208).« less

  7. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Gonnenthal; N. Spyoher

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THCmore » Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required to fully document and address the requirements of the TWPs.« less

  8. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Sonnenthale

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THCmore » seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required to fully document and address the requirements of the TWPs.« less

  9. Separation of non-ferrous metals from ASR by corona electrostatic separation

    NASA Astrophysics Data System (ADS)

    Kim, Yang-soo; Choi, Jin-Young; Jeon, Ho-Seok; Han, Oh-Hyung; Park, Chul-Hyun

    2016-04-01

    Automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, consists of polymers (plastics and rubber), metals (ferrous and non-ferrous), wood, glass and fluff (textile and fiber). ASR cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then largely deposited in land-fill sites as waste. Thus reducing a pollutant release before disposal, techniques that can improve the liberation of coated (or laminated) complexes and the recovery of valuable metals from the shredder residue are needed. ASR may be separated by a series of physical processing operations such as comminution, air, magnetic and electrostatic separations. The work deals with the characterization of the shredder residue coming from an industrial plant in korea and focuses on estimating the optimal conditions of corona electrostatic separation for improving the separation efficiency of valuable non-ferrous metals such as aluminum, copper and etc. From the results of test, the maximum separation achievable for non-ferrous metals using a corona electrostatic separation has been shown to be recovery of 92.5% at a grade of 75.8%. The recommended values of the process variables, particle size, electrode potential, drum speed, splitter position and relative humidity are -6mm, 50 kV, 35rpm, 20° and less 40%, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. GT-11-C-01-170-0)

  10. Plasma for environment

    NASA Astrophysics Data System (ADS)

    Van Oost, G.

    2017-11-01

    Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste, and to convert organic waste into energy or chemical substances as well as to destroy toxic organic compounds, and to vitrify radioactive waste in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.

  11. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    PubMed Central

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  12. Insights into metals in individual fine particles from municipal solid waste using synchrotron radiation-based micro-analytical techniques.

    PubMed

    Zhu, Yumin; Zhang, Hua; Shao, Liming; He, Pinjing

    2015-01-01

    Excessive inter-contamination with heavy metals hampers the application of biological treatment products derived from mixed or mechanically-sorted municipal solid waste (MSW). In this study, we investigated fine particles of <2mm, which are small fractions in MSW but constitute a significant component of the total heavy metal content, using bulk detection techniques. A total of 17 individual fine particles were evaluated using synchrotron radiation-based micro-X-ray fluorescence and micro-X-ray diffraction. We also discussed the association, speciation and source apportionment of heavy metals. Metals were found to exist in a diffuse distribution with heterogeneous intensities and intense hot-spots of <10 μm within the fine particles. Zn-Cu, Pb-Fe and Fe-Mn-Cr had significant correlations in terms of spatial distribution. The overlapped enrichment, spatial association, and the mineral phases of metals revealed the potential sources of fine particles from size-reduced waste fractions (such as scraps of organic wastes or ceramics) or from the importation of other particles. The diverse sources of heavy metal pollutants within the fine particles suggested that separate collection and treatment of the biodegradable waste fraction (such as food waste) is a preferable means of facilitating the beneficial utilization of the stabilized products. Copyright © 2014. Published by Elsevier B.V.

  13. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    PubMed

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  14. Copper removal by algal biomass: biosorbents characterization and equilibrium modelling.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Pinheiro, José P S; Domingos, Rute F; Boaventura, Rui A R

    2009-04-30

    The general principles of Cu(II) binding to algal waste from agar extraction, composite material and algae Gelidium, and different modelling approaches, are discussed. FTIR analyses provided a detailed description of the possible binding groups present in the biosorbents, as carboxylic groups (D-glucuronic and pyruvic acids), hydroxyl groups (cellulose, agar and floridean starch) and sulfonate groups (sulphated galactans). Potentiometric acid-base titrations showed a heterogeneous distribution of two major binding groups, carboxyl and hydroxyl, following the quasi-Gaussian affinity constant distribution suggested by Sips, which permitted to estimate the maximum amount of acid functional groups (0.36, 0.25 and 0.1 mmol g(-1)) and proton binding parameters (pK(H)=5.0, 5.3 and 4.4; m(H)=0.43, 0.37, 0.33), respectively for algae Gelidium, algal waste and composite material. A non-ideal, semi-empirical, thermodynamically consistent (NICCA) isotherm fitted better the experimental ion binding data for different pH values and copper concentrations, considering only the acid functional groups, than the discrete model. Values of pK(M) (3.2; 3.6 and 3.3), n(M) (0.98, 0.91, 1.0) and p (0.67, 0.53 and 0.43) were obtained, respectively for algae Gelidium, algal waste and composite material. NICCA model reflects the complex macromolecular systems that take part in biosorption considering the heterogeneity of the biosorbent, the competition between protons and metals ions to the binding sites and the stoichiometry for different ions.

  15. Multi-regime transport model for leaching behavior of heterogeneous porous materials.

    PubMed

    Sanchez, F; Massry, I W; Eighmy, T; Kosson, D S

    2003-01-01

    Utilization of secondary materials in civil engineering applications (e.g. as substitutes for natural aggregates or binder constituents) requires assessment of the physical and environment properties of the product. Environmental assessment often necessitates evaluation of the potential for constituent release through leaching. Currently most leaching models used to estimate long-term field performance assume that the species of concern is uniformly dispersed in a homogeneous porous material. However, waste materials are often comprised of distinct components such as coarse or fine aggregates in a cement concrete or waste encapsulated in a stabilized matrix. The specific objectives of the research presented here were to (1) develop a one-dimensional, multi-regime transport model (i.e. MRT model) to describe the release of species from heterogeneous porous materials and, (2) evaluate simple limit cases using the model for species when release is not dependent on pH. Two different idealized model systems were considered: (1) a porous material contaminated with the species of interest and containing inert aggregates and, (2) a porous material containing the contaminant of interest only in the aggregates. The effect of three factors on constituent release were examined: (1) volume fraction of material occupied by the aggregates compared to a homogeneous porous material, (2) aggregate size and, (3) differences in mass transfer rates between the binder and the aggregates. Simulation results confirmed that assuming homogeneous materials to evaluate the release of contaminants from porous waste materials may result in erroneous long-term field performance assessment.

  16. Evaluating the toxicity of food processing wastes as co-digestion substrates with dairy manure.

    PubMed

    Lisboa, Maria Sol; Lansing, Stephanie

    2014-07-01

    Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  18. Ni-MH spent batteries: a raw material to produce Ni-Co alloys.

    PubMed

    Lupi, Carla; Pilone, Daniela

    2002-01-01

    Ni-MH spent batteries are heterogeneous and complex materials, so any kind of metallurgical recovery process needs a mechanical pre-treatment at least to separate irony materials and recyclable plastic materials (like ABS) respectively, in order to get additional profit from this saleable scrap, as well as minimize waste arising from the braking separation process. Pyrometallurgical processing is not suitable to treat Ni-MH batteries mainly because of Rare Earths losses in the slag. On the other hand, the hydrometallurgical method, that offers better opportunities in terms of recovery yield and higher purity of Ni, Co, and RE, requires several process steps as shown in technical literature. The main problems during leach liquor purification are the removal of elements such as Mn, Zn, Cd, dissolved during the leaching step, and the separation of Ni from Co. In the present work, the latter problem is overcome by co-deposition of a Ni-35/40%w Co alloy of good quality. The experiments carried out in a laboratory scale pilot-plant show that a current efficiency higher than 91% can be reached in long duration electrowinning tests performed at 50 degrees C and 4.3 catholyte pH.

  19. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  20. Beyond the conventional understanding of water-rock reactivity

    NASA Astrophysics Data System (ADS)

    Fischer, Cornelius; Luttge, Andreas

    2017-01-01

    A common assumption is that water-rock reaction rates should converge to a mean value. There is, however, an emerging consensus on the genuine nature of reaction rate variations under identical chemical conditions. Thus, the further use of mean reaction rates for the prediction of material fluxes is environmentally and economically risky, manifest for example in the management of nuclear waste or the evolution of reservoir rocks. Surface-sensitive methods and resulting information about heterogeneous surface reactivity illustrate the inherent rate variability. Consequently, a statistical analysis was developed in order to quantify the heterogeneity of surface rates. We show how key components of the rate combine to give an overall rate and how the identification of those individual rate contributors provide mechanistic insight into complex heterogeneous reactions. This generates a paradigm change by proposing a new pathway to reaction model parameterization and for the prediction of reaction rates.

  1. PROCESSING ALTERNATIVES FOR DESTRUCTION OF TETRAPHENYLBORATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D; Thomas Peters, T; Samuel Fink, S

    Two processes were chosen in the 1980's at the Savannah River Site (SRS) to decontaminate the soluble High Level Waste (HLW). The In Tank Precipitation (ITP) process (1,2) was developed at SRS for the removal of radioactive cesium and actinides from the soluble HLW. Sodium tetraphenylborate was added to the waste to precipitate cesium and monosodium titanate (MST) was added to adsorb actinides, primarily uranium and plutonium. Two products of this process were a low activity waste stream and a concentrated organic stream containing cesium tetraphenylborate and actinides adsorbed on monosodium titanate (MST). A copper catalyzed acid hydrolysis process wasmore » built to process (3, 4) the Tank 48H cesium tetraphenylborate waste in the SRS's Defense Waste Processing Facility (DWPF). Operation of the DWPF would have resulted in the production of benzene for incineration in SRS's Consolidated Incineration Facility. This process was abandoned together with the ITP process in 1998 due to high benzene in ITP caused by decomposition of excess sodium tetraphenylborate. Processing in ITP resulted in the production of approximately 1.0 million liters of HLW. SRS has chosen a solvent extraction process combined with adsorption of the actinides to decontaminate the soluble HLW stream (5). However, the waste in Tank 48H is incompatible with existing waste processing facilities. As a result, a processing facility is needed to disposition the HLW in Tank 48H. This paper will describe the process for searching for processing options by SRS task teams for the disposition of the waste in Tank 48H. In addition, attempts to develop a caustic hydrolysis process for in tank destruction of tetraphenylborate will be presented. Lastly, the development of both a caustic and acidic copper catalyzed peroxide oxidation process will be discussed.« less

  2. Gneiss wastes as secondary raw material for the ceramic industry: an example from the Verbano Cusio Ossola district (Piedmont, north-western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Cavallo, Alessandro

    2015-04-01

    The Verbano Cusio Ossola province (VCO, Piedmont, north-western Italy) is one of the most important Italian quarrying districts, due to the peculiarity and variety of its exploited rock types, mainly orthogneisses such as Serizzo and Beola, and subordinately granites, marbles and other rocks. The most important and extensively exploited ornamental stone from the VCO province is surely the Serizzo, commercialized in four main varieties, and representing about 70% of all the stone production from the VCO area. The protholith of the Serizzo is a Permian granite - granodiorite metamorphosed during the alpine events, and the rock-forming minerals are mainly quartz, K-feldspar, plagioclase (andesine), biotite, with variable amounts of muscovite and epidote (allanite). The other important ornamental stone of the VCO province is the Beola, a series of heterogeneous materials (mainly orthogneisses) with marked (mylonitic) foliation and strong mineralogical lineation, occurring in the median Ossola Valley; its production (15% of the whole stones of the VCO) is subordinated with respect to that of Serizzo. The mineralogical composition of the Beola varieties is similar to Serizzo, consisting of quite homogeneous quartz, K-feldspar (orthoclase or microcline), plagioclase, biotite and muscovite. The main differences relate to the grain size, the rock fabric (generally mylonitic) and to the presence of accessory/secondary minerals. Recent regulatory developments and the growing environmental awareness, require an increasing reuse of wastes deriving from the extraction and processing of dimension stones (up to 50 % of the extracted gross volume). Granite wastes from the VCO (Baveno pink granite and Montorfano white granite), after specific industrial treatments (crushing, sieving, drying, magnetic separation of biotite and hornblende), are used successfully as quartz-feldspars mix in the ceramic industry, with very low FeOtot content. On the other hand, other quartzose-feldspathic rocks (i.e. Serizzo and Beola), are potential sources of secondary raw materials for the ceramic industry. To assess the feasibility of a reuse of these waste materials, an extensive sampling was performed on the main quarry dumps. The waste rocks were characterized by polarized light optical microscopy (OM) on thin sections, scanning electron microscopy (SEM), quantitative X-ray powder diffraction (XRD-QPA with the Rietveld method), electron microprobe (WDS and EDS) and whole-rock geochemistry (ICP-AES, ICP-MS and LECO®). The performed analyzes show a marked mineralogical and chemical heterogeneity (e.g. highly variable content of phyllosilicates, FeOtot content between 0.39 and 6.99 wt.%), as well as important textural and granulometric differences. On the other hand, the composition of feldspars is quite homogeneous, with the plagioclase ranging from almost pure albite to oligoclase (An 25 - 30%). Some varieties of Serizzo and Beola (Serizzo Sempione, Serizzo Formazza and Beola Bianca) are preferable because of their relatively low FeOtot content, but granulometric and textural factors should never be overlooked, as they have an important feedback in the efficiency and feasibility of the industrial treatments (e.g. magnetic separation). Specifically, some Beola varieties with particularly fine grain size and mylonitic texture, are poorly-suited to industrial ore treatments. On the contrary, the Serizzo varieties, although with a generally higher FeOtot content, have a coarser and homogeneous (and therefore preferable) grain size. Waste materials with different composition could be mixed properly until reaching the desired "ideal" compositions for the following industrial treatments. In any case, an accurate characterization of the waste materials from each of quarry dump is of fundamental importance.

  3. Waste processing building with incineration technology

    NASA Astrophysics Data System (ADS)

    Wasilah, Wasilah; Zaldi Suradin, Muh.

    2017-12-01

    In Indonesia, waste problem is one of major problem of the society in the city as part of their life dynamics. Based on Regional Medium Term Development Plan of South Sulawesi Province in 2013-2018, total volume and waste production from Makassar City, Maros, Gowa, and Takalar Regency estimates the garbage dump level 9,076.949 m3/person/day. Additionally, aim of this design is to present a recommendation on waste processing facility design that would accommodate waste processing process activity by incineration technology and supported by supporting activity such as place of education and research on waste, and the administration activity on waste processing facility. Implementation of incineration technology would reduce waste volume up to 90% followed by relative negative impact possibility. The result planning is in form of landscape layout that inspired from the observation analysis of satellite image line pattern of planning site and then created as a building site pattern. Consideration of building orientation conducted by wind analysis process and sun path by auto desk project Vasari software. The footprint designed by separate circulation system between waste management facility interest and the social visiting activity in order to minimize the croos and thus bring convenient to the building user. Building mass designed by inseparable connection series system, from the main building that located in the Northward, then connected to a centre visitor area lengthways, and walked to the waste processing area into the residue area in the Southward area.

  4. Recycling process for recovery of gallium from GaN an e-waste of LED industry through ball milling, annealing and leaching.

    PubMed

    Swain, Basudev; Mishra, Chinmayee; Kang, Leeseung; Park, Kyung-Soo; Lee, Chan Gi; Hong, Hyun Seon

    2015-04-01

    Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Pathways for Disposal of Commercially-Generated Tritiated Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Nancy V.

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste transportation, processing and disposal vary based a number of factors. In many cases, wastes with very low radioactivity are priced primarily based on weight or volume. For higher activities, costs are based on both volume and activity, with the activity-based charges usually being much larger than volume-based charges. Other factors affecting cost include location, waste classification and form, other hazards in the waste, etc. Costs may be based on general guidelines used by an individual disposal or processing site, but final costs are established by specific contract with each generator. For this report, seven hypothetical waste streams intended to represent commercially-generated tritiated waste were defined in order to calculate comparative costs. Ballpark costs for disposition of these hypothetical waste streams were calculated. These costs ranged from thousands to millions of dollars. Due to the complexity of the cost-determining factors mentioned above, the costs calculated in this report should be understood to represent very rough cost estimates for the various hypothetical wastes. Actual costs could be higher or could be lower due to quantity discounts or other factors.« less

  6. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (in Chin3se; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used inmore » petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.« less

  7. Biogasification of papaya processing wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, P.Y.; Weitzenhoff, M.H.; Moy, J.H.

    1984-01-01

    Biogasification of papaya processing wastes for pollution control and energy utilization is feasible. The biogasification process with sludge recycling permits smaller reactor volume without any deterioration of CH4 production rate and CH4 content. Appropriate design and operational criteria for biogasification processing of papaya wastes were developed.

  8. Review of potential processing techniques for the encapsulation of wastes in thermoplastic polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, B.R.; Lageraaen, P.R.; Kalb, P.D.

    1995-08-01

    Thermoplastic encapsulation has been extensively studied at Brookhaven National Laboratory`s (BNL) Environmental and Waste Technology Center (EWTC) as a waste encapsulation technology applicable to a wide range of waste types including radioactive, hazardous and mixed wastes. Encapsulation involves processing thermoplastic and waste materials into a waste form product by heating and mixing both materials into a homogeneous molten mixture. Cooling of the melt results in a solid monolithic waste form in which contaminants have been completely surrounded by a polymer matrix. Heating and mixing requirements for successful waste encapsulation can be met using proven technologies available in various types ofmore » commercial equipment. Processing techniques for thermoplastic materials, such as low density polyethylene (LDPE), are well established within the plastics industry. The majority of commercial polymer processing is accomplished using extruders, mixers or a combination of these technologies. Extruders and mixers are available in a broad range of designs and are used during the manufacture of consumer and commercial products as well as for compounding applications. Compounding which refers to mixing additives such as stabilizers and/or colorants with polymers, is analogous to thermoplastic encapsulation. Several processing technologies were investigated for their potential application in encapsulating residual sorbent waste in selected thermoplastic polymers, including single-screw extruders, twin-screw extruders, continuous mixers, batch mixers as well as other less conventional devices. Each was evaluated based on operational ease, quality control, waste handling capabilities as well as degree of waste pretreatment required. Based on literature review, this report provides a description of polymer processing technologies, a discussion of the merits and limitations of each and an evaluation of their applicability to the encapsulation of sorbent wastes.« less

  9. Sustainable solutions for solid waste management in Southeast Asian countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyen Nguyen Ngoc; Schnitzer, Hans

    2009-06-15

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will bemore » outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.« less

  10. Polyhydroxybutyrate (PHB) Synthesis by Spirulina sp. LEB 18 Using Biopolymer Extraction Waste.

    PubMed

    da Silva, Cleber Klasener; Costa, Jorge Alberto Vieira; de Morais, Michele Greque

    2018-01-20

    The reuse of waste as well as the production of biodegradable compounds has for years been the object of studies and of global interest as a way to reduce the environmental impact generated by unsustainable exploratory processes. The conversion of linear processes into cyclical processes has environmental and economic advantages, reducing waste deposition and reducing costs. The objective of this work was to use biopolymer extraction waste in the cultivation of Spirulina sp. LEB 18, for the cyclic process of polyhydroxybutyrate (PHB) synthesis. Concentrations of 10, 15, 20, 25, and 30% (v/v) of biopolymer extraction waste were tested. For comparison, two assays were used without addition of waste, Zarrouk (SZ) and modified Zarrouk (ZM), with reduction of nitrogen. The assays were carried out in triplicate and evaluated for the production of microalgal biomass and PHB. The tests with addition of waste presented a biomass production statistically equal to ZM (0.79 g L -1 ) (p < 0.1). The production of PHB in the assay containing 25% of waste was higher when compared to the other cultivations, obtaining 10.6% (w/w) of biopolymer. From the results obtained, it is affirmed that the use of PHB extraction waste in the microalgal cultivation, aiming at the synthesis of biopolymers, can occur in a cyclic process, reducing process costs and the deposition of waste, thus favoring the preservation of the environment.

  11. Spatial analysis of hazardous waste data using geostatistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zirschky, J.H.

    1984-01-01

    The objective of this investigation was to determine if geostatistics could be a useful tool for evaluating hazardous waste sites. Three sites contaminated by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) were investigated. The first site evaluated was a creek into which TCDD-contaminated soil had eroded. The second site was a town in which TCDD-contaminated wastes had been sprayed onto the streets. Finally, the third site was a highway of which the shoulders were contaminated by dust deposition from a nearby hazardous waste site. The distribution of TCDD at the first and third sites were investigated using kriging, an optimal estimation technique. By usingmore » kriging, the areas of both sites requiring cleanup were successfully identified. At the second site, the town, satisfactory results were not obtained. The distribution of contamination in this town is believed to be very heterogeneous; thus, reasonable estimates could not be obtained. Additional sampling was therefore recommended at this site. Based upon this research, geostatistics appears to be a very useful tool for evaluating a hazardous waste site if the distribution of contaminants at the site is homogeneous, or can be divided into homogeneous areas.« less

  12. Waste inspection tomography (WIT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardi, R.T.

    1996-12-31

    WIT is a self-sufficient mobile semitrailer for nondestructive evaluation and nondestructive assay of nuclear waste drums using x-ray and gamma-ray tomography. The recently completed Phase I included the design, fabrication, and initial testing of all WIT subsystems installed on-board the trailer. Initial test results include 2 MeV digital radiography, computed tomography, Anger camera imaging, single photon emission computed tomography, gamma-ray spectroscopy, collimated gamma scanning, and active and passive computed tomography using a 1.4 mCi source of {sup 166}Ho. These techniques were initially demonstrated on a 55-gallon phantom drum with 3 simulated waste matrices of combustibles, heterogeneous metals, and cement usingmore » check sources of gamma active isotopes such as {sup 137}Cs and {sup 133}Ba with 9-250 {mu}Ci activities. Waste matrix identification, isotopic identification, and attenuation-corrected gamma activity determination were demonstrated nondestructively and noninvasively in Phase I. Currently ongoing Phase II involves DOE site field test demonstrations at LLNL, RFETS, and INEL with real nuclear waste drums. Current WIT experience includes 55 gallon drums of cement, graphite, sludge, glass, metals, and combustibles. Thus far WIT has inspected drums with 0-20 gms of {sup 239}Pu.« less

  13. The production of chemicals from food processing wastes using a novel fermenter separator. Annual progress report, January 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, M.C.; Venkatesh, K.V.; Choi, H.

    The basic objective of this project is to convert waste streams from the food processing industry to usable fuels and chemicals using novel bioreactors. These bioreactors should allow economical utilization of waste (whey, waste sugars, waste starch, bottling wastes, candy wastes, molasses, and cellulosic wastes) by the production of ethanol, acetone/butanol, organic acids (acetic, lactic, and gluconic), yeast diacetyl flavor, and antifungal compounds. Continuous processes incorporating various processing improvements such as simultaneous product separation and immobilized cells are being developed to allow commercial scale utilization of waste stream. The production of ethanol by a continuous reactor-separator is the process closestmore » to commercialization with a 7,500 liter pilot plant presently sited at an Iowa site to convert whey lactose to ethanol. Accomplishments during 1993 include installation and start-up of a 7,500 liter ICRS for ethanol production at an industry site in Iowa; Donation and installation of a 200 liter yeast pilot Plant to the project from Kenyon Enterprises; Modeling and testing of a low energy system for recovery of ethanol from vapor is using a solvent absorption/extractive distillation system; Simultaneous saccharification/fermentation of raw corn grits and starch in a stirred reactor/separator; Testing of the ability of `koji` process to ferment raw corn grits in a `no-cook` process.« less

  14. Climate impact analysis of waste treatment scenarios--thermal treatment of commercial and pretreated waste versus landfilling in Austria.

    PubMed

    Ragossnig, A M; Wartha, C; Pomberger, R

    2009-11-01

    A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.

  15. Process Waste Assessment - Paint Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-06-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Paint Shop, Building 913, Room 130. Special attention is given to waste streams generated by the spray painting process because it requires a number of steps for preparing, priming, and painting an object. Also, the spray paint booth covers the largest area in R-130. The largest and most costly waste stream to dispose of is {open_quote}Paint Shop waste{close_quotes} -- a combination of paint cans, rags, sticks, filters, and paper containers. These items are compacted in 55-gallon drums and disposed of as solid hazardous waste. Recommendations are mademore » for minimizing waste in the Paint Shop. Paint Shop personnel are very aware of the need to minimize hazardous wastes and are continuously looking for opportunities to do so.« less

  16. Dangerous Waste Characteristics of Waste from Hanford Tank 241-S-109

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingey, Joel M.; Bryan, Garry H.; Deschane, Jaquetta R.

    2004-11-05

    Existing analytical data from samples taken from Hanford Tank 241-S-109, along with process knowledge of the wastes transferred to this tank, are reviewed to determine whether dangerous waste characteristics currently assigned to all waste in Hanford underground storage tanks are applicable to this tank waste. Supplemental technologies are examined to accelerate the Hanford tank waste cleanup mission and to accomplish the waste treatment in a safer and more efficient manner. The goals of supplemental technologies are to reduce costs, conserve double-shell tank space, and meet the scheduled tank waste processing completion date of 2028.

  17. Composition and process for the encapsulation and stabilization of radioactive hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1997-07-15

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  18. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1998-03-24

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a ``clean`` polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  19. Composition and process for the encapsulation and stabilization of radioactive, hazardous and mixed wastes

    DOEpatents

    Kalb, P.D.; Colombo, P.

    1999-07-20

    The present invention provides a composition and process for disposal of radioactive, hazardous and mixed wastes. The present invention preferably includes a process for multibarrier encapsulation of radioactive, hazardous and mixed wastes by combining substantially simultaneously dry waste powder, a non-biodegradable thermoplastic polymer and an anhydrous additive in an extruder to form a homogeneous molten matrix. The molten matrix may be directed in a clean'' polyethylene liner, allowed to cool, thus forming a monolithic waste form which provides a multibarrier to the dispersion of wastes into the environment. 2 figs.

  20. Dynamic waste management (DWM): towards an evolutionary decision-making approach.

    PubMed

    Rojo, Gabriel; Glaus, Mathias; Laforest, Valerie; Laforest, Valérie; Bourgois, Jacques; Bourgeois, Jacques; Hausler, Robert

    2013-12-01

    To guarantee sustainable and dynamic waste management, the dynamic waste management approach (DWM) suggests an evolutionary new approach that maintains a constant flow towards the most favourable waste treatment processes (facilities) within a system. To that end, DWM is based on the law of conservation of energy, which allows the balancing of a network, while considering the constraints of incoming (h1 ) and outgoing (h2 ) loads, as well as the distribution network (ΔH) characteristics. The developed approach lies on the identification of the prioritization index (PI) for waste generators (analogy to h1 ), a global allocation index for each of the treatment processes (analogy to h2 ) and the linear index load loss (ΔH) associated with waste transport. To demonstrate the scope of DWM, we outline this approach, and then present an example of its application. The case study shows that the variable monthly waste from the three considered sources is dynamically distributed in priority to the more favourable processes. Moreover, the reserve (stock) helps temporarily store waste in order to ease the global load of the network and favour a constant feeding of the treatment processes. The DWM approach serves as a decision-making tool by evaluating new waste treatment processes, as well as their location and new means of transport for waste.

  1. Evaluation and comparison of alternative designs for water/solid-waste processing systems for spacecraft

    NASA Technical Reports Server (NTRS)

    Spurlock, J. M.

    1975-01-01

    Promising candidate designs currently being considered for the management of spacecraft solid waste and waste-water materials were assessed. The candidate processes were: (1) the radioisotope thermal energy evaporation/incinerator process; (2) the dry incineration process; and (3) the wet oxidation process. The types of spacecraft waste materials that were included in the base-line computational input to the candidate systems were feces, urine residues, trash and waste-water concentrates. The performance characteristics and system requirements for each candidate process to handle this input and produce the specified acceptable output (i.e., potable water, a storable dry ash, and vapor phase products that can be handled by a spacecraft atmosphere control system) were estimated and compared. Recommendations are presented.

  2. Emissions model of waste treatment operations at the Idaho Chemical Processing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindler, R.E.

    1995-03-01

    An integrated model of the waste treatment systems at the Idaho Chemical Processing Plant (ICPP) was developed using a commercially-available process simulation software (ASPEN Plus) to calculate atmospheric emissions of hazardous chemicals for use in an application for an environmental permit to operate (PTO). The processes covered by the model are the Process Equipment Waste evaporator, High Level Liquid Waste evaporator, New Waste Calcining Facility and Liquid Effluent Treatment and Disposal facility. The processes are described along with the model and its assumptions. The model calculates emissions of NO{sub x}, CO, volatile acids, hazardous metals, and organic chemicals. Some calculatedmore » relative emissions are summarized and insights on building simulations are discussed.« less

  3. SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reigel, M.; Johnson, F.; Crawford, C.

    2011-09-20

    The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge canmore » be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the quenched glasses. However, the waste form failed to meet the vapor hydration test criteria listed in the WTP contract. In addition, the waste loading in the phosphate glasses were not as high as other candidate waste forms. Vitrification of HLW waste as borosilicate glass is a proven process; however the HLW and LAW streams at Hanford can vary significantly from waste currently being immobilized. The ccc glasses show lower release rates for B and Na than the quenched glasses and all glasses meet the acceptance criterion of < 4 g/L. Glass samples spiked with Re{sub 2}O{sub 7} also passed the PCT test. However, further vapor hydration testing must be performed since all the samples cracked and the test could not be performed. The waste loading of the iron phosphate and borosilicate glasses are approximately 20 and 25% respectively. The steam reforming process produced the predicted waste form for both the high and low aluminate waste streams. The predicted waste loadings for the monolithic samples is approximately 39%, which is higher than the glass waste forms; however, at the time of this report, no monolithic samples were made and therefore compliance with the PA cannot be determined. The waste loading in the geopolymer is approximately 40% but can vary with the sodium hydroxide content in the waste stream. Initial geopolymer mixes revealed compressive strengths that are greater than 500 psi for the low aluminate mixes and less than 500 psi for the high aluminate mixes. Further work testing needs to be performed to formulate a geopolymer waste form made using a high aluminate salt solution. A cementitious waste form has the advantage that the process is performed at ambient conditions and is a proven process currently in use for LAW disposal. The Saltstone/Cast Stone formulated using low and high aluminate salt solutions retained at least 97% of the Re that was added to the mix as a dopant. While this data is promising, additional leaching testing must be performed to show compliance with the PA. Compressive strength tests must also be performed on the Cast Stone monoliths to verify PA compliance. Based on testing performed for this report, the borosilicate glass and Cast Stone are the recommended waste forms for further testing. Both are proven technologies for radioactive waste disposal and the initial testing using simulated Hanford LAW waste shows compliance with the PA. Both are resistant to leaching and have greater than 25% waste loading.« less

  4. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  5. DWPF Safely Dispositioning Liquid Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-01-05

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  6. Aerospace vehicle water-waste management

    NASA Technical Reports Server (NTRS)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  7. Plasma Processing of Model Residential Solid Waste

    NASA Astrophysics Data System (ADS)

    Messerle, V. E.; Mossé, A. L.; Nikonchuk, A. N.; Ustimenko, A. B.; Baimuldin, R. V.

    2017-09-01

    The authors have tested the technology of processing of model residential solid waste. They have developed and created a pilot plasma unit based on a plasma chamber incinerator. The waste processing technology has been tested and prepared for commercialization.

  8. Transport of Sr 2+ and SrEDTA 2- in partially-saturated and heterogeneous sediments

    NASA Astrophysics Data System (ADS)

    Pace, M. N.; Mayes, M. A.; Jardine, P. M.; McKay, L. D.; Yin, X. L.; Mehlhorn, T. L.; Liu, Q.; Gürleyük, H.

    2007-05-01

    Strontium-90 has migrated deep into the unsaturated subsurface beneath leaking storage tanks in the Waste Management Areas (WMA) at the U.S. Department of Energy's (DOE) Hanford Reservation. Faster than expected transport of contaminants in the vadose zone is typically attributed to either physical hydrologic processes such as development of preferential flow pathways, or to geochemical processes such as the formation of stable, anionic complexes with organic chelates, e.g., ethylenediaminetetraacetic acid (EDTA). The goal of this paper is to determine whether hydrological processes in the Hanford sediments can influence the geochemistry of the system and hence control transport of Sr 2+ and SrEDTA 2-. The study used batch isotherms, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core. Isotherms and repacked column experiments suggested that the SrEDTA 2- complex was unstable in the presence of Hanford sediments, resulting in dissociation and transport of Sr 2+ as a divalent cation. A decrease in sorption with increasing solid:solution ratio for Sr 2+ and SrEDTA 2- suggested mineral dissolution resulted in competition for sorption sites and the formation of stable aqueous complexes. This was confirmed by detection of MgEDTA 2-, MnEDTA 2-, PbEDTA 2-, and unidentified Sr and Ca complexes. Displacement of Sr 2+ through a partially-saturated undisturbed core resulted in less retardation and more irreversible sorption than was observed in the saturated repacked columns, and model results suggested a significant reservoir (49%) of immobile water was present during transport through the heterogeneous layered sediments. The undisturbed core was subsequently disassembled along distinct bedding planes and subjected to sequential extractions. Strontium was unequally distributed between carbonates (49%), ion exchange sites (37%), and the oxide (14%) fraction. An inverse relationship between mass wetness and Sr suggested that sandy sediments of low water content constituted the immobile flow regime. Our results suggested that the sequestration of Sr 2+ in partially-saturated, heterogeneous sediments was most likely due to the formation of immobile water in drier regions having low hydraulic conductivities.

  9. Solid waste management practices in wet coffee processing industries of Gidabo watershed, Ethiopia.

    PubMed

    Ulsido, Mihret D; Li, Meng

    2016-07-01

    The financial and social contributions of coffee processing industries within most coffee export-based national economies like Ethiopia are generally high. The type and amount of waste produced and the waste management options adopted by these industries can have negative effects on the environment. This study investigated the solid waste management options adopted in wet coffee processing industries in the Gidabo watershed of Ethiopia. A field observation and assessment were made to identify whether the operational characteristics of the industries have any effect on the waste management options that were practiced. The investigation was conducted on 125 wet coffee processing industries about their solid waste handling techniques. Focus group discussion, structured questionnaires, key informant interview and transect walks are some of the tools employed during the investigation. Two major types of wastes, namely hull-bean-pulp blended solid waste and wastewater rich in dissolved and suspended solids were generated in the industries. Wet mills, on average, released 20.69% green coffee bean, 18.58% water and 60.74% pulp by weight. Even though these wastes are rich in organic matter and recyclables; the most favoured solid waste management options in the watershed were disposal (50.4%) and industrial or household composting (49.6%). Laxity and impulsive decision are the driving motives behind solid waste management in Gidabo watershed. Therefore, to reduce possible contamination of the environment, wastes generated during the processing of red coffee cherries, such as coffee wet mill solid wastes, should be handled properly and effectively through maximisation of their benefits with minimised losses. © The Author(s) 2016.

  10. Eliminating Medical Waste Liabilities Through Mobile Maceration and Disinfection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. A. Rankin; N. R. Soelberg; K. M. Klingler

    2006-02-01

    Commercial medical waste treatment technologies include incineration, melting, autoclaving, and chemical disinfection. Incineration disinfects, destroys the original nature of medical waste, and reduces the waste volume by converting organic waste content to carbon dioxide and water, leaving only residual inorganic ash. However, medical waste incinerator numbers have plummeted from almost 2,400 in 1995 to 115 in 2003 and to about 62 in 2005, due to negative public perception and escalating compliance costs associated with increasingly strict regulations. High-temperature electric melters have been designed and marketed as incinerator alternatives, but they are also costly and generally must comply with the samemore » incinerator emissions regulations and permitting requirements. Autoclave processes disinfect medical waste at much lower operating temperatures than incinerators operate at, but are sometimes subject to limitations such as waste segregration requirements to be effective. Med-Shred, Inc. has developed a patented mobile shredding and chemical disinfecting process for on-site medical waste treatment. Medical waste is treated on-site at customer facilities by shredding and disinfecting the waste. The treated waste can then be transported in compliance with Health Insurance Portability and Accountability Act of 1996 (HIPAA) requirements to a landfill for disposal as solid municipal waste. A team of Idaho National Laboratory engineers evaluated the treatment process design. The process effectiveness has been demonstrated in mycobacterium tests performed by Analytical Services Incorporated. A process description and the technical and performance evaluation results are presented in the paper. A treatment demonstration and microbiological disinfecting tests show that the processor functions as it was intended.« less

  11. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. Copyright © 2016. Published by Elsevier Ltd.

  12. The Subsurface Flow and Transport Laboratory: A New Department of Energy User's Facility for Intermediate-Scale Experimentation

    NASA Astrophysics Data System (ADS)

    Wietsma, T. W.; Oostrom, M.; Foster, N. S.

    2003-12-01

    Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

  13. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: Defense waste processing facility

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Wright, W. V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.

  14. RESULTS OF INITIAL AMMONIA OXIDATION TESTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.; Fowley, M.

    This memo presents an experimental survey of aqueous phase chemical processes to remove aqueous ammonia from waste process streams. Ammonia is generated in both the current Hanford waste flowsheet and in future waste processing. Much ammonia will be generated in the Low Activity Waste (LAW) melters.i Testing with simulants in glass melters at Catholic University has demonstrated the significant ammonia production.ii The primary reaction there is the reducing action of sugar on nitrate in the melter cold cap. Ammonia has been found to be a problem in secondary waste stabilization. Ammonia vapors are noxious and destruction of ammonia could reducemore » hazards to waste treatment process personnel. It is easily evolved especially when ammonia-bearing solutions are adjusted to high pH.« less

  15. Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research.

    PubMed

    Pavlovič, Irena; Knez, Željko; Škerget, Mojca

    2013-08-28

    Hydrothermal (HT) reactions of agricultural and food-processing waste have been proposed as an alternative to conventional waste treatment technologies due to allowing several improvements in terms of process performance and energy and economical advantages, especially due to their great ability to process high moisture content biomass waste without prior dewatering. Complex structures of wastes and unique properties of water at higher temperatures and pressures enable a variety of physical-chemical reactions and a wide spectra of products. This paper's aim is to give extensive information about the fundamentals and mechanisms of HT reactions and provide state of the research of agri-food waste HT conversion.

  16. Federal Register Notice for the Mining Waste Exclusion Final Rule, September 1, 1989

    EPA Pesticide Factsheets

    Final rule responding to a federal Appeals Court directive to narrow the exclusion of solid waste from the extraction, beneficiation, and processing of ores and minerals from regulation as hazardous waste as it applies to mineral processing wastes.

  17. 40 CFR 240.201-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... carcasses, automobile bodies, dewatered sludges from water treatment plants, and industrial process wastes. ... WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures... or excluded wastes inadvertently left at the facility should be considered in design. (b) Examples of...

  18. 40 CFR 761.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... leaching characteristics for storage or disposal. (a) Existing accumulations of non-liquid, non-metal PCB bulk product waste. (b) Non-liquid, non-metal PCB bulk product waste from processes that continuously generate new waste. (c) Non-liquid PCB remediation waste from processes that continuously generate new...

  19. 40 CFR 240.200-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... processing. These include: Certain bulky wastes (e.g., combustible demolition and construction debris, tree... WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.200-2 Recommended procedures: Design. (a) In addition to the residential and commercial wastes...

  20. Probabilistic Modeling of Settlement Risk at Land Disposal Facilities - 12304

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foye, Kevin C.; Soong, Te-Yang

    2012-07-01

    The long-term reliability of land disposal facility final cover systems - and therefore the overall waste containment - depends on the distortions imposed on these systems by differential settlement/subsidence. The evaluation of differential settlement is challenging because of the heterogeneity of the waste mass (caused by inconsistent compaction, void space distribution, debris-soil mix ratio, waste material stiffness, time-dependent primary compression of the fine-grained soil matrix, long-term creep settlement of the soil matrix and the debris, etc.) at most land disposal facilities. Deterministic approaches to long-term final cover settlement prediction are not able to capture the spatial variability in the wastemore » mass and sub-grade properties which control differential settlement. An alternative, probabilistic solution is to use random fields to model the waste and sub-grade properties. The modeling effort informs the design, construction, operation, and maintenance of land disposal facilities. A probabilistic method to establish design criteria for waste placement and compaction is introduced using the model. Random fields are ideally suited to problems of differential settlement modeling of highly heterogeneous foundations, such as waste. Random fields model the seemingly random spatial distribution of a design parameter, such as compressibility. When used for design, the use of these models prompts the need for probabilistic design criteria. It also allows for a statistical approach to waste placement acceptance criteria. An example design evaluation was performed, illustrating the use of the probabilistic differential settlement simulation methodology to assemble a design guidance chart. The purpose of this design evaluation is to enable the designer to select optimal initial combinations of design slopes and quality control acceptance criteria that yield an acceptable proportion of post-settlement slopes meeting some design minimum. For this specific example, relative density, which can be determined through field measurements, was selected as the field quality control parameter for waste placement. This technique can be extended to include a rigorous performance-based methodology using other parameters (void space criteria, debris-soil mix ratio, pre-loading, etc.). As shown in this example, each parameter range, or sets of parameter ranges can be selected such that they can result in an acceptable, long-term differential settlement according to the probabilistic model. The methodology can also be used to re-evaluate the long-term differential settlement behavior at closed land disposal facilities to identify, if any, problematic facilities so that remedial action (e.g., reinforcement of upper and intermediate waste layers) can be implemented. Considering the inherent spatial variability in waste and earth materials and the need for engineers to apply sound quantitative practices to engineering analysis, it is important to apply the available probabilistic techniques to problems of differential settlement. One such method to implement probability-based differential settlement analyses for the design of landfill final covers has been presented. The design evaluation technique presented is one tool to bridge the gap from deterministic practice to probabilistic practice. (authors)« less

  1. The utilization of leftover as acid catalyst to catalyse the transesterification and esterification reactions

    NASA Astrophysics Data System (ADS)

    Leung, K. K.; Yau, Y. H.

    2017-08-01

    Biodiesel (Fatty Acid Methyl Ester, FAME) is a green and renewable energy. It is carbon neutral and produces less air pollutants in combustion. In my project, the selected feedstock of biodiesel production is grease trap oil (GTO). It is extracted from restaurants, and needs pre-treatment. The triglycerides and free fatty acid (FFA) are the main components of GTO. Both triglycerides and free fatty acid can be converted to biodiesel (Fatty Acid Methyl Ester) by transesterification and esterification, through reaction with alcohol (methanol) and catalyst. In the processes, acidic catalyst is chosen to speed up the reactions. The catalyst used In the study, a heterogeneous solid acid is applied. It is waste cooked rice (WCR) collected from leftover. The WCR powder is pyrolysed in 400°C furnace 15 hours and blown with nitrogen gas (incomplete carbonization). The WCR black powder is then mixed with concentrated sulphuric acid and heat in 160°C furnace 15 hours and continuous blown with nitrogen gas (sulphonation). This heterogeneous solid acid is used in the both transesterification and esterification to produce FAME. Moreover, in the optimal reaction conditions, this catalyst offers a stable catalytic effect. After 20 times usage in optimal reaction condition, the catalytic activity remains unchanged.

  2. Waste-efficient materials procurement for construction projects: A structural equation modelling of critical success factors.

    PubMed

    Ajayi, Saheed O; Oyedele, Lukumon O

    2018-05-01

    Albeit the understanding that construction waste is caused by activities ranging from all stages of project delivery process, research efforts have been concentrated on design and construction stages, while the possibility of reducing waste through materials procurement process is widely neglected. This study aims at exploring and confirming strategies for achieving waste-efficient materials procurement in construction activities. The study employs sequential exploratory mixed method approach as its methodological framework, using focus group discussion, statistical analysis and structural equation modelling. The study suggests that for materials procurement to enhance waste minimisation in construction projects, the procurement process would be characterised by four features. These include suppliers' commitment to low waste measures, low waste purchase management, effective materials delivery management and waste-efficient Bill of Quantity, all of which have significant impacts on waste minimisation. This implies that commitment of materials suppliers to such measures as take back scheme and flexibility in supplying small materials quantity, among others, are expected of materials procurement. While low waste purchase management stipulates the need for such measures as reduced packaging and consideration of pre-assembled/pre-cut materials, efficient delivery management entails effective delivery and storage system as well as adequate protection of materials during the delivery process, among others. Waste-efficient specification and bill of quantity, on the other hand, requires accurate materials take-off and ordering of materials based on accurately prepared design documents and bill of quantity. Findings of this study could assist in understanding a set of measures that should be taken during materials procurement process, thereby corroborating waste management practices at other stages of project delivery process. Copyright © 2018. Published by Elsevier Ltd.

  3. Fly ash zeolite catalyst support for Fischer-Tropsch synthesis

    NASA Astrophysics Data System (ADS)

    Campen, Adam

    This dissertation research aimed at evaluating a fly ash zeolite (FAZ) catalyst support for use in heterogeneous catalytic processes. Gas phase Fischer-Tropsch Synthesis (FTS) over a fixed-bed of the prepared catalyst/FAZ support was identified as an appropriate process for evaluation, by comparison with commercial catalyst supports (silica, alumina, and 13X). Fly ash, obtained from the Wabash River Generating Station, was first characterized using XRD, SEM/EDS, particle size, and nitrogen sorption techniques. Then, a parametric study of a two-step alkali fusion/hydrothermal treatment process for converting fly ash to zeolite frameworks was performed by varying the alkali fusion agent, agent:flyash ratio, fusion temperature, fused ash/water solution, aging time, and crystallization time. The optimal conditions for each were determined to be NaOH, 1.4 g NaOH: 1 g fly ash, 550 °C, 200 g/L, 12 hours, and 48 hours. This robust process was applied to the fly ash to obtain a faujasitic zeolite structure with increased crystallinity (40 %) and surface area (434 m2/g). Following the modification of fly ash to FAZ, ion exchange of H+ for Na+ and cobalt incipient wetness impregnation were used to prepare a FTS catalyst. FTS was performed on the catalysts at 250--300 °C, 300 psi, and with a syngas ratio H2:CO = 2. The HFAZ catalyst support loaded with 11 wt% cobalt resulted in a 75 % carbon selectivity for C5 -- C18 hydrocarbons, while methane and carbon dioxide were limited to 13 and 1 %, respectively. Catalyst characterization was performed by XRD, N2 sorption, TPR, and oxygen pulse titration to provide insight to the behavior of each catalyst. Overall, the HFAZ compared well with silica and 13X supports, and far exceeded the performance of the alumina support under the tested conditions. The successful completion of this research could add value to an underutilized waste product of coal combustion, in the form of catalyst supports in heterogeneous catalytic processes.

  4. The role of frit in nuclear waste vitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J.D.; Smith, P.A.; Dorn, D.A.

    1994-04-01

    Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202)more » and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.« less

  5. UNSEDATED COMPUTED TOMOGRAPHY FOR DIAGNOSIS OF PELVIC CANAL OBSTRUCTION IN A LEOPARD GECKO (EUBLEPHARIS MACULARIUS).

    PubMed

    DeCourcy, Kelly; Hostnik, Eric T; Lorbach, Josh; Knoblaugh, Sue

    2016-12-01

    An adult leopard gecko ( Eublepharis macularius ) presented for lethargy, hyporexia, weight loss, decreased passage of waste, and a palpable caudal coelomic mass. Computed tomography showed a heterogeneous hyperattenuating (∼143 Hounsfield units) structure within the right caudal coelom. The distal colon-coprodeum lumen or urinary bladder was hypothesized as the most likely location for the heterogeneous structure. Medical support consisted of warm water and lubricant enema, as well as a heated environment. Medical intervention aided the passage of a plug comprised centrally of cholesterol and urates with peripheral stratified layers of fibrin, macrophages, heterophils, and bacteria. Within 24 hr, a follow-up computed tomography scan showed resolution of the pelvic canal plug.

  6. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.

    PubMed

    Murto, M; Björnsson, L; Mattiasson, B

    2004-02-01

    The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.

  7. HEPA Filter Disposal Write-Up 10/19/16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loll, C.

    Process knowledge (PK) collection on HEPA filters is handled via the same process as other waste streams at LLNL. The Field technician or Characterization point of contact creates an information gathering document (IGD) in the IGD database, with input provided from the generator, and submits it for electronic approval. This document is essentially a waste generation profile, detailing the physical, chemical as well as radiological characteristics, and hazards, of a waste stream. It will typically contain a general, but sometimes detailed, description of the work processes which generated the waste. It will contain PK as well as radiological and industrialmore » hygiene analytical swipe results, and any other analytical or other supporting knowledge related to characterization. The IGD goes through an electronic approval process to formalize the characterization and to ensure the waste has an appropriate disposal path. The waste generator is responsible for providing initial process knowledge information, and approves the IGD before it routed to chemical and radiological waste characterization professionals. This is the standard characterization process for LLNL-generated HEPA Filters.« less

  8. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Shuxiao; Wu, Qingru; Wang, Fengyang; Lin, Che-Jen; Zhang, Leiming; Hui, Mulin; Yang, Mei; Su, Haitao; Hao, Jiming

    2016-02-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, waste incinerators, biomass burning and so on. Mercury in coal, ores, and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of Hg0 to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g., TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher Hg0 fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron and/or steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.

  9. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wang, S. X.; Wu, Q. R.; Wang, F. Y.; Lin, C.-J.; Zhang, L. M.; Hui, M. L.; Hao, J. M.

    2015-11-01

    Mercury transformation mechanisms and speciation profiles are reviewed for mercury formed in and released from flue gases of coal-fired boilers, non-ferrous metal smelters, cement plants, iron and steel plants, municipal solid waste incinerators, and biomass burning. Mercury in coal, ores and other raw materials is released to flue gases in the form of Hg0 during combustion or smelting in boilers, kilns or furnaces. Decreasing temperature from over 800 °C to below 300 °C in flue gases leaving boilers, kilns or furnaces promotes homogeneous and heterogeneous oxidation of gaseous elemental mercury (Hg0) to gaseous divalent mercury (Hg2+), with a portion of Hg2+ adsorbed onto fly ash to form particulate-bound mercury (Hgp). Halogen is the primary oxidizer for Hg0 in flue gases, and active components (e.g.,TiO2, Fe2O3, etc.) on fly ash promote heterogeneous oxidation and adsorption processes. In addition to mercury removal, mercury transformation also occurs when passing through air pollution control devices (APCDs), affecting the mercury speciation in flue gases. In coal-fired power plants, selective catalytic reduction (SCR) system promotes mercury oxidation by 34-85 %, electrostatic precipitator (ESP) and fabric filter (FF) remove over 99 % of Hgp, and wet flue gas desulfurization system (WFGD) captures 60-95 % of Hg2+. In non-ferrous metal smelters, most Hg0 is converted to Hg2+ and removed in acid plants (APs). For cement clinker production, mercury cycling and operational conditions promote heterogeneous mercury oxidation and adsorption. The mercury speciation profiles in flue gases emitted to the atmosphere are determined by transformation mechanisms and mercury removal efficiencies by various APCDs. For all the sectors reviewed in this study, Hgp accounts for less than 5 % in flue gases. In China, mercury emission has a higher fraction (66-82 % of total mercury) in flue gases from coal combustion, in contrast to a greater Hg2+ fraction (29-90 %) from non-ferrous metal smelting, cement and iron/steel production. The higher Hg2+ fractions shown here than previous estimates may imply stronger local environmental impacts than previously thought, caused by mercury emissions in East Asia. Future research should focus on determining mercury speciation in flue gases from iron and steel plants, waste incineration and biomass burning, and on elucidating the mechanisms of mercury oxidation and adsorption in flue gases.

  10. Decide, design, and dewater de waste: A blueprint from Fitzpatrick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, D.E.

    1994-04-01

    Using a different process to clean concentrated waste tanks at the James A. FitzPatrick nuclear power plant in New York saved nearly half million dollars. The plan essentially allowed processing concentrator bottoms as waste sludge (solidification versus dewatering) that could still meet burial ground requirements. The process reduced the volume from 802.2 to 55 cubic feet. This resin throwaway system eliminated chemicals in the radwaste systems and was designed to ease pressure on the pradwaste processing system, reduce waste and improve plant chemistry. This article discusses general aspects of the process.

  11. Effects of biodrying process on municipal solid waste properties.

    PubMed

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk; Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk; Coleman, Terry, E-mail: terry.coleman@erm.com

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energymore » balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.« less

  13. Toward zero waste to landfill: an effective method for recycling zeolite waste from refinery industry

    NASA Astrophysics Data System (ADS)

    Homchuen, K.; Anuwattana, R.; Limphitakphong, N.; Chavalparit, O.

    2017-07-01

    One-third of landfill waste of refinery plant in Thailand was spent chloride zeolite, which wastes a huge of land, cost and time for handling. Toward zero waste to landfill, this study was aimed at determining an effective method for recycling zeolite waste by comparing the chemical process with the electrochemical process. To investigate the optimum conditions of both processes, concentration of chemical solution and reaction time were carried out for the former, while the latter varied in term of current density, initial pH of water, and reaction time. The results stated that regenerating zeolite waste from refinery industry in Thailand should be done through the chemical process with alkaline solution because it provided the best chloride adsorption efficiency with cost the least. A successful recycling will be beneficial not only in reducing the amount of landfill waste but also in reducing material and disposal costs and consumption of natural resources as well.

  14. Heterogeneous Catalysis: A Central Science for a Sustainable Future.

    PubMed

    Friend, Cynthia M; Xu, Bingjun

    2017-03-21

    Developing active, selective, and energy efficient heterogeneous catalytic processes is key to a sustainable future because heterogeneous catalysis is at the center of the chemicals and energy industries. The design, testing, and implementation of robust and selective heterogeneous catalytic processes based on insights from fundamental studies could have a tremendous positive impact on the world.

  15. In situ vitrification application to buried waste: Final report of intermediate field tests at Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callow, R.A.; Weidner, J.R.; Loehr, C.A.

    This report describes two in situ vitrification field tests conducted on simulated buried waste pits during June and July 1990 at the Idaho National Engineering Laboratory. In situ vitrification, an emerging technology for in place conversion of contaminated soils into a durable glass and crystalline waste form, is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to access the general suitability of the process to remediate waste structures representative of buried waste found at Idaho National Engineering Laboratory. In particular, these tests, as part of a treatability study, were designedmore » to provide essential information on the field performance of the process under conditions of significant combustible and metal wastes and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology successfully processed the high metal content waste. Test results indicate the process is a feasible technology for application to buried waste. 33 refs., 109 figs., 39 tabs.« less

  16. An assessment on the recycling opportunities of wastes emanating from scrap metal processing in Mauritius

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauthoor, Sumayya, E-mail: sumayya.mauthoor@umail.uom.ac.mu; Mohee, Romeela; Kowlesser, Prakash

    2014-10-15

    Highlights: • Scrap metal processing wastes. • Areas of applications for slag, electric arc furnace dust, mill scale and wastewater sludge. • Waste generation factor of 349.3 kg per ton of steel produced. • Waste management model. - Abstract: This paper presents an assessment on the wastes namely slag, dust, mill scale and sludge resulting from scrap metal processing. The aim of this study is to demonstrate that there are various ways via which scrap metal processing wastes can be reused or recycled in other applications instead of simply diverting them to the landfill. These wastes are briefly described andmore » an overview on the different areas of applications is presented. Based on the results obtained, the waste generation factor developed was 349.3 kg per ton of steel produced and it was reported that slag represents 72% of the total wastes emanating from the iron and steel industry in Mauritius. Finally the suitability of the different treatment and valorisation options in the context of Mauritius is examined.« less

  17. Recent development of anaerobic digestion processes for energy recovery from wastes.

    PubMed

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  18. DWPF Safely Dispositioning Liquid Waste

    ScienceCinema

    None

    2018-06-21

    The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.

  19. Benchmarking of DFLAW Solid Secondary Wastes and Processes with UK/Europe Counterparts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Elvie E.; Swanberg, David J.; Surman, J.

    This report provides information and background on UK solid wastes and waste processes that are similar to those which will be generated by the Direct-Feed Low Activity Waste (DFLAW) facilities at Hanford. The aim is to further improve the design case for stabilizing and immobilizing of solid secondary wastes, establish international benchmarking and review possibilities for innovation.

  20. Enhanced photocatalytic performance of CeO2-TiO2 nanocomposite for degradation of crystal violet dye and industrial waste effluent

    NASA Astrophysics Data System (ADS)

    Zahoor, Mehvish; Arshad, Amara; Khan, Yaqoob; Iqbal, Mazhar; Bajwa, Sadia Zafar; Soomro, Razium Ali; Ahmad, Ishaq; Butt, Faheem K.; Iqbal, M. Zubair; Wu, Aiguo; Khan, Waheed S.

    2018-03-01

    This study presents the synthesis of CeO2-TiO2 nanocomposite and its potential application for the visible light-driven photocatalytic degradation of model crystal violet dye as well as real industrial waste water. The ceria-titania (CeO2-TiO2) nanocomposite material was synthesised using facile hydrothermal route without the assistance of any template molecule. As-prepared composite was characterised by SEM, TEM, HRTEM, XRD, XPS for surface features, morphological and crystalline characters. The formed nanostructures were determined to possess crystal-like geometrical shape and average size less than 100 nm. The as-synthesised nanocomposite was further investigated for their heterogeneous photocatalytic potential against the oxidative degradation of CV dye taken as model pollutant. The photo-catalytic performance of the as-synthesised material was evaluated both under ultra-violet as well as visible light. Best photocatalytic performance was achieved under visible light with complete degradation (100%) exhibited within 60 min of irradiation time. The kinetics of the photocatalytic process were also considered and the reaction rate constant for CeO2-TiO2 nanocomposite was determined to be 0.0125 and 0.0662 min-1 for ultra-violet and visible region, respectively. In addition, the as-synthesised nanocomposite demonstrated promising results when considered for the photo-catalytic degradation of coloured industrial waste water collected from local textile industry situated in Faisalabad region of Pakistan. Enhanced photo-catalytic performance of CeO2-TiO2 nanocomposite was proposed owing to heterostructure formation leading to reduced electron-hole recombination.

  1. Impact of bimodal textural heterogeneity and connectivity on flow and transport through unsaturated mine waste rock

    NASA Astrophysics Data System (ADS)

    Appels, Willemijn M.; Ireson, Andrew M.; Barbour, S. Lee

    2018-02-01

    Mine waste rock dumps have highly variable flowpaths caused by contrasting textures and geometry of materials laid down during the 'plug dumping' process. Numerical experiments were conducted to investigate how these characteristics control unsaturated zone flow and transport. Hypothetical profiles of inner-lift structure were generated with multiple point statistics and populated with hydraulic parameters of a finer and coarser material. Early arrival of water and solutes at the bottom of the lifts was observed after spring snowmelt. The leaching efficiency, a measure of the proportion of a resident solute that is flushed out of the rock via infiltrating snowmelt or rainfall, was consistently high, but modified by the structure and texture of the lift. Under high rates of net percolation during snowmelt, preferential flow was generated in coarse textured part of the rock, and solutes in the fine textured parts of the rock remained stagnant. Under lower rates of net percolation during the summer and fall, finer materialswere flushed too, and the spatial variability of solute concentration in the lift was reduced. Layering of lifts leads to lower flow rates at depth, minimizing preferential flow and increased leaching of resident solutes. These findings highlight the limited role of large scale connected geometries on focusing flow and transport under dynamic surface net percolation conditions. As such, our findings agree with recent numerical results from soil studies with Gaussian connected geometries as well as recent experimental findings, emphasizing the dominant role of matrix flow and high leaching efficiency in large waste rock dumps.

  2. Critical review of real-time methods for solid waste characterisation: Informing material recovery and fuel production.

    PubMed

    Vrancken, C; Longhurst, P J; Wagland, S T

    2017-03-01

    Waste management processes generally represent a significant loss of material, energy and economic resources, so legislation and financial incentives are being implemented to improve the recovery of these valuable resources whilst reducing contamination levels. Material recovery and waste derived fuels are potentially valuable options being pursued by industry, using mechanical and biological processes incorporating sensor and sorting technologies developed and optimised for recycling plants. In its current state, waste management presents similarities to other industries that could improve their efficiencies using process analytical technology tools. Existing sensor technologies could be used to measure critical waste characteristics, providing data required by existing legislation, potentially aiding waste treatment processes and assisting stakeholders in decision making. Optical technologies offer the most flexible solution to gather real-time information applicable to each of the waste mechanical and biological treatment processes used by industry. In particular, combinations of optical sensors in the visible and the near-infrared range from 800nm to 2500nm of the spectrum, and different mathematical techniques, are able to provide material information and fuel properties with typical performance levels between 80% and 90%. These sensors not only could be used to aid waste processes, but to provide most waste quality indicators required by existing legislation, whilst offering better tools to the stakeholders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  4. Short-chain chlorinated paraffins in terrestrial bird species inhabiting an e-waste recycling site in South China.

    PubMed

    Luo, Xiao-Jun; Sun, Yu-Xin; Wu, Jiang-Ping; Chen, She-Jun; Mai, Bi-Xian

    2015-03-01

    Short-chain chlorinated paraffins (SCCPs) are under review by the Stockholm Convention on Persistent Organic Pollutants. Currently, limited data are available about SCCPs in terrestrial organisms. In the present study, SCCP concentration in the muscles of seven terrestrial bird species (n = 38) inhabiting an e-waste recycling area in South China was determined. This concentration varied from 620 to 17,000 ng/g lipid. Resident birds accumulated significantly higher SCCP concentrations than migratory birds (p < 0.01). Trophic magnification was observed for migratory bird species but not for resident, which was attributed to high heterogeneity of SCCP in e-waste area. Two different homologue group patterns were observed in avian samples. The first pattern was found in five bird species dominated by C10 and C11 congeners, while the second was found in the remains, which show rather equal abundance of homologue groups. This may be caused by two sources of SCCPs (local and e-waste) in the study area. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Plasma for environment

    NASA Astrophysics Data System (ADS)

    Van Oost, G.

    2017-12-01

    Human activity is associated with the permanent emergence of a very wide range of waste streams. The most widely used treatment of waste is thermal processing such as incineration. An alternative environmentally friendly process is based on thermal plasma technology which is a very flexible tool because it allows to operate in a wide temperature range with almost any chemical composition of waste and chemicals needed for processing this waste. It allows the conversion of organic waste into energy or chemical substances as well as the destruction of toxic organic compounds in a scenario that for each specific type of waste can be considered optimal, both in terms of energy efficiency and environmental safety.

  6. Cast Stone Formulation for Nuclear Waste Immobilization at Higher Sodium Concentrations

    DOE PAGES

    Fox, Kevin; Cozzi, Alex; Roberts, Kimberly; ...

    2014-11-01

    Low activity radioactive waste at U.S. Department of Energy sites can be immobilized for permanent disposal using cementitious waste forms. This study evaluated waste forms produced with simulated wastes at concentrations up to twice that of currently operating processes. The simulated materials were evaluated for their fresh properties, which determine processability, and cured properties, which determine waste form performance. The results show potential for greatly reducing the volume of material. Fresh properties were sufficient to allow for processing via current practices. Cured properties such as compressive strength meet disposal requirements. Leachability indices provide an indication of expected long-term performance.

  7. Model calibration and validation for OFMSW and sewage sludge co-digestion reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esposito, G., E-mail: giovanni.esposito@unicas.it; Frunzo, L., E-mail: luigi.frunzo@unina.it; Panico, A., E-mail: anpanico@unina.it

    2011-12-15

    Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Watermore » Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.« less

  8. Environmental, technical and technological aspects of hazardous waste management in Poland

    NASA Astrophysics Data System (ADS)

    Pyssa, Justyna

    2017-10-01

    The issue of recovery and disposal of hazardous waste is not a new concern. The waste comes from various processes and technologies and therefore the bigger emphasis should be placed on reducing quantities of generated hazardous waste (which is often connected with changes in the technology of manufacturing a given product) and limitation of their negative influence on natural environment. Plants specializing in waste processing processes should meet the so-called cardinal triad of conditions deciding on the full success of investment, and namely: economic effectiveness, ecological efficiency and social acceptance. The structure of generation of hazardous waste in EU-28 has been presented in the paper. Methods of hazardous waste disposal in Poland have been discussed. Economic and ecological criteria for the selection of technology of hazardous waste disposal have been analyzed. The influence of the hazardous waste on the environment is also presented. For four groups of waste, which are currently stored, alternative methods of disposal have been proposed.

  9. Waste valorization by biotechnological conversion into added value products.

    PubMed

    Liguori, Rossana; Amore, Antonella; Faraco, Vincenza

    2013-07-01

    Fossil fuel reserves depletion, global warming, unrelenting population growth, and costly and problematic waste recycling call for renewable resources of energy and consumer products. As an alternative to the 100 % oil economy, production processes based on biomass can be developed. Huge amounts of lignocellulosic wastes are yearly produced all around the world. They include agricultural residues, food farming wastes, "green-grocer's wastes," tree pruning residues, and organic and paper fraction of urban solid wastes. The common ways currently adopted for disposal of these wastes present environmental and economic disadvantages. As an alternative, processes for adding value to wastes producing high added products should be developed, that is the upgrading concept: adding value to wastes by production of a product with desired reproducible properties, having economic and ecological advantages. A wide range of high added value products, such as enzymes, biofuels, organic acids, biopolymers, bioelectricity, and molecules for food and pharmaceutical industries, can be obtained by upgrading solid wastes. The most recent advancements of their production by biotechnological processes are overviewed in this manuscript.

  10. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane

    NASA Astrophysics Data System (ADS)

    Ariono, D.; Khoiruddin; Subagjo; Wenten, I. G.

    2017-02-01

    Generally, commercially available ion-exchange membrane (IEM) can be classified into homogeneous and heterogeneous membranes. The classification is based on degree of heterogeneity in membrane structure. It is well known that the heterogeneity greatly affects the properties of IEM, such as conductivity, permselectivity, chemical and mechanical stability. The heterogeneity also influences ionic and electrical current transfer behavior of IEM-based processes during their operation. Therefore, understanding the role of heterogeneity in IEM properties is important to provide preliminary information on their operability and applicability. In this paper, the heterogeneity and its effect on IEM properties are reviewed. Some models for describing the heterogeneity of IEM and methods for characterizing the degree of heterogeneity are discussed. In addition, the influence of heterogeneity on the performance of IEM-based processes and their electrochemical behavior are described.

  11. Enforcement Alert: Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

    EPA Pesticide Factsheets

    This is the enforcement alert for Hazardous Waste Management Practices at Mineral Processing Facilities Under Scrutiny by U.S. EPA; EPA Clarifies 'Bevill Exclusion' Wastes and Establishes Disposal Standards

  12. Solid-phase zirconium and fluoride species in alkaline zircaloy cladding waste at Hanford.

    PubMed

    Reynolds, Jacob G; Huber, Heinz J; Cooke, Gary A; Pestovich, John A

    2014-08-15

    The United States Department of Energy Hanford Site, near Richland, Washington, USA, processed plutonium between 1944 and 1987. Fifty-six million gallons of waste of various origins remain, including waste from removing zircaloy fuel cladding using the so-called Zirflex process. The speciation of zirconium and fluoride in this waste is important because of the corrosivity and reactivity of fluoride as well as the (potentially) high density of Zr-phases. This study evaluates the solid-phase speciation of zirconium and fluoride using X-ray diffraction (XRD) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). Two waste samples were analyzed: one waste sample that is relatively pure zirconium cladding waste from tank 241-AW-105 and another that is a blend of zirconium cladding wastes and other high-level wastes from tank 241-C-104. Villiaumite (NaF) was found to be the dominant fluoride species in the cladding waste and natrophosphate (Na7F[PO4]2 · 19H2O) was the dominant species in the blended waste. Most zirconium was present as a sub-micron amorphous Na-Zr-O phase in the cladding waste and a Na-Al-Zr-O phase in the blended waste. Some zirconium was present in both tanks as either rounded or elongated crystalline needles of Na-bearing ZrO2 that are up to 200 μm in length. These results provide waste process planners the speciation data needed to develop disposal processes for this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Energy recovery from solid waste. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A systems analysis of energy recovery from solid waste which demonstrates the feasibility of several processes for converting solid waste to an energy form is presented. The social, legal, environmental, and political factors are considered and recommendations made in regard to legislation and policy. A technical and economic evaluation of available and developing energy-recovery processes is given with emphasis on thermal decomposition and biodegradation. A pyrolysis process is suggested. The use of prepared solid waste as a fuel supplemental to coal is considered to be the most economic process for recovery of energy from solid waste. Markets are discussed with suggestions for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste.

  14. Microbiological degradation of pesticides in yard waste composting.

    PubMed

    Fogarty, A M; Tuovinen, O H

    1991-06-01

    Changes in public opinion and legislation have led to the general recognition that solid waste treatment practices must be changed. Solid-waste disposal by landfill is becoming increasingly expensive and regulated and no longer represents a long-term option in view of limited land space and environmental problems. Yard waste, a significant component of municipal solid waste, has previously not been separated from the municipal solid-waste stream. The treatment of municipal solid waste including yard waste must urgently be addressed because disposal via landfill will be prohibited by legislation. Separation of yard waste from municipal solid waste will be mandated in many localities, thus stressing the importance of scrutinizing current composting practices in treating grass clippings, leaves, and other yard residues. Yard waste poses a potential environmental health problem as a result of the widespread use of pesticides in lawn and tree care and the persistence of the residues of these chemicals in plant tissue. Yard waste containing pesticides may present a problem due to the recalcitrant and toxic nature of the pesticide molecules. Current composting processes are based on various modifications of either window systems or in-vessel systems. Both types of processes are ultimately dependent on microbial bioconversions of organic material to innocuous end products. The critical stage of the composting process is the thermophilic phase. The fate and mechanism of removal of pesticides in composting processes is largely unknown and in need of comprehensive analysis.

  15. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)

  16. Organic Separation Test Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-09-22

    Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less

  17. Radionuclide and contaminant immobilization in the fluidized bed steam reforming waste products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Qafoku, Nikolla; Westsik, Joseph H.

    2012-05-01

    The goal of this chapter is to introduce the reader to the Fluidized Bed Steam Reforming (FBSR) process and resulting waste form. The first section of the chapter gives an overview of the potential need for FBSR processing in nuclear waste remediation followed by an overview of the engineering involved in the process itself. This is followed by a description of waste form production at a chemical level followed by a section describing different process streams that have undergone the FBSR process. The third section describes the resulting mineral product in terms of phases that are present and the abilitymore » of the waste form to encapsulate hazardous and radioactive wastes from several sources. Following this description is a presentation of the physical properties of the granular and monolith waste form product including and contaminant release mechanisms. The last section gives a brief summary of this chapter and includes a section on the strengths associated with this waste form and the needs for additional data and remaining questions yet to be answered. The reader is directed elsewhere for more information on other waste forms such as Cast Stone (Lockrem, 2005), Ceramicrete (Singh et al., 1997, Wagh et al., 1999) and geopolymers (Kyritsis et al., 2009; Russell et al., 2006).« less

  18. Liquid secondary waste: Waste form formulation and qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A. D.; Dixon, K. L.; Hill, K. A.

    The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, including Direct Feed Low Activity Waste (DFLAW) vitrification, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. The powdered salt waste form produced by the ETF will be replaced by a stabilized solidified waste form for disposal in Hanford’s Integrated Disposal Facility (IDF). Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilizationmore » Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the IDF. Waste form testing to support this plan is composed of work in the near term to provide data as input to a performance assessment (PA) for Hanford’s IDF. In 2015, three Hanford Liquid Secondary Waste simulants were developed based on existing and projected waste streams. Using these waste simulants, fourteen mixes of Hanford Liquid Secondary Waste were prepared and tested varying the waste simulant, the water-to-dry materials ratio, and the dry materials blend composition.1 In FY16, testing was performed using a simulant of the EMF process condensate blended with the caustic scrubber—from the Low Activity Waste (LAW) melter—, processed through the ETF. The initial EMF-16 simulant will be based on modeling efforts performed to determine the mass balance of the ETF for the DFLAW.2 The compressive strength of all of the mixes exceeded the target of 3.4 MPa (500 psi) to meet the requirements identified as potential IDF Waste Acceptance Criteria in Table 1 of the Secondary Liquid Waste Immobilization Technology Development Plan.3 The hydraulic properties of the waste forms tested (hydraulic conductivity and water characteristic curves) were comparable to the properties measured on the Savannah River Site (SRS) Saltstone waste form. Future testing should include efforts to first; 1) determine the rate and amount of ammonia released during each unit operation of the treatment process to determine if additional ammonia management is required, then; 2) reduce the ammonia content of the ETF concentrated brine prior to solidification, making the waste more amenable to grouting, or 3) manage the release of ammonia during production and ongoing release during storage of the waste form, or 4) develop a lower pH process/waste form thereby precluding ammonia release.« less

  19. Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: Controls of the spatial distribution of acid generating and neutralizing minerals.

    PubMed

    Pedretti, Daniele; Mayer, K Ulrich; Beckie, Roger D

    2017-06-01

    In mining environmental applications, it is important to assess water quality from waste rock piles (WRPs) and estimate the likelihood of acid rock drainage (ARD) over time. The mineralogical heterogeneity of WRPs is a source of uncertainty in this assessment, undermining the reliability of traditional bulk indicators used in the industry. We focused in this work on the bulk neutralizing potential ratio (NPR), which is defined as the ratio of the content of non-acid-generating minerals (typically reactive carbonates such as calcite) to the content of potentially acid-generating minerals (typically sulfides such as pyrite). We used a streamtube-based Monte-Carlo method to show why and to what extent bulk NPR can be a poor indicator of ARD occurrence. We simulated ensembles of WRPs identical in their geometry and bulk NPR, which only differed in their initial distribution of the acid generating and acid neutralizing minerals that control NPR. All models simulated the same principal acid-producing, acid-neutralizing and secondary mineral forming processes. We show that small differences in the distribution of local NPR values or the number of flow paths that generate acidity strongly influence drainage pH. The results indicate that the likelihood of ARD (epitomized by the probability of occurrence of pH<4 in a mixing boundary) within the first 100years can be as high as 75% for a NPR=2 and 40% for NPR=4. The latter is traditionally considered as a "universally safe" threshold to ensure non-acidic waters in practical applications. Our results suggest that new methods that explicitly account for mineralogical heterogeneity must be sought when computing effective (upscaled) NPR values at the scale of the piles. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. RECOVERY OF BY-PRODUCTS FROM ANIMAL WASTES: A LITERATURE REVIEW

    EPA Science Inventory

    The primary purpose of this report was to identify and summarize by-product-from-animal-wastes-recovery processes from the current literature. By-product recovery processes are distinguishable from wastes reuse and recycle processes by the formation of a chemically or physically ...

  1. New approach of depollution of solid chromium leather waste by the use of organic chelates: economical and environmental impacts.

    PubMed

    Malek, Ammar; Hachemi, Messaoud; Didier, Villemin

    2009-10-15

    Herein, we describe an original novel method which allows the decontamination of the chromium-containing leather wastes to simplify the recovery of its considerable protein fractions. Organic salts and acids such as potassium oxalate, potassium tartrate, acetic and citric acids were tested for their efficiency to separate the chromium from the leather waste. Our investigation is based on the research of the total reversibility of the tanning process, in order to decontaminate the waste without its previous degradation or digestion. The effect of several influential parameters on the treatment process was also studied. Therefore, the action of chemical agents used in decontamination process seems very interesting. The optimal yield of chromium extraction about 95% is obtained. The aim of the present study is to define a preliminary processing of solid leather waste with two main impacts: Removing with reusing chromium in the tanning process with simple, ecological and economic treatment process and potential valorization of the organic matrix of waste decontaminated.

  2. Recovery of metals and nonmetals from electronic waste by physical and chemical recycling processes.

    PubMed

    Kaya, Muammer

    2016-11-01

    This paper reviews the existing and state of art knowledge for electronic waste (e-waste) recycling. Electrical and/or electronic devices which are unwanted, broken or discarded by their original users are known as e-waste. The main purpose of this article is to provide a comprehensive review of e-waste problem, strategies of e-waste management and various physical, chemical and metallurgical e-waste recycling processes, their advantages and disadvantages towards achieving a cleaner process of waste utilization, with special attention towards extraction of both metallic values and nonmetallic substances. The hazards arise from the presence of heavy metals Hg, Cd, Pb, etc., brominated flame retardants (BFRs) and other potentially harmful substances in e-waste. Due to the presence of these substances, e-waste is generally considered as hazardous waste and, if improperly managed, may pose significant human and environmental health risks. This review describes the potential hazards and economic opportunities of e-waste. Firstly, an overview of e-waste/printed circuit board (PCB) components is given. Current status and future perspectives of e-waste/PCB recycling are described. E-waste characterization, dismantling methods, liberation and classification processes are also covered. Manual selective dismantling after desoldering and metal-nonmetal liberation at -150μm with two step crushing are seen to be the best techniques. After size reduction, mainly physical separation processes employing gravity, electrostatic, magnetic separators, froth floatation, etc. have been critically reviewed here for separation of metals and nonmetals, along with useful utilizations of the nonmetallic materials. The recovery of metals from e-waste material after physical separation through pyrometallurgical, hydrometallurgical or biohydrometallurgical routes is also discussed along with purification and refining. Suitable PCB recycling flowsheets for industrial applications are also given. It seems that hydrometallurgical route will be a key player in the base and precious metals recoveries from e-waste. E-waste recycling will be a very important sector in the near future from economic and environmental perspectives. Recycling technology aims to take today's waste and turn it into conflict-free, sustainable polymetallic secondary resources (i.e. Urban Mining) for tomorrow. Recycling technology must ensure that e-waste is processed in an environmentally friendly manner, with high efficiency and lowered carbon footprint, at a fraction of the costs involved with setting multibillion dollar smelting facilities. Taking into consideration our depleting natural resources, this Urban Mining approach offers quite a few benefits. This results in increased energy efficiency and lowers demand for mining of new raw materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Processing of palm oil mill wastes based on zero waste technology

    NASA Astrophysics Data System (ADS)

    Irvan

    2018-02-01

    Indonesia is currently the main producer of palm oil in the world with a total production reached 33.5 million tons per year. In the processing of fresh fruit bunches (FFB) besides producing palm oil and kernel oil, palm oil mills also produce liquid and solid wastes. The increase of palm oil production will be followed by an increase in the production of waste generated. It will give rise to major environmental issues especially the discharge of liquid waste to the rivers, the emission of methane from digestion pond and the incineration of empty fruit bunches (EFB). This paper describes a zero waste technology in processing palm oil mill waste after the milling process. The technology involves fermentation of palm oil mill effluent (POME) to biogas by using continuous stirred tank reactor (CSTR) in the presence of thermophilic microbes, producing activated liquid organic fertilizer (ALOF) from discharge of treated waste effluent from biogas digester, composting EFB by spraying ALOF on the EFB in the composter, and producing pellet or biochar from EFB by pyrolysis process. This concept can be considered as a promising technology for palm oil mills with the main objective of eliminating the effluent from their mills.

  4. Waste Generation Overview, Course 23263

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Live (COURSE 23263), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to-grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL. When you have completed this course, you will be able to recognize federal, state, and LANL environmental requirements and their impact on waste operations; recognize the importance of the cradle-to-grave waste management process; identifymore » the roles and responsibilities of key LANL waste management personnel (e.g., Waste Generator, Waste Management Coordinator, Waste Stream Profile approver, and Waste Certification Official); characterize a waste stream to determine whether it meets the definition of a hazardous waste, as well as characterize the use and minimum requirements for use of acceptable knowledge (AK) for waste characterization and waste compatibility documentation requirements; and identify the requirements for setting up and managing temporary waste accumulation areas.« less

  5. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.« less

  6. The French network of hydrogeological sites H+

    NASA Astrophysics Data System (ADS)

    Davy, P.; Le Borgne, T.; Bour, O.; Gautier, S.; Porel, G.; Bodin, J.; de Dreuzy, J.; Pezard, P.

    2008-12-01

    For groundwater issues (potential leakages in waste repository, aquifer management "), the development of modeling techniques is far ahead of the actual knowledge of aquifers. This raises two fundamental issues: 1) which and how much data are necessary to make predictions accurate enough for aquifer management issues; 2) which models remain relevant to describe the heterogeneity and complexity of geological systems. The French observatory H+ was created in 2002 with the twofold motivation of acquiring a large database for validating models of heterogeneous aquifers, and of surveying groundwater quality evolution in the context of environmental changes. H+ is a network of 4 sites (Ploemeur, Brittany, France; HES Poitiers, France; Cadarache, France; Campos, Mallorca, Spain) with different geological, climatic, and economic contexts. All of them are characterized by a highly heterogeneous structure (fractured crystalline basement for Ploemeur, karstified and fractured limestone for Poitiers, Cadarache and Mallorca), which is far to be taken into account by basic models. Ploemeur is exploited as a tap-water plant for a medium-size coastal city (15,000 inhabitants) for 20 years. Each site is developed for long term investigation and monitoring. They involves a dense network of boreholes, detailed geological and geophysical surveys, periodic campaigns and/or permanent measurements of groundwater flow, water chemistry, geophysical signals (including ground motions), climatic parameter, etc. Several large-scale flow experiments are scheduled per year to investigate the aquifer structure with combined geophysical, hydrogeological, and geochemical instruments. All this information is recorded in a database that has been developed to improve the sustainability and quality of data, and to be used as a collaborative tool for both site researchers and modelers. This project lasts now for 5 years. It is a short time to collect the amount of information necessary to apprehend the complexity of aquifers; but it is already enough to obtain a few important scientific results about the very nature of the flow heterogeneity, the origin and residence time of water elements, the kinetic of geochemical processes, etc. We have also developed new methods to investigate aquifers (in-situ flow measurements, flow experiment designs, groundwater dating, versatile in-situ probes, etc.). This experience aiming at building up long term knowledge appears extremely useful to address critical issues related to groundwater aquifers: the structure and occurrence of productive aquifer in crystalline basement, the assessment of aquifer protection area in the context of highly heterogeneous flow, the biochemical reactivity processes, the long term evolution of both water quantity and quality in the context of significant environmental changes, for instance.

  7. Impact of supplementation with amino acids or their metabolites on muscle wasting in patients with critical illness or other muscle wasting illness: a systematic review.

    PubMed

    Wandrag, L; Brett, S J; Frost, G; Hickson, M

    2015-08-01

    Muscle wasting during critical illness impairs recovery. Dietary strategies to minimise wasting include nutritional supplements, particularly essential amino acids. We reviewed the evidence on enteral supplementation with amino acids or their metabolites in the critically ill and in muscle wasting illness with similarities to critical illness, aiming to assess whether this intervention could limit muscle wasting in vulnerable patient groups. Citation databases, including MEDLINE, Web of Knowledge, EMBASE, the meta-register of controlled trials and the Cochrane Collaboration library, were searched for articles from 1950 to 2013. Search terms included 'critical illness', 'muscle wasting', 'amino acid supplementation', 'chronic obstructive pulmonary disease', 'chronic heart failure', 'sarcopenia' and 'disuse atrophy'. Reviews, observational studies, sport nutrition, intravenous supplementation and studies in children were excluded. One hundred and eighty studies were assessed for eligibility and 158 were excluded. Twenty-two studies were graded according to standardised criteria using the GRADE methodology: four in critical care populations, and 18 from other clinically relevant areas. Methodologies, interventions and outcome measures used were highly heterogeneous and meta-analysis was not appropriate. Methodology and quality of studies were too varied to draw any firm conclusion. Dietary manipulation with leucine enriched essential amino acids (EAA), β-hydroxy-β-methylbutyrate and creatine warrant further investigation in critical care; EAA has demonstrated improvements in body composition and nutritional status in other groups with muscle wasting illness. High-quality research is required in critical care before treatment recommendations can be made. © 2014 The British Dietetic Association Ltd.

  8. Coal Producer's Rubber Waste Processing Development

    NASA Astrophysics Data System (ADS)

    Makarevich, Evgeniya; Papin, Andrey; Nevedrov, Alexander; Cherkasova, Tatyana; Ignatova, Alla

    2017-11-01

    A large amount of rubber-containing waste, the bulk of which are worn automobile tires and conveyor belts, is produced at coal mining and coal processing enterprises using automobile tires, conveyor belts, etc. The volume of waste generated increases every year and reaches enormous proportions. The methods for processing rubber waste can be divided into three categories: grinding, pyrolysis (high and low temperature), and decomposition by means of chemical solvents. One of the known techniques of processing the worn-out tires is their regeneration, aimed at producing the new rubber substitute used in the production of rubber goods. However, the number of worn tires used for the production of regenerate does not exceed 20% of their total quantity. The new method for processing rubber waste through the pyrolysis process is considered in this article. Experimental data on the upgrading of the carbon residue of pyrolysis by the methods of heavy media separation, magnetic and vibroseparation, and thermal processing are presented.

  9. Hanford Low-Activity Waste Processing: Demonstration of the Off-Gas Recycle Flowsheet - 13443

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, William G.; Esparza, Brian P.

    2013-07-01

    Vitrification of Hanford Low-Activity Waste (LAW) is nominally the thermal conversion and incorporation of sodium salts and radionuclides into borosilicate glass. One key radionuclide present in LAW is technetium-99. Technetium-99 is a low energy, long-lived beta emitting radionuclide present in the waste feed in concentrations on the order of 1-10 ppm. The long half-life combined with a high solubility in groundwater results in technetium-99 having considerable impact on performance modeling (as potential release to the environment) of both the waste glass and associated secondary waste products. The current Hanford Tank Waste Treatment and Immobilization Plant (WTP) process flowsheet calls formore » the recycle of vitrification process off-gas condensates to maximize the portion of technetium ultimately immobilized in the waste glass. This is required as technetium acts as a semi-volatile specie, i.e. considerable loss of the radionuclide to the process off-gas stream can occur during the vitrification process. To test the process flowsheet assumptions, a prototypic off-gas system with recycle capability was added to a laboratory melter (on the order of 1/200 scale) and testing performed. Key test goals included determination of the process mass balance for technetium, a non-radioactive surrogate (rhenium), and other soluble species (sulfate, halides, etc.) which are concentrated by recycling off-gas condensates. The studies performed are the initial demonstrations of process recycle for this type of liquid-fed melter system. This paper describes the process recycle system, the waste feeds processed, and experimental results. Comparisons between data gathered using process recycle and previous single pass melter testing as well as mathematical modeling simulations are also provided. (authors)« less

  10. Development and validation of a building design waste reduction model.

    PubMed

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Method development and strategy for the characterization of complexly faulted and fractured rhyolitic tuffs, Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karasaki, K.; Galloway, D.

    1991-06-01

    The planned high-level nuclear waste repository at Yucca Mountain, Nevada, would exist in unsaturated, fractured welded tuff. One possible contaminant pathway to the accessible environment is transport by groundwater infiltrating to the water table and flowing through the saturated zone. Therefore, an effort to characterize the hydrology of the saturated zone is being undertaken in parallel with that of the unsaturated zone. As a part of the saturated zone investigation, there wells-UE-25c{number_sign}1, UE-25c{number_sign}2, and UE-25c{number_sign}3 (hereafter called the c-holes)-were drilled to study hydraulic and transport properties of rock formations underlying the planned waste repository. The location of the c-holes ismore » such that the formations penetrated in the unsaturated zone occur at similar depths and with similar thicknesses as at the planned repository site. In characterizing a highly heterogeneous flow system, several issues emerge. (1) The characterization strategy should allow for the virtual impossibility to enumerate and characterize all heterogeneities. (2) The methodology to characterize the heterogeneous flow system at the scale of the well tests needs to be established. (3) Tools need to be developed for scaling up the information obtained at the well-test scale to the larger scale of the site. In the present paper, the characterization strategy and the methods under development are discussed with the focus on the design and analysis of the field experiments at the c-holes.« less

  12. Biodecontamination of concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, R.D.

    1995-12-31

    This paper describes the development and results of a demonstration for a continuous bioprocess for mixed waste treatment. A key element of the process is a unique microbial strain, which tolerates high levels of aromatic solvents and surfactants. This microorganism is the biocatalysis of the continuous flow system designed for processing stored liquid scintillation wastes. During the past year, a process demonstration has been conducted on commercial formulation of liquid scintillation cocktails (LSQ). Based on data obtained from this demonstration, the Ohio Environmental Protection Agency granted the Mound Applied Technologies Laboratory a treatability permit allowing the limited processing of actualmore » mixed waste. Since August 1994, the system has been successfully processing stored {open_quotes}hot{close_quotes} LSC waste. This paper discusses the bioprocess, rates of processing, effluent, and implications of bioprocessing for mixed waste management.« less

  13. Waste disposal and households' heterogeneity. Identifying factors shaping attitudes towards source-separated recycling in Bogotá, Colombia.

    PubMed

    J Padilla, Alcides; Trujillo, Juan C

    2018-04-01

    Solid waste management in many cities of developing countries is not environmentally sustainable. People traditionally dispose of their solid waste in unsuitable urban areas like sidewalks and satellite dumpsites. This situation nowadays has become a serious public health problem in big Latin American conurbations. Among these densely-populated urban spaces, the Colombia's capital and main city stands out as a special case. In this study, we aim to identify the factors that shape the attitudes towards source-separated recycling among households in Bogotá. Using data from the Colombian Department of Statistics and Bogotá's multi-purpose survey, we estimated a multivariate Probit model. In general, our results show that the higher the household's socioeconomic class, the greater its effort for separating solid wastes. Likewise, our findings also allowed us to characterize household profiles regarding solid waste separation and considering each socioeconomic class. Among these profiles, we found that at lower socioeconomic classes, the attitudes towards solid waste separation are influenced by the use of Internet, the membership to an environmentalist organization, the level of education of the head of household and the homeownership. Hence, increasing the education levels within the poorest segment of the population, promoting affordable housing policies and facilitating Internet access for the vulnerable population could reinforce households' attitudes towards a greater source-separated recycling effort. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Economic evaluation of an electrochemical process for the recovery of metals from electronic waste.

    PubMed

    Diaz, Luis A; Lister, Tedd E

    2018-04-01

    As the market of electronic devices continues to evolve, the waste stream generated from antiquated technology is increasingly view as an alternative to substitute primary sources of critical a value metals. Nevertheless, the sustainable recovery of materials can only be achieved by environmentally friendly processes that are economically competitive with the extraction from mineral ores. Hence, This paper presents the techno-economic assessment for a comprehensive process for the recovery of metals and critical materials from e-waste, which is based in an electrochemical recovery (ER) technology. Economic comparison is performed with the treatment of e-waste via smelting, which is currently the primary route for recycling metals from electronics. Results indicate that the electrochemical recovery process is a competitive alternative for the recovery of value from electronic waste when compared with the traditional black Cu smelting process. A significantly lower capital investment, 2.9 kg e-waste per dollar of capital investment, can be achieved with the ER process vs. 1.3 kg per dollar in the black Cu smelting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 40 CFR 240.207-3 - Recommended procedures: Operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended... appearance. (b) Solid wastes that cannot be processed by the facility should be removed from the facility at...

  16. A review of the fate of engineered nanomaterials in municipal solid waste streams.

    PubMed

    Part, Florian; Berge, Nicole; Baran, Paweł; Stringfellow, Anne; Sun, Wenjie; Bartelt-Hunt, Shannon; Mitrano, Denise; Li, Liang; Hennebert, Pierre; Quicker, Peter; Bolyard, Stephanie C; Huber-Humer, Marion

    2018-05-01

    Significant knowledge and data gaps associated with the fate of product-embedded engineered nanomaterials (ENMs) in waste management processes exist that limit our current ability to develop appropriate end-of-life management strategies. This review paper was developed as part of the activities of the IWWG ENMs in Waste Task Group. The specific objectives of this review paper are to assess the current knowledge associated with the fate of ENMs in commonly used waste management processes, including key processes and mechanisms associated with ENM fate and transport in each waste management process, and to use that information to identify the data gaps and research needs in this area. Literature associated with the fate of ENMs in wastes was reviewed and summarized. Overall, results from this literature review indicate a need for continued research in this area. No work has been conducted to quantify ENMs present in discarded materials and an understanding of ENM release from consumer products under conditions representative of those found in relevant waste management process is needed. Results also indicate that significant knowledge gaps associated with ENM behaviour exist for each waste management process investigated. There is a need for additional research investigating the fate of different types of ENMs at larger concentration ranges with different surface chemistries. Understanding how changes in treatment process operation may influence ENM fate is also needed. A series of specific research questions associated with the fate of ENMs during the management of ENM-containing wastes have been identified and used to direct future research in this area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Alternative bioenergy through the utilization of Kappaphycus alvarezii waste as a substitution of substrate for biogas products

    NASA Astrophysics Data System (ADS)

    Yulita, R.; Agustono; Pujiastuti, D. Y.; Alamsjah, M. A.

    2018-04-01

    Biogas is one of the renewable energy resources which are able to be developed by providing some sufficient renewable substances and manufactured from the fermentation process of organic substances metabolized by anaerobic bacteria. In this research, Kappaphycus alvarezii seaweed waste from carrageenan processing and contents of rumen were used. This research aims to comprehend the carrageenan processing waste of macroalga K. alvarezii can be used as alternative source generating biogas. The research method is P0 (100 % of the contents of rumen), P1 (75 % of the contents of rumen and 25 % of seaweed waste), P2 (50 % of the contents of rumen and 50 % of seaweed waste), and P3 (25 % of the contents of rumen and 75 % of seaweed waste), and P4 (100 % of seaweed waste). The result showed that according to the quality determination of biogas based on SNI (Indonesia National Standard) 8019:2014, the K. alvarezii seaweed waste from carrageenan processing can be utilized as the alternative source of manufacturing biogas and got the methane gas resulted from the comparison method is P2 (50 % of the contents of rumen and 50 % of seaweed waste), with value of 58.61 %.

  18. Bio-processing of solid wastes and secondary resources for metal extraction - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less

  19. Pollution balance method and the demonstration of its application to minimizing waste in a biochemical process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilaly, A.K.; Sikdar, S.K.

    In this study, the authors introduced several modifications to the WAR (waste reduction) algorithm developed earlier. These modifications were made for systematically handling sensitivity analysis and various tasks of waste minimization. A design hierarchy was formulated to promote appropriate waste reduction tasks at designated levels of the hierarchy. A sensitivity coefficient was used to measure the relative impacts of process variables on the pollution index of a process. The use of the WAR algorithm was demonstrated by a fermentation process for making penicillin.

  20. Contamination and restoration of groundwater aquifers.

    PubMed Central

    Piver, W T

    1993-01-01

    Humans are exposed to chemicals in contaminated groundwaters that are used as sources of drinking water. Chemicals contaminate groundwater resources as a result of waste disposal methods for toxic chemicals, overuse of agricultural chemicals, and leakage of chemicals into the subsurface from buried tanks used to hold fluid chemicals and fuels. In the process, both the solid portions of the subsurface and the groundwaters that flow through these porous structures have become contaminated. Restoring these aquifers and minimizing human exposure to the parent chemicals and their degradation products will require the identification of suitable biomarkers of human exposure; better understandings of how exposure can be related to disease outcome; better understandings of mechanisms of transport of pollutants in the heterogeneous structures of the subsurface; and field testing and evaluation of methods proposed to restore and cleanup contaminated aquifers. In this review, progress in these many different but related activities is presented. PMID:8354172

  1. 40 CFR 436.31 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... deposits. (e) The term “process generated waste water” shall mean any waste water used in the slurry... rainfall and ground water seepage. However, if a mine is also used for treatment of process generated waste... waste water. (c) The term “10-year 24-hour precipitation event” shall mean the maximum 24 hour...

  2. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 2. APPENDICES

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  3. WOOD PRODUCTS IN THE WASTE STREAM: CHARACTERIZATION AND COMBUSTION EMISSIONS - VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of a study of technical, public policy, and regulatory issues that affect the processing and combustion of waste wood for fuel. (NOTE: Waste wood is wood that is separated from a solid-waste stream, processed into a uniform-sized product, and reused for o...

  4. 40 CFR 63.1094 - What waste streams are exempt from the requirements of this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... section are exempt from this subpart. (a) Waste in the form of gases or vapors that is emitted from process fluids. (b) Waste that is contained in a segregated storm water sewer system. Waste Requirements ...

  5. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less

  6. Clinical laboratory waste management in Shiraz, Iran.

    PubMed

    Askarian, Mehrdad; Motazedian, Nasrin; Palenik, Charles John

    2012-06-01

    Clinical laboratories are significant generators of infectious waste, including microbiological materials, contaminated sharps, and pathologic wastes such as blood specimens and blood products. Most waste produced in laboratories can be disposed of in the general solid waste stream. However, improper management of infectious waste, including mixing general wastes with infectious wastes and improper handling or storage, could lead to disease transmission. The aim of this study was to assess waste management processes used at clinical laboratories in Shiraz, Iran. One hundred and nine clinical laboratories participated In this cross sectional study, Data collection was by questionnaire and direct observation. Of the total amount of waste generated, 52% (by weight) was noninfectious domestic waste, 43% was non-sharps infectious waste and 5% consisted of sharps. There was no significant relationship between laboratory staff or manager education and the score for quality of waste collection and disposal at clinical laboratories. Improvements in infectious waste management processes should involve clearer, more uniformly accepted definitions of infectious waste and increased staff training.

  7. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    PubMed Central

    2017-01-01

    Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications. PMID:29134148

  8. Incineration, pyrolysis and gasification of electronic waste

    NASA Astrophysics Data System (ADS)

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2017-11-01

    Three high temperature processes of the electronic waste processing: smelting/incineration, pyrolysis and gasification were shortly discussed. The most distinctive feature of electronic waste is complexity of components and their integration. This type of waste consists of polymeric materials and has high content of valuable metals that could be recovered. The purpose of thermal treatment of electronic waste is elimination of plastic components (especially epoxy resins) while leaving non-volatile mineral and metallic phases in more or less original forms. Additionally, the gaseous product of the process after cleaning may be used for energy recovery or as syngas.

  9. Characterisation and classification of solid wastes coming from reductive acid leaching of low-grade manganiferous ore.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Olivieri, Agostino; Vegliò, Francesco

    2009-03-15

    The present work was focused on the acid leaching process for manganese extraction in reducing environment to low-grade manganiferous ore that comes from Central Italy. The aim of this study was to establish optimum leaching operating conditions to reduce treatment costs of waste or, even better, to allow a waste valorisation as raw materials for other applications. Consequently, the main focus of the work was the characterization and classification of the solid wastes coming from the process carried out at different operating conditions; at the same moment the effect of process parameters on Mn extraction was also analysed. The effect of particles size on the manganese extraction in reductive acid leaching process was investigated, by using lactose as reducing agent. Particle size did not show a large influence on the Mn extraction yields in the investigated process conditions. This aspect suggests the use of the leaching waste for civil and/or environmental application: use of leaching solid wastes like filling material is to be applied, for example, for environmental restoration. The classification of the solid wastes, according to the Italian Laws about Release Test (RT), has demonstrated that the solid waste produced by leaching can be classifiable as "hazardous special waste". An improvement of solid washing let to reduce the SO(4)(2-) and an appropriate treatment is necessary to reduce the dangerousness of these solids. Possible application of ore and waste as raw materials in the ceramic industry was demonstrated not to be feasible.

  10. Achieving continuous manufacturing for final dosage formation: challenges and how to meet them. May 20-21, 2014 Continuous Manufacturing Symposium.

    PubMed

    Byrn, Stephen; Futran, Maricio; Thomas, Hayden; Jayjock, Eric; Maron, Nicola; Meyer, Robert F; Myerson, Allan S; Thien, Michael P; Trout, Bernhardt L

    2015-03-01

    We describe the key issues and possibilities for continuous final dosage formation, otherwise known as downstream processing or drug product manufacturing. A distinction is made between heterogeneous processing and homogeneous processing, the latter of which is expected to add more value to continuous manufacturing. We also give the key motivations for moving to continuous manufacturing, some of the exciting new technologies, and the barriers to implementation of continuous manufacturing. Continuous processing of heterogeneous blends is the natural first step in converting existing batch processes to continuous. In heterogeneous processing, there are discrete particles that can segregate, versus in homogeneous processing, components are blended and homogenized such that they do not segregate. Heterogeneous processing can incorporate technologies that are closer to existing technologies, where homogeneous processing necessitates the development and incorporation of new technologies. Homogeneous processing has the greatest potential for reaping the full rewards of continuous manufacturing, but it takes long-term vision and a more significant change in process development than heterogeneous processing. Heterogeneous processing has the detriment that, as the technologies are adopted rather than developed, there is a strong tendency to incorporate correction steps, what we call below "The Rube Goldberg Problem." Thus, although heterogeneous processing will likely play a major role in the near-term transformation of heterogeneous to continuous processing, it is expected that homogeneous processing is the next step that will follow. Specific action items for industry leaders are: Form precompetitive partnerships, including industry (pharmaceutical companies and equipment manufacturers), government, and universities. These precompetitive partnerships would develop case studies of continuous manufacturing and ideally perform joint-technology development, including development of small-scale equipment and processes. Develop ways to invest internally in continuous manufacturing. How best to do this will depend on the specifics of a given organization, in particular the current development projects. Upper managers will need to energize their process developers to incorporate continuous manufacturing in at least part of their processes to gain experience and demonstrate directly the benefits. Training of continuous manufacturing technologies, organizational approaches, and regulatory approaches is a key area that industrial leaders should pursue together. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Sol-gel (template) synthesis of macroporous Mo-based catalysts for hydrothermal oxidation of radionuclide-organic complexes

    NASA Astrophysics Data System (ADS)

    Papynov, E. K.; Palamarchuk, M. S.; Mayorov, V. Yu; Modin, E. B.; Portnyagin, A. S.; Sokol'nitskaya, T. A.; Belov, A. A.; Tananaev, I. G.; Avramenko, V. A.

    2017-07-01

    Molybdenum compounds are industrially demanding as heterogeneous catalysts for oxidation of various organic substances. Highly porous structure of molybdenum-containing catalysts avoids surface's colmatation and prevents blocking catalytic sites that makes these materials play a key role in processes of hydrothermal oxidation of radionuclide organic complexes. The study presents an original way of sol-gel synthesis of new macroporous molybdenum compounds using ;core-shell; colloid template (polymer latex) as poreforming agent. We have described three individual routs of template removal via thermal decomposition to obtain porous materials based on molybdenum compounds. Thermal treatment conditions (temperature, gaseous atmosphere) have been studied with respect to their influence on composition, structure and catalytic properties of synthesized molybdenum systems. The optimal way to synthesis of crystal molybdenum (VI) oxide with ordered porous structure (mean pore size 100-160 nm) has been suggested. Catalytic properties of macroporous molybdenum materials have been investigated in the process of liquid phase and hydrothermal oxidation of such organic substances thiazine and stable Co-EDTA complex. It was shown that macroporous molybdenum oxides could be applied as prospective catalysts for hydrothermal oxidation of organic radionuclide complexes during the processing of radioactive waste.

  12. Dissolution Behaviour of Metal Elements from Several Types of E-waste Using Leaching Test

    NASA Astrophysics Data System (ADS)

    Nor, Nik Hisyamudin Muhd; Amira Nordin, Nurul; Mohamad, Fariza; Jaibee, Shafizan; Ismail, Al Emran; Omar, Badrul; Fauzi Ahmad, Mohd; Rahim, Abd Khalil Abd; Kamaruddin, Muhamad Khalif Ikhwan Mohd; Turan, Faiz Mohd; Abu Bakar, Elmi; Yokoyama, Seiji

    2017-08-01

    Rapid development of the electrical and electronic was increasing annually due to the demand by the human being. Increasing production of electrical and electronic product led to the increasing of electric and electronic waste or can be called as the e-waste. The UN Environment Programme estimates that the world generates 20-50 million tons of the e-waste each year and the amount is raising three times faster than other forms of municipal waste. This study is focusing on the investigation of the dissolution behaviour of metal element from several types of e-waste by hydrometallurgical process. Leaching test was conducted on the e-waste by using acid as the reagent solution. Prior to the leaching test, manual dismantling, separation, and crushing process were carried out to the e-waste. The e-waste were characterized by Scanning Electron Microcopy (SEM) and the Energy Dispersive X-ray Spectroscopy (EDX) to define the elements inside the sample of e-waste. While the liquid residue from leaching test was analyzed by using Inductively Couple Plasma-Mass Spectrometer (ICP-MS) to define the dissolution behaviour of the metal element that contain in the e-waste. It was found that the longest time for dismantling process was the dismantling of laptop. The dissolution behaviour of Fe, Al, Zn and Pb elements in the e-waste has affected to the increase of pH. The increasing pH led to the reduction of the metals element during leaching process.

  13. Bio-processing of solid wastes and secondary resources for metal extraction - A review.

    PubMed

    Lee, Jae-Chun; Pandey, Banshi Dhar

    2012-01-01

    Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Potential application of biodrying to treat solid waste

    NASA Astrophysics Data System (ADS)

    Zaman, Badrus; Oktiawan, Wiharyanto; Hadiwidodo, Mochtar; Sutrisno, Endro; Purwono; Wardana, Irawan Wisnu

    2018-02-01

    The generation of solid waste around the world creates problems if not properly managed. The method of processing solid waste by burning or landfill is currently not optimal. The availability of land where the final processing (TPA) is critical, looking for a new TPA alternative will be difficult and expensive, especially in big cities. The processing of solid waste using bio drying technology has the potential to produce renewable energy and prevention of climate change. Solid waste processing products can serve as Refuse Derived Fuel (RDF), reduce water content of solid waste, meningkatkan kualitas lindi and increase the amount of recycled solid waste that is not completely separated from home. Biodrying technology is capable of enhancing the partial disintegration and hydrolysis of macromolecule organic compounds (such as C-Organic, cellulose, hemicellulose, lignin, total nitrogen). The application of biodrying has the potential to reduce greenhouse gas emissions such as carbon dioxide (CO2), methane (CH4), and dinitrooksida (N2O). These gases cause global warming.

  15. Solid-state fermentation and composting as alternatives to treat hair waste: A life-cycle assessment comparative approach.

    PubMed

    Catalán, Eva; Komilis, Dimitrios; Sánchez, Antoni

    2017-07-01

    One of the wastes associated with leather production in tannery industries is the hair residue generated during the dehairing process. Hair wastes are mainly dumped or managed through composting but recent studies propose the treatment of hair wastes through solid-state fermentation (SSF) to obtain proteases and compost. These enzymes are suitable for its use in an enzymatic dehairing process, as an alternative to the current chemical dehairing process. In the present work, two different scenarios for the valorization of the hair waste are proposed and assessed by means of life-cycle assessment: composting and SSF for protease production. Detailed data on hair waste composting and on SSF protease production are gathered from previous studies performed by our research group and from a literature survey. Background inventory data are mainly based on Ecoinvent version 3 from software SimaPro® 8. The main aim of this study was to identify which process results in the highest environmental impact. The SSF process was found to have lower environmental impacts than composting, due to the fact that the enzyme use in the dehairing process prevents the use of chemicals traditionally used in the dehairing process. This permits to reformulate an industrial process from the classical approach of waste management to a novel alternative based on circular economy.

  16. Petroleum Processing Wastes.

    ERIC Educational Resources Information Center

    Baker, D. A.

    1978-01-01

    Presents a literature review of the petroleum processing wastes, covering publications of 1977. This review covers studies such as the use of activated carbon in petroleum and petrochemical waste treatment. A list of 15 references is also presented. (HM)

  17. RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Burket, P.; Cozzi, A.

    2012-02-02

    The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in themore » time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.« less

  18. Radwaste desk reference - Volume 3, Part 2: Liquid waste management. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deltete, D.; Fisher, S.; Kelly, J.J.

    1994-05-01

    EPRI began, in late in 1987, to produce a Radwaste Desk Reference that would allow each of the member utilities access to the available information and expertise on radwaste management. EPRI considers this important because radwaste management involves a wide variety of scientific and engineering disciplines. These include chemical and mechanical engineering, chemistry, and health physics. Radwaste management also plays a role in implementing a wide variety of regulatory requirements. These include plant-specific technical specifications, NRC standards for protection against radiation, DOT transportation regulations and major environmental legislation such as the Resource Conservation and Recovery Act. EPRI chose a questionmore » and answer format because it could be easily accessed by radwaste professionals with a variety of interests. The questions were generated at two meetings of utility radwaste professionals and EPRI contractors. Volume 1, which is already in publication, addresses dry active waste generation, processing and measurement. Volume 2 addresses low level waste storage, transportation and disposal. This volume, Volume 3, is being issued in two parts. Part 1 concentrates on the processing of liquid radioactive waste, whereas Part 2, included here, addresses liquid waste management. It includes extensive information and operating practices related to liquid waste generation and control, liquid waste processing systems at existing U.S. nuclear plants, processes for managing wet wastes (handling, dewatering, solidifying, processing, and packaging), and liquid waste measurement and analysis.« less

  19. Improvement of electrical resistivity tomography for leachate injection monitoring.

    PubMed

    Clément, R; Descloitres, M; Günther, T; Oxarango, L; Morra, C; Laurent, J-P; Gourc, J-P

    2010-03-01

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significant increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a "minimum length" constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Improvement of electrical resistivity tomography for leachate injection monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clement, R., E-mail: remi.clement@hmg.inpg.f; Descloitres, M.; Guenther, T., E-mail: Thomas.Guenther@liag-hannover.d

    2010-03-15

    Leachate recirculation is a key process in the scope of operating municipal waste landfills as bioreactors, which aims to increase the moisture content to optimize the biodegradation in landfills. Given that liquid flows exhibit a complex behaviour in very heterogeneous porous media, in situ monitoring methods are required. Surface time-lapse electrical resistivity tomography (ERT) is usually proposed. Using numerical modelling with typical 2D and 3D injection plume patterns and 2D and 3D inversion codes, we show that wrong changes of resistivity can be calculated at depth if standard parameters are used for time-lapse ERT inversion. Major artefacts typically exhibit significantmore » increases of resistivity (more than +30%) which can be misinterpreted as gas migration within the waste. In order to eliminate these artefacts, we tested an advanced time-lapse ERT procedure that includes (i) two advanced inversion tools and (ii) two alternative array geometries. The first advanced tool uses invariant regions in the model. The second advanced tool uses an inversion with a 'minimum length' constraint. The alternative arrays focus on (i) a pole-dipole array (2D case), and (ii) a star array (3D case). The results show that these two advanced inversion tools and the two alternative arrays remove almost completely the artefacts within +/-5% both for 2D and 3D situations. As a field application, time-lapse ERT is applied using the star array during a 3D leachate injection in a non-hazardous municipal waste landfill. To evaluate the robustness of the two advanced tools, a synthetic model including both true decrease and increase of resistivity is built. The advanced time-lapse ERT procedure eliminates unwanted artefacts, while keeping a satisfactory image of true resistivity variations. This study demonstrates that significant and robust improvements can be obtained for time-lapse ERT monitoring of leachate recirculation in waste landfills.« less

  1. Waste receiving and processing facility module 1 data management system software project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.E.

    1994-11-02

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  2. Application of mixed based membrane technology from component materials bintaro, zeolite and bentonite to reduction of songket waste liquid cloth

    NASA Astrophysics Data System (ADS)

    Dahlan, Muhammad Hatta; Saleh, Abdullah; Asip, Faisol; Makmun, Akbar; Defi

    2017-11-01

    Application of membrane technology based on clay mixture, Activated Carbon from Bintaro, Zeolite and Bentonit to process the waste water of Songket cloth is Palembang traditionally cloth. The applied research is into the superior field of industrial and household waste processing with membrane ceramic technology. The objective of this research is to design the liquid waste separation tool of jumputan cloth using better and simpler ceramic membrane so that it can help the artisans of Palembang songket or songket in processing the waste in accordance with the standard of environmental quality standard (BML) and Pergub Sumsel no. 16 in 2005. The specific target to be achieved can decrease the waste of cloth jumputan in accordance with applicable environmental quality standards the method used in achieving the objectives of this study using 2 processes namely the adsorption process using activated carbon and the separation process using a ceramic membrane based on the composition of the mixture. The activated carbon from bintaro seeds is expected to decrease the concentration of liquid waste of Songket cloth. Bintaro seeds are non-edible fruits where the composition contains organic ingredients that can absorb because contains dyes and filler metals. The process of membranization in the processing is expected to decrease the concentration of waste better and clear water that can be used as recycled water for household use. With the composition of a mixture of clay-based materials: zeolite, bentonit, activated carbon from bintaro seeds are expected Find the solution and get the novelty value in the form of patent in this research

  3. An updated review on use of tomato pomace and crustacean processing waste to recover commercially vital carotenoids.

    PubMed

    Saini, Ramesh Kumar; Moon, So Hyun; Keum, Young-Soo

    2018-06-01

    Globally, the amount of food processing waste has become a major concern for environmental sustainability. The valorization of these waste materials can solve the problems of its disposal. Notably, the tomato pomace and crustacean processing waste presents enormous opportunities for the extraction of commercially vital carotenoids, lycopene, and astaxanthin, which have diverse applications in the food, feed, pharmaceuticals, and cosmetic industries. Moreover, such waste can generate surplus revenue which can significantly improve the economics of food production and processing. Considering these aspects, many reports have been published on the efficient use of tomato and crustacean processing waste to recover lycopene and astaxanthin. The current review provides up-to-date information available on the chemistry of lycopene and astaxanthin, their extraction methods that use environmentally friendly green solvents to minimize the impact of toxic chemical solvents on health and environment. Future research challenges in this context are also identified. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Quantitative elemental imaging of heterogeneous catalysts using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Trichard, F.; Sorbier, L.; Moncayo, S.; Blouët, Y.; Lienemann, C.-P.; Motto-Ros, V.

    2017-07-01

    Currently, the use of catalysis is widespread in almost all industrial processes; its use improves productivity, synthesis yields and waste treatment as well as decreases energy costs. The increasingly stringent requirements, in terms of reaction selectivity and environmental standards, impose progressively increasing accuracy and control of operations. Meanwhile, the development of characterization techniques has been challenging, and the techniques often require equipment with high complexity. In this paper, we demonstrate a novel elemental approach for performing quantitative space-resolved analysis with ppm-scale quantification limits and μm-scale resolution. This approach, based on laser-induced breakdown spectroscopy (LIBS), is distinguished by its simplicity, all-optical design, and speed of operation. This work analyzes palladium-based porous alumina catalysts, which are commonly used in the selective hydrogenation process, using the LIBS method. We report an exhaustive study of the quantification capability of LIBS and its ability to perform imaging measurements over a large dynamic range, typically from a few ppm to wt%. These results offer new insight into the use of LIBS-based imaging in the industry and paves the way for innumerable applications.

  5. Comparison of Copper Scavenging Capacity between Two Different Red Mud Types

    PubMed Central

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2012-01-01

    A batch experiment was conducted to compare the Cu scavenging capacity between two different red mud types: the first one was a highly basic red mud derived from a combined sintering and Bayer process, and the second one was a seawater-neutralized red mud derived from the Bayer process. The first red mud contained substantial amounts of CaCO3, which, in combination with the high OH− activity, favored the immobilization of water-borne Cu through massive formation of atacamite. In comparison, the seawater-neutralized red mud had a lower pH and was dominated by boehmite, which was likely to play a significant role in Cu adsorption. Overall, it appears that Cu was more tightly retained by the CaCO3-dominated red mud than the boehmite-dominated red mud. It is concluded that the heterogeneity of red mud has marked influences on its capacity to immobilize water-borne Cu and maintain the long-term stability of the immobilized Cu species. The research findings obtained from this study have implications for the development of Cu immobilization technology by using appropriate waste materials generated from the aluminium industry.

  6. Preparation of nanobiochar as magnetic solid acid catalyst by pyrolysis-carbonization from oil palm empty fruit bunches

    NASA Astrophysics Data System (ADS)

    Jenie, S. N. Aisyiyah; Kristiani, Anis; Kustomo, Simanungkalit, Sabar; Mansur, Dieni

    2017-11-01

    Nanomaterials based on carbon exhibits unique properties, both physical and chemical, that can be utilized in various application, including catalyst. These nanomaterials were prepared through pyrolysis-carbonization process of biomass, oil palm empty fruit bunches. The effect of carbonization temperature in range of 500°C-600°C were also studied. The magnetic nanobiochar samples, MBC, were sulfonated by using sulfuric acid to increase their properties as solid acid catalyst. Their chemical and physical properties were characterized by Surface Area Analyzer and Porositymeter, X-Ray Diffraction, Scanning Electron Microscopy, Fourier Transform Infra-Red. The magnetic biochar samples obtained from carbonization at 873 K, MBC02-SO3H, was proven to have higher surface area, crystallinity properties and surface chemical composition after sulfonation process, which were confirmed by the BET, XRD and FT-IR analysis. Moreover, sample MBC02-SO3H exhibit promising catalytic acitivity in a catalysed esterification reaction, producing an ester yield of 64%. The result from this work opens new opportunities for the development of magnetic heterogenous acid catalyst from biomass waste.

  7. Significant volume reduction of tank waste by selective crystallization: 1994 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herting, D.L.; Lunsford, T.R.

    1994-09-27

    The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO{sub 3}) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects ofmore » crystallization parameters on the size and crystal habit of product NaNO{sub 3} crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO{sub 3} crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO{sub 3} in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet.« less

  8. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  9. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  10. 30 CFR 784.25 - Return of coal processing waste to abandoned underground workings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Return of coal processing waste to abandoned... ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... RECLAMATION AND OPERATION PLAN § 784.25 Return of coal processing waste to abandoned underground workings. (a...

  11. 40 CFR 421.15 - Standards of performance for new sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart: There shall be no discharge of process waste water pollutants to navigable waters. (b) During any calendar month there may be discharged from the overflow of a process waste water impoundment either a volume of process waste water equal to the difference between the precipitation for that month that falls...

  12. 40 CFR 428.11 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... components thereof. (c) The term “process waste water” shall mean, in the case of tire and inner tube plants... be classified as process waste water for the purposes of this section. (d) Except as provided in paragraphs (c) and (e) of this section, the term “process waste water” shall have the meaning set forth in...

  13. USER'S GUIDE: Strategic Waste Minimization Initiative (SWAMI) Version 2.0 - A Software Tool to Aid in Process Analysis for Pollution Prevention

    EPA Science Inventory

    The Strategic WAste Minimization Initiative (SWAMI) Software, Version 2.0 is a tool for using process analysis for identifying waste minimization opportunities within an industrial setting. The software requires user-supplied information for process definition, as well as materia...

  14. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operation using HF flotation, discharges of process waste water pollutants from facilities that recycle waste water, for use in the processing shall not exceed the following limitations: Effluent... paragraphs (a) (1) and (3) of this section, there shall be no discharge of process generated waste water...

  15. 40 CFR 436.42 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operation using HF flotation, discharges of process waste water pollutants from facilities that recycle waste water, for use in the processing shall not exceed the following limitations: Effluent... paragraphs (a) (1) and (3) of this section, there shall be no discharge of process generated waste water...

  16. 40 CFR 428.11 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of such plants shall not be classified as process waste water for the purposes of this section. (d) Except as provided in paragraphs (c) and (e) of this section, the term “process waste water” shall have... tubes or components thereof. (c) The term “process waste water” shall mean, in the case of tire and...

  17. Study of waste management towards sustainable green campus in Universitas Gadjah Mada

    NASA Astrophysics Data System (ADS)

    Setyowati, Mega; Kusumawanto, Arif; Prasetya, Agus

    2018-05-01

    Waste management is a part of the green campus achievement program. Universitas Gadjah Mada has a Standard Operating Procedure for managing produced waste. Waste produced by each building or work unit is temporarily accommodated in the waste depot before dumped into the landfill. This research aims to study the waste management system in UGM, in accordance with the concept of a green campus. The concept of green campus to improve the efficiency of waste management needs to be supported by various parties. The success of the green campus program relies on an integrated approach, a sustainable implementation that involves stakeholders of the university. In actualizing the concept of a green campus, the university has its own waste processing system. The organic produced waste is processed into compost, while plastic waste is converted into alternative fuel. Overall, the waste management system that UGM owns is ineffective and inefficient, it was proved by the fact that there is still much waste dumped into the landfill. UGM provides a laboratory that is specialized to process waste that is produced by UGM. It is planned to be able to reduce the amount of waste that is dumped into the landfill. According to the results, vermicomposting technology, the manufacture of liquid fertilizer from leachate, and the manufacture of the composite from a mixture of leaves and paper were offered as solutions.

  18. Performance of photocatalyst based carbon nanodots from waste frying oil in water purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aji, Mahardika Prasetya, E-mail: mahardika190@gmail.com; Wiguna, Pradita Ajeng; Susanto,

    Carbon Nanodots (C-Dots) from waste frying oil could be used as a photocatalyst in water purification with solar light irradiation. Performance of C-Dots as a photocatalyst was tested in the process of water purification with a given synthetic sewage methylene blue. The tested was also conducted by comparing the performance C-Dots made from frying oil, waste fryng oil as a photocatalyst and solution of methylene blue without photocatalyst C-Dots. Performance of C-Dots from waste frying oil were estimated by the results of absorbance spectrum. The results of measurement absorbance spectrum from the process of water purification with photocatalyst C-Dots showedmore » that the highest intensity at a wavelength 664 nm of methylene blue decreased. The test results showed that the performance of photocatalyst C-Dots from waste frying oil was better in water purification. This estimated that number of particles C-dots is more in waste frying oil because have experieced repeated the heating process so that the higher particles concentration make the photocatalyst process more effective. The observation of the performance C-Dots from waste frying oil as a photocatalyst in the water purification processes become important invention for solving the problems of waste and water purification.« less

  19. Test plan for formulation and evaluation of grouted waste forms with shine process wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebert, W. L.; Jerden, J. L.

    2015-09-01

    The objective of this experimental project is to demonstrate that waste streams generated during the production of Mo99 by the SHINE Medical Technologies (SHINE) process can be immobilized in cement-based grouted waste forms having physical, chemical, and radiological stabilities that meet regulatory requirements for handling, storage, transport, and disposal.

  20. Ultra-Long Time Dynamics of Contaminant Plume Mixing Induced by Transient Forcing Factors in Geologic Formations

    NASA Astrophysics Data System (ADS)

    Rajabi, F.; Battiato, I.

    2016-12-01

    Long term predictions of the impact of anthropogenic stressors on the environment is essential to reduce the risks associated with processes such as CO2 sequestration and nuclear waste storage in the subsurface. On the other hand, transient forcing factors (e.g. time-varying injection or pumping rate) with evolving heterogeneity of time scales spanning from days to years can influence transport phenomena at the pore scale. A comprehensive spatio-temporal prediction of reactive transport in porous media under time-dependent forcing factors for thousands of years requires the formulation of continuum scale models for time-averages. Yet, as every macroscopic model, time-averaged models can loose predictivity and accuracy when certain conditions are violated. This is true whenever lack of temporal and spatial scale separation occurs and it makes the continuum scale equation a poor assumption for the processes at the pore scale. In this work, we consider mass transport of a dissolved species undergoing a heterogeneous reaction and subject to time-varying boundary conditions in a periodic porous medium. By means of homogenization method and asymptotic expansion technique, we derive a macro-time continuum-scale equation as well as expressions for its effective properties. Our analysis demonstrates that the dynamics at the macro-scale is strongly influenced by the interplay between signal frequency at the boundary and transport processes at the pore level. In addition, we provide the conditions under which the space-time averaged equations accurately describe pore-scale processes. To validate our theoretical predictions, we consider a thin fracture with reacting walls and transient boundary conditions at the inlet. Our analysis shows a good agreement between numerical simulations and theoretical predictions. Furthermore, our numerical experiments show that mixing patterns of the contaminant plumes at the pore level strongly depend on the signal frequency.

  1. Electromagnetic mixed waste processing system for asbestos decontamination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasevich, R.S.; Vaux, W.; Ulerich, N.

    The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less

  2. Development studies of a novel wet oxidation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, T.W.; Dooge, P.M.

    1996-12-31

    The objective of this study is to develop a novel catalytic chemical oxidation process that can be used to effectively treat multi-component wastes with a minimum of pretreatment characterization, thus providing a versatile, non-combustion method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. Although the DETOX{sup SM} process had been tested to a limited extent for potential application to mixed wastes, there had not been sufficient experience with the process to determine its range of application to multicomponent waste forms. The potential applications ofmore » the process needed to be better identified. Then, the process needed to be demonstrated on wastes and remediate types on a practical scale in order that data could be obtained on application range, equipment size, capital and operating costs, effectiveness, safety, reliability, permittability, and potential commercial applications of the process. The approach for the project was, therefore, to identify the potential range of applications of the process (Phase I), to choose demonstration sites and design a demonstration prototype (Phase II), to fabricate and shakedown the demonstration unit (Phase III), then finally to demonstrate the process on surrogate hazardous and mixed wastes, and on actual mixed wastes (Phase IV).« less

  3. Ion beam analyses of radionuclide migration in heterogeneous rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel

    2013-07-18

    The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremelymore » short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.« less

  4. Modeling Cd and Cu mobility in soils amended by long-term urban waste compost applications

    NASA Astrophysics Data System (ADS)

    Filipović, Vilim; Cambier, Philippe; Matijević, Lana; Coquet, Yves; Pot, Valérie; Houot, Sabine; Benoit, Pierre

    2016-04-01

    Urban waste compost application to soil is an effective way for organic waste disposal and at the same time may have a positive effect on various soil rhizosphere processes. However, long term applications of organic waste amendments may lead to a noteworthy accumulation of micropollutants in soil. The long-term field experiment QualiAgro, an INRA-Veolia partnership (https://www6.inra.fr/qualiagro_eng/), has been conducted since 1998 with the objectives to characterize the agronomic value of urban composts and the environmental impacts of their application. Numerical modeling was performed using HYDRUS-2D to estimate the movement of Cd and Cu from compost incroporation in the tilled layer. Experimental plots regularly amended with co-compost of sewage sludge and green wastes (SGW), or a municipal solid waste compost (MSW) have been compared to control plot without any organic amendment (CONT). Field site was equipped with wicks lysimeters, TDR probes and tensiometers in order to determine water balance and trace metal concentrations during a 6 years' time period (2004-2010). In the tilled layer different structures (Δ - compacted clods, Γ - macroporous zone, IF - interfurrows, PP - plough pan) corresponding to the tillage and compost incorporation were delimited and reproduced in a 2-D model. The increase of Cd and Cu concentrations due to each compost addition was assumed to be located in IFs for further modeling. Four compost additions were performed during 2004-2010 period which increased the Cd and Cu concentrations in the IF zones considerably. After successful model description of water flow in highly heterogeneous soil profiles, Cd and Cu were added into the model and their fate was simulated during the same time period. Two approaches were followed to estimate plausible trace metals sorption coefficients (Kd), both while assuming equilibrium between dissolved and EDTA-extractable metals. The first approach was based on Kd estimated from ratios between EDTA and CaCl2-extracted metals (Kd-1). In the second approach we have calculated Kd from generic equations (literature), using soil organic carbon (SOC) and pH for Cd, and SOM, pH and DOC for Cu (Kd-2). Lysimeter data of Cu leaching were successfully reproduced by using first Kd-1 approach for three plots (model efficiency ESGW=0.97, EMSW=0.37; ECONT=0.95). Smaller agreement in MSW plot could be explained by the less stabile organic matter of MSW composts which increased its Cu mobile fraction after soil incorporation. The Cd leaching could be reproduced with the second Kd-2 approach for the two amended plots (ESGW=0.55, EMSW=0.80) while control plot simulations produced poorer fitting (ECONT=-0.57), probably due to an overestimation of the influence of the low pH of that plot on Kd-2(Cd). However, numerical modeling revealed interesting results in which, even with the high values of hydraulic conductivity in the interfurrow zones, the Cd and Cu showed low mobility. Although, the amended plots showed increased metal leaching below the tilled layer in both amended plots, their mobility in the tilled layer is reduced due to retention capacity of the applied composts. Acknowledgements: the involvement of INRA and Veolia members in the QualiAgro experiment and the financial support of Veolia are gratefully acknowledged Keywords: Compost amendments; Soil heterogeneity; Trace metals; Sorption; HYDRUS-2D

  5. Mercury Phase II Study - Mercury Behavior across the High-Level Waste Evaporator System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannochie, C. J.; Crawford, C. L.; Jackson, D. G.

    2016-06-17

    The Mercury Program team’s effort continues to develop more fundamental information concerning mercury behavior across the liquid waste facilities and unit operations. Previously, the team examined the mercury chemistry across salt processing, including the Actinide Removal Process/Modular Caustic Side Solvent Extraction Unit (ARP/MCU), and the Defense Waste Processing Facility (DWPF) flowsheets. This report documents the data and understanding of mercury across the high level waste 2H and 3H evaporator systems.

  6. Vitrification of radioactive high-level waste by spray calcination and in-can melting

    NASA Astrophysics Data System (ADS)

    Hanson, M. S.; Bjorklund, W. J.

    1980-07-01

    After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light water reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Labortory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.

  7. Processing industrial wastes with the liquid-phase reduction romelt process

    NASA Astrophysics Data System (ADS)

    Romenets, V.; Valavin, V.; Pokhvisnev, Yu.; Vandariev, S.

    1999-08-01

    The Romelt technology for liquid-phase reduction has been developed for processing metallurgical wastes containing nonferrousmetal components. Thermodynamic calculations were made to investigate the behavior of silver, copper, zinc, manganese, vanadium, chrome, and silicon when reduced from the slag melt into the metallic solution containing iron. The process can be applied to all types of iron-bearing wastes, including electric arc furnace dust. The distribution of elements between the phases can be controlled by adjusting the slag bath temperature. Experiments at a pilot Romelt plant proved the possibility of recovering the metallurgical wastes and obtaining iron.

  8. [Soil contamination from industrial and community waste in the Cracow area].

    PubMed

    Jarosz, A; Zołdak, M

    1990-01-01

    Problems are discussed connected with the contamination of soil with industrial and community waste in the period 1980-1987. In the Cracow area 82 million tons of waste was accumulated on dumping grounds, waste heaps and in sedimentation ponds for sewage which cover already 1.2% of the area. Among this waste 34% is produced by steel plants, 16% is mineral waste, 9% waste is produced by power plants, and 8% by chemical plants. Particular risk is connected with toxic waste produced mainly by the Lenin Steel Plant, Alwernia Chemical Plant, and Bonarka Cracow Inorganic Industry Plant. In the last 4 years an increase was observed in the amount of processed waste and the amount of dumped waste has decreased by 7.6% in the years 1984-1987. Nevertheless, the problem of processing or neutralization of toxic waste remains to be solved.

  9. Stock flow diagram analysis on solid waste management in Malaysia

    NASA Astrophysics Data System (ADS)

    Zulkipli, Faridah; Nopiah, Zulkifli Mohd; Basri, Noor Ezlin Ahmad; Kie, Cheng Jack

    2016-10-01

    The effectiveness on solid waste management is a major importance to societies. Numerous generation of solid waste from our daily activities has risked for our communities. These due to rapid population grow and advance in economic development. Moreover, the complexity of solid waste management is inherently involved large scale, diverse and element of uncertainties that must assist stakeholders with deviating objectives. In this paper, we proposed a system dynamics simulation by developing a stock flow diagram to illustrate the solid waste generation process and waste recycle process. The analysis highlights the impact on increasing the number of population toward the amount of solid waste generated and the amount of recycled waste. The results show an increment in the number of population as well as the amount of recycled waste will decrease the amount of waste generated. It is positively represent the achievement of government aim to minimize the amount of waste to be disposed by year 2020.

  10. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less

  11. Thermal Catalytic Oxidation of Airborne Contaminants by a Reactor Using Ultra-Short Channel Length, Monolithic Catalyst Substrates

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Tomes, K. M.; Tatara, J. D.

    2005-01-01

    Contaminated air, whether in a crewed spacecraft cabin or terrestrial work and living spaces, is a pervasive problem affecting human health, performance, and well being. The need for highly effective, economical air quality processes spans a wide range of terrestrial and space flight applications. Typically, air quality control processes rely on absorption-based processes. Most industrial packed-bed adsorption processes use activated carbon. Once saturated, the carbon is either dumped or regenerated. In either case, the dumped carbon and concentrated waste streams constitute a hazardous waste that must be handled safely while minimizing environmental impact. Thermal catalytic oxidation processes designed to address waste handling issues are moving to the forefront of cleaner air quality control and process gas decontamination processes. Careful consideration in designing the catalyst substrate and reactor can lead to more complete contaminant destruction and poisoning resistance. Maintenance improvements leading to reduced waste handling and process downtime can also be realized. Performance of a prototype thermal catalytic reaction based on ultra-short waste channel, monolith catalyst substrate design, under a variety of process flow and contaminant loading conditions, is discussed.

  12. 40 CFR 436.21 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... However, if a mine is also used for treatment of process generated waste water, discharges of commingled water from the facilities shall be deemed discharges of process generated waste water. (c) The term “10... treatment of such waste water. ...

  13. Real-Time Monitoring of Heterogeneous Catalysis with Mass Spectrometry

    ERIC Educational Resources Information Center

    Young, Mark A.

    2009-01-01

    Heterogeneous, gas-solid processes constitute an important class of catalytic reactions that play a key role in a variety of applications, such as industrial processing and environmental controls. Heterogeneous catalytic chemistry can be demonstrated in a simple heated flow reactor containing a fragment of the catalytic converter from a vehicular…

  14. Life cycle assessment of innovative technology for energy production from automotive shredder residue.

    PubMed

    Rinaldi, Caterina; Masoni, Paolo; Salvati, Fabio; Tolve, Pietro

    2015-07-01

    Automotive Shredder Residue (ASR) is a problematic waste material remaining after shredding and recovery processes of end-of-life vehicles (ELVs). Its heterogeneous grain size and composition make difficult its recovery or disposal. Although ASR accounts for approximately 20% to 25% of the weight of an ELV, the European Union (EU)'s ELV Directive (2000/53/EC) requires that by 2015 a minimum 95% of the weight of an ELV must be reused or recovered, including a 10% weight energy recovery. The quantity of ASR is relevant: Approximately 2.4 million tons are generated in the EU each year and most of it is sent to landfills. This article describes a life cycle model of the "TEKNE-Fluff" process designed to make beneficial use of ASR that is based on the results of an experimental pilot plant for pyro-gasification, combustion, cogeneration, and emissions treatment of ASR. The goal of the research was the application of life cycle assessment (LCA) methodology to identify the environmental hot spots of the "TEKNE system" and use scenario analysis to check solutions to improve its environmental profile, supporting the design and industrialization process. The LCA was conducted based on data modeled from the experimental campaign. Moreover, different scenarios on shares of electricity and thermal energy produced by the cogeneration system and alternative treatment processes for the waste produced by the technology were compared. Despite the limitation of the research (results based on scaling up experimental data by modeling), impact assessment results are promising and sufficiently robust, as shown by Monte Carlo analysis. The TEKNE technology may become an interesting solution for the problem of ASR management: Besides representing an alternative to landfill disposal, the energy produced could avoid significant impacts on fossil resources depletion (a plant of 40,000 tons/y capacity could produce ∼ 147,000 GJ/yr, covering the annual need of ∼ 13,500 households). © 2015 SETAC.

  15. Idaho National Laboratory Test Area North: Application of Endpoints to Guide Adaptive Remediation at a Complex Site: INL Test Area North: Application of Endpoints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, M. Hope; Truex, Mike; Freshley, Mark

    Complex sites are defined as those with difficult subsurface access, deep and/or thick zones of contamination, large areal extent, subsurface heterogeneities that limit the effectiveness of remediation, or where long-term remedies are needed to address contamination (e.g., because of long-term sources or large extent). The Test Area North at the Idaho National Laboratory, developed for nuclear fuel operations and heavy metal manufacturing, is used as a case study. Liquid wastes and sludge from experimental facilities were disposed in an injection well, which contaminated the subsurface aquifer located deep within fractured basalt. The wastes included organic, inorganic, and low-level radioactive constituents,more » with the focus of this case study on trichloroethylene. The site is used as an example of a systems-based framework that provides a structured approach to regulatory processes established for remediation under existing regulations. The framework is intended to facilitate remedy decisions and implementation at complex sites where restoration may be uncertain, require long timeframes, or involve use of adaptive management approaches. The framework facilitates site, regulator, and stakeholder interactions during the remedial planning and implementation process by using a conceptual model description as a technical foundation for decisions, identifying endpoints, which are interim remediation targets or intermediate decision points on the path to an ultimate end, and maintaining protectiveness during the remediation process. At the Test Area North, using a structured approach to implementing concepts in the endpoint framework, a three-component remedy is largely functioning as intended and is projected to meet remedial action objectives by 2095 as required. The remedy approach is being adjusted as new data become available. The framework provides a structured process for evaluating and adjusting the remediation approach, allowing site owners, regulators, and stakeholders to manage contamination at complex sites where adaptive remedies are needed.« less

  16. Composting of food wastes: Status and challenges.

    PubMed

    Cerda, Alejandra; Artola, Adriana; Font, Xavier; Barrena, Raquel; Gea, Teresa; Sánchez, Antoni

    2018-01-01

    This review analyses the main challenges of the process of food waste composting and examines the crucial aspects related to the quality of the produced compost. Although recent advances have been made in crucial aspects of the process, such composting microbiology, improvements are needed in process monitoring. Therefore, specific problems related to food waste composting, such as the presence of impurities, are thoroughly analysed in this study. In addition, environmental impacts related to food waste composting, such as emissions of greenhouse gases and odours, are discussed. Finally, the use of food waste compost in soil bioremediation is discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and testedmore » with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the testing needs for the permanganate precipitation process to be field-deployable. A more comprehensive listing of future testing needs to allow the process to be field deployable are contained in RPP-PLAN-51288, Development Test Plan for Sr/TRU Precipitation Process.« less

  18. Root Induced Heterogeneity In Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Gomes, C.; Gabai, R.; Weisbrod, N.; Furman, A.

    2012-12-01

    In this study we investigate the role of plant induced heterogeneity on water dynamics in agricultural soils. We conducted three experiments in two sites (one still ongoing) in which a trench was excavated in the root zone of an orchard and the subsurface, to a depth of over 1 m, was instrumented in high resolution with water content, water potential and temperature sensors. High temporal resolution monitoring of soil state was carried for over a year, period that included natural (Mediterranean) climate boundary forcing. In addition, sprinkler, flood, and spray irrigation boundary conditions were forced for short time periods to explore the infiltration process under these conditions. One site was an Avocado orchard planted in red sandy soil while the other, still on-going, is in a grape vineyards irrigated by tap and treated wastewater, planted over alluvial clayey soil. In the vineyard, we are comparing soil irrigated with fresh water to soil irrigated with treated waste water for more than 10 years. Our preliminary results indicate several interesting phenomena. First, the role of plant roots is clearly seen as the major roots act as a conduit for water (and solute), providing a fast bypass of the upper soil. Further, we identified different regions of the subsurface that apparently were of the same texture, but in practice presented very different hydraulic properties. Second, the role of these roots depends on the boundary conditions. That is, the root bypass acts differently when soil is flooded than when flow is strictly unsaturated. As expected, simulation of the experimental results show good fit only if the domain heterogeneity of soil properties was incorporated. Results for the clayey soils were not available at time of abstract submission.

  19. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  20. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.

    2014-01-17

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for themore » Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.« less

  1. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less

  2. Implementation Strategies for Large-Scale Transport Simulations Using Time Domain Particle Tracking

    NASA Astrophysics Data System (ADS)

    Painter, S.; Cvetkovic, V.; Mancillas, J.; Selroos, J.

    2008-12-01

    Time domain particle tracking is an emerging alternative to the conventional random walk particle tracking algorithm. With time domain particle tracking, particles are moved from node to node on one-dimensional pathways defined by streamlines of the groundwater flow field or by discrete subsurface features. The time to complete each deterministic segment is sampled from residence time distributions that include the effects of advection, longitudinal dispersion, a variety of kinetically controlled retention (sorption) processes, linear transformation, and temporal changes in groundwater velocities and sorption parameters. The simulation results in a set of arrival times at a monitoring location that can be post-processed with a kernel method to construct mass discharge (breakthrough) versus time. Implementation strategies differ for discrete flow (fractured media) systems and continuous porous media systems. The implementation strategy also depends on the scale at which hydraulic property heterogeneity is represented in the supporting flow model. For flow models that explicitly represent discrete features (e.g., discrete fracture networks), the sampling of residence times along segments is conceptually straightforward. For continuous porous media, such sampling needs to be related to the Lagrangian velocity field. Analytical or semi-analytical methods may be used to approximate the Lagrangian segment velocity distributions in aquifers with low-to-moderate variability, thereby capturing transport effects of subgrid velocity variability. If variability in hydraulic properties is large, however, Lagrangian velocity distributions are difficult to characterize and numerical simulations are required; in particular, numerical simulations are likely to be required for estimating the velocity integral scale as a basis for advective segment distributions. Aquifers with evolving heterogeneity scales present additional challenges. Large-scale simulations of radionuclide transport at two potential repository sites for high-level radioactive waste will be used to demonstrate the potential of the method. The simulations considered approximately 1000 source locations, multiple radionuclides with contrasting sorption properties, and abrupt changes in groundwater velocity associated with future glacial scenarios. Transport pathways linking the source locations to the accessible environment were extracted from discrete feature flow models that include detailed representations of the repository construction (tunnels, shafts, and emplacement boreholes) embedded in stochastically generated fracture networks. Acknowledgment The authors are grateful to SwRI Advisory Committee for Research, the Swedish Nuclear Fuel and Waste Management Company, and Posiva Oy for financial support.

  3. Valorisation of blueberry waste and use of compression to manufacture sustainable starch films with enhanced properties.

    PubMed

    Luchese, Cláudia Leites; Uranga, Jone; Spada, Jordana Corralo; Tessaro, Isabel Cristina; de la Caba, Koro

    2018-08-01

    Blueberry waste from juice processing was valorised to develop starch films by compression moulding. The compression process resulted in hydrophobic films with water contact angles even higher than 100° for the films prepared with the highest blueberry waste content. Additionally, the film solubility was reduced by the incorporation of blueberry waste, regardless of the solution pH. These films also exhibited good barrier properties against UV light due to the aromatic compounds present in the blueberry waste. Furthermore, films showed a homogenous surface, although some pores appeared in the cross-section for the films with the highest blueberry waste content. Results highlighted the use of thermo-mechanical processes such as compression to manufacture sustainable films with enhanced properties through waste valorisation by the techniques actually employed at industrial scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. 77 FR 1920 - Second Amended Notice of Intent To Modify the Scope of the Surplus Plutonium Disposition...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-12

    ... suitable for MOX fuel fabrication is disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico... Waste Processing Facility at SRS or disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. On... are safety (criticality) limits on how much plutonium can be sent to the Defense Waste Processing...

  5. ARSENIC LEACHING FROM IRON RICH MINERAL PROCESSING WASTE: INFLUENCE OF PH AND REDOX POTENTIAL

    EPA Science Inventory

    This paper presents the effect of pH and redox potential on the potential mobility of arsenic (As) from a contaminated mineral processing waste. The selected waste contained about 0.47 g kg-1 of As and 66.2 g kg-1 of iron (Fe). The characteristic of the wast...

  6. Anaerobic digestion of municipal solid wastes containing variable proportions of waste types.

    PubMed

    Akunna, J C; Abdullahi, Y A; Stewart, N A

    2007-01-01

    In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.

  7. New municipal solid waste processing technology reduces volume and provides beneficial reuse applications for soil improvement and dust control

    USDA-ARS?s Scientific Manuscript database

    A garbage-processing technology has been developed that shreds, sterilizes, and separates inorganic and organic components of municipal solid waste. The technology not only greatly reduces waste volume, but the non-composted byproduct of this process, Fluff®, has the potential to be utilized as a s...

  8. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2015-10-01

    Literature published in 2014 and early 2015 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  9. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2017-10-01

    Literature published in 2016 and early 2017 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  10. Food-Processing Wastes.

    PubMed

    Frenkel, Val S; Cummings, Gregg A; Maillacheruvu, K Y; Tang, Walter Z

    2016-10-01

    Literature published in 2015 and early 2016 related to food processing wastes treatment for industrial applications are reviewed. This review is a subsection of the Treatment Systems section of the annual Water Environment Federation literature review and covers the following food processing industries and applications: general, meat and poultry, fruits and vegetables, dairy and beverage, and miscellaneous treatment of food wastes.

  11. 40 CFR 421.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...: There shall be no discharge of process waste water pollutants to navigable waters. (b) During any calendar month there may be discharged from the overflow of a process waste water impoundment either a volume of process waste water equal to the difference between the precipitation for that month that falls...

  12. 40 CFR 422.42 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process waste water pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal to the... water level in the pond to rise into the surge capacity. Process waste water must be treated and...

  13. 40 CFR 422.42 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process waste water pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal to the... water level in the pond to rise into the surge capacity. Process waste water must be treated and...

  14. 40 CFR 422.42 - Effluent limitations and guidelines representing the degree of effluent reduction attainable by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process waste water pollutants to navigable waters. (b) Process waste water pollutants from a cooling water recirculation system designed, constructed and operated to maintain a surge capacity equal to the... water level in the pond to rise into the surge capacity. Process waste water must be treated and...

  15. Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MULKEY, C.H.

    1999-07-02

    This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for themore » Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements.« less

  16. Reducing shingle waste at a manufacturing facility: 1990 MNTAP summer intern report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menke, D.

    1990-12-31

    CertainTeed manufactures roofing shingles at it`s Shakopee, MN facility. Two process coating lines, and one assembly line, produce fifteen shingle types in fifteen different colors. The wastes generated by this process were the result of planned and unplanned variations in the continuous production process. Planned variations included changes in color, while felt breaks were common unplanned variations. Five options were identified that could reduce the amount of waste generated: Using a standard procedure for recovering from felt breaks, Creating a process cushion to maintain continuous production in the event of temporary shutdowns, An automated color change process, Manufacture of amore » new product from waste material, Minor process changes to reduce the frequency of breaks.« less

  17. Experimental research of solid waste drying in the process of thermal processing

    NASA Astrophysics Data System (ADS)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  18. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    PubMed Central

    Szałatkiewicz, Jakub

    2016-01-01

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass. PMID:28773804

  19. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    PubMed

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  20. Long-range laser scanning and 3D imaging for the Gneiss quarries survey

    NASA Astrophysics Data System (ADS)

    Schenker, Filippo Luca; Spataro, Alessio; Pozzoni, Maurizio; Ambrosi, Christian; Cannata, Massimiliano; Günther, Felix; Corboud, Federico

    2016-04-01

    In Canton Ticino (Southern Switzerland), the exploitation of natural stone, mostly gneisses, is an important activity of valley's economies. Nowadays, these economic activities are menaced by (i) the exploitation costs related to geological phenomena such as fractures, faults and heterogeneous rocks that hinder the processing of the stone product, (ii) continuously changing demand because of the evolving natural stone fashion and (iii) increasing administrative limits and rules acting to protect the environment. Therefore, the sustainable development of the sector for the next decades needs new and effective strategies to regulate and plan the quarries. A fundamental step in this process is the building of a 3D geological model of the quarries to constrain the volume of commercial natural stone and the volume of waste. In this context, we conducted Terrestrial Laser Scanning surveys of the quarries in the Maggia Valley to obtain a detailed 3D topography onto which the geological units were mapped. The topographic 3D model was obtained with a long-range laser scanning Riegl VZ4000 that can measure from up to 4 km of distance with a speed of 147,000 points per second. It operates with the new V-line technology, which defines the surface relief by sensing differentiated signals (echoes), even in the presence of obstacles such as vegetation. Depending on the esthetics of the gneisses, we defined seven types of natural stones that, together with faults and joints, were mapped onto the 3D models of the exploitation sites. According to the orientation of the geological limits and structures, we projected the different rock units and fractures into the excavation front. This way, we obtained a 3D geological model from which we can quantitatively estimate the volume of the seven different natural stones (with different commercial value) and waste (with low commercial value). To verify the 3D geological models and to quantify exploited rock and waste volumes the same procedure will be repeated after ca. 6 months. Finally, these 3D geological models can be useful to (i) decrease the exploitation costs because they yield the extraction potential of quarry, (ii) become more efficient in the exploitation and more dynamic in the market because they permit better planning and (iii) decrease the waste by limiting the excavation in regions with low-quality rocks.

  1. [Efficiency evaluation of capsaicinoids to discriminate bio-waste oils from edible vegetable oils].

    PubMed

    Mao, Lisha; Liu, Honghe; Kang, Li; Jiang, Jie; Liao, Shicheng; Liu, Guihua; Deng, Pingjian

    2014-07-01

    To evaluate the efficiency of capsaicinoids to discriminate bio-waste oil from edible vegetable oil. 14 raw vegetable oils, 24 fried waste oils, 34 kitchen-waste oils, 32 edible non-peanut vegetable oil, 32 edible peanuts oil, 16 edible oil add flavorand and 11 refined bio-waste oils were prepared and examined for capsaicinoids including capsaicin, dihydrocapsaicin and nonylic acid vanillylamide. The detection results of the above samples were statistically tested based on sample category to assessment identify the effectiveness of the bio-waste oils with capsaicinoids. As a indicator, capsaincin was possessed of high detection sensitivity and has the highest efficiency to discern kitchen-waste oils and refined bio-waste oils samples from edible non-peanut vegetable oil correctly. The accuracy rate of identification were 100% and 90.1% respectively. There is the background in peanut oil. CONCLUSION Capsaicin added in cooking process can be retained in the refining process and hardly be removed in the refining process. In the case of fully eliminating the background interference, capsaicinoids can effectively identify bio-waste oils and edible vegetable oil in combination.

  2. Cultivating Composting Culture Activities among Citizens and Its Beneficial to Prolong the Landfill Lifespan

    NASA Astrophysics Data System (ADS)

    Azura Zakarya, Irnis; Azri Jamial, Khairul; Mat Tanda, Norazlinda

    2018-03-01

    Currently, the Ministry of Housing and Local Government manage solid waste in Malaysia, with the participation of the private sector. Food waste represents almost 60% of the total municipal solid waste disposed in the landfill. Material valorisation of food waste usually conducted by biological processes such as composting. Compost, an organic amendment, is the final product of the composting process. These processes are efficient, low cost and environmentally friendly alternative for managing food waste and are used extensively worldwide. Therefore, organic solid waste management practices program for the communities in Perlis was conducted. The main objective of this program was to instilling environment awareness especially among Perlis citizens. This study was investigated the impact of food waste or kitchen waste composting to the citizens in Perlis State and the beneficial of compost fertilizer to our environment especially in plant growth. Composting method was taught to the food premises owner, individuals, teachers, and students and their responses to the composting practices were then summarized. In future, we can prolong our landfill lifespan by practicing organic waste composting and can preserving our environment.

  3. Mass, energy and material balances of SRF production process. Part 2: SRF produced from construction and demolition waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2014-11-01

    In this work, the fraction of construction and demolition waste (C&D waste) complicated and economically not feasible to sort out for recycling purposes is used to produce solid recovered fuel (SRF) through mechanical treatment (MT). The paper presents the mass, energy and material balances of this SRF production process. All the process streams (input and output) produced in MT waste sorting plant to produce SRF from C&D waste are sampled and treated according to CEN standard methods for SRF. Proximate and ultimate analysis of these streams is performed and their composition is determined. Based on this analysis and composition of process streams their mass, energy and material balances are established for SRF production process. By mass balance means the overall mass flow of input waste material stream in the various output streams and material balances mean the mass flow of components of input waste material stream (such as paper and cardboard, wood, plastic (soft), plastic (hard), textile and rubber) in the various output streams of SRF production process. The results from mass balance of SRF production process showed that of the total input C&D waste material to MT waste sorting plant, 44% was recovered in the form of SRF, 5% as ferrous metal, 1% as non-ferrous metal, and 28% was sorted out as fine fraction, 18% as reject material and 4% as heavy fraction. The energy balance of this SRF production process showed that of the total input energy content of C&D waste material to MT waste sorting plant, 74% was recovered in the form of SRF, 16% belonged to the reject material and rest 10% belonged to the streams of fine fraction and heavy fraction. From the material balances of this process, mass fractions of plastic (soft), paper and cardboard, wood and plastic (hard) recovered in the SRF stream were 84%, 82%, 72% and 68% respectively of their input masses to MT plant. A high mass fraction of plastic (PVC) and rubber material was found in the reject material stream. Streams of heavy fraction and fine fraction mainly contained non-combustible material (such as stone/rock, sand particles and gypsum material). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Power, Christopher; Tsourlos, Panagiotis; Ramasamy, Murugan; Nivorlis, Aristeidis; Mkandawire, Martin

    2018-03-01

    Mine waste rock piles (WRPs) can contain sulfidic minerals whose interaction with oxygen and water can generate acid mine drainage (AMD). Thus, WRPs can be a long-term source of environmental pollution. Since the generation of AMD and its release into the environment is dependent on the net volume and bulk composition of waste rock, effective characterization of WRPs is necessary for successful remedial design and monitoring. In this study, a combined DC resistivity and induced polarization (DC-IP) approach was employed to characterize an AMD-generating WRP in the Sydney Coalfield, Nova Scotia, Canada. Two-dimensional (2D) DC-IP imaging with 6 survey lines was performed to capture the full WRP landform. 2D DC results indicated a highly heterogeneous and moderately conductive waste rock underlain by a resistive bedrock containing numerous fractures. 2D IP (chargeability) results identified several highly-chargeable regions within the waste, with normalized chargeability delineating regions specific to waste mineralogy only. Three-dimensional (3D) DC-IP imaging, using 17 parallel lines on the plateau of the pile, was then used to focus on the composition of the waste rock. The full 3D inverted DC-IP distributions were used to identify coincident and continuous zones (isosurfaces) of low resistivity (<30 Ω-m) and high normalized chargeability (>0.4 mS/m) that were inferred as generated AMD (leachate) and stored AMD (sulfides), respectively. Integrated geological, hydrogeological and geochemical data increased confidence in the geoelectrical interpretations. Knowledge on the location of potentially more reactive waste material is extremely valuable for improved long-term AMD monitoring at the WRP.

  5. Vadose Zone Transport Field Study: Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.

    2006-07-31

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energy’s Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets tomore » validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanford’s vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNL’s Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.« less

  6. Closed cycle construction: an integrated process for the separation and reuse of C&D waste.

    PubMed

    Mulder, Evert; de Jong, Tako P R; Feenstra, Lourens

    2007-01-01

    In The Netherlands, construction and demolition (C&D) waste is already to a large extent being reused, especially the stony fraction, which is crushed and reused as a road base material. In order to increase the percentage of reuse of the total C&D waste flow to even higher levels, a new concept has been developed. In this concept, called 'Closed Cycle Construction', the processed materials are being reused at a higher quality level and the quantity of waste that has to be disposed of is minimised. For concrete and masonry, the new concept implies that the material cycle will be completely closed, and the original constituents (clay bricks, gravel, sand, cement stone) are recovered in thermal processes. The mixed C&D waste streams are separated and decontaminated. For this purpose several dry separation techniques are being developed. The quality of the stony fraction is improved so much, that this fraction can be reused as an aggregate in concrete. The new concept has several benefits from a sustainability point of view, namely less energy consumption, less carbon dioxide emission, less waste production and less land use (for excavation and disposal sites). One of the most remarkable benefits of the new concept is that the thermal process steps are fuelled with the combustible fraction of the C&D waste itself. Economically the new process is more or less comparable with the current way of processing C&D waste. On the basis of the positive results of a feasibility study, currently a pilot and demonstration project is being carried out. The aim is to optimise the different process steps of the Closed Cycle Construction process on a laboratory scale, and then to verify them on a large scale. The results of the project are promising, so far.

  7. Selection of human consumables for future space missions

    NASA Technical Reports Server (NTRS)

    Bourland, C. T.; Smith, M. C.

    1991-01-01

    Consumables for human spaceflight include oxygen, water, food and food packaging, personal hygiene items, and clothing. This paper deals with the requirements for food and water, and their impact on waste product generation. Just as urbanization of society has been made possible by improved food processing and packaging, manned spaceflight has benefitted from this technology. The downside of this technology is increased food package waste product. Since consumables make up a major portion of the vehicle onboard stowage and generate most of the waste products, selection of consumables is a very critical process. Food and package waste comprise the majority of the trash generated on the current shuttle orbiter missions. Plans for future missions must include accurate assessment of the waste products to be generated, and the methods for processing and disposing of these wastes.

  8. Measurement of actinides and strontium-90 in high activity waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, S.L. III; Nelson, M.R.

    1994-08-01

    The reliable measurement of trace radionuclides in high activity waste is important to support waste processing activities at SRS (F and H Area Waste Tanks, Extended Sludge Processing (ESP) and In-Tank precipitation (ITP) processing). Separation techniques are needed to remove high levels of gamma activity and alpha/beta interferences prior to analytical measurement. Using new extraction chromatographic resins from EiChrom Industries, Inc., the SRS Central Laboratory has developed new high speed separation methods that enable measurement of neptunium, thorium, uranium, plutonium, americium and strontium-90 in high activity waste solutions. Small particle size resin and applied vacuum are used to reduce analysismore » times and enhance column performance. Extraction chromatographic resins are easy to use and eliminate the generation of contaminated liquid organic waste.« less

  9. Defense Waste Processing Facility Process Enhancements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bricker, Jonathan

    2010-11-01

    Jonathan Bricker provides an overview of process enhancements currently being done at the Defense Waste Processing Facility (DWPF) at SRS. Some of these enhancements include: melter bubblers; reduction in water use, and alternate reductant.

  10. Biodiesel production from waste frying oil using waste animal bone and solar heat.

    PubMed

    Corro, Grisel; Sánchez, Nallely; Pal, Umapada; Bañuelos, Fortino

    2016-01-01

    A two-step catalytic process for the production of biodiesel from waste frying oil (WFO) at low cost, utilizing waste animal-bone as catalyst and solar radiation as heat source is reported in this work. In the first step, the free fatty acids (FFA) in WFO were esterified with methanol by a catalytic process using calcined waste animal-bone as catalyst, which remains active even after 10 esterification runs. The trans-esterification step was catalyzed by NaOH through thermal activation process. Produced biodiesel fulfills all the international requirements for its utilization as a fuel. A probable reaction mechanism for the esterification process is proposed considering the presence of hydroxyapatite at the surface of calcined animal bones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The role of acceptable knowledge in transuranic waste disposal operations - 11117

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chancellor, Christopher John; Nelson, Roger

    2010-11-08

    The Acceptable Knowledge (AK) process plays a key role in the delineation of waste streams destined for the Waste Isolation Pilot Plant (WIPP). General Electric's Vallecitos Nuclear Center (GEVNC) provides for an ideal case study of the application of AK in a multiple steward environment. In this review we will elucidate the pivotal role Acceptable Knowledge played in segregating Department of Energy (DOE) responsibilities from a commercial facility. The Acceptable Knowledge process is a necessary component of waste characterization that determines whether or not a waste stream may be considered for disposal at the WIPP site. This process may bemore » thought of as an effort to gain a thorough understanding of the waste origin, chemical content, and physical form gleaned by the collection of documentation that concerns generator/storage site history, mission, and operations; in addition to waste stream specific information which includes the waste generation process, the waste matrix, the quantity of waste concerned, and the radiological and chemical make up of the waste. The collection and dissemination of relevant documentation is the fundamental requirement for the AK process to work. Acceptable Knowledge is the predominant process of characterization and, therefore, a crucial part of WIPP's transuranic waste characterization program. This characterization process, when conducted to the standards set forth in WIPP's operating permit, requires confirmation/verification by physical techniques such as Non-Destructive Examination (NDE), Visual Examination (VE), and Non-Destructive Assay (NDA). These physical characterization techniques may vary in their appropriateness for a given waste stream; however, nothing will allow the substitution or exclusion of AK. Beyond the normal scope of operations, AK may be considered, when appropriate, a surrogate for the physical characterization techniques in a procedure that appeals to concepts such As Low As Reasonably Achievable (ALARA) and budgetary savings. This substitution is referred to as an Acceptable Knowledge Sufficiency Determination. With a Sufficiency Determination Request, AK may supplant the need for one or all of the physical analysis methods. This powerful procedure may be used on a scale as small as a single container to that of a vast waste stream. Only under the most stringent requirements will an AK Sufficiency Determination be approved by the regulators and, to date, only six such Sufficiency Determinations have been approved. Although Acceptable Knowledge is legislated into the operational procedures of the WIPP facility there is more to it than compliance. AK is not merely one of a long list of requirements in the characterization and verification of transuranic (TRU) waste destined for the WIPP. Acceptable Knowledge goes beyond the regulatory threshold by offering a way to reduce risk, cost, time, and uncertainty on its own laurels. Therefore, AK alone can be argued superior to any other waste characterization technique.« less

  12. DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING DL

    2010-08-03

    This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required.more » The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.« less

  13. WTP Waste Feed Qualification: Glass Fabrication Unit Operation Testing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, M. E.; Newell, J. D.; Johnson, F. C.

    The waste feed qualification program is being developed to protect the Hanford Tank Waste Treatment and Immobilization Plant (WTP) design, safety basis, and technical basis by assuring waste acceptance requirements are met for each staged waste feed campaign prior to transfer from the Tank Operations Contractor to the feed receipt vessels inside the Pretreatment Facility. The Waste Feed Qualification Program Plan describes the three components of waste feed qualification: 1. Demonstrate compliance with the waste acceptance criteria 2. Determine waste processability 3. Test unit operations at laboratory scale. The glass fabrication unit operation is the final step in the processmore » demonstration portion of the waste feed qualification process. This unit operation generally consists of combining each of the waste feed streams (high-level waste (HLW) and low-activity waste (LAW)) with Glass Forming Chemicals (GFCs), fabricating glass coupons, performing chemical composition analysis before and after glass fabrication, measuring hydrogen generation rate either before or after glass former addition, measuring rheological properties before and after glass former addition, and visual observation of the resulting glass coupons. Critical aspects of this unit operation are mixing and sampling of the waste and melter feeds to ensure representative samples are obtained as well as ensuring the fabrication process for the glass coupon is adequate. Testing was performed using a range of simulants (LAW and HLW simulants), and these simulants were mixed with high and low bounding amounts of GFCs to evaluate the mixing, sampling, and glass preparation steps in shielded cells using laboratory techniques. The tests were performed with off-the-shelf equipment at the Savannah River National Laboratory (SRNL) that is similar to equipment used in the SRNL work during qualification of waste feed for the Defense Waste Processing Facility (DWPF) and other waste treatment facilities at the Savannah River Site. It is not expected that the exact equipment used during this testing will be used during the waste feed qualification testing for WTP, but functionally similar equipment will be used such that the techniques demonstrated would be applicable. For example, the mixing apparatus could use any suitable mixer capable of being remoted and achieving similar mixing speeds to those tested.« less

  14. Anaerobic digestion of municipal solid waste: Technical developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  15. Pie waste - A component of food waste and a renewable substrate for producing ethanol.

    PubMed

    Magyar, Margaret; da Costa Sousa, Leonardo; Jayanthi, Singaram; Balan, Venkatesh

    2017-04-01

    Sugar-rich food waste is a sustainable feedstock that can be converted into ethanol without an expensive thermochemical pretreatment that is commonly used in first and second generation processes. In this manuscript we have outlined the pie waste conversion to ethanol through a two-step process, namely, enzyme hydrolysis using commercial enzyme products mixtures and microbial fermentation using yeast. Optimized enzyme cocktail was found to be 45% alpha amylase, 45% gamma amylase, and 10% pectinase at 2.5mg enzyme protein/g glucan produced a hydrolysate with high glucose concentration. All three solid loadings (20%, 30%, and 40%) produced sugar-rich hydrolysates and ethanol with little to no enzyme or yeast inhibition. Enzymatic hydrolysis and fermentation process mass balance was carried out using pie waste on a 1000g dry weight basis that produced 329g ethanol at 20% solids loading. This process clearly demonstrate how food waste could be efficiently converted to ethanol that could be used for making biodiesel by reacting with waste cooking oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. EFFECTS OF FLY ASH TRANSITION METAL CONTENT AND FLUE GAS HCL/SO2 RATIO ON MERCURY SPECIATION IN WASTE COMBUSTION

    EPA Science Inventory

    The paper presents results of research on the effect of sulfur dioxide (SO2):HCI ratio on heterogeneous Hg0 oxidation. The addition of SO2 to moist flue gas at high SO2:HCI ratios (4:1 to 10:1) caused a decrease in oxidation of Hg0 relative to flur gas without SO2. This is attrib...

  17. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.

    PubMed

    McCann, Clare M; Gray, Neil D; Tourney, Janette; Davenport, Russell J; Wade, Matthew; Finlay, Nina; Hudson-Edwards, Karen A; Johnson, Karen L

    2015-11-01

    A natural Mn oxide (NMO) waste was assessed as an in situ remediation amendment for Pb contaminated sites. The viability of this was investigated using a 10 month lysimeter trial, wherein a historically Pb contaminated soil was amended with a 10% by weight model NMO. The model NMO was found to have a large Pb adsorption capacity (qmax 346±14 mg g(-1)). However, due to the heterogeneous nature of the Pb contamination in the soils (3650.54-9299.79 mg kg(-1)), no treatment related difference in Pb via geochemistry could be detected. To overcome difficulties in traditional geochemical techniques due to pollutant heterogeneity we present a new method for unequivocally proving metal sorption to in situ remediation amendments. The method combines two spectroscopic techniques; namely electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). Using this we showed Pb immobilisation on NMO, which were Pb free prior to their addition to the soils. Amendment of the soil with exogenous Mn oxide had no effect on microbial functioning, nor did it perturb the composition of the dominant phyla. We conclude that NMOs show excellent potential as remediation amendments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Process for treating waste water having low concentrations of metallic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  19. 40 CFR 240.204-2 - Recommended procedures: Design.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....204-2 Section 240.204-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures... indiscriminately. Consideration should be given to onsite treatment of process and waste waters before discharge...

  20. 40 CFR 240.208-1 - Requirement.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.208-1 Requirement. Residue and other solid waste products resulting from a thermal process shall be disposed of in an...

  1. Heterogeneous recurrence monitoring and control of nonlinear stochastic processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hui, E-mail: huiyang@usf.edu; Chen, Yun

    Recurrence is one of the most common phenomena in natural and engineering systems. Process monitoring of dynamic transitions in nonlinear and nonstationary systems is more concerned with aperiodic recurrences and recurrence variations. However, little has been done to investigate the heterogeneous recurrence variations and link with the objectives of process monitoring and anomaly detection. Notably, nonlinear recurrence methodologies are based on homogeneous recurrences, which treat all recurrence states in the same way as black dots, and non-recurrence is white in recurrence plots. Heterogeneous recurrences are more concerned about the variations of recurrence states in terms of state properties (e.g., valuesmore » and relative locations) and the evolving dynamics (e.g., sequential state transitions). This paper presents a novel approach of heterogeneous recurrence analysis that utilizes a new fractal representation to delineate heterogeneous recurrence states in multiple scales, including the recurrences of both single states and multi-state sequences. Further, we developed a new set of heterogeneous recurrence quantifiers that are extracted from fractal representation in the transformed space. To that end, we integrated multivariate statistical control charts with heterogeneous recurrence analysis to simultaneously monitor two or more related quantifiers. Experimental results on nonlinear stochastic processes show that the proposed approach not only captures heterogeneous recurrence patterns in the fractal representation but also effectively monitors the changes in the dynamics of a complex system.« less

  2. Sustainability of cement kiln co-processing of wastes in India: a pilot study.

    PubMed

    Baidya, Rahul; Ghosh, Sadhan Kumar; Parlikar, Ulhas V

    2017-07-01

    Co-processing in cement kiln achieves effective utilization of the material and energy value present in the wastes, thereby conserving the natural resources by reducing the use of virgin material. In India, a number of multifolded initiatives have been taken that take into account the potential and volume of waste generation. This paper studies the factors which might influence the sustainability of co-processing of waste in cement kilns as a business model, considering the issues and challenges in the supply chain framework in India in view of the four canonical pillars of sustainability. A pilot study on co-processing was carried out in one of the cement plant in India to evaluate the environmental performance, economical performance, operational performance and social performance. The findings will help India and other developing countries to introduce effective supply chain management for co-processing while addressing the issues and challenges during co-processing of different waste streams in the cement kilns.

  3. Separation science and technology. Semiannual progress report, October 1993--March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandegrift, G.F.; Aase, S.B.; Buchholz, B.

    1997-12-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generatedmore » by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.« less

  4. Preliminary evaluation of waste processing in a CELSS

    NASA Technical Reports Server (NTRS)

    Jacquez, Ricardo B.

    1990-01-01

    Physical/chemical, biological, and hybrid methods can be used in a space environment for processing wastes generated by a Closed Ecological Life Support System (CELSS). Two recycling scenarios are presented. They reflect differing emphases on and responses to the waste system formation rates and their composition, as well as indicate the required products from waste treatment that are needed in a life support system.

  5. Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.

    Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.« less

  6. Introduction to Exide Corporations`s high temperature metals recovery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozelle, P.L.; Baranski, J.P.; Bitler, J.A.

    1995-12-31

    Environmental strategies concerning the processing and ultimate fate of wastes and byproducts are of ever increasing importance to the public and business sectors in the world today. Recycling materials and reusing energy from wastes and byproducts results in a reduction of environmental impacts and the cost of disposal. These are the key steps in reaching the ultimate goal of waste minimization. In response to these needs, Exide Corporation, in its vision to develop waste minimization programs, has developed the Exide High Temperature Metals Recovery (EHTMR) process. This process can treat a variety of wastes and byproducts where metals contents aremore » an issue, recover the metal values for reuse, and produce a metals-depleted slag that can be marketable under the most stringent proposed EPA regulations for leachability of contaminants. The central feature of the EHTMR process is the exposure of treated materials to a transferred arc plasma generated in an electric furnace. The process achieves a reduction in costs and liability by recovering portions of a waste that can be recycled or reclaimed and produces a slag that has beneficial use to society.« less

  7. Laboratory plant study on the melting process of asbestos waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Shinichi; Terazono, Atsushi; Takatsuki, Hiroshi

    The melting process was studied as a method of changing asbestos into non-hazardous waste and recovering it as a reusable resource. In an initial effort, the thermal behaviors of asbestos waste in terms of physical and chemical structure have been studied. Then, 10 kg/h-scale laboratory plant experiments were carried out. By X-ray diffraction analysis, the thermal behaviors of sprayed-on asbestos waste revealed that chrysotile asbestos waste change in crystal structure at around 800 C, and becomes melted slag, mainly composed of magnesium silicate, at around 1,500 C. Laboratory plant experiments on the melting process of sprayed-on asbestos have shown thatmore » melted slag can be obtained. X-ray diffraction analysis of the melted slag revealed crystal structure change, and SEM analysis showed the slag to have a non-fibrous form. And more, TEM analysis proved the very high treatment efficiency of the process, that is, reduction of the asbestos content to 1/10{sup 6} as a weight basis. These analytical results indicate the effectiveness of the melting process for asbestos waste treatment.« less

  8. Process for the displacement of cyanide ions from metal-cyanide complexes

    DOEpatents

    Smith, Barbara F.; Robinson, Thomas W.

    1997-01-01

    The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.

  9. Extraction of essential oil from baby Java orange (Citrus sinensis) solid waste using water and steam distillation

    NASA Astrophysics Data System (ADS)

    Dewi, I. A.; Prastyo, A. M.; Wijana, S.

    2018-03-01

    Baby java orange (Citrus sinensis) is commonly consumed as juice. Processing of baby java orange leaves organic waste which consist of the mesocarp, exocarp, seed, and wall of the orange. Therefore, it is necessary to process baby java orange waste to be valuable products. The purpose of this study was to provide added value to unutilized baby java orange waste, and to find out the pretreatment of time-delay process that maximize the yield of essential oil produced. Essential oil processing can be done by water and steam distillation. The study used randomized block design with one factor namely distillation time-delay process by air drying consisted of 4 levels i.e. the distillation delay for 2, 4, 6, and 8 days. The best treatment was determined based on the yield. The best essential oil from baby java orange waste was obtained from the treatment of distillation delay-process of 8 days. This pretreatment generated yield value of 0.63% with moisture content of 24.21%. By estimating the price of essential oil showed that this effort not only reduced the bulky organic waste but also provided potential economical value.

  10. Modeling of Solid Waste Processing Options in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Rodriguez, Luis F.; Finn, Cory; Kang, Sukwon; Hogan, John; Luna, Bernadette (Technical Monitor)

    2000-01-01

    BIO-Plex is a ground-based test bed currently under development by NASA for testing technologies and practices that may be utilized in future long-term life support missions. All aspects of such an Advanced Life Support (ALS) System must be considered to confidently construct a reliable system, which will not only allow the crew to survive in harsh environments, but allow the crew time to perform meaningful research. Effective handling of solid wastes is a critical aspect of the system, especially when recovery of resources contained in the waste is required. This is particularly important for ALS Systems configurations that include a Biomass Production Chamber. In these cases, significant amounts of inedible biomass waste may be produced, which can ultimately serve as a repository of necessary resources for sustaining life, notably carbon, water, and plant nutrients. Numerous biological and physicochemical solid waste processing options have been considered. Biological options include composting, aerobic digestion, and anaerobic digestion. Physicochemical options include pyrolysis, SCWO (supercritical water oxidation), various incineration configurations, microwave incineration, magnetically assisted gasification, and low temperature plasma reaction. Modeling of these options is a necessary step to assist in the design process. A previously developed top-level model of BIO-Plex implemented in MATLAB Simulink (r) for the use of systems analysis and design has been adopted for this analysis. Presently, this model only considered incineration for solid waste processing. Present work, reported here, includes the expansion of this model to include a wider array of solid waste processing options selected from the above options, bearing in mind potential, near term solid waste treatment systems. Furthermore, a trade study has also been performed among these solid waste processing technologies in an effort to determine the ideal technology for long-term life support missions.

  11. Modeling vadose zone processes during land application of food-processing waste water in California's Central Valley.

    PubMed

    Miller, Gretchen R; Rubin, Yoram; Mayer, K Ulrich; Benito, Pascual H

    2008-01-01

    Land application of food-processing waste water occurs throughout California's Central Valley and may be degrading local ground water quality, primarily by increasing salinity and nitrogen levels. Natural attenuation is considered a treatment strategy for the waste, which often contains elevated levels of easily degradable organic carbon. Several key biogeochemical processes in the vadose zone alter the characteristics of the waste water before it reaches the ground water table, including microbial degradation, crop nutrient uptake, mineral precipitation, and ion exchange. This study used a process-based, multi-component reactive flow and transport model (MIN3P) to numerically simulate waste water migration in the vadose zone and to estimate its attenuation capacity. To address the high variability in site conditions and waste-stream characteristics, four food-processing industries were coupled with three site scenarios to simulate a range of land application outcomes. The simulations estimated that typically between 30 and 150% of the salt loading to the land surface reaches the ground water, resulting in dissolved solids concentrations up to sixteen times larger than the 500 mg L(-1) water quality objective. Site conditions, namely the ratio of hydraulic conductivity to the application rate, strongly influenced the amount of nitrate reaching the ground water, which ranged from zero to nine times the total loading applied. Rock-water interaction and nitrification explain salt and nitrate concentrations that exceed the levels present in the waste water. While source control remains the only method to prevent ground water degradation from saline wastes, proper site selection and waste application methods can reduce the risk of ground water degradation from nitrogen compounds.

  12. Alternative Processes for Water Reclamation and Solid Waste Processing in a Physical/chemical Bioregenerative Life Support System

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.

    1990-01-01

    Viewgraphs on alternative processes for water reclamation and solid waste processing in a physical/chemical-bioregenerative life support system are presented. The main objective is to focus attention on emerging influences of secondary factors (i.e., waste composition, type and level of chemical contaminants, and effects of microorganisms, primarily bacteria) and to constructively address these issues by discussing approaches which attack them in a direct manner.

  13. Citrus Waste Biomass Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karel Grohman; Scott Stevenson

    Renewable Spirits is developing an innovative pilot plant bio-refinery to establish the commercial viability of ehtanol production utilizing a processing waste from citrus juice production. A novel process based on enzymatic hydrolysis of citrus processing waste and fermentation of resulting sugars to ethanol by yeasts was successfully developed in collaboration with a CRADA partner, USDA/ARS Citrus and Subtropical Products Laboratory. The process was also successfully scaled up from laboratory scale to 10,000 gal fermentor level.

  14. Hanford solid-waste handling facility strategy

    NASA Astrophysics Data System (ADS)

    Albaugh, J. F.

    1982-05-01

    Prior to 1970, transuranic (TRU) solid waste was disposed of at Hanford by shallow land burial. Since 1970, TRU solid waste has been stored in near surface trenches designed to facilitate retrieval after twenty year storage period. Current strategy calls for final disposal in a geologic repository. Funding permitting, in 1983, certification of newly generated TRU waste to the Waste Isolation Pilot Plant (WIPP) criteria for geologic disposal will be initiated. Certified and uncertified waste will continue to be stored at Hanford in retrievable storage until a firm schedule for shipment to WIPP is developed. Previously stored wastes retrieved for geologic disposal and newly generated uncertified waste requires processing to assure compliance with disposal criteria. A facility to perform this function is being developed. A study to determine the requirements of this Waste Receiving and Processing (WRAP) Facility is currently being conducted.

  15. Gasification of Wood and Non-wood Waste of Timber Production as Perspectives for Development of Bioenergy

    NASA Astrophysics Data System (ADS)

    Kislukhina, Irina A.; Rybakova, Olga G.

    2018-03-01

    The article deals with biomass gasification technology using the gasification plant running on wood chips and pellets, produced from essential oils waste (waste of coniferous boughs). During the study, the authors solved the process task of improving the quality of the product gas derived from non-wood waste of timber production (coniferous boughs) due to the extraction of essential oils and the subsequent thermal processing of spent coniferous boughs at a temperature of 250-300°C degrees without oxygen immediately before pelleting. The paper provides the improved biomass gasification process scheme including the grinding of coniferous boughs, essential oil distillation and thermal treatment of coniferous boughs waste and pelletizing.

  16. Strategy of Construction and Demolition Waste Management after Chemical Industry Facilities Removal

    NASA Astrophysics Data System (ADS)

    Tashkinova, I. N.; Batrakova, G. M.; Vaisman, Ya I.

    2017-06-01

    Mixed waste products are generated in the process of irrelevant industrial projects’ removal if conventional techniques of their demolition and dismantling are applied. In Russia the number of unused chemical industry facilities including structures with high rate of wear is growing. In removing industrial buildings and production shops it is used conventional techniques of demolition and dismantling in the process of which mixed waste products are generated. The presence of hazardous chemicals in these wastes makes difficulties for their use and leads to the increasing volume of unutilized residues. In the process of chemical industry facilities’ removal this fact takes on special significance as a high level of hazardous chemicals in the waste composition demands for the realization of unprofitable measures aimed at ensuring environmental and industrial safety. The proposed strategy of managing waste originated from the demolition and dismantling of chemical industry facilities is based on the methodology of industrial metabolism which allows identifying separate material flows of recycled, harmful and ballast components, performing separate collection of components during removal and taking necessary preventive measures. This strategy has been tested on the aniline synthesis plant being in the process of removal. As a result, a flow of 10 wt. %, subjected to decontamination, was isolated from the total volume of construction and demolition waste (C&D waste). The considered approach allowed using the resource potential of more than 80wt. % of waste and minimizing the disposed waste volume.

  17. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: Optimized by response surface methodology.

    PubMed

    Pandit, Priti R; Fulekar, M H

    2017-08-01

    Worldwide consumption of hen eggs results in availability of large amount of discarded egg waste particularly egg shells. In the present study, the waste shells were utilized for the synthesis of highly active heterogeneous calcium oxide (CaO) nanocatalyst to transesterify dry biomass into methyl esters (biodiesel). The CaO nanocatalyst was synthesied by calcination-hydration-dehydration technique and fully characterized by infrared spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), brunauer-emmett-teller (BET) elemental and thermogravimetric analysis. TEM image showed that the nano catalyst had spherical shape with average particle size of 75 nm. BET analysis indicated that the catalyst specific surface area was 16.4 m 2  g -1 with average pore diameter of 5.07 nm. The effect of nano CaO catalyst was investigated by direct transesterification of dry biomass into biodiesel along with other reaction parameters such as catalyst ratio, reaction time and stirring rate. The impact of the transesterification reaction parameters and microalgal biodiesel yield were analyzed by response surface methodology based on a full factorial, central composite design. The significance of the predicted mode was verified and 86.41% microalgal biodiesel yield was reported at optimal parameter conditions 1.7% (w/w), catalyst ratio, 3.6 h reaction time and stirring rate of 140.6 rpm. The biodiesel conversion was determined by 1 H nuclear magnetic resonance spectroscopy (NMR). The fuel properties of prepared biodiesel were found to be highly comply with the biodiesel standard ASTMD6751 and EN14214. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. ROAD MAP FOR DEVELOPMENT OF CRYSTAL-TOLERANT HIGH LEVEL WASTE GLASSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Peeler, D.; Herman, C.

    The U.S. Department of Energy (DOE) is building a Tank Waste Treatment and Immobilization Plant (WTP) at the Hanford Site in Washington to remediate 55 million gallons of radioactive waste that is being temporarily stored in 177 underground tanks. Efforts are being made to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. This road map guides the research and development for formulation and processing of crystaltolerant glasses, identifying near- and long-term activities that need to be completed over the period from 2014 to 2019. The primary objectivemore » is to maximize waste loading for Hanford waste glasses without jeopardizing melter operation by crystal accumulation in the melter or melter discharge riser. The potential applicability to the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will also be addressed in this road map. The planned research described in this road map is motivated by the potential for substantial economic benefits (significant reductions in glass volumes) that will be realized if the current constraints (T1% for WTP and TL for DWPF) are approached in an appropriate and technically defensible manner for defense waste and current melter designs. The basis of this alternative approach is an empirical model predicting the crystal accumulation in the WTP glass discharge riser and melter bottom as a function of glass composition, time, and temperature. When coupled with an associated operating limit (e.g., the maximum tolerable thickness of an accumulated layer of crystals), this model could then be integrated into the process control algorithms to formulate crystal-tolerant high-level waste (HLW) glasses targeting high waste loadings while still meeting process related limits and melter lifetime expectancies. The modeling effort will be an iterative process, where model form and a broader range of conditions, e.g., glass composition and temperature, will evolve as additional data on crystal accumulation are gathered. Model validation steps will be included to guide the development process and ensure the value of the effort (i.e., increased waste loading and waste throughput). A summary of the stages of the road map for developing the crystal-tolerant glass approach, their estimated durations, and deliverables is provided.« less

  19. PARALLEL MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS FOR WASTE SOLVENT RECYCLING

    EPA Science Inventory

    Waste solvents are of great concern to the chemical process industries and to the public, and many technologies have been suggested and implemented in the chemical process industries to reduce waste and associated environmental impacts. In this article we have developed a novel p...

  20. Final Regulatory Determination for Special Wastes From Mineral Processing (Mining Waste Exclusion) - Federal Register Notice, June 13, 1991

    EPA Pesticide Factsheets

    This action presents the Agency's final regulatory determination required by section 3001(b)(3)(C) of the Resource Conservation and Recovery Act (RCRA) for 20 special wastes from the processing of ores and minerals.

  1. INTELLIGENT DECISION SUPPORT FOR WASTE MINIMIZATION IN ELECTROPLATING PLANTS. (R824732)

    EPA Science Inventory

    Abstract

    Wastewater, spent solvent, spent process solutions, and sludge are the major waste streams generated in large volumes daily in electroplating plants. These waste streams can be significantly minimized through process modification and operational improvement. I...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains appendices for the following: Rocky Flats Plant and Idaho National Engineering Laboratory waste process information; TRUPACT-II content codes (TRUCON); TRUPACT-II chemical list; chemical compatibility analysis for Rocky Flats Plant waste forms; chemical compatibility analysis for waste forms across all sites; TRU mixed waste characterization database; hazardous constituents of Rocky Flats Transuranic waste; summary of waste components in TRU waste sampling program at INEL; TRU waste sampling program; and waste analysis data.

  3. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues.

    PubMed

    Kollikkathara, Naushad; Feng, Huan; Yu, Danlin

    2010-11-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Short mechanical biological treatment of municipal solid waste allows landfill impact reduction saving waste energy content.

    PubMed

    Scaglia, Barbara; Salati, Silvia; Di Gregorio, Alessandra; Carrera, Alberto; Tambone, Fulvia; Adani, Fabrizio

    2013-09-01

    The aim of this work was to evaluate the effects of full scale MBT process (28 d) in removing inhibition condition for successive biogas (ABP) production in landfill and in reducing total waste impact. For this purpose the organic fraction of MSW was treated in a full-scale MBT plant and successively incubated vs. untreated waste, in simulated landfills for one year. Results showed that untreated landfilled-waste gave a total ABP reduction that was null. On the contrary MBT process reduced ABP of 44%, but successive incubation for one year in landfill gave a total ABP reduction of 86%. This ABP reduction corresponded to a MBT process of 22 weeks length, according to the predictive regression developed for ABP reduction vs. MBT-time. Therefore short MBT allowed reducing landfill impact, preserving energy content (ABP) to be produced successively by bioreactor technology since pre-treatment avoided process inhibition because of partial waste biostabilization. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A finite difference model used to predict the consolidation of a ceramic waste form produced from the electrometallurgical treatment of spent nuclear fuel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bateman, K. J.; Capson, D. D.

    2004-03-29

    Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less

  6. Determinant impact of waste collection and composition on anaerobic digestion performance: industrial results.

    PubMed

    Saint-Joly, C; Desbois, S; Lotti, J P

    2000-01-01

    The performance of the anaerobic digestion process depends deeply on the quality of the waste to be treated. This has been already demonstrated at the lab-scale. The objective of this study is to confirm this result at the industrial scale, with very long representative period and with the same process, the Valorga process. According to the waste quality and the collection type and even with the same conditions of fermentation, the biogas yield can vary by a factor of 1.5 when it is expressed (under normal conditions of pressure and temperature) in m3 biogas/t fresh waste, and by a factor of 2 when it is expressed in m3 CH4/t volatile solids. So, the biogas performance does not characterise a process since it is deeply governed by waste composition. This biogas productivity becomes a pertinent parameter only with consistent and relevant hypothesis and/or analytical results on the waste composition which depends on the collection procedure, the site characteristics and the season.

  7. Critical Protection Item classification for a waste processing facility at Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ades, M.J.; Garrett, R.J.

    1993-10-01

    This paper describes the methodology for Critical Protection Item (CPI) classification and its application to the Structures, Systems and Components (SSC) of a waste processing facility at the Savannah River Site (SRS). The WSRC methodology for CPI classification includes the evaluation of the radiological and non-radiological consequences resulting from postulated accidents at the waste processing facility and comparison of these consequences with allowable limits. The types of accidents considered include explosions and fire in the facility and postulated accidents due to natural phenomena, including earthquakes, tornadoes, and high velocity straight winds. The radiological analysis results indicate that CPIs are notmore » required at the waste processing facility to mitigate the consequences of radiological release. The non-radiological analysis, however, shows that the Waste Storage Tank (WST) and the dike spill containment structures around the formic acid tanks in the cold chemical feed area and waste treatment area of the facility should be identified as CPIs. Accident mitigation options are provided and discussed.« less

  8. Energy recovery from solid waste. Volume 2: Technical report. [pyrolysis and biodegradation

    NASA Technical Reports Server (NTRS)

    Huang, C. J.; Dalton, C.

    1975-01-01

    A systems analysis of energy recovery from solid waste demonstrates the feasibility of several current processes for converting solid waste to an energy form. The social, legal, environmental, and political factors are considered in depth with recommendations made in regard to new legislation and policy. Biodegradation and thermal decomposition are the two areas of disposal that are considered with emphasis on thermal decomposition. A technical and economic evaluation of a number of available and developing energy-recovery processes is given. Based on present technical capabilities, use of prepared solid waste as a fuel supplemental to coal seems to be the most economic process by which to recover energy from solid waste. Markets are considered in detail with suggestions given for improving market conditions and for developing market stability. A decision procedure is given to aid a community in deciding on its options in dealing with solid waste, and a new pyrolysis process is suggested. An application of the methods of this study are applied to Houston, Texas.

  9. Melter Throughput Enhancements for High-Iron HLW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Gan, Hoa; Joseph, Innocent

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and themore » maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.« less

  10. Waste processing: new near infrared technologies for material identification and selection

    NASA Astrophysics Data System (ADS)

    Cesetti, M.; Nicolosi, P.

    2016-09-01

    The awareness of environmental issues on a global scale increases the opportunities for waste handling companies. Recovery is set to become all the more important in areas such as waste selection, minerals processing, electronic scrap, metal and plastic recycling, refuse and the food industry. Effective recycling relies on effective sorting. Sorting is a fundamental step of the waste disposal/recovery process. The big players in the sorting market are pushing for the development of new technologies to cope with literally any type of waste. The purpose of this tutorial is to gain an understanding of waste management, frameworks, strategies, and components that are current and emerging in the field. A particular focus is given to spectroscopic techniques that pertains the material selection process with a greater emphasis placed on the NIR technology for material identification. Three different studies that make use of NIR technology are shown, they are an example of some of the possible applications and the excellent results that can be achieved with this technique.

  11. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollikkathara, Naushad, E-mail: naushadkp@gmail.co; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to formmore » a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.« less

  12. Recovery of biomolecules from food wastes--a review.

    PubMed

    Baiano, Antonietta

    2014-09-17

    Food wastes are produced by a variety of sources, ranging from agricultural operations to household consumption. About 38% occurs during food processing. At present, the European Union legislation encourages the exploitation of co-products. This valorisation can be achieved through the extraction of high-value components such as proteins, polysaccharides, fibres, flavour compounds, and phytochemicals, which can be re-used as nutritionally and pharmacologically functional ingredients. Extraction can proceed according to solid-liquid extraction, Soxhlet extraction, pressurized fluid extraction, supercritical fluid extraction, ultrasound-assisted extraction, microwave-assisted extraction, pulsed electric field extraction, and enzyme-assisted extraction. Nevertheless, these techniques cannot be used indiscriminately and their choice depends on the type of biomolecules and matrix, the scale processing (laboratory or industrial), the ratio between production costs and economic values of the compounds to be extracted. The vegetable wastes include trimmings, peelings, stems, seeds, shells, bran, residues remaining after extraction of oil, starch, sugar, and juice. The animal-derived wastes include wastes from bred animals, wastes from seafood, wastes from dairy processing. The recovered biomolecules and by-products can be used to produce functional foods or as adjuvants in food processing or in medicinal and pharmaceutical preparations. This work is an overview of the type and amounts of food wastes; food waste legislation; conventional and novel techniques suitable for extracting biomolecules; food, medicinal and pharmaceutical uses of the recovered biomolecules and by-products, and future trends in these areas.

  13. Examples of Disposition Alternatives for WTP Solid Secondary Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, R.

    The Hanford Waste Treatment and Immobilization Plant is planned to produce a variety of solid secondary wastes that will require disposal at the Integrated Disposal Facility on the Hanford Site. Solid secondary wastes include a variety of waste streams that are a result of waste treatment and processing activities.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elicio, Andy U.

    My ERM 593 applied project will provide guidance for the Los Alamos National Laboratory Waste Stream Profile reviewer (i.e. RCRA reviewer) in regards to Reviewing and Approving a Waste Stream Profile in the Waste Compliance and Tracking System. The Waste Compliance and Tracking system is called WCATS. WCATS is a web-based application that “supports the generation, characterization, processing and shipment of LANL radioactive, hazardous, and industrial waste.” The LANL generator must characterize their waste via electronically by filling out a waste stream profile (WSP) in WCATS. Once this process is completed, the designated waste management coordinator (WMC) will perform amore » review of the waste stream profile to ensure the generator has completed their waste stream characterization in accordance with applicable state, federal and LANL directives particularly P930-1, “LANL Waste Acceptance Criteria,” and the “Waste Compliance and Tracking System User's Manual, MAN-5004, R2,” as applicable. My guidance/applied project will describe the purpose, scope, acronyms, definitions, responsibilities, assumptions and guidance for the WSP reviewer as it pertains to each panel and subpanel of a waste stream profile.« less

  15. Process Waste Assessment, Mechanics Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-05-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags andmore » spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.« less

  16. Performance-assessment progress for the Rozan low-level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smietanski, L.; Mitrega, J.; Frankowski, Z.

    1995-12-31

    The paper presents a condensed progress report on the performance assessment of Poland`s low-level waste disposal facility which is operating since 1961. The Rozan repository is of near-surface type with facilities which are the concrete fortifications built about 1910. Site characterization activities supplied information on regional geology, geohydrology, climatic and hydrologic conditions and terrain surface evolution due to geodynamic processes. Field surveys enabled to decode lithological, hydrogeological and geochemical site specific conditions. From the laboratory tests the data on groundwater chemistry and soil geochemical and hydraulic characteristics were obtained. The site geohydrologic main vulnerable element is the upmost directly endangeredmore » unconfined aquifer which is perched in relation to the region-wide hydraulic system. Heterogeneity of this system reflects in a wide range of hydraulic conductivity and thickness variations. It strongly affects velocity and flow directions. The chemistry of groundwater is unstable due to large sensitivity to external impacts. Modeling of the migration of the critical long-lived radionuclides Tc-99, U-238 and Pu-239 showed that the nearly 20 m thick unsaturated zone plays crucial role as an effective protective barrier. These radionuclides constitute minor part of the total inventory. Modeling of the development of the H-3 plume pointed out the role the macrodispersion plays in the unsaturated zone beneath the repository.« less

  17. Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH.

    PubMed

    Ye, Li; Liu, Wenjing; Shi, Qiantao; Jing, Chuanyong

    2017-11-01

    Nanoscale zero-valent iron (nZVI) is an effective arsenic (As) scavenger. However, spent nZVI may pose a higher environmental risk than our initial thought in the presence of As-reducing bacteria. Therefore, our motivation was to explore the As redox transformation and release in spent nZVI waste residue in contact with Pantoea sp. IMH, an arsC gene container adopting the As detoxification pathway. Our incubation results showed that IMH preferentially reduce soluble As(V), not solid-bound As(V), and was innocent in elevating total dissolved As concentrations. μ-XRF and As μ-XANES spectra clearly revealed the heterogeneity and complexity of the inoculated and control samples. Nevertheless, the surface As local coordination was not affected by the presence of IMH as evidenced by similar As-Fe atomic distance (3.32-3.36 Å) and coordination number (1.9) in control and inoculated samples. The Fe XANES results suggested that magnetite in nZVI residue was partly transformed to ferrihydrite, and the IMH activity slowed down the nZVI aging process. IMH distorted Fe local coordination without change its As adsorption capacity as suggested by Mössbauer spectroscopy. Arsenic retention is not inevitably enhanced by in situ formed secondary Fe minerals, but depends on the relative As affinity between the primary and secondary iron minerals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Auto shredder residue recycling: Mechanical separation and pyrolysis.

    PubMed

    Santini, Alessandro; Passarini, Fabrizio; Vassura, Ivano; Serrano, David; Dufour, Javier; Morselli, Luciano

    2012-05-01

    Directive 2000/53/EC sets a goal of 85% material recycling from end-of-life vehicles (ELVs) by the end of 2015. The current ELV recycling rate is around 80%, while the remaining waste is called automotive shredder residue (ASR), or car fluff. In Europe, this is mainly landfilled because it is extremely heterogeneous and often polluted with car fluids. Despite technical difficulties, in the coming years it will be necessary to recover materials from car fluff in order to meet the ELV Directive requirement. This study deals with ASR pretreatment and pyrolysis, and aims to determine whether the ELV material recycling target may be achieved by car fluff mechanical separation followed by pyrolysis with a bench scale reactor. Results show that flotation followed by pyrolysis of the light, organic fraction may be a suitable ASR recycling technique if the oil can be further refined and used as a chemical. Moreover, metals are liberated during thermal cracking and can be easily separated from the pyrolysis char, amounting to roughly 5% in mass. Lastly, pyrolysis can be a good starting point from a "waste-to-chemicals" perspective, but further research should be done with a focus on oil and gas refining, in order both to make products suitable for the chemical industry and to render the whole recycling process economically feasible. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Incineration and pyrolysis vs. steam gasification of electronic waste.

    PubMed

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2018-05-15

    Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  1. Bioregenerative technologies for waste processing and resource recovery in advanced space life support system

    NASA Technical Reports Server (NTRS)

    Chamberland, Dennis

    1991-01-01

    The Controlled Ecological Life Support System (CELSS) for producing oxygen, water, and food in space will require an interactive facility to process and return wastes as resources to the system. This paper examines the bioregenerative techologies for waste processing and resource recovery considered for a CELSS Resource Recovery system. The components of this system consist of a series of biological reactors to treat the liquid and solid material fractions, in which the aerobic and anaerobic reactors are combined in a block called the Combined Reactor Equipment (CORE) block. The CORE block accepts the human wastes, kitchen wastes, inedible refractory plant materials, grey waters from the CELLS system, and aquaculture solids and processes these materials in either aerobic or anaerobic reactors depending on the desired product and the rates required by the integrated system.

  2. Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reis de Oliveira, Camila, E-mail: Camilareis.oliveira@hotmail.com; Moura Bernardes, Andrea, E-mail: amb@ufrgs.br; Gerbase, Annelise Engel, E-mail: agerbase@ufrgs.br

    Highlights: Black-Right-Pointing-Pointer Review of the different e-waste collection systems and recycling processes. Black-Right-Pointing-Pointer We present the e-waste collection systems used in Europe and in the US. Black-Right-Pointing-Pointer We present e-waste collection systems used in Asia and Latin America. Black-Right-Pointing-Pointer E-waste management between developed and developing countries is very different. Black-Right-Pointing-Pointer We made a comparison of the world situation to the current Brazilian reality. - Abstract: Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Overmore » the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles.« less

  3. Development of a novel wet oxidation process for hazardous and mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1994-12-31

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process usesmore » a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described.« less

  4. Valorisation of fish by-products against waste management treatments--Comparison of environmental impacts.

    PubMed

    Lopes, Carla; Antelo, Luis T; Franco-Uría, Amaya; Alonso, Antonio A; Pérez-Martín, Ricardo

    2015-12-01

    Reuse and valorisation of fish by-products is a key process for marine resources conservation. Usually, fishmeal and oil processing factories collect the by-products generated by fishing port and industry processing activities, producing an economical benefit to both parts. In the same way, different added-value products can be recovered by the valorisation industries whereas fishing companies save the costs associated with the management of those wastes. However, it is important to estimate the advantages of valorisation processes not only in terms of economic income, but also considering the environmental impacts. This would help to know if the valorisation of a residue provokes higher impact than other waste management options, which means that its advantages are probably not enough for guarantying a sustainable waste reuse. To that purpose, there are several methodologies to evaluate the environmental impacts of processes, including those of waste management, providing different indicators which give information on relevant environmental aspects. In the current study, a comparative environmental assessment between a valorisation process (fishmeal and oil production) and different waste management scenarios (composting, incineration and landfilling) was developed. This comparison is a necessary step for the development and industrial implementation of these processes as the best alternative treatment for fish by-products. The obtained results showed that both valorisation process and waste management treatments presented similar impacts. However, a significant benefit can be achieved through valorisation of fish by-products. Additionally, the implications of the possible presence of pollutants were discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Waste Generation Overview Refresher, Course 21464

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Lewis Edward

    This course, Waste Generation Overview Refresher (COURSE 21464), provides an overview of federal and state waste management regulations, as well as Los Alamos National Laboratory (LANL) policies and procedures for waste management operations. The course covers the activities involved in the cradle-to- grave waste management process and focuses on waste characterization, waste compatibility determinations and classification, and the storage requirements for temporary waste accumulation areas at LANL.

  6. Comparative lifecycle assessment of alternatives for waste management in Rio de Janeiro - Investigating the influence of an attributional or consequential approach.

    PubMed

    Bernstad Saraiva, A; Souza, R G; Valle, R A B

    2017-10-01

    The environmental impacts from three management alternatives for organic fraction of municipal solid waste were compared using lifecycle assessment methodology. The alternatives (sanitary landfill, selective collection of organic waste for anaerobic digestion and anaerobic digestion after post-separation of organic waste) were modelled applying an attributional as well as consequential approach, in parallel with the aim of identifying if and how these approaches can affect results and conclusions. The marginal processes identified in the consequential modelling were in general associated with higher environmental impacts than average processes modelled with an attributional approach. As all investigated waste management alternatives result in net-substitution of energy and in some cases also materials, the consequential modelling resulted in lower absolute environmental impacts in five of the seven environmental impact categories assessed in the study. In three of these, the chosen modelling approach can alter the hierarchy between compared waste management alternatives. This indicates a risk of underestimating potential benefits from efficient energy recovery from waste when applying attributional modelling in contexts in which electricity provision historically has been dominated by technologies presenting rather low environmental impacts, but where projections point at increasing impacts from electricity provision in coming years. Thus, in the present case study, the chosen approach affects both absolute and relative results from the comparison. However, results were largely related to the processes identified as affected by investigated changes, and not merely the chosen modelling approach. The processes actually affected by future choices between different waste management alternatives are intrinsically uncertain. The study demonstrates the benefits of applying different assumptions regarding the processes affected by investigated choices - both for provision of energy and materials substituted by waste management processes in consequential LCA modelling, in order to present outcomes that are relevant as decision support within the waste management sector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. WESTERN RESEARCH INSTITUTE CONTAINED RECOVERY OF OILY WASTES (CROW) PROCESS - ITER

    EPA Science Inventory

    This report summarizes the findings of an evaluation of the Contained Recovery of Oily Wastes (CROW) technology developed by the Western Research Institute. The process involves the injection of heated water into the subsurface to mobilize oily wastes, which are removed from the ...

  8. Recycling agroindustrial waste by lactic fermentations: coffee pulp silage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrizales, V.; Ferrer, J.

    1985-04-03

    This UNIDO publication on lactic acid fermentation of coffee pulp for feed production covers (1) a process which can be adapted to existing coffee processing plants for drying the product once harvesting time has finished (2) unit operations involved: pressing (optional), silaging, liming and drying (3) experiments, results and discussion, bibliography, process statistics, and diagrams. Additional references: storage, biotechnology, lime, agricultural wastes, recycling, waste utilization.

  9. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO 2 Containing Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Edwards, T. B.

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition modelsmore » form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO 2, Na 2O, and Cs 2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO 2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO 2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less

  10. [PRIORITY TECHNOLOGIES OF THE MEDICAL WASTE DISPOSAL SYSTEM].

    PubMed

    Samutin, N M; Butorina, N N; Starodubova, N Yu; Korneychuk, S S; Ustinov, A K

    2015-01-01

    The annual production of waste in health care institutions (HCI) tends to increase because of the growth of health care provision for population. Among the many criteria for selecting the optimal treatment technologies HCI is important to provide epidemiological and chemical safety of the final products. Environmentally friendly method of thermal disinfection of medical waste may be sterilizators of medical wastes intended for hospitals, medical centers, laboratories and other health care facilities that have small and medium volume of processing of all types of waste Class B and C. The most optimal method of centralized disposal of medical waste is a thermal processing method of the collected material.

  11. A prototype knowledge-based decision support system for industrial waste management. Part 2: Application to a Trinidadian industrial estate case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, C.A.; Baetz, B.W.

    1998-09-01

    A knowledge-based decision support system (KBDSS) has been developed to examine the potentials for reuse, co-treatment, recycling and disposal of wastes from different industrial facilities. Four plants on the Point Lisas Industrial Estate in Trinidad were selected to test this KBDSS; a gas processing plant, a methanol plant, a fertilizer/ammonia plant and a steel processing plant. A total of 77 wastes were produced by the plants (51,481,500 t year{sup {minus}1}) with the majority being released into the ocean or emitted into the air. Seventeen wastes were already being recycled off-site so were not included in the database. Using a knowledgemore » base of 25 possible treatment processes, the KBDSS generated over 4,600 treatment train options for managing the plant wastes. The developed system was able to determine treatment options for the wastes which would minimize the number of treatments and the amount of secondary wastes produced and maximize the potential for reuse, recycling and co-treatment of wastes.« less

  12. [Microbiological Aspects of Radioactive Waste Storage].

    PubMed

    Safonov, A V; Gorbunova, O A; German, K E; Zakharova, E V; Tregubova, V E; Ershov, B G; Nazina, T N

    2015-01-01

    The article gives information about the microorganisms inhabiting in surface storages of solid radioactive waste and deep disposal sites of liquid radioactive waste. It was shown that intensification of microbial processes can lead to significant changes in the chemical composition and physical state of the radioactive waste. It was concluded that the biogeochemical processes can have both a positive effect on the safety of radioactive waste storages (immobilization of RW macrocomponents, a decreased migration ability of radionuclides) and a negative one (biogenic gas production in subterranean formations and destruction of cement matrix).

  13. Treatment of mercury containing waste

    DOEpatents

    Kalb, Paul D.; Melamed, Dan; Patel, Bhavesh R; Fuhrmann, Mark

    2002-01-01

    A process is provided for the treatment of mercury containing waste in a single reaction vessel which includes a) stabilizing the waste with sulfur polymer cement under an inert atmosphere to form a resulting mixture and b) encapsulating the resulting mixture by heating the mixture to form a molten product and casting the molten product as a monolithic final waste form. Additional sulfur polymer cement can be added in the encapsulation step if needed, and a stabilizing additive can be added in the process to improve the leaching properties of the waste form.

  14. Status report on the disposal of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culler, F.L. Jr.; McLain, S.

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontaminationmore » are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.« less

  15. Review of Potential Candidate Stabilization Technologies for Liquid and Solid Secondary Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Mattigod, Shas V.; Westsik, Joseph H.

    2010-01-30

    Pacific Northwest National Laboratory has initiated a waste form testing program to support the long-term durability evaluation of a waste form for secondary wastes generated from the treatment and immobilization of Hanford radioactive tank wastes. The purpose of the work discussed in this report is to identify candidate stabilization technologies and getters that have the potential to successfully treat the secondary waste stream liquid effluent, mainly from off-gas scrubbers and spent solids, produced by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Down-selection to the most promising stabilization processes/waste forms is needed to support the design of a solidificationmore » treatment unit (STU) to be added to the Effluent Treatment Facility (ETF). To support key decision processes, an initial screening of the secondary liquid waste forms must be completed by February 2010.« less

  16. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaelen, Gunter van; Verheyen, Annick

    2007-07-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less

  17. Closed Fuel Cycle Waste Treatment Strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significantmore » additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals; Carbon-14 immobilized as a CaCO3 in a cement waste form; Krypton-85 stored as a compressed gas; An aqueous reprocessing high-level waste (HLW) raffinate waste immobilized by the vitrification process; An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel either included in the borosilicate HLW glass or immobilized in the form of a metal alloy or titanate ceramics; Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware super-compacted for disposal or purified for reuse (or disposal as low-level waste, LLW) of Zr by reactive gas separations; Electrochemical process salt HLW incorporated into a glass bonded Sodalite waste form; and Electrochemical process UDS and SS cladding hulls melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported. In addition to the above listed primary waste streams, a range of secondary process wastes are generated by aqueous reprocessing of LWR fuel, metal SFR fuel fabrication, and electrochemical reprocessing of SFR fuel. These secondary wastes have been summarized and volumes estimated by type and classification. The important waste management data gaps and research needs have been summarized for each primary waste stream and selected waste process.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corvellec, Herve, E-mail: herve.corvellec@ism.lu.se; Bramryd, Torleif

    Highlights: Black-Right-Pointing-Pointer Swedish municipally owned waste management companies are active on political, material, technical, and commercial markets. Black-Right-Pointing-Pointer These markets differ in kind and their demands follow different logics. Black-Right-Pointing-Pointer These markets affect the public service, processing, and marketing of Swedish waste management. Black-Right-Pointing-Pointer Articulating these markets is a strategic challenge for Swedish municipally owned waste management. - Abstract: This paper describes how the business model of two leading Swedish municipally owned solid waste management companies exposes them to four different but related markets: a political market in which their legitimacy as an organization is determined; a waste-as-material market thatmore » determines their access to waste as a process input; a technical market in which these companies choose what waste processing technique to use; and a commercial market in which they market their products. Each of these markets has a logic of its own. Managing these logics and articulating the interrelationships between these markets is a key strategic challenge for these companies.« less

  19. Determination of reaction rates and activation energy in aerobic composting processes for yard waste.

    PubMed

    Uma, R N; Manjula, G; Meenambal, T

    2007-04-01

    The reaction rates and activation energy in aerobic composting processes for yard waste were determined using specifically designed reactors. Different mixture ratios were fixed before the commencement of the process. The C/N ratio was found to be optimum for a mixture ratio of 1:6 containing one part of coir pith to six parts of other waste which included yard waste, yeast sludge, poultry yard waste and decomposing culture (Pleurotosis). The path of stabilization of the wastes was continuously monitored by observing various parameters such as temperature, pH, Electrical Conductivity, C.O.D, VS at regular time intervals. Kinetic analysis was done to determine the reaction rates and activation energy for the optimum mixture ratio under forced aeration condition. The results of the analysis clearly indicated that the temperature dependence of the reaction rates followed the Arrhenius equation. The temperature coefficients were also determined. The degradation of the organic fraction of the yard waste could be predicted using first order reaction model.

  20. Effect of air-flow on biodrying method of municipal solid waste in Indonesia

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari; Hanany, Ismi

    2017-11-01

    The process of bio-drying could be an interesting solution for municipal solid waste management and energy demand in Indonesia. By using the heat from bio-degradation process consists in bio-drying, moisture content in a solid waste can be reduced. Solid wastes with a low moisture content, could be used as a fuel with a good energy content. In this study, 85% of garden wastes and 15% of food waste from Indonesia's municipal solid waste were bio-dried in aerobic condition using 3 variations of air flow-rates, which were 8 L/min.kg; 10 L/min.kg; and 12 L/min.kg. The experiment performs with three different reactors with known volume 75cm × 50cm × 40cm and using Styrofoam as an insulation. The process of bio-drying lasted 21 days. In the end, the experiment with 10 L/min.kg aeration, has the lowest moisture contents about 23% with high temperature and NHV about 3595.29 kcal/kg.

Top