Asgher, Muhammad; Noreen, Sadia; Bhatti, Haq Nawaz
2010-04-01
A locally isolated white rot fungus Ganoderma lucidum IBL-05 was used for development of a bioremediation process for original textile industry effluents. Dye-containing effluents of different colors were collected from the Arzoo (maroon), Ayesha (yellow), Ittemad (green), Crescent (navy blue) and Magna (yellowish) textile industries of Faisalabad, Pakistan. G. lucidum IBL-05 was screened for its decolorization potential on all the effluents. Maximum decolorization (49.5 %) was observed in the case of the Arzoo textile industry (ART) effluent (lambda(max) = 515 nm) on the 10th day of incubation. Therefore, the ART effluent was selected for optimization of its decolorization process. Process optimization could improve color removal efficiency of the fungus to 95% within only 2 days, catalyzed by manganese peroxidase (1295 U/mL) as the main enzyme activity at pH 3 and 35 degrees C using 1% starch supplemented Kirk's basal medium. Nitrogen addition inhibited enzyme formation and effluent decolorization. The economics and effectiveness of the process can be improved by further process optimization.
Hemachandra, C K; Pathiratne, A
2017-10-01
Complex effluents originating from diverse industrial processes in industrial zones could pose cytotoxic/genotoxic hazards to biota in the receiving ecosystems which cannot be revealed by conventional monitoring methods. This study assessed potential cytotoxicity/genotoxicity of treated effluents of two industrial zones which are discharged into Kelani river, Sri Lanka combining erythrocytic abnormality tests and comet assay of the tropical model fish, Nile tilapia. Exposure of fish to the effluents induced erythrocytic DNA damage and deformed erythrocytes with serrated membranes, vacuolations, nuclear buds and micronuclei showing cytotoxic/genotoxic hazards in all cases. Occasional exceedance of industrial effluent discharge regulatory limits was noted for color and lead which may have contributed to the observed cytotoxicity/genotoxicity of effluents. The results demonstrate that fish erythrocytic responses could be used as effective bioanalytical tools for cytotoxic/genotoxic hazard assessments of complex effluents of industrial zones for optimization of the waste treatment process in order to reduce biological impacts.
Economic evaluation of alternative wastewater treatment plant options for pulp and paper industry.
Buyukkamaci, Nurdan; Koken, Emre
2010-11-15
Excessive water consumption in pulp and paper industry results in high amount of wastewater. Pollutant characteristics of the wastewater vary depending on the processes used in production and the quality of paper produced. However, in general, high organic material and suspended solid contents are considered as major pollutants of pulp and paper industry effluents. The major pollutant characteristics of pulp and paper industry effluents in Turkey were surveyed and means of major pollutant concentrations, which were grouped in three different pollution grades (low, moderate and high strength effluents), and flow rates within 3000 to 10,000m(3)/day range with 1000m(3)/day steps were used as design parameters. Ninety-six treatment plants were designed using twelve flow schemes which were combinations of physical treatment, chemical treatment, aerobic and anaerobic biological processes. Detailed comparative cost analysis which includes investment, operation, maintenance and rehabilitation costs was prepared to determine optimum treatment processes for each pollution grade. The most economic and technically optimal treatment processes were found as extended aeration activated sludge process for low strength effluents, extended aeration activated sludge process or UASB followed by an aeration basin for medium strength effluents, and UASB followed by an aeration basin or UASB followed by the conventional activated sludge process for high strength effluents. Copyright © 2010 Elsevier B.V. All rights reserved.
Nandy, T; Dhodapkar, R S; Pophali, G R; Kaul, S N; Devotta, S
2005-09-01
Environmental concerns associated with textile processing had placed the textile sector in a Southern State of India under serious threat of survival. The textile industries were closed under the orders of the Statutory Board for reason of inadequate compliance to environmental discharge norms of the State for the protection of the drinking water source of the State capital. In compliance with the direction of the Board for zero effluent discharge, advanced treatment process have been implemented for recovery of boiler feed quality water with recourse to effluent recycling/reuse. The paper describes to a case study on the adequacy assessment of the full scale effluent treatment plant comprising chemical, biological and filtration processes in a small scale textile industry. In addition, implementation of measures for discernable improvement in the performance of the existing units through effective operation & maintenance, and application of membrane separation processes leading to zero effluent discharge is also highlighted.
Treatment of silica effluents: ultrafiltration or coagulation-decantation.
Ndiaye, P I; Moulin, P; Dominguez, L; Millet, J C; Charbit, F
2004-12-10
In the electronics industry, the preparation of silicon plates generates effluents that contain a great amount of colloidal silica. Two processes--decantation and ultrafiltration--are studied with in view the treatment of the effluents released by the firm Rockwood Electronic Materials. The feasibility of each of the two processes is studied separately and their operating parameters optimized. Both processes allow the recovery of a great proportion of the initial effluent (over 89%) as transparent and colorless water that can be reused at the start of a line. In view of the results and of the compared advantages and disadvantages of the two processes, ultrafiltration will be selected for the industrial unit.
NASA Astrophysics Data System (ADS)
Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.
2018-04-01
Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.
Integrated process for the removal of emulsified oils from effluents in the steel industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benito, J.M.; Rios, G.; Gutierrez, B.
1999-11-01
Emulsified oils contained in aqueous effluents from cold-rolling mills of the steel industry can be effectively removed via an integrated process consisting of a coagulation/flocculation stage followed by ultrafiltration of the resulting aqueous phase. The effects of CaCl{sub 2}, NaOH, and lime on the stability of different industrial effluents were studied in the coagulation experiments. The flocculants tested were inorganic prehydrolyzed aluminum salts and quaternary polyamines. Ultrafiltration of the aqueous phase from the coagulation/flocculation stage was carried out in a stirred cell using Amicon PM30 and XM300 organic membranes. Permeate fluxes were measured for industrial effluents to which the indicatedmore » coagulants and flocculants had been added. Oil concentrations in the permeate were 75% lower than the limits established by all European Union countries. Complete regeneration of the membrane was accomplished with an aqueous solution of a commercial detergent.« less
Electrocoagulation for the treatment of textile industry effluent--a review.
Khandegar, V; Saroha, Anil K
2013-10-15
Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.
State of the art: wastewater management in the beverage industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joyce, M.E.; Scaief, J.F.; Cochrane, M.W.
The water pollution impact caused by the wastes from the beverage industry and the methods available to combat the associated problems were studied. The size of each industry is discussed along with production processes, wastewater sources and effluent characteristics. Wastewater management techniques are described in terms of in-plant recycling, by-product recovery and end-of-pipe treatment along with the economics of treatment. The malt liquor, malting, soft drinks and flavoring industries primarily dispose of their effluents in municipal sewers. In-plant recycling and by-product recovery techniques have been developed in these industries to reduce their raw waste load. The wine and brandy andmore » distilled spirits industries in many cases must treat their own effluents so they have developed wastewater management systems including industry-owned treatment plants that yield good effluents. The technology to adequately treat rum distillery wastewater has not been demonstrated. The information basis for this study was a literature search, an effluent guidelines report done for EPA, limited site visits, personal communications and an unpublished report conducted for EPA that included questionaire surveys of the industries.« less
Strategies for decolorization and detoxification of pulp and paper mill effluent.
Garg, Satyendra K; Tripathi, Manikant
2011-01-01
The potential hazards associated with industrial effluents, coupled with increasing awareness of environment problems, have prompted many countries to limit the indiscriminate discharge of untreated wastewaters. The pulp and paper industry has been among the most significant of industrial polluters of the waterways, and therefore has been one of the industries of concern. The pulp and paper industry produces large quantities of brown/black effluent that primarily result from pulping, bleaching, and paper-making production stages. The dark color and toxicity of pulp-paper mill effluent comes primarily from lignin and its chlorinated derivatives (e.g., lignosulphonic acid, resins, phenols, and hydrocarbons) that are released during various processing steps of lignocellulosic materials. The color originates from pulping and pulp bleaching stages, while adsorbable organic halides (AOX) originates exclusively from chlorine bleaching. Discharge of untreated effluent results in increased BOD/COD, slime growth, thermal problems, scum formation, discoloration, loss of aesthetic quality and toxicity to the aquatic life, in the receiving waterbodies. The dark brow color of pulp-paper effluent is not only responsible for aesthetic unacceptability, but also prevents the passage of sunlight through colored waterbodies. This reduces the photosynthetic activity of aquatic flora, ultimately causing depletion of dissolved oxygen. The pulp-paper organic waste, coupled with the presence of chlorine, results in the generation of highly chlorinated organic compounds. These toxic constituents of wastewater pose a human health risk through long term exposure. via drinking water and\\or through consumption of fish that can bioaccumulate certain pollutants from the food chain. Therefore, considerable attention has been focused by many countries on decolorization of paper mill effluents , along with reduction in the contaminants that pose human health or other environmental hazards. Various physicochemical remediation treatments in the pulp-paper industry are now used, or have been suggested, but often are not implemented, because of the high cost involved. More recently, the paper and pulp industry has been investigating the use of biological remediation steps to replace or augment current treatment strategies. Certain biological treatments offer opportunities to reduce cost (both capital and operating), reduce energy consumption, and minimize environmental impact. Two primary approaches may be effective to curtail release of toxic effluents: first, development of pulping and bleaching processes that emphasize improved oxygen delignification or biopulping, plus partial or complete replacement of chlorine treatment with hydrogen peroxide or with biobleaching; second, implementation of biological processing that involves sequential two-step anaerobic-aerobic or three-step aerobic-anaerobic treatment technologies at end of pipe. The selection of the specific process will depend upon the type of pollutants/toxicants/mutagens present in the effluent. The use of environmental-friendly technologies in the pulp and paper industry is becoming more popular, partly because of increasing regulation, and partly because of the availability of new techniques that can be used to economically deal with pollutants in the effluents. Moreover, biotechnology research methods are offering promise for even greater improvements in the future. The obvious ultimate goal of the industry and the regulators should be zero emission through recycling of industrial wastewater, or discharge of the bare minimum amount of toxicants or color.
Effluent characterization and different modes of reuse in agriculture-a model case study.
Das, Madhumita; Kumar, Ashwani
2009-06-01
High-quality waters are steadily retreating worldwide. Discharge of industrial effluent in the environment again declines soil/water quality to a great extent. On the other hand, effluent reuse in agriculture could be a means to conserve natural resources by providing assured water supply for growing crops. But industrial effluents are highly variable in nature, containing a variety of substances, and all are not favorable for farming. Appraisal and developing modes of effluent reuse is therefore a prerequisite to enable its proper use in agriculture. Effluents of various industries were assessed and approaches for their use in farming were developed for a particular region in this study. As per availability of effluents, the same could be implemented in other water-scarce areas. Effluents of 20 different industrial units were characterized by 24 attributes. Comparing these with corresponding irrigation water quality standards, the probability of their reuse was interpreted in the first approach. On the basis of relevant properties of major soil types dominated in a particular region, the soil-based usability of effluent was worked out in the second approach. By emphasizing the limitation of groundwater development where it went beyond 50% exploitation level, the land form and major soil type were then identified by applying a soil-based effluent reuse approach; the area-specific suitability of its use was perceived in the third approach. On the basis of irrigation water quality standards, the irrigation potentials of paper mill, fermentation (breweries and distilleries), and sugar factory effluents were recognized. In a soil-based approach, the compatibility of effluent with soil type was marked with A (preferred) and B (moderately preferred) classes and, compiling their recurring presence, the unanimous preference for paper mill effluent followed by rubber goods manufacturing industries/marine shrimp processing units, fermentation, and sugar mills was noted. Usability of these was also evident from a groundwater exploitation status-based approach. The approaches of assessing industrial effluents differing in compositions systematically reflected the ability and applicability of certain effluents in agriculture. The context-specific assessment of effluent offers options to compare effluent from a range of viewpoints and enhances its reasonability of use for growing crops. Chemical characterization of various industrial effluents first disclosed their potential of reuse. The soil-properties-based compatibility of effluent focused their prospects of use and groundwater-exploitation-status-based portrayed its area of use in a specific region. Assessment of effluent through these enhances reliability and appropriateness of its reuse in agriculture. Options of industrial effluent (prospective) reuse in agriculture provide ways to combat freshwater crisis without degrading environmental quality. It may be applied for assessing effluent before its reuse in several water-starved countries.
Torquato, Lilian D M; Pachiega, Renan; Crespi, Marisa S; Nespeca, Maurílio Gustavo; de Oliveira, José Eduardo; Maintinguer, Sandra I
2017-01-01
Citrus crops are among the most abundant crops in the world, which processing is mainly based on juice extraction, generating large amounts of effluents with properties that turn them into potential pollution sources if they are improperly discarded. This study evaluated the potential for bioconversion of effluents from citrus-processing industry (wastewater and vinasse) into hydrogen through the dark fermentation process, by applying anaerobic sewage sludge as inoculum. The inoculum was previously heat treated to eliminate H 2 -consumers microorganisms and improve its activity. Anaerobic batch reactors were operated in triplicate with increasing proportions (50, 80 and 100%) of each effluent as substrate at 37°C, pH 5.5. Citrus effluents had different effects on inoculum growth and H 2 yields, demonstrated by profiles of acetic acid, butyric acid, propionic acid and ethanol, the main by-products generated. It was verified that there was an increase in the production of biogas with the additions of either wastewater (7.3, 33.4 and 85.3mmolL -1 ) or vinasse (8.8, 12.7 and 13.4mmolL -1 ) in substrate. These effluents demonstrated remarkable energetic reuse perspectives: 24.0MJm -3 and 4.0MJm -3 , respectively. Besides promoting the integrated management and mitigation of anaerobic sludge and effluents from citrus industry, the biohydrogen production may be an alternative for the local energy supply, reducing the operational costs in their own facilities, while enabling a better utilization of the biological potential contained in sewage sludges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gomes, Lúcio de Moura; Duarte, José Leandro da Silva; Pereira, Nathalia Marcelino; Martínez-Huitle, Carlos A; Tonholo, Josealdo; Zanta, Carmen Lúcia de Paiva E Silva
2014-01-01
The coconut processing industry generates a significant amount of liquid waste. New technologies targeting the treatment of industrial effluents have emerged, including advanced oxidation processes, the Fenton reaction, and electrochemical processes, which produce strong oxidizing species to remove organic matter. In this study we combined the Fenton reaction and electrochemical process to treat wastewater generated by the coconut industry. We prepared a synthetic wastewater consisting of a mixture of coconut milk and water and assessed how the Fenton reagents' concentration, the cathode material, the current density, and the implementation of associated technologies affect its treatment. Electrochemical treatment followed by the Fenton reaction diminished turbidity and chemical oxygen demand (COD) by 85 and 95%, respectively. The Fenton reaction followed by the electrochemical process reduced turbidity and COD by 93 and 85%, respectively. Therefore, a combination of the Fenton and electrochemical technologies can effectively treat the effluent from the coconut processing industry.
Zayneb, Chaâbene; Lamia, Khanous; Olfa, Ellouze; Naïma, Jebahi; Grubb, C Douglas; Bassem, Khemakhem; Hafedh, Mejdoub; Amine, Elleuch
2015-11-01
The present study focuses on effects of untreated and treated ink industry wastewater on germination of maize, barley and sorghum. Wastewater had a high chemical oxygen demand (COD) and metal content compared to treated effluent. Germination decreased with increasing COD concentration. Speed of germination also followed the same trend, except for maize seeds exposed to untreated effluent (E), which germinated slightly faster than controls. These alterations of seedling development were mirrored by changes in soluble protein content. E exerted a positive effect on soluble protein content and maximum levels occurred after 10 days with treated effluent using coagulation/flocculation (TEc/f) process and treated effluent using combined process (coagulation/flocculation/biosorption) (TEc/f/b). Likewise, activity of α-amylase was influenced by effluent composition. Its expression depended on the species, exposure time and applied treatment. Nevertheless, current results indicated TEc/f/b had no observable toxic effects on germination and could be a beneficial alternative resource to irrigation water.
Complete physico-chemical treatment for coke plant effluents.
Ghose, M K
2002-03-01
Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.
Wei, Liangliang; Qin, Kena; Zhao, Qingliang; Noguera, Daniel R; Xin, Ming; Liu, Chengcai; Keene, Natalie; Wang, Kun; Cui, Fuyi
2016-01-01
The secondary effluent from wastewater treatment plants was reused for industrial cooling water after pre-treatment with a laboratory-scale soil aquifer treatment (SAT) system. Up to a 95.3% removal efficiency for suspended solids (SS), 51.4% for chemical oxygen demand (COD), 32.1% for Cl(-) and 30.0% SO4(2-) were observed for the recharged secondary effluent after the SAT operation, which is essential for controlling scaling and corrosion during the cooling process. As compared to the secondary effluent, the reuse of the 1.5 m depth SAT effluent decreased the corrosion by 75.0%, in addition to a 55.1% decline of the scales/biofouling formation (with a compacted structure). The experimental results can satisfy the Chinese criterion of Design Criterion of the Industrial Circulating Cooling Water Treatment (GB 50050-95), and was more efficient than tertiary effluent which coagulated with ferric chloride. In addition, chemical structure of the scales/biofouling obtained from the cooling system was analyzed.
Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U
2012-07-01
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.
Pollution control of industrial wastewater from soap and oil industries: a case study.
Abdel-Gawad, S; Abdel-Shafy, M
2002-01-01
Industrial wastewater from soap and oil industries represents a heavy pollution source on their receiving water body. This paper studies a case of pollution control at Tanta Soap and Oil Company, Banha Factory, Egypt. The factory production includes soap, edible oil, and animal fodder. About 4,347 m3/day of industrial wastewater effluent was discharged via gravity sewers to the public sewerage system. Most of the effluent was cooling water because the cooling process in the factory was open circle. In spite of the huge quantity of cooling water being disposed of, disposal of wastewater was violating pertinent legislation. Three procedures were used for controlling the pollution at the Banha Factory. Firstly, all open circuit cooling systems were converted to closed circuit thus reducing the quantity of the discharged wastewater down to 767 m3/day. Secondly, the heavily polluted oil and grease (O&G) wastewater from the refinery unit is treated via two gravity oil separator (GOS) units, dissolved air floatation (DAF), and biological units in order to reduce the high levels of O&G, BOD, COD, and SS to the allowable limits. Thirdly, the heavily polluted waste effluent from the 'red water' saponification unit is treated separately by acidification to convert the emulsified fatty acid to free form in order to be separated through an oil separation unit. The effluent is then passed to liming stage to neutralize excess acidity and precipitate some of the dissolved matters. The mixture is finally clarified and the pH is adjusted to the allowable limits. The effluent wastewater from the three processes is collected and mixed in a final equalization tank for discharging effluent to the public sewerage system. The characteristics of the effluent water are very good with respect to the allowable Egyptian limits for discharging effluent to the public sewerage system.
Baral, A; Engelken, R; Stephens, W; Farris, J; Hannigan, R
2006-05-01
This study evaluated aquatic toxicities of chromium and chromium-containing laboratory samples representative of effluents from chromium electroplating industries, and compared the aquatic environmental risks of hexavalent and trivalent chromium electroplating operations. Trivalent chromium electroplating has emerged as an acceptable alternative to hazardous hexavalent chromium electroplating. This process substitution has reduced the human health impact in the workplace and minimized the production of hazardous sludge regulated under the Resource Conservation and Recovery Act (RCRA). The thrust behind this research was to investigate whether trivalent chromium electroplating operations have lower adverse impacts on standardized toxicity test organisms. Ceriodaphnia dubia and Pimephales promelas were used to investigate toxicities of trivalent chromium (Cr (III)), hexavalent chromium (Cr (VI)), and industrial effluents. In agreement with previous studies, Cr (III) was found to be less toxic than Cr (VI). Despite having several organic and inorganic constituents in the effluents obtained from trivalent chromium plating baths, they exhibited less adverse effects to C. dubia than effluents obtained from hexavalent chromium electroplating baths. Thus, transition from hexavalent to trivalent chromium electroplating processes may be justified. However, because of the presence of organic constituents such as formate, oxalate, and triethylene glycol in effluents, trivalent chromium electroplating operations may face additional regulatory requirements for removal of total organic carbon.
Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio
2011-10-01
Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. Copyright © 2011 Elsevier Inc. All rights reserved.
Pipolo, Marco; Martins, Rui C; Quinta-Ferreira, Rosa M; Costa, Raquel
2017-03-01
The discharge of poorly decontaminated winery wastewater remains a serious environmental problem in many regions, and the industry is welcoming improved treatment methods. Here, an innovative decontamination approach integrating Fenton's process with biofiltration by Asian clams is proposed. The potential of this approach was assessed at the pilot scale using real effluent and by taking an actual industrial treatment system as a benchmark. Fenton peroxidation was observed to remove 84% of the effluent's chemical oxygen demand (COD), reducing it to 205 mg L. Subsequent biofiltration decreased the effluent's COD to approximately zero, well below the legal discharge limit of 150 mg L, in just 3 d. The reduction of the effluent's organic load through Fenton's process did not decrease its toxicity toward , but the effluent was much less harmful after biofiltration. The performance of the treatment proposed exceeded that of the integrated Fenton's process-sequencing batch reactor design implemented in the winery practice, where a residence time of around 10 d in the biological step typically results in 80 to 90% of COD removal. The method proposed is effective and compatible with typical winery budgets and potentially contributes to the management of a nuisance species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Pollution characterization of liquid waste of the factory complex Fertial (Arzew, Algeria).
Redouane, Fares; Mourad, Lounis
2016-03-01
The industrial development in Algeria has made a worrying situation for all socioeconomic stakeholders. Indeed, this economic growth is marked in recent years by the establishment of factories and industrial plants that discharge liquid waste in marine shorelines. These releases could destabilize the environmental balance in the coming years, hence the need to support the processing of all sources of pollution. Remediation of such discharges requires several steps of identifying the various pollutants to their treatments. Therefore, the authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial. The authors conducted this first work of characterization of industrial effluents generated by the mineral fertilizer factory complex Fertial (Arzew), and discussed the pollution load generated by this type of industry. This monitoring would establish a tool for reflection and decision support developed by a management system capable of ensuring effective and sustainable management of effluents from industrial activities of Fertial.
Soares, Eduardo V; Soares, Helena M V M
2013-08-01
Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.
Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan
2017-02-01
In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.
Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H
2008-01-01
For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.
Treatment of industrial effluent water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskii, Yu.N.
1982-09-01
This article reports on a thematic exhibition on ''New Developments in Treatment of Natural and Effluent Water'' in the Sanitary-Technical Construction Section at the Exhibition of Achievements of the National Economy of the USSR. The exhibition acquainted visitors with the achievements of leading organizations in different branches of industry with respect to treatment of natural and industrial effluent water. The Kharkov ''Vodkanalproekt'' Institute and the Kharkov affiliate of the All-Union Scientific-Research Institute of Water and Geodesy has jointly developed a ''Polymer-25'' filter for removal of oil products from nonexplosive effluent water discharged by machine building plants. A Baku affiliate hasmore » developed a new ShFP-1 screw-type press filter for dewatering the sediments from water treatment plants as well as for sediments from chemical, food, and other types of plants. The State Institute for Applied Chemistry has designed a continuous process plant for treating effluent water and removing toxic organic waste by converting them into mineral salts with high efficiency.« less
Toxicity evaluation of the process effluent streams of a petrochemical industry.
Reis, J L R; Dezotti, M; Sant'Anna, G L
2007-02-01
The physico-chemical characteristics and the acute toxicity of several wastewater streams, generated in the industrial production of synthetic rubber, were determined. The acute toxicity was evaluated in bioassays using different organisms: Danio rerio (fish), Lactuca sativa (lettuce) and Brachionus calyciflorus (rotifer). The removal of toxicity attained in the industrial wastewater treatment plant was also determined upstream and downstream of the activated sludge process. The results obtained indicate that the critical streams in terms of acute toxicity are the effluents from the liquid polymer unit and the spent caustic butadiene washing stage. The biological treatment was able to partially remove the toxicity of the industrial wastewater. However, a residual toxicity level persisted in the biotreated wastewater. The results obtained with Lactuca sativa showed a high degree of reproducibility, using root length or germination index as evaluation parameters. The effect of volatile pollutants on the toxicity results obtained with lettuce seeds was assessed, using ethanol as a model compound. Modifications on the assay procedure were proposed. A strong correlation between the toxic responses of Lactuca sativa and Danio rerio was observed for most industrial effluent streams.
Kheriji, Jamel; Tabassi, Dorra; Hamrouni, Béchir
2015-01-01
Industrial effluents loaded with cadmium have contributed to the pollution of the environment and health troubles for humans. Therefore, these effluents need treatment to reduce cadmium concentration before releasing them to public sewage. The purpose of the research is to study the major role of reverse osmosis (RO) and nanofiltration (NF) processes, which can contribute to the removal of cadmium ions from model water and wastewater from the battery industry. For this reason, two RO and two nanofiltration membranes have been used. The effects of feed pressure, concentration, ionic strength, nature of anion associated with cadmium and pH on the retention of Cd(II) were studied with model solutions. Thereafter, NF and RO membranes were used to reduce cadmium ions and total salinity of battery industry effluent. Among these membranes, there are only three which eliminate more than 95% of cadmium. This was found to depend on operating conditions. It is worth noting that the Spiegler-Kedem model was applied to fit the experimental results.
Effluent Treatment Technologies in the Iron and Steel Industry - A State of the Art Review.
Das, Pallabi; Mondal, Gautam C; Singh, Siddharth; Singh, Abhay K; Prasad, Bably; Singh, Krishna K
2018-05-01
Iron and steel industry is the principal driving force propelling economic and technological growth of a nation. However, since its inception this industry is associated with widespread environmental pollution and enormous water consumption. Different units of a steel plant discharge effluents loaded with toxic, hazardous pollutants, and unutilized components which necessitates mitigation. In this paper, pollutant removal efficiency, effluent volume product quality, and economic feasibility of existing treatments are studied vis-à-vis their merits, demerits, and innovations to access their shortcomings which can be overcome with new technology to identify future research directions. While conventional methods are inadequate for complete remediation and water reclamation, the potential of advanced treatments, like membrane separation, remains relatively untapped. It is concluded that integrated systems combining membrane separation with chemical treatments can guarantee a high degree of contaminant removal, reusability of effluents concurrently leading to process intensification ensuring ecofriendliness and commercial viability.
Naidoo, V; du Preez, M; Rakgotho, T; Odhav, B; Buckley, C A
2002-01-01
Industrial effluents and leachates from hazardous landfill sites were tested for toxicity using the anaerobic toxicity assay. This test was done on several industrial effluents (brewery spent grain effluent, a chemical industry effluent, size effluent), and several hazardous landfill leachates giving vastly different toxicity results. The brewery effluent, spent grain effluent and size effluent were found to be less toxic than the chemical effluent and hazardous landfill leachate samples. The chemical industry effluent was found to be most toxic. Leachate samples from the H:h classified hazardous landfill site were found to be less toxic at high concentrations (40% (v/v)) while the H:H hazardous landfill leachate samples were found to be more toxic even at low concentrations of 4% (v/v). The 30 d biochemical methane potential tests revealed that the brewery effluent, organic spent grain effluent and size effluent were 89%, 63%, and 68% biodegradable, respectively. The leachate from Holfontein hazardous landfill site was least biodegradable (19%) while the chemical effluent and Aloes leachate were 29% and 32% biodegradable under anaerobic conditions.
Assessment of the effluent quality from a gold mining industry in Ghana.
Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L
2013-06-01
The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.
SOURCE ASSESSMENT: NITROGEN FERTILIZER INDUSTRY WATER EFFLUENTS
The report describes a study of waterborne pollutants from the manufacture of nitrogen fertilizers. It includes an evaluation of the ammonia, ammonium nitrate, urea, and nitric acid manufacturing processes. Water effluents in a nitrogen fertilizer plant originate from a variety o...
Gurung, Anup; Hassan, Sedky H A; Oh, Sang-Eun
2011-10-01
Bioassays are becoming an important tool for assessing the toxicity of complex mixtures of substances in aquatic environments in which Daphnia magna is routinely used as a test organism. Bioassays outweigh physicochemical analyses and are valuable in the decision-making process pertaining to the final discharge of effluents from wastewater treatment plants as they measure the total effect of the discharge which is ecologically relevant. In this study, the aquatic toxicity of a textile plant effluent and river water downstream from the plant were evaluated with sulfur-oxidizing bacterial biosensors in continuous mode. Collected samples were analysed for different physicochemical parameters and 1,4-dioxane was detected in the effluent. The effluent contained a relatively high chemical oxygen demand of 60 mg L(-1), which exceeded the limit set by the Korean government for industrial effluent discharges. Results showed that both the effluent and river waters were toxic to sulfur-oxidizing bacteria. These results show the importance of incorporating bioassays to detect toxicity in wastewater effluents for the sustainable management of water resources.
Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.
Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A
2007-01-01
Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.
Sivaraman, G K; Visnuvinayagam, S; Jha, Ashish Kumar; Renuka, V; Remya, S; Vanik, Deesha
2016-07-01
The present study was carried out to assess the microbial quality of fish processing industries effluent at Bhidia bar-mouth, Veraval, Gujarat during April, 2012 to March 2013. The total viable bacterial count (TVBC), total Enterobacteriaceae count, E. coli count (EC), Staphylococcus aureus and Fecal Streptococcal count in effluent ranged from 3.0 x 10(-1) to 6.8 x 10(6), 9.0 x 10(1) to 2.9 x 10(4), 0 to 0. 5 x 10(4), 0 to 0. 4 x 102 and 0.3 x 10(1) to 0. 1 x 10(4) cfu.(-1)respectively. Significantly higher load of TEC, E. coli, S.aureus, Fecal Streptococci, Total coliforms and Fecal coliforms were higher during summer whereas, TVBC was higher in the month of Sept.-Oct. Furthermore, the total coliform and fecal coliform counts were found to be higher with 1400+ /100 ml MPN value throughout the year of the study, except in the month of August. Overall occurrence of pathogenic strains of E. coli, S. aureus and Fecal streptococci were 41.67%, 25.00% and 66.67% respectively during this period. The antibiogram of the isolated E. coli isolates show that almost 50% were resistant to Cefazidime/Clavulanic acid (CAC), Amoxyclav (AMC), Ciprofloxacin (CIF) and Ampicillin (AMP). The present study indicated that the effluent of fish processing industry was heavily contaminated with E. coli, S. aureus and Fecal Streptococci which confirmed improper treatment of fish processing effluent. Moreover, the precedence of antibiotic resistant E. coli may pose threat to public health safety.
Chandra, Ram; Sharma, Pooja; Yadav, Sangeeta; Tripathi, Sonam
2018-01-01
Effluent discharged from the pulp and paper industry contains various refractory and androgenic compounds, even after secondary treatment by activated processes. Detailed knowledge is not yet available regarding the properties of organic pollutants and methods for their bioremediation. This study focused on detecting residual organic pollutants of pulp and paper mill effluent after biological treatment and assessing their degradability by biostimulation. The major compounds identified in the effluent were 2,3,6-trimethylphenol, 2-methoxyphenol (guaiacol), 2,6-dimethoxyphenol (syringol), methoxycinnamic acid, pentadecane, octadecanoic acid, trimethylsilyl ester, cyclotetracosane, 5,8-dimethoxy-6-methyl-2,4-bis(phenylmethyl)napthalen-1-ol, and 1,2-benzendicarboxylic acid diisononyl ester. Most of these compounds are classified as endocrine-disrupting chemicals and environmental toxicants. Some compounds are lignin monomers that are metabolic products from secondary treatment of the discharged effluent. This indicated that the existing industrial process could not further degrade the effluent. Supplementation by carbon (glucose 1.0%) and nitrogen (peptone 0.5%) bio-stimulated the degradation process. The degraded sample after biostimulation showed either disappearance or generation of metabolic products under optimized conditions, i.e., a stirring rate of 150 rpm and temperature of 37 ± 1°C after 3 and 6 days of bacterial incubation. Isolated potential autochthonous bacteria were identified as Klebsiella pneumoniae IITRCP04 (KU715839), Enterobacter cloacae strain IITRCP11 (KU715840), Enterobacter cloacae IITRCP14 (KU715841), and Acinetobacter pittii strain IITRCP19 (KU715842). Lactic acid, benzoic acid, and vanillin, resulting from residual chlorolignin compounds, were generated as potential value-added products during the detoxification of effluent in the biostimulation process, supporting the commercial importance of this process.
Decolorization and Degradation of Batik Dye Effluent using Ganoderma lucidum
NASA Astrophysics Data System (ADS)
Pratiwi, Diah; Indrianingsih, A. W.; Darsih, Cici; Hernawan
2017-12-01
Batik is product of traditional Indonesia culture that developed into a large textile industry. Synthetic dyes which widely used in textile industries including batik. Colour can be removed from wastewater effluent by chemical, physical, and biology methods. Bioremediation is one of the methods that used for processing colored effluent. Isolated White-rot fungi Ganoderma lucidum was used for bioremediation process for batik effluent. G. lucidum was developed by G. lucidum cultivation on centers of mushroom farmer Media Agro Merapi Kaliurang, Yogyakarta. The batik effluent was collected from a private small and medium Batik enterprises located at Petir, Rongkop, Gunungkidul Regency. The aim of the study were to optimize decolorization of Naphtol Black (NB) using G. lucidum. The effect of process parameters like incubation time and dye concentration on dye decolorization and COD degradation was studied. G. lucidum were growth at pH 5-6 and temperature 25°C at various Naphtol Black dye with concentration 20 ppm, 50 ppm, and 100 ppm for 30 day incubation time. The result from this study increased decolorization in line with the increasing of COD degradation. Increasing percentage of decolorization and COD degradation gradually increased with incubation time and dye concentration. The maximum decolorization and COD reduction were found to be 60,53% and 81,03%. G. lucidum had potential to decolorized and degraded COD for NB dye effluent on higher concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mac Dougall, James
2016-02-05
Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, andmore » pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO 2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.« less
Controlled decomposition and oxidation: A treatment method for gaseous process effluents
NASA Technical Reports Server (NTRS)
Mckinley, Roger J. B., Sr.
1990-01-01
The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.
Efficiency of combined process of ozone and bio-filtration in the treatment of secondary effluent.
Tripathi, Smriti; Tripathi, B D
2011-07-01
The present work was aimed at studying the efficiency of the combined process of biofiltration with ozonation to improve the quality of secondary effluent. The secondary effluent from the Dinapur Sewage Treatment Plant Varanasi, India was used in this work. The process of biofiltration with the plant species of Eichornia crassipes and Lemna minor, at a flow rate of 262 ml min(-1) and plant density of 30 mg L(-1) for 48 h, in combination with the process of ozonation with ozone dose of 10 mg L(-1) and contact time of 5 min was applied. Results revealed that combined process was statistically most suitable for the highest degradation of physico-chemical and microbial parameters with improving BDOC value. The biofiltration process is able to remove highest percentage of toxic heavy metals from the secondary effluent without production of toxicity. This technique is highly recommendable for tropical wastewater where sewage is mixed with industrial effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma
2015-02-01
The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ferebee, Robert N.
1992-01-01
An environmental application using a microtiter culture assay to measure the metabolic sensitivity of microorganisms to petrochemical effluents will be tested. The Biomedical Operations and Research Branch at NASA JSC has recently developed a rapid and nondestructive method to measure cell growth and metabolism. Using a colorimetric procedure the uniquely modified assay allows the metabolic kinetics of prokaryotic and eukaryotic cells to be measured. Use of such an assay if adapted for the routine monitoring of waste products, process effluents, and environmentally hazardous substances may prove to be invaluable to the industrial community. The microtiter method as described will be tested using microorganisms isolated from the Galveston Bay aquatic habitat. The microbial isolates will be identified prior to testing using the automated systems available at JSC. Sodium dodecyl sulfate (SDS), cadmium, and lead will provide control toxic chemicals. The toxicity of industrial effluent from two industrial sites will be tested. An effort will be made to test the efficacy of this assay for measuring toxicity in a mixed culture community.
Advanced oxidation processes for treatment of effluents from a detergent industry.
Martins, Rui C; Silva, Adrián M T; Castro-Silva, Sérgio; Garção-Nunes, Paulo; Quinta-Ferreira, Rosa M
2011-07-01
Ozonation, catalytic ozonation, Fenton's and heterogeneous Fenton-like processes were investigated as possible pretreatments of a low biodegradable and highly toxic wastewater produced by a detergent industry. The presence of a Mn-Ce-O catalyst in ozonation enhances the biodegradability and improves the degradation at low pH values. However, a high content of carbonyl compounds adsorbed on the recovered solid indicates some limitations for real-scale application. A commercial Fe2O3-MnOx catalyst shows higher activity as well as higher stability concerning carbon adsorption, but the leaching of metals is larger than for Mn-Ce-O. Regarding the heterogeneous Fenton-like route with an Fe-Ce-O catalyst, even though a high activity and stability are attained, the intermediates are less biodegradable than the original compounds, indicating that the resulting effluent cannot be conducted to an activated sludge post-treatment. The highest enhancement of effluent biodegradability is obtained with the classic homogeneous Fenton's process, with the BOD5/COD ratio increasing from 0.32 to 0.80. This process was scaled up and the treated effluent is now safely directed to a municipal wastewater treatment plant.
Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal
2015-12-01
Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.
Laboratory scale studies on removal of chromium from industrial wastes.
Baig, M A; Mir, Mohsin; Murtaza, Shazad; Bhatti, Zafar I
2003-05-01
Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr(3+)) and hexavalent (Cr(6+)) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr(3+) is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases. In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100% efficiency in reducing Cr(6+) to Cr(3+), and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents. Phase III studies indicated the best pH was 8.5 for precipitation of Cr(3+) to chromium hydroxide by using lime. An efficiency of 100% was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100% efficiency at a settling time of 30 minutes and confined that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.
Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration
Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter
2015-01-01
Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively. PMID:26729180
Treatment of the Bleaching Effluent from Sulfite Pulp Production by Ceramic Membrane Filtration.
Ebrahimi, Mehrdad; Busse, Nadine; Kerker, Steffen; Schmitz, Oliver; Hilpert, Markus; Czermak, Peter
2015-12-31
Pulp and paper waste water is one of the major sources of industrial water pollution. This study tested the suitability of ceramic tubular membrane technology as an alternative to conventional waste water treatment in the pulp and paper industry. In this context, in series batch and semi-batch membrane processes comprising microfiltration, ultrafiltration and nanofiltration, ceramic membranes were developed to reduce the chemical oxygen demand (COD) and remove residual lignin from the effluent flow during sulfite pulp production. A comparison of the ceramic membranes in terms of separation efficiency and performance revealed that the two-stage process configuration with microfiltration followed by ultrafiltration was most suitable for the efficient treatment of the alkaline bleaching effluent tested herein, reducing the COD concentration and residual lignin levels by more than 35% and 70%, respectively.
Hemachandra, Chamini K; Pathiratne, Asoka
2016-09-01
Bioassays for cyto-genotoxicity assessments are generally not required in current textile industry effluent discharge management regulations. The present study applied in vivo plant and fish based toxicity tests viz. Allium cepa test system and Oreochromis niloticus erythrocyte based comet assay and nuclear abnormalities tests in combination with physico-chemical analysis for assessing potential cytotoxic/genotoxic impacts of treated textile industry effluents reaching a major river (Kelani River) in Sri Lanka. Of the treated effluents tested from two textile industries, color in the Textile industry 1 effluents occasionally and color, biochemical oxygen demand and chemical oxygen demand in the Textile industry 2 effluents frequently exceeded the specified Sri Lankan tolerance limits for discharge of industrial effluents into inland surface waters. Exposure of A. cepa bulbs to 100% and 12.5% treated effluents from both industries resulted in statistically significant root growth retardation, mito-depression, and induction of chromosomal abnormalities in root meristematic cells in comparison to the dilution water in all cases demonstrating cyto-genotoxicity associated with the treated effluents. Exposure of O. niloticus to the 100% and 12.5% effluents, resulted in erythrocytic genetic damage as shown by elevated total comet scores and induction of nuclear abnormalities confirming the genotoxicity of the treated effluents even with 1:8 dilution. The results provide strong scientific evidence for the crucial necessity of incorporating cyto-genotoxicity impact assessment tools in textile industry effluent management regulations considering human health and ecological health of the receiving water course under chronic exposure. Copyright © 2016 Elsevier Inc. All rights reserved.
Patange, Apurva; Boehm, Daniela; Giltrap, Michelle; Lu, Peng; Cullen, P J; Bourke, Paula
2018-08-01
Generation of wastewater is one of the main environmental sustainability issues across food sector industries. The constituents of food process effluents are often complex and require high energy and processing for regulatory compliance. Wastewater streams are the subject of microbiological and chemical criteria, and can have a significant eco-toxicological impact on the aquatic life. Thus, innovative treatment approaches are required to mitigate environmental impact in an energy efficient manner. Here, dielectric barrier discharge atmospheric cold plasma (ACP) was evaluated for control of key microbial indicators encountered in food industry effluent. This study also investigated the eco-toxicological impact of cold plasma treatment of the effluents using a range of aquatic bioassays. Continuous ACP treatment was applied to synthetic dairy and meat effluents. Microbial inactivation showed treatment time dependence with significant reduction in microbial populations within 120 s, and to undetectable levels after 300 s. Post treatment retention time emerged as critical control parameter which promoted ACP bacterial inactivation efficiency. Moreover, ACP treatment for 20 min achieved significant reduction (≥2 Log 10 ) in Bacillus megaterium endospores in wastewater effluent. Acute aquatic toxicity was assessed using two fish cell lines (PLHC-1 and RTG-2) and a crustacean model (Daphnia magna). Untreated effluents were toxic to the aquatic models, however, plasma treatment limited the toxic effects. Differing sensitivities were observed to ACP treated effluents across the different test bio-assays in the following order: PLHC-1 > RTG-2 ≥ D. magna; with greater sensitivity retained to plasma treated meat effluent than dairy effluent. The toxic effects were dependent on concentration and treatment time of the ACP treated effluent; with 30% cytotoxicity in D. magna and fish cells observed after 24 h of exposure to ACP treated effluent for concentrations up to 5%. The findings suggest the need to employ wider variety of aquatic organisms for better understanding and complete toxicity evaluation of long-term effects. The study demonstrates the potential to tailor ACP system parameters to control pertinent microbial targets (mono/poly-microbial, vegetative or spore form) found in complex and nutritious wastewater effluents whilst maintaining a safe eco-toxicity profile for aquatic species. Copyright © 2018 Elsevier B.V. All rights reserved.
Sponza, Delia Teresa
2002-01-01
Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses such as COD, BOD, color and heavy metals. It was observed that the toxicity of the effluents could not be explained by using physicochemical analyses in 5 cases for metal and 4 cases for the textile industries. The results clearly showed that the use of bioassay tests produce additional information about the toxicity potential of industrial discharges and effluents.
Hedayatipour, Mostafa; Jaafarzadeh, Neemat; Ahmadmoazzam, Mehdi
2017-12-01
Oil and gas well drilling industries discharge large volumes of contaminated wastewater produced during oil and gas exploration process. In this study, the effect of different operational variables, including temperature, pH and transmembrane pressure on process performance of a commercially available nanofiltration membrane (JCM-1812-50N, USA) for removing Ba, Ni, Cr, NaCl and TDS from produced wastewater by dewatering unit of an oil and gas well drilling industry was evaluated. In optimum experimental conditions (T = 25 °C, P = 170 psi and pH = 4) resulted from Thaguchi method, 85.3, 77.4, 58.5, 79.6 and 56.3% removal efficiencies were achieved for Ba, Ni, Cr, NaCl and TDS, respectively. Also, results from a comparison of the Schuller and Wilcox diagrams revealed that the effluent of the membrane system is usable for drinking water, irrigating and agriculture purposes. Moreover, the process effluent quality showed a scaling feature, according to Langelier saturation index and illustrated that the necessary proceedings should be taken to prevent scaling for industrial application. The nanofiltration membrane process with an acceptable recovery rate of 47.17% represented a good performance in the wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rajamanickam, R; Nagan, S
2010-10-01
Karur is an industrial town located on the bank of river Amaravathi. There are 487 textile processing units in operation and discharge about 14610 kilo litres per day of treated effluent into the river. The groundwater quality in the downstream is deteriorated due to continuous discharge of effluent. In order to assess the present quality of groundwater, 13 open wells were identified in the river basin around Karur and samples were collected during pre-monsoon, post monsoon and summer, and analyzed for physico-chemical parameters. TDS, total alkalinity, total hardness, calcium, chlorides and sulphates exceeded the desirable limit. Amaravathi River water samples were also colleted at the upstream and downstream of Karur and the result shows the river is polluted. During summer season, there is no flow in the river and the river acts as a drainage for the effluent. Hence, there is severe impact on the groundwater quality in the downstream. The best option to protect the groundwater quality in the river basin is that the textile processing units should adopt zero liquid discharge (ZLD) system and completely recycle the treated effluent.
Benvenuti, T; Rodrigues, Mas; Arenzon, A; Bernardes, A M; Zoppas-Ferreira, J
2015-05-01
The Sinos river Basin is an industrial region with many tanneries and electroplating plants in southern Brazil. The wastewater generated by electroplating contains high loads of salts and metals that have to be treated before discharge. After conventional treatment, this study applied an advanced oxidative process to degrade organic additives in the electroplating bright nickel baths effluent. Synthetic rinsing water was submitted to physical-chemical coagulation for nickel removal. The sample was submitted to ecotoxicity tests, and the effluent was treated by photoelectrooxidation (PEO). The effects of current density and treatment time were evaluated. The concentration of total organic carbon (TOC) was 38% lower. The toxicity tests of the effluent treated using PEO revealed that the organic additives were partially degraded and the concentration that is toxic for test organisms was reduced.
Hermosilla, Daphne; Merayo, Noemí; Gascó, Antonio; Blanco, Ángeles
2015-01-01
The paper industry is adopting zero liquid effluent technologies to reduce freshwater use and meet environmental regulations, which implies closure of water circuits and the progressive accumulation of pollutants that must be removed before water reuse and final wastewater discharge. The traditional water treatment technologies that are used in paper mills (such as dissolved air flotation or biological treatment) are not able to remove recalcitrant contaminants. Therefore, advanced water treatment technologies, such as advanced oxidation processes (AOPs), are being included in industrial wastewater treatment chains aiming to either improve water biodegradability or its final quality. A comprehensive review of the current state of the art regarding the use of AOPs for the treatment of the organic load of effluents from the paper industry is herein addressed considering mature and emerging treatments for a sustainable water use in this sector. Wastewater composition, which is highly dependent on the raw materials being used in the mills, the selected AOP itself, and its combination with other technologies, will determine the viability of the treatment. In general, all AOPs have been reported to achieve good organic removal efficiencies (COD removal >40%, and about an extra 20% if AOPs are combined with biological stages). Particularly, ozonation has been the most extensively reported and successfully implemented AOP at an industrial scale for effluent treatment or reuse within pulp and paper mills, although Fenton processes (photo-Fenton particularly) have actually addressed better oxidative results (COD removal ≈ 65-75%) at a lab scale, but still need further development at a large scale.
Prakash, Jyotsana; Gupta, Rahul Kumar; Xx, Priyanka; Kalia, Vipin Chandra
2018-05-01
Biodiesel industrial effluent rich in crude glycerol (CG) was processed to produce value-added product. Under continuous culture system, Bacillus amyloliquefaciens strain CD16 immobilized within its biofilm, produced 3.2 L H 2 /day/L feed, over a period of 60 days at a hydraulic retention time of 2 days. The effective H 2 yield by B. amyloliquefaciens strain CD16 was 165 L/L CG. This H 2 yield was 1.18-fold higher than that observed with non-biofilm forming Bacillus thuringiensis strain EGU45. Bioprocessing of the effluent released after this stage, by recycling it up to 25% did not have any adverse effect on H 2 production by strain EGU45; however, a 25% reduction in yield was recorded with strain CD16. Biofilm forming H 2 producers thus proved effective as self-immobilizing system leading to enhanced process efficiency.
Keluskar, Radhika; Nerurkar, Anuradha; Desai, Anjana
2013-02-01
A simultaneous partial nitrification, anammox and denitrification (SNAD) process was developed for the treatment of ammonia laden effluent of a fertilizer industry. Autotrophic aerobic and anaerobic ammonia oxidizing biomass was enriched and their ammonia removal ability was confirmed in synthetic effluent system. Seed consortium developed from these was applied in the treatment of effluent in an oxygen limited bench scale SNAD type (1L) reactor run at ambient temperature (∼30°C). Around 98.9% ammonia removal was achieved with ammonia loading rate 0.35kgNH(4)(+)-N/m(3)day in the presence of 46.6mg/L COD at 2.31days hydraulic retention time. Qualitative and quantitative analysis of the biomass from upper and lower zone of the reactor revealed presence of autotrophic ammonia oxidizing bacteria (AOB), Planctomycetes and denitrifiers as the dominant bacteria carrying out anoxic oxidation of ammonia in the reactor. Physiological and molecular studies strongly indicate presence of anammox bacteria in the anoxic zone of the SNAD reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.
Expósito, Antonio J; Durán, Antonio; Monteagudo, José M; Acevedo, Alba
2016-05-01
An industrial wastewater effluent coming from a pharmaceutical laboratory has been treated in a semi-industrial autonomous solar compound parabolic collector (CPC) plant. A photo-Fenton process assisted with ferrioxalate has been used. Up to 79% of TOC can be removed in 2 h depending on initial conditions when treating an aqueous effluent containing up to 400 ppm of initial organic carbon concentration (TOC). An initial ratio of Fe(II)/TOC higher than 0.5 guarantees a high removal. It can be seen that most of TOC removal occurs early in the first hour of reaction. After this time, mineralization was very slow, although H2O2 was still present in solution. Indeed it decomposed to form oxygen in inefficient reactions. It is clear that remaining TOC was mainly due to the presence of acetates which are difficult to degrade. Copyright © 2016 Elsevier Ltd. All rights reserved.
Moerman, Wim; Carballa, Marta; Vandekerckhove, Andy; Derycke, Dirk; Verstraete, Willy
2009-04-01
Pilot-scale struvite crystallization tests using anaerobic effluent from potato processing industries were performed at three different plants. Two plants (P1 & P2) showed high phosphate removal efficiencies, 89+/-3% and 75+/-8%, resulting in final effluent levels of 12+/-3 mg PO(4)(3-)-PL(-1) and 11+/-3mg PO(4)(3-)-PL(-1), respectively. In contrast, poor phosphate removal (19+/-8%) was obtained at the third location (P3). Further investigations at P3 showed the negative effect of high Ca(2+)/PO(4)(3-)-P molar ratio (ca. 1.25+/-0.11) on struvite formation. A full-scale struvite plant treating anaerobic effluent from a dairy industry showed the same Ca(2+) interference. A shift in the influent Ca(2+)/PO(4)(3-)-P molar ratio from 2.69 to 1.36 resulted in average total phosphorus removal of 78+/-7%, corresponding with effluent levels of 14+/-4 mg P(total)L(-1) (9+/-3 mg PO(4)(3-)-PL(-1)). Under these conditions high quality spherical struvite crystals of 2-6mm were produced.
Kumar, Vikas; Majumdar, Chandrajeetbalo; Roy, Partha
2008-09-01
The leather tanning industry is characterized by the production of different kinds of effluents, generated in each step of leather processing. These effluents have various chemical compounds which may cause toxicity and endocrine disruption and are thus known as endocrine disrupting chemicals (EDC). This study was aimed to examine the androgenic potential of leather industry effluents collected from northern region of India. Hershberger assay data showed a significant increase (p<0.05) in the weight and structure of sex accessory tissues of castrated rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change (p<0.05) in the expression patterns of the major steroidogenic enzymes in adrenal and testes namely, cytochrome P450scc, 3beta-hydroxysteroid dehydrogenase, 17beta-hydroxysteroid dehydorgenase in castrated and intact rats. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile demonstrated a dose dependent increase in testicular and adrenal testosterone productions in intact and castrated rats, respectively. This was further supported by decreased level of gonadotrophic hormones (LH and FSH) in treated groups of animals. Further, the effluent treatment resulted in the development of hyperplasia in seminiferous tubules of testes in treated rats as evident from histopathological studies and about two-fold increases in daily sperm production. On analysis of water samples using GC-MS, it was found to contain various aromatic compounds (nonylphenol, hexaclrobenzene and several azo dyes) some of which independently demonstrated similar effects as shown by water samples. Our data suggests that the effluents from leather industry have potential EDC demonstrating androgenic activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This bibliography contains citations concerning the treatment of effluents from beverage-industry processes. Particular emphasis is on brewery and winery effluent treatment. Characteristics of the waste products and pre-treatment and treatment methods are discussed. Regulations governing waste disposal are also considered along with the economics of waste disposal. Both alcoholic and soft drink beverages are considered. (This updated bibliography contains 223 citations, all of which are new entries to the previous edition.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This bibliography contains citations concerning the treatment of effluents from beverage-industry processes. Particular emphasis is on brewery and winery effluent treatment. Characteristics of the waste products and pre-treatment and treatment methods are discussed. Regulations governing waste disposal are also considered along with the economics of waste disposal. Both alcoholic and soft drink beverages are considered. (This updated bibliography contains 312 citations, none of which are new entries to the previous edition.)
Mahlalela, Lwazi C; Ngila, Jane C; Dlamini, Langelihle N
2017-07-03
The use of nanoparticles (NPs) in several consumer products has led to them finding their way into wastewater treatment plants (WWTPs). Some of these NPs have photocatalytic properties, thus providing a possible solution to textile industries to photodegrade dyes from their wastewater. Thus, the interaction of NPs with industrial dye effluents is inevitable. The Organization for Economic Co-operation and development (OECD) guideline for testing of chemical 303A was employed to study the fate and behaviour of TiO 2 NPs in industrial dye-stuff effluent. This was due to the unavailability of NPs' fate and behaviour test protocols. The effect of TiO 2 NPs on the treatment process was ascertained by measuring chemical oxygen demand (COD) and 5-day biological oxygen demand (BOD5). Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used to study the fate and behavior of TiO 2 NPs. Acclimatization of bacteria to target pollutants was a crucial factor for the treatment efficiency of activated sludge in a simulated wastewater treatment plant (SWTP). The acclimatization of the activated sludge to the synthetic industrial dye-stuff effluent was successfully achieved. Effect of TiO 2 NPs on the treatment process efficiency was then investigated. Addition of TiO 2 NPs had no effect on the treatment process as chemical oxygen demand (COD) removal remained >80%. Measured total plate count (TPC) affirmed that the addition of TiO 2 NPs had no effect on the treatment process. The removal of total nitrogen (TN) was not efficient as the treatment system was required to have an oxic and anoxic stage for efficient TN removal. Results from X-ray powder diffraction (XRD) confirmed that the anatase phase of the added TiO 2 NPs remained unchanged even after exposure to the treatment plant. Removal of the NPs from the influent was facilitated by biosorption of the NPs on the activated sludge. Nanoparticles received by wastewater treatment plants will therefore reach the environment through sludge waste dumped in landfill. About 90% of TiO 2 was retained in the activated sludge, and 10-11% escaped with the treated effluents. Scanning electron microscope (SEM) mapping micrographs together with an energy dispersive X-ray spectroscopy (EDS) confirmed the presence of Ti in the sludge.
Impact of industrial effluents on the biochemical composition of fresh water fish Labeo rohita.
Muley, D V; Karanjkar, D M; Maske, S V
2007-04-01
In acute toxicity (96 hr) experiment the fingerlings of freshwater fish Labeo rohita was exposed to tannery, electroplating and textile mill effluents. The LC0 and LC50 concentrations were 15% and 20% for tannery effluents, 3% and 6% for electroplating effluents and 18% and 22% for textile mill effluents respectively. It was found that, electroplating effluent was more toxic than tannery and textile mill wastes. After acute toxicity experiments for different industrial effluents, various tissues viz. gill, liver, muscle and kidney were obtained separately from control, LC0 and LC50 groups. These tissues were used for biochemical estimations. The glycogen content in all the tissues decreased considerably upon acute toxicity of three industrial effluents except muscle in LC50 group of tannery effluent and kidney in LC50 group of textile mill effluent, when compared to control group. The total protein content decreased in all tissues in three effluents except gills in LC50 group of tannery effluent, kidney in LC50 group of electroplating effluent and kidney in LC0 group of textile mill effluent. In general total lipid content decreased in all tissues after acute exposure when compared to control group. The results obtained in the present study showed that, the industrial effluents from tannery, electroplating and textile mills caused marked depletion in biochemical composition in various tissues of the fish Labeo rohita after acute exposure.
Decreased fish diversity found near marble industry effluents in River Barandu, Pakistan.
Mulk, Shahi; Korai, Abdul Latif; Azizullah, Azizullah; Khattak, Muhammad Nasir Khan
2016-01-01
In a recently published study we observed that effluents from marble industry affected physicochemical characteristics of River Barandu in District Buner, Pakistan. These changes in water quality due to marble effluents may affect fish community. The present study was therefore conducted to evaluate the impacts of marble industry effluents on fish communities in River Barandu using abundance, richness, diversity and evenness of fish species as end point criteria. The fish samples were collected by local fishermen on monthly basis from three selected sites (upstream, effluents/industrial, and downstream sites). During the study period, a total of 18 fish species were found belonging to 4 orders, 5 families and 11 genera. The Cyprinidae was observed to be the dominant family at all the three selected sites. Lower abundance and species diversity was observed at the industrial (22%) and downstream sites (33%) as compared to the upstream site (45%). Effluents of marble industry were associated with lower abundance of species in River Barandu. It is recommended that industries should be shifted away from the vicinity of river and their effluents must be treated before discharging to prevent further loss of fish abundance and diversity in the River.
Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N; Magalhães, Oliane; Paiva, Laura M; Moreira, Keila A; Lima, Nelson; Souza-Motta, Cristina M
2017-04-01
Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma , have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view.
Jiang, Yingnan; Hua, Ming; Wu, Bian; Ma, Hongrui; Pan, Bingcai; Zhang, Quanxing
2014-05-01
Effective arsenic removal from highly laden industrial wastewater is an important but challenging task. Here, a combined coprecipitation/nano-adsorption process, with ferric chloride and calcium chloride as coprecipitation agents and polymer-based nanocomposite as selective adsorbent, has been validated for arsenic removal from tungsten-smelting wastewater. On the basis of operating optimization, a binary FeCl3 (520 mg/L)-CaCl2 (300 mg/L) coprecipitation agent could remove more than 93% arsenic from the wastewater. The resulting precipitate has proved environmental safety based on leaching toxicity test. Fixed-bed column packed with zirconium or ferric-oxide-loaded nanocomposite was employed for further elimination of arsenic in coprecipitated effluent, resulting in a significant decrease of arsenic (from 0.96 to less than 0.5 mg/L). The working capacity of zirconium-loaded nanocomposite was 220 bed volumes per run, much higher than that of ferric-loaded nanocomposite (40 bed volumes per run). The exhausted zirconium-loaded nanocomposite could be efficiently in situ regenerated with a binary NaOH-NaCl solution for reuse without any significant capacity loss. The results validated the combinational coprecipitation/nano-adsorption process to be a potential alternative for effective arsenic removal from highly laden industrial effluent.
Kanagaraj, G; Elango, L
2016-12-01
The present study was carried out to determine the hydrogeochemical processes and the impact of tanning industries on groundwater in Ambur, Vellore district, Tamil Nadu, India. Thirty groundwater samples were collected during pre monsoon (July 2015) and post monsoon (January 2016) from the open and shallow wells around this region and were analyzed for major ions and chromium. The major ion concentration follows the order of Na + > Ca 2+ > Mg 2+ > K + (cations) and Cl - > HCO 3 - > SO 4 2- > NO 3 - (anions) for both seasons. The high concentrations of Na + , Cl - , and Cr around the tannery regions indicate the impact of effluent discharged from tannery units. In general, the groundwater of this study area is of Na + -Cl - type, which is due to the mixing of tannery effluent and cation exchange process. Ionic ratio indicates that the silicate weathering influences the groundwater chemistry. The permissible limit of chromium in the groundwater exceeds in over 50 % of the sampling wells. The factor analysis reveals that the dominant source for ionic contents is due to tannery effluents and cation exchange processes. To overcome this situation, it is essential to improve the performance of the effluent treatment plants so as to remove the salinity of wastewater and to plan for rainfall recharge structures for improving the groundwater recharge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-11
The Department of Energy (DOE) proposes to eliminate industrial effluent from 27 outfalls at Los Alamos National Laboratory (LANL). The Proposed Action includes both simple and extensive plumbing modifications, which would result in the elimination of industrial effluent being released to the environment through 27 outfalls. The industrial effluent currently going to about half of the 27 outfalls under consideration would be rerouted to LANL`s sanitary sewer system. Industrial effluent from other outfalls would be eliminated by replacing once-through cooling water systems with recirculation systems, or, in a few instances, operational changes would result in no generation of industrial effluent.more » After the industrial effluents have been discontinued, the affected outfalls would be removed from the NPDES Permit. The pipes from the source building or structure to the discharge point for the outfalls may be plugged, or excavated and removed. Other outfalls would remain intact and would continue to discharge stormwater. The No Action alternative, which would maintain the status quo for LANL`s outfalls, was also analyzed. An alternative in which industrial effluent would be treated at the source facilities was considered but dismissed from further analysis because it would not reasonably meet the DOE`s purpose for action, and its potential environmental effects were bounded by the analysis of the Proposed Action and the No Action alternatives.« less
BIOLOGICAL TREATMENT, EFFLUENT REUSE, AND SLUDGE HANDLING FOR THE SIDE LEATHER TANNING INDUSTRY
An evaluation of the treatability of unsegregated, unequalized, and unneutralized wastewaters from a side-leather tanning industry utilizing the hair pulping process by primary and secondary biological and gravity separation in clarifier-thickeners, whereas the secondary treatmen...
Manzoor, S A; Mirza, S N; Zubair, M; Nouman, W; Hussain, S B; Mehmood, S; Irshad, A; Sarwar, N; Ammar, A; Iqbal, M F; Asim, A; Chattha, M U; Chattha, M B; Zafar, A; Abid, R
2015-08-14
Biofuel tree species are recognized as a promising alternative source of fuel to conventional forms. Additionally, these tree species are also effective in accumulating toxic heavy metals present in some industrial effluents. In developing countries such as Pakistan, the use of biofuel tree species is gaining popularity not only for harvesting economical and environmentally friendly biofuel, but also to sequester poisonous heavy metals from industrial wastewater. This study was aimed at evaluating the genetic potential of two biofuel species, namely, Jatropha curcas and Pongamia pinnata, to grow when irrigated with industrial effluent from the Pak-Arab Fertilizer Factory Multan, Southern Punjab, Pakistan. The growth performances of one-year-old seedlings of both species were compared in soil with adverse physiochemical properties. It was found that J. curcas was better able to withstand the toxicity of the heavy metals present in the fertilizer factory effluent. J. curcas showed maximum gain in height, diameter, and biomass production in soil irrigated with 75% concentrated industrial effluent. In contrast, P. pinnata showed a significant reduction in growth in soil irrigated with more than 50% concentrated industrial effluent, indicating that this species is less tolerant to higher toxicity levels of industrial effluent. This study identifies J. curcas as a promising biofuel tree species that can be grown using industrial wastewater.
Effect of leather industry effluents on soil microbial and protease activity.
Pradeep, M Reddi; Narasimha, G
2012-01-01
Release of leather industry effluents into the agricultural fields causes indicative changes in nutrient cycling and organic matter processing. In the present study, leather industry effluent discharged soil (test) and undischarged soil(control) were collected from the surrounding areas of industry. The physico-chemical, biological properties and soil protease activity were examined. The study reflected the average mean value of pH, electrical conductivity and water holding capacity of the test soil was found to be 7.94, 0.89 microMhos cm(-1) and 0.51 ml g(-1), respectively. In chemical parameters, organic matter, total nitrogen, phosphorus and potassium has the mean of 6.73%, 0.23 g kg(-1), 4.28 mg g(-1) and 28 microg g(-1), respectively. In all the respects, the test soil showed higher values than the control. The soil protease enzyme activity was determined by using substrate casein and the activity was found to be higher (180 microg TE g(-1) 24 hr(-1)) in test soil than the control soil (63 microg TE g(-1) 24 hr(-1)).
Bioplastic production using wood mill effluents as feedstock.
Ben, M; Mato, T; Lopez, A; Vila, M; Kennes, C; Veiga, M C
2011-01-01
Fibreboard production is one of the most important industrial activities in Galicia (Spain). Great amounts of wastewater are generated, with properties depending on the type of wood, treatment process, final product and water reusing, among others. These effluents are characterized by a high chemical oxygen demand, low pH and nutrients limitation. Although anaerobic digestion is one of the most suitable processes for the treatment, lately bioplastics production (mainly polyhydroxyalkanoates) from wastewaters with mixed cultures is being evaluated. Substrate requirements for these processes consist of high organic matter content and low nutrient concentration. Therefore, wood mill effluents could be a suitable feedstock. In this work, the possibility of producing bioplastics from to wood mill effluents is evaluated. First, wood mill effluent was converted to volatile fatty acids in an acidogenic reactor operated at two different hydraulic retention times of 1 and 1.5 d. The acidification percentage obtained was 37% and 42%, respectively. Then, aerobic batch assays were performed using fermented wood mill effluents obtained at different hydraulic retention times. Assays were developed using different cultures as inoculums. The maximum storage yield of 0.57 Cmmol/Cmmol was obtained when when the culture was enriched on a synthetic media.
NASA Astrophysics Data System (ADS)
Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.
2012-05-01
Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.
The potential for effluent trading in the energy industries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veil, J. A.; Environmental Assessment
1998-01-01
In January 1996, the US Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades: point source/point source, point source/nonpoint source, pretreatment, intraplant and nonpoint source/nonpoint source. This paper evaluates the feasibility of implementing these types of effluent trading for facilities in the oil and gas, electric power and coal industries. This paper finds that the potential for effluent trading in these industries is limited because trades would generally need to involve toxic pollutants, which can only be traded undermore » a narrow range of circumstances. However, good potential exists for other types of water-related trades that do not directly involve effluents (e.g. wetlands mitigation banking and voluntary environmental projects). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.« less
NASA Astrophysics Data System (ADS)
Elango, L.; Brindha, K.; G. Rajesh, V.
2009-12-01
The groundwater quality is under threat due to disposal of effluents from a number of industries. Poor practice of treatment of wastes from tanning industries or leather processing industries lead to pollution of groundwater. This study was carried out with the objective of assessing the impact of tanneries on groundwater quality in Chromepet area which is a part of the metropolitan area of Chennai, Tamil Nadu, India. This area serves as the home town for a number of small and large scale tanning industries. People in certain parts of this area depend on the groundwater for their domestic needs as there is no piped drinking water supply system. Topographically this region is generally flat with gentle slope towards east and north east. The charnockite rocks occur as basement at the depth of about 15m from the surface of this area. Weathered charnockite rock occurs at the depth from 7m to 15m from the ground surface. The upper layer consists of loamy soil. Groundwater occurs in the unconfined condition at a depth from 0.5m to 5m. Thirty six groundwater samples were collected during March 2008 and the groundwater samples were analysed for their heavy metal (chromium) content using atomic absorption spectrophotometer. Bureau of Indian Standards (BIS) recommended the maximum permissible limit of chromium in drinking water as 0.05 mg/l. Considering this, it was found that 86% of the groundwater samples possessed concentration of chromium above the maximum permissible limit recommended by BIS. The tanneries use chrome sulphate to strengthen the leather and make it water repellent. The excess of chromium gets washed off and remains in the wastewater. This wastewater is disposed into open uncovered drains either untreated or after partial treatment. Thus the chromium leaches through the soil and reaches the groundwater table. Apart from this, there is also huge quantity of solid waste resulting from the hides and skins which are dumped off without suitable treatment. The percolation of the leachate rich in chromium will also add to chromium concentration in groundwater. The effluents from the tanning processes are sent to the common effluent treatment plant (CETP) by large scale industries. But small scale industries are not able to use such CETP for treating the wastewater generated by them. It is prominent from this study that the effluent from the tanning industries should be treated properly before disposing off into drains in order to prevent the pollution of groundwater. Reverse osmosis treatment of tanning effluent can be adopted for separation and recovery of chromium from the wastewater. For improving the already contaminated groundwater of this region, insitu bioremediation by the use of microorganisms isolated from the contaminated site will prove effective.
Muruganandam, B; Saravanane, R; Lavanya, M; Sivacoumar, R
2008-07-01
Anaerobic treatment has gained tremendous success over the past two decades for treatment of industrial effluents. Over the past 30 years, the popularity of anaerobic wastewater treatment has increased as public utilities and industries have utilized its considerable benefits. Low biomass production, row nutrient requirements and the energy production in terms of methane yield are the significant advantages over aerobic treatment process. Due to the disadvantages reported in the earlier investigations, during the past decade, anaerobic biotechnology now seems to become a stable process technology in respect of generating a high quality effluent. The objective of the present experimental study was to compare the biodegradability of recalcitrant effluent (pharmaceutical effluent) for various inoculum-substrate ratios. The batch experiments were conducted over 6 months to get effect of ratio of inoculum-substrate on the acclimatization of pharmaceutical effluent. The tests were carried out in batch reactors, serum bottles, of volume 2000 mL and plastic canes of 10000 mL. Each inoculum was filled with a cow dung, sewage and phosphate buffer. The batch was made-up of diluted cow dung at various proportions of water and cow dung, i.e., 1:1 and 1:2 (one part of cow dung and one part of water by weight for 1:1). The bottles were incubated at ambient temperature (32 degrees C-35 degrees C). The bottles were closed tightly so that the anaerobic condition is maintained. The samples were collected and biodegradability was measured once in four days. The bottles were carefully stirred before gas measurement. The substrate was added to a mixture of inoculum and phosphate nutrients. The variations in pH, conductivity, alkalinity, COD, TS, TVS, VSS, and VFA were measured for batch process. The biogas productivity was calculated for various batches of inoculum-substrate addition and conclusions were drawn for expressing the biodegradability of pharmaceutical effluent on acclimatization period and influent COD concentration.
Bioremediation of a Complex Industrial Effluent by Biosorbents Derived from Freshwater Macroalgae
Kidgell, Joel T.; de Nys, Rocky; Hu, Yi; Paul, Nicholas A.; Roberts, David A.
2014-01-01
Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent. PMID:24919058
Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj
2011-04-01
Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs contamination in the water environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Silva Lisboa, Dianny; Santos, Cledir; Barbosa, Renan N.; Magalhães, Oliane; Paiva, Laura M.; Moreira, Keila A.; Lima, Nelson; Souza-Motta, Cristina M.
2017-01-01
Water contamination with large amounts of industrial textile coloured effluents is an environmental concern. For the treatment of textile effluents, white-rot fungi have received extensive attention due to their powerful capability to produce oxidative (e.g., ligninolytic) enzymes. In addition, other groups of fungi, such as species of Aspergillus and Trichoderma, have also been used for textile effluents treatment. The main aim of the present study was to requalify a Brazilian Trichoderma culture collection of 51 Trichoderma strains, isolated from different sources in Brazil and preserved in the oldest Latin-American Fungal Service Culture Collection, The Micoteca URM WDCM 804 (Recife, Brazil). Fungal isolates were re-identified through a polyphasic approach including macro- and micro-morphology and molecular biology, and screened for their capability to decolourise real effluents collected directly from storage tanks of a textile manufacture. Trichoderma atroviride URM 4950 presented the best performance on the dye decolourisation in real textile effluent and can be considered in a scale-up process at industrial level. Overall, the potential of Trichoderma strains in decolourising real textile dye present in textile effluent and the production of the oxidative enzymes Lac, LiP and MnP was demonstrated. Fungal strains are available in the collection e-catalogue to be further explored from the biotechnological point of view. PMID:28368305
Cingolani, Diego; Eusebi, Anna Laura; Battistoni, Paolo
2017-12-01
The industrial processes require large quantities of water. The presence of discharges results not only in significant environmental impact but implies wastage of water resources. This problem could be solved treating and reusing the produced wastewaters and applying the new zero liquid discharge approach. This paper discusses the design and the performances of reverse osmosis membranes for the upgrading of full scale platform for industrial liquid wastes. The final effluent from the ultrafiltration unit of the full scale plant was monitored to design the reverse osmosis unit. Previous modelling phase was used to evaluate the specific ordinary and maintenance costs and the final effluent quality (2.7 €/m 3 ). The system was designed in triple stages at different operative pressures. The economic feasibility and the payback period of the technology at different percentages of produced permeate were determined. The recovery of 90% was identified as profitable for the reverse osmosis application. One experimental pilot plant applying the reverse osmosis was used to test the final effluent. Moreover, the same flow was treated with second pilot system based on the forward osmosis process. The final efficiencies were compared. Removals higher than 95% using the reverse system were obtained for the main macropollutants and ions. No sustainable applicability of the forward osmosis was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
POLISHING INDUSTRIAL WASTE STREAM EFFLUENTS USING FLY ASH - NATURAL CLAY SORBENT COMBINATION
A laboratory evaluation of the use of acidic and basic fly ashes, bentonite, bauxite, illite, kaolinite, zeolite, vermiculite, and activated alumina is presented for polishing a 3.8 x 10 to the 6th power liters per day waste stream from the feldspar mining and processing industry...
Renewable energy recovery through selected industrial wastes
NASA Astrophysics Data System (ADS)
Zhang, Pengchong
Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.
Kim, Sok; Choi, Yoon-E; Yun, Yeoung-Sang
2016-08-05
Recovery of precious metal ions from waste effluents is of high concern. In general, ruthenium (Ru) is used in the Cativa process as promoter for carbonylation catalyst and discharged into acetic acid effluent. In the present work, we have designed and developed polyethylenimine-coated polysulfone-bacterial biomass composite fiber (PEI-PSBF) to recover Ru from industrial effluent. The sorbent was manufactured by electrostatic attachment of polyethylenimine (PEI) to the surface of polysulfone-biomass composite fiber (PSBF), which was prepared through spinning of the mixture of polysulfone and Escherichia coli biomass in N,N-dimethylformamide (DMF) into water. Developed PEI-PSBF was highly stable in the acetic acid effluent. The maximum sorption capacity of the developed sorbent PEI-PSBF, coated with PEI (with M.W. of 75,000), was 121.28±13.15mg/g, which was much higher than those of ion exchange resins, TP214, Amberjet 4200, and M500. The PEI-PSBF could be successfully applied in the flow-through column system, showing 120 beds of breakthrough volume. Copyright © 2016 Elsevier B.V. All rights reserved.
Van Den Hende, Sofie; Beelen, Veerle; Julien, Lucie; Lefoulon, Alexandra; Vanhoucke, Thomas; Coolsaet, Carlos; Sonnenholzner, Stanislaus; Vervaeren, Han; Rousseau, Diederik P L
2016-10-01
To replace costly mechanical aeration by photosynthetical aeration, upflow anaerobic sludge blanket (UASB) effluent of food-industry was treated in an outdoor MaB-floc raceway pond. Photosynthetic aeration was sufficient for nitrification, but the raceway effluent quality was below current discharge limits, despite the high hydraulic retention time (HRT) of 35days. Hereafter, conventional activated sludge (CAS) effluent of food-industry was treated in this pond to recover phosphorus. The two-day HRT results in a more realistic pond area, but the phosphorus removal efficiency was low (20%). High biomass productivities were obtained, i.e. 31.3 and 24.9ton total suspended solids hapond(-1)year(-1) for UASB and CAS effluent, respectively. Bioflocculation enabled successful harvesting of CAS effluent-fed MaB-flocs by settling and filtering at 150-250μm to 22.7% total solids. To conclude, MaB-floc raceway ponds cannot be recommended as the sole treatment for these food-industry effluents, but huge potential lies in added-value biomass production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pollution of Nigerian Aquatic Ecosystems by Industrial Effluents: Effects on Fish Productivity
NASA Astrophysics Data System (ADS)
Nwagwu, S. N.; Kuyoro, E. O.; Agboola, D. M.; Salau, K. S.; Kuyoro, T. O.
2016-02-01
Nigeria is uniquely endowed with vast water resources. The near-shore, estuaries, rivers, lakes and pond all taken together, offer tremendous opportunities for fish production. Globally, water bodies are primary means for disposal of waste especially the effluents from industrial, municipal, sewage and agricultural practices near the water body. Studies carried out in most cities in Nigeria has shown that industrial effluent is one of the main sources of water pollution in Nigeria and less than 10% of industries in Nigeria treat their effluents before discharging them into the water bodies. This effluent can alter the physical, chemical and biological nature of the receiving water body resulting in the death of the inhabiting organisms including fish. Untreated industrial waste discharged into water bodies have resulted in eutrophication of aquatic ecosystem as evidence by substantial algal bloom leading to dissolve oxygen depletion and eventually massive mortality of fish and other organisms. Industries like textile producing factory, paper manufacturing plants, oil refinery, brewery and fermentation factory and metal producing industries discharge their wastes into the aquatic ecosystem. These industrial wastes contain pollutants like acids, heavy metals, oil, cyanide, organic chemicals, pesticides, polychlorinated biphenyls, dioxins etc. Some of these pollutants are carcinogenic, mutagenic and teratogenic while some are poisonous depending on the level of exposure and intake by aquatic organisms and man. These pollutants affect the biological growth and reproduction of fishes in the aquatic ecosystem thereby reducing the amount of captured fishes. Fish and other aquatic lives face total extinction due to destruction of aquatic lives and natural habitats by pollution of water bodies. Effluents and wastes produced by industries should be minimised by using low and non-waste technologies; and effluents should be properly treated before they are discharged into aquatic environment.
Ibarra-Taquez, Harold N; GilPavas, Edison; Blatchley, Ernest R; Gómez-García, Miguel-Ángel; Dobrosz-Gómez, Izabela
2017-09-15
Soluble coffee production generates wastewater containing complex mixtures of organic macromolecules. In this work, a sequential Electrocoagulation-Electrooxidation (EC-EO) process, using aluminum and graphite electrodes, was proposed as an alternative way for the treatment of soluble coffee effluent. Process operational parameters were optimized, achieving total decolorization, as well as 74% and 63.5% of COD and TOC removal, respectively. The integrated EC-EO process yielded a highly oxidized (AOS = 1.629) and biocompatible (BOD 5 /COD ≈ 0.6) effluent. The Molecular Weight Distribution (MWD) analysis showed that during the EC-EO process, EC effectively decomposed contaminants with molecular weight in the range of 10-30 kDa. In contrast, EO was quite efficient in mineralization of contaminants with molecular weight higher than 30 kDa. A kinetic analysis allowed determination of the time required to meet Colombian permissible discharge limits. Finally, a comprehensive operational cost analysis was performed. The integrated EC-EO process was demonstrated as an efficient alternative for the treatment of industrial effluents resulting from soluble coffee production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bioremediation of industrial waste by using bat guano.
Gadhikar, Y A; Zade, V S; Khadse, T
2007-04-01
The present investigation is an attempt to study the effect of bat guano with its rich microbial flora on bioremediation of industrial waste effluents. The results revealed that within a period of 15 days, there was a remarkable reduction in the Chemical Oxygen Demand (COD) values up to 50%-70%, thus stabilizing the industrial effluents. In addition to this,values of various physico-chemical parameters were notably found to reduce suggesting that industrial effluents can be effectively treated by bat guano.
Kulshrestha, Shail; Awasthi, Alok; Dabral, S K
2013-07-01
The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed.
NASA Astrophysics Data System (ADS)
Martins, Ramiro; Boaventura, Rui; Paulista, Larissa
2017-12-01
The accelerated growth of the population brings with it an increase in the generation of agro-industrial effluents. The inadequate discharge of these effluents significantly affects the quality of water resources. In this way, it becomes important to invest in treatment processes for agro-industrial effluents, particularly low-cost ones. In this context, the present study includes the design and construction of an UASB reactor and optimization of the anaerobic digestion treatment of the raw effluent from sweet chestnut production in the agro-industrial company Sortegel. The efficiency of the system was evaluated through the determination / monitoring of oxygen chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS), biogas production rate and quality (% methane). The reactor was fed for 25 weeks and operated under mesophilic conditions (temperature 30-40 °C). Different values were tested for the hydraulic retention time (HRT) and volumetric flow rate (VF): 0.66 days (VF=1509 L.m-3.d-1); 1.33 days (VF=755 L.m-3.d-1); 2.41 d days (VF=415 L.m-3.d-1). The average COD removal efficiency reached values of 69%, 82% and 75%, respectively, and simultaneously the associated BOD5 removal efficiency was 84%, 91% and 70%. As regards TSS, removal values were 78%, 94% and 63%. In addition, high methane production rates were obtained, between 2500 and 4800 L CH4.kg-1 COD removed d-1. For all the hydraulic retention times tested, high concentrations of methane in the biogas were recorded: 66-75%, 70% and 75% for HRT of 0.66, 1.33 and 2.41 days, respectively.
Mosquera-Corral, A; Sánchez, M; Campos, J L; Méndez, R; Lema, J M
2001-02-01
A lab-scale hybrid upflow sludge bed-filter (USBF) reactor was employed to carry out methanogenesis and denitrification of the effluent from an anaerobic industrial reactor (EAIR) in a fish canning industry. The reactor was initially inoculated with methanogenic sludge and there were two different operational steps. During the first step (Step I: days 1-61), the methanogenic process was carried out at organic loading rates (OLR) of 1.0-1.25 g COD l-1 d-1 reaching COD removal percentages of 80%. During the second step (Step II: days 62-109) nitrate was added as KNO3 to the industrial effluent and the OLR was varied between 1.0 and 1.25 g COD l-1 d-1. Two different nitrogen loads of 0.10 and 0.22 g NO3(-)-N l-1 d-1 were applied and these led to nitrogen removal percentages of around 100% in both cases and COD removal percentages of around 80%. Carbon to nitrogen ratio (C:N) in the influent was maintained at 2.0 and eventually it was increased to 3.0, by means of glucose addition, to control the denitrification process. From these results it is possible to establish that wastewater produced in a fish canning industry can be used as a carbon source for denitrification and that denitrifying microorganisms were present in the initially methanogenic sludge. Biomass productions of 0.23 and 0.61 g VSS:g TOC fed for Steps I and II, respectively, were calculated from carbon global balances, showing an increase in biomass growth due to denitrification.
USDA-ARS?s Scientific Manuscript database
Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that th...
USDA-ARS?s Scientific Manuscript database
Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that th...
Factorial design application in photocatalytic wastewater degradation from TNT industry-red water.
Guz, Ricardo; de Moura, Cristiane; da Cunha, Mário Antônio Alves; Rodrigues, Marcio Barreto
2017-03-01
In trinitrotoluene (TNT) purification process, realized in industries, there are two washes carried out at the end of the procedure. The first is performed with vaporized water, from which the first effluent, called yellow water, is originated. Then, a second wash is performed using sodium sulfite, generating the red water effluent. The objective of this work was to get the best conditions for photocatalytic degradation of the second effluent, red water, in order to reduce toxicity and adjust legal parameters according to regulatory agencies for dumping these effluents into waterways. It has used a statistical evaluation for factor interaction (pH, concentration) that affects heterogeneous photocatalysis with titanium dioxide (TiO 2 ). Thus, the treatment applied in the factorial experimental design consisted of using a volume equal to 500 mL of the effluent to 0.1 % by batch treatment, which has changed TiO 2 pH and concentration, according to the design, with 20 min time for evaluation, where it was used as response to the reduction of UV-Vis absorption. According to the design responses, it has obtained optimum values for the parameters evaluated: pH = 6.5 and concentration of 100 mg/L of TiO 2 were shown to be efficient when applied to red water effluent, obtaining approximately 91 % of discoloration.
Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.
Ibrahim, Wael M; Mutawie, Hawazin H
2013-02-01
Three different species of nonliving red algal biomass Laurancia obtusa, Geldiella acerosa and Hypnea sp. were used to build three types of fixed-bed column for the removal of toxic heavy metal ions such as Cu(2+), Zn(2+), Mn(2+) and Ni(2+) from industrial effluent. In general, the highest efficiency of metal ion bioremoval was recorded for algal column of L. obtusa followed by G. acerosa and the lowest one was recorded for Hypnea sp., with mean removal values of 94%, 85% and 71%, respectively. The obtained results showed that biological treatments of industrial effluents with these algal columns, using standard algal biotest, Pseudokirchneriella subcapitata, were capable of reducing effluent toxicities from 75% to 15%, respectively. Red algal column may be considered as an inexpensive and efficient alternative treatment for conventional removal technology, for sequestering heavy metal ions from industrial effluents.
Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu
NASA Astrophysics Data System (ADS)
Prabha, Shashi; Gogoi, Anindita; Mazumder, Payal; Ramanathan, AL.; Kumar, Manish
2017-09-01
The expedited advent of urbanization and industrialization for economic growth has adversely affected the biological diversity, which is one of the major concerns of the developing countries. Microbes play a crucial role in decontaminating polluted sites and degrades pollution load of textile effluent. The present study was based on identification of microbial diversity along the Noyaal river of Tirupur area. River water samples from industrial and non-industrial sites and effluent samples of before and after treatment were tested and it was found that microbial diversity was higher in the river water at the industrial site (Kasipalayam) as compared to the non-industrial site (Perur). Similarly, the microbial populations were found to be high in the untreated effluent as compared to the treated one by conventional treatment systems. Similar trends were observed for MBR treatment systems as well. Pseudomonas sp ., Achromobacter sp. (bacterial species) and Aspergillus fumigates (fungal species), found exclusively at the industrial site have been reported to possess decolorization potential of dye effluent, thus can be used for treatment of dye effluent. The comparison of different microbial communities from different dye wastewater sources and textile effluents was done, which showed that the microbes degrade dyestuffs, reduce toxicity of wastewaters, etc. From the study, it can be concluded that the microbial community helps to check on the pollutants and minimize their affect. Therefore, there is a need to understand the systematic variation in microbial diversity with the accumulation of pollution load through monitoring.
Toxicity assessment of tannery effluent treated by an optimized photo-Fenton process.
Borba, Fernando Henrique; Módenes, Aparecido Nivaldo; Espinoza-Quiñones, Fernando Rodolfo; Manenti, Diego Ricieri; Bergamasco, Rosangela; Mora, Nora Diaz
2013-01-01
In this work, an optimized photo-Fenton process was applied to remove pollutants from tannery industrial effluent (TIE) with its final toxicity level being assessed by a lettuce-seed-based bioassay test. A full 33 factorial design was applied for the optimization of long-term photo-Fenton experiments. The oPtimum conditions of the photo-Fenton process were attained at concentration values of 0.3 g Fe(2+) L(-1) and 20 g H2O2 L(-1) and pH3, for 120 min UV irradiation time. Reactor operating parameter (ROP) effects on the removal of chemical oxygen demand, colour, turbidity, total suspended solids and total volatile solids were evaluated, suggesting that a broad range of ROP values are also suitable to give results very near to those of the photo-Fenton experiments under optimal conditions. Based on the low calculated median lethal dose (LD50) values from a lettuce-seed-based bioassay test, we suggest that recalcitrant substances are present in treated TIE samples. A possible cause of the high toxicity level could partly be attributed to the nitrate concentration, which was not completely abated by the photo-Fenton process. Apart from this, the photo-Fenton process can be used as a part of an industrial effluent treatment system in order to abate high organic pollutant loads.
Liquid by-products from fish canning industry as sustainable sources of ω3 lipids.
Monteiro, Ana; Paquincha, Diogo; Martins, Florinda; Queirós, Rui P; Saraiva, Jorge A; Švarc-Gajić, Jaroslava; Nastić, Nataša; Delerue-Matos, Cristina; Carvalho, Ana P
2018-08-01
Fish canning industry generates large amounts of liquid wastes, which are discarded, after proper treatment to remove the organic load. However, alternative treatment processes may also be designed in order to target the recovery of valuable compounds; with this procedure, these wastewaters are converted into liquid by-products, becoming an additional source of revenue for the company. This study evaluated green and economically sustainable methodologies for the extraction of ω3 lipids from fish canning liquid by-products. Lipids were extracted by processes combining physical and chemical parameters (conventional and pressurized extraction processes), as well as chemical and biological parameters. Furthermore, LCA was applied to evaluate the environmental performance and costs indicators for each process. Results indicated that extraction with high hydrostatic pressure provides the highest amounts of ω3 polyunsaturated fatty acids (3331,5 mg L -1 effluent), apart from presenting the lowest environmental impact and costs. The studied procedures allow to obtain alternative, sustainable and traceable sources of ω3 lipids for further applications in food, pharmaceutical and cosmetic industries. Additionally, such approach contributes towards the organic depuration of canning liquid effluents, therefore reducing the overall waste treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.
The feasibility of effluent trading in the oil and gas industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veil, J.A.
1997-09-01
In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing wastewater effluent trading in watersheds, hoping to promote additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This paper evaluates the feasibility of effluent trading for facilities in the oil and gas industry. The evaluation leads to the conclusion that potential for effluent trading is very low in the exploration and production and distribution and marketing sectors; trading potential is moderate for the refining sector except for intraplant trades,more » for which the potential is high. Good potential also exists for other types of water-related trades that do not directly involve effluents (e.g., wetlands mitigation banking). The potential for effluent trading in the energy industries and in other sectors would be enhanced if Congress amended the Clean Water Act (CWA) to formally authorize such trading.« less
Impact of dyeing industry effluent on germination and growth of pea (Pisum sativum).
Malaviya, Piyush; Hali, Rajesh; Sharma, Neeru
2012-11-01
Dye industry effluent was analyzed for physico-chemical characteristics and its impact on germination and growth behaviour of Pea (Pisum sativum). The 100% effluent showed high pH (10.3) and TDS (1088 mg l(-1)). The germination parameters included percent germination, delay index, speed of germination, peak value and germination period while growth parameters comprised of root and shoot length, root and shootweight, root-shoot ratio and number of stipules. The study showed the maximum values of positive germination parameters viz. speed of germination (7.85), peak value (3.28), germination index (123.87) and all growth parameters at 20% effluent concentration while the values of negative germination parameters viz. delay index (-0.14) and percent inhibition (-8.34) were found to be minimum at 20% effluent concentration. The study demonstrated that at lower concentrations the dyeing industry effluent caused a positive impact on germination and growth of Pisum sativum.
Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.
Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud
2009-09-15
Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.
Chia, Mathias A; Musa, Rilwan I
2014-03-01
The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p <0.05). The EC50 was found to be 166 dilution factor of the effluent. Chlorophyll a, cell density and dry weight production as biomarkers were negatively affected by high indigo dye effluent concentration, their levels were higher at low effluent concentrations (p <0.05). Changes in coenobia size significantly correlated with the dye effluent concentration. A shift from large to small coenobia with increasing indigo dye effluent concentration was obtained. We conclude that even at low concentrations; effluents from textile industrial processes that use indigo dye are capable of significantly reducing the growth and biomass production, in addition to altering the morphological characteristics of the freshwater microalga S. quadricauda. The systematic reduction in the number of cells per coenobium observed in this study further confirms that environmental stress affects coenobium structure in the genus Scenedesmus, which means it can be considered an important biomarker for toxicity testing.
USDA-ARS?s Scientific Manuscript database
Enzymatic bio-processing of cotton generates significantly less hazardous wastewater effluents, which are readily biodegradable, but it also has several critical shortcomings that impede its acceptance by industries: expensive processing costs and slow reaction rates. Our research has found that t...
Perdigón-Melón, J A; Carbajo, J B; Petre, A L; Rosal, R; García-Calvo, E
2010-09-15
A coupled coagulation-Fenton process was applied for the treatment of cosmetic industry effluents. In a first step, FeSO(4) was used as coagulant and the non-precipitated Fe(2+) remaining in dissolution was used as catalyst in the further Fenton process. In the coagulation process a huge decrease in total organic carbon (TOC) was achieved, but the high concentration of phenol derivatives was not diminished. The decrease in TOC in the coagulation step significantly reduces the amount of H(2)O(2) required in the Fenton process for phenol depletion. The coupled process, using a H(2)O(2) dose of only 2 g l(-1), reduced TOC and total phenol to values lower than 40 and 0.10 mg l(-1), respectively. The short reaction period (less than 15 min) in TOC and phenol degradation bodes well for improving treatment in a continuous regime. The combination of both processes significantly reduced the ecotoxicity of raw effluent and markedly increased its biodegradability, thus allowing easier treatment by the conventional biological units in conventional sewage treatment plants (STPs). Copyright 2010 Elsevier B.V. All rights reserved.
The feasibility of effluent trading in the energy industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veil, J.A.
1997-05-01
In January 1996, the U.S. Environmental Protection Agency (EPA) released a policy statement endorsing effluent trading in watersheds, hoping to spur additional interest in the subject. The policy describes five types of effluent trades - point source/point source, point source/nonpoint source, pretreatment, intraplant, and nonpoint source/nonpoint source. This report evaluates the feasibility of effluent trading for facilities in the oil and gas industry (exploration and production, refining, and distribution and marketing segments), electric power industry, and the coal industry (mines and preparation plants). Nonpoint source/nonpoint source trades are not considered since the energy industry facilities evaluated here are all pointmore » sources. EPA has administered emission trading programs in its air quality program for many years. Programs for offsets, bubbles, banking, and netting are supported by federal regulations, and the 1990 Clean Air Act (CAA) amendments provide a statutory basis for trading programs to control ozone and acid rain. Different programs have had varying degrees of success, but few have come close to meeting their expectations. Few trading programs have been established under the Clean Water Act (CWA). One intraplant trading program was established by EPA in its effluent limitation guidelines (ELGs) for the iron and steel industry. The other existing effluent trading programs were established by state or local governments and have had minimal success.« less
Moliner Martínez, Y; Muñoz-Ortuño, M; Herráez-Hernández, R; Campíns-Falcó, P
2014-02-01
This paper describes a new approach for the determination of fat in the effluents generated by the dairy industry which is based on the retention of fat in nylon membranes and measurement of the absorbances on the membrane surface by ATR-IR spectroscopy. Different options have been evaluated for retaining fat in the membranes using milk samples of different origin and fat content. Based on the results obtained, a method is proposed for the determination of fat in effluents which involves the filtration of 1 mL of the samples through 0.45 µm nylon membranes of 13 mm diameter. The fat content is then determined by measuring the absorbance of band at 1745 cm(-1). The proposed method can be used for the direct estimation of fat at concentrations in the 2-12 mg/L interval with adequate reproducibility. The intraday precision, expressed as coefficients of variation CVs, were ≤ 11%, whereas the interday CVs were ≤ 20%. The method shows a good tolerance towards conditions typically found in the effluents generated by the dairy industry. The most relevant features of the proposed method are simplicity and speed as the samples can be characterized in a few minutes. Sample preparation does not involve either additional instrumentation (such as pumps or vacuum equipment) or organic solvents or other chemicals. Therefore, the proposed method can be considered a rapid, simple and cost-effective alternative to gravimetric methods for controlling fat content in these effluents during production or cleaning processes. © 2013 Published by Elsevier B.V.
Mulk, Shahi; Azizullah, Azizullah; Korai, Abdul Latif; Khattak, Muhammad Nasir Khan
2015-02-01
Industries play an important role in improving the living standard but at the same time cause several environmental problems. Therefore, it is necessary to evaluate the impact of industries on the quality of environment. In the present study, the impact of marble industry effluents on water and sediment quality of Barandu River in Buner District, Pakistan was evaluated. Water and sediment samples were collected at three different sampling sites (upstream, industrial, and downstream sites) from Barandu River and their physicochemical properties were inter-compared. In addition, different marble stones and mix water (wastewater) from marble industry were analyzed. The measured physicochemical parameters of river water including pH, electrical conductivity (EC), alkalinity, total hardness, Ca and Mg hardness, total dissolved solid (TDS), total suspended solids (TSS), sulfates (SO4 (2-)), sodium (Na(+)), potassium (K(+)), nitrites (NO2 (-)), nitrate (NO3 (-)), chloride (Cl(-)), calcium (Ca(2+)), and magnesium (Mg(2+)) were found to be significantly altered by effluent discharges of marble industries. Similarly, heavy metal concentrations in both water and sediments of the river were significantly increased by marble industry wastewater. It is concluded that large quantities of different pollutants are added to Barandu River due to direct disposal of marble industry effluents which degrades its quality. Therefore, it is recommended that direct disposal of marble industry wastewater should be banned and all effluents must be properly treated before discharging in the river water.
Chen, T K; Chen, J N
2004-01-01
In TFT-LCD industry, water plays a variety of roles as a cleaning agent and reaction solvent. As good quality water is increasingly a scarce resource and wastewater treatment costs rises, the once-through use of industrial water is becoming uneconomical and environmentally unacceptable. Instead, recycling of TFT-LCD industrial wastewater is become more attractive from both an economic and environmental perspective. This research is mainly to explore the capacity of TFT-LCD industrial wastewater recycling by the process combined with membrane bioreactor and reverse osmosis processes. Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 97.3%. For TOC and BOD5 items, the average removal efficiencies were 97.8 and 99.4% respectively. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of the UF membrane device incorporated with biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After treatment of RO, excellent water quality of permeate were under 5 mg/l, 2.5 mg/l and 150 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled for the cooling tower make-up water or other purposes.
Wu, Shubiao; Wallace, Scott; Brix, Hans; Kuschk, Peter; Kirui, Wesley Kipkemoi; Masi, Fabio; Dong, Renjie
2015-06-01
The application of constructed wetlands (CWs) has significantly expanded to treatment of various industrial effluents, but knowledge in this field is still insufficiently summarized. This review is accordingly necessary to better understand this state-of-the-art technology for further design development and new ideas. Full-scale cases of CWs for treating various industrial effluents are summarized, and challenges including high organic loading, salinity, extreme pH, and low biodegradability and color are evaluated. Even horizontal flow CWs are widely used because of their passive operation, tolerance to high organic loading, and decolorization capacity, free water surface flow CWs are effective for treating oil field/refinery and milking parlor/cheese making wastewater for settlement of total suspended solids, oil, and grease. Proper pretreatment, inflow dilutions through re-circulated effluent, pH adjustment, plant selection and intensifications in the wetland bed, such as aeration and bioaugmentation, are recommended according to the specific characteristics of industrial effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.
García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique
2013-03-01
The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Siqueira, Ionara Rodrigues; Vanzella, Cláudia; Bianchetti, Paula; Rodrigues, Marco Antonio Siqueira; Stülp, Simone
2011-01-01
The leather industry is a major producer of wastewaters and releases large quantities of many different chemical agents used in hide processing into the environment. Since the central nervous system is sensitive to many different contaminants, our aim was to investigate the neurobehavioral effects of exposure of mice to tannery effluents using animal models of depression and anxiety, namely forced swim and elevated plus-maze. In order to propose a clean technology for the treatment of this effluent, we also investigated the exposure of mice to effluents treated by photoelectrooxidation process (PEO). Adult male Swiss albino mice (CF1 strain) were given free access to water bottles containing an effluent treated by a tannery (non-PEO) or PEO-treated tannery wastewater (0.1 and 1% in drinking water). Exposure to tannery wastewater induced behavioural changes in the mice in elevated plus-maze. Exposure to non-PEO 1% decreased the percentage of time spent in the open arms, indicating anxiety-like behaviour. Exposure to tannery wastewater did not alter immobility time in the forced swim test, suggesting that tannery effluents did not induce depression-like behaviour in the mice. These behavioural data suggest that non-PEO tannery effluent has an anxiogenic effect, whereas PEO-treated tannery effluents do not alter anxiety levels. Copyright © 2011 Elsevier Inc. All rights reserved.
Makoś, Patrycja; Fernandes, Andre; Boczkaj, Grzegorz
2017-09-29
The paper presents a new method for the determination of 15 carboxylic acids in samples of postoxidative effluents from the production of petroleum bitumens using ion-pair dispersive liquid-liquid microextraction and gas chromatography coupled to mass spectrometry with injection port derivatization. Several parameters related to the extraction and derivatization efficiency were optimized. Under optimized experimental conditions, the obtained limit of detection and quantification ranged from 0.0069 to 1.12μg/mL and 0.014 to 2.24μg/mL, respectively. The precision (RSD ranged 1.29-6.42%) and recovery (69.43-125.79%) were satisfactory. Nine carboxylic acids at concentrations ranging from 0.10μg/mL to 15.06μg/mL were determined in the raw wastewater and in samples of effluents treated by various oxidation methods. The studies revealed a substantial increase of concentration of benzoic acids, in samples of wastewater after treatment, which confirms the need of carboxylic acids monitoring during industrial effluent treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.
Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad
2015-04-01
Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. Copyright © 2015. Published by Elsevier B.V.
MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling.
Chen, T K; Ni, C H; Chan, Y C; Lu, M C
2005-01-01
This research is mainly to explore the treatment capacity for TFT-LCD industrial wastewater recycling by the processes combined with membrane bioreactor (MBR), reverse osmosis (RO) and ozone(O3). The organic wastewater from the TFT-LCD industry was selected as the target. MBR, RO and ozone plants were established for evaluation. An MBR plant consisted of a 2-stage anoxic/aerobic bioreactor and an immersed UF membrane unit was employed. The effluent of MBR was conducted into the RO system then into the ozone system. The RO system consisted of a spiral membrane in the vessel. One bubble column, 75 cm high and diameter 5 cm, were used as the ozonation reactor. On the bottom of ozonation reactor is a porous diffuser for releasing gas, with an aperture of 100 microm (0.1 cm). Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 98.5%. For the TOC item, the average removal efficiency was 97.4%. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of an immersed UF membrane device incorporated with the biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After the treatment of RO, excellent water quality was found. The water quality of permeate was under 5 mg/I, 2 mg/l and 50 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled and reused for the cooling tower make-up water or other purposes. After the treatment of ozone, the treated water quality was under 5 mg/l and 0.852 mg/l for COD and TOC respectively. The test results of MBR, MBR/RO and MBR/RO/ozone processes were compared as possible appropriate treatment technologies applied in TFT-LCD industrial wastewater reuse and recycling.
Grande, José Antonio; Borrego, José; de la Torre, Maria Luisa; Sáinz, A
2003-06-01
The combination of acid water from mines, industrial effluents and sea water plays a determining role in the evolutionary process of the chemical makeup of the water in the estuary of the Tinto and Odiel rivers. This estuary is in the southwest of the Iberian Peninsula and is one of the estuarine systems on the northwest coast of the Gulf of Cádiz. From the statistical treatment of data obtained by analyzing samples of water from this system, which is affected by industrial and mining pollution processes, we can see how the sampling points studied form two large groups depending on whether they receive tidal or fluvial influences. Fluvial input contributes acid water with high concentrations of heavy metal, whereas industrial effluents are responsible for the presence of phosphates, silica and other nutrients. The estuarine system of the Tinto and Odiel Rivers can be divided into three areas--the Tinto estuary, the Odiel estuary and the area of confluence--based on the physical--chemical characteristics of the water.
Yen, Feng-Chi; You, Sheng-Jie; Chang, Tien-Chin
2017-02-01
Wastewater reclamation is considered an absolute necessity in Taiwan, as numerous industrial parks experience water shortage. However, the water quality of secondary treated effluents from sewage treatment plants generally does not meet the requirements of industrial water use because of the high inorganic constituents. This paper reports experimental data from a pilot-plant study of two treatment processes-(i) fiber filtration (FF)-ultrafiltration (UF)-reverse osmosis (RO) and (ii) sand filtration (SF)-electrodialysis reversal (EDR)-for treating industrial high conductivity effluents from the Xianxi wastewater treatment plant in Taiwan. The results demonstrated that FF-UF was excellent for turbidity removal and it was a suitable pretreatment process for RO. The influence of two membrane materials on the operating characteristics and process stability of the UF process was determined. The treatment performance of FF-UF-RO was higher than that of SF-EDR with an average desalination rate of 97%, a permeate conductivity of 272.7 ± 32.0, turbidity of 0.183 ± 0.02 NTU and a chemical oxigen demand of <4.5 mg/L. The cost analysis for both processes in a water reclamation plant of 4000 m 3 /d capacity revealed that using FF-UF-RO had a lower treatment cost than using SF-EDR, which required activated carbon filtration as a post treatment process. On the basis of the results in this study, the FF-UF-RO system is recommended as a potential process for additional applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Toxicity reduction of photo processing wastewaters
Wang, W.
1992-01-01
The photo processing industry can be characterized by treatment processes and subsequent silver recovery. The effluents generated all contain various amounts of silver. The objectives of this study were to determine toxicity of photo processing effluents and to explore their toxicity mitigation. Six samples, from small shops to a major photo processing center, were studied. Two samples (I and VI) were found to be extremely toxic, causing 100 and 99% inhibition of duckweed frond reproduction, respectively, and were used for subsequent toxicity reduction experiments. Lime and sodium sulfide were effective for the toxicity reduction of Sample VI; both reduced its toxicity to negligible. Sample I was far more toxic and was first diluted to 2.2% and then treated with 0.5 g lime/100 mL, reducing toxicity from 100% to 12% inhibition.
Mlaik, Najwa; Bouzid, Jalel; Gharsallah, Neji; Belbahri, Lassad; Woodward, Steve; Mechichi, Tahar
2009-08-01
The tanning industry is of great economic importance worldwide; however, the potential environmental impact of tanning is significant. An important component in tanning is the removal of hair from the hide (unhairing), a process which generates considerable amounts of toxic effluent characterized by a high concentration of sulphur, rich mineral compounds, a high alkalinity and a high organic load. The purpose of the work described here was to evaluate the biodegradability of the unhairing wastewater by endogenous biomass in batch culture and continuous systems. The detoxification of the effluent was assessed by seed germination tests. The batch culture experiments showed that variations in COD, temperature and pH significantly affected the endogenous biomass growth and activity. The optimal treatment condition corresponded to an initial COD of 6 g/L, pH of 7 and 30 degrees C. Under continuous culture conditions, the reactor was fed for 48 days with the unhairing effluent. The optimal COD removal efficiency was 85.5%. During treatment, a transformation of sulphides into thiosulphates and then sulphates was also observed. The effect of untreated and treated unhairing wastewater on seed germination of different plant species was studied. The data suggested that treatment decreased the wastewater toxicity. Indeed, germination was inhibited when the effluent dilution was lower than 20% and 10% for treated and untreated wastewater, respectively.
Toxicity assessment on combined biological treatment of pharmaceutical industry effluents.
Inanc, B; Calli, B; Alp, K; Ciner, F; Mertoglu, B; Ozturk, I
2002-01-01
This paper describes the wastewater characterization and aerobic/anaerobic treatability (oxygen uptake rate and biogas production measurement) of chemical-synthesis based pharmaceutical industry effluents in a nearby baker's yeast industry treatment plant. Preliminary experiments by the industry had indicated strong anaerobic toxicity. On the other hand, aerobic treatability was also uncertain due to complexity and unknown composition of the wastewater. The work in this study has indicated that the effluents of the pharmaceutical industry can be treated without toxicity in the aerobic stage of the treatment plant. Methanogenic activity tests with anaerobic sludge from the anaerobic treatment stage of the wastewater treatment plant and acetate as substrate have confirmed the strong toxicity, while showing that 30 min aeration or coagulation with an alum dose of 300 mg/l is sufficient for reducing the toxicity almost completely. Powdered activated carbon, lime and ferric chloride (100-1,000 mg/l) had no effect on reduction of the toxicity. Consequently, the pharmaceutical industry was recommended to treat its effluents in the anaerobic stage of the nearby baker's yeast industry wastewater treatment plan at which there will be no VOC emission and toxicity problem, provided that pretreatment is done.
Bahari, Ismail; Mohsen, Nasirian; Abdullah, Pauzi
2007-01-01
The processing of amang, or tin tailings, for valuable minerals has been shown to technologically enhance NORM and this has stirred significant radiological safety and health concerns among Malaysia's regulatory authority. A growing radiological concern is now focused on the amang effluent containing NORM in recycling ponds, since these ponds may be reclaimed for future residential developments. A study was carried out to assess the radiological risk associated with amang processing and the accumulated effluent in the recycling ponds. Twenty-six sediment samples from the recycling ponds of two amang plants in the states of Selangor and Perak, Malaysia, were collected and analyzed. The maximum activity concentrations of (238)U, (226)Ra, (232)Th and (40)K recorded in sediments from these ponds were higher than Malaysia's and the world's natural highest. Correspondingly, the mean radium equivalent activity concentration indices, Ra(eq), and gamma radiation representative level index, I(gammar), were higher than the world's average. The enhancement of NORM in effluent sediments as a consequence of amang processing, and the use of a closed water management recycling system created Effective Dose Rates, E (nSv h(-1)), that signal potential environmental radiological risks in these ponds, should they be reclaimed for future land use.
Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area
ERIC Educational Resources Information Center
Tadiboyina, Ravisankar; Ptsrk, Prasada Rao
2016-01-01
In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…
Decoloration and detoxification of effluents by ionizing radiation
NASA Astrophysics Data System (ADS)
Borrely, Sueli I.; Morais, Aline V.; Rosa, Jorge M.; Badaró-Pedroso, Cintia; da Conceição Pereira, Maria; Higa, Marcela C.
2016-07-01
Three distinct textile samples were investigated for color and toxicity (S1-chemical/textile industry; S2-final textile effluent; S3 - standard textile produced effluent-untreated blue). Radiation processing of these samples were carried out at Dynamitron Electron Beam Accelerator and color and toxicity removal were determined: color removal by radiation was 96% (40 kGy, S1); 55% (2.5 kGy, S2) and 90% (2.5 kGy, S3). Concerning toxicity assays, Vibrio fischeri luminescent bacteria demonstrated higher reduction after radiation than the other systems: removal efficiencies were 33% (20 kGy, S1); 55% (2.5 kGy, S2) and 33% (2.5 kGy, S3). Daphnia similis and Brachionus plicatilis fitted well for S3 effluents. Hard toxic volumes into biological treatment plant may be avoided if radiation would be previously applied in a real plant. Results reveled how indispensable is to run toxicity to more than one living-organism.
Sani, R K; Azmi, W; Banerjee, U C
1998-01-01
Decolorization of several dyes (Red HE-8B, Malachite Green, Navy Blue HE-2R, Magenta, Crystal Violet) and an industrial effluent with growing cells of Phanerochaete chrysosporium in shake and static culture was demonstrated. All the dyes and the industrial effluent were decolorized to some extent with varying percentages of decolorization (20-100%). The rate of decolorization was very rapid with Red HE-8B, an industrial dye. Decolorization rates for all the dyes in static condition were found to be less than the shake culture and also dependent on biomass concentration.
Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries.
Bielen, Ana; Šimatović, Ana; Kosić-Vukšić, Josipa; Senta, Ivan; Ahel, Marijan; Babić, Sanja; Jurina, Tamara; González Plaza, Juan José; Milaković, Milena; Udiković-Kolić, Nikolina
2017-12-01
Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 μg/L). Accordingly, the highest total concentrations (up to 30 μg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low μg/L to approx. 200 μg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few μg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Printing ink and paper recycling sources of TMDD in wastewater and rivers.
Guedez, Arlen A; Püttmann, Wilhelm
2014-01-15
2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant which is preferentially used as defoamer in paints and printing ink and for the treatment of surfaces. Effluents of wastewater treatment plants (WWTPs) have been identified as the domination point sources for TMDD in rivers since the removal rate of the compound in the WWTPs is in general less than 70%. However, the dominating entry pathways of TMDD into the sewage were unknown so far. In this study effluents from both, municipal WWTPs with and without treatment of indirect industrial dischargers and from industrial WWTPs with direct discharge of wastewater into receiving rivers were analyzed for the first time to identify the proportions of TMDD coming from domestic wastewater and from various industrial sources. Moreover, rivers were samples before and after the influent of sewage water from WWTPs. The TMDD concentrations in the water samples were measured using solid phase extraction (SPE) followed by gas chromatography/mass spectrometry (GC/MS). High TMDD concentrations were found in rivers (up to 63.5 μg/L), and in effluents of WWTPs (up to 310 μg/L) affected by wastewater from paper recycling industry and factories producing paint and printing ink. Concentrations of TMDD revealed to be far higher in wastewater from factories processing recycled paper (up to 113 μg/L) compared to wastewater from factories not processing recycled paper (0.066 μg/L). The results indicate that the use of recycling paper in the paper production process is the dominating reason for increased TMDD concentrations in wastewaters and receiving rivers due to the wash out of TMDD from the paper impregnated with printing ink. Very high TMDD concentrations (up to 3300 μg/L) were also detected in wastewater from a printing ink factory and a paint factory. © 2013 Elsevier B.V. All rights reserved.
Tu, Yao-Jen; Chang, Chien-Kuei; You, Chen-Feng; Lou, Jie-Chung
2010-09-15
A method in combination of acid leaching, chemical exchange and ferrite process was applied to recycle copper and confer higher chemical stability to the sludge generated from etching process in printed circuit board industry. Ninety-five percent copper could be recycled in the form of powder from the sludge. Moreover, not only the wastewater after chemical exchange can be treated to fulfill the effluent standard, but also the sludge can satisfy the toxicity characteristic leaching procedure (TCLP) limits made by Taiwan's environmental protection administration. Copyright 2010 Elsevier B.V. All rights reserved.
Yang, Y; Zhang, L; Zhao, Y Q; Wang, S P; Guo, X C; Guo, Y; Wang, L; Ren, Y X; Wang, X C
2011-01-01
This study was conducted to examine the possibility of using construction solid waste (CSW), an inevitable by-product of the construction and demolition process, as the main substrate in a laboratory scale multi-stage constructed wetland system (CWs) to improve phosphorus (P) removal from secondary sewage effluent. A tidal-flow operation strategy was employed to enhance the wetland aeration. This will stimulate aerobic biological processes and benefit the organic pollutants decomposition and nitrification process for ammoniacal-nitrogen (NH(+)(4)-N) removal. The results showed that the average P concentration in the secondary sewage effluent was reduced from 1.90 mg-P/L to 0.04 mg-P/L. CSW presents excellent P removal performance. The average NH(+)(4)-N concentration was reduced from 9.94 mg-N/L to 1.0 mg-N/L through nitrification in the system. The concentration of resultant nitrite and nitrate in the effluent of the CSW based CWs ranged from 0.1 to 2.4 mg-N/L and 0.01 to 0.8 mg-N/L, respectively. The outcome of this study has shown that CSW can be successfully used to act as main substrate in CWs. The application of CSW based CWs on improving N and P removals from secondary sewage effluent presents a win-win scenario. Such the reuse of CSW will benefit both the CSW disposal and nutrient control from wastewater. More significantly, such the application can transfer the CSW from a 'waste' to 'useful' material and can ease the pressure of construction waste solid management. Meanwhile, the final effluent from the CSW-based CWs can be used as non-potable water source in landscape irrigation, agriculture and industrial process.
Benzina, Ouafa; Daâssi, Dalel; Zouari-Mechichi, Héla; Frikha, Fakher; Woodward, Steve; Belbahri, Lassaad; Rodriguez-Couto, Susana; Mechichi, Tahar
2013-08-01
The aim of this work was to determine the optimal conditions for the decolorization and the detoxification of two effluents from a textile industry-effluent A (the reactive dye bath Bezactive) and effluent B (the direct dye bath Tubantin)-using a laccase mediator system. Response surface methodology (RSM) was applied to optimize textile effluents decolorization. A Box-Behnken design using RSM with the four variables pH, effluent concentration, 1-hydroxybenzotriazole (HBT) concentration, and enzyme (laccase) concentration was used to determine correlations between the effects of these variables on the decolorization of the two effluents. The optimum conditions for pH and concentrations of HBT, effluent and laccase were 5, 1 mM, 50 % and 0.6 U/ml, respectively, for maximum decolorization of effluent A (68 %). For effluent B, optima were 4, 1 mM, 75 %, and 0.6 U/ml, respectively, for maximum decolorization of approximately 88 %. Both effluents were treated at 30 °C for 20 h. A quadratic model was obtained for each decolorization through this design. The experimental and predicted values were in good agreement and both models were highly significant. In addition, the toxicity of the two effluents was determined before and after laccase treatment using Saccharomyces cerevisiae, Bacillus cereus, and germination of tomato seeds.
The effect of surfactant on pollutant biosorption of Trametes versicolor
NASA Astrophysics Data System (ADS)
Gül, Ülküye Dudu; Silah, Hülya; Akbaş, Halide; Has, Merve
2016-04-01
The major problem concerning industrial wastewater is treatment of dye and heavy metal containing effluents. Industrial effluents are also contained surfactants that are used as levelling, dispersing and wetting agents. The purpose of this study was to investigate the effect of surfactant on textile dye biosorption properties of a white rot fungus named Trametes versicolor. Reactive dyes are commonly used in textile industry because of their advantages such as brightness and excellent color fastness. A recative textile dye, called Everzol Black, was used in this study. The low-cost mollasses medium is used for fungal growth. The usage of mollases, the sugar refinery effluent as a source of energy and nutrients, gained importance because of reducing the cost and also reusing another waste. In biosorption process the effect of surfactant on dye removal properties of T. versicolor was examined as a function of pH, dye consentration and surfactant concentration. The results of this study showed that the surfactant enhanced the dye removal capacity of Trametes versicolor. The dye and surfactant molecules were interacted electrostatically and these electrostatic interactions improved dye removal properties of filamentous fungus T. versicolor. The results of this study recommended the use of surfactants as an inducer in textile wastewater treatment technologies.
Subha, B.; Muthukumar, M.
2012-01-01
Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R 2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction. PMID:22593666
Punjabi, Kapil; Yedurkar, Snehal; Doshi, Sejal; Deshapnde, Sunita; Vaidya, Shashikant
2017-08-01
The aim of this study was to isolate and screen bacteria from soil and effluent of electroplating industries for the synthesis of silver nanoparticles and characterize the potential isolate. Soil and effluent of electroplating industries from Mumbai were screened for bacteria capable of synthesizing silver nanoparticles. From two soils and eight effluent samples 20 bacterial isolates were obtained, of these, one was found to synthesize silver nanoparticles. Synthesis of silver nanoparticle by bacteria was confirmed by undertaking characterization studies of nanoparticles that involved spectroscopy and electron microscopic techniques. The potential bacteria was found to be Gram-negative short rods with its biochemical test indicating Pseudomonas spp . Molecular characterization of the isolate by 16S r DNA sequencing was carried out which confirmed its relation to Pseudomonas hibiscicola ATCC 19867. Stable nanoparticles synthesized were 50 nm in size and variable shapes as seen in SEM micrographs. The XRD and FTIR confirmed the crystalline structure of nanoparticles and presence of biomolecules mainly proteins as agents for reduction and capping of nanoparticles. The study demonstrates synthesis of nanoparticles by bacteria from effluent of electroplating industry. This can be used for large scale synthesis of nanoparticles by cost effective and environmentally benign mode of synthesis.
Sahu, Omprakash
2017-01-01
Sugar industry is an oldest accommodates industry in the world. It required and discharges a large amount of water for processing. Removal of chemical oxygen demand and color through the electrochemical process including hybrid iron and aluminum electrode was examined for the treatment of cane-based sugar industry wastewater. Most favorable condition at pH 6.5, inter-electrode gap 20 mm, current density 156 A m -2 , electrolyte concentration 0.5 M and reaction time 120 min, 90% COD and 93.5% color removal was achieved. The sludge generated after treatment has less organic contain, which can be used as manure in agricultural crops. Overall the electrocoagulation was found to be reliable, efficient and economically fit to treat the sugar industry wastewater. •Electrocoagulation method for sugar processing industry wastewater treatment Optimization of operating parameters for maximum efficiency.•Physicochemical analysis of sludge and scum.•Significance of hydride metal electrode for pollutant removal.
Bio-processing of solid wastes and secondary resources for metal extraction - A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007
2012-01-15
Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less
Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G
2015-06-01
The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.
Hanif, Muhammad Asif; Nadeem, Raziya; Zafar, Muhammad Nadeem; Akhtar, Kalsoom; Bhatti, Haq Nawaz
2007-07-16
The present study explores the ability of Cassia fistula waste biomass to remove Ni(II) from industrial effluents. C. fistula biomass was found very effective for Ni(II) removal from wastewater of Ghee Industry (GI), Nickel Chrome Plating Industry (Ni-Cr PI), Battery Manufacturing Industry (BMI), Tanner Industry: Lower Heat Unit (TILHU), Tannery Industry: Higher Heat Unit (TIHHU), Textile Industry: Dying Unit (TIDU) and Textile Industry: Finishing Unit (TIFU). The initial Ni(II) concentration in industrial effluents was found to be 34.89+/-0.01, 183.56+/-0.08, 21.19+/-0.01, 43.29+/-0.03, 47.26+/-0.02, 31.38+/-0.01 and 31.09+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. After biosorption the final Ni(II) concentration in industrial effluents was found to be 0.05+/-0.01, 17.26+/-0.08, 0.03+/-0.01, 0.05+/-0.01, 0.1+/-0.01, 0.07+/-0.01 and 0.06+/-0.01mg/L in GI, Ni-Cr PI, BMI, TILHU, TIHHU, TIDU and TIFU, respectively. The % sorption Ni(II) ability of C. fistula from seven industries included in present study tend to be in following order: TILHU (99.88)>GI (99.85) approximately BMI (99.85)>TIFU (99.80)>TIHHU (99.78)>TIDU (99.77)>Ni-Cr PI (90.59). Sorption kinetic experiments were performed in order to investigate proper sorption time for Ni(II) removal from wastewater. Batch metal ion uptake capacity experiments indicated that sorption equilibrium reached much faster in case of industrial wastewater samples (480min) in comparison to synthetic wastewater (1440min) using same biosorbent. The kinetic data were analyzed in term of pseudo-first-order and pseudo-second-order expressions. Pseudo-second-order model described well the sorption kinetics of Ni(II) onto C. fistula biomass from industrial effluents in comparison to pseudo-first-order kinetic model. Due to unique high Ni(II) sorption capacity of C. fistula waste biomass it can be concluded that it is an excellent biosorbent for Ni(II) uptake from industrial effluents.
Algae in the assessment of industrial effluents: case study in Southern Bengal, India.
Sen Sarkar, Neera; Bandyopadhyaya, Tuli; Datta, Shilpa; Das, Swapna
2013-01-01
This article is an assessment of the diversity of scum and bloom algae encountered in different industrial effluents of Southern Bengal, India, analyzing their habitat and correlating the habitat ecology of each study site. The study was conducted during the period May 2009 to August 2010. The study sites include effluent release areas of the dairy industry, a distillery unit, the leather industry, and an herbal medicine unit. Habitat were analyzed for pH, dissolved oxygen, biological oxygen demand, salinity, alkalinity, and phosphate and nitrate levels. Correlation coefficients were calculated for habitat parameters and algae encountered, showing a significant positive correlation between the richness of dominant and subdominant species with biochemical oxygen demand and salinity and a significant negative correlation with alkalinity, phosphates, and the nitrate-to-phosphate ratio. The richness of dominant and subdominant species in the effluent discharge areas show average values of 9 and 5 in the distillery unit, 8 and 5 in the dairy industry, 7 and 8 in the leather industry, and 5 and 9 in the herbal medicine unit, respectively, with a few (ranging between 3 and 7) co-occurring species in each case. The algal groups encountered were cyanobacteria, euglenophytes, chlorophytes, and bacillariophytes, showing Palmer's Algal Pollution Index of 15 in the dairy industry, 20 in the distillery unit, 28 in the leather industry, and 8 in the herbal medicine unit.
Remediation of lead from lead electroplating industrial effluent using sago waste.
Jeyanthi, G P; Shanthi, G
2007-01-01
Heavy metals are known toxicants, which inflict acute disorders to the living beings. Electroplating industries pose great threat to the environment through heavy load of metals in the wastewater discharged on land and water sources. In the present study, sago processing waste, which is both a waste and a pollutant, was used to adsorb lead ions from lead electroplating industrial effluent. Two types of sago wastes, namely, coarse sago waste and fine sago waste were used to study their adsorption capacity with the batch adsorption and Freundlich adsorption isotherm. The parameters that were considered for batch adsorption were pH (4, 5 and 6), time of contact (1, 2 and 3 hrs), temperature (30, 37 and 45 degrees C) and dosage of the adsorbent (2,4 and 6 g/L). The optimal condition for the effective removal of lead was found to be pH 5, time of contact 3 hrs, temperature 30 degrees C and dosage 4 g/L with coarse sago waste than fine sago waste.
A toxicity identification evaluation (TIE) was conducted on effluent from a major industrial discharger. Initial monitoring showed slight chronic toxicity to Ceriodaphnia dubia; later sample showed substantial toxicity to C. dubia. Chemical analysis detected hexavalent chromium ...
As a convergence point for human waste streams, wastewater treatment plants are recognized as point sources through which contaminants originating from domestic, industrial, and commercial activities enter surface waters. Effluent from the Western Lake Superior Sanitary District ...
Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.
Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M
2018-03-01
The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.
Chu, C P; Jiaoa, S R; Hung, J M; Lu, C J; Chung, Y J
2009-08-01
The feasibility of reclaiming effluent from industrial park wastewater treatment plants through a membrane process was evaluated in three phases. In phase 1 we selected nine wastewater treatment plants (WWTPs), each with a design capacity exceeding 10,000 m3 d(-1), and analyzed the corresponding effluent composition. 'Potential recycling percentage', R, ranged from 50% to 80% for the industrial park WWTPs, indicating a high feasibility for the reuse of effluent. In phase 2, a 50 m3 d(-1) pilot plant was installed in one of the selected WWTPs and underwent testing for one year. The quality of the reclaimed water was suitable for general-purpose industrial use. In the two ultrafiltration (UF) modules tested, the hydrophilic polyethersulfone hollow-fibre module was more tolerant to variable properties, and had higher recycling percentages than those of backwashable hydrophobic polyvinylidene difluoride spiral-wound module. Using the spiral-wound UF module helped reduce the cost for producing 1 m3 of reclaimed water (US$0.80) compared with a hollow-fibre module (US$0.88). In phase 3, we evaluated the negative effects of refluxing the reverse osmosis retentate, containing high total dissolved solids and non-biodegradable organics, with the biological treatment unit of the upstream WWTP. Biological compactibility tests showed that the refluxed retentate ratio should be reduced to maintain the conductivity of mixed liquor in the aeration tank at less than 110% of the original value.
Determination of Phenols and Trimethylamine in Industrial Effluents
NASA Technical Reports Server (NTRS)
Levaggi, D. A.; Feldstein, M.
1971-01-01
For regulatory purposes to control certain odorous compounds the analysis of phenols and trimethylamines in industrial effluents is necessary. The Bay Area Air Pollution Control District laboratory has been determining these gases by gas chromatographic techniques. The procedures for sample collection, preparation for analysis and determination are described in detail. Typical data from various sources showing the effect of proposed regulations is shown. Extensive sampling and usage of these procedures has shown them to be accurate, reliable and suitable to all types of source effluents.
Cyanobacterial flora from polluted industrial effluents.
Parikh, Amit; Shah, Vishal; Madamwar, Datta
2006-05-01
Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.
THE CONTRIBUTION OF AZO DYES TO THE MUTAGENIC ACTIVITY OF THE CRISTAIS RIVER
To verify if compounds within the discharge of a dye processing plant were contributing to the mutagenicity repeatedly found in the Cristais River, Sao Paulo, Brazil, we chemically characterized the treated industrial effluent, raw and treated water, and the sludge produced by a ...
AZO DYES ARE MAJOR CONTRIBUTORS TO THE MUTAGENIC ACTIVITY DETECTED IN THE CRISTAIS RIVER WATERS
To determine if compounds from a dye processing plant were contributing to the mutagenicity repeatedly found in the Cristais River, Sao Paulo, Brazil, we chemically characterized the treated industrial effluent, raw and treated water, and the sludge produced by a Drinking Water T...
What are “Biosolids”?- “Biosolids” are what remains after WWTP processing Sewage sludge probably a more accurate term - Could contain anything that comes down the pipe to the WWTP, varies greatly depending on community type, industry effluents, plant desig...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Industrial Sand Subcategory § 436.42 Effluent limitations guidelines representing the degree of effluent... 6.0 and water quality criteria in water quality standards approved under the Act authorize such lower pH, the pH limitation for such discharge may be adjusted downward to the pH water quality...
Clara, M; Scheffknecht, C; Scharf, S; Weiss, S; Gans, O
2008-01-01
Effluents of wastewater treatment plants are relevant point sources for the emission of hazardous xenobiotic substances to the aquatic environment. One group of substances, which recently entered scientific and political discussions, is the group of the perfluorinated alkylated substances (PFAS). The most studied compounds from this group are perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), which are the most important degradation products of PFAS. These two substances are known to be persistent, bioaccumulative and toxic (PBT). In the present study, eleven PFAS were investigated in effluents of municipal wastewater treatment plants (WWTP) and in industrial wastewaters. PFOS and PFOA proved to be the dominant compounds in all sampled wastewaters. Concentrations of up to 340 ng/L of PFOS and up to 220 ng/L of PFOA were observed. Besides these two compounds, perfluorohexanoic acid (PFHxA) was also present in nearly all effluents and maximum concentrations of up to 280 ng/L were measured. Only N-ethylperfluorooctane sulphonamide (N-EtPFOSA) and its degradation/metabolisation product perfluorooctane sulphonamide (PFOSA) were either detected below the limit of quantification or were not even detected at all. Beside the effluents of the municipal WWTPs, nine industrial wastewaters from six different industrial branches were also investigated. Significantly, the highest emissions or PFOS were observed from metal industry whereas paper industry showed the highest PFOA emission. Several PFAS, especially perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorododecanoic acid (PFDoA) and PFOS are predominantly emitted from industrial sources, with concentrations being a factor of 10 higher than those observed in the municipal WWTP effluents. Perfluorodecane sulphonate (PFDS), N-Et-PFOSA and PFOSA were not detected in any of the sampled industrial point sources. (c) IWA Publishing 2008.
Abdelmalek, F; Gharbi, S; Benstaali, B; Addou, A; Brisset, J L
2004-05-01
A recent non-thermal plasma technique (i.e., a gliding arc discharge which generates reactive species at atmospheric pressure) is tested for pollution abatement of dyes dispersed in synthetic solutions and industrial effluents. Yellow Supranol 4 GL (YS) and Scarlet Red Nylosan F3 GL (SRN) are toxic synthetic dyes widely used in the Algerian textile industry and frequently present in liquid wastes of manufacture plants. Classical removal treatment processes are not efficient enough, so that the presence of dyes in liquid effluents may cause serious environmental problems, in connection with reusing waste waters for irrigation. The degradation processes achieved by the oxidising species formed in the plasma are followed by UV/VIS spectroscopy and by chemical oxygen demand measurements. They are almost complete (i.e., 92.5% for YS and 90% for dilute SRN) and rapidly follow pseudo-first-order laws, with overall estimated rate constants 3 x 10(-4) and 4 x 10(-4)s-1 for YS and SRN, respectively. The degradation rate constant for the industrial mixture (i.e., k = 1.45 x 10(-3)s-1) is a mean value for two consecutive steps (210(-3) and 6 x 10(-5)s-1) measured at the absorption peaks of the major constituent dyes, YS and SRN.
ERIC Educational Resources Information Center
Pico, Richard F.
1978-01-01
Presents a literature review of wastes from the dairy industry covering publications of 1976-77. This review covers: (1) government regulations; (2) ion-plant control of dairy effluents; (3) dairy effluent treatment methods; and (4) research on dairy effluents. A list of 26 references is also presented. (HM)
In order to verify if dyestuffs within an effluent of a textile industry was contributing to the systematic mutagenicity detected in the Cristais River, within the metropolitan region of Sao Paulo, mutagenic samples of the industrial effluent, crude water, and treated silt of the...
Mineral scale management Part III, Nonprocess elements in the paper industry
Alan W. Rudie; Peter W. Hart
2006-01-01
Efforts to comply with effluent standards have led to a situation where mills have little leeway in managing trace metals without developing mineral scale deposits. In most cases, the trace metals can be managed with minor process changes and siitable levels of process control. The principal tools available to the mill are pH and good washing in the first chorine...
In-plant control applications and their effect on treatability of a textile mill wastewater.
Dulkadiroglu, H; Eremektar, G; Dogruel, S; Uner, H; Germirli-Babuna, F; Orhon, D
2002-01-01
Water minimization and exploration of the potential for wastewater recovery and reuse are priority issues of industrial wastewater management. They are extremely significant for the textile industry commonly characterized with a high water demand. The study presents a detailed in-plant control survey for a wool finishing plant. A comprehensive process profile and wastewater characterization indicate that process water consumption can be reduced by 34%, and 23% of the wastewater volume can be recovered for reuse. Treatability of reusable wastewater fraction and the effect of in-plant control applications on effluent treatability were also investigated.
Effect of textile industrial effluent on tree plantation and soil chemistry.
Singh, G; Bala, N; Rathod, T R; Singh, B
2001-01-01
A field study was conducted at Arid Forest Research Institute to study the effect of textile industrial effluent on the growth of forest trees and associated soil properties. The effluent has high pH, electrical conductivity (EC), sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) whereas the bivalent cations were in traces. Eight months old seedlings of Acacia nilotica, Acacia tortilis, Albizia lebbeck, Azadirachta indica, Parkinsonia aculeata and Prosopis juliflora were planted in July 1993. Various treatment regimes followed were; irrigation with effluent only (W1), effluent mixed with canal water in 1:1 ratio (W2), irrigation with gypsum treated effluent (W3), gypsum treated soil irrigated with effluent (W4) and wood ash treated soil irrigated with effluent (W5). Treatment regime W5 was found the best where plants attained (mean of six species) 173 cm height, 138 cm crown diameter and 9.2 cm collar girth at the age of 28 months. The poorest growth was observed under treatment regime of W3. The growth of the species varied significantly and the maximum growth was recorded for P. juliflora (188 cm height, 198 cm crown diameter and 10.0 cm collar girth). The minimum growth was recorded for A. lebbeck. Irrigation with effluent resulted in increase in percent organic matter as well as in EC. In most of the cases there were no changes in soil pH except in W5 where it was due to the effect of wood ash. Addition of wood ash influenced plant growth. These results suggest that tree species studied (except A. lebbeck) can be established successfully using textile industrial wastewater in arid region.
Application of membrane and ozonation technologies to remove color from agro-industry effluents.
Koyuncu, I; Sevimli, M F; Ozturk, I; Aydin, A F
2001-01-01
The results of membrane and ozonation experiments carried out on various agro-industry effluents including fermentation (baker's yeast), corrugated board, opium alkaloid and textile dying industries are presented. The experiments were performed using lab-scale membrane and ozonation reactors. Color removals were in the range of 80 to 99% for the membrane treatment studies. Ozonation experiments have shown that color removals in the range of 83 to 98% are possible for the investigated wastewaters. Final color levels were lower than 100 Pt-Co unit, which is quite acceptable aesthetically. The relative unit treatment costs of ozonation were about two times higher than membrane systems especially for very strong colored effluents including fermentation and opium alkaloid industries. The study has demonstrated that both membrane and ozonation technologies are viable options for color removal.
del Castillo, I; Hernández, P; Lafuente, A; Rodríguez-Llorente, I D; Caviedes, M A; Pajuelo, E
2012-04-15
Cork manufacturing is a traditional industry in Southern Europe, being the main application of this natural product in wine stoppers and insulation. Cork processing begins at boiling the raw material. As a consequence, great volumes of dark wastewaters, with elevated concentrations of chlorophenols, are generated, which must be depurated through costly physicochemical procedures before discarding them into public water courses. This work explores the potential of bacteria, isolated from cork-boiling waters storage ponds, in bioremediation of the same effluent. The bacterial population present in cork-processing wastewaters was analysed by DGGE; low bacterial biodiversity was found. Aerobic bacteria were isolated and investigated for their tolerance against phenol and two chlorophenols. The most tolerant strains were identified by sequencing 16S rDNA. The phenol-degrading capacity was investigated by determining enzyme activities of the phenol-degrading pathway. Moreover, the capacity to form biofilms was analysed in a microtitre plate assay. Finally, the capacity to form biofilms onto the surface of residual small cork particles was evaluated by acridine staining followed by epifluorescence microscopy and by SEM. A low-cost bioremediation system, using phenol-degrading bacteria immobilised onto residual cork particles (a by-product of the industry) is proposed for the remediation of this industrial effluent (self-bioremediation). Copyright © 2011 Elsevier Ltd. All rights reserved.
Bhattacharya, Priyankari; Swarnakar, Snehasikta; Mukhopadhyay, Aniruddha; Ghosh, Sourja
2016-04-01
Effluent from tannery industries can significantly affect the aquatic environment due to the presence of a variety of recalcitrant components. The present study focuses on a comparative assessment of the toxic impacts of an untreated tannery effluent and membrane treated effluents using snail, Pila globosa as an aquatic model. Composite tannery effluent collected from a common effluent treatment plant was selected as the untreated effluent. To investigate the effect of treated effluents on the aquatic organism the effluent was treated by two ways, viz. a single stage microfiltration (MF) using ceramic membrane and a two-step process involving MF followed by reverse osmosis (RO). The whole body tissue, gonad and mantle of P. globosa were subjected to enzyme assays like superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-GPx), glutathione S- transferase (GST), etc. for assessing toxic impact. Changes in the biochemical parameters like protein, carbohydrate and amino acid were observed including histological studies of gonad and mantle tissue upon treatment with tannery effluents. To examine potential DNA damage due to the exposure of the effluent, comet assay was conducted. The study revealed that with an exposure to the untreated effluent, activity of the antioxidant enzymes increased significantly while the protein and carbohydrate content reduced largely in the whole body tissue, gonad as well as mantle tissues of P. globosa. Histological study indicated considerable damage in the gonad and mantle tissues following exposure to the untreated effluent. Comet assay using hemolymph of P. globosa following exposure to tannery effluent, showed significant genotoxicity. Interestingly, compared to the untreated effluent, damaging effect was reduced in molluscs tissues when exposed to MF treated effluent and even lesser when exposed to MF+RO treated effluent. Apart from the reduced activities of oxidative stress enzymes, the protein, amino acid and carbohydrate content of molluscs exposed to both of the treated effluent were found close to that of control. Comet assay revealed no damage in the DNA for MF and MF+RO treated effluent indicating that the membrane based treatment procedure restores environmental condition to control level. Copyright © 2015 Elsevier Inc. All rights reserved.
Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development.
Hoffman, D J; Eastin, W C
1981-09-01
Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.
Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development
Hoffman, D.J.; Eastin, W.C.
1981-01-01
Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajamani, S.
The leather industry is an important export-oriented industry in India, with more than 3,000 tanneries located in different clusters. Sodium sulfide, a toxic chemical, is used in large quantities to remove hair and excess flesh from hides and skins. Most of the sodium sulfide used in the process is discharged as waste in the effluent, which causes serious environmental problems. Reduction of sulfide in the effluent is generally achieved by means of chemicals in the pretreatment system, which involves aerobic mixing using large amounts of chemicals and high energy, and generating large volumes of sludge. A simple biotechnological system thatmore » uses the residual biosludge from the secondary settling tank was developed, and the commercial-scale application established that more than 90% of the sulfide could be reduced in the primary treatment system. In addition to the reduction of sulfide, foul smells, BOD and COD are reduced to a considerable level. 3 refs., 2 figs., 1 tab.« less
Impact of potential phosphate mining on the hydrology of Osceola National Forest, Florida
Miller, James A.; Hughes, G.H.; Hull, R.W.; Vecchioli, John; Seaber, P.R.
1978-01-01
Potentially exploitable phosphate deposits underlie part of Osceola National Forest, Fla. Hydrologic conditions in the forest are comparable with those in nearby Hamilton County, where phosphate mining and processing have been ongoing since 1965. Given similarity of operations, hydroloigc effects of mining in the forest are predicted. Flow of stream receiving phosphate industry effluent would increase somewhat during mining, but stream quality would not be greatly affected. Local changes in the configuration of the water table and the quality of water in the surficial aquifer will occur. Lowering of the potentiometric surface of the Floridan aquifer because of proposed pumpage would be less than five feet at nearby communities. Flordian aquifer water quality would be appreciably changed only if industrial effluent were discharged into streams which recharge the Flordian through sinkholes. The most significant hydrologic effects would occur at the time of active mining: long-term effects would be less significant. (Woodard-USGS)
Gurieff, Nicholas; Lant, Paul
2007-12-01
A life cycle assessment and financial analysis of mixed culture PHA (PHA(MC)) and biogas production was undertaken based on treating an industrial wastewater. Internal rate of return (IRR) and non-renewable CO(2)eq emissions were used to quantify financial viability and environmental impact. PHA(MC) was preferable to biogas production for treating the specified industrial effluent. PHA(MC) was also financially attractive in comparison to pure culture PHA production. Both PHA production processes had similar environmental impacts that were significantly lower than HDPE production. A large potential for optimisation exists for the PHA(MC) process as financial and environmental costs were primarily due to energy use for downstream processing. Under the conditions used in this work PHA(MC) was shown to be a viable biopolymer production process and an effective industrial wastewater treatment technology. This is the first study of its kind and provides valuable insight into the PHA(MC) process.
Zero Discharge Performance of an Industrial Pilot-Scale Plant Treating Palm Oil Mill Effluent
Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong
2015-01-01
Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated “zero discharge” pilot-scale industrial plant comprising “pretreatment-anaerobic and aerobic process-membrane separation” was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer. PMID:25685798
Zero discharge performance of an industrial pilot-scale plant treating palm oil mill effluent.
Wang, Jin; Mahmood, Qaisar; Qiu, Jiang-Ping; Li, Yin-Sheng; Chang, Yoon-Seong; Chi, Li-Na; Li, Xu-Dong
2015-01-01
Palm oil is one of the most important agroindustries in Malaysia. Huge quantities of palm oil mill effluent (POME) pose a great threat to aqueous environment due to its very high COD. To make full use of discharged wastes, the integrated "zero discharge" pilot-scale industrial plant comprising "pretreatment-anaerobic and aerobic process-membrane separation" was continuously operated for 1 year. After pretreatment in the oil separator tank, 55.6% of waste oil in raw POME could be recovered and sold and anaerobically digested through 2 AnaEG reactors followed by a dissolved air flotation (DAF); average COD reduced to about 3587 mg/L, and biogas production was 27.65 times POME injection which was used to generate electricity. The aerobic effluent was settled for 3 h or/and treated in MBR which could remove BOD3 (30°C) to less than 20 mg/L as required by Department of Environment of Malaysia. After filtration by UF and RO membrane, all organic compounds and most of the salts were removed; RO permeate could be reused as the boiler feed water. RO concentrate combined with anaerobic surplus sludge could be used as biofertilizer.
Prabakar, Desika; Suvetha K, Subha; Manimudi, Varshini T; Mathimani, Thangavel; Kumar, Gopalakrishnan; Rene, Eldon R; Pugazhendhi, Arivalagan
2018-07-15
The implementation of different pretreatment techniques and technologies prior to effluent discharge is a direct result of the inefficiency of several existing wastewater treatment methods. A majority of the industrial sectors have known to cause severe negative effects on the environment. The five major polluting industries are the paper and pulp mills, coal manufacturing facilities, petrochemical, textile and the pharmaceutical sectors. Pretreatment methods have been widely used in order to lower the toxicity levels of effluents and comply with environmental standards. In this review, the possible environmental benefits and concerns of adopting different pretreatment technologies for renewable energy production and product/resource recovery has been reviewed and discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Electrocoagulation efficiency of the tannery effluent treatment using aluminium electrodes.
Espinoza-Quiñones, Fernando R; Fornari, Marilda M T; Módenes, Aparecido N; Palácio, Soraya M; Trigueros, Daniela E G; Borba, Fernando H; Kroumov, Alexander D
2009-01-01
An electro-coagulation laboratory scale system using aluminium plates electrodes was studied for the removal of organic and inorganic pollutants as a by-product from leather finishing industrial process. A fractional factorial 2(3) experimental design was applied in order to obtain optimal values of the system state variables. The electro-coagulation (EC) process efficiency was based on the chemical oxygen demand (COD), turbidity, total suspended solid, total fixed solid, total volatile solid, and chemical element concentration values. Analysis of variance (ANOVA) for final pH, total fixed solid (TFS), turbidity and Ca concentration have confirmed the predicted models by the experimental design within a 95% confidence level. The reactor working conditions close to real effluent pH (7.6) and electrolysis time in the range 30-45 min were enough to achieve the cost effective reduction factors of organic and inorganic pollutants' concentrations. An appreciable improvement in COD removal efficiency was obtained for electro-coagulation treatment. Finally, the technical-economical analysis results have clearly shown that the electro-coagulation method is very promising for industrial application.
Biological treatment of model dyes and textile wastewaters.
Paz, Alicia; Carballo, Julia; Pérez, María José; Domínguez, José Manuel
2017-08-01
Previous works conducted in our laboratory, reveled that Bacillus aryabhattai DC100 produce ligninolytic enzymes such as laccases and/or peroxidases, opening new applications in different bioprocesses, including the treatment of disposal residues such as dyestuffs from textile processing industries. This work described the degradation of three commercial model dyes Coomassie Brilliant Blue G-250 (CBB), Indigo Carmine (IC) and Remazol Brilliant Blue R (RBBR) under different culture media and operational conditions. The process was optimized using a Central Composite Rotatable Design, and the desirability predicted complete decolorization of 150 mg/L CBB at 37 °C, 304.09 rpm and salt concentration of 19.204 g/L. The model was validated with concentrations up to 180 mg/L CBB and IC, not being able to remove high amount of RBBR. The procedure here developed also allowed Chemical Oxygen Demands (COD) reductions in CBB of about 42%, meanwhile tests on real effluents from a local textile industry involved COD reductions of 50% in a liquid wastewater and 14% in semi-liquid sludge. Thus, allow the authorized discharge of wastewater into the corresponding treatment plant. Decolorization efficiencies and COD reductions open on the potential application of B. aryabhattai DC100 on the bioremediation of real effluents from textile industries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moreira-Neto, S L; Mussatto, S I; Machado, K M G; Milagres, A M F
2013-04-01
The discharge of highly coloured synthetic dye effluents into rivers and lakes is harmful to the water bodies, and therefore, intensive researches have been focussed on the decolorization of wastewater by biological, physical or chemical treatments. In the present study, 12 basidiomycetes strains from the genus Pleurotus, Trametes, Lentinus, Peniophora, Pycnoporus, Rigidoporus, Hygrocybe and Psilocybe were evaluated for decolorization of the reactive dyes Cibacron Brilliant Blue H-GR and Cibacron Red FN-2BL, both in solid and liquid media. Among the evaluated fungi, seven showed great ability to decolorize the synthetic textile effluent, both in vivo (74-77%) or in vitro (60-74%), and laccase was the main ligninolytic enzyme involved on dyes decolorization. Pleurotus ostreatus, Trametes villosa and Peniophora cinerea reduced near to 60% of the effluent colour after only 1 h of treatment. The decolorization results were still improved by establishing the nitrogen source and amount to be used during the fungal strains cultivation in synthetic medium previous their action on the textile effluent, with yeast extract being a better nitrogen source than ammonium tartarate. These results contribute for the development of an effective microbiological process for decolorization of dye effluents with reduced time of treatment. © 2013 The Society for Applied Microbiology.
Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina
2010-07-01
Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances. Copyright 2010 Elsevier Ltd. All rights reserved.
Strategies for chromium bioremediation of tannery effluent.
Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan
2012-01-01
Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and bioreduction methods that rely on free cells for bioremediation suffer from Cr6 toxicity, and cell damage. Therefore, immobilization of microbial cell biomass enhances bioremediation and renders industrial bioremediation processes more economically viable from reduced free-cells toxicity, easier separation of biosorbents from the tannery effluent, ability to achieve multiple biosorption cycles, and desorption (elution) of metal(s) from matrices for reuse. Thus, microbial bioremediation can be a cost competitive strategy and beneficial bioresource for removing many hazardous contaminants from tannery and other industrial wastes.
Sharma, Pankaj; Kaur, Harleen; Sharma, Monika; Sahore, Vishal
2011-12-01
The effluent water of many industries, such as textiles, leather, paper, printing, cosmetics, etc., contains large amount of hazardous dyes. There is huge number of treatment processes as well as adsorbent which are available for the processing of this effluent water-containing dye content. The applicability of naturally available low cast and eco-friendly adsorbents, for the removal of hazardous dyes from aqueous waste by adsorption treatment, has been reviewed. In this review paper, we have provided a compiled list of low-cost, easily available, safe to handle, and easy-to-dispose-off adsorbents. These adsorbents have been classified into five different categories on the basis of their state of availability: (1) waste materials from agriculture and industry, (2) fruit waste, (3) plant waste, (4) natural inorganic materials, and (5) bioadsorbents. Some of the treated adsorbents have shown good adsorption capacities for methylene blue, congo red, crystal violet, rhodamine B, basic red, etc., but this adsorption process is highly pH dependent, and the pH of the medium plays an important role in the treatment process. Thus, in this review paper, we have made some efforts to discuss the role of pH in the treatment of wastewater.
Energetic and biochemical valorization of cork boiling wastewater by anaerobic digestion.
Marques, Isabel Paula; Gil, Luís; La Cara, Francesco
2014-01-01
In addition to energy benefits, anaerobic digestion offers other interesting advantages. The cork industry is of great environmental, economic and social significance in the western Mediterranean region, with Portugal being the world-leading producer and exporter. Cork boiling wastewater (CBW) is a toxic and recalcitrant organic effluent produced by this sector, which constitutes a serious environmental hazard. However, there is no documented research on anaerobic treatment/valorization performed with this effluent. The work presented here was developed with the aim to use the anaerobic digestion process to convert the CBW polluting organic load into an energy carrier gas and valuable molecules for industry. No lag phases were observed and a methane yield of 0.126 to 0.142 m(3) kg(-1) chemical oxygen demand (COD)added was registered in the mesophilic consortium experiments carried out in batch flasks at 37 ± 1°C. Anaerobic digestion can be advantageously connected to ultrafiltration or electrochemical processes, due to the following: 1) reduction of ellagic acid content and consequent decrease of CBW viscosity; and 2) increase in conductivity after the anaerobic process, avoiding the electrolyte application of the electrochemical process. The improvement of several CBW biochemical features shows that anaerobic digestion may provide additionally useful molecules. The rise in concentration of some of these compounds, belonging to the benzoic acid family (gallic, protocatechuic, vanillic and syringic acids), is responsible for the increase of antiradical activity of the phenolic fraction. Additionally, some enzymatic activity was also observed and while the laccase activity increased in the digested effluent by anaerobiosis, xylanase was formed in the process. The multidisciplinary approach adopted allowed the valorization of CBW in terms of energy and valuable biomolecules. By exploiting the anaerobic digestion process potential, a novel methodology to toxic and recalcitrant cork processing wastewater was developed.
Energetic and biochemical valorization of cork boiling wastewater by anaerobic digestion
2014-01-01
Background In addition to energy benefits, anaerobic digestion offers other interesting advantages. The cork industry is of great environmental, economic and social significance in the western Mediterranean region, with Portugal being the world-leading producer and exporter. Cork boiling wastewater (CBW) is a toxic and recalcitrant organic effluent produced by this sector, which constitutes a serious environmental hazard. However, there is no documented research on anaerobic treatment/valorization performed with this effluent. The work presented here was developed with the aim to use the anaerobic digestion process to convert the CBW polluting organic load into an energy carrier gas and valuable molecules for industry. Results No lag phases were observed and a methane yield of 0.126 to 0.142 m3 kg-1 chemical oxygen demand (COD)added was registered in the mesophilic consortium experiments carried out in batch flasks at 37 ± 1°C. Anaerobic digestion can be advantageously connected to ultrafiltration or electrochemical processes, due to the following: 1) reduction of ellagic acid content and consequent decrease of CBW viscosity; and 2) increase in conductivity after the anaerobic process, avoiding the electrolyte application of the electrochemical process. The improvement of several CBW biochemical features shows that anaerobic digestion may provide additionally useful molecules. The rise in concentration of some of these compounds, belonging to the benzoic acid family (gallic, protocatechuic, vanillic and syringic acids), is responsible for the increase of antiradical activity of the phenolic fraction. Additionally, some enzymatic activity was also observed and while the laccase activity increased in the digested effluent by anaerobiosis, xylanase was formed in the process. Conclusions The multidisciplinary approach adopted allowed the valorization of CBW in terms of energy and valuable biomolecules. By exploiting the anaerobic digestion process potential, a novel methodology to toxic and recalcitrant cork processing wastewater was developed. PMID:24847378
Effluent guidelines are national standards for wastewater discharges to surface waters and municipal sewage treatment plants. We issue the regulations for industrial categories based on the performance of treatment and control technologies.
Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters
NASA Astrophysics Data System (ADS)
Lay-Ekuakille, A.; Palamara, I.; Caratelli, D.; Morabito, F. C.
2013-01-01
Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous effluents since they need to be processed by a modeling. This research presents an experimental measurement system based on infrared (IR) spectroscopy for aqueous effluents containing hydrocarbons and capable of displaying excellent values of pollutant concentrations even in instable conditions; the system is able to detect pollutants either in laminar or turbulent flow. The results show the possibility of avoiding the use of "Pitot tube" that is employed to create a stagnation point in order to convert kinetic energy into potential one. This conversion allows the transformation of a turbulent flow in a laminar flow making easy measurement of pollutants included in an aqueous effluent. Obviously, "Pitot tube" is also used for other fluid effluents. The obtained results have been compared with those produced by means of sophisticated IR instrumentation for laboratory applications.
Experimental infrared measurements for hydrocarbon pollutant determination in subterranean waters.
Lay-Ekuakille, A; Palamara, I; Caratelli, D; Morabito, F C
2013-01-01
Subterranean waters are often polluted by industrial and anthropic effluents that are drained in subsoil. To prevent and control pollution, legislations of different developed countries require an online monitoring measurement, especially for detecting organic solvents (chlorinated and unchlorinated ones). Online measurements include both real-time and no real-time measurements. In general, it is difficult to implement real-time measurements in stricto sensu for online acquisitions on aqueous effluents since they need to be processed by a modeling. This research presents an experimental measurement system based on infrared (IR) spectroscopy for aqueous effluents containing hydrocarbons and capable of displaying excellent values of pollutant concentrations even in instable conditions; the system is able to detect pollutants either in laminar or turbulent flow. The results show the possibility of avoiding the use of "Pitot tube" that is employed to create a stagnation point in order to convert kinetic energy into potential one. This conversion allows the transformation of a turbulent flow in a laminar flow making easy measurement of pollutants included in an aqueous effluent. Obviously, "Pitot tube" is also used for other fluid effluents. The obtained results have been compared with those produced by means of sophisticated IR instrumentation for laboratory applications.
Zhao, Zilong; Liu, Zekun; Wang, Hongjie; Dong, Wenyi; Wang, Wei
2018-07-01
Treatment of Ni-EDTA in industrial nickel plating effluents was investigated by integrated application of Fenton and ozone-based oxidation processes. Determination of integrated sequence found that Fenton oxidation presented higher apparent kinetic rate constant of Ni-EDTA oxidation and capacity for contamination load than ozone-based oxidation process, the latter, however, was favorable to guarantee the further mineralization of organic substances, especially at a low concentration. Serial-connection mode of two oxidation processes was appraised, Fenton effluent after treated by hydroxide precipitation and filtration negatively affected the overall performance of the sequential system, as evidenced by the removal efficiencies of Ni 2+ and TOC dropping from 99.8% to 98.7%, and from 74.8% to 66.6%, respectively. As a comparison, O 3 /Fe 2+ oxidation process was proved to be more effective than other processes (e.g. O 3 -Fe 2+ , O 3 /H 2 O 2 /Fe 2+ , O 3 /H 2 O 2 -Fe 2+ ), and the final effluent Ni 2+ concentration could satisfied the discharge standard (<0.1 mg L -1 , China) under the optimal conditions (H 2 O 2 dosage of 1.0 mL L -1 , Fe 2+ : H 2 O 2 mole ratio of 1.46, and reaction time of 10 min for Fenton reaction, initial influent pH of 3.0, O 3 dosage of 252 mg L -1 , Fe 2+ of 150 mg L -1 , and reaction time of 30 min for O 3 /Fe 2+ oxidation). Furthermore, pilot-scale test was carried out to study the practical treatability towards the real nickel plating effluent, revealing the effective removal of some other co-existence contaminations. And Fenton reaction has contributed most, with the percentage ranging from 72.41% to 93.76%. The economic cost advantage made it a promising alternative to the continuous Fenton oxidation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mukhopadhyay, Indranil; Saxena, Daya Krishna; Chowdhuri, Debapratim Kar
2003-01-01
Hazardous effects of an effluent from the chrome plating industry were examined by exposing transgenic Drosophila melanogaster (hsp70-lacZ) to various concentrations (0.05, 0.1, 1.0, 10.0, and 100.0 micro L/mL) of the effluent through diet. The emergence pattern of adult flies was affected, along with impaired reproductive performance at the higher dietary concentrations of the effluent. Interestingly, the effect of the effluent was more pronounced in male than in female flies. The effect of the effluent on development of adult flies was concurrent with the expression pattern of the heat shock protein 70 gene (hsp70), both in larval tissues and in the reproductive organs of adult flies. We observed a dose- and time-dependent expression of hsp70 in third instar larvae exposed for different time intervals. Absence of hsp70 expression in larvae exposed to 0.1 micro L/mL of the effluent indicated that this is the highest nontoxic concentration for Drosophila. The stress gene assay in the reproductive organs of adult flies revealed hsp70 expression in the testis of male flies only. However, trypan blue dye exclusion tests in these tissues indicate tissue damage in the male accessory gland of adult flies, which was further confirmed by ultrastructural observations. In the present study we demonstrate the utility of transgenic Drosophila as an alternative animal model for evaluating hazardous effects of the effluent from the chrome plating industry and further reveal the cytoprotective role of hsp70 and its expression as an early marker in environmental risk assessment. PMID:14644668
Hu, Guan-Jiu; Wang, Xiao-Yi; Shi, Wei; Bai, Chou-Yong; Wu, Jiang; Liu, Hong-Ling; Yu, Hong-Xia
2009-05-15
By using rat testicular germ cells in vitro toxicity testing method based on original cells culture, the reproduction toxicity of sewage treatment plant effluent of Chemical Industrial Park along the Yangtze River was evaluated, through cells changes in morphologic, activity and viability parameters. The results showed that both of the effluents from new developed Chemical Industrial Park A and provincial Chemical Industrial Park B contain reproductive toxic substances. The toxicity of Park A has more significant undergone changes in cells activity of sertoli cells (p < 0.01), spermatogenic cells (p < 0.05) and leyding cells (p < 0.05), lactate dehydrogenase activity (p < 0.01) and testosterone secretion (p < 0.01) than that of Park B. Sepermatogenic cells are more sensitive in indicating reproduction toxicity for testicular, compared with leyding cells and sertoli cells. This study demonstrated that, as an indispensable and complementary tool for water quality assessment, rat testicular germ cells in vitro toxicity testing based on original cells culture can be used to comprehensively evaluate the reproduction toxicity of sewage treatment plant effluent, and provide prompt and useful discharge quality information.
NASA Astrophysics Data System (ADS)
Vaithiyanathan, Thanapal; Sundaramoorthy, Perumal
2017-12-01
Sugar industry is a very important agro-based industry in India and it discharges large amount of effluent into water bodies to create high pollution in water bodies which affects the plants and other living organisms. In the present investigation, the physico-chemical analyses of N. P. K. R. Ramaswamy co-operative sugar mill effluent was determined and impact of different concentrations (control, 10, 25, 50, 75 and 100%) of sugar mill effluent on seed germination behavior of African marigold ( Tagetes erecta L.) was studied. The morphological parameters such as germination percentage, shoot length, root length, fresh weight and dry weight of seedlings, seed vigour index, tolerance index and percentage of phytotoxicity were calculated. The results recorded for the analyses of sugar mill effluent indicated their some parameters such as PH, EC, acidity, TDS, TS, BOD, COD, sulphate, magnesium, nitrogen, zinc, iron, copper, lead, manganese and oil and grease exceeded the permissible limit compared to Tamil Nadu Pollution Control Board (TNPCB) and then germination and growth parameters increased in lower (10%) concentration of sugar mill effluent and this morphological parameters gradually decreased with increasing effluent concentration. The lower (10%) concentration of sugar mill effluent may be used for irrigation purposes.
Use of ozone and/or UV in the treatment of effluents from board paper industry.
Amat, A M; Arques, A; Miranda, M A; López, F
2005-08-01
The aim of this work has been to study the viability of ozone and/or UV in the treatment of cardboard industry effluents. Several model compounds have been chosen for the experiments: guaicol, eugenol, glucose, acetate and butyrate. Significant differences in the ozonisation rates are observed between phenolic products coming from lignin (eugenol and guaiacol) and aliphatic compounds. Reactions fit in all cases a pseudo-first order kinetics and are influenced by the pH of the solution. Real effluents have also been tested, and the COD decrease has been found to depend on the fatty acids/phenols ratio. Finally, respirometric studies have shown an increase in the BODst in effluents subjected to a mild oxidation, while under stronger conditions a BODst decrease is observed.
Integration of biological method and membrane technology in treating palm oil mill effluent.
Zhang, Yejian; Yan, Li; Qiao, Xiangli; Chi, Lina; Niu, Xiangjun; Mei, Zhijian; Zhang, Zhenjia
2008-01-01
Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.
Molognoni, Daniele; Chiarolla, Stefania; Cecconet, Daniele; Callegari, Arianna; Capodaglio, Andrea G
2018-01-01
Development of renewable energy sources, efficient industrial processes, energy/chemicals recovery from wastes are research issues that are quite contemporary. Bioelectrochemical processes represent an eco-innovative technology for energy and resources recovery from both domestic and industrial wastewaters. The current study was conducted to: (i) assess bioelectrochemical treatability of industrial (dairy) wastewater by microbial fuel cells (MFCs); (ii) determine the effects of the applied organic loading rate (OLR) on MFC performance; (iii) identify factors responsible for reactor energy recovery losses (i.e. overpotentials). For this purpose, an MFC was built and continuously operated for 72 days, during which the anodic chamber was fed with dairy wastewater and the cathodic chamber with an aerated mineral solution. The study demonstrated that industrial effluents from agrifood facilities can be treated by bioelectrochemical systems (BESs) with >85% (average) organic matter removal, recovering power at an observed maximum density of 27 W m -3 . Outcomes were better than in previous (shorter) analogous experiences, and demonstrate that this type of process could be successfully used for dairy wastewater with several advantages.
The PBT-Josephine Facility accepts only wastewater from the oil and gas industry. This report describes the concentrations of selected contaminants in the effluent water and compares the contaminant effluent concentrations to state and federal standards.
Boczkaj, Grzegorz; Gągol, Michał; Klein, Marek; Przyjazny, Andrzej
2018-01-01
Utilization of cavitation in advanced oxidation processes (AOPs) is a promising trend in research on treatment of industrial effluents. The paper presents the results of investigations on the use of hydrodynamic cavitation aided by additional oxidation processes (O 3 /H 2 O 2 /Peroxone) to reduce the total pollution load in the effluent from the production of bitumens. A detailed analysis of changes in content of volatile organic compounds (VOCs) for all processes studied was also performed. The studies revealed that the most effective treatment process involves hydrodynamic cavitation aided by ozonation (40% COD reduction and 50% BOD reduction). The other processes investigated (hydrodynamic cavitation+H 2 O 2 , hydrodynamic cavitation+Peroxone and hydrodynamic cavitation alone) ensure reduction of COD by 20, 25 and 13% and reduction of BOD by 49, 32 and 18%, respectively. The results of this research revealed that most of the VOCs studied are effectively degraded. The formation of byproducts is one of the aspects that must be considered in evaluation of the AOPs studied. This work confirmed that furfural is one of the byproducts whose concentration increased during treatment by hydrodynamic cavitation alone as well as hydrodynamic cavitation aided by H 2 O 2 as an external oxidant and it should be controlled during treatment processes. Copyright © 2017 Elsevier B.V. All rights reserved.
Anammox process for nitrogen removal from anaerobically digested fish canning effluents.
Dapena-Mora, A; Campos, J L; Mosquera-Corral, A; Méndez, R
2006-01-01
The Anammox process was used to treat the effluent generated in an anaerobic digester which treated the wastewater from a fish cannery once previously processed in a Sharon reactor. The effluents generated from the anaerobic digestion are characterised by their high ammonium content (700-1000 g NH4+ -Nm(-3)), organic carbon content (1000-1300 g TOCm(-3)) and salinity up to 8,000-10,000 g NaCl m(-3). In the Sharon reactor, approximately 50% of the NH4+ -N was oxidised to NO2- -N via partial nitrification. The effluent of the Sharon step was fed to the Anammox reactor which treated an averaged nitrogen loading rate of 500 g N m(-3) x d(-1). The system reached an averaged nitrogen removal efficiency of 68%, mainly limited due to the nonstoichiometric relation, for the Anammox process, between the ammonium and nitrite added in the feeding. The Anammox reactor bacterial population distribution, followed by FISH analysis and batch activity assays, did not change significantly despite the continuous entrance to the system of aerobic ammonium oxidisers coming from the Sharon reactor. Most of the bacteria corresponded to the Anammox population and the rest with slight variable shares to the ammonia oxidisers. The Anammox reactor showed an unexpected robustness despite the continuous variations in the influent composition regarding ammonium and nitrite concentrations. Only in the period when NO2- -N concentration was higher than the NH4+ -N concentration did the process destabilise and it took 14 days until the nitrogen removal percentage decreased to 34% with concentrations in the effluent of 340g NH4+ -N m(-3) and 440 g NO2- -N m(-3), respectively. Based on these results, it seems that the Sharon-Anammox system can be applied for the treatment of industrial wastewaters with high nitrogen load and salt concentration with an appropriate control of the NO2- -N/NH4+ -N ratio.
Anodic oxidation of textile wastewaters on boron-doped diamond electrodes.
Abdessamad, NourElHouda; Akrout, Hanene; Bousselmi, Latifa
2015-01-01
The objective of this study is to investigate the potential application of the anodic oxidation (AO) on two electrolytic cells (monopolar (Cell 1) and bipolar (Cell 2)) containing boron-doped diamond electrodes on the treatment of real textile effluents to study the reuse possibility of treated wastewater in the textile industry process. AO is applied in the flocculation coagulation pretreatment of both upstream (BH) and downstream (BS) effluents. The chemical oxygen demand (COD) results show that the final COD removal obtained for the BH effluent in the case of Cell 1 and Cell 2 is 800 and 150 mg O₂L⁻¹ after 5 and 6 h of electrolysis, respectively. The treatments of the BS effluent allow for obtaining a final COD of 76 mg L⁻¹ for Cell 1 and a total mineralization for Cell 2. The obtained results demonstrate that the apparent mineralization kinetics of both effluents when using Cell 2 are about four times faster than the one obtained by Cell 1 and highlight the important contribution of the bipolar cell. Besides, the energy consumption values show that the treatment of the BH effluent by Cell 1 consumes 865 kWh kg COD⁻¹ against 411 kWh kg COD(-1) by Cell 2. Therefore, the use of Cell 2 decreases the energy cost by 2.1-6.65 times when compared to Cell 1 in the case of the BH and BS effluent treatment, respectively.
NASA Astrophysics Data System (ADS)
Lee, S.; Keum, H.; Chun Sang, H.
2015-12-01
In recent years, the interests on the impacts of industrial wastewater on aquatic ecosystem have increased with concern about ecosystem protection and human health. Whole effluent toxicity tests are used to monitor toxicity by unknown toxic chemicals as well as conventional pollutants from industrial effluent discharges. This study describes the application of TIE (toxicity identification evaluation) procedures to an acutely toxic effluent from a wastewater treatment plant in industrial complex which was toxic to Daphnia magna. In TIE phase I (characterization step), the toxic effects by heavy metals, organic compounds, oxidants, volatile organic compounds, suspended solids and ammonia were screened and revealed that the source of toxicity is far from these toxicants group. Chemical analysis (TIE phase II) on TDS showed that the concentration of chloride ion (6,900 mg/L) was substantially higher than that predicted from EC50 for D. magna. In confirmation step (TIE phase III), chloride ion was demonstrated to be main toxicant in this effluent by the spiking approach, species sensitivity approach and deletion approach. Calcium, potassium, magnesium, sodium, fluorine, sulfate ion concentration (450, 100, 80, 5,300, 0.66, 2,200mg/L) was not shown toxicity from D. magna. Finally, we concluded that chloride was the most contributing toxicant in the waste water treatment plant. Further research activities are needed for technical support of toxicity identification and evaluation on the various types of wastewater treatment plant discharge in Korea. Keywords : TIE, D. magna, Industrial waste water Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government
Camargo, Julio A; Alonso, Álvaro
2017-06-01
We carried out field studies and laboratory experiments to assess the impact of fluoride (F - ) and turbidity on the freshwater snail Physella acuta in a polluted river receiving an industrial effluent (the middle Duraton River, Central Spain). Fluoride concentrations and turbidity levels significantly increased downstream from the industrial effluent (with the highest values being 0.6 mg F - /L and 55.2 nephelometric turbidity unit). In addition, higher deposition of fine inorganic matter was evident at polluted sampling sites. Conversely, the abundance of P. acuta significantly declined (until its virtual disappearance) downstream from the industrial effluent. Toxicity bioassays showed that P. acuta is a relatively tolerant invertebrate species to fluoride toxicity, with estimated safe concentrations (expressed as LC 0.10 values for infinite hours of exposure) for juvenile and adult snails being 2.4 and 3.7 mg F - /L, respectively. Furthermore, juvenile snails (more sensitive than adult snails) did not show significant alterations in their behavior through 15 days of exposure to 2.6 mg F - /L: mean values of the proportion of test snails located on the water surface habitat, as well as mean values of the sliding movement rate (velocity) of test snails, never showed significant differences when comparing control and treatment glass vessels. It is concluded that instream habitat degradation, derived from increased turbidity levels, might be a major cause for significant reductions in the abundance of P. acuta downstream from the industrial effluent. The presence of the competing gastropod Ancylus fluviatilis could also affect negatively the recovery of P. acuta abundance.
Ma, Dehua; Chen, Lujun; Liu, Rui
2017-10-01
Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright © 2017 Elsevier B.V. All rights reserved.
Mishra, Abhishek; Malik, Anushree
2012-10-15
Toxic impacts of heavy metals in the environment have lead to intensive research on various methods of heavy metal remediation. However, in spite of abundant work on heavy metals removal from simple synthetic solutions, a very few studies demonstrate the potential of microbial strains for the treatment of industrial effluents containing mixtures of metals. In the present study, the efficiency of an environmental isolate (Aspergillus lentulusFJ172995), for simultaneous removal of chromium, copper and lead from a small-scale electroplating industry effluent was investigated. Initial studies with synthetic solutions infer that A. lentulus has a remarkable tolerance against Cr, Cu, Pb and Ni. During its growth, a significant bioaccumulation of individual metal was recorded. After 5 d of growth, the removal of metals from synthetic solutions followed the trend Pb(2+) (100%) > Cr(3+) (79%) > Cu(2+) (78%), > Ni(2+) (42%). When this strain was applied to the treatment of multiple metal containing electroplating effluent (after pH adjustment), the metal concentrations decreased by 71%, 56% and 100% for Cr, Cu and Pb, respectively within 11 d. Based on our results, we propose that the simultaneous removal of hazardous metals from industrial effluents can be accomplished using A. lentulus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Paisio, Cintia E; Quevedo, María R; Talano, Melina A; González, Paola S; Agostini, Elizabeth
2014-08-01
The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp. RTE 1.4 showed ability to completely remove 2-methoxyphenol (1000 mg/L) while Rhodococcus sp. CS 1 not only degrade the same concentration of this compound but also removed 4- chlorophenol, 2,4-dichlorophenol and pentachlorophenol with high efficiency. Moreover, both bacteria degraded phenols naturally present or even exogenously added at high concentrations in effluents from the chemical industry and a tannery in short time (up to 5 d). In addition, a significant reduction of biological oxygen demand and chemical oxygen demand values was achieved after 7 d of treatment for both effluents using Acinetobacter sp. RTE 1.4 and Rhodococcus sp. CS1, respectively. These results showed that Acinetobacter sp. RTE1.4 and Rhodococcus sp. CS 1 might be considered as useful biotechnological tools for an efficient treatment of different effluents, since they showed wide versatility to detoxify these complex matrices, even supplemented with high phenol concentrations.
NASA Astrophysics Data System (ADS)
Kang, Jianxiong; Zhan, Wei; Li, Daosheng; Wang, Xiaocong; Song, Jing; Liu, Dongqi
This study investigated the feasibility of coupling a catalytic wet air oxidation (CWAO), with CuO/Al 2O 3 as catalyst, and an anaerobic/aerobic biological process to treat wastewater from Vitamin B 6 production. Results showed that the CWAO enhanced the biodegradability (BOD 5/COD) from 0.10 to 0.80. The oxidized effluents with COD of 10,000 mg l -1 was subjected to subsequent continuous anaerobic/aerobic oxidation, and 99.3% of total COD removal was achieved. The quality of the effluent obtained met the discharge standards of water pollutants for pharmaceutical industry Chemical Synthesis Products Category (GB21904-2008), and thereby it implies that the integrated CWAO and anaerobic/aerobic biological treatment may offer a promising process to treat wastewater from Vitamin B 6 production.
Pollution profile and biodegradation characteristics of fur-suede processing effluents.
Yildiz Töre, G; Insel, G; Ubay Cokgör, E; Ferlier, E; Kabdaşli, I; Orhon, D
2011-07-01
This study investigated the effect of stream segregation on the biodegradation characteristics of wastewaters generated by fur-suede processing. It was conducted on a plant located in an organized industrial district in Turkey. A detailed in-plant analysis of the process profile and the resulting pollution profile in terms of significant parameters indicated the characteristics of a strong wastewater with a maximum total COD of 4285 mg L(-1), despite the excessive wastewater generation of 205 m3 (ton skin)(-1). Respirometric analysis by model calibration yielded slow biodegradation kinetics and showed that around 50% of the particulate organics were utilized at a rate similar to that of endogenous respiration. A similar analysis on the segregated wastewater streams suggested that biodegradation of the plant effluent is controlled largely by the initial washing/pickling operations. The effect of other effluent streams was not significant due to their relatively low contribution to the overall organic load. The respirometric tests showed that the biodegradation kinetics of the joint treatment plant influent of the district were substantially improved and exhibited typical levels reported for tannery wastewater, so that the inhibitory impact was suppressed to a great extent by dilution and mixing with effluents of the other plants. The chemical treatment step in the joint treatment plant removed the majority of the particulate organics so that 80% of the available COD was utilized in the oxygen uptake rate (OUR) test, a ratio quite compatible with the biodegradable COD fractions of tannery wastewater. Consequently, process kinetics and especially the hydrolysis rate appeared to be significantly improved.
Durán, A; Monteagudo, J M; Sanmartín, I; Gómez, P
2013-03-01
The mineralization of industrial wastewater coming from food industry using an emerging homogeneous sonophotolytic oxidation process was evaluated as an alternative to or a rapid pretreatment step for conventional anaerobic digestion with the aim of considerably reducing the total treatment time. At the selected operation conditions ([H(2)O(2)]=11,750ppm, pH=8, amplitude=50%, pulse length (cycles)=1), 60% of TOC is removed after 60min and 98% after 180min when treating an industrial effluent with 2114ppm of total organic carbon (TOC). This process removed completely the toxicity generated during storing or due to intermediate compounds. An important synergistic effect between sonolysis and photolysis (H(2)O(2)/UV) was observed. Thus the sonophotolysis (ultrasound/H(2)O(2)/UV) technique significantly increases TOC removal when compared with each individual process. Finally, a preliminary economical analysis confirms that the sono-photolysis with H(2)O(2) and pretreated water is a profitable system when compared with the same process without using ultrasound waves and with no pretreatment. Copyright © 2012 Elsevier B.V. All rights reserved.
Granular activated carbon promoted ozonation of a food-processing secondary effluent.
Alvarez, Pedro M; Pocostales, J Pablo; Beltrán, Fernando J
2011-01-30
This paper reports on the application of a simultaneous combination of ozone and a granular activated carbon (O(3)/GAC) as a tertiary treatment of a wastewater generated from the activity of various food-processing industries. Prior to the O(3)/GAC treatment, the wastewater was subjected to conventional primary and secondary treatments in a full-scale wastewater treatment plant (WWTP). The effluent from the WWTP presented high organic load (COD>500 mg/l and TOC>150 mg/l), which could be much reduced by the O(3)/GAC treatment. Results from the O(3)/GAC experiments were compared with those obtained in single ozonation, single adsorption onto GAC and sequential O(3)-GAC adsorption experiments. While single processes and the sequential one showed limited capacity to remove organic matter for the food-processing effluent (COD removal <40%), the simultaneous O(3)/GAC process led to decreases of COD up to 82% at the conditions here applied. The combined process also improved the ozone consumption, which decreased from about 19 g O(3)/g TOC (single ozonation process) to 8.2-10.7 g O(3)/g TOC (O(3)/GAC process). The reusability of the GAC throughout a series of consecutive O(3)/GAC experiments was studied with no apparent loss of activity for a neutral GAC (PZC = 6.7) but for a basic GAC (PZC = 9.1). Copyright © 2010 Elsevier B.V. All rights reserved.
Leifeld, Vanessa; Dos Santos, Tâmisa Pires Machado; Zelinski, Danielle Wisniewski; Igarashi-Mafra, Luciana
2018-09-15
Cassava is the most important tuberous root in tropical and subtropical regions of the world, being the third largest source of carbohydrates. The root processing is related to the production of starch, an important industrial input, which releases a highly toxic liquid wastewater due to its complex composition, which inhibits high performances of conventional effluent treatments. This study aims to evaluate Fenton-like and photo-Fenton-like reactions for treatment of cassava wastewater, reusing ferrous ions from the preliminary coagulation stage. Pre-treated cassava wastewater was submitted to oxidation in three variations of hydrogen peroxide concentrations, with more relevant analytical responses verified in color, turbidity, COD (Chemical Oxygen Demand), and acute toxicity in Artemia salina, besides the action of radicals during Fenton-like reactions. At higher peroxide concentrations, a decrease of 68% in turbidity and 70% in COD on the photo-Fenton-like system was observed, even at slow reaction rates (fastest rate constant k = 2 × 10 -4 min -1 ). Inclusion of UV increases the viability of the Fenton-like reactions by supplementing the reaction medium with hydroxyl radicals, verified by the tert-butanol tests. The oxidation process leads to high EC 50 values in 24 h of incubation in Fenton-like reactions and 48 h in photo-Fenton-like reactions. Final COD and turbidity suggests that the reuse of iron, which remains in the preliminary treatment step shows a great potential as a catalyst for Fenton-like advanced oxidation processes. Tertiary treatment can be less expensive and harmful to the environment, reducing production of residual sludge and metal content in the final effluent, which reduces polluting potential of the effluent regarding solid waste. Copyright © 2018 Elsevier Ltd. All rights reserved.
Graham, Carly F; Eberts, Rebecca L; Morgan, Thomas D; Boreham, Douglas R; Lance, Stacey L; Manzon, Richard G; Martino, Jessica A; Rogers, Sean M; Wilson, Joanna Y; Somers, Christopher M
2016-01-01
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment.
Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale.
Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang
2015-04-09
The removal of organic compounds and nitrogen in an anaerobic-anoxic-aerobic membrane bioreactor process (A(2)O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH4(+)-N and TN were 87%, 96% and 55%, respectively. Gas chromatograph-mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; Boreham, Douglas R.; Lance, Stacey L.; Manzon, Richard G.; Martino, Jessica A.; Rogers, Sean M.; Wilson, Joanna Y.; Somers, Christopher M.
2016-01-01
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species (Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ13C and δ15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearby reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (Fst, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Thus, future research should focus on the potential impacts of thermal emissions on development and recruitment. PMID:26807722
Gutiérrez, Gemma; Lobo, Alberto; Benito, José M; Coca, José; Pazos, Carmen
2011-01-30
A process is proposed for the treatment of a waste oil-in-water (O/W) emulsion generated in an industrial copper-rolling operation. The use of demulsifier agents improves the subsequent treatment by techniques such as ultrafiltration (UF) or evaporation. The effluent COD is reduced up to 50% when the O/W emulsion is treated by UF using a flat 30 nm TiO(2) ceramic membrane (ΔP = 0.1 MPa) and up to 70% when it is treated by vacuum evaporation, after an emulsion destabilization pretreatment in both cases. Increases in the UF permeate flux and in the evaporation rate are observed when a chemical demulsifier is used in the pretreatment step. A combined process consisting of destabilization/settling, UF, and vacuum evaporation can yield a very high-quality aqueous effluent that could be used for process cooling or emulsion reformulation. Copyright © 2010 Elsevier B.V. All rights reserved.
Hariz, Harizah Bajunaid; Takriff, Mohd Sobri
2017-09-01
In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO 2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.
Mullins, Darragh; Coburn, Derek; Hannon, Louise; Jones, Edward; Clifford, Eoghan; Glavin, Martin
2018-03-01
Wastewater treatment facilities are continually challenged to meet both environmental regulations and reduce running costs (particularly energy and staffing costs). Improving the efficiency of operational monitoring at wastewater treatment plants (WWTPs) requires the development and implementation of appropriate performance metrics; particularly those that are easily measured, strongly correlate to WWTP performance, and can be easily automated, with a minimal amount of maintenance or intervention by human operators. Turbidity is the measure of the relative clarity of a fluid. It is an expression of the optical property that causes light to be scattered and absorbed by fine particles in suspension (rather than transmitted with no change in direction or flux level through a fluid sample). In wastewater treatment, turbidity is often used as an indicator of effluent quality, rather than an absolute performance metric, although correlations have been found between turbidity and suspended solids. Existing laboratory-based methods to measure turbidity for WWTPs, while relatively simple, require human intervention and are labour intensive. Automated systems for on-site measuring of wastewater effluent turbidity are not commonly used, while those present are largely based on submerged sensors that require regular cleaning and calibration due to fouling from particulate matter in fluids. This paper presents a novel, automated system for estimating fluid turbidity. Effluent samples are imaged such that the light absorption characteristic is highlighted as a function of fluid depth, and computer vision processing techniques are used to quantify this characteristic. Results from the proposed system were compared with results from established laboratory-based methods and were found to be comparable. Tests were conducted using both synthetic dairy wastewater and effluent from multiple WWTPs, both municipal and industrial. This system has an advantage over current methods as it provides a multipoint analysis that can be easily repeated for large volumes of wastewater effluent. Although the system was specifically designed and tested for wastewater treatment applications, it could have applications such as in drinking water treatment, and in other areas where fluid turbidity is an important measurement.
Raghu, S; Ahmed Basha, C
2007-10-22
This paper examines the use of chemical or electrocoagulation treatment process followed by ion-exchange process of the textile dye effluent. The dye effluent was treated using polymeric coagulant (cationic dye-fixing agent) or electrocoagulation (iron and aluminum electrode) process under various conditions such as various current densities and effect of pH. Efficiencies of COD reduction, colour removal and power consumption were studied for each process. The chemical or electrochemical treatment are indented primarily to remove colour and COD of wastewater while ion exchange is used to further improve the removal efficiency of the colour, COD, Fe concentration, conductivity, alkalinity and total dissolved solids (TDS). From the results chemical coagulation, maximum COD reduction of about 81.3% was obtained at 300 mg/l of coagulant whereas in electrocoagulation process, maximum COD removal of about 92.31% (0.25 A/dm2) was achieved with energy consumption of about 19.29 k Wh/kg of COD and 80% (1A/dm(2)) COD removal was obtained with energy consumption of about 130.095 k Wh/kg of COD at iron and aluminum electrodes, respectively. All the experimental results, throughout the present study, have indicated that chemical or electrocoagulation treatment followed by ion-exchange methods were very effective and were capable of elevating quality of the treated wastewater effluent to the reuse standard of the textile industry.
Feasibility study on the utilization of rubber latex effluent for producing bacterial biopolymers.
Tang, S N; Fakhru'l-Razi, A; Hassan, M A; Karim, M I
1999-01-01
Rubber latex effluent is a polluting source that has a high biochemical oxygen demand (BOD). It is estimated that about 100 million liters of effluent are discharged daily from rubber processing factories. Utilization of this effluent such as the use of a coupled system not only can reduce the cost of treatment but also yield a fermentation feedstock for the production of bioplastic. This study initially was carried out to increase the production of organic acids by anaerobic treatment of rubber latex effluent. It was found that through anaerobic treatment the concentration of organic acids did not increase. Consequently, separation of organic acids from rubber latex effluent by anion exchange resin was examined as a preliminary study of recovering acetic and propionic acids. However, the suspended solids (SS) content in the raw effluent was rather high which partially blocked the ion-exchange columns. Lime was used to remove the SS in the rubber latex effluent. After the lime precipitation process, organic acids were found to adsorb strongly onto the anion exchange resin. Less adsorption of organic acids onto the resin was observed before the lime precipitation. This was probably due to more sites being occupied by colloidal particles on the resin thus inhibiting the adsorption of organic acids. The initial concentration of organic acids in the raw effluent was 3.9 g/L. After ion exchange, the concentration of the organic acids increased to 27 g/L, which could be utilized for production of polyhydroxyalkanoates (PHA). For PHA accumulation stage, concentrated rubber latex effluent obtained from ion exchange resins and synthetic acetic acid were used as the carbon source. Quantitative analyses from fed batch culture via HPLC showed that the accumulation of PHA in Alcaligenes eutrophus was maximum with a concentration of 1.182 g/L when cultivated on synthetic acetic acid, corresponding to a yield of 87% based on its cell dry weight. The dry cell weight increased from 0.71 to 1.67 g/L. On the other hand, using concentrated rubber latex effluent containing acetic and propionic acids resulted in reduced PHA content by dry weight (14%) but the dry cell weight increased from 0.49 to 1.30 g/L. The results clearly indicated that the cells grow well in rubber latex effluent but no PHA was accumulated. This could be due to the high concentration of propionic acid in culture broth or other factors such as heavy metals. Thus further work is required before rubber latex effluent can be utilized as a substrate for PHA production industrially.
Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores
2018-01-01
Abstract Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed. PMID:29438505
Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores
2018-03-01
Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report presents the economic analysis of final effluent limitation guidelines, New Source Performance Standards, and pretreatment standards being promulgated for the steam-electric power plant point source category. It describes the costs of the final regulations, assesses the effects of these costs on the electric utility industry, and examines the cost-effectiveness of the regulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
This report assesses the water quality related benefits that would be expected if the US Environmental Protection Agency (EPA) adopts the proposed effluent limitations, guidelines and pretreatment standards for the Centralized Waste Treatment (CWT) Industry. EPA estimates that under baseline conditions 205 CWT facilities discharge approximately 5.22 million lbs/year of metal and organic pollutants.
Removal of caffeine from industrial wastewater using Trichosporon asahii.
Lakshmi, V; Das, Nilanjana
2013-07-01
Caffeine (1,3,7-trimethylxanthine), a natural alkaloid present mainly in tea and coffee products has been suggested as an environmental pollutant. Decaffeination is an important process for the removal of caffeine from coffee industrial wastes. In the present study, caffeine removal (through degradation) by yeast isolate, Trichosporon asahii immobilized on various conventional matrices (sodium alginate, carboxymethyl cellulose, chitosan, agar and agarose) was investigated using the method of entrapment. The biofilm forming ability of T. asahii was monitored by atomic force microscopy and scanning electron microscopy. Exopolysaccharide produced by T asahii biofilm was characterized by FT-IR spectroscopy and HPLC analysis. Caffeine removal from coffee processing industrial effluent was found to be 75 and 80 % by alginate immobilized yeast and yeast biofilm formed on gravels over a period of 48 hr in batch mode. Effectiveness of the process was also tested involving the continuous--flow column studies.
Ribeiro, C; Scheufele, F B; Alves, H J; Kroumov, A D; Espinoza-Quiñones, F R; Módenes, A N; Borba, C E
2018-02-26
This work focused in the evaluation of Oreochromis niloticus fish scales (FS) as biosorbent material in the removal of Zn from a synthetic effluent based on automotive battery industry effluent and, further, a hybrid neutralization/biosorption process, aiming at a high-quality treated effluent, by a cooperative use of dolomite and FS. For this, a physicochemical and morphological characterization (i.e. SEM-EDX, FTIR, XRD, and TXRF) was performed, which helped to clarify a great heterogeneity of active sites (phosphate, carbonate, amide, and hydroxyl) on the biosorbent; also the inorganic constituents (apatites) leaching from the FS was identified. Biosorption results pointed out to a pH-dependent process due to changes in the functional group's anionic character (i.e. electrostatic interactions), where an initial pH = 3 favored the Zn uptake. Kinetic and equilibrium studies confirmed the heterogeneous surface and cooperative sorption, wherein experimental data were described by Generalized Elovich kinetic model and the favorable isotherm profile by Langmuir-Freundlich isotherm ([Formula: see text] = 15.38 mg g -1 and [Formula: see text]). Speciation diagram of Zn species along with the leached species demonstrated that, for the studied pH range, the biosorption was the most likely phenomena rather than precipitation. Finally, the hybrid neutralization/biosorption process showed great potential since both the Zn concentration levels and the pH reached the legislation standards (C Zn = 4 mg L -1 ; pH = 5). Hence, based on the characterization and biosorption results, a comprehensive evaluation of the involved mechanisms in such complex system helped to verify the prospective of FS biosorbent for the Zn treatment from solution, in both individual and hybrid processes.
An Immunological Assay for Detection and Enumeration of Thermophilic Biomining Microorganisms
Amaro, Ana M.; Hallberg, Kevin B.; Lindström, E. Börje; Jerez, Carlos A.
1994-01-01
A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes. Images PMID:16349398
An immunological assay for detection and enumeration of thermophilic biomining microorganisms.
Amaro, A M; Hallberg, K B; Lindström, E B; Jerez, C A
1994-09-01
A specific, fast, and sensitive nonradioactive immunobinding assay for the detection and enumeration of the moderate thermophile Thiobacillus caldus and the thermophilic archaeon Sulfolobus acidocaldarius was developed. It employs enhanced chemiluminescence or peroxidase-conjugated immunoglobulins in a dot or slot blotting system and is very convenient for monitoring thermophilic bioleaching microorganisms in effluents from industrial bioleaching processes.
Xu, Ming; Cao, Jiashun; Li, Chao; Tu, Yong; Wu, Haisuo; Liu, Weijing
2018-01-01
The combined biological processes of branched water-adjustment, chemical precipitation, hydrolysis acidification, secondary sedimentation, Anoxic/Oxic and activated carbon treatment were used for chemical industrial wastewater treatment in the Taihu Lake Basin. Full-scale treatment resulted in effluent chemical oxygen demand, total nitrogen, NH 3 -N and total phosphorus of 35.1, 5.20, 3.10 and 0.15 mg/L, respectively, with a total removal efficiency of 91.1%, 67.1%, 70.5% and 89.3%, respectively. In this process, short-circuited organic carbon from brewery wastewater was beneficial for denitrification and second-sulfate reduction. The concentration of effluent fluoride was 6.22 mg/L, which also met the primary standard. Gas Chromatography-Mass Spectrometry analysis revealed that many types of refractory compounds were present in the inflow. Microbial community analysis performed in the summer by PCR-denaturing gradient gel electrophoresis and MiSeq demonstrated that certain special functional bacteria, such as denitrificans, phosphorus-accumulating bacteria, sulfate- and perhafnate-reducing bacteria, aromatic compound-degrading bacteria and organic fluoride-degrading bacteria, present in the bio-tanks were responsible for the acceptable specific biological pollutant reduction achieved.
Bioremoval of the azo dye Congo Red by the microalga Chlorella vulgaris.
Hernández-Zamora, Miriam; Cristiani-Urbina, Eliseo; Martínez-Jerónimo, Fernando; Perales-Vela, Hugo Virgilio; Ponce-Noyola, Teresa; Montes-Horcasitas, María del Carmen; Cañizares-Villanueva, Rosa Olivia
2015-07-01
Discharge of dye-containing wastewater by the textile industry can adversely affect aquatic ecosystems and human health. Bioremoval is an alternative to industrial processes for detoxifying water contaminated with dyes. In this work, active and inactive biomass of the microalga Chlorella vulgaris was assayed for the ability to remove Congo Red (CR) dye from aqueous solutions. Through biosorption and biodegradation processes, Chlorella vulgaris was able to remove 83 and 58 % of dye at concentrations of 5 and 25 mg L(-1), respectively. The maximum adsorption capacity at equilibrium was 200 mg g(-1). The Langmuir model best described the experimental equilibrium data. The acute toxicity test (48 h) with two species of cladocerans indicated that the toxicity of the dye in the effluent was significantly decreased compared to the initial concentrations in the influent. Daphnia magna was the species less sensitive to dye (EC50 = 17.0 mg L(-1)), followed by Ceriodaphnia dubia (EC50 = 3.32 mg L(-1)). These results show that Chlorella vulgaris significantly reduced the dye concentration and toxicity. Therefore, this method may be a viable option for the treatment of this type of effluent.
1996-09-30
Microbial transformation of nitroaromatics in surface soils and aquifer materials. Appl . Environ. Microbiol. 60:2170-2175. Crawford, R. L. 1995...Construction Engineering Research Laboratories, Corps of Engineers, P.O. Box 9005, Champaign, IL 61826-9005. This work was supported in part by SERDP. The...113 13. ABSTRACT (Maximum 200 Words) In 1992, Congress allocated funds for development of expertise in applied environmental bioremediation restoration
Bioremediation of industrial waste through mushroom cultivation.
Kulshreshtha, Shweta; Mathur, Nupur; Bhatnagar, Pradeep; Jain, B L
2010-07-01
Handmade paper and cardboard industries are involved in processing of cellulosic and ligno-cellulosic substances for making paper by hand or simple machinery. In the present study solid sludge and effluent of both cardboard and handmade paper industries was collected for developing a mushroom cultivation technique to achieve zero waste discharges. Findings of present research work reveals that when 50% paper industries waste is used by mixing with 50% (w/w) wheat straw, significant increase (96.38%) in biological efficiency over control of wheat straw was observed. Further, cultivated basidiocarps showed normal morphology of stipe and pileus. Cross section of lamellae did not show any abnormality in the attachment of basidiospores, hymenal trama and basidium. No toxicity was found when fruiting bodies were tested chemically.
General Characteristics and Treatment Possibilities of Dairy Wastewater – A Review
2017-01-01
Summary The milk processing industry is one of the world’s staple industries, thus the treatment possibilities of dairy effluents have been attracting more and more attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described. Different procedures applied for dairy wastewater management are summarised. Attention is focused on in-factory treatment technologies with the emphasis on biological processes. Aerobic and anaerobic methods with both their advantages and disadvantages are discussed in detail. Consecutive anaerobic and aerobic systems are analysed, too. Finally, future research niches are identified. PMID:28559730
Parrott, Joanne L.; Tillitt, Donald E.
1997-01-01
Semipermeable membrane devices (SPMDs) are sampling and concentrating devices comprised of a thin polyethylene membrane containing a small quantity of triolein. They have previously been used to sample air, water and sediments and have concentrated fish tainting compounds from pulp mill effluents. The ability to induce mixed function oxygenases (MFOs) is a property of a variety of organic effluents, but the compound(s) responsible for induction have not been identified. We wanted to see if SPMDs would accumulate the MFO-inducing chemical(s) from pulp mill effluents and oil refinery effluents. Dialysates of effluent-exposed SPMDs induced ethoxyresorufin-O-deethylase (EROD) activity in a fish (Poeciliopsis lucida) hepatoma cell line, PLHC-1. In pulp mill effluents and oil sands mining and refining wastewaters, potencies varied greatly, from a few to thousands of pg TCDD-EQ/g SPMD. Low levels of inducers were seen in four pulp mills on the Athabasca R., and higher levels at one New Brunswick bleached sulphite and two Ontario bleached kraft pulp mills. The highest levels of MFO inducers were in SPMDs deployed for 14 days in wastewater from an oil sands upgrading facility, as well as SPMDs deployed at two sites on Athabasca River tributaries in the oil sands area. This suggests that natural erosion and weathering, as well as industrial processing of the oil sands, can release potent MFO inducers. Background (reference) induction by SPMD extracts ranged from non-detectable (<1) to 20 pg TCDD-EQ/g SPMD. Reactive clean-up of one of the bleached kraft mill effluent-exposed SPMD extracts on a sulfuric acid/silica gel column resulted in loss of the inducer(s), which suggested a polyaromatic hydrocarbon-type of inducing chemical(s), rather than a dioxin or furan inducer. SPMD deployments proved useful in the detection of inducers within the pulp mill process streams as extracts of SPMDs exposed to untreated bleached sulphite effluent were ten to twenty times as potent as those from secondary-treated effluent. Little is known about the nature and identity of the MFO inducers from pulp mill and refinery effluents, but the use of SPMDs as concentrators of MFO-inducing substances appears a promising avenue for future research.
Increasing the fertilizer value of palm oil mill sludge: bioaugmentation in nitrification.
Onyia, C O; Uyu, A M; Akunna, J C; Norulaini, N A; Omar, A K
2001-01-01
Malaysia is essentially an agricultural country and her major polluting effluents have been from agro-based industries of which palm oil and rubber industries together contribute about 80% of the industrial pollution. Palm oil sludge, commonly referred to, as palm oil mill effluent (POME) is brown slurry composed of 4-5% solids, mainly organic, 0.5-1% residual oil, and about 95% water. The effluent also contains high concentrations of organic nitrogen. The technique for the treatment of POME is basically biological, consisting of pond systems, where the organic nitrogen is converted to ammonia, which is subsequently transformed to nitrate, in a process called nitrification. A 15-month monitoring program of a pond system (combined anaerobic, facultative, and aerobic ponds in series) confirmed studies by other authors and POME operators that nitrification in a pond system demands relatively long hydraulic retention time (HRT), which is not easily achieved, due to high production capacity of most factories. Bioaugmentation of POME with mixed culture of nitrifiers (ammonia and nitrite oxidizers) has been identified as an effective tool not only for enhancing nitrification of POME but also for improving quality of POME as source of liquid nitrogen fertilizer for use in the agricultural sector, especially in oil palm plantations. Nitrate is readily absorbable by most plants, although some plants are able to absorb nitrogen in the form of ammoniun. In this study, up to 60% reduction in HRT (or up to 20% reduction in potential land requirement) was achieved when bioaugmentation of POME was carried out with the aim of achieving full nitrification.
Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R
2018-06-01
High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.
The industrial water footprint of zippers.
Zhang, Yin; Wu, Xiong Ying; Wang, Lai Li; Ding, Xue Mei
2014-01-01
Industrial production of apparel consumes large quantity of freshwater and discharges effluents that intensify the problem of freshwater shortage and water pollution. The industrial water footprint (IWF) of a piece of apparel includes the water footprint (WF) of the fabric, apparel accessories (e.g. zipper, fastener, sewing thread) and industrial production processes. The objective of this paper is to carry out a pilot study on IWF accounting for three kinds of typical zipper (i.e. metal zipper, polyethylene terephthalate (PET) zipper and polyoxymethylene copolymer (Co-POM) zipper) that are commonly used for apparel production. The results reveal that product output exerts a remarkable influence on zipper's average IWF. Metal zipper has the largest IWF and followed by Co-POM zipper and PET zipper. Painting, dyeing and primary processing are the top three water-consuming processes and contribute about 90% of the zipper's IWF. Painting consumes the largest amount of freshwater among all processes and occupies more than 50% of the zipper's IWF. In addition, the grey water footprint (WFgrey) provides the greatest contribution, more than 80%, to the zipper's IWF. Based on these results, this paper also provides several strategies aimed at water economization and pollution reduction during industrial production of zipper.
Application of a systemic approach to the study of pollution of the Tinto and Odiel rivers (Spain).
Sainz, A; Grande, J A; De La Torre, M L
2005-03-01
The province of Huelva in the SW of Spain presents high environmental contrasts: together with the great abundance of natural spaces, it shows the impacts of historical natural resources exploitation processes. In the Ria of Huelva, the effluents of the chemical industries must be added to the contaminating inputs of the Tinto and Odiel rivers, coming from the acid drainage of the mines located in the Iberian Pyrite Belt. This forced the Environmental Agency (AMA) to elaborate in 1987 an Effluent Remediation Plan in order to negate unacceptable environmental impacts. The application of a "grey box" systemic analysis to the AMD pollution, undergone by the Tinto and Odiel rivers has allowed to set a conclusive explanation of the sampling results observed for a period of 11 years, thus making available an overall view of the polluting process and, above all, an explanation of its partial aspects.
Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters
USDA-ARS?s Scientific Manuscript database
The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...
Nedeau, Ethan J; Merritt, Richard W; Kaufman, Michael G
2003-01-01
We studied the effect of an industrial effluent on the water quality, habitat quality, and benthic macroinvertebrates of an urban stream in southwestern Michigan (USA). The effluent affected water quality by raising in-stream temperatures 13-18 degree C during colder months and carrying high amounts of iron (> 20 x higher than ambient) that covered the streambed. The effluent also affected habitat conditions by increasing total stream discharge by 50-150%, causing a significant change in substrate and flow conditions. We used three methods to collect benthic macroinvertebrates in depositional and erosional habitats and to understand the relative importance of habitat quality and water quality alterations. Macroinvertebrate response variables included taxonomic richness, abundance, and proportional abundance of sensitive taxonomic groups. Results indicated that the effluent had a positive effect on macroinvertebrate communities by increasing the quantity of riffle habitat, but a negative effect on macroinvertebrate communities by reducing water quality. Results illustrated the need for careful consideration of habitat quality and water quality in restoration or remediation programs.
Removal of boron (B) from waste liquors.
Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K
2006-01-01
This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.
Tang, Bing; Yu, Guojun; Fang, Jianzhang; Shi, Taihong
2010-05-15
An emulsion liquid membrane (ELM)-crystallization process, using hypophosphorous acid as a reducing agent in the internal aqueous phase, has been developed for the purpose of recovering high-purity silver directly from dilute industrial effluents (waste rinse water). After pretreatment with HNO(3), silver in waste rinse water can be reliably recovered with high efficiency through the established process. The main parameters in the process of ELM-crystallization include the concentration of carrier in the membrane phase, the concentration of reducing agent in the internal aqueous phase, and the treatment ratio, which influence the recovery efficiency to various extents and must be controlled carefully. The results indicated that more than 99.5% (wt.) of the silver ions in the external aqueous phase were extracted by the ELM-crystallization process, with an average efficiency of recovery of 99.24% (wt.) and a purity of 99.92% (wt.). The membrane phase can be used repeatedly without loss of the efficiency of recovery. Copyright (c) 2009 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glombitza, F.; Eckardt, L.; Hummel, A.
1995-12-31
Biosorption means the storage of substances at the cell envelope. Different microbial biomasses were tested for the separation of radionuclides from mining waters. Results of a pilot plant demonstrate the ability of these techniques for water cleaning processes. An effluent concentration of lower than 1 mg/l (in most cases 0.1 mg/1) could be realized in a pilot plant by using pure cells of a methylotrophic strain of bacteria as well as using of a fungal mycelia.
Li, Bing-zhi; Xu, Xiang-yang; Zhu, Liang
2010-01-01
A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m3·d), with hydraulic retention time (HRT)=10 h and temperature (30±2) °C, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs. PMID:20205304
NASA Astrophysics Data System (ADS)
Parejo Calvo, Wilson A.; Duarte, Celina L.; Machado, Luci Diva B.; Manzoli, Jose E.; Geraldo, Aurea Beatriz C.; Kodama, Yasko; Silva, Leonardo Gondim A.; Pino, Eddy S.; Somessari, Elizabeth S. R.; Silveira, Carlos G.; Rela, Paulo R.
2012-08-01
The radiation processing technology for industrial and environmental applications has been developed and used worldwide. In Latin America and the Caribbean and particularly in Brazil there are 24 and 16 industrial electron beam accelerators (EBA) respectively with energy from 200 keV to 10 MeV, operating in private companies and governmental institutions to enhance the physical and chemical properties of materials. However, there are more than 1500 high-current electron beam accelerators in commercial use throughout the world. The major needs and end-use markets for these electron beam (EB) units are R and D, wire and electric cables, heat shrinkable tubes and films, PE foams, tires, components, semiconductors and multilayer packaging films. Nowadays, the emerging opportunities in Latin America and the Caribbean are paints, adhesives and coatings cure in order to eliminate VOCs and for less energy use than thermal process; disinfestations of seeds; and films and multilayer packaging irradiation. For low-energy EBA (from 150 keV to 300 keV). For mid-energy EBA (from 300 keV to 5 MeV), they are flue gas treatment (SO2 and NOX removal); composite and nanocomposite materials; biodegradable composites based on biorenewable resources; human tissue sterilization; carbon and silicon carbide fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; electrocatalysts nanoparticles production; and natural polymers irradiation and biodegradable blends production. For high-energy EBA (from 5 MeV to 10 MeV), they are sterilization of medical, pharmaceutical and biological products; gemstone enhancement; treatment of industrial and domestic effluents and sludge; preservation and disinfestations of foods and agricultural products; soil disinfestations; lignocellulosic material irradiation as a pretreatment to produce ethanol biofuel; decontamination of pesticide packing; solid residues remediation; organic compounds removal from wastewater; and treatment of effluent from petroleum production units and liquid irradiation process to treat vessel water ballast. On the other hand, there is a growing need of mobile EB facilities for different applications in South America.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar... beet sugar processing operation. Effluent characteristic Effluent limitations Maximum for any 1 day...
Sathyavathi, S; Manjula, A; Rajendhran, J; Gunasekaran, P
2014-08-01
In the present study, a nickel resistant bacterium MRS-1 was isolated from nickel electroplating industrial effluent, capable of converting soluble NiSO4 into insoluble NiO nanoparticles and identified as Microbacterium sp. The formation of NiO nanoparticles in the form of pale green powder was observed on the bottom of the flask upon prolonged incubation of liquid nutrient medium containing high concentration of 2000ppm NiSO4. The properties of the produced NiO nanoparticles were characterized. NiO nanoparticles exhibited a maximum absorbance at 400nm. The NiO nanoparticles were 100-500nm in size with unique flower like structure. The elemental composition of the NiO nanoparticles was 44:39. The cells of MRS-1 were utilized for the treatment of nickel electroplating industrial effluent and showed nickel removal efficiency of 95%. Application of Microbacterium sp. MRS-1 would be a potential bacterium for bioremediation of nickel electroplating industrial waste water and simultaneous synthesis of NiO nanoparticles. Copyright © 2014 Elsevier Ltd. All rights reserved.
Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.
Ioannou, L A; Li Puma, G; Fatta-Kassinos, D
2015-04-09
Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.
High-power ultrasonic processing: Recent developments and prospective advances
NASA Astrophysics Data System (ADS)
Gallego-Juarez, Juan A.
2010-01-01
Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have also to be mentioned. The objective of this paper is to review some recent developments in ultrasonic processing to show the present situation and the prospective progresses of high-power ultrasonics as an innovative technology in many industrial sectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herkovits, J.; Perez-Coll, C.S.; Herkovits, F.D.
1995-12-31
Test of early life stages are very sensitive to toxic effects and moreover a good predictive correlation between embryo-larval survival and independent ecological parameters such as species richness and diversity have been established. The main purpose of this preliminary study is to report that Bufo arenarum embryos are very sensitive to contaminants from a variety of sources such as leachates, industrial effluents, surface and ground water. The toxicity of 30 samples (five from each category plus controls of surface and ground water from reference places) was evaluated during a 14 day renewal toxicity test at 20 C, conducted with 10more » embryos (by triplicate) from stage 23--25 onwards using six concentrations (V/V) of each sample of Holtfreter`s solution. For industrial effluents and leachates the results range from a concentration of 0.6% resulting in 24hs LC100 up to a sample which exert 20% of lethality after 14 days of treatment. The survival of controls and in samples from reference places was over 90% for 7 days and over 80% for 14 days. The results with Bufo arenarum embryos confirm that a 7 day Short-term Chronic Toxicity Test is appropriate for toxicity screening of industrial effluents (as it was established by EPA for whole effluent toxicity test for aquatic life protection performed with other species) as well as for leachates. On the other hand, for freshwater (surface and ground), it is convenient to extend the exposure period until 14 days in order to record situations of low, but significant levels of toxicity, which could be of particular value for surface as well as ground water quality criteria.« less
Gonzalo, Cristina; Camargo, Julio A
2013-10-01
This research was conducted in the middle Duratón River (Central Spain), in the vicinity of Burgomillodo Reservoir. An industrial effluent enters the river 300 m downstream from the dam. Fluoride and turbidity levels significantly increased downstream from the effluent, these levels being to some extent affected by differential water releases from the dam. The community of submersed macrophytes exhibited slighter responses and, accordingly, lower discriminatory power than the community of benthic macroinvertebrates, this indicating that metrics and indices based on macroinvertebrates may be more suitable for the biological monitoring of water pollution and habitat degradation in dammed rivers receiving industrial effluents. However, in relation to fluoride bioaccumulation at the organism level, macrophytes (Fontinalis antipyretica and Potamogeton pectinatus) were as suitable bioindicators of fluoride pollution as macroinvertebrates (Ancylus fluviatilis and Pacifastacus leniusculus). Fluoride bioaccumulation in both hard and soft tissues of these aquatic organisms could be used as suitable bioindicator of fluoride pollution (even lower than 1 mg F(-)L(-1)) in freshwater ecosystems. Echinogammarus calvus exhibited a great sensitivity to the toxicity of fluoride ions, with a 96 h LC₅₀ of 7.5 mg F(-)L(-1) and an estimated safe concentration of 0.56 mg F(-)L(-1). The great capacity of E. calvus to take up and retain fluoride during exposures to fluoride ions would be a major cause of its great sensitivity to fluoride toxicity. It is concluded that the observed fluoride pollution might be partly responsible for the absence of this native amphipod downstream from the industrial effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adsorption of Heavy Metals in Industrial Wastewater by Magnetic Nano-particles
NASA Astrophysics Data System (ADS)
Tu, Y.; You, C.
2010-12-01
Industrial wastewater containing heavy metals is of great concern because of their toxic impact to living species and environments. Removal of metal ions from industrial effluent using nano-particles is an area of extensive research. This study collected wastewaters and effluents from 11 industrial companies in tanning, electronic plating, printed circuit board manufacturing, semi-conductor, and metal surface treatment industry and studied in detailed the major and trace element compositions to develop potential fingerprinting technique for pollutant source identification. The results showed that electronic plating and metal surface treatment industry produce high Fe, Mn, Cr, Zn, Ni and Mo wastewater. The tanning industry and the printed circuit board manufacturing industry released wastewater with high Fe and Cr, Cu and Ni, respectively. For semi-conductor industry, significant dissolved In was detected in wastewater. The absorption experiments to remove heavy metals in waters were conducted using Fe3O4 nano-particles. Under optimal conditions, more than 99 % dissolved metals were removed in a few minutes.
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.; ...
2016-01-25
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, Carly F.; Eberts, Rebecca L.; Morgan, Thomas D.
Thermal pollution from industrial processes can have negative impacts on the spawning and development of cold-water fish. Point sources of thermal effluent may need to be managed to avoid affecting discrete populations. Correspondingly, we examined fine-scale ecological and genetic population structure of two whitefish species ( Coregonus clupeaformis and Prosopium cylindraceum) on Lake Huron, Canada, in the immediate vicinity of thermal effluent from nuclear power generation. Niche metrics using δ 13C and δ 15N stable isotopes showed high levels of overlap (48.6 to 94.5%) in resource use by adult fish captured in areas affected by thermal effluent compared to nearbymore » reference locations. Isotopic niche size, a metric of resource use diversity, was 1.3- to 2.8-fold higher than reference values in some thermally affected areas, indicative of fish mixing. Microsatellite analyses of genetic population structure (F st, STRUCTURE and DAPC) indicated that fish captured at all locations in the vicinity of the power plant were part of a larger population extending beyond the study area. In concert, ecological and genetic markers do not support the presence of an evolutionarily significant unit in the vicinity of the power plant. Furthermore, future research should focus on the potential impacts of thermal emissions on development and recruitment.« less
Kim, Un-Jung; Lee, In-Seok; Oh, Jeong-Eun
2016-11-01
The dissolved phase compound and congener specific distribution characteristics of three widely used brominated flame retardants (BFRs) comprising 27 polybrominated diphenyl ethers (PBDEs), 12 hydroxylated and methoxylated metabolites (OH- and MeO-BDEs), 3 hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA) were investigated in influents and effluents of various kinds of wastewater treatment plants (WWTPs), with varying source of wastewater and type of treatment, and nearby rivers in Korea. The concentration of total BFRs were the highest in industrial WWTPs nearby large industrial complexes specialized in heavy chemicals. The distribution of BFRs was differed according to composition of wastewater, with predominance of TBBPA in WWTPs with higher portion of inflowing industrial wastewater. Among HBCD diastereomers, γ-HBCD was dominant in industrial wastewater as consistent to the previous reports, however, similar contribution of α- and γ-HBCD was found in sewage and human wastewater. Through treatment process, PBDEs were the most effectively removed with a mean removal efficiency of 68.3%. HBCDs and TBBPA had removal efficiencies of 41.3% and 48.7%, respectively. The lowest removal efficiency (10.3%) was observed for PBDE metabolites and their concentration in effluent of human wastewater was even increased at maximum 1.9 fold compared with influent, implying the possibility of transformation during treatment. The estimated dissolved phase daily load of PBDEs was highest in sewage while that of TBBPA was highest in industrial wastewater. Copyright © 2016. Published by Elsevier Ltd.
Saba, Beenish; Jabeen, Madeeha; Khalid, Azeem; Aziz, Irfan; Christy, Ann D
2015-01-01
Azo dyes are commonly generated as effluent pollutants by dye using industries, causing contamination of surface and ground water. Various strategies are employed to treat such wastewater; however, a multi-faceted treatment strategy could be more effective for complete removal of azo dyes from industrial effluent than any single treatment. In the present study, rice husk material was used as a substratum in two constructed wetlands (CWs) and augmented with microorganisms in the presence of wetland plants to effectively treat dye-polluted water. To evaluate the efficiency of each process the study was divided into three levels, i.e., adsorption of dye onto the substratum, phytoremediation within the CW and then bioremediation along with the previous two processes in the augmented CW. The adsorption process was helpful in removing 50% dye in presence of rice husk while 80% in presence of rice husk biocahr. Augmentation of microorganisms in CW systems has improved dye removal efficiency to 90%. Similarly presence of microorganisms enhanced removal of total nitrogen (68% 0 and Total phosphorus (75%). A significant improvement in plant growth was also observed by measuring plant height, number of leaves and leave area. These findings suggest the use of agricultural waste as part of a CW substratum can provide enhanced removal of textile dyes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12 consecutive months, the...
Vinasses: characterization and treatments.
España-Gamboa, Elda; Mijangos-Cortes, Javier; Barahona-Perez, Luis; Dominguez-Maldonado, Jorge; Hernández-Zarate, G; Alzate-Gaviria, Liliana
2011-12-01
The final products of the ethanol industry are alcoholic beverages, industrial ethanol and biofuels. They are produced by the same production process, which includes fermentation and distillation of raw materials which come from plant biomass. At the end of the distillation process a waste effluent is obtained called vinasse or stillage. The direct disposal of stillages on land or in groundwater (rivers, streams or lakes), or even for the direct irrigation of crops, pollutes the environment due to their high organic contents, dissolved solids and many other compounds which are toxic or could be contaminants under certain environmental conditions. This work reviews the characterization of vinasses from different feedstock sources and the main treatments for conditioning the soluble solids of vinasses before their disposal.
Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu
2011-01-01
Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.
Physicochemical assessment of industrial textile effluents of Punjab (India)
NASA Astrophysics Data System (ADS)
Bhatia, Deepika; Sharma, Neeta Raj; Kanwar, Ramesh; Singh, Joginder
2018-06-01
Urbanization and industrialization are generating huge quantities of untreated wastewater leading to increased water pollution and human diseases in India. The textile industry is one of the leading polluters of surface water and consumes about 200-270 tons of water to produce 1 ton of textile product. The primary objective of the present study was to investigate the pollution potential of textile industry effluent draining into Buddha Nallah stream located in Ludhiana, Punjab (India), and determine the seasonal variation in physicochemical parameters (pH, water temperature, total dissolved solids, total suspended solids, biochemical oxygen demand (BOD) and chemical oxygen demand (COD) of Buddha Nallah water. During summer months, for Site 1 and Site 2, the value of pH was in the alkaline range of 8.78 ± 0.47 and 8.51 ± 0.41, respectively. The values of pH in the rainy season were found to be in the range of 7.38 ± 0.58 and 7.11 ± 0.59 for Site 1 and Site 2, respectively. In the autumn and winter seasons, the average pH values were found to be in the range of 8.58 ± 1.40 and 8.33 ± 0.970, respectively. The maximum mean temperature in summer was recorded as 41.16 ± 4.99 °C, and lowest mean temperature in winter was recorded as 39.25 ± 2.25 °C at Site 2. The suspended solids were found to be highest (143.5 ± 75.01 and 139.66 ± 71.87 mg/L) in autumn for both the sites and lowest (86.50 + 15.10 mg/L) in the rainy season for Site 1. The values of BOD and COD of the textile effluent of both sites during all the seasons ranged from 121-580 to 240-990 mg/L, respectively, much higher than WHO water quality standard of 30 mg/L for BOD and 250 mg/L for COD. The present study deals with the collection of textile industry effluent and its characterization to find out the physicochemical load being drained by the effluent generated from textile industries, on the natural wastewater streams.
Groundwater pollution around an industrial area in the coastal stretch of Maharashtra State, India.
Naik, Pradeep K; Dehury, Biranchi N; Tiwari, Arun N
2007-09-01
The main objective of this paper is to examine pollution threat, especially to the groundwater resources, around Tarapur industrial area (also called the Tarapur MIDC area) located on the Arabian Sea Coast in Thane District of Maharashtra State, India and suggest remedial measures that may also be relevant to other industrial areas on the Indian Sea Coast. One hundred and thirty one samples were collected from various sources, such as dugwells, borewells, dug-cum-borewells, effluent sumps, drainage channels (effluent channels), creeks and ocean, for chemical analyses. These analyses show that the area in general is characterized by hard water and high salinity hazard, possibly due to its proximity and hydraulic connection with the sea. Although the potability of groundwater is questionable in certain pockets, it is good enough for irrigation purposes at present. Low pH value and high heavy metal contents in the adjoining Muramba creek water is a matter of great concern and may be attributed to the indiscriminate disposal of industrial effluents to the drainage channels connecting the creek. Muramba Creek is well connected with the Arabian Sea, and there are evidences of seawater intrusion around this creek. Because of the fact that Muramba Creek is highly polluted, and is hydraulically connected with the dugwells and borewells surrounding the creek, it cannot be ruled out that the groundwater around this creek is susceptible to contamination. Unless measures are not taken immediately to stop the indiscriminate disposal of the solid wastes and liquid effluents in open ground and drainage channels, and measures are not taken to maintain the appropriate pH values at the effluent treatment facilities before their disposal, the problem would indeed be formidable one day, and it will be too late then for the authorities to take care of the resulting maladies. Few suggestions have been given for controlling and managing the industrial pollution around the Tarapur MIDC area. These suggestions are relevant to other industrial areas situated on the 7,000 km long Indian Sea Coast.
Code of Federal Regulations, 2010 CFR
2010-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Code of Federal Regulations, 2012 CFR
2012-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Code of Federal Regulations, 2014 CFR
2014-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Code of Federal Regulations, 2013 CFR
2013-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Code of Federal Regulations, 2011 CFR
2011-07-01
... products standard to the corn wet milling industry. For those plants producing modified starches at a rate of at least 15 percent by dry-basis weight of total sweetener and starch products per month for 12...
Bejaoui, Imen; Mouelhi, Meral; Hamrouni, Béchir
2017-01-01
Nanofiltration and reverse osmosis are investigated as a possible alternative to the conventional methods of Cr(VI) removal from model water and industrial effluent. The influences of feed concentration, water recovery, pH, and the coexisting anions were studied. The results have shown that retention rates of hexavalent chromium can reach 99.7% using nanofiltration membrane (NF-HL) and vary from 85 to 99.9% using reverse osmosis membrane (RO-SG) depending upon the composition of the solution and operating conditions. This work was also extended to investigate the separation of Cr(VI) from car shock absorber factory effluent. The use of these membranes is very promising for Cr(VI) water treatment and desalting industry effluent. Spiegler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters, the reflection coefficient of the membrane (σ), and the solute permeability coefficient (Ps). The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution. PMID:28819360
Yi, Xianliang; Kang, Sung-Wook; Jung, Jinho
2010-06-15
Acute toxicity and feeding rate inhibition of effluent from a wastewater treatment plant and its adjacent stream water on Daphnia magna and Moina macrocopa were comparatively studied. The acute toxicity of the final effluent (FE) fluctuated greatly over the sampling period from January to August 2009. Toxicity identification results of the FE in July 2009 showed that Cu originating from the Fenton's reagent was likely a key toxicant. In addition, the feeding rate of both species was still inhibited by the FEs in which acute toxicity was not observed. These findings indicate that the feeding response would be a useful tool for monitoring sublethal effects of industrial effluents. For the acute toxicity test, M. macrocopa was more sensitive than D. magna, but the opposite result was true in the case of the feeding rate inhibition. These suggest that different species have different sensitivities to toxic chemicals and to the test methods. Copyright 2010 Elsevier B.V. All rights reserved.
Kahu, S S; Shekhawat, A; Saravanan, D; Jugade, R M
2016-08-01
Ionic solid (Ethylhexadecyldimethylammoniumbromide) impregnated phosphated chitosan (ISPC) was synthesized and applied for enhanced adsorption of hexavalent chromium from industrial effluent. The compound obtained was extensively characterized using instrumental techniques like FT-IR, TGA-DTA, XRD, SEM, BET and EDX. ISPC showed high adsorption capacity of 266.67mg/g in accordance with Langmuir isotherm model at pH 3.0 due to the presence of multiple sites which contribute for ion pair and electrostatic interactions with Cr(VI) species. The sorption kinetics and thermodynamic studies revealed that adsorption of Cr(VI) followed pseudo-second-order kinetics with exothermic and spontaneous behaviour. Applicability of ISPC for higher sample volumes was discerned through column studies. The real chrome plating industry effluent was effectively treated with total chromium recovery of 94%. The used ISPC was regenerated simply by dilute ammonium hydroxide treatment and tested for ten adsorption-desorption cycles with marginal decrease in adsorption efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skladany, G.J.
Successful biological treatment of ground waters, leachates, or industrial process waters requires the combined action of basic microbiological processes with sound process engineering designs. Such a treatment system is then able to both efficiently and cost-effectively remediate the contaminants present. In this case study, laboratory treatability studies were initially used to demonstrate that toluic acids present in an industrial landfill leachate were amenable to biological treatment. A continuous flow submerged fixed-film bioreactor was then chosen as the optimal equipment design for use at the site. The system was designed to treat a leachate flow of 800 to 2,000 gallons permore » day (gpd) containing total isomeric toluic acid concentrations of 300 to 400 parts per million (ppm). The treatment equipment has been in continuous operation since July 1987. During this period, the total influent isomertic toluic acid concentration has decreased to approximately 45 ppm, and specific effluent toluic acid concentrations have remained below the 0.5 ppm detection limit.« less
Biosorption of simulated dyed effluents by inactivated fungal biomasses.
Prigione, Valeria; Varese, Giovanna Cristina; Casieri, Leonardo; Marchisio, Valeria Filipello
2008-06-01
Treatment of dyed effluents presents several problems mainly due to the toxicity and recalcitrance of dyestuffs. Innovative technologies, such as biosorption, are needed as alternatives to conventional methods to find inexpensive ways of removing dyes from large volumes of effluents. Inactivated biomasses do not require a continuous supply of nutrients and are not sensitive to the toxicity of dyes or toxic wastes. They can also be regenerated and reused in many cycles and are both safe and environment-friendly. The sorption capacities (SC) of autoclaved biomasses of three Mucorales fungi (Cunninghamella elegans, Rhizomucor pusillus and Rhizopus stolonifer), cultured on two different media, were evaluated against simulated effluents containing concentrations of 1000 and 5000 ppm of a single dye and a mix of 10 industrial textile dyes in batch experiments. SC values of up to 532.8 mg of dye g(-1) dry weight of biomass were coupled with high effluent decolourisation percentages (up to 100%). These biomasses may thus prove to be extremely powerful candidates for dye biosorption from industrial wastewaters. Even better results were obtained when a column system with the immobilised and inactivated biomass of one fungus was employed.
Makoś, Patrycja; Fernandes, André; Boczkaj, Grzegorz
2018-06-01
We present a new method for simultaneous determination of 22 monoaromatic and polycyclic aromatic hydrocarbons in postoxidative effluents from the production of petroleum bitumen using dispersive liquid-liquid microextraction coupled to gas chromatography and mass spectrometry. The eight extraction parameters including the type and volume of extraction and disperser solvent, pH, salting out effect, extraction, and centrifugation time were optimized. The low detection limit ranging from 0.36 to 28 μg/L, limit of quantitation (1.1-84 μg/L), good reproducibility, and wide linear ranges, as well as the recoveries ranging from 71.74 to 114.67% revealed that the new method allows the determination of aromatic hydrocarbons at low concentration levels in industrial effluents having a very complex composition. The developed method was applied to the determination of content of mono- and polycyclic aromatic hydrocarbons in samples of raw postoxidative effluents in which 15 compounds were identified at concentrations ranging from 1.21 to 1017.0 μg/L as well as in effluents after chemical treatment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application of ultrafiltration in the pulp and paper industry: metals removal and whitewater reuse.
Oliveira, C R; Silva, C M; Milanez, A F
2007-01-01
In the pulp and paper industry, the water use minimization is a constant target. One way to reduce water use is to recycle the effluent in a closed-cycle concept. In paper mills, the main source of liquid effluent is the so-called whitewater, which is the excess water, originated from pulp stock dewatering and other fibre contaminated water. This research studied the reuse of paper mill whitewater after membrane ultrafiltration (UF) in the paper machine and in the pulp bleach plant of an integrated mill. Contaminant removal and flux behaviour of the UF system were evaluated. The treatment by ultrafiltration was technically feasible and the treated whitewater had good potential to be reused in some processes in the paper machine. The reuse of ultrafiltered whitewater in the bleaching plant was not recommended because of the high level of soluble calcium present in this stream. Therefore, a combined treatment of the whitewater using the principle of precipitation and ultrafiltration was proposed showing good results and enabling the use of the treated whitewater in the bleach plant.
Treatment of winery wastewater by anodic oxidation using BDD electrode.
Candia-Onfray, Christian; Espinoza, Nicole; Sabino da Silva, Evanimek B; Toledo-Neira, Carla; Espinoza, L Carolina; Santander, Rocío; García, Verónica; Salazar, Ricardo
2018-05-04
The effective removal of organics from winery wastewater was obtained in real residual effluents from the wine industry using anodic oxidation (AO). The effluent had an initial organic load of [COD] 0 of 3490 mg L -1 equal to [TOC] 0 of 1320 mg L -1 . In addition, more than 40 organic compounds were identified by means of GC-MS. Different density currents as well as the addition of electrolytes were tested during electrolysis. The results show the decay of [COD] t by 63.6% when no support electrolyte was added, whereas almost total mineralization and disinfection was reached after adding of 50 mM of sodium sulfate and sodium chloride and applying higher density currents. The presence of sulfate and chloride in large concentration favors the production of oxidants such as hydroxyl radicals and active chlorine species that react with organics in solution. Moreover, the addition of a supporting electrolyte to industrial wastewater increases conductivity, reduces cell potential and therefore, decreases the energy consumption of the AO process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Teow, Yeit Haan; Nordin, Nadzirah Ilyiani; Mohammad, Abdul Wahab
2018-05-12
Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.
Barredo-Damas, S; Alcaina-Miranda, M I; Gemma, M; Iborra-Clar, M I; Mendoza-Roca, J A
2011-01-01
This work studies the performance of three commercial ceramic ultrafiltration membranes (ZrO(2)-TiO(2)) treating raw effluent from a textile industry. The effect of crossflow velocity at 3, 4 and 5 m s(-1) as well as membrane characteristics, such as molecular weight cut-off (30, 50 and 150 kDa), on process performance were studied. Experiments were carried out in concentration mode in order to observe the effect of volume reduction factor simultaneously. Results showed a combined influence of both crossflow velocity and molecular weight cut-off on flux performance. TOC and COD removals up to 70% and 84% respectively were reached. On the other hand, almost complete color (>97%) and turbidity (>99%) removals were achieved for all the membranes and operating conditions.
Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A
2015-11-01
Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... best available technology economically achievable (BAT): There shall be no discharge of process... degree of effluent reduction attainable by the application of the best available technology economically...) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Process Hardboard...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best practicable control technology (BPT): There shall be no discharge of process... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Process...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Louisiana Raw Cane Sugar Processing Subcategory § 409.42 Effluent limitations guidelines representing the degree of... cane sugar factory continuously discharging both barometric condenser cooling water and other process...
Degradation of dyes from aqueous solution by Fenton processes: a review.
Nidheesh, Puthiya Veetil; Gandhimathi, Rajan; Ramesh, Srikrishnaperumal Thanga
2013-04-01
Several industries are using dyes as coloring agents. The effluents from these industries are increasingly becoming an environmental problem. The removal of dyes from aqueous solution has a great potential in the field of environmental engineering. This paper reviews the classification, characteristics, and problems of dyes in detail. Advantages and disadvantages of different methods used for dye removal are also analyzed. Among these methods, Fenton process-based advanced oxidation processes are an emerging prospect in the field of dye removal. Fenton processes have been classified and represented as "Fenton circle". This paper analyzes the recent studies on Fenton processes. The studies include analyzing different configurations of reactors used for dye removal, its efficiency, and the effects of various operating parameters such as pH, catalyst concentration, H2O2 concentration, initial dye concentration, and temperature of Fenton processes. From the present study, it can be conclude that Fenton processes are very effective and environmentally friendly methods for dye removal.
Water and Wastewater Characterization Survey, Williams AFB AZ
1991-03-01
effluent discharges. Most industrial effluent originates from the flight line operations. The WWTP includes primary sedimentation , trickling filters...final sedimentation , plug-flow chlorine contact basin, and a stabilization pond. Samples were collected at the influent and effluent of the plant...Stispcndcd Solido ~ 60) 31 pit wvithll 6.0 to 90- *1 1*0 is Totil toxic 0, plan:*’ aq (leCiitc(l at .i10 (1 R Pitt 4133. 5 (IIIL)RINE REOPENEP T1 his permit
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.52 Effluent limitations guidelines representing the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.87 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hawaiian Raw Cane Sugar Processing Subcategory § 409.72 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hawaiian Raw Cane Sugar Processing Subcategory § 409.72 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.87 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.52 Effluent limitations guidelines representing the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hawaiian Raw Cane Sugar Processing Subcategory § 409.72 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hawaiian Raw Cane Sugar Processing Subcategory § 409.72 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.87 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.87 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.87 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.52 Effluent limitations guidelines representing the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.52 Effluent limitations guidelines representing the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hawaiian Raw Cane Sugar Processing Subcategory § 409.72 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.52 Effluent limitations guidelines representing the...
NASA Astrophysics Data System (ADS)
Chen, Xueming; Chen, Guohua
Electroflotation (EF) is the flotation using electrolytically generated bubbles of hydrogen and oxygen for separating suspended substances from aqueous phases. This process was first proposed by Elmore in 1905 for flotation of valuable minerals from ores. Compared with the conventional dissolved air flotation (DAF), EF has many advantages, including high flotation efficiency, compact units, easy operation, and less maintenance. Therefore, EF is an attractive alternative to DAF. This technique has been proven very effective in treating oily wastewater or oil-water emulsion, mining wastewater, groundwater, food processing wastewater, restaurant wastewater, industrial sewage, heavy metals containing effluent, and many other water and wastewaters.
Giustinianovich, Elisa A; Campos, José-Luis; Roeckel, Marlene D; Estrada, Alejandro J; Mosquera-Corral, Anuska; Val Del Río, Ángeles
2018-03-01
The performance of the partial nitritation/anammox processes was evaluated for the treatment of fish canning effluents. A sequencing batch reactor (SBR) was fed with industrial wastewater, with variable salt and total ammonium nitrogen (TAN) concentrations in the range of 1.75-18.00 g-NaCl L -1 and 112 - 267 mg-TAN L -1 . The SBR operation was divided into two experiments: (A) progressive increase of salt concentrations from 1.75 to 18.33 g-NaCl L -1 ; (B) direct application of high salt concentration (18 g-NaCl L -1 ). The progressive increase of NaCl concentration provoked the inhibition of the anammox biomass by up to 94% when 18 g-NaCl L -1 were added. The stable operation of the processes was achieved after 154 days when the nitrogen removal rate was 0.021 ± 0.007 g N/L·d (corresponding to 30% of removal efficiency). To avoid the development of NOB activity at low salt concentrations and to stabilize the performance of the processes dissolved oxygen was supplied by intermittent aeration. A greater removal rate of 0.029 ± 0.017 g-N L -1 d -1 was obtained with direct exposure of the inoculum to 18 g-NaCl L -1 in less than 40 days. Also, higher specific activities than those from the inoculum were achieved for salt concentrations of 15 and 20 g-NaCl L -1 after 39 days of operation. This first study of the performance of the partial nitritation/anammox processes, to treat saline wastewaters, indicates that the acclimation period can be avoided to shorten the start-up period for industrial application purposes. Nevertheless, further experiments are needed in order to improve the efficiency of the processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Near Source Modeling: Building Downwash and Roadside Barriers
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this s...
Following the initial push during the 1970’s to develop numerical water quality criteria for many environmental contaminants, it became clear that the protection of surface waters from chemicals in municipal and industrial effluents would require more than just criteria for...
USDA-ARS?s Scientific Manuscript database
A key reason inhibiting commercialization of algal oil as biodiesel feedstock is cultivation cost. For this reason, the usability of 19 readily available industrial effluents (autoclaved and non-autoclaved) to support heterotrophic growth and lipid accumulation was evaluated using six mixed algal cu...
NASA Astrophysics Data System (ADS)
Thompson, Russell G.; Singleton, F. D., Jr.
1986-04-01
With the methodology recommended by Baumol and Oates, comparable estimates of wastewater treatment costs and industry outlays are developed for effluent standard and effluent tax instruments for pollution abatement in five hypothetical organic petrochemicals (olefins) plants. The computational method uses a nonlinear simulation model for wastewater treatment to estimate the system state inputs for linear programming cost estimation, following a practice developed in a National Science Foundation (Research Applied to National Needs) study at the University of Houston and used to estimate Houston Ship Channel pollution abatement costs for the National Commission on Water Quality. Focusing on best practical and best available technology standards, with effluent taxes adjusted to give nearly equal pollution discharges, shows that average daily treatment costs (and the confidence intervals for treatment cost) would always be less for the effluent tax than for the effluent standard approach. However, industry's total outlay for these treatment costs, plus effluent taxes, would always be greater for the effluent tax approach than the total treatment costs would be for the effluent standard approach. Thus the practical necessity of showing smaller outlays as a prerequisite for a policy change toward efficiency dictates the need to link the economics at the microlevel with that at the macrolevel. Aggregation of the plants into a programming modeling basis for individual sectors and for the economy would provide a sound basis for effective policy reform, because the opportunity costs of the salient regulatory policies would be captured. Then, the government's policymakers would have the informational insights necessary to legislate more efficient environmental policies in light of the wealth distribution effects.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.62 Effluent limitations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.57 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.62 Effluent limitations...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.67 Effluent limitations guidelines...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.67 Effluent limitations guidelines...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.57 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.67 Effluent limitations guidelines...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.57 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.57 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Florida and Texas Raw Cane Sugar Processing Subcategory § 409.57 Effluent limitations guidelines representing the degree of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Hilo-Hamakua Coast of the Island of Hawaii Raw Cane Sugar Processing Subcategory § 409.62 Effluent limitations...
Eusebi, Anna Laura; Massi, Alessandro; Sablone, Emiliano; Santinelli, Martina; Battistoni, Paolo
2012-01-01
The treatment of industrial liquid wastes is placed in a wide context of technologies and is related to the high variability of the influent physical-chemical characteristics. In this condition, the achievement of satisfactory biological unit efficiency could be complicated. An alternate process (AC) with aerobic and anoxic phases fed in a continuous way was evaluated as an operative solution to optimize the performance of the biological reactor in a platform for the treatment of industrial liquid wastes. The process application has determined a stable quality effluent with an average concentration of 25 mg TN L(-1), according to the law limits. The use of discharged wastewaters as rapid carbon sources to support the anoxic phase of the alternate cycle, realizes a reduction of TN of 95% without impact on the total operative costs. The evaluation of the micro-pollutants behaviour has highlighted a bio-adsorption phenomenon in the first reactor. The implementation of the process defined 31% of energy saving during period 1 and 19% for the periods 2, 3 and 4.
Code of Federal Regulations, 2010 CFR
2010-07-01
... this paragraph, which may be discharged from the carbon black lamp process by a point source subject to... Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of effluent... achievable: There shall be no discharge of process waste water pollutants to navigable waters. ...
A novel cleaner production process of citric acid by recycling its treated wastewater.
Xu, Jian; Su, Xian-Feng; Bao, Jia-Wei; Zhang, Hong-Jian; Zeng, Xin; Tang, Lei; Wang, Ke; Zhang, Jian-Hua; Chen, Xu-Sheng; Mao, Zhong-Gui
2016-07-01
In this study, a novel cleaner production process of citric acid was proposed to completely solve the problem of wastewater management in citric acid industry. In the process, wastewater from citric acid fermentation was used to produce methane through anaerobic digestion and then the anaerobic digestion effluent was further treated with air stripping and electrodialysis before recycled as process water for the later citric acid fermentation. This proposed process was performed for 10 batches and the average citric acid production in recycling batches was 142.4±2.1g/L which was comparable to that with tap water (141.6g/L). Anaerobic digestion was also efficient and stable in operation. The average chemical oxygen demand (COD) removal rate was 95.1±1.2% and methane yield approached to 297.7±19.8mL/g TCODremoved. In conclusion, this novel process minimized the wastewater discharge and achieved the cleaner production in citric acid industry. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zou, Xiao-Ling
2017-10-01
A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO 2 )/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.
Bortolotto, Tiago; da Silva, Jaqueline; Sant'Ana, Alex Célio; Tomazi, Kamila Osowski; Geremias, Reginaldo; Angioletto, Elídio; Pich, Claus Tröger
2017-09-01
Red ceramic industry in southern Brazil commonly uses wood biomass as furnace fuel generating great amounts of gas emissions and ash. To avoid their impact on atmospheric environment, wet scrubbing is currently being applied in several plants. However, the water leachate formed could be potentially toxic and not managed as a common water-based effluent, since the resulting wastewater could carry many toxic compounds derived from wood pyrolysis. There is a lack of studies regarding this kind of effluent obtained specifically and strictly from wooden-based biomass furnaces. Therefore, we conducted an evaluation of toxic and genotoxic potentials of this particular type of wet gas scrubber effluent. Physical-chemical analysis showed high contents of several contaminants, including phenols, sulphates and ammoniacal nitrogen, as well as the total and suspended solids. The effluent cause significant toxicity towards microcrustacean Artemia sp. (LC 50 = 34.4%) and Daphnia magna (Toxicity Factor = 6 on average) and to higher plants (Lactuca sativa L. and Allium cepa L.) with acute and sub-acute effects in several parameters. Besides, using plasmid DNA, significant damage was observed in concentrations 12.5% and higher. In cellular DNA, concentrations starting from 12.5% and 6.25% showed significant increase in Damage Index (DI) and Damage Frequency (DF), respectively. The results altogether suggest that the effluent components, such phenols, produced by wood combustion can be volatilized, water scrubbed, resulting in a toxic and genotoxic effluent which could contaminate the environment. Copyright © 2017 Elsevier Inc. All rights reserved.
Acute and early life stage toxicity of industrial effluent on Japanese medaka (Oryzias latipes).
Zha, Jinmiao; Wang, Zijian
2006-03-15
To develop the whole effluent toxicity testing methods (WET), embryo larval stage toxicity test using Japanese medaka (Oryzias latipes) was conducted to evaluate an effluent from a banknote printing plant (BPP). The method is based on acute toxicity using endpoint of 96-h larval morality and on chronic toxicity using endpoints such as the time to hatch, hatching success, deformity, growth rate, swim-up failure, accumulative mortality and sexual ratio. In test for 96-h larval mortality, LC50 (the concentration was lethal to 50% of newly hatching medaka larvae) was 72.9%. In chronic toxicity test, newly fertilized embryos (<5-h old) were exposed to 1%, 6.25%, 12.5%, 25%, 50% effluent concentrations and to 200 mug/l BPA in a 24-h static renewal system at 25+/-1 degrees C until 15 day post-hatch. The results showed that all chronic endpoints were significantly different from the control at 50% dilution (p < 0.01). Embryos began to show lesions on 4th day at higher concentrations (12.5%, 25%, 50% BPP effluent concentrations). Treatment group of 25% dilution showed delayed time to hatch. A reduction in body weight was observed at 25% dilutions for males and females, respectively. Deformities were observed in newly hatched larvae at 25% and 50% BPP effluent concentrations. At 25% dilution, sex ratio of larvae was alternated and there was feminization phenomenon. We conclude that embryo larval stage test using medaka is feasible to evaluate both acute and chronic toxicities and potential endocrine disrupting activity of industrial effluents.
Amosa, Mutiu Kolade; Jami, Mohammed Saedi; Alkhatib, Ma'an Fahmi R; Majozi, Thokozani
2016-11-01
This study has applied the concept of the hybrid PAC-UF process in the treatment of the final effluent of the palm oil industry for reuse as feedwater for low-pressure boilers. In a bench-scale set-up, a low-cost empty fruit bunch-based powdered activated carbon (PAC) was employed for upstream adsorption of biotreated palm oil mill effluent (BPOME) with the process conditions: 60 g/L dose of PAC, 68 min of mixing time and 200 rpm of mixing speed, to reduce the feedwater strength, alleviate probable fouling of the membranes and thus improve the process flux (productivity). Three polyethersulfone ultrafiltration membranes of molecular weight cut-off (MWCO) of 1, 5 and 10 kDa were investigated in a cross-flow filtration mode, and under constant transmembrane pressures of 40, 80, and 120 kPa. The permeate qualities of the hybrid processes were evaluated, and it was found that the integrated process with the 1 kDa MWCO UF membrane yielded the best water quality that falls within the US EPA reuse standard for boiler-feed and cooling water. It was also observed that the permeate quality is fit for extended reuse as process water in the cement, petroleum and coal industries. In addition, the hybrid system's operation consumed 37.13 Wh m -3 of energy at the highest applied pressure of 120 kPa, which is far lesser than the typical energy requirement range (0.8-1.0 kWh m -3 ) for such wastewater reclamation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanoir, D.; Trouve, G.; Delfosse, L.
1998-09-01
Car manufacturers must eliminate automotive shredder residues (ASR). Two ways of incineration are of interest: at 850 C in municipal waste incinerators or at higher temperatures, above 1,100 C in cement plants. These processes reduce the mass and the volume of waste to be disposed of in landfills and energy recovery might be possible. Regulations govern the emission of gaseous effluents to control environmental risk. To determine gaseous effluents from a pilot scale or an industrial incineration plant, an artificial ASR was made by mixing three representative organic polymers present in the real ASR, namely polyvinylchloride, polyurethane and rubber. Thismore » mixture was incinerated at 850 and 1,100 C in laboratory experiments and the analyses of the principal gaseous effluents such as carbon oxides, nitrogen oxides, volatile organic compounds, hydrochloric and hydrocyanic acids and sulfur compounds are presented and discussed. Lastly, in order to simulate artificial ASR behavior, the composition of the combustion gases at equilibrium was calculated using a Gibbs energy minimization code.« less
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-09-12
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%-75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl₃ and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results.
Bonk, Fabian; Bastidas-Oyanedel, Juan-Rodrigo; Schmidt, Jens Ejbye
2015-06-01
Landfilling the organic fraction of municipal solid waste (OFMSW) leads to greenhouse gas emissions and loss of valuable resources. Sustainable and cost efficient solutions need to be developed to solve this problem. This study evaluates the feasibility of using dark fermentation (DF) to convert the OFMSW to volatile fatty acids (VFAs), fertilizer and H2. The VFAs in the DF effluent can be used directly as substrate for subsequent bioprocesses or purified from the effluent for industrial use. DF of the OFMSW in Abu Dhabi will be economically sustainable once VFA purification can be accomplished on large scale for less than 15USD/m(3)(effluent). With a VFA minimum selling price of 330 USD/tCOD, DF provides a competitive carbon source to sugar. Furthermore, DF is likely to use less energy than conventional processes that produce VFAs, fertilizer and H2. This makes DF of OFMSW a promising waste treatment technology and biorefinery platform. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cobas, M; Sanromán, M A; Pazos, M
2014-05-01
This study focused on leather industrial effluents treatment by biosorption using Fucus vesiculosus as low-cost adsorbent. These effluents are yellowish-brown color and high concentration of Cr (VI). Therefore, biosorption process was optimized using response surface methodology based on Box-Behnken design operating with a simulated leather effluent obtained by mixture of Cr (VI) solution and four leather dyes. The key variables selected were initial solution pH, biomass dosage and CaCl2 concentration in the pretreatment stage. The statistical analysis shows that pH has a negligible effect, being the biomass dosage and CaCl2 concentration the most significant variables. At optimal conditions, 98% of Cr (VI) and 88% of dyes removal can be achieved. Freundlich fitted better to the obtained equilibrium data for all studied systems than Temkin, Langmuir or D-R models. In addition, the use of the final biosorbent as support-substrate to grown of enzyme producer fungi, Pleurotus ostreatus, was also demonstrated. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vilaseca, Mercè; López-Grimau, Víctor; Gutiérrez-Bouzán, Carmen
2014-01-01
Moringa oleifera seeds contain about 40% of highly valued oil due to its wide range of applications, from nutritional issues to cosmetics or biodiesel production. The extraction of Moringa oil generates a waste (65%–75% of seeds weight) which contains a water soluble protein able to be used either in drinking water clarification or wastewater treatment. In this paper, the waste of Moringa oleifera extraction was used as coagulant to remove five reactive dyes from synthetic textile effluents. This waste constitutes a natural coagulant which was demonstrated to be effective for the treatment of industrial reactive dyestuff effluents, characterized by alkaline pH, high NaCl content and hydrolyzed dyes. The coagulation yield increased at high NaCl concentration, whereas the pH did not show any significant effect on dye removal. Moringa oleifera showed better results for dye removal than the conventional treatment of coagulation-flocculation with FeCl3 and polyelectrolyte. Treated water can be reused in new dyeing processes of cotton fabrics with high quality results. PMID:28788199
Code of Federal Regulations, 2011 CFR
2011-07-01
... Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of effluent... this paragraph, which may be discharged from the carbon black lamp process by a point source subject to...
NASA Astrophysics Data System (ADS)
Ramadhani, L. I.; Damayanti, S. I.; Sudibyo, H.; Budhijanto, W.
2018-03-01
Palm Oil Mill Effluent (POME) becomes big problem for palm oil industries, especially for Crude Palm Oil (CPO) industry since it produces 3 tons of POME for every ton of CPO production.The high amount of organic loading in POME makes it potential as a substrate in anaerobic digestion to generate biogas as renewable energy source. The most common but conventional method by using open lagoon is still preferred for most CPO industry in Indonesia to treat POME because of its simplicity and easiness. However, this method creates new major problem for the water bodies since it has no significant chemical oxygen demand (COD) removal and needs wide area. Besides, greenhouse gas (CH4) is also released during the process. An innovation was made in this study by designing vertical column process equipment to run an anaerobic digestion of POME. The vertical column was functioned as anaerobic fluidized bed reactor (AFBR). To enhance the digestion rate in AFBR, natural zeolite was used as the immobilization media and the inoculum was taken from digested biodiesel waste. This research aimed to determine the kinetic constants of double-stage anaerobic POME digestion for COD removal and biogas production. To get close to the real condition, the POME used in this experiment had 8,000 mg/L of sCOD (the real sCOD was ±16,000 mg/L). The experiment was conducted under room temperature with up-flow velocity between 1.75 and 2.3 cm/s for optimum fluidization of immobilization media.
Mishra, P C; Behera, P C; Patel, R K
2005-04-01
Contamination of ground water is common in the areas surrounded by industrial refuse dumping sites and the probability of contamination is more where dumping is done in low lying areas and the rate of percolation through the soil is high. In order to assess the ground water pollution by leachate around the refuse dumping site, eighteen wells were selected for study. Few wells are nearer to the dumps, few are far away and others are in between. Also an attempt has been made to evaluate the effect of industrial effluents on the ground and surface water due to Integrated Rourkela Steel Plant and other major industries. From the analytical data of physico-chemical parameters, it is indicated that the river water is contaminated mainly due to the industrial and municipal effluents and the ground water of some of the analyzed areas is contaminated due to municipal and industrial solid waste dumping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Alaskan Hand-Butchered Salmon Processing Subcategory § 408.167 Effluent limitations guidelines... salmon processing facility located in population or processing centers including but not limited to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Alaskan Hand-Butchered Salmon Processing Subcategory § 408.167 Effluent limitations guidelines... salmon processing facility located in population or processing centers including but not limited to...
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. This presentation ...
Enhancements to AERMOD's building downwash algorithms based on wind-tunnel and Embedded-LES modeling
Knowing the fate of effluent from an industrial stack is important for assessing its impact on human health. AERMOD is one of several Gaussian plume models containing algorithms to evaluate the effect of buildings on the movement of the effluent from a stack. The goal of this stu...
Method of purifying a gas stream using 1,2,3-triazolium ionic liquids
Luebke, David; Nulwala, Hunald; Tang, Chau
2014-12-09
A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.
Rosas-Romero, Zaidy G; Ramirez-Suarez, Juan C; Pacheco-Aguilar, Ramón; Lugo-Sánchez, Maria E; Carvallo-Ruiz, Gisela; García-Sánchez, Guillermina
2010-01-01
Jumbo squid (Dosidicus gigas) mantle muscle was cooked simulating industrial procedures (95 degrees C x 25 min, 1.2:5 muscle:water ratio). The effluent produced was analyzed for chemical and biochemical oxygen demands (COD and BOD(5), respectively), proximate analysis, flavor-related compounds (free amino acids, nucleotides and carbohydrates) and SDS-PAGE. The COD and BOD(5) exhibited variation among samplings (N=3) (27.4-118.5 g O(2)/L for COD and 11.3-26.7 g O(2)/L for BOD(5)). The effluent consisted of 1% total solids, 75% of which represented crude protein. Sixty percent of the total free amino acid content, which imparts flavor in squid species, corresponded to glutamic acid, serine, glycine, arginine, alanine, leucine and lysine. The nucleotide concentration followed this order, Hx>ADP>AMP>ATP>IMP>HxR. The variation observed in the present work was probably due to physiological maturity differences among the squid specimens (i.e., juvenile versus mature). Solids present in squid cooking effluent could be recovered and potentially used as flavor ingredients in squid-analog production by the food industry.
Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus.
Zoppellari, Francesca; Bardi, Laura
2013-09-25
Whey and scotta are effluents coming from cheese and ricotta processing respectively. Whey contains minerals, lipids, lactose and proteins; scotta contains mainly lactose. Whey can be reused in several ways, such as protein extraction or animal feeding, while nowadays scotta is just considered as a waste; moreover, due to very high volumes of whey produced in the world, it poses serious environmental and disposal problems. Alternative destinations of these effluents, such as biotechnological transformations, can be a way to reach both goals of improving the added value of the agroindustrial processes and reducing their environmental impact. In this work we investigated the way to produce bioethanol from lactose of whey and scotta and to optimize the fermentation yields. Kluyveromyces marxianus var. marxianus was chosen as lactose-fermenting yeast. Batch, aerobic and anaerobic, fermentations and semicontinuous fermentations in dispersed phase and in packed bed reactor were carried out of row whey, scotta and mix 1:1 whey:scotta at a laboratory scale. Different temperatures (28-40°C) were also tested to check whether the thermotolerance of the chosen yeast could be useful to improve the ethanol yield. The best performances were reached at low temperatures (28°C); high temperatures are also compatible with good ethanol yields in whey fermentations, but not in scotta fermentations. Semicontinuous fermentations in dispersed phase gave the best fermentation performances, particularly with scotta. Then both effluents can be considered suitable for ethanol production. The good yields obtained from scotta allow us to transform this waste in a source. Copyright © 2012 Elsevier B.V. All rights reserved.
Simstich, B; Oeller, H-J
2010-01-01
The pressure on the European paper industry to further close its water circuits has increased significantly during the past decade. Since the technologies of the past can no longer meet the requirements of the future, new water treatment methods have become necessary. A constant rise in the interest in membrane technology expressed by the European paper industry confirms that in the future this method will evolve into a key technology for continued water savings. The publication provides an overview of current and future applications of membrane plants in the European paper industry. A range of technologies is briefly presented together with their advantages and drawbacks, and the economic potential of membrane use is discussed. Among other topics, the authors take a look at the utilization of membrane filtration for treating internal circulation water, partial flows containing coating colours, and biologically treated effluents. The technologies addressed include ultrafiltration, nanofiltration and membrane bioreactor technology. Possible recovery and treatment routes for the concentrates produced by the nanofiltration of biologically treated effluents are examined and evaluated.
Preliminary Studies on Oleochemical Wastewater Treatment using Submerged Bed Biofilm Reactor (SBBR)
NASA Astrophysics Data System (ADS)
Ismail, Z.; Mahmood, N. A. N.; Ghafar, U. S. A.; Umor, N. A.; Muhammad, S. A. F.
2017-06-01
Wastewater discharge from the industry into water sources is one of the main reason for water pollution. The oleochemicals industry effluent produces high content of chemical oxygen demand (COD) with value between 6000-20,000 ppm. Effective treatment is required before wastewater effluent is discharged to environment. The aim of the study is to develop submerged bed biofilm reactor (SBBR) with packing materials in the cosmoball® carrier. Water quality such as chemical oxygen demands (COD), turbidity and pH were analysed. The result shows that the initial COD of 6000 ppm was reduced below 200 ppm. The optimum conditions for SBBR were obtained when green sponges used as packing material in cosmoball® effluent flowrate set at 100 mL/min; 1:1 ratio of cosmoball® volume to reactor volume and 1:1 ratio of active sludge (mixed culture) volume to reactor volume. Turbidity and pH were recorded with 9.0 NTU and 7.0 respectively, which indicated that SBBR is feasible as an alternative for conventional biological treatment in oleochemical industry.
Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I
2018-08-01
The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.
Surface wastewater in Samara and their impact on water basins as water supply sources
NASA Astrophysics Data System (ADS)
Strelkov, Alexander; Shuvalov, Mikhail; Gridneva, Marina
2017-10-01
The paper gives an overview of surface wastewater outlets in Samara through the rainwater sewer system into the Saratov water reservoir and the Samara river. The rainwater sewer system in Samara is designed and executed according to a separate scheme, except for the old part of the city, where surface run-off is dumped into the sewer system through siphoned drain. The rainwater system disposes of surface, drainage, industrial clean-contamined waters, emergency and technology discharges from the city’s heat supply and water supply systems. The effluent discharge is carried out by means of separate wastewater outlets into ravines or directly into the Samara river and the Saratov water reservoir without cleaning. The effluent discharge is carried out through the rainwater sewer system with 17 wastewater outlets into the Saratov water reservoir. In the Samara river, surface runoff drainage and clean-contamined water of industrial enterprises is carried out through 14 wastewater outlets. This study emphasizes the demand to arrange effluent discharge and construction of sewage treatment plants to prevent contamination of water objects by surface run-off from residential areas and industrial territories.
Effects of drain wells on the ground-water quality of the western Snake Plain Aquifer, Idaho
Moreland, Joe A.; Seitz, Harold R.; LaSala, Albert Mario
1976-01-01
Approximately 3,100 drain wells injects irrigation waste water, urban runoff, septic-tank effluent, and industrial waste water into the Snake Plain aquifer in Minidoka, Gooding, Jerome, and Lincoln Counties, Idaho. About 29,000 acre-feet of irrigation waste water, 100 acre-feet of urban runoff, 400 acre-feet of septic-tank effluent, and 1,000 acre-feet of industrial waste water are injected annually. The quality of irrigation waste water is highly variable, depending upon its source, method and rate of application, amount of fertilizer added, and other factors. The quality of urban runoff water is generally much better than irrigation waste water. Septic-tank effluent is relatively high in nutrient concentrations. Chloride concentrations also are high, and bacterial concentrations are exceedingly high. The only industrial waste water sampled during this study had been used for cooling. No chemical changes were noted, but temperature was significantly increased. The data indicate that drain-well inflow does move appreciable distances through the aquifer and can be detected in downgradient wells. (Woodard-USGS)
Bioprospecting of lipolytic microorganisms obtained from industrial effluents.
Peil, Greice H S; Kuss, Anelise V; Rave, Andrés F G; Villarreal, José P V; Hernandes, Yohana M L; Nascente, Patrícia S
2016-01-01
The lipases have ability to catalyze diverse reactions and are important in different biotechnological applications. The aim of this work was to isolate and characterize microorganisms that produce lipases, from different food industry effluents localized in Pelotas, RS/Brazil. Bacteria were identified using Gram stain and biochemical tests (Vitek 2(r)). Fungi were identified according to macro and micromorphology characteristics. The extracellular lipase production was evaluated using the Rhodamine B test and the enzymatic activity by titration. Twenty-one bacteria were isolated and identified as Klebsiella pneumoniae ssp. pneumoniae, Serratia marcescens, Enterobacter aerogenes, Raoultella ornithinolytica and Raoultella planticola. Were characterized isolated filamentous fungi by the following genera: Alternaria sp., Fusarium sp., Geotrichum sp., Gliocladium sp., Mucor sp., Paecilomyces sp. and Trichoderma sp. Extracellular lipase production was observed in 71.43% of the bacteria and 57.14% of the fungi. The bacterium that presented better promising enzymatic activity was E. aerogenes (1.54 U/ml) however between fungi there was not significant difference between the four isolates. This study indicated that microorganisms lipase producers are present in the industrial effluents, as well as these enzymes have potential of biodegradation of lipid compounds.
Huang, Guolong; Yao, Jiachao; Pan, Weilong; Wang, Jiade
2016-09-01
Effluents after biochemical treatment contain pollutants that are mostly non-degradable. Based upon previous pilot-scale test results, an industrial-scale electro-oxidation device was built to decompose these refractory materials in the effluent from a park wastewater treatment plant. The electro-oxidation device comprised a ditch-shaped plunger flow electrolysis cell, with mesh-plate Ti/PbO2 electrodes as the anode and the same size mesh-plate Ti as the cathode. Wastewater flowed vertically through electrodes; the effective volume of the cell was 2.8 m(3), and the surface-to-volume ratio was 17.14 m(2) m(-3). The optimal current density was 100 A m(-2), and a suitable flow velocity was 14.0 m h(-1). The removal efficiencies for chemical oxygen demand and color in the effluent were over 60.0 and 84.0 %, respectively. In addition, the electro-oxidation system offered a good disinfection capability. The specific energy consumption for this industrial-scale device was 43.5 kWh kg COD(-1), with a current efficiency of 32.8 %, which was superior to the pilot-scale one. To meet the requirements for emission or reuse, the operation cost was $0.44 per ton of effluent at an average price for electricity of $0.11 kWh(-1).
Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan
2017-04-01
Research has demonstrated that the feeding pattern of synthetic wastewater plays an important role in sludge characteristics during biological wastewater treatment. Although considerable research has been devoted to synthetic wastewater, less attention has been paid to industrial wastewater. In this research, three different feeding strategies were applied during the treatment of tank truck cleaning (TTC) water. This industry produces highly variable wastewaters that are often loaded with hazardous chemicals, which makes them challenging to treat with activated sludge (AS). In this study, it is shown that the feeding pattern has a significant influence on the settling characteristics. Pulse feeding resulted in AS with a sludge volume index (SVI) of 68 ± 15 mL gMLSS -1 . Slowly and continuously fed AS had to contend with unstable SVI values that fluctuated between 100 and 600 mL gMLSS -1 . These fluctuations were clearly caused by the feeding solution. The obtained settling characteristics are being supported by the microscopic analysis, which revealed a clear floc structure for the pulse fed AS. Ecotoxicological effluent assessment with bacteria, Crustacea and algae identified algae as the most sensitive organism for all effluents from all different reactors. Variable algae growth inhibitions were measured between the different reactors. The chemical and ecotoxicological effluent quality was comparable between the reactors.
Hermosilla, Daphne; Merayo, Noemí; Ordóñez, Ruth; Blanco, Angeles
2012-06-01
According to current environmental legislation concerned with water scarcity, paper industry is being forced to adopt a zero liquid effluent policy. In consequence, reverse osmosis (RO) systems are being assessed as the final step of effluent treatment trains aiming to recover final wastewater and reuse it as process water. One of the most important drawbacks of these treatments is the production of a retentated stream, which is usually highly loaded with biorecalcitrant organic matter and inorganics; and this effluent must meet current legislation stringent constraints before being ultimately disposed. The treatment of biorefractory RO retentate from a paper mill by several promising advanced oxidation processes (AOPs) - conventional Fenton, photo-Fenton and photocatalysis - was optimized considering the effect and interaction of reaction parameters; particularly using response surface methodology (RSM) when appropriate (Fenton processes). The economical cost of these treatments was also comparatively assessed. Photo-Fenton process was able to totally remove the COD of the retentate, and resulted even operatively cheaper at high COD removal levels than conventional Fenton, which achieved an 80% reduction of the COD at best. In addition, although these optimal results were produced at pH=2.8, it was also tested that Fenton processes are able to achieve good COD reduction efficiencies (>60%) without adjusting the initial pH value, provided the natural pH of this wastewater was close to neutral. Finally, although TiO(2)-photocatalysis showed the least efficient and most expensive figures, it improved the biodegradability of the retentate, so its combination with a final biological step almost achieved the total removal of the COD. Copyright © 2011 Elsevier Ltd. All rights reserved.
A comprehensive review on utilization of wastewater from coffee processing.
Rattan, Supriya; Parande, A K; Nagaraju, V D; Ghiwari, Girish K
2015-05-01
The coffee processing industry is one of the major agro-based industries contributing significantly in international and national growth. Coffee fruits are processed by two methods, wet and dry process. In wet processing, coffee fruits generate enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. Different method approach is used to treat the wastewater. Many researchers have attempted to assess the efficiency of batch aeration as posttreatment of coffee processing wastewater from an upflow anaerobic hybrid reactor (UAHR)-continuous and intermittent aeration system. However, wet coffee processing requires a high degree of processing know-how and produces large amounts of effluents which have the potential to damage the environment. Characteristics of wastewater from coffee processing has a biological oxygen demand (BOD) of up to 20,000 mg/l and a chemical oxygen demand (COD) of up to 50,000 mg/l as well as the acidity of pH below 4. In this review paper, various methods are discussed to treat coffee processing wastewaters; the constitution of wastewater is presented and the technical solutions for wastewater treatment are discussed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... degree of effluent reduction attainable by the application of the best available technology economically... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wet Process... by the application of the best available technology economically achievable (BAT). [Reserved] ...
Using Summer Faculty-Student Consultant Teams to Solve Industrial Problems
ERIC Educational Resources Information Center
Michelsen, Donald L.; And Others
1977-01-01
Describes a three-week, faculty-student summer project involving the study of waste-water treatment of refinery effluents. Discusses the use of such projects to aid industry in analyzing their problems. (MLH)
Alam, Md Zahangir; Kabbashi, Nassereldeen A; Hussin, S Nahdatul I S
2009-06-01
The purpose of this study was to evaluate the feasibility of producing bioethanol from palm-oil mill effluent generated by the oil-palm industries through direct bioconversion process. The bioethanol production was carried out through the treatment of compatible mixed cultures such as Thrichoderma harzianum, Phanerochaete chrysosporium, Mucor hiemalis, and yeast, Saccharomyces cerevisiae. Simultaneous inoculation of T. harzianum and S. cerevisiae was found to be the mixed culture that yielded the highest ethanol production (4% v/v or 31.6 g/l). Statistical optimization was carried out to determine the operating conditions of the stirred-tank bioreactor for maximum bioethanol production by a two-level fractional factorial design with a single central point. The factors involved were oxygen saturation level (pO(2)%), temperature, and pH. A polynomial regression model was developed using the experimental data including the linear, quadratic, and interaction effects. Statistical analysis showed that the maximum ethanol production of 4.6% (v/v) or 36.3 g/l was achieved at a temperature of 32 degrees C, pH of 6, and pO(2) of 30%. The results of the model validation test under the developed optimum process conditions indicated that the maximum production was increased from 4.6% (v/v) to 6.5% (v/v) or 51.3 g/l with 89.1% chemical-oxygen-demand removal.
Karri, Rama Rao; Sahu, J N
2018-01-15
Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R 2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Study of Influence of Effluent on Ground Water Using Remote Sensing, GIS and Modeling Techniques
NASA Astrophysics Data System (ADS)
Pathak, S.; Bhadra, B. K.; Sharma, J. R.
2012-07-01
The area lies in arid zone of western Rajasthan having very scanty rains and very low ground water reserves. Some of the other problems that are faced by the area are disposal of industrial effluent posing threat to its sustainability of water resource. Textiles, dyeing and printing industries, various mechanical process and chemical/synthetic dyes are used and considerable wastewater discharged from these textile units contains about high amount of the dyes into the adjoining drainages. This has caused degradation of water quality in this water scarce semi-arid region of the country. Pali city is located South-West, 70 Kms from Jodhpur in western Rajasthan (India). There are four Common Effluent Treatment Plant (CETP) treating wastewater to meet the pollutant level permissible to river discharge, a huge amount of effluent water of these factories directly meets the into the river Bandi - a tributary of river Luni. In order to monitor the impact of industrial effluents on the environment, identifying the extent of the degradation and evolving possible means of minimizing the impacts studies on quality of effluents, polluted river water and water of adjoining wells, the contamination migration of the pollutants from the river to ground water were studied. Remote sensing analysis has been carried out using Resourcesat -1 multispectral satellite data along with DEM derived from IRS P5 stereo pair. GIS database generated of various thematic layers viz. base layer - inventorying all waterbodies in the vicinity, transport network and village layer, drainage, geomorphology, structure, land use. Analysis of spatial distribution of the features and change detection in land use/cover carried out. GIS maps have been used to help factor in spatial location of source and hydro-geomorphological settings. DEM & elevation contour helped in delineation of watershed and identifying flow modelling boundaries. Litholog data analysis carried out for aquifer boundaries using specialized software. Establishment of other boundary conditions was based on well data. Calibration and validation of was done using ground water modelling software. Change detection analysis indicated areas of impact on land use/ cover particularly, agriculture activity. Normalised difference vegetation index found to have negative correlation with pollution level. Population dynamics have been studied and it is found to be poorly correlated with land degradation. Water levels do not show significant variations in past twenty years baring normal seasonal fluctuation. Chemical analysis of ground water samples studies in time series. The water quality studied through various parameters shows concentration in mid-reach of the Bandi river. Analysis of litholog data shows three unconfined aquifers. Pump test and resistivity survey was carried out for initial aquifer properties in local water levels. Modelling contaminant migration helped in prediction of the extent of the adversity. Surface flow is checked allowing more water but it is proving to be accumulation point in absence of good rainfall & flow in the river. Hotspots of dumping /active contamination were identified with certain remediation efforts and supply of solid waste to cement industry in addition to bio-filter for heavy metals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Puerto Rican Raw Cane Sugar Processing Subcategory § 409.82 Effluent limitations guidelines representing the degree...): (a) Any cane sugar factory continuously discharging both barometric condenser cooling water and other...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Crystalline Cane Sugar Refining Subcategory § 409.22 Effluent limitations guidelines representing the degree of... crystalline cane sugar refinery discharging both barometric condenser cooling water and other process waters...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the degree...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Thermal Process Subcategory § 458.22 Effluent limitations guidelines representing the degree...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Channel Process Subcategory § 458.32 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the...): There shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June...
Tappin, Alan D; Comber, Sean; Worsfold, Paul J
2016-06-15
Excess dissolved phosphorus (as orthophosphate-P) contributes to reduced river water quality within Europe and elsewhere. This study reports results from analysis of a 23 year (1990-2013) water quality dataset for orthophosphate-P in the rural Taw catchment (SW England). Orthophosphate-P and river flow relationships and temporal variations in orthophosphate-P concentrations indicate the significant contribution of sewage (across the catchment) and industrial effluent (upper R. Taw) to orthophosphate-P concentrations (up to 96%), particularly during the low flow summer months when maximum algal growth occurs. In contrast, concentrations of orthophosphate-P from diffuse sources within the catchment were more important (>80%) at highest river flows. The results from a 3 end-member mixing model incorporating effluent, groundwater and diffuse orthophosphate-P source terms suggested that sewage and/or industrial effluent contributes ≥50% of the orthophosphate-P load for 27-48% of the time across the catchment. The Water Framework Directive (WFD) Phase 2 standards for reactive phosphorus, introduced in 2015, showed the R. Taw to be generally classified as Poor to Moderate Ecological Status, with a Good Status occurring more frequently in the tributary rivers. Failure to achieve Good Ecological Status occurred even though, since the early-2000s, riverine orthophosphate-P concentrations have decreased (although the mechanism(s) responsible for this could not be identified). For the first time it has been demonstrated that sewage and industrial effluent sources of alkalinity to the river can give erroneous boundary concentrations of orthophosphate-P for WFD Ecological Status classification, the extent of which is dependent on the proportion of effluent alkalinity present. This is likely to be a European - wide issue which should be examined in more detail.
2013-01-01
The evaluation of a membrane bioreactor (MBR) for pretreatment of reverse osmosis (RO) in order to reuse and reclamation of industrial town wastewater treatment plant was investigated in this study. Performance of MBR effluent through water quality in term of parameters such as chemical oxygen demand (COD), total suspended solids (TSS), total nitrogen (TN) and total coliform (TC) were measured. Also Silt density index (SDI) was used as indicator for RO feed water. The results of this study demonstrated that MBR produce a high quality permeate water. Approximately 75%, 98%, 74% and 99.9% removal of COD, TSS, TN and TC were recorded, respectively. Also SDI of the permeate effluent from membrane was below 3 for most of the times. It means that pilot yield a high quality treated effluent from the membrane module which can be used as RO feed water. PMID:24355199
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, W.
1998-12-01
This report estimates the economic and financial effects and the benefits of compliance with the proposed effluent limitations guidelines and standards for the Centralized Waste Treatment (CWT) industry. The Environmental Protection Agency (EPA) has measured these impacts in terms of changes in the profitability of waste treatment operations at CWT facilities, changes in market prices to CWT services, and changes in the quantities of waste management at CWT facilities in six geographic regions. EPA has also examined the impacts on companies owning CWT facilities (including impacts on small entities), on communities in which CWT facilities are located, and on environmentalmore » justice. EPA examined the benefits to society of the CWT effluent limitations guidelines and standards by examining cancer and non-cancer health effects of the regulation, recreational benefits, and cost savings to publicly owned treatment works (POTWs) to which indirect-discharging CWT facilities send their wastewater.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.162 Effluent limitations guidelines... available (BPT): (a) Any hand-butchered salmon processing facility located in population or processing... salmon processing facility not covered under § 408.162(a) shall meet the following limitations: No...
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Alaskan Hand-Butchered Salmon Processing Subcategory § 408.162 Effluent limitations guidelines... available (BPT): (a) Any hand-butchered salmon processing facility located in population or processing... salmon processing facility not covered under § 408.162(a) shall meet the following limitations: No...
Soluble phosphate fertilizer production using acid effluent from metallurgical industry.
Mattiello, Edson M; Resende Filho, Itamar D P; Barreto, Matheus S; Soares, Aline R; Silva, Ivo R da; Vergütz, Leonardus; Melo, Leônidas C A; Soares, Emanuelle M B
2016-01-15
Preventive and effective waste management requires cleaner production strategies and technologies for recycling and reuse. Metallurgical industries produce a great amount of acid effluent that must be discarded in a responsible manner, protecting the environment. The focus of this study was to examine the use of this effluent to increase reactivity of some phosphate rocks, thus enabling soluble phosphate fertilizer production. The effluent was diluted in deionized water with the following concentrations 0; 12.5; 25; 50; 75% (v v(-1)), which were added to four natural phosphate rocks: Araxá, Patos, Bayovar and Catalão and then left to react for 1 h and 24 h. There was an increase in water (PW), neutral ammonium citrate (PNAC) and citric acid (PCA) soluble phosphorus fractions. Such increases were dependent of rock type while the reaction time had no significant effect (p < 0.05) on the chemical and mineralogical phosphate characteristics. Phosphate fertilizers with low toxic metal concentrations and a high level of micronutrients were produced compared to the original natural rocks. The minimum amount of total P2O5, PNAC and PW, required for national legislation for phosphate partially acidulated fertilizer, were met when using Catalão and the effluent at the concentration of 55% (v v(-1)). Fertilizer similar to partially acidulated phosphate was obtained when Bayovar with effluent at 37.5% (v v(-1)) was used. Even though fertilizers obtained from Araxá and Patos did not contain the minimum levels of total P2O5 required by legislation, they can be used as a nutrient source and for acid effluent recycling and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.
Removal of pharmaceuticals from secondary effluents by an electro-peroxone process.
Yao, Weikun; Wang, Xiaofeng; Yang, Hongwei; Yu, Gang; Deng, Shubo; Huang, Jun; Wang, Bin; Wang, Yujue
2016-01-01
This study compared the removal of pharmaceuticals from secondary effluents of wastewater treatment plants (WWTPs) by conventional ozonation and the electro-peroxone (E-peroxone) process, which involves electrochemically generating H2O2 in-situ from O2 in sparged O2 and O3 gas mixture (i.e., ozone generator effluent) during ozonation. Several pharmaceuticals with kO3 ranging from <0.1 to 6.8 × 10(5) M(-1) s(-1) were spiked into four secondary effluents collected from different WWTPs, and then treated by ozonation and the E-peroxone process. Results show that both processes can rapidly remove ozone reactive pharmaceuticals (diclofenac and gemfibrozil), while the E-peroxone process can considerably accelerate the removal of ozone-refractory pharmaceuticals (e.g., ibuprofen and clofibric acid) via indirect oxidation with OH generated from the reaction of sparged O3 with electro-generated H2O2. Compared with ozonation, the E-peroxone process enhanced the removal kinetics of ozone-refractory pharmaceuticals in the four secondary effluents by ∼40-170%, and the enhancement was more pronounced in secondary effluents that had relatively lower effluent organic matter (EfOM). Due to its higher efficiency for removing ozone-refractory pharmaceuticals, the E-peroxone process reduced the reaction time and electrical energy consumption required to remove ≥90% of all spiked pharmaceuticals from the secondary effluents as compared to ozonation. These results indicate that the E-peroxone process may provide a simple and effective way to improve existing ozonation system for pharmaceutical removal from secondary effluents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G
2015-12-01
A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.143 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.142 Effluent limitations representing the degree of effluent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Particleboard Manufacturing Subcategory § 429.141 Effluent limitations representing the degree of effluent reduction...
Surveys of the earth's resources and environment by satellites
NASA Technical Reports Server (NTRS)
Nordberg, W.; Tiedemann, H.; Bohn, C.
1975-01-01
The potential and promise of observing the earth from the vantage point of space is discussed. The systematic surveying of processes and phenomena occurring on the surface of the earth by Landsat 1 and Nimbus 5 is considered to be useful in the following areas: assessment of water resources; mineral and petroleum exploration; land use planning; crop, forest, and rangeland inventory; assessment of flood, earthquake, and other environmental hazards; monitoring coastal processes; environmental effects of industrial effluents and of air pollution; mapping the distribution and types of ice covering the earth's polar caps and global soil moisture distributions.
Biodecoloration of Reactive Black 5 by the methylotrophic yeast Candida boidinii MM 4035.
Martorell, María M; Pajot, Hipólito F; Ahmed, Pablo M; de Figueroa, Lucía I C
2017-03-01
Azo dyes are extensively used in textile dyeing and other industries. Effluents of dying industries are specially colored and could cause severe damage to the environment. The anaerobic treatment of textile dying effluents is nowadays the preferred option, but it could generate carcinogenic aromatic amines. Recently, yeasts have become a promising alternative, combining unicellular growth with oxidative mechanisms. This work reports the characterization of the first methylotrophic yeast with dye decolorizing ability, Candida boidinii MM 4035 and some insights into its decoloration mechanism. The analysis of two selected media revealed a possible two stages mechanism of Reactive Black 5 decoloration. In glucose poor media, decoloration is incomplete and only the first stage proceeds, leading to the accumulation of a purple compound. In media with higher glucose concentrations, the yeast is able to decolorize totally an initial concentration of 200mg/L. The entire process is co-metabolic, being largely dependent on glucose concentration but being able to proceed with several nitrogen sources. Manganese dependent peroxidase but not laccase activity could be detected during decoloration. Aromatic amines do not accumulate in culture media, supporting an oxidative decoloration mechanism of unknown ecophysiological relevance. Copyright © 2016. Published by Elsevier B.V.
Chihuahua: a water reuse case in the desert.
Espino, M S; Navarro, C J; Pérez, J M
2004-01-01
Water supply for all kind of uses in Chihuahua is mainly groundwater. During the last decade this city has been damaged with a heavy hydrologic crisis because of a persistent drought. This came up with the overexploitation of groundwater aquifers; therefore a deficit between demand and offer was done. To minimize this problem the government authorities have started an integral plan of optimizing hydrologic resources which considers the treatment of wastewater and the use of reclaimed water. The secondary wastewater treatment facility of the city treats about 30,000 m3/d of a wastewater with high organic contents, and produces an effluent with low concentration of suspended solids, organic matter, fats, detergents, and metals. Reclaimed water is conveyed toward strategic sites for the irrigation of great green areas in sport clubs, educational institutions and industrial zones, besides of its utilization on some manufacturing processes, road service, and also over construction industry. The potential reuse of this water goes farther from those activities; the treatment of the secondary effluent until the required levels of the water-bearing recharge criteria are met for drinking water supply is considered as the next step to achieve through a suitable planning strategy for the best integral resource advantage.
Brar, Amandeep; Kumar, Manish; Vivekanand, Vivek; Pareek, Nidhi
2017-05-01
Growth of the industrial sector, a result of population explosion has become the root cause of environmental deterioration and has raised the concerns for efficient wastewater management and reuse. Photoautotrophic cultivation of microorganisms is a boon and considered as a potential biological treatment for remediation of wastewater as it sequesters CO 2 during growth. Photoautotrophs viz. cyanobacteria, micro-algae and macro-algae can photosynthetically assimilate the excessive pollutants present in the wastewater. The present review emphasizes on the achievability of microorganisms to bestow wastewater as the nutrient source for biomass production, which can further be reused for feed, food and fertilizers. To support this, various case studies have been cited that prove phycoremediation as a cost-effective and sustainable process over conventional wastewater treatment processes that requires high chemical load and more energy inputs.
Domeño, Celia; Rodríguez-Lafuente, Angel; Martos, J M; Bilbao, Rafael; Nerín, Cristina
2010-04-01
The efficiency of photo-oxidation, chemical oxidation by sodium hypochlorite, and ozonization for the industrial-scale removal of volatile organic compounds (VOCs) and odors from gaseous emissions was studied by applying these treatments (in an experimental system) to substances passing through an emission stack of a factory producing maize derivatives. Absorption and ozonization were the most efficient treatment, removing 75% and 98% of VOCs, respectively, while photo-oxidation only removed about 59%. The emitted chemical compounds and odors were identified and quantified by gas chromatography-mass spectrometry (in full-scan mode). In addition to presenting the results, their implications for selecting optimal processes for treating volatile emissions are discussed.
Bilal, Muhammad; Asgher, Muhammad; Parra-Saldivar, Roberto; Hu, Hongbo; Wang, Wei; Zhang, Xuehong; Iqbal, Hafiz M N
2017-01-15
In the twenty-first century, chemical and associated industries quest a transition prototype from traditional chemical-based concepts to a greener, sustainable and environmentally-friendlier catalytic alternative, both at the laboratory and industrial scale. In this context, bio-based catalysis offers numerous benefits along with potential biotechnological and environmental applications. The bio-based catalytic processes are energy efficient than conventional methodologies under moderate processing, generating no and negligible secondary waste pollution. Thanks to key scientific advances, now, solid-phase biocatalysts can be economically tailored on a large scale. Nevertheless, it is mandatory to recover and reprocess the enzyme for their commercial feasibility, and immobilization engineering can efficiently accomplish this challenge. The first part of the present review work briefly outlines the immobilization of lignin-modifying enzymes (LMEs) including lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase of white-rot fungi (WRF). Whereas, in the second part, a particular emphasis has been given on the recent achievements of carrier-immobilized LMEs for the degradation, decolorization, or detoxification of industrial dyes and dye-based industrial wastewater effluents. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2010 CFR
2010-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2012 CFR
2012-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2013 CFR
2013-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2011 CFR
2011-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CARBON BLACK MANUFACTURING POINT SOURCE CATEGORY Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the degree of... shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June 29...
Code of Federal Regulations, 2011 CFR
2011-07-01
...) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Preserving-Water Borne or Nonpressure Subcategory § 429.73 Effluent limitations representing the degree of effluent...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Wood Preserving-Water Borne or Nonpressure Subcategory § 429.73 Effluent limitations representing the degree of effluent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Slag Processing Subcategory § 424.32 Effluent limitations guidelines representing the degree of effluent reduction...
Manatee use of power plant effluents in Brevard County, Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shane, S.H.
The relationship between manatees and power plants was investigated at 2 power plants on the Indian River in Brevard County, Florida from January 1978-February 1980. Manatee presence in the power plant effluent zones was correlated with cold air and water temperatures. When air temperatures were below 16 C most manatees in the country were found in the effluent zones. Manatees in the effluent zones move with the wind-blown warm water plume, demonstrating a sensitivity to small changes in water temperature. Some individuals were frequently resighted at 1 plant, while others moved between the 2 plants. Because industrial warm water sourcesmore » are less reliable than natural warm water refuges, it is recommended that no new artificial warm water effluents be constructed north of the species' traditional winter range. 16 references, 3 figures, 1 table.« less
Hasegawa, Hiroshi; Rahman, Ismail M M; Nakano, Masayoshi; Begum, Zinnat A; Egawa, Yuji; Maki, Teruya; Furusho, Yoshiaki; Mizutani, Satoshi
2011-10-15
Aminopolycarboxylate chelants (APCs) are extremely useful for a variety of industrial applications, including the treatment of toxic metal-contaminated solid waste materials. Because non-toxic matrix elements compete with toxic metals for the binding sites of APCs, an excess of chelant is commonly added to ensure the adequate sequestration of toxic metal contaminants during waste treatment operations. The major environmental impacts of APCs are related to their ability to solubilize toxic heavy metals. If APCs are not sufficiently eliminated from the effluent, the aqueous transport of metals can occur through the introduction of APCs into the natural environment, increasing the magnitude of associated toxicity. Although several techniques that focus primarily on the degradation of APCs at the pre-release step have been proposed, methods that recycle not only the processed water, but also provide the option to recover and reuse the metals, might be economically feasible, considering the high costs involved due to the chelants used in metal ion sequestration. In this paper, we propose a separation process for the recovery of metals from effluents that contain an excess of APCs. Additionally, the option of recycling the processed water using a solid phase extraction (SPE) system with an ion-selective immobilized macrocyclic material, commonly known as a molecular recognition technology (MRT) gel, is presented. Simulated effluents containing As(V), Cd(II), Cr(III), Pb(II) or Se(IV) in the presence of APCs at molar ratios of 1:50 in H2O were studied with a flow rate of 0.2 mL min(-1). The 'captured' ions in the SPE system were quantitatively eluted with HNO3. The effects of solution pH, metal-chelant stability constants and matrix elements were assessed. Better separation performance for the metals was achieved with the MRT-SPE compared to other SPE materials. Our proposed technique offers the advantage of a non-destructive separation of both metal ions and chelants compared to conventional treatment options for such effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bio-processing of solid wastes and secondary resources for metal extraction - A review.
Lee, Jae-Chun; Pandey, Banshi Dhar
2012-01-01
Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Beet Sugar Processing... a point source where the sugar beet processing capacity of the point source does not exceed 1090 kkg... results, in whole or in part, from barometric condensing operations and any other beet sugar processing...
Silica removal in industrial effluents with high silica content and low hardness.
Latour, Isabel; Miranda, Ruben; Blanco, Angeles
2014-01-01
High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.
Effect of gaseous cement industry effluents on four species of microalgae.
Talec, Amélie; Philistin, Myrvline; Ferey, Frédérique; Walenta, Günther; Irisson, Jean-Olivier; Bernard, Olivier; Sciandra, Antoine
2013-09-01
Experiments were performed at lab scale in order to test the possibility to grow microalgae with CO2 from gaseous effluent of cement industry. Four microalgal species (Dunaliella tertiolecta, Chlorella vulgaris, Thalassiosira weissflogii, and Isochrysis galbana), representing four different phyla were grown with CO2 enriched air or with a mixture of gasses mimicking the composition of a typical cement flue gas (CFG). In a second stage, the culture submitted to the CFG received an increasing concentration of dust characteristic of cement industry. Results show that growth for the four species is not affected by the CFG. Dust added at realistic concentrations do not have any impact on growth. For dust concentrations in two ranges of magnitude higher, microalgae growth was inhibited. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nogueira, Veronica Ines Jesus Oliveira
Industrial activities are the major sources of pollution in all environments. Depending on the type of industry, various levels of organic and inorganic pollutants are being continuously discharged into the environment. Although, several kinds of physical, chemical, biological or the combination of methods have been proposed and applied to minimize the impact of industrial effluents, few have proved to be totally effective in terms of removal rates of several contaminants, toxicity reduction or amelioration of physical and chemical properties. Hence, it is imperative to develop new and innovative methodologies for industrial wastewater treatment. In this context nanotechnology arises announcing the offer of new possibilities for the treatment of wastewaters mainly based on the enhanced physical and chemical proprieties of nanomaterials (NMs), which can remarkably increase their adsorption and oxidation potential. Although applications of NMs may bring benefits, their widespread use will also contribute for their introduction into the environment and concerns have been raised about the intentional use of these materials. Further, the same properties that make NMs so appealing can also be responsible for producing ecotoxicological effects. In a first stage, with the objective of selecting NMs for the treatment of organic and inorganic effluents we first assessed the potential toxicity of nanoparticles of nickel oxide (NiO) with two different sizes (100 and 10-20 nm), titanium dioxide (TiO2, < 25 nm) and iron oxide (Fe2O3, ≈ 85x425 nm). The ecotoxicological assessment was performed with a battery of assays using aquatic organisms from different trophic levels. Since TiO2 and Fe2O3 were the NMs that presented lower risks to the aquatic systems, they were selected for the second stage of this work. Thus, the two NMs pre-selected were tested for the treatment of olive mill wastewater (OMW). They were used as catalyst in photodegradation systems (TiO2/UV, Fe2O3/UV, TiO2/H2O2/UV and Fe2O3/H2O2/UV). The treatments with TiO2 or Fe2O3 combined with H2O2 were the most efficient in ameliorating some chemical properties of the effluent. Regarding the toxicity to V. fischeri the highest reduction was recorded for the H2O2/UV system, without NMs. Afterwards a sequential treatment using photocatalytic oxidation with NMs and degradation with white-rot fungi was applied to OMW. This new approach increased the reduction of chemical oxygen demand, phenolic content and ecotoxicity to V. fischeri. However, no reduction in color and aromatic compounds was achieved after 21 days of biological treatment. The photodegradation systems were also applied to treat the kraft pulp mill and mining effluents. For the organic effluent the combination NMs and H2O2 had the best performances in reduction the chemical parameters as well in terms of toxicity reduction. However, for the mine effluent the best (TiO2/UV and Fe2O3/UV) were only able to significantly remove three metals (Zn, Al and Cd). Nonetheless the treatments were able of reducing the toxicity of the effluent. As a final stage, the toxicity of solid wastes formed during wastewater treatment with NMs was assessed with Chironomus riparius larvae, a representative species of the sediment compartment. Certain solid wastes showed the potential to negatively affect C. riparius survival and growth, depending on the type of effluent treated. This work also brings new insights to the use of NMs for the treatment of industrial wastewaters. Although some potential applications have been announced, many evaluations have to be performed before the upscaling of the chemical treatments with NMs.
Cheirsilp, Benjamas; Louhasakul, Yasmi
2013-08-01
Two strategies of converting industrial wastes to microbial lipid and direct transesterification of obtained lipid into biodiesel were attempted. Several oleaginous yeasts were cultivated on industrial wastes. The yeasts grew well on the wastes with low C/N ratio (i.e. serum latex) but accumulated high lipid content only when the wastes had a high C/N ratio (i.e. palm oil mill effluent and crude glycerol). The yeast lipids have similar fatty acid composition to that of plant oil indicating their potential use as biodiesel feedstocks. The combination of these wastes and two-phase cultivation for cell growth and lipid accumulation improved lipid productivity of the selected yeast. The direct transesterification process that eliminates cell drying and lipid extraction steps, gave comparable yield of biodiesel (fatty acid methyl ester >70% within 1h) to that of conventional method. These two successful strategies may contribute greatly to industrializing oil production from microbes and industrial wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.
UV light assisted decolorization of dark brown colored coffee effluent by photo-Fenton reaction.
Tokumura, Masahiro; Ohta, Ayano; Znad, Hussein T; Kawase, Yoshinori
2006-12-01
The photochemical decolorization of coffee effluent has been examined by photo-Fenton (UV/Fe2+/H2O2) process. Effects of UV light intensity, initial coffee concentration, iron dose and H2O2 dose on the color removal of model coffee effluent have been investigated. The rate of decolorization increased with decreasing initial coffee effluent concentration. It was found that the Fe ion dose and UV light intensity enhanced the decolorization rate. The decolorization process of coffee effluent could be divided into three established phases. At the beginning of the photo-Fenton process, the instantaneous and significant increase in color of the solution was found (Phase-I). In the subsequent phase (Phase-II), the decolorization rate was initially fast and subsequently decreased. In Phase-III, the rate was accelerated and then the complete decolorization of model coffee effluent was achieved. In order to elucidate the mechanisms of coffee effluent color removal process, the concentration changes in Fe3+ and Fe2+ besides H2O2 were measured during the course of the photo-Fenton process. The rate-determining step in Phase-II was the photo-Fenton reaction or photoreduction of Fe3+. On the other hand, the decolorization process in Phase-III was highly affected by Fenton reaction or decomposition of H2O2 with Fe2+. About 93% mineralization of 250 mg L(-1) model coffee effluent was achieved after 250 min. A comparative study for TiO2, ZnO and photo-Fenton oxidation processes has been also carried out and the photo-Fenton process was found to be the most effective for color removal of coffee effluent.
Are Endocrine Disrupting Compounds a Health Risk in Drinking Water?
Falconer, Ian R.
2006-01-01
There has been a great deal of international discussion on the nature and relevance of endocrine disrupting compounds in the environment. Changes in reproductive organs of fish and mollusks have been demonstrated in rivers downstream of sewage discharges in Europe and in North America, which have been attributed to estrogenic compounds in the effluent. The anatomical and physiological changes in the fauna are illustrated by feminization of male gonads. The compounds of greatest hormonal activity in sewage effluent are the natural estrogens 17β-estradiol, estrone, estriol and the synthetic estrogen ethinylestradiol. Androgens are also widely present in wastewaters. Investigations of anthropogenic chemical contaminants in freshwaters and wastewaters have shown a wide variety of organic compounds, many of which have low levels of estrogenic activity. In many highly populated countries the drinking water is sourced from the same rivers and lakes that are the recipients of sewage and industrial discharge. The River Thames which flows through London, England, has overall passed through drinking water and sewage discharge 5 times from source to mouth of the river. Under these types of circumstance, any accumulation of endocrine disrupting compounds from sewage or industry potentially affects the quality of drinking water. Neither basic wastewater treatment nor basic drinking water treatment will eliminate the estrogens, androgens or detergent breakdown products from water, due to the chemical stability of the structures. Hence a potential risk to health exists; however present data indicate that estrogenic contamination of drinking water is very unlikely to result in physiologically detectable effects in consumers. Pesticide, detergent and industrial contamination remain issues of concern. As a result of this concern, increased attention is being given to enhanced wastewater treatment in locations where the effluent is directly or indirectly in use for drinking water. In some places at which heavy anthropogenic contamination of drinking water sources occurs, advanced drinking water treatment is increasingly being implemented. This treatment employs particle removal, ozone oxidation of organic material and activated charcoal adsorption of the oxidation products. Such processes will remove industrial organic chemicals, pesticides, detergents, pharmaceutical products and hormones. Populations for which only basic wastewater and drinking water treatment are available remain vulnerable. PMID:16823090
NASA Astrophysics Data System (ADS)
Sa'at, Siti Kamariah Md; Zaman, Nastaein Qamaruz; Yusoff, Suffian Mohd; Ismail, Hirun Azaman
2017-10-01
Phytoremediation is an emerging technology nowadays due to demand in environmental sustainability which requires cost-effective solutions in terms of capital and operational cost. The treatment gain attention due to their potential in wastewater treatment especially in organics, nutrients, and heavy metal removal of domestics, agricultural, and industrial wastewater treatment. Plant functions in phytoremediation make the plant selection as an essential element. The plant should have the ability to tolerate with the toxic effluent and able to uptake the contaminant. Cyperus alternifolius (umbrella grass) was chosen as aquatic plant due to the ability to tolerance in municipal and industrial effluent sources with strong and dense root systems. Thus, the objectives of this study are to determine the potential and effectiveness of Cyperus alternifolius in the palm oil mill effluent treatment especially in the removal of organics (COD), nutrients (NH3-N and TP) and suspended solid. The batch experiment was run using Cyperus alternifolius to determine their potential of aerobic pond effluent for 21 days of treatment. Cyperus alternifolius treatment shows the great removal of COD and TSS with 96% and 91%, respectively at the end of 21 days of treatment. Nutrients removal achieved the maximum removal of 92% NH3-N and 99% TP shows after 11 days of treatment and percentage slowly decrease until the end of 21 days of treatment. Cyperus alternifolius had shown potential in the palm oil mill effluent treatment and can be combined with ponding treatment to enhance to water quality prior discharge.
Hollingsworth, Jeremy; Sierra-Alvarez, Reyes; Zhou, Michael; Ogden, Kimberly L; Field, Jim A
2005-06-01
Copper chemical mechanical planarization (CMP) effluents can account for 30-40% of the water discharge in semiconductor manufacturing. CMP effluents contain high concentrations of soluble copper and a complex mixture of organic constituents. The aim of this study is to perform a preliminary assessment of the treatability of CMP effluents in anaerobic sulfidogenic bioreactors inoculated with anaerobic granular sludge by testing individual compounds expected in the CMP effluents. Of all the compounds tested (copper (II), benzotriazoles, polyethylene glycol (M(n) 300), polyethylene glycol (M(n) 860) monooleate, perfluoro-1-octane sulfonate, citric acid, oxalic acid and isopropanol) only copper was found to be inhibitory to methanogenic activity at the concentrations tested. Most of the organic compounds tested were biodegradable with the exception of perfluoro-1-octane sulfonate and benzotriazoles under sulfate reducing conditions and with the exception of the same compounds as well as Triton X-100 under methanogenic conditions. The susceptibility of key components in CMP effluents to anaerobic biodegradation combined with their low microbial inhibition suggest that CMP effluents should be amenable to biological treatment in sulfate reducing bioreactors.
Keratinolytic protease: a green biocatalyst for leather industry.
Fang, Zhen; Yong, Yang-Chun; Zhang, Juan; Du, Guocheng; Chen, Jian
2017-11-01
Depilation/unhairing is the crucial but heavy pollution process in leather industry. Traditional inorganic sulfide treatment was the most widely used depilation technique in the past decades, which was usually detrimental to leather quality and resulted in serious environmental pollution. Using biocatalysts to substitute inorganic sulfide showed great advantages in environment protection and unhairing efficiency. Keratinolytic protease is one of the excellent biocatalysts to hydrolyze disulfide bond-rich proteins of hair and has little damage to leather. Biological treatment with keratinolytic proteases could largely reduce the quantity and toxicity of wastewater effluent from the leather industry. But low thermostability and substrate specificity or specific activity of these enzymes limited their practical application. Therefore, recent progresses on protein engineering strategies (site-directed mutagenesis, protein fusion, N/C-terminus truncation, and domain swapping) used to enhance the keratinolytic enzyme performance were presented.
Toxicity reduction in industrial effluents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
Wastewater treatment technology is undergoing a profound transformation as a result of the fundamental changes in regulations and permit requirements. Established design procedures and criteria which have served the industry well for decades are no longer useful. Toxicity reduction requirements have forced reconsideration of design standards and caused practicing environmental engineers to seek additional training in the biological sciences. Formal academic programs have not traditionally provided the cross-training between biologists and engineers which is necessary to address these issues. This book describes not only the process of identifying the toxicity problem, but also the treatment technologies which are applicable tomore » reduction or elimination of toxicity. The information provided in this book is a compilation of the experience of ECK-ENFELDER INC. in serving the environmental needs of major industry, and the experience of the individual contributors in research and consultations.« less
Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act
NASA Astrophysics Data System (ADS)
Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia
1992-03-01
This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.
Biogas production from plant biomass used for phytoremediation of industrial wastes.
Verma, V K; Singh, Y P; Rai, J P N
2007-05-01
In present study, potentials of water hyacinth (Eichhornia crassipes) and water chestnut (Trapa bispinnosa) employed for phytoremediation of toxic metal rich brass and electroplating industry effluent, were examined in terms of biogas generation. Inability of the plants to grow in undiluted effluent directed to select 20%, 40% and 60% effluent concentrations (with deionized water) for phytoremediation experiments. Slurry of both the plants used for phytoremediation produced significantly more biogas than that by the control plants grown in unpolluted water; the effect being more pronounced with plants used for phytoremediation of 20% effluent. Maximum cumulative production of biogas (2430c.c./100gdm of water hyacinth and 1940c.c./100gdm of water chest nut) and per cent methane content (63.82% for water hyacinth and 57.04% for water chestnut) was observed at 5mm particle size and 1:1 substrate/inoculum ratio, after twenty days incubation. Biogas production was quicker (maximum from 8-12days) in water hyacinth than in water chestnut (maximum from 12-16days). The qualitative and quantitative variations in biogas production were correlated with COD, C, N, C/N ratio and toxic metal contents of the slurry used.
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.172 Effluent limitations guidelines... available (BPT): (a) Any mechanized salmon processing facility located in population or processing centers... grease 29 11 pH (1) (1) 1 Within the range 6.0 to 9.0. (b) Any mechanized salmon processing facility not...
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORY Alaskan Mechanized Salmon Processing Subcategory § 408.172 Effluent limitations guidelines... available (BPT): (a) Any mechanized salmon processing facility located in population or processing centers... grease 29 11 pH (1) (1) 1 Within the range 6.0 to 9.0. (b) Any mechanized salmon processing facility not...
Singh, Rajesh; Bishnoi, Narsi R; Kirrolia, Anita; Kumar, Rajender
2013-01-01
In this study Pseudomonas aeruginosa a metal tolerant strain was not only applied for heavy metal removal but also to the solublization performance of the precipitated metal ions during effluent treatment. The synergistic effect of the isolate and Fe(0) enhanced the metal removal potential to 72.97% and 87.63% for Cr(VI) and cadmium, respectively. The decrease in cadmium ion removal to 43.65% (aeration+stirring reactors), 21.33% (aerated reactors), and 18.95% (without aerated+without stirring) with an increase in incubation period not only indicate the presence of soluble less toxic complexes, but also help in exploration of the balancing potential for valuable metal recovery. A relatively best fit and significant values of the correlation coefficient 0.912, 0.959, and 0.9314 for mixed effluent (Paint Industry effluent+CETP Wazirpur, effluent), CETP, Wazirpur, and control effluents, respectively, indicating first-order formulation and provide a reasonable description of COD kinetic data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Amado, Isabel Rodríguez; Vázquez, José Antonio
2015-11-09
The use of astaxanthin in different industries such as the chemical, pharmaceutical, food, animal feed and cosmetic has been receiving increasing attention in recent years. Natural supplies of the pigment include crustacean by-products, algal, and microbial cultivation, being the yeast Xanthophyllomyces dendrorhous together with the alga Haematococcus pluvialis the most promising microorganisms for this bioproduction. Different vegetable by-products of the food industry have been explored so far as low-cost substrates for the production of astaxanthin by X. dendrorhous. This study focuses for the first time on the use of a low-cost formulated medium from a marine by-product, mussel-processing wastewater, for the production of astaxanthin by the yeast X. dendrorhous. The yeast was able to grow in non-saccharified mussel broth, revealing the ability of the microorganism to hydrolyze glycogen. However, partial glycogen saccharification with α-amylase was needed for astaxanthin biosynthesis, obtaining maximal productions of 22.5-26.0 mg/L towards the end of the culture and coinciding with yeast highest amylolytic activity. Cultivations in totally-saccharified media revealed an increase in maximal cell concentrations and a decrease in maximal growth rates and astaxanthin production with increasing glucose initial concentration. Astaxanthin production was higher in partially-saccharified mussel-processing waste than in synthetic medium (yeast peptone dextrose) containing glucose as carbon source (13 mg/L), suggesting this by-product is a promising nutritive medium for astaxanthin production. The use of this effluent also contributes towards the recycling and depuration of this highly pollutant effluent.
Baig, Jameel Ahmed; Kazi, Tasneem Gul; Elci, Latif; Afridi, Hassan Imran; Khan, Muhammad Irfan; Naseer, Hafiz Muhammad
2013-01-01
Simple and robust analytical procedures were developed for hexavalent chromium (Cr(VI)) and lead (Pb(II)) by dispersive liquid-liquid microextraction (DLLME) using microsample injection system coupled with flame atomic absorption spectrophotometry (MIS-FAAS). For the current study, ammonium pyrrolidine dithiocarbamate (APDC), carbon tetrachloride, and ethanol were used as chelating agent, extraction solvent, and disperser solvent, respectively. The effective variables of developed method have been optimized and studied in detail. The limit of detection of Cr(VI) and Pb(II) were 0.037 and 0.054 µg/L, respectively. The enrichment factors in both cases were 400 with 40 mL of initial volumes. The relative standard deviations (RSDs, n = 6) were <4%. The applicability and the accuracy of DLLME were estimated by the analysis of Cr(VI) and Pb(II) in industrial effluent wastewater by standard addition method (recoveries >96%). The proposed method was successfully applied to the determination of Cr(VI) and Pb(II) at ultratrace levels in natural drinking water and industrial effluents wastewater of Denizli. Moreover, the proposed method was compared with the literature reported method. PMID:24163779
Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A
2015-03-15
In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 μm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.
A pilot plant for removing chromium from residual water of tanneries.
Landgrave, J
1995-02-01
The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented.
A pilot plant for removing chromium from residual water of tanneries.
Landgrave, J
1995-01-01
The purpose of this study is to develop a technical process for removing trivalent chromium from tannery wastewater via precipitation. This process can be considered an alternative that avoids a remediation procedure against the metal presence in industrial wastes. This process was verified in a treatment pilot plant located in León, México handling 10 m3/day of three types of effluents. The effluent streams were separated to facilitate the elimination of pollutants from each one. The process was based on in situ treatment and recycle to reduce problems associated with transportation and confinement of contaminated sludges. Two types of treatment were carried out in the pilot plant: The physical/chemical and biological treatments. Thirty-five experiments were conducted and the studied variables were the pH, type of flocculant, and its dose. The statistical significance of chromium samples was 94.7% for its precipitation and 99.7% for recovery. The objectives established for this phase of the development were accomplished and the overall efficiencies were measured for each stage in the pilot plant. The results were: a) chromium precipitation 99.5% from wastewater stream, b) chromium recovery 99% for recycling, and c) physical/chemical treatment to eliminate grease and fat at least 85% and 65 to 70% for the biological treatment. The tanning of a hide lot (350 pieces) was accomplished using 60% treated and recycled water without affecting the product quality. The recovered chromium liquor was also used in this hide tanning. This technical procedure is also applicable for removing heavy metals in other industrial sectors as well as in reducing water consumption rates, if pertinent adjustments are implemented. PMID:7621802
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn
Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2)more » convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.« less
Benito-Alcázar, C; Vincent-Vela, M C; Gozálvez-Zafrilla, J M; Lora-García, J
2010-06-15
Conventionally treated petrochemical wastewaters contain substantial quantities of hazardous pollutants. In addition, wastewater reuse is being enhanced as a consequence of the shortage of fresh water. Advanced petrochemical wastewater treatment for water reuse will reduce hazardous pollutants discharges as well as water consumption. Reverse osmosis is a suitable technology to obtain pure water. This work studies the adequacy of different pretreatments applied to a petrochemical secondary effluent to produce a suitable feeding for reverse osmosis treatment. The permeate obtained can be used in the petrochemical industry for different processes. In this work, several experiments (granulated activated carbon filtration, ultrafiltration, nanofiltration and granulated activated carbon filtration coupled with nanofiltration) were performed to improve the conventional pretreatment. Total organic carbon, chemical oxygen demand, turbidity and silt density index were used to evaluate water quality for reverse osmosis feeding. In granulated activated carbon filtration, all the measured parameters but silt density index indicated a good filtrate quality to feed reverse osmosis membranes. Although the ultrafiltration permeate obtained was suitable for reverse osmosis, nanofiltration and granulated activated carbon filtration coupled with NF provided a better effluent quality for reverse osmosis than the other pretreatments studied. Copyright 2010 Elsevier B.V. All rights reserved.
Assess and improve the sustainability of water treatment facility using Computational Fluid Dynamics
NASA Astrophysics Data System (ADS)
Zhang, Jie; Tejada-Martinez, Andres; Lei, Hongxia; Zhang, Qiong
2016-11-01
Fluids problems in water treatment industry are often simplified or omitted since the focus is usually on chemical process only. However hydraulics also plays an important role in determining effluent water quality. Recent studies have demonstrated that computational fluid dynamics (CFD) has the ability to simulate the physical and chemical processes in reactive flows in water treatment facilities, such as in chlorine and ozone disinfection tanks. This study presents the results from CFD simulations of reactive flow in an existing full-scale ozone disinfection tank and in potential designs. Through analysis of the simulation results, we found that baffling factor and CT10 are not optimal indicators of disinfection performance. We also found that the relationship between effluent CT (the product of disinfectant concentration and contact time) obtained from CT transport simulation and baffling factor depends on the location of ozone release. In addition, we analyzed the environmental and economic impacts of ozone disinfection tank designs and developed a composite indicator to quantify the sustainability of ozone disinfection tank in technological, environmental and economic dimensions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operation using HF flotation, discharges of process waste water pollutants from facilities that recycle waste water, for use in the processing shall not exceed the following limitations: Effluent... paragraphs (a) (1) and (3) of this section, there shall be no discharge of process generated waste water...
Code of Federal Regulations, 2014 CFR
2014-07-01
... operation using HF flotation, discharges of process waste water pollutants from facilities that recycle waste water, for use in the processing shall not exceed the following limitations: Effluent... paragraphs (a) (1) and (3) of this section, there shall be no discharge of process generated waste water...
Manekar, Pravin; Biswas, Rima; Karthik, Manikavasagam; Nandy, Tapas
2011-05-15
Effluent generated from coal carbonization to coke was characterized with high organic content, phenols, ammonium nitrogen, and cyanides. A full scale effluent treatment plant (ETP) working on the principle of single stage carbon-nitrogen bio-oxidation process (SSCNBP) revealed competition between heterotrophic and autotrophic bacteria in the bio-degradation and nitrification process. The effluent was pretreated in a stripper and further combined with other streams to treat in the SSCNBP. Laboratory studies were carried on process and stripped effluents in a bench scale model of ammonia stripper and a two stage bio-oxidation process. The free ammonia removal efficiency of stripper was in the range 70-89%. Bench scale studies of the two stage bio-oxidation process achieved a carbon-nitrogen reduction at 6 days hydraulic retention time (HRT) operating in an extended aeration mode. This paper addresses the studies on selection of a treatment process for removal of organic matter, phenols, cyanide and ammonia nitrogen. The treatment scheme comprising ammonia stripping (pretreatment) followed by the two stage bio-oxidation and chlorination process met the Indian Standards for discharge into Inland Surface Waters. This treatment process package offers a techno-economically viable treatment scheme to neuter hazardous effluent generated from coal carbonization process. Copyright © 2011 Elsevier B.V. All rights reserved.
Filamentous bacteria existence in aerobic granular reactors.
Figueroa, M; Val del Río, A; Campos, J L; Méndez, R; Mosquera-Corral, A
2015-05-01
Filamentous bacteria are associated to biomass settling problems in wastewater treatment plants. In systems based on aerobic granular biomass they have been proposed to contribute to the initial biomass aggregation process. However, their development on mature aerobic granular systems has not been sufficiently studied. In the present research work, filamentous bacteria were studied for the first time after long-term operation (up to 300 days) of aerobic granular systems. Chloroflexi and Sphaerotilus natans have been observed in a reactor fed with synthetic wastewater. These filamentous bacteria could only come from the inoculated sludge. Thiothrix and Chloroflexi bacteria were observed in aerobic granular biomass treating wastewater from a fish canning industry. Meganema perideroedes was detected in a reactor treating wastewater from a plant processing marine products. As a conclusion, the source of filamentous bacteria in these mature aerobic granular systems fed with industrial effluents was the incoming wastewater.
Applications of de-oiled microalgal biomass towards development of sustainable biorefinery.
Maurya, Rahulkumar; Paliwal, Chetan; Ghosh, Tonmoy; Pancha, Imran; Chokshi, Kaumeel; Mitra, Madhusree; Ghosh, Arup; Mishra, Sandhya
2016-08-01
In view of commercialization of microalgal biofuel, the de-oiled microalgal biomass (DMB) is a surplus by-product in the biorefinery process that needs to be exploited to make the process economically attractive and feasible. This DMB, rich in carbohydrates, proteins, and minerals, can be used as feed, fertilizer, and substrate for the production of bioethanol/bio-methane. Further, thermo-chemical conversion of DMB results into fuels and industrially important chemicals. Future prospects of DMB also lie with its conversion into novel biomaterials like nanoparticles and carbon-dot which have biomedical importance. The lowest valued application of DMB is to use it for adsorption of dyes and heavy metals from industrial effluents. This study reviews how DMB can be utilized for different applications and in the generation of valuable co-products. The value addition of DMB would thereby improve the overall cost economics of the microalgal bio-refinery. Copyright © 2016 Elsevier Ltd. All rights reserved.
Grande, J A; Borrego, J; Morales, J A; de la Torre, M L
2003-04-01
In the last few decades, the study of space-time distribution and variations of heavy metals in estuaries has been extensively studied as an environmental indicator. In the case described here, the combination of acid water from mines, industrial effluents and sea water plays a determining role in the evolutionary process of the chemical makeup of the water in the estuary of the Tinto and Odiel Rivers, located in the southwest of the Iberian Peninsula. Based on the statistical treatment of the data from the analysis of the water samples from this system, which has been affected by processes of industrial and mining pollution, the 16 variables analyzed can be grouped into two large families. Each family presents high, positive Pearson r values that suggest common origins (fluvial or sea) for the pollutants present in the water analyzed and allow their subsequent contrast through cluster analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Carbon Black Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of..., controlled by this paragraph, which may be discharged from the carbon black lamp process by a point source...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Carbon Black Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of..., controlled by this paragraph, which may be discharged from the carbon black lamp process by a point source...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Carbon Black Lamp Process Subcategory § 458.43 Effluent limitations guidelines representing the degree of..., controlled by this paragraph, which may be discharged from the carbon black lamp process by a point source...
POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS
Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...
POLISHING THE EFFLUENT FROM AN ANAEROBIC BIOLOGICAL PERCHLORATE TREATMENT PROCESS - SLIDES
Anaerobic biological processes effectively reduce perchlorate to chloride. However, the effluent can be biologically unstable, high in particulates and high in disinfection by-product precursor compounds. Such an effluent would be unsuitable for transmission into a drinking water...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Carbon Black Lamp Process Subcategory § 458.42 Effluent limitations guidelines representing the degree of... shall be no discharge of process waste water pollutants into navigable waters. [60 FR 33972, June 29...
A Study on the D. magna and V. fischeri Toxicity Relationship of Industrial Wastewater from Korea
NASA Astrophysics Data System (ADS)
Pyo, S.; Lee, S.; Chun Sang, H.; Park, T. J.; Kim, M. S.
2015-12-01
It is well known that high concentration of TDS (total dissolved solid) in industrial effluent gives rise to the toxicity to the Daphnia magna toxicity test. D. magna is vulnerable to relatively low TDS concentration showing the 24-hr EC50 of Salinity 0.6% (as the sea salt concentration). Recently, standard mandatory toxicity testing using Daphnia magna has been used to monitor industrial effluent toxicity according to Korea standard method (Acute Toxicity Test Method of the Daphnia magna Straus (Cladocera, Crustacea), ES 04704. 1a) under regulation. Since only one acute toxicity testing is applied in the present, we are trying to introduce microbial battery for more complete toxicity assessment. In this study, the acute toxicities between daphnids and microbes were compared. The results of D. magna and Vibrio fischeri toxicity test from 165 industrial wastewater effluents showed high positive correlation. In addition, the possibility of predicting daphnia toxicity from the bacterial toxicity data amounts to 92.6% if we consider salinity effect (>5ppt) together. From this study, we found that the V. fischeri toxicity test is a powerful battery tool to assess the industrial wastewater toxicity. Here, we suggest that luminescent bacteria toxicity test be useful not only for complete toxicity assessment which can't be obtained by daphnia toxicity testing only but also for the reduction cost, time, and labor in the Korean society. Keywords : D. magna, V. fischeri, Industrial waste water, battery test Acknowledgement This research was supported by a grant (15IFIP-B089908-02) from Plant Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government
Lignin recovery and it effects quality of anaerobic treated palm oil mill effluent (AT-POME)
NASA Astrophysics Data System (ADS)
Haqi Ibrahim, Abdul; Fahmi Ridwan, Muhammad; Zulzikrami Azner Abidin, Che; Ong, Soon Ann; Shian Wong, Yee; Wazira Azhari, Ayu; Norruhaidawati Ozir, Siti
2018-03-01
Lignin is one of the main structural polymers present in plant tissue. It can also be found as an isolated product of the pulp and paper industry. Palm oil mill effluent (POME) has been known as high strength industrial wastewater that is difficult to treat due to its large variety of inorganic and organic contents. The main purpose of this study is to recover soluble lignin from anaerobically treated palm oil mill effluent (AT-POME) and indirectly improves the quality of AT-POME. AT-POME was adjusted to different pH using different type of acids. Response Surface Methodology (RSM) was utilized to obtain the optimum operating parameters as well as to analyse the interaction between them. Model shows that 74.67 % of lignin can be recovered from AT-POME after 5 minutes reaction time using sulfuric acid (H2S04) at pH 5. Hence from the experiment, it was proved that simple pH adjustment could precipitate the soluble lignin from AT-POME.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muraleedharan, T.R.; Venkobachar, C.; Leela, I.
1994-09-01
The revival of interest in biotechnology has fueled research in many sectors of environmental biotechnology. The present paper describes research utilizing adsorbents prepared from wood-rotting mushrooms growing wild in tropical forests. Nine species of mushrooms were screened using copper(II) as the model adsorbate. While may species showed excellent potential, comparable to biosorbents reported in literature, Ganodernma lucidum emerged as the best biosorbent. This biosorbent was further developed for use in a packed-bed bioreactor for treatment of rare earth processing effluents. Electron paramagnetic studies confirmed that adsorption is by chemical binding to the biosorbent.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP) A...—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP) A...—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP) A...—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Processes Included in the Determination of BAT Effluent Limitations for Total Chromium, Hexavalent Chromium, and Phenolic Compounds (4AAP... Part 419—Processes Included in the Determination of BAT Effluent Limitations for Total Chromium...
Wu, Ta Yeong; Mohammad, Abdul Wahab; Jahim, Jamaliah Md; Anuar, Nurina
2009-01-01
During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. N. Thompson; S. L. Fox; G. A. Bala
2000-05-07
Pretreatment of low-solids (LS) potato process effluent was tested for potential to increase surfactin yield. Pretreatments included heat, removal of starch particulates, and acid hydrolysis. Elimination of contaminating vegetative cells was necessary for surfactin production. After autoclaving, 0.40 g/L of surfactin was produced from the effluent in 72 h, versus 0.24 g/L in the purified potato starch control. However, surfactin yields per carbon consumed were 76% lower from process effluent. Removal of starch particulates had little effect on the culture. Acid hydrolysis decreased growth and surfactant production, except 0.5 wt% acid, which increased the yield by 25% over untreated effluent.
NASA Astrophysics Data System (ADS)
Kon, Hisao; Watanabe, Masahiro
This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Ice Cream, Frozen Desserts, Novelties and Other Dairy Desserts Subcategory § 405.82 Effluent limitations...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Preserved Vegetables Subcategory § 407.77 Effluent limitations guidelines...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS CANNED AND PRESERVED FRUITS AND VEGETABLES PROCESSING POINT SOURCE CATEGORY Canned and Preserved Fruits Subcategory § 407.67 Effluent limitations guidelines...
Quaresma, Maria Cristina Baptista; de Carvalho, Maria de Fátima Batista; Meirelles, Francis Assis; Santiago, Vânia Maria Junqueira; Santelli, Ricardo Erthal
2007-02-01
A sample preparation procedure for the quantitative determination of free and total cyanides in industrial effluents has been developed that involves hydrocyanic acid vapor generation via focused microwave radiation. Hydrocyanic acid vapor was generated from free cyanides using only 5 min of irradiation time (90 W power) and a purge time of 5 min. The HCN generated was absorbed into an accepting NaOH solution using very simple glassware apparatus that was appropriate for the microwave oven cavity. After that, the cyanide concentration was determined within 90 s using a well-known spectrophotometric flow injection analysis system. Total cyanide analysis required 15 min irradiation time (90 W power), as well as chemical conditions such as the presence of EDTA-acetate buffer solution or ascorbic acid, depending on the effluent to be analyzed (petroleum refinery or electroplating effluents, respectively). The detection limit was 0.018 mg CN l(-1) (quantification limit of 0.05 mg CN l(-1)), and the measured RSD was better than 8% for ten independent analyses of effluent samples (1.4 mg l(-1) cyanide). The accuracy of the procedure was assessed via analyte spiking (with free and complex cyanides) and by performing an independent sample analysis based on the standard methodology recommended by the APHA for comparison. The sample preparation procedure takes only 10 min for free and 20 min for total cyanide, making this procedure much faster than traditional methodologies (conventional heating and distillation), which are time-consuming (they require at least 1 h). Samples from oil (sour and stripping tower bottom waters) and electroplating effluents were analyzed successfully.
Houtz, Erika F; Sutton, Rebecca; Park, June-Soo; Sedlak, Margaret
2016-05-15
In late 2014, wastewater effluent samples were collected from eight treatment plants that discharge to San Francisco (SF) Bay in order to assess poly- and perfluoroalkyl substances (PFASs) currently released from municipal and industrial sources. In addition to direct measurement of twenty specific PFAS analytes, the total concentration of perfluoroalkyl acid (PFAA) precursors was also indirectly measured by adapting a previously developed oxidation assay. Effluent from six municipal treatment plants contained similar amounts of total PFASs, with highest median concentrations of PFHxA (24 ng/L), followed by PFOA (23 ng/L), PFBA (19 ng/L), and PFOS (15 ng/L). Compared to SF Bay municipal wastewater samples collected in 2009, the short chain perfluorinated carboxylates PFBA and PFHxA rose significantly in concentration. Effluent samples from two treatment plants contained much higher levels of PFASs: over two samplings, wastewater from one municipal plant contained an average of 420 ng/L PFOS and wastewater from an airport industrial treatment plant contained 560 ng/L PFOS, 390 ng/L 6:2 FtS, 570 ng/L PFPeA, and 500 ng/L PFHxA. The elevated levels observed in effluent samples from these two plants are likely related to aqueous film forming foam (AFFF) sources impacting their influent; PFASs attributable to both current use and discontinued AFFF formulations were observed. Indirectly measured PFAA precursor compounds accounted for 33%-63% of the total molar concentration of PFASs across all effluent samples and the PFAA precursors indicated by the oxidation assay were predominately short-chained. PFAS levels in SF Bay effluent samples reflect the manufacturing shifts towards shorter chained PFASs while also demonstrating significant impacts from localized usage of AFFF. Copyright © 2016 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... Thermal Process Subcategory § 458.23 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... Channel Process Subcategory § 458.33 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... Furnace Process Subcategory § 458.13 Effluent limitations guidelines representing the degree of effluent reduction attainable by the application of the best available technology economically achievable. The...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SUGAR PROCESSING POINT SOURCE CATEGORY Liquid Cane Sugar Refining Subcategory § 409.32 Effluent limitations guidelines representing the degree of effluent... application of the best practicable control technology currently available (BPT): (a) Any liquid cane sugar...
A flowthrough fecundity test with Nitocra spinipes (Harpacticoidea Crustacea) for aquatic toxicity.
Bengtsson, B E; Bergström, B
1987-12-01
A sublethal flowthrough fecundity test with the euryhaline harpacticoid copepod Nitocra spinipes has been developed as a complement to the acute toxicity test (for 48 or 96 hr LC50) with the same species (B-E. Bengtsson, 1981, Mar. Pollut. Biol. 9,238-241). Bacterial suspension as feed and test water are continuously fed by a peristaltic pump to the system. Newly fertilized females with ovigerous bands are harvested from laboratory cultures and put into the test vessels at the start of the experiment. They are then exposed to a series of concentrations of chemicals or industrial effluents for 13 days. The amount of live offspring (metanauplia and copepodids) are recorded and an EC50 for fecundity is calculated. The report gives a detailed technical description of the test system and presents the results from 11 tests with pure chemicals (Zn, Cd, As, and pentachlorophenate) and six industrial effluents (pulp industry, textile industry, and refinery) in salinities ranging from 3 to 25%.
Ishaq, M; Jan, F Akbar; Khan, Murad Ali; Ihsanullah, I; Ahmad, I; Shakirullah, M; Roohullah
2013-02-01
The purpose of the present study was to find out the sources of mercury and arsenic pollution of water in the industrial area of Peshawar, the capital of Khyber Pakhtunkhwa, Pakistan. Samples of effluents, mud, and water were collected from the target area (industrial area of Peshawar), the area of water supply source, and from the less polluted area, the Lower Dir district, as the control. Hg was determined by the cold vapor generation technique, while arsenic was determined using the electrothermal atomic absorption technique. Data of the water from the industrial area were compared with that of the source area, control area, as well as with the WHO and some international drinking water quality standards. The results show that some parameters, i.e., TDS, DO, pH, and hardness, were more than the permissible limits. Textile and glass industries were found to be the major sources of Hg and As pollution. Downstream dilution of these contaminants was also observed.
Production of sludge-incorporated paver blocks for efficient waste management.
Velumani, P; Senthilkumar, S
2018-06-01
Waste management plays a vital role in the reuse of industry wastes in to useful conversions. The treatment of effluents from the combined textile effluent treatment plant and hypo sludge from the paper industry results in sludge generation, which poses a huge challenge for its disposal. Therefore, an eco-friendly attempt is made to utilize them in the production of paver blocks. Paver blocks are construction units that have vast applications in street roads, walking paths, fuel stations, and so on. In this study, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge, to utilize them in suitable proportions. The effect of adding silica fume and polypropylene fibre in paver blocks has also been studied. Paver blocks containing sludge with different proportions were cast based on the recommendations in Indian Standards (IS) 15658, and the test results were compared with the nominal M20 grade and M30 grade paver blocks. The outcomes of the paver block combinations were studied and found to be an effective utilization of sludge with substantial cement replacement of up to 35%, resulting in effective waste management for specific industries. Presently, paver blocks are construction units that have vast application in street roads and other constructions like walking paths, fuel stations, and so on. Also, paver blocks possess easy maintenance during breakages. Based on this application, an innovative attempt has been made to manufacture paver blocks incorporating textile effluent treatment plant sludge and hypo sludge to utilize them in suitable proportions.
a Study for Remote Detection of Industrial Effluents' Effect on Rice Using Thermal Images
NASA Astrophysics Data System (ADS)
Dehnavi, S.; Abkar, A. A.; Maghsoudi, Y.; Dehnavi, E.
2015-12-01
Rice is one of the most important nutritious grains all over the world, so that only in some parts of Asia more than 300 million acres allocated for cultivating this product. Therefore, qualitative and quantitative management of this product is of great importance in commercial, political and financial viewpoints. Rice plant is very influenced by physical and chemical characteristics of irrigation water, due to its specific kind of planting method. Hence, chemically-polluted waters which received by plant can change in live plants and their products. Thus, a very high degree of treatment will be required if the effluent discharges to rice plants. Current waters receive a variety of land-based water pollutants ranging from industrial wastes to excess sediments. One of the most hazardous wastes are chemicals that are toxic. Some factories discharge their effluents directly into a water body. So, what would happen for rice plant or its product if this polluted water flow to paddies? Is there any remotely-based method to study for this effect? Are surface temperature distributions (thermal images) useful in this context? The first goal in this research is thus to investigate the effect of a simulated textile factory's effluent sample on the rice product. The second goal is to investigate whether the polluted plant can be identified by means of thermal remote sensing or not. The results of this laboratory research have proven that the presence of industrial wastewater cause a decrease in plant's product and its f-cover value, also some changes in radiant temperature.
Process for treating effluent from a supercritical water oxidation reactor
Barnes, Charles M.; Shapiro, Carolyn
1997-01-01
A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.
Lin, Hongjun; Wang, Fangyuan; Ding, Linxian; Hong, Huachang; Chen, Jianrong; Lu, Xiaofeng
2011-09-15
The aim of this study was to investigate the feasibility of PAC-MBR process treating municipal secondary effluent. Two laboratory-scale submerged MBRs (SMBR) with and without PAC addition were continuously operated in parallel for secondary effluent treatment. Approximately 63%TOC, 95% NH(4)(+)-N and 98% turbidity in secondary effluent were removed by the PAC-MBR process. Most organics in the secondary effluent were found to be low molecular weight (MW) substances, which could be retained in the reactor and then removed to some extent by using PAC-MBR process. Parallel experiments showed that the addition of PAC significantly increased organic removal and responsible for the largest fraction of organic removal. Membrane fouling analysis showed the enhanced membrane performance in terms of sustainable operational time and filtration resistances by PAC addition. Based on these results, the PAC-MBR process was considered as an attractive option for the reduction of pollutants in secondary effluent. Copyright © 2011 Elsevier B.V. All rights reserved.
Suvilampi, J E; Rintala, J A
2004-01-01
Thermophilic aerobic treatment of settled pulp and paper mill effluent was studied under mill premises with two comparative pilot processes; suspended carrier biofilm process (SCBP) and activated sludge process (ASP). Full-scale mesophilic activated sludge process was a reference treatment. During the runs (61 days) hydraulic retention times (HRTs) were kept 13+/-5 h and 16+/-6 h for SCBP and ASP, respectively. Corresponding volumetric loadings rates (VLR) were 2.7+/-0.9 and 2.2+/-1.0 kg CODfilt m(-3)d(-1). Temperatures varied between 46 to 60 degrees C in both processes. Mesophilic ASP was operated with HRT of 36 h, corresponding VLR of 0.7 kg CODfilt m(-3)d(-1). Both SCBP and ASP achieved CODfilt (GF/A filtered) removals up to 85%, while the mesophilic ASP removal was 89+/-2%. NTU values were markedly higher (100-300) in thermophilic effluents than in mesophilic effluent (30). Effluent turbidity was highly dependent on temperature; in batch experiment mesophilic effluent sample had NTU values of 30 and 60 at 35 degrees C and 55 degrees C, respectively. As a conclusion, both thermophilic treatments gave high CODfilt removals, which were close to mesophilic process removal and were achieved with less than half of HRT.
Lee, H H; Chen, G; Yue, P L
2001-01-01
Theoretical and experimental studies have established that integrated treatment systems (mostly chemical and biological) for various industrial wastewaters can achieve better quality of treatment and can be cost-effective. In the present study, the objective is to minimize the use of process water in the textile industry by an economical recycle and reuse scheme. The textile wastewater was first characterized in terms of COD, BOD5, salinity and color. In order to recycle such wastewater, the contaminants should be mineralized and/or removed according to the reusable textile water quality standards. Typical results show that this is achievable. An economic analysis has been conducted on the proposed integrated system. The economic analysis shows that the integrated system is economically more attractive than any of the single treatment technologies for achieving the same target of treatment. The information presented in this paper provides a feasible option for the reduction of effluent discharges in the textile industry.
Soares, Eduardo V; Soares, Helena M V M
2012-05-01
The release of heavy metals into the environment, mainly as a consequence of anthropogenic activities, constitutes a worldwide environmental pollution problem. Unlike organic pollutants, heavy metals are not degraded and remain indefinitely in the ecosystem, which poses a different kind of challenge for remediation. It seems that the "best treatment technologies" available may not be completely effective for metal removal or can be expensive; therefore, new methodologies have been proposed for the detoxification of metal-bearing wastewaters. The present work reviews and discusses the advantages of using brewing yeast cells of Saccharomyces cerevisiae in the detoxification of effluents containing heavy metals. The current knowledge of the mechanisms of metal removal by yeast biomass is presented. The use of live or dead biomass and the influence of biomass inactivation on the metal accumulation characteristics are outlined. The role of chemical speciation for predicting and optimising the efficiency of metal removal is highlighted. The problem of biomass separation, after treatment of the effluents, and the use of flocculent characteristics, as an alternative process of cell-liquid separation, are also discussed. The use of yeast cells in the treatment of real effluents to bridge the gap between fundamental and applied studies is presented and updated. The convenient management of the contaminated biomass and the advantages of the selective recovery of heavy metals in the development of a closed cycle without residues (green technology) are critically reviewed.
Matias, M S; Melegari, S P; Vicentini, D S; Matias, W G; Ricordel, C; Hauchard, D
2015-08-15
Nanoscience is a field that has stood out in recent years. The accurate long-term health and environmental risks associated with these emerging materials are unknown. Therefore, this work investigated how to eliminate silver nanoparticles (AgNPs) from synthetic effluents by electrocoagulation (EC) due to the widespread use of this type of nanoparticle (NP) in industry and its potential inhibition power over microorganisms responsible for biological treatment in effluent treatment plants. Synthesized AgNPs were studied via four different routes by chemical reduction in aqueous solutions to simulate the chemical variations of a hypothetical industrial effluent, and efficiency conditions of the EC treatment were determined. All routes used silver nitrate as the source of silver ions, and two synthesis routes were studied with sodium citrate as a stabilizer. In route I, sodium citrate functioned simultaneously as the reducing agent and stabilizing agent, whereas route II used sodium borohydride as a reducing agent. Route III used D-glucose as the reducing agent and sodium pyrophosphate as the stabilizer; route IV used sodium pyrophosphate as the stabilizing agent and sodium borohydride as the reducing agent. The efficiency of the EC process of the different synthesized solutions was studied. For route I, after 85 min of treatment, a significant decrease in the plasmon resonance peak of the sample was observed, which reflects the efficiency in the mass reduction of AgNPs in the solution by 98.6%. In route II, after 12 min of EC, the absorbance results reached the detection limit of the measurement instrument, which indicates a minimum reduction of 99.9% of AgNPs in the solution. During the 4 min of treatment in route III, the absorbance intensities again reached the detection limit, which indicates a minimum reduction of 99.8%. In route IV, after 10 min of treatment, a minimum AgNP reduction of 99.9% was observed. Based on these results, it was possible to verify that the solutions containing citrate considerably increased the necessary times required to eliminate AgNPs from the synthesized effluent, whereas solutions free of this reagent showed better results on floc formation and, therefore, are best for the treatment. The elimination of AgNPs from effluents by EC proved effective for the studied routes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Corporatization as a means of improving water quality: the experience in Victoria, Australia.
Martin, Narelle
Factors including fragmentation, a lack of direction, poor accountability, poor water quality, and a sizable state government subsidy contributed to the rural water industry in Victoria, Australia, in 1993. In 1993 the state government set out parameters for reform to change the size, structure, performance, and culture of the water industry. The path taken was not privatization, but corporatization. Tools used included amalgamation of organizations; separating water provisions from local government; changing the composition and reporting mechanisms of the boards; establishing clear benchmarks and performance criteria; making information publicly available; and providing a commercial orientation. The outcomes of the reforms were to be a focus on water quality and effluent management. In 2001, 15 water authorities were in place. There were significant improvements in accountability, finances, and performance. The authorities provided information on performance to both the state and the public. Reductions of operating costs have been in the range of 20-35%, with savings put back into new infrastructure. Water quality has significantly improved in a number of parameters and effluent management has also improved. This paper describes the challenges faced before the reform process, the reforms initiated, and the outcomes. It argues that privatization is not the only path to improvement: Developing a corporate structure and accountability can also deliver substantial improvements.
Recuperation of uranyl ions from effluents by means of microbiological collectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cecal, A.; Palamaru, I.; Humelnicu, D.
1997-12-31
This paper deals with the study of bioaccumulation of uranyl ions (UO{sub 2}{sup 2+}) from industrial effluents, using microbiological collectors: Nostoc linkia sp., Tolipotrix sp., Spirulina sp., Porphyridium cruentum and also the glucide extract of P. cruentum. The values of retaining degree of UO{sub 2}{sup 2+} on the biomass, for several experimental conditions, were established between 14.22 and 91.99%.
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology (BCT). [Reserved] 429.52 Section 429.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS TIMBER PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Process... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...
Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria
NASA Astrophysics Data System (ADS)
Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya
2013-03-01
Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.
Novoa-Luna, Karen Adriana; Romero-Romero, Rubí; Natividad-Rangel, Reyna; Galar-Martínez, Marcela; SanJuan-Reyes, Nely; García-Medina, Sandra; Martínez-Vieyra, Catalina; Neri-Cruz, Nadia; Gómez-Oliván, Leobardo Manuel
2016-09-01
Production in the pharmaceutical industry has increased and along with it, the amount of wastewater of various characteristics and contaminant concentrations. The main chemicals in these effluents are solvents, detergents, disinfectants-such as sodium hypochlorite (NaClO)-and pharmaceutical products, all of which are potentially ecotoxic. Therefore, this study aimed to evaluate the oxidative stress induced in the amphipod Hyalella azteca by the effluent from a nonsteroidal anti-inflammatory drug (NSAID)-manufacturing plant. The median lethal concentration (72 h-LC50) was determined and H. azteca were exposed to the lowest observed adverse effect level (0.0732 %) for 12, 24, 48 and 72 h, and biomarkers of oxidative stress were evaluated [hydroperoxide content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC), and the activity of the superoxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)]. Statistically significant increases with respect to the control group (P < 0.05) were observed in HPC, LPX and PCC in H. azteca at all exposure times. Antioxidant enzymes activity SOD, CAT and GPx activity also increased significantly (P < 0.05) with respect to the control group. In conclusion, the industrial effluent analyzed in the present study contains NSAIDs and NaClO, and induces oxidative stress in H. azteca.
Process for treating effluent from a supercritical water oxidation reactor
Barnes, C.M.; Shapiro, C.
1997-11-25
A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor. 6 figs.
Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei
2016-02-01
Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.
Dogdu, Gamze; Yalcuk, Arda; Postalcioglu, Seda
2017-02-01
There are more than a hundred textile industries in Turkey that discharge large quantities of dye-rich wastewater, resulting in water pollution. Such effluents must be treated to meet discharge limits imposed by the Water Framework Directive in Turkey. Industrial treatment facilities must be required to monitor operations, keep them cost-effective, prevent operational faults, discharge-limit infringements, and water pollution. This paper proposes the treatment of actual textile wastewater by vertical flow constructed wetland (VFCW) systems operation and monitoring effluent wastewater quality using fuzzy logic with a graphical user interface. The treatment performance of VFCW is investigated in terms of chemical oxygen demand and ammonium nitrogen (NH4-N) content, color, and pH parameters during a 75-day period of operation. A computer program was developed with a fuzzy logic system (a decision- making tool) to graphically present (via a status analysis chart) the quality of treated textile effluent in relation to the Turkish Water Pollution Control Regulation. Fuzzy logic is used in the evaluation of data obtained from the VFCW systems and for notification of critical states exceeding the discharge limits. This creates a warning chart that reports any errors encountered in a reactor during the collection of any sample to the concerned party.
Treatability study of pesticide-based industrial wastewater.
Shah, Kinnari; Chauhan, L I; Galgale, A D
2012-10-01
This paper finds out appropriate treatment methods for wastewater of an Organophosphorus viz, chloropyrifos pesticide manufacturing industry. The characterization of wastewater generated during trial production of chloropyrifos was carried out. Based on the characterization of wastewater, various treatability studies were conducted. The most desirable results were obtained with treatment scheme employing acidification, chlorination with NaOCl, suspended growth biological treatment, chemical precipitation for phosphorous removal and activated carbon treatment. Acidification of wastewater helps in by-product recovery as well as reduction in COD upto 36.26%. Chlorination followed by biological treatment was found to be effective to reduce the COD level by 62.06%. To comply with permissible limits prescribed by Effluent Channel Project Ltd.(ECPL)* and Gujarat Pollution Control Board (GPCB) for discharge of industrial effluent into channel, further treatment in the form of chemical precipitation (for phosphorous removal) and granular activated carbon is suggested.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.93 Effluent limitations guidelines representing... pollutants or pollutant properties, controlled by this section, and attributable to pan, dry digestion, and mechanical reclaimed rubber processes which are integrated with a wet digestion reclaimed rubber process...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.93 Effluent limitations guidelines representing... pollutants or pollutant properties, controlled by this section, and attributable to pan, dry digestion, and mechanical reclaimed rubber processes which are integrated with a wet digestion reclaimed rubber process...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.93 Effluent limitations guidelines representing... pollutants or pollutant properties, controlled by this section, and attributable to pan, dry digestion, and mechanical reclaimed rubber processes which are integrated with a wet digestion reclaimed rubber process...
Code of Federal Regulations, 2012 CFR
2012-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Code of Federal Regulations, 2013 CFR
2013-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Code of Federal Regulations, 2011 CFR
2011-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Code of Federal Regulations, 2014 CFR
2014-07-01
... control technology. 408.207 Section 408.207 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... degree of effluent reduction attainable by the application of the best conventional pollutant control... processing facility located in population or processing centers including but not limited to Anchorage...
Guo, Jingbo; Fu, Xin; Andrés Baquero, G; Sobhani, Reza; Nolasco, Daniel A; Rosso, Diego
2016-03-15
Over the seasonal cycles, the mean cell retention time (MCRT) of the activated sludge process is varied to compensate the wastewater temperature variations. The effects of these variations on the carbon footprint (CFP) and effluent quality index (EQI) of a conventional activated sludge (CAS) process and a nitrification/denitrification (NDN) process were quantified. The carbon emission included both biogenic and non-biogenic carbon. Carbon emissions of wasted biosolids management were also addressed. Our results confirmed that the effluent quality indicated by EQI was not necessarily improved by increasing MCRT. Higher MCRT increased the carbon emission and reduced excess sludge production, which decreased the potential for biogas energy recovery. The NDN process was preferable to the CAS process from the perspective of effluent quality. This consideration extended to the whole plant CFP if the N2O emitted during NDN was limited ([N2O]<1% [NH4(+)]removed) as the carbon emission per unit effluent quality achieved by NDN process is less than that of the CAS process. By putting forward carbon emission intensity (γ) derived from CFP and EQI, our work provides a quantitative tool for decision makers evaluating process alternatives when there is a trade-off between carbon emission and effluent quality. Copyright © 2015 Elsevier B.V. All rights reserved.
Sahinkaya, Erkan; Sahin, Ahmet; Yurtsever, Adem; Kitis, Mehmet
2018-06-09
Industrial wastewater reuse together with zero or near zero liquid discharges have been a growing trend due to the requirement of sustainable water management mandated by water scarcity and tightening discharge regulations. Studies have been conducted on the reclamation of textile industry wastewater using RO processes. However a lot of scientific attention has been drawn upon limiting the amount of concentrate generated from RO processes, which depends on the concentrations of scale forming ions in the concentrate stream. Hence, this study aims at investigating the applicability of an ultra-filtration (UF) membrane integrated pellet reactor to remove scale forming ions, i.e. Ca 2+ , Mg 2+ and Si from the concentrate of a pilot-scale textile industry RO process, for the first time in the literature. The resulting effluent was further tested in a secondary RO process to decrease concentrate volume and increase total water recovery. The pellet reactor operated at an extremely low hydraulic retention time of 0.1 h removed scale forming ions, i.e. Ca 2+ , Mg 2+ , with 90-95% efficiency, which improved the secondary RO process performance up to 92-94% overall water recovery, i.e. near zero liquid discharge was reached. Ozonation of the concentrate partially removed COD and color, which further improved the secondary RO filtration performance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Balasubramani, Aparna; Rifai, Hanadi S
2015-10-01
Sewage sludge samples collected from 43 different domestic and industrial wastewater treatment plants and petrochemical industries that discharge to the Houston Ship Channel (HSC) were analyzed for polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), which are highly toxic and carcinogenic towards humans and animals. The measured total PCDD/F toxic equivalency (TEQ) ranged between 0.73 and 7348.40 pg/g dry weight. The mean TEQ of PCDD/Fs in industrial sludge was approximately 40 times higher than that in sewage sludge. The PCDD homolog concentrations in the industrial samples were higher than those observed at the wastewater treatment plants by a factor of 10, with total heptachlorodibenzodioxin (HpCDD) exhibiting the maximum concentration in most of the samples. Among the PCDF homologs, total heptadichlorodibenzofuran (HpCDF) dominated the total homolog concentration in sludge from the wastewater treatment plants, whereas total tetradichlorodibenzofuran (TeCDF) dominated the industrial sludge samples. Overall, the total PCDD/F TEQ in sludge samples was much higher than that in effluent samples from the same facility. A linear correlation (R (2) = 0.62, p value < 0.068) was found indicating that sludge sampling can be used as a surrogate for effluent concentrations in wastewater treatment plants but not for industrial discharges.
ENERGY EFFICIENT VAPOR PHASE OXIDATION OF METHANOL USING OZONE AND CATALYTIC REACTOR
The pulp and paper industry releases more than 144 million tons of Volatile Organic Compounds (VOCs) per year. A big portion of this effluent, 66+% is released to air making it the fourth highest contributor of VOC emissions to the atmosphere by industry sector [1]. The current...
76 FR 66286 - Notice of Final 2010 Effluent Guidelines Program Plan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-26
... Coalbed Methane Extraction (CBM) industry and will develop pretreatments requirements for discharges of...) industry. EPA is also issuing the detailed study report for the Coalbed Methane Extraction and the... Methane Point Source Category: Detailed Study Report, EPA-820-R-10-022, DCN 09999; Draft Guidance Document...
Batch study of manganese removal from mine effluent using mixture of ferromanganese ore and humus
NASA Astrophysics Data System (ADS)
Kamal, Norinsafrina Mustaffa; Aziz, Hamidi Abdul; Sulaiman, Shamsul Kamal; Hussin, Hashim
2017-10-01
Environmental problem related to mining industry always associates with high heavy metal contents in mine effluent. Manganese is among the metals that need to be reduced before the mine effluent entering receiving waterways. In this batch study, mixture of ferromanganese ore and humus had been applied to remove manganese from mine effluent. Effect of particle size of ferromanganese ore, dosage, mix ratio, pH and contact time had been studied to examine the effectiveness of the mixture in removing manganese. Results from the study have shown that optimum manganese removal was 93.54% by using particle size of 0.25-0.5 mm of ferromanganese ore, 3g of dosage mixture, mix ratio of 20%;80%, solution pH of 7 and 210 minutes (3.5 hours) of contact time. Thus, it is proven that mixture of ferromanganese ore and humus has potential to be used for removal of manganese in mine effluent.
Reduction of produced elementary sulfur in denitrifying sulfide removal process.
Zhou, Xu; Liu, Lihong; Chen, Chuan; Ren, Nanqi; Wang, Aijie; Lee, Duu-Jong
2011-05-01
Denitrifying sulfide removal (DSR) processes simultaneously convert sulfide, nitrate, and chemical oxygen demand from industrial wastewater into elemental sulfur, dinitrogen gas, and carbon dioxide, respectively. The failure of a DSR process is signaled by high concentrations of sulfide in reactor effluent. Conventionally, DSR reactor failure is blamed for overcompetition for heterotroph to autotroph communities. This study indicates that the elementary sulfur produced by oxidizing sulfide that is a recoverable resource from sulfide-laden wastewaters can be reduced back to sulfide by sulfur-reducing Methanobacterium sp. The Methanobacterium sp. was stimulated with excess organic carbon (acetate) when nitrite was completely consumed by heterotrophic denitrifiers. Adjusting hydraulic retention time of a DSR reactor when nitrite is completely consumed provides an additional control variable for maximizing DSR performance.
As part of its whole effluent testing program, the USEPA developed an effects-directed analysis (EDA) approach to identifying the cause of toxicity in toxic effluents or ambient waters, an EDA process termed a “Toxicity Identification Evaluation” (TIE), which is the focus of this...
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORY Pan, Dry Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.92 Effluent limitations... pan, dry digestion, and mechanical reclaimed rubber processes which are integrated with a wet digestion reclaimed process, which may be discharged by a point source subject to the provisions of this...
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORY Pan, Dry Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.92 Effluent limitations... pan, dry digestion, and mechanical reclaimed rubber processes which are integrated with a wet digestion reclaimed process, which may be discharged by a point source subject to the provisions of this...
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORY Pan, Dry Digestion, and Mechanical Reclaimed Rubber Subcategory § 428.92 Effluent limitations... pan, dry digestion, and mechanical reclaimed rubber processes which are integrated with a wet digestion reclaimed process, which may be discharged by a point source subject to the provisions of this...
Code of Federal Regulations, 2011 CFR
2011-07-01
... times. Subpart C [BCT effluent limitations for unbleached kraft-neutral sulfite semi-chemical (cross recovery) process and/or a combined unbleached kraft and semi-chemical process, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system] Pollutant or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... times. Subpart C [BCT effluent limitations for unbleached kraft-neutral sulfite semi-chemical (cross recovery) process and/or a combined unbleached kraft and semi-chemical process, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system] Pollutant or...