Sample records for processing municipal waste

  1. Municipal waste processing apparatus

    DOEpatents

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  2. Modern technologies of processing municipal solid waste: investing in the future

    NASA Astrophysics Data System (ADS)

    Rumyantseva, A.; Berezyuk, M.; Savchenko, N.; Rumyantseva, E.

    2017-06-01

    The problem of effective municipal solid waste (MSW) management is known to all the municipal entities of the Russian Federation. The problem is multifaceted and complex. The article analyzes the dynamics of municipal solid waste formation and its utilization within the territory of the EU and Russia. The authors of the paper suggest a project of a plant for processing municipal solid waste into a combustible gas with the help of high temperature pyrolysis. The main indicators of economic efficiency are calculated.

  3. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1989-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

  4. Municipal waste processing apparatus

    DOEpatents

    Mayberry, John L.

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  5. Municipal waste processing apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayberry, J L

    1987-01-15

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feedmore » plate which shakes the materials so that they tend to lie flat.« less

  6. [Novel process utilizing alkalis assisted hydrothermal process to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water].

    PubMed

    Wang, Lei; Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-08-01

    An alkalis assisted hydrothermal process was induced to stabilize heavy metals both from municipal solid waste or medical waste incinerator fly ash and waste water. The results showed that alkalis assisted hydrothermal process removed the heavy metals effectively from the waste water, and reduced leachability of fly ash after process. The heavy metal leachabilities of fly ash studied in this paper were Mn 17,300 microg/L,Ni 1650 microg/L, Cu 2560 microg/L, Zn 189,000 microg/L, Cd 1970 microg/L, Pb 1560 microg/L for medical waste incinerator fly ash; Mn 17.2 microg/L, Ni 8.32 microg/L, Cu 235.2 microg/L, Zn 668.3 microg/L, Cd 2.81 microg/L, Pb 7200 microg/L for municipal solid waste incinerator fly ash. After hydrothermal process with experimental condition [Na2CO3 dosage (5 g Na2CO3/50 g fly ash), reaction time = 10 h, L/S ratio = 10/1], the heavy metal removal efficiencies of medical waste incinerator fly ash were 86.2%-97.3%, and 94.7%-99.6% for municipal solid waste incinerator fly ash. The leachabilities of both two kinds of fly ash were lower than that of the Chinese national limit. The mechanism of heavy metal stabilization can be concluded to the chemisorption and physically encapsulation effects of aluminosilicates during its formation, crystallization and aging process, the high pH value has some contribution to the heavy metal removal and stabilization.

  7. Effects of biodrying process on municipal solid waste properties.

    PubMed

    Tambone, F; Scaglia, B; Scotti, S; Adani, F

    2011-08-01

    In this paper, the effect of biodrying process on municipal solid waste (MSW) properties was studied. The results obtained indicated that after 14d, biodrying reduced the water content of waste, allowing the production of biodried waste with a net heating value (NHV) of 16,779±2,074kJ kg(-1) wet weight, i.e. 41% higher than that of untreated waste. The low moisture content of the biodried material reduced, also, the potential impacts of the waste, i.e. potential self-ignition and potential odors production. Low waste impacts suggest to landfill the biodried material obtaining energy via biogas production by waste re-moistening, i.e. bioreactor. Nevertheless, results of this work indicate that biodrying process because of the partial degradation of the organic fraction contained in the waste (losses of 290g kg(-1) VS), reduced of about 28% the total producible biogas. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Masahiro, E-mail: oguchi.masahiro@nies.go.jp; Sakanakura, Hirofumi, E-mail: sakanakura@nies.go.jp; Terazono, Atsushi, E-mail: terazono@nies.go.jp

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer The fate of 55 metals during shredding and separation of WEEE was investigated. Black-Right-Pointing-Pointer Most metals were mainly distributed to the small-grain fraction. Black-Right-Pointing-Pointer Much of metals in WEEE being treated as municipal waste in Japan end up in landfills. Black-Right-Pointing-Pointer Pre-sorting of small digital products reduces metals to be landfilled at some level. Black-Right-Pointing-Pointer Consideration of metal recovery from other middle-sized WEEE is still important. - Abstract: In Japan, waste electrical and electronic equipment (WEEE) that is not covered by the recycling laws are treated as municipal solid waste. A part of common metals are recovered duringmore » the treatment; however, other metals are rarely recovered and their destinations are not clear. This study investigated the distribution ratios and substance flows of 55 metals contained in WEEE during municipal waste treatment using shredding and separation techniques at a Japanese municipal waste treatment plant. The results revealed that more than half of Cu and most of Al contained in WEEE end up in landfills or dissipate under the current municipal waste treatment system. Among the other metals contained in WEEE, at least 70% of the mass was distributed to the small-grain fraction through the shredding and separation and is to be landfilled. Most kinds of metals were concentrated several fold in the small-grain fraction through the process and therefore the small-grain fraction may be a next target for recovery of metals in terms of both metal content and amount. Separate collection and pre-sorting of small digital products can work as effective way for reducing precious metals and less common metals to be landfilled to some extent; however, much of the total masses of those metals would still end up in landfills and it is also important to consider how to recover and utilize metals contained in other WEEE such as

  9. Anaerobic digestion of municipal solid waste: Technical developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.

    1996-01-01

    The anaerobic biogasification of organic wastes generates two useful products: a medium-Btu fuel gas and a compost-quality organic residue. Although commercial-scale digestion systems are used to treat municipal sewage wastes, the disposal of solid organic wastes, including municipal solid wastes (MSW), requires a more cost-efficient process. Modern biogasification systems employ high-rate, high-solids fermentation methods to improve process efficiency and reduce capital costs. The design criteria and development stages are discussed. These systems are also compared with conventional low-solids fermentation technology.

  10. An industrial ecology approach to municipal solid waste ...

    EPA Pesticide Factsheets

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with examples suggested for various residual streams. A methodology is presented to consider individual waste-to-energy or waste-to-product system synergies, evaluating the economic and environmental issues associated with each system. Steps included in the methodology include identifying waste streams, specific waste components of interest, and conversion technologies, plus steps for determining the economic and environmental effects of using wastes and changes due to transport, administrative handling, and processing. In addition to presenting the methodology, technologies for various MSW input streams are categorized as commercialized or demonstrated to provide organizations that are considering processes for MSW with summarized information. The organization can also follow the methodology to analyze interesting processes. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  11. Municipal solid waste management in Tehran: Changes during the last 5 years.

    PubMed

    Malmir, Tahereh; Tojo, Yasumasa

    2016-05-01

    The situation of waste management in Tehran was a typical example of it in developing countries. The amount of municipal solid waste has been increasing and the city has depended on landfill for municipal solid waste management. However, in recent years, various measures have been taken by the city, such as collecting recyclables at the source and increasing the capacity of waste-processing facilities. As a result, significant changes in the waste stream are starting to occur. This study investigated the nature of, and reasons for, the marked changes in the waste stream from 2008 to 2012 by analysing the municipal solid waste statistics published by the Tehran Waste Management Organization in 2013 and survey data on the physical composition of the municipal solid waste. The following trends were identified: Although the generation of municipal solid waste increased by 10% during the 5-year period, the amount of waste directly disposed of to landfill halved and resource recovery almost doubled. An increase in the capacity of a waste-processing facility contributed significantly to these changes. The biodegradable fraction going to landfill was estimated by using the quantity and the composition of each input to the landfill. The estimated result in 2012 decreased to 49% of its value in 2008. © The Author(s) 2016.

  12. Quality assessment of compost prepared with municipal solid waste

    NASA Astrophysics Data System (ADS)

    Jodar, J. R.; Ramos, N.; Carreira, J. A.; Pacheco, R.; Fernández-Hernández, A.

    2017-11-01

    One way that helps maintain the sustainability of agro-ecosystems land is the application of compost from municipal solid waste as fertilizer, because it can recover the nutrients contained in them, minimizing the negative impact on the environment. Composting as a method for preparing organic fertilizers and amendments is economically and ecologically sound and may well represent an acceptable solution for disposing of municipal solid waste. In the present work, the quality of compost is studied made from municipal solid waste; the content of mineral nutrients: potassium, calcium, magnesium, sodium, zinc, manganese, cupper, iron, nickel, chromium and lead has been investigated. The objective was to evaluate the changes in mineral nutrient concentration during the composting process. The compost was prepared in a pilot-plant using the turning-pile system. Temperature was used as a monitoring parameter to follow the composting progress, which underwent the typical trend of municipal solid waste composting mixtures. The results showed a similar evolution on the content of mineral nutrients of the mixture of municipal solid waste. This evolution originated in a mature compost (end sample) with an adequate content of mineral elements and physical-chemical characteristics for its use in agriculture. So, the use of compost of municipal solid waste represents an important tool for fertilization requirements for its use in agriculture.

  13. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebersorger, S.; Beigl, P., E-mail: peter.beigl@boku.ac.at

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions aremore » met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).« less

  14. Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel.

    PubMed

    Lebersorger, S; Beigl, P

    2011-01-01

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Energy utilization: municipal waste incineration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaBeck, M.F.

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less

  16. Quantification of greenhouse gas emissions from waste management processes for municipalities--a comparative review focusing on Africa.

    PubMed

    Friedrich, Elena; Trois, Cristina

    2011-07-01

    The amount of greenhouse gases (GHG) emitted due to waste management in the cities of developing countries is predicted to rise considerably in the near future; however, these countries have a series of problems in accounting and reporting these gases. Some of these problems are related to the status quo of waste management in the developing world and some to the lack of a coherent framework for accounting and reporting of greenhouse gases from waste at municipal level. This review summarizes and compares GHG emissions from individual waste management processes which make up a municipal waste management system, with an emphasis on developing countries and, in particular, Africa. It should be seen as a first step towards developing a more holistic GHG accounting model for municipalities. The comparison between these emissions from developed and developing countries at process level, reveals that there is agreement on the magnitude of the emissions expected from each process (generation of waste, collection and transport, disposal and recycling). The highest GHG savings are achieved through recycling, and these savings would be even higher in developing countries which rely on coal for energy production (e.g. South Africa, India and China) and where non-motorized collection and transport is used. The highest emissions are due to the methane released by dumpsites and landfills, and these emissions are predicted to increase significantly, unless more of the methane is captured and either flared or used for energy generation. The clean development mechanism (CDM) projects implemented in the developing world have made some progress in this field; however, African countries lag behind. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Greenhouse gases emission from municipal waste management: The role of separate collection.

    PubMed

    Calabrò, Paolo S

    2009-07-01

    The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO(2), CH(4), N(2)O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.

  18. New municipal solid waste processing technology reduces volume and provides beneficial reuse applications for soil improvement and dust control

    USDA-ARS?s Scientific Manuscript database

    A garbage-processing technology has been developed that shreds, sterilizes, and separates inorganic and organic components of municipal solid waste. The technology not only greatly reduces waste volume, but the non-composted byproduct of this process, Fluff®, has the potential to be utilized as a s...

  19. Small enterprise opportunities in municipal solid waste management.

    PubMed

    Grierson, J P; Brown, A

    1999-02-01

    Most developing countries are rapidly urbanizing, with growing urban populations fueling demand for more and better urban services which many cities simply cannot provide given the current financial constraints. With the public sector unable to service the needs of expanding cities, small businesses are moving in to fill the vacuum. Such fledgling private sector initiatives have often prevented problems from becoming crises, while also demonstrating that private sector enterprises have an important role to play in meeting the demand for municipal services. Waste collection and processing is an area which could benefit from private sector involvement and greater public-private coordination. The authors examine the progress to date of an action-research initiative led by the Collaborative Group on Municipal Solid Waste Management in Low-income Countries which is developing best practice guidelines for expanding the involvement of micro- and small enterprises in municipal solid waste management.

  20. A multi-objective model for sustainable recycling of municipal solid waste.

    PubMed

    Mirdar Harijani, Ali; Mansour, Saeed; Karimi, Behrooz

    2017-04-01

    The efficient management of municipal solid waste is a major problem for large and populated cities. In many countries, the majority of municipal solid waste is landfilled or dumped owing to an inefficient waste management system. Therefore, an optimal and sustainable waste management strategy is needed. This study introduces a recycling and disposal network for sustainable utilisation of municipal solid waste. In order to optimise the network, we develop a multi-objective mixed integer linear programming model in which the economic, environmental and social dimensions of sustainability are concurrently balanced. The model is able to: select the best combination of waste treatment facilities; specify the type, location and capacity of waste treatment facilities; determine the allocation of waste to facilities; consider the transportation of waste and distribution of processed products; maximise the profit of the system; minimise the environmental footprint; maximise the social impacts of the system; and eventually generate an optimal and sustainable configuration for municipal solid waste management. The proposed methodology could be applied to any region around the world. Here, the city of Tehran, Iran, is presented as a real case study to show the applicability of the methodology.

  1. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  2. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  3. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  4. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  5. 40 CFR 62.15090 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 62.15090 Section 62.15090... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Compliance Schedule and Increments of Progress § 62.15090 What must I do if I close my municipal waste combustion unit and then restart...

  6. Forecasting municipal solid waste generation using prognostic tools and regression analysis.

    PubMed

    Ghinea, Cristina; Drăgoi, Elena Niculina; Comăniţă, Elena-Diana; Gavrilescu, Marius; Câmpean, Teofil; Curteanu, Silvia; Gavrilescu, Maria

    2016-11-01

    For an adequate planning of waste management systems the accurate forecast of waste generation is an essential step, since various factors can affect waste trends. The application of predictive and prognosis models are useful tools, as reliable support for decision making processes. In this paper some indicators such as: number of residents, population age, urban life expectancy, total municipal solid waste were used as input variables in prognostic models in order to predict the amount of solid waste fractions. We applied Waste Prognostic Tool, regression analysis and time series analysis to forecast municipal solid waste generation and composition by considering the Iasi Romania case study. Regression equations were determined for six solid waste fractions (paper, plastic, metal, glass, biodegradable and other waste). Accuracy Measures were calculated and the results showed that S-curve trend model is the most suitable for municipal solid waste (MSW) prediction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  8. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  9. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  10. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  11. 40 CFR 60.1635 - What must I do if I close my municipal waste combustion unit and then restart my municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit and then restart my municipal waste combustion unit? 60.1635 Section 60.1635... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Increments of Progress § 60.1635 What must I do if I close my municipal waste combustion unit and then restart my municipal waste combustion...

  12. Possibilities of municipal solid waste incinerator fly ash utilisation.

    PubMed

    Hartmann, Silvie; Koval, Lukáš; Škrobánková, Hana; Matýsek, Dalibor; Winter, Franz; Purgar, Amon

    2015-08-01

    Properties of the waste treatment residual fly ash generated from municipal solid waste incinerator fly ash were investigated in this study. Six different mortar blends with the addition of the municipal solid waste incinerator fly ash were evaluated. The Portland cement replacement levels of the municipal solid waste incinerator fly ash used were 25%, 30% and 50%. Both, raw and washed municipal solid waste incinerator fly ash samples were examined. According to the mineralogical composition measurements, a 22.6% increase in the pozzolanic/hydraulic properties was observed for the washed municipal solid waste incinerator fly ash sample. The maximum replacement level of 25% for the washed municipal solid waste incinerator fly ash in mortar blends was established in order to preserve the compressive strength properties. Moreover, the leaching characteristics of the crushed mortar blend was analysed in order to examine the immobilisation of its hazardous contents. © The Author(s) 2015.

  13. Does recyclable separation reduce the cost of municipal waste management in Japan?

    PubMed

    Chifari, Rosaria; Lo Piano, Samuele; Matsumoto, Shigeru; Tasaki, Tomohiro

    2017-02-01

    Municipal solid waste (MSW) management is a system involving multiple sub-systems that typically require demanding inputs, materials and resources to properly process generated waste throughput. For this reason, MSW management is generally one of the most expensive services provided by municipalities. In this paper, we analyze the Japanese MSW management system and estimate the cost elasticity with respect to the waste volumes at three treatment stages: collection, processing, and disposal. Although we observe economies of scale at all three stages, the collection cost is less elastic than the disposal cost. We also examine whether source separation at home affects the cost of MSW management. The empirical results show that the separate collection of the recyclable fraction leads to reduced processing costs at intermediate treatment facilities, but does not change the overall waste management cost. Our analysis also reveals that the cost of waste management systems decreases when the service is provided by private companies through a public tender. The cost decreases even more when the service is performed under the coordination of adjacent municipalities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  15. Electricity production from municipal solid waste in Brazil.

    PubMed

    Nordi, Guilherme Henrique; Palacios-Bereche, Reynaldo; Gallego, Antonio Garrido; Nebra, Silvia Azucena

    2017-07-01

    Brazil has an increasing production of municipal solid waste that, allied to the current waste management system, makes the search for alternatives of energy recovery essential. Thus, this work aims to study the incineration of municipal solid waste and the electricity production through steam cycles evaluating the influence of municipal solid waste composition. Several scenarios were studied, in which it was assumed that some fractions of municipal solid waste were removed previously. The municipal solid waste generated in Santo André city, São Paulo State, Brazil, was adopted for this study. Simulation results showed that the removal of organic matter and inert components impacts advantageously on the cycle performance, improving their parameters in some cases; in addition, there is the possibility of reusing the separated fractions. The separation of some recyclables, as plastic material, showed disadvantages by the reduction in the electricity generation potential owing to the high calorific value of plastics. Despite the high energy content of them, there are other possible considerations on this subject, because some plastics have a better recovery potential by recycling.

  16. Municipal Solid Waste Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Municipal solid waste (MSW) is a source of biomass material that can be utilized for bioenergy production with minimal additional inputs. MSW resources include mixed commercial and residential garbage such as yard trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. Waste resources such as landfill gas, mill residues, and waste grease are already being utilized for cost-effective renewable energy generation. MSW for bioenergy also represents an opportunity to divert greater volumes of residential and commercial waste from landfills.

  17. Research challenges in municipal solid waste logistics management.

    PubMed

    Bing, Xiaoyun; Bloemhof, Jacqueline M; Ramos, Tania Rodrigues Pereira; Barbosa-Povoa, Ana Paula; Wong, Chee Yew; van der Vorst, Jack G A J

    2016-02-01

    During the last two decades, EU legislation has put increasing pressure on member countries to achieve specified recycling targets for municipal household waste. These targets can be obtained in various ways choosing collection methods, separation methods, decentral or central logistic systems, etc. This paper compares municipal solid waste (MSW) management practices in various EU countries to identify the characteristics and key issues from a waste management and reverse logistics point of view. Further, we investigate literature on modelling municipal solid waste logistics in general. Comparing issues addressed in literature with the identified issues in practice result in a research agenda for modelling municipal solid waste logistics in Europe. We conclude that waste recycling is a multi-disciplinary problem that needs to be considered at different decision levels simultaneously. A holistic view and taking into account the characteristics of different waste types are necessary when modelling a reverse supply chain for MSW recycling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. An industrial ecology approach to municipal solid waste management: I. Methodology

    EPA Science Inventory

    Municipal solid waste (MSW) can be viewed as a feedstock for industrial ecology inspired conversions of wastes to valuable products and energy. The industrial ecology principle of symbiotic processes using waste streams for creating value-added products is applied to MSW, with e...

  19. Assessment strategies for municipal selective waste collection schemes.

    PubMed

    Ferreira, Fátima; Avelino, Catarina; Bentes, Isabel; Matos, Cristina; Teixeira, Carlos Afonso

    2017-01-01

    An important strategy to promote a strong sustainable growth relies on an efficient municipal waste management, and phasing out waste landfilling through waste prevention and recycling emerges as a major target. For this purpose, effective collection schemes are required, in particular those regarding selective waste collection, pursuing a more efficient and high quality recycling of reusable materials. This paper addresses the assessment and benchmarking of selective collection schemes, relevant to guide future operational improvements. In particular, the assessment is based on the monitoring and statistical analysis of a core-set of performance indicators that highlights collection trends, complemented with a performance index that gathers a weighted linear combination of these indicators. This combined analysis underlines a potential tool to support decision makers involved in the process of selecting the collection scheme with best overall performance. The presented approach was applied to a case study conducted in Oporto Municipality, with data gathered from two distinct selective collection schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Knowledge and technology transfer to improve the municipal solid waste management system of Durango City, Mexico.

    PubMed

    Valencia-Vázquez, Roberto; Pérez-López, Maria E; Vicencio-de-la-Rosa, María G; Martínez-Prado, María A; Rubio-Hernández, Rubén

    2014-09-01

    As society evolves its welfare level increases, and as a consequence the amount of municipal solid waste increases, imposing great challenges to municipal authorities. In developed countries, municipalities have established integrated management schemes to handle, treat, and dispose of municipal solid waste in an economical and environmentally sound manner. Municipalities of developing and transition countries are not exempted from the challenges involving municipal solid waste handling, but their task is not easy to accomplish since they face budget deficits, lack of knowledge, and deficiencies in infrastructure and equipment. In the northern territory of Mexico, the municipality of Durango is facing the challenge of increased volumes of waste with a lack of adequate facilities and infrastructure. This article analyses the evolution of the municipal solid waste management of Durango city, which includes actions such as proper facilities construction, equipment acquisition, and the implementation of social programmes. The World Bank, offering courses to municipal managers on landfill operation and waste management, promoted the process of knowledge and technology transfer. Thereafter, municipal authorities attended regional and some international workshops on waste management. In addition they followed suggestions of international contractors and equipment dealers with the intention to improve the situation of the waste management of the city. After a 15-year period, transfer of knowledge and technology resulted in a modern municipal solid waste management system in Durango municipality. The actual system did not reach the standard levels of an integrated waste management system, nevertheless, a functional evaluation shows clear indications that municipality actions have put them on the right pathway. © The Author(s) 2014.

  1. Biochar Preparation from Simulated Municipal Solid Waste Employing Low Temperature Carbonization Process

    NASA Astrophysics Data System (ADS)

    Areeprasert, C.; Leelachaikul, P.; Jangkobpattana, G.; Phumprasop, K.; Kiattiwat, T.

    2018-02-01

    This paper presents an investigation on carbonization process of simulated municipal solid waste (MSW). Simulated MSW consists of a representative of food residue (68%), plastic waste (20%), paper (8%), and textile (4%). Laboratory-scale carbonization was performed in this study using a vertical-type pyrolyzer varying carbonization temperature (300, 350, 400, and 450 °C) and heating rate (5, 10, 15, and 20 °C/min). Appearance of the biochar product was in black and the volume was significantly reduced. Low carbonization temperature (300 °C) might not completely decompose plastic materials in MSW. Results showed that the carbonization at the temperature of 400 °C with the heating rate of 5 °C/min was the optimal condition. The yield of biochar from the optimal process was 50.6% with the heating value of 26.85 MJ/kg. Energy input of the process was attributed to water evaporation and the decomposition of plastics and paper. Energy output of the process was highest at the optimal condition. Energy output and input ratio was around 1.3-1.7 showing the feasibility of the carbonization process in all heating rate condition.

  2. Municipal solid waste recycling and the significance of informal sector in urban China.

    PubMed

    Linzner, Roland; Salhofer, Stefan

    2014-09-01

    The informal sector is active in the collection, processing and trading of recyclable materials in urban China. Formal waste management organisations have established pilot schemes for source separation of recyclables, but this strategy is still in its infancy. The amounts of recyclables informally picked out of the municipal solid waste stream are unknown as informal waste workers do not record their activities. This article estimates the size and significance of the current informal recycling system with a focus on the collection of recyclables. A majority of the reviewed literature detects that official data is displaying mainly 'municipal solid waste collected and transported', whereas less information is available on 'real' waste generation rates at the source. Based on a literature review the variables, the 'number of informal waste workers involved in collection activities', the 'amounts collected daily per informal collector' and the 'number of working days' are used to estimate yearly recyclable amounts that are informally diverted from municipal solid waste. The results show an interval of approximately 0.56%-0.93% of the urban population or 3.3-5.6 million people involved in informal waste collection and recycling activities in urban China. This is the equivalent to estimated informal recycling rates of approximately 17-38 w/w% of the municipal solid waste generated. Despite some uncertainties in these assessments, it can be concluded that a significant share of recyclables is collected and processed by informal waste workers. © The Author(s) 2014.

  3. Characterisation of chemical composition and energy content of green waste and municipal solid waste from Greater Brisbane, Australia.

    PubMed

    Hla, San Shwe; Roberts, Daniel

    2015-07-01

    The development and deployment of thermochemical waste-to-energy systems requires an understanding of the fundamental characteristics of waste streams. Despite Australia's growing interest in gasification of waste streams, no data are available on their thermochemical properties. This work presents, for the first time, a characterisation of green waste and municipal solid waste in terms of chemistry and energy content. The study took place in Brisbane, the capital city of Queensland. The municipal solid waste was hand-sorted and classified into ten groups, including non-combustibles. The chemical properties of the combustible portion of municipal solid waste were measured directly and compared with calculations made based on their weight ratios in the overall municipal solid waste. The results obtained from both methods were in good agreement. The moisture content of green waste ranged from 29% to 46%. This variability - and the tendency for soil material to contaminate the samples - was the main contributor to the variation of samples' energy content, which ranged between 7.8 and 10.7MJ/kg. The total moisture content of food wastes and garden wastes was as high as 70% and 60%, respectively, while the total moisture content of non-packaging plastics was as low as 2.2%. The overall energy content (lower heating value on a wet basis, LHVwb) of the municipal solid waste was 7.9MJ/kg, which is well above the World Bank-recommended value for utilisation in thermochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Is Municipal Solid Waste Recycling Economically Efficient?

    NASA Astrophysics Data System (ADS)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  5. Modular life cycle assessment of municipal solid waste management.

    PubMed

    Haupt, M; Kägi, T; Hellweg, S

    2018-05-31

    Life cycle assessment (LCA) is commonly applied to examine the environmental performance of waste management systems. The system boundaries are, however, often limited to either one tonne of material or to specific waste treatments and are, therefore, lacking a systems perspective. Here, a framework is proposed to assess complete waste management systems based on actual waste flows, assessed with a detailed material flow analysis (MFA) in a modular MFA/LCA approach. The transformation of the MFA into a product-process-matrix facilitates a direct link between MFA and LCA, therefore allowing for the assessment of variations in flows. To allow for an up-to-date and geographically specific assessment, 190 LCA modules were set up based on primary industrial data and the ecoinvent database. The LCA modules show where there have been improvements in different recycling processes over the past years (e.g. for paper recycling) and highlight that, from an environmental perspective, closed-loop recycling is not always preferable to open-loop recycling. In a case study, the Swiss municipal solid waste management system, of which there is already a detailed MFA, was modeled using the new LCA modules and applying the modular MFA/LCA approach. Five different mass flow distribution scenarios for the Swiss municipal solid waste management system were assessed to show the environmental impact of political measures and to test the sensitivity of the results to key parameters. The results of the case study highlight the importance of the dominant fractions in the overall environmental impacts assessment; while the metal fraction has the highest impact on a per kilogram basis, paper, cardboard, glass and mixed municipal solid waste were found to dominate the environmental impacts of the Swiss waste management system due to their mass. The scenarios also highlight the importance of the energy efficiency of municipal solid waste incineration plants and the credits from material

  6. Conversion of cellulose rich municipal solid waste blends using ionic liquids: feedstock convertibility and process scale-up

    DOE PAGES

    Liang, Ling; Li, Chenlin; Xu, Feng; ...

    2017-07-24

    For this study, sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) at 80/20 ratio was identified in milliliter-scale screening based on the sugar yield, feedstock cost, and availability. A successful scale-up (600-fold) of the IL-acidolysis process on the identified CS/NRP blend has been achieved. The sugar andmore » lignin streams were recovered and characterized. Mass and material energy flows of the optimized process were presented. Feedstock cost for MSW blends was also discussed. Results suggest the promising potential of using MSW as a feedstock blending agent for biorefineries while maintaining sufficient performance and low feedstock cost. The bench scale (6 L) study is an essential step in demonstrating the scalability of this IL technology.« less

  7. Conversion of cellulose rich municipal solid waste blends using ionic liquids: feedstock convertibility and process scale-up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Ling; Li, Chenlin; Xu, Feng

    For this study, sixteen cellulose rich municipal solid waste (MSW) blends were developed and screened using an acid-assisted ionic liquid (IL) deconstruction process. Corn stover and switchgrass were chosen to represent herbaceous feedstocks; non-recyclable paper (NRP) and grass clippings (GC) collected from households were chosen as MSW candidates given their abundance in municipal waste streams. The most promising MSW blend: corn stover/non-recyclable paper (CS/NRP) at 80/20 ratio was identified in milliliter-scale screening based on the sugar yield, feedstock cost, and availability. A successful scale-up (600-fold) of the IL-acidolysis process on the identified CS/NRP blend has been achieved. The sugar andmore » lignin streams were recovered and characterized. Mass and material energy flows of the optimized process were presented. Feedstock cost for MSW blends was also discussed. Results suggest the promising potential of using MSW as a feedstock blending agent for biorefineries while maintaining sufficient performance and low feedstock cost. The bench scale (6 L) study is an essential step in demonstrating the scalability of this IL technology.« less

  8. Biodrying process: A sustainable technology for treatment of municipal solid waste with high moisture content.

    PubMed

    Tom, Asha P; Pawels, Renu; Haridas, Ajit

    2016-03-01

    Municipal solid waste with high moisture content is the major hindrance in the field of waste to energy conversion technologies and here comes the importance of biodrying process. Biodrying is a convective evaporation process, which utilizes the biological heat developed from the aerobic reactions of organic components. The numerous end use possibilities of the output are making the biodrying process versatile, which is possible by achieving the required moisture reduction, volume reduction and bulk density enhancement through the effective utilization of biological heat. In the present case study the detailed research and development of an innovative biodrying reactor has been carried out for the treatment of mixed municipal solid waste with high moisture content. A pilot scale biodrying reactor of capacity 565 cm(3) was designed and set up in the laboratory. The reactor dimensions consisted of an acrylic chamber of 60 cm diameter and 200 cm height, and it was enveloped by an insulation chamber. The insulation chamber was provided to minimise the heat losses through the side walls of the reactor. It simulates the actual condition in scaling up of the reactor, since in bigger scale reactors the heat losses through side walls will be negligible while comparing the volume to surface area ratio. The mixed municipal solid waste with initial moisture content of 61.25% was synthetically prepared in the laboratory and the reactor was fed with 109 kg of this substrate. Aerobic conditions were ensured inside the reactor chamber by providing the air at a constant rate of 40 litre per minute, and the direction of air flow was from the specially designed bottom air chamber to the reactor matrix top. The self heating inside reactor matrix was assumed in the range of 50-60°C during the design stage. Innovative biodrying reactor was found to be efficiently working with the temperature inside the reactor matrix rising to a peak value of 59°C by the fourth day of experiment (the

  9. Simulation of municipal solid waste degradation in aerobic and anaerobic bioreactor landfills.

    PubMed

    Patil, Bhagwan Shamrao; C, Agnes Anto; Singh, Devendra Narain

    2017-03-01

    Municipal solid waste generation is huge in growing cities of developing nations such as India, owing to the rapid industrial and population growth. In addition to various methods for treatment and disposal of municipal solid waste (landfills, composting, bio-methanation, incineration and pyrolysis), aerobic/anaerobic bioreactor landfills are gaining popularity for economical and effective disposal of municipal solid waste. However, efficiency of municipal solid waste bioreactor landfills primarily depends on the municipal solid waste decomposition rate, which can be accelerated through monitoring moisture content and temperature by using the frequency domain reflectometry probe and thermocouples, respectively. The present study demonstrates that these landfill physical properties of the heterogeneous municipal solid waste mass can be monitored using these instruments, which facilitates proper scheduling of the leachate recirculation for accelerating the decomposition rate of municipal solid waste.

  10. Effects of introducing energy recovery processes to the municipal solid waste management system in Ulaanbaatar, Mongolia.

    PubMed

    Toshiki, Kosuke; Giang, Pham Quy; Serrona, Kevin Roy B; Sekikawa, Takahiro; Yu, Jeoung-soo; Choijil, Baasandash; Kunikane, Shoichi

    2015-02-01

    Currently, most developing countries have not set up municipal solid waste management systems with a view of recovering energy from waste or reducing greenhouse gas emissions. In this article, we have studied the possible effects of introducing three energy recovery processes either as a single or combination approach, refuse derived fuel production, incineration and waste power generation, and methane gas recovery from landfill and power generation in Ulaanbaatar, Mongolia, as a case study. We concluded that incineration process is the most suitable as first introduction of energy recovery. To operate it efficiently, 3Rs strategies need to be promoted. And then, RDF production which is made of waste papers and plastics in high level of sorting may be considered as the second step of energy recovery. However, safety control and marketability of RDF will be required at that moment. Copyright © 2014. Published by Elsevier B.V.

  11. Municipal solid waste generation in Kathmandu, Nepal.

    PubMed

    Dangi, Mohan B; Pretz, Christopher R; Urynowicz, Michael A; Gerow, Kenneth G; Reddy, J M

    2011-01-01

    Waste stream characteristics must be understood to tackle waste management problems in Kathmandu Metropolitan City (KMC), Nepal. Three-stage stratified cluster sampling was used to evaluate solid waste data collected from 336 households in KMC. This information was combined with data collected regarding waste from restaurants, hotels, schools and streets. The study found that 497.3 g capita(-1) day(-1) of solid waste was generated from households and 48.5, 113.3 and 26.1 kg facility(-1) day(-1) of waste was generated from restaurants, hotels and schools, respectively. Street litter measured 69.3 metric tons day(-1). The average municipal solid waste generation rate was 523.8 metric tons day(-1) or 0.66 kg capita(-1) day(-1) as compared to the 320 metric tons day(-1) reported by the city. The coefficient of correlation between the number of people and the amount of waste produced was 0.94. Key household waste constituents included 71% organic wastes, 12% plastics, 7.5% paper and paper products, 5% dirt and construction debris and 1% hazardous wastes. Although the waste composition varied depending on the source, the composition analysis of waste from restaurants, hotels, schools and streets showed a high percentage of organic wastes. These numbers suggest a greater potential for recovery of organic wastes via composting and there is an opportunity for recycling. Because there is no previous inquiry of this scale in reporting comprehensive municipal solid waste generation in Nepal, this study can be treated as a baseline for other Nepalese municipalities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Effect of air-flow on biodrying method of municipal solid waste in Indonesia

    NASA Astrophysics Data System (ADS)

    Kristanto, Gabriel Andari; Hanany, Ismi

    2017-11-01

    The process of bio-drying could be an interesting solution for municipal solid waste management and energy demand in Indonesia. By using the heat from bio-degradation process consists in bio-drying, moisture content in a solid waste can be reduced. Solid wastes with a low moisture content, could be used as a fuel with a good energy content. In this study, 85% of garden wastes and 15% of food waste from Indonesia's municipal solid waste were bio-dried in aerobic condition using 3 variations of air flow-rates, which were 8 L/min.kg; 10 L/min.kg; and 12 L/min.kg. The experiment performs with three different reactors with known volume 75cm × 50cm × 40cm and using Styrofoam as an insulation. The process of bio-drying lasted 21 days. In the end, the experiment with 10 L/min.kg aeration, has the lowest moisture contents about 23% with high temperature and NHV about 3595.29 kcal/kg.

  13. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 1. Municipal Waste Combustor Ash.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evlauate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  14. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  15. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  16. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  17. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  18. 40 CFR 60.1015 - What is a new municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustion unit? 60.1015 Section 60.1015 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30, 1999... What is a new municipal waste combustion unit? (a) A new municipal waste combustion unit is a municipal...

  19. Ethanol from municipal cellulosic wastes

    NASA Astrophysics Data System (ADS)

    Parker, A. J., Jr.; Timbario, T. J.; Mulloney, J. A., Jr.

    This paper addresses the use of municipal cellulosic wastes as a feedstock for producing ethanol fuels, and describes the application of enzymatic hydrolysis technology for their production. The concept incorporates recent process technology developments within the framework of an existing industry familiar with large-scale ethanol fermentation (the brewing industry). Preliminary indications are that the cost of producing ethanol via enzymatic hydrolysis in an existing plant with minimal facility modifications (low capital investment) can be significantly less than that of ethanol from grain fermentation.

  20. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  1. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Standards for municipal solid waste... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  2. 40 CFR 62.14353 - Standards for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... POLLUTANTS Federal Plan Requirements for Municipal Solid Waste Landfills That Commenced Construction Prior to... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Standards for municipal solid waste... municipal solid waste landfill emissions. (a) The owner or operator of a designated facility having a design...

  3. Optimization of municipal solid waste collection and transportation routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Swapan, E-mail: swapan2009sajal@gmail.com; Bhattacharyya, Bidyut Kr., E-mail: bidyut53@yahoo.co.in

    2015-09-15

    Graphical abstract: Display Omitted - Highlights: • Profitable integrated solid waste management system. • Optimal municipal waste collection scheme between the sources and waste collection centres. • Optimal path calculation between waste collection centres and transfer stations. • Optimal waste routing between the transfer stations and processing plants. - Abstract: Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scattermore » throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length.« less

  4. To fractionate municipal solid waste incineration bottom ash: Key for utilisation?

    PubMed

    Sormunen, Laura Annika; Rantsi, Riina

    2015-11-01

    For the past decade, the Finnish waste sector has increasingly moved from the landfilling of municipal solid waste towards waste incineration. New challenges are faced with the growing amounts of municipal solid waste incineration bottom ash, which are mainly landfilled at the moment. Since this is not a sustainable or a profitable solution, finding different utilisation applications for the municipal solid waste incineration bottom ash is crucial. This study reports a comprehensive analysis of bottom ash properties from one waste incineration plant in Finland, which was first treated with a Dutch bottom ash recovery technique called advanced dry recovery. This novel process separates non-ferrous and ferrous metals from bottom ash, generating mineral fractions of different grain sizes (0-2 mm, 2-5 mm, 5-12 mm and 12-50 mm). The main aim of the study was to assess, whether the advanced bottom ash treatment technique, producing mineral fractions of different grain sizes and therefore properties, facilitates the utilisation of municipal solid waste incineration bottom ash in Finland. The results were encouraging; the bottom ash mineral fractions have favourable behaviour against the frost action, which is especially useful in the Finnish conditions. In addition, the leaching of most hazardous substances did not restrict the utilisation of bottom ash, especially for the larger fractions (>5 mm). Overall, this study has shown that the advanced bottom ash recovering technique can be one solution to increase the utilisation of bottom ash and furthermore decrease its landfilling in Finland. © The Author(s) 2015.

  5. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.53a Standard for municipal waste combustor organics. (a) [Reserved] (b) On and after... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor...

  6. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.52a Standard for municipal waste combustor metals. (a) On and after the date on... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor...

  7. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  8. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  9. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  10. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  11. 33 CFR 151.1009 - Transportation of municipal or commercial waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HOMELAND SECURITY (CONTINUED) POLLUTION VESSELS CARRYING OIL, NOXIOUS LIQUID SUBSTANCES, GARBAGE, MUNICIPAL OR COMMERCIAL WASTE, AND BALLAST WATER Transportation of Municipal and Commercial Waste § 151.1009...

  12. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom.

    PubMed

    Burnley, Stephen; Phillips, Rhiannon; Coleman, Terry; Rampling, Terence

    2011-01-01

    Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energy balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Preliminary analysis of the bio-mechanical characteristics for High-kitchen Municipal Solid Waste

    NASA Astrophysics Data System (ADS)

    Li, He; Zhang, Jian Guo; Lan, Ji Wu; He, Haijie

    2017-11-01

    Degradation of Municipal Solid Wastes (MSW) results in a change in solid skeleton, particle size and pore structure, inducing an alteration of compressibility and liquid/gas conductivity of the wastes. To investigate the complicated biological, hydraulic and mechanical coupled processes of the MSWs, a pilot-scale experimental device which is consist of waste column container, environment regulation system, vertical loading system and measuring system for liquid/gas conductivity is built. With the experimental systems, long-term tests were set up to investigate the biological, hydraulic and mechanical behaviour of the High-kitchen Municipal solid waste with high organic content and high water content. Different values of vertical stress and different degradation conditions (micro-aerobic and anaerobic) were simulated. Throughout the experiments, the changes in total volume, degree of saturation, leachate quantity and chemistry, LFG generation and composition, liquid and gas conductivity were measured. The experimental results will provide solid data for a development of the Bio-Hydro-Mechanical coupled characteristics for High-kitchen Municipal solid waste.

  14. 78 FR 20073 - Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...] Adequacy of Oregon's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency... Oregon's approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final regulations... Oregon's Municipal Solid Waste Landfill permit program to allow for Research, Development, and...

  15. A review on current status of municipal solid waste management in India.

    PubMed

    Gupta, Neha; Yadav, Krishna Kumar; Kumar, Vinit

    2015-11-01

    Municipal solid waste management is a major environmental issue in India. Due to rapid increase in urbanization, industrialization and population, the generation rate of municipal solid waste in Indian cities and towns is also increased. Mismanagement of municipal solid waste can cause adverse environmental impacts, public health risk and other socio-economic problem. This paper presents an overview of current status of solid waste management in India which can help the competent authorities responsible for municipal solid waste management and researchers to prepare more efficient plans. Copyright © 2015. Published by Elsevier B.V.

  16. Anaerobic digestion of municipal solid waste: Utility of process residues as a soil amendment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivard, C.J.; Nagle, N.J.; Kay, B.D.

    1995-12-31

    Tuna processing wastes (sludges high in fat, oil, and grease [FOG]) and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal challenge. The biological conversion of the organic fraction of these wastes to useful products, including methane and fertilizer-grade residue, through anaerobic high-solids digestion is currently in scale-up development. The suitability of the anaerobic digestion residues as a soil amendment was evaluated through extensive chemical analysis and greenhouse studies using corn as an indicator crop. Additionally, native Samoan soil was used to evaluate the specific application rates for the compost. Experiments established that anaerobic residuesmore » increase crop yields in direct proportion to increases in the application rate. Additionally, nutrient saturation was not demonstrated within the range of application rates evaluated for the Samoan soil. Beyond nutrient supplementation, organic residue amendment to Samoan soil imparts enhanced water and nutrient-binding capacities.« less

  17. Sampling, characterisation and processing of solid recovered fuel production from municipal solid waste: An Italian plant case study.

    PubMed

    Ranieri, Ezio; Ionescu, Gabriela; Fedele, Arcangela; Palmieri, Eleonora; Ranieri, Ada Cristina; Campanaro, Vincenzo

    2017-08-01

    This article presents the classification of solid recovered fuel from the Massafra municipal solid waste treatment plant in Southern Italy in compliancy with the EN 15359 standard. In order to ensure the reproducibility of this study, the characterisation methods of waste input and output flow, the mechanical biological treatment line scheme and its main parameters for each stage of the processing chain are presented in details, together with the research results in terms of mass balance and derived fuel properties. Under this study, only 31% of refused municipal solid waste input stream from mechanical biological line was recovered as solid recovered fuel with a net heating value (NC=HV) average of 15.77 MJ kg -1 ; chlorine content average of 0.06% on a dry basis; median of mercury <0.0064 mg MJ -1 and 80th percentile <0.0068 mg MJ -1 . The solid recovered fuel produced meets the European Union standard requirements and can be classified with the class code: Net heating value (3); chlorine (1); mercury (1).

  18. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Closure of existing municipal solid...

  19. 77 FR 65875 - Adequacy of Arizona Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... modification to Arizona's municipal solid waste landfill (MSWLF) permit program to allow the State to issue... amending the municipal solid waste landfill criteria at 40 CFR 258.4 to allow for Research, Development...

  20. 40 CFR 258.16 - Closure of existing municipal solid waste landfill units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Location Restrictions § 258.16 Closure of existing municipal solid waste landfill units. (a) Existing MSWLF units that cannot make the... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Closure of existing municipal solid...

  1. Tapping Resources in Municipal Solid Waste

    ERIC Educational Resources Information Center

    Blum, S. L.

    1976-01-01

    Municipal solid waste disposal is becoming complex as costs, wastes, and environmental restrictions increase. Recovery and recycling of materials presents problems of financing, ownership, and operation, technology, and marketing. Energy and materials recovery offers long-term economic and environmental incentives in terms of growing shortages and…

  2. Municipal solid-waste management in Istanbul.

    PubMed

    Kanat, Gurdal

    2010-01-01

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul. 2010 Elsevier Ltd. All rights reserved.

  3. CONTROL OF PCDD/PCDF EMISSIONS FROM MUNICIPAL WASTE COMBUSTION SYSTEMS

    EPA Science Inventory

    The article gives results of tests on five modern municipal waste combustors (MWCs) to characterize or determine the performance of representative combustor types and associated air emission control systems in the regulatory development process. Test results for uncontrolled (com...

  4. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... municipal waste combustor operating practices. (a) On and after the date on which the initial performance...

  5. 40 CFR 60.54a - Standard for municipal waste combustor acid gases.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Municipal Waste Combustors for Which Construction Is Commenced After December 20, 1989 and On or Before September 20, 1994 § 60.54a Standard for municipal waste combustor acid gases. (a)-(b) [Reserved... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for municipal waste combustor...

  6. Taiwan`s experience with municipal waste recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.H.

    1998-12-31

    Currently, each person on the average produces 1.15 kg of the municipal waste per day and a total of 9 million metric tons were generated annually in Taiwan. The disposal of such a huge amount of waste presents tremendous challenge for the island due to the scarcity of landfills and incineration facilities available locally. EPA of Taiwan, R.O.C. thus takes an active role in promoting waste recycling to reduce the garbage produced in municipalities. In order to efficiently utilize the government`s human and financial resources used in recycling, started from January 31, 1989, EPA has mandated the producer responsibility recyclingmore » program for several designated post-consumer products such as PET, PVC bottles, scrap tires, scrap motor vehicles, etc. Producer responsibility recycling program specifies that the manufacturers, importers and sellers of these designated products have the responsibility to retrieve their products and recycle them properly. Several negative effects have been encountered while the implementation of this producer responsibility recycling program in Taiwan which resulted in a modification of this recycling program recently. This paper presents the encountered experiences on the implementation of municipal waste recycling program in Taiwan.« less

  7. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics.

    PubMed

    Gug, JeongIn; Cacciola, David; Sobkowicz, Margaret J

    2015-01-01

    Diversion of waste streams such as plastics, woods, papers and other solid trash from municipal landfills and extraction of useful materials from landfills is an area of increasing interest especially in densely populated areas. One promising technology for recycling municipal solid waste (MSW) is to burn the high-energy-content components in standard coal power plant. This research aims to reform wastes into briquettes that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, free of hazardous contaminants, and moisture resistant, while retaining high fuel value. This study aims to investigate the effects of processing conditions and added recyclable plastics on the properties of MSW solid fuels. A well-sorted waste stream high in paper and fiber content was combined with controlled levels of recyclable plastics PE, PP, PET and PS and formed into briquettes using a compression molding technique. The effect of added plastics and moisture content on binding attraction and energy efficiency were investigated. The stability of the briquettes to moisture exposure, the fuel composition by proximate analysis, briquette mechanical strength, and burning efficiency were evaluated. It was found that high processing temperature ensures better properties of the product addition of milled mixed plastic waste leads to better encapsulation as well as to greater calorific value. Also some moisture removal (but not complete) improves the compacting process and results in higher heating value. Analysis of the post-processing water uptake and compressive strength showed a correlation between density and stability to both mechanical stress and humid environment. Proximate analysis indicated heating values comparable to coal. The results showed that mechanical and moisture uptake stability were improved when the moisture and air contents were optimized. Moreover, the briquette

  8. Municipal waste management in Sicily: practices and challenges.

    PubMed

    Messineo, Antonio; Panno, Domenico

    2008-01-01

    There are numerous problems yet to be solved in waste management and although efforts towards waste recovery and recycling have been made, landfills are still the most common method used in the EU and many other industrialised countries. Thermal disposal, particularly incineration, is a tested and viable alternative. In 2004, only 11% of the annual waste production of Italy was incinerated. Sicily, with over five million inhabitants, is the second largest region in Italy where waste management is now a critical problem. The use of landfills can no longer be considered a satisfactory environmental solution; therefore, new methods have to be chosen and waste-to-energy plants could provide an answer. This paper gives details of municipal solid waste management in Sicily following a new Waste Management Plan. Four waste-to-energy plants will generate electricity through a steam cycle; the feedstock will become the residue after material recovery, which is calculated as 20-40% weight of the collected municipal solid waste.

  9. 75 FR 53220 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved municipal solid waste landfill (MSWLF) program. The approved modification allows the State to..., and demonstration (RD&D) permits to be issued to certain municipal solid waste landfills by approved...

  10. An Industrial Ecology Approach to Municipal Solid Waste ...

    EPA Pesticide Factsheets

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery, gasification, anaerobic digestion, and fermentation. In these cases electricity and ethanol are the products considered, but other products and attempts at symbiosis can be made. The four technologies are in various states of commercial development. To highlight their relative complexities some adjustable parameters which are important for the operability of each process are discussed. While these technologies need to be considered for specific locations and circumstances, generalized economic and environmental information suggests relative comparisons for newly conceptualized processes. The results of industrial ecology-based analysis suggest that anaerobic digestion may improve seven emission categories, while fermentation, gasification, and incineration successively improve fewer emissions. A conceptual level analysis indicates that gasification, anaerobic digestion, and fermentation alternatives lead to positive economic results. In each case the alternatives and their assumptions need further analysis for any particular community. Presents information useful for analyzing the sustainability of alternatives for the management of municipal solid waste.

  11. 76 FR 270 - Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... approved Municipal Solid Waste Landfill (MSWLF) permit program. The approved modification allows the State..., EPA issued a final rule (69 FR 13242) amending the Municipal Solid Waste Landfill (MSWLF) criteria in...

  12. Occupational exposure to the municipal solid waste workers in Chandigarh, India.

    PubMed

    Ravindra, Khaiwal; Kaur, Kamalpreet; Mor, Suman

    2016-11-01

    Manual handling of municipal solid waste is of serious concern owing to emerging occupational risks. Considering this, health risks of municipal solid waste workers involved in street sweeping, waste collection, waste processing and rag picking were assessed in Chandigarh, India, using an interview schedule as a study tool. Result shows that the waste worker profession is mainly dominated by males, except in rag pickers, and with a lower literacy rate. Age distribution shows that 16% of waste collectors and 11% of rag pickers were below 18 years of age. Daily income of the waste workers ranges from ₹100 to ₹200. It was observed that 22.2% of waste collectors, 43.2% of street sweepers and 25.5% of rag pickers do not use any type of protective gears owing to their casual attitude, which results in various types of injuries. The major occupational health issues reported by various categories of waste workers were respiratory disorders, injuries and allergies having prevalence of 12.3%-17.6%, 4.9%-44.4% and 35.3%-48.9%, respectively. Waste workers are vulnerable to occupational health hazards and hence there is a need to safeguard them through formulation of new laws and policies. © The Author(s) 2016.

  13. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  14. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  15. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  16. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  17. 40 CFR 60.1010 - Does this subpart apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion unit? 60.1010 Section 60.1010 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After August 30....1010 Does this subpart apply to my municipal waste combustion unit? Yes, if your municipal waste...

  18. Heating value prediction for combustible fraction of municipal solid waste in Semarang using backpropagation neural network

    NASA Astrophysics Data System (ADS)

    Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi

    2015-12-01

    Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .

  19. 40 CFR 60.55b - Standards for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... municipal waste combustor fugitive ash emissions. (a) On and after the date on which the initial performance...

  20. 40 CFR 60.55b - Standards for municipal waste combustor fugitive ash emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Large Municipal Waste Combustors for Which Construction is Commenced After September 20, 1994... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for municipal waste combustor... municipal waste combustor fugitive ash emissions. (a) On and after the date on which the initial performance...

  1. Assessment of economic instruments for countries with low municipal waste management performance: An approach based on the analytic hierarchy process.

    PubMed

    Kling, Maximilian; Seyring, Nicole; Tzanova, Polia

    2016-09-01

    Economic instruments provide significant potential for countries with low municipal waste management performance in decreasing landfill rates and increasing recycling rates for municipal waste. In this research, strengths and weaknesses of landfill tax, pay-as-you-throw charging systems, deposit-refund systems and extended producer responsibility schemes are compared, focusing on conditions in countries with low waste management performance. In order to prioritise instruments for implementation in these countries, the analytic hierarchy process is applied using results of a literature review as input for the comparison. The assessment reveals that pay-as-you-throw is the most preferable instrument when utility-related criteria are regarded (wb = 0.35; analytic hierarchy process distributive mode; absolute comparison) mainly owing to its waste prevention effect, closely followed by landfill tax (wb = 0.32). Deposit-refund systems (wb = 0.17) and extended producer responsibility (wb = 0.16) rank third and fourth, with marginal differences owing to their similar nature. When cost-related criteria are additionally included in the comparison, landfill tax seems to provide the highest utility-cost ratio. Data from literature concerning cost (contrary to utility-related criteria) is currently not sufficiently available for a robust ranking according to the utility-cost ratio. In general, the analytic hierarchy process is seen as a suitable method for assessing economic instruments in waste management. Independent from the chosen analytic hierarchy process mode, results provide valuable indications for policy-makers on the application of economic instruments, as well as on their specific strengths and weaknesses. Nevertheless, the instruments need to be put in the country-specific context along with the results of this analytic hierarchy process application before practical decisions are made. © The Author(s) 2016.

  2. Analysis of municipal waste generation rate in Poland compared to selected European countries

    NASA Astrophysics Data System (ADS)

    Klojzy-Karczmarczyk, Beata; Makoudi, Said

    2017-10-01

    The generated municipal waste rates provided in the planning documents are a tool for forecasting the mass of waste generated in individual waste management regions. An important issue is the decisive separation of two concepts: waste generated and waste collected. The study includes analysis of the generation rate for Poland with division into urban and rural areas. The estimated and projected rate of municipal waste generation for Poland provided in subsequent editions of National Waste Management Plans (KPGO) changed since 2000 within wide range from about 300 to more than 500 kg per capita in an individual year (kg/pc/year). Currently, the National Waste Management Plan for the years 2017-2022 estimates municipal waste generation rate at approx. 270 kg/per capita/year with a projected increase to 330 kg/per capita/year in 2030. Most European countries adopt higher municipal waste generation rate, often exceeding 600 kg/per capita/year. The objective of the paper is therefore to analyze the causes of this difference in the declared values. The morphological composition of municipal waste stream in Poland and in selected European countries (e.g. France, Belgium, Switzerland) was analyzed. At present it is not possible to balance the value of the generation rate with the rate of waste collection in Poland. The conducted analyzes allow for determining a number of reasons for variation of the rate value in particular countries, mostly morphological composition of municipal waste, inclusion of household-like waste from infrastructure facilities or not and amount of waste collected in rural areas. The differences in the generation rates and provided possible reasons indicate the need to harmonize the methodology for estimating rates of municipal waste generation in various countries, including Poland.

  3. An inexact reverse logistics model for municipal solid waste management systems.

    PubMed

    Zhang, Yi Mei; Huang, Guo He; He, Li

    2011-03-01

    This paper proposed an inexact reverse logistics model for municipal solid waste management systems (IRWM). Waste managers, suppliers, industries and distributors were involved in strategic planning and operational execution through reverse logistics management. All the parameters were assumed to be intervals to quantify the uncertainties in the optimization process and solutions in IRWM. To solve this model, a piecewise interval programming was developed to deal with Min-Min functions in both objectives and constraints. The application of the model was illustrated through a classical municipal solid waste management case. With different cost parameters for landfill and the WTE, two scenarios were analyzed. The IRWM could reflect the dynamic and uncertain characteristics of MSW management systems, and could facilitate the generation of desired management plans. The model could be further advanced through incorporating methods of stochastic or fuzzy parameters into its framework. Design of multi-waste, multi-echelon, multi-uncertainty reverse logistics model for waste management network would also be preferred. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Materials in the U.S. Municipal Waste Stream, 1960 to 2012 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data in Materials and Products in the Municipal Waste Stream, 1960 to 2012, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2008, 2010, 2011, and 2012. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. Details may not add to totals due to rounding.

  5. 40 CFR Table 3 to Subpart Cb of... - Municipal Waste Combustor Operating Guidelines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Municipal Waste Combustor Operating... and Compliance Times for Large Municipal Waste Combustors That are Constructed on or Before September 20, 1994 Pt. 60, Subpt. Cb, Table 3 Table 3 to Subpart Cb of Part 60—Municipal Waste Combustor...

  6. Critical analysis of pyrolysis process with cellulosic based municipal waste as renewable source in energy and technical perspective.

    PubMed

    Agarwal, Manu; Tardio, James; Venkata Mohan, S

    2013-11-01

    To understand the potential of cellulosic based municipal waste as a renewable feed-stock, application of pyrolysis by biorefinery approach was comprehensively studied for its practicable application towards technical and environmental viability in Indian context. In India, where the energy requirements are high, the pyrolysis of the cellulosic waste shows numerous advantages for its applicability as a potential waste-to-energy technology. The multiple energy outputs of the process viz., bio-gas, bio-oil and bio-char can serve the two major energy sectors, viz., electricity and transportation. The process suits best for high bio-gas and electrical energy production when energy input is satisfied from bio-char in form of steam (scheme-1). The bio-gas generated through the process shows its direct utility as a transportation fuel while the bio-oil produced can serve as fuel or raw material to chemical synthesis. On a commercial scale the process is a potent technology towards sustainable development. The process is self-sustained when operated on a continuous mode. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Elemental balance of SRF production process: solid recovered fuel produced from municipal solid waste.

    PubMed

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Oinas, Pekka

    2016-01-01

    In the production of solid recovered fuel (SRF), certain waste components have excessive influence on the quality of product. The proportion of rubber, plastic (hard) and certain textiles was found to be critical as to the elemental quality of SRF. The mass flow of rubber, plastic (hard) and textiles (to certain extent, especially synthetic textile) components from input waste stream into the output streams of SRF production was found to play the decisive role in defining the elemental quality of SRF. This paper presents the mass flow of polluting and potentially toxic elements (PTEs) in SRF production. The SRF was produced from municipal solid waste (MSW) through mechanical treatment (MT). The results showed that of the total input chlorine content to process, 55% was found in the SRF and 30% in reject material. Of the total input arsenic content, 30% was found in the SRF and 45% in fine fraction. In case of cadmium, lead and mercury, of their total input content to the process, 62%, 38% and 30%, respectively, was found in the SRF. Among the components of MSW, rubber material was identified as potential source of chlorine, containing 8.0 wt.% of chlorine. Plastic (hard) and textile components contained 1.6 and 1.1. wt.% of chlorine, respectively. Plastic (hard) contained higher lead and cadmium content compared with other waste components, i.e. 500 mg kg(-1) and 9.0 mg kg(-1), respectively. © The Author(s) 2015.

  8. Energy implications of the thermal recovery of biodegradable municipal waste materials in the United Kingdom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnley, Stephen, E-mail: s.j.burnley@open.ac.uk; Phillips, Rhiannon, E-mail: rhiannon.jones@environment-agency.gov.uk; Coleman, Terry, E-mail: terry.coleman@erm.com

    2011-09-15

    Highlights: > Energy balances were calculated for the thermal treatment of biodegradable wastes. > For wood and RDF, combustion in dedicated facilities was the best option. > For paper, garden and food wastes and mixed waste incineration was the best option. > For low moisture paper, gasification provided the optimum solution. - Abstract: Waste management policies and legislation in many developed countries call for a reduction in the quantity of biodegradable waste landfilled. Anaerobic digestion, combustion and gasification are options for managing biodegradable waste while generating renewable energy. However, very little research has been carried to establish the overall energymore » balance of the collection, preparation and energy recovery processes for different types of wastes. Without this information, it is impossible to determine the optimum method for managing a particular waste to recover renewable energy. In this study, energy balances were carried out for the thermal processing of food waste, garden waste, wood, waste paper and the non-recyclable fraction of municipal waste. For all of these wastes, combustion in dedicated facilities or incineration with the municipal waste stream was the most energy-advantageous option. However, we identified a lack of reliable information on the energy consumed in collecting individual wastes and preparing the wastes for thermal processing. There was also little reliable information on the performance and efficiency of anaerobic digestion and gasification facilities for waste.« less

  9. Report: new guidelines for characterization of municipal solid waste: the Portuguese case.

    PubMed

    da Graça Madeira Martinho, Maria; Silveira, Ana Isabel; Fernandes Duarte Branco, Elsa Maria

    2008-10-01

    This report proposes a new set of guidelines for the characterization of municipal solid waste. It is based on an analysis of reference methodologies, used internationally, and a case study of Valorsul (a company that handles recovery and treatment of solid waste in the North Lisbon Metropolitan Area). In particular, the suggested guidelines present a new definition of the waste to be analysed, change the sampling unit and establish statistical standards for the results obtained. In these new guidelines, the sampling level is the waste collection vehicle and contamination and moisture are taken into consideration. Finally, focus is on the quality of the resulting data, which is essential for comparability of data between countries. These new guidelines may also be applicable outside Portugal because the methodology includes, besides municipal mixed waste, separately collected fractions of municipal waste. They are a response to the need for information concerning Portugal (e.g. Eurostat or OECD inquiries) and follow European Union municipal solid waste management policies (e.g. packaging waste recovery and recycling targets and the reduction of biodegradable waste going to landfill).

  10. Optimum municipal solid waste collection using geographical information system (GIS) and vehicle tracking for Pallavapuram municipality.

    PubMed

    Kanchanabhan, T E; Abbas Mohaideen, J; Srinivasan, S; Sundaram, V Lenin Kalyana

    2011-03-01

    Waste collection and transportation is the contact point between waste generators and waste management systems. A proposal for an innovative model for the collection and transportation of municipal solid waste (MSW) which is a part of a solid waste management system using a spatial geo database, integrated in a geographical information system (GIS) environment is presented. Pallavapuram is a fast-developing municipality of Chennai city in the southern suburbs about 20 km from Chennai, the state capital of Tamil Nadu in India. The disposal of MSW was previously occurring in an indiscriminate and irrational manner in the municipality. Hence in the present study an attempt was made to develop an engineered design of solid waste collection using GIS with a vehicle tracking system and final disposal by composting with investment costs. The GIS was used to analyse existing maps and data, to digitize the existing ward boundaries and to enter data about the wards and disposal sites. The proposed GIS model for solid waste disposal would give information on the planning of bins, vehicles and the optimal route. In the case of disposal, composting would be a successful strategy to accelerate the decomposition and stabilization of the biodegradable components of waste in MSW.

  11. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oribe-Garcia, Iraia, E-mail: iraia.oribe@deusto.es; Kamara-Esteban, Oihane; Martin, Cristina

    Highlights: • We have modelled household waste generation in Biscay municipalities. • We have identified relevant characteristics regarding household waste generation. • Factor models are used in order to identify the best subset of explicative variables. • Biscay’s municipalities are grouped by means of hierarchical clustering. - Abstract: The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The presentmore » works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation.« less

  12. Bio-charcoal production from municipal organic solid wastes

    NASA Astrophysics Data System (ADS)

    AlKhayat, Z. Q.

    2017-08-01

    The economic and environmental problems of handling the increasingly huge amounts of urban and/or suburban organic municipal solid wastes MSW, from collection to end disposal, in addition to the big fluctuations in power supply and other energy form costs for the various civilian needs, is studied for Baghdad city, the ancient and glamorous capital of Iraq, and a simple control device is suggested, built and tested by carbonizing these dried organic wastes in simple environment friendly bio-reactor in order to produce low pollution potential, economical and local charcoal capsules that might be useful for heating, cooking and other municipal uses. That is in addition to the solve of solid wastes management problem which involves huge human and financial resources and causes many lethal health and environmental problems. Leftovers of different social level residential campuses were collected, classified for organic materials then dried in order to be supplied into the bio-reactor, in which it is burnt and then mixed with small amounts of sugar sucrose that is extracted from Iraqi planted sugar cane, to produce well shaped charcoal capsules. The burning process is smoke free as the closed burner’s exhaust pipe is buried 1m underground hole, in order to use the subsurface soil as natural gas filter. This process has proved an excellent performance of handling about 120kg/day of classified MSW, producing about 80-100 kg of charcoal capsules, by the use of 200 l reactor volume.

  13. Municipal Solid Waste Management: Recycling, Resource Recovery, and Landfills. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Meikle, Teresa, Comp.

    Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…

  14. Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production.

    PubMed

    Chen, Paul; Xie, Qinglong; Addy, Min; Zhou, Wenguang; Liu, Yuhuan; Wang, Yunpu; Cheng, Yanling; Li, Kun; Ruan, Roger

    2016-09-01

    Municipal wastes, be it solid or liquid, are rising due to the global population growth and rapid urbanization and industrialization. Conventional management practice involving recycling, combustion, and treatment/disposal is deemed unsustainable. Solutions must be sought to not only increase the capacity but also improve the sustainability of waste management. Research has demonstrated that the non-recyclable waste materials and bio-solids can be converted into useable heat, electricity, or fuel and chemical through a variety of processes, including gasification, pyrolysis, anaerobic digestion, and landfill gas in addition to combustion, and wastewater streams have the potential to support algae growth and provide other energy recovery options. The present review is intended to assess and analyze the current state of knowledge in the municipal solid wastes and wastewater treatment and utilization technologies and recommend practical solution options and future research and development needs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 78 FR 5350 - Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-25

    ...] Adequacy of Massachusetts Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On December 7, 2012 Massachusetts submitted an application to...

  16. Separate collection of plastic waste, better than technical sorting from municipal solid waste?

    PubMed

    Feil, Alexander; Pretz, Thomas; Jansen, Michael; Thoden van Velzen, Eggo U

    2017-02-01

    The politically preferred solution to fulfil legal recycling demands is often implementing separate collection systems. However, experience shows their limitations, particularly in urban centres with a high population density. In response to the European Union landfill directive, mechanical biological waste treatment plants have been installed all over Europe. This technology makes it possible to retrieve plastic waste from municipal solid waste. Operators of mechanical biological waste treatment plants, both in Germany and the Netherlands, have started to change their mechanical separation processes to additionally produce plastic pre-concentrates. Results from mechanical biological waste treatment and separate collection of post-consumer packaging waste will be presented and compared. They prove that both the yield and the quality of plastic waste provided as feedstock for the production of secondary plastic raw material are largely comparable. An economic assessment shows which conditions for a technical sorting plant are economically attractive in comparison to separate collection systems. It is, however, unlikely that plastic recycling will ever reach cost neutrality.

  17. MUNICIPAL WASTE COMBUSTION ASSESSMENT ...

    EPA Pesticide Factsheets

    The report defines and characterizes types of medical waste, discusses the impacts of burning medical waste on combustor emissions, and outlines important handling and operating considerations. Facility-specific design, handling, and operating practiced are also discussed for municipal waste combustors (MWCs) that reportedly accept medical waste in the U.S., Europe, and Canada. nly very limited data are available on the emission impacts associated with the combustion of medical waste in MWGs. Especially lacking is information needed to fully evaluate the impacts on acid gas, dioxin, and metals emissions, as well as the design and operating requirements for complete destruction of solvents, cytotoxic chemicals, and pathogens. The EPA's Office of Air Quatity Planning and Standards is developing emission standards and guidelines for new and existing MWCs under Sections 111(b) and 111(d) of the Clean Air Act. In support of these regulatory development efforts, the Air and Energy Engineering Research Laboratory in EPA's Office of Research and Development has conducted an assessment to examine the incineration of medical waste in MWGs from an emission standpoint. Potential worker safety and health problems associated with handling of medical wastes and residues were also identified. information

  18. Carbon balance in municipal solid waste management--a case study of Nonthaburi municipality, Thailand.

    PubMed

    Nanthapong, Kampol; Polprasert, Chongchin

    2013-12-01

    This research aimed to investigate the carbon equivalences associated with the unit processes of municipal solid waste management (MSWM) in Nonthaburi municipality. In addition, factors affecting MSWM's carbon-related activities were determined to find the reduction potential of carbon emissions into the atmosphere. Afield survey was conducted to quantify the amount of resources used in MSWM. Then, they were evaluated in terms of carbon equivalences occurring in the process scheme and categorized into carbon emissions, fixation and reduction,following a carbon-balanced model. From carbon balance analysis of the base-line-scenario MSWM, the carbon emissions were found to be -2,374.56 MTCE/y, resulting in the average carbon unit of-22.98 kg CE/ton solid waste. The negative sign indicates a carbon reduction, instead of an emission,from this MSWM practice, which helps to reduce the concentration of carbon dioxide in the atmosphere. The results of the model reveal that the highest contribution to carbon reduction potential in MSWM is recycling. Accordingly, it is strongly recommended that a policy promoting reuse, recovery, and recycling be pursued in every step of MSWM to assist in, not only extending landfill service life span, but also alleviating the increasing global warming problems.

  19. Determination of specific gravity of municipal solid waste.

    PubMed

    Yesiller, Nazli; Hanson, James L; Cox, Jason T; Noce, Danielle E

    2014-05-01

    This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100-350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states

  20. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    PubMed Central

    2011-01-01

    Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885

  1. Mini-review of the geotechnical parameters of municipal solid waste: Mechanical and biological pre-treated versus raw untreated waste.

    PubMed

    Petrovic, Igor

    2016-09-01

    The most viable option for biostabilisation of old sanitary landfills, filled with raw municipal solid waste, is the so-called bioreactor landfill. Even today, bioreactor landfills are viable options in many economically developing countries. However, in order to reduce the biodegradable component of landfilled waste, mechanical and biological treatment has become a widely accepted waste treatment technology, especially in more prosperous countries. Given that mechanical and biological treatment alters the geotechnical properties of raw waste material, the design of sanitary landfills which accepts mechanically and biologically treated waste, should be carried out with a distinct set of geotechnical parameters. However, under the assumption that 'waste is waste', some design engineers might be tempted to use geotechnical parameters of untreated raw municipal solid waste and mechanical and biological pre-treated municipal solid waste interchangeably. Therefore, to provide guidelines for use and to provide an aggregated source of this information, this mini-review provides comparisons of geotechnical parameters of mechanical and biological pre-treated waste and raw untreated waste at various decomposition stages. This comparison reveals reasonable correlations between the hydraulic conductivity values of untreated and mechanical and biological pre-treated municipal solid waste. It is recognised that particle size might have a significant influence on the hydraulic conductivity of both municipal solid waste types. However, the compression ratios and shear strengths of untreated and pre-treated municipal solid waste do not show such strong correlations. Furthermore, another emerging topic that requires appropriate attention is the recovery of resources that are embedded in old landfills. Therefore, the presented results provide a valuable tool for engineers designing landfills for mechanical and biological pre-treated waste or bioreactor landfills for untreated raw

  2. 40 CFR 60.54b - Standards for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards of Performance for Large Municipal Waste Combustors for Which Construction is Commenced After... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for municipal waste combustor... Standards for municipal waste combustor operator training and certification. (a) No later than the date 6...

  3. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  4. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  5. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  6. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  7. 40 CFR 62.15010 - Is my municipal waste combustion unit covered by this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my municipal waste combustion unit... FACILITIES AND POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15010 Is my municipal waste combustion...

  8. Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Alam, Tabish; Kulkarni, Kishore

    2016-03-01

    Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.

  9. Thermal and mechanical stabilization process of the organic fraction of the municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giudicianni, Paola, E-mail: giudicianni@irc.cnr.it; Bozza, Pio, E-mail: pi.bozza@studenti.unina.it; Sorrentino, Giancarlo, E-mail: g.sorrentino@unina.it

    2015-10-15

    Graphical abstract: Display Omitted - Highlights: • A domestic scale prototype for the pre-treatment of OFMSW has been tested. • Two grinding techniques are compared and thermopress is used for the drying stage. • Increasing temperature up to 170 °C reduces energy consumption of the drying stage. • In the range 5–10 bar a reduction of 97% of the initial volume is obtained. • In most cases energy recovery from the dried waste matches energy consumption. - Abstract: In the present study a thermo-mechanical treatment for the disposal of the Organic Fraction of Municipal Solid Waste (OFMSW) at apartment ormore » condominium scale is proposed. The process presents several advantages allowing to perform a significant volume and moisture reduction of the produced waste at domestic scale thus producing a material with an increased storability and improved characteristics (e.g. calorific value) that make it available for further alternative uses. The assessment of the applicability of the proposed waste pretreatment in a new scheme of waste management system requires several research steps involving different competences and application scales. In this context, a preliminary study is needed targeting to the evaluation and minimization of the energy consumption associated to the process. To this aim, in the present paper, two configurations of a domestic appliance prototype have been presented and the effect of some operating variables has been investigated in order to select the proper configuration and the best set of operating conditions capable to minimize the duration and the energy consumption of the process. The performances of the prototype have been also tested on three model mixtures representing a possible daily domestic waste and compared with an existing commercially available appliance. The results obtained show that a daily application of the process is feasible given the short treatment time required and the energy consumption comparable to the

  10. The behavior of compression and degradation for municipal solid waste and combined settlement calculation method.

    PubMed

    Shi, Jianyong; Qian, Xuede; Liu, Xiaodong; Sun, Long; Liao, Zhiqiang

    2016-09-01

    The total compression of municipal solid waste (MSW) consists of primary, secondary, and decomposition compressions. It is usually difficult to distinguish between the three parts of compressions. In this study, the odeometer test was used to distinguish between the primary and secondary compressions to determine the primary and secondary compression coefficient. In addition, the ending time of the primary compressions were proposed based on municipal solid waste compression tests in a degradation-inhibited condition by adding vinegar. The amount of the secondary compression occurring in the primary compression stage has a relatively high percentage to either the total compression or the total secondary compression. The relationship between the degradation ratio and time was obtained from the tests independently. Furthermore, a combined compression calculation method of municipal solid waste for all three parts of compressions including considering organics degradation is proposed based on a one-dimensional compression method. The relationship between the methane generation potential L0 of LandGEM model and degradation compression index was also discussed in the paper. A special column compression apparatus system, which can be used to simulate the whole compression process of municipal solid waste in China, was designed. According to the results obtained from 197-day column compression test, the new combined calculation method for municipal solid waste compression was analyzed. The degradation compression is the main part of the compression of MSW in the medium test period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

    EPA Pesticide Factsheets

    Responses to Public Comments on EPA’s Standards of Performance for Municipal Solid Waste Landfills and Emission Guidelines and Compliance Times for Municipal Solid Waste Landfills: Proposed Rules - July 2016

  12. Greenhouse gas emissions control in integrated municipal solid waste management through mixed integer bilevel decision-making.

    PubMed

    He, Li; Huang, G H; Lu, Hongwei

    2011-10-15

    Recent studies indicated that municipal solid waste (MSW) is a major contributor to global warming due to extensive emissions of greenhouse gases (GHGs). However, most of them focused on investigating impacts of MSW on GHG emission amounts. This study presents two mixed integer bilevel decision-making models for integrated municipal solid waste management and GHG emissions control: MGU-MCL and MCU-MGL. The MGU-MCL model represents a top-down decision process, with the environmental sectors at the national level dominating the upper-level objective and the waste management sectors at the municipal level providing the lower-level objective. The MCU-MGL model implies a bottom-up decision process where municipality plays a leading role. Results from the models indicate that: the top-down decisions would reduce metric tonne carbon emissions (MTCEs) by about 59% yet increase about 8% of the total management cost; the bottom-up decisions would reduce MTCE emissions by about 13% but increase the total management cost very slightly; on-site monitoring and downscaled laboratory experiments are still required for reducing uncertainty in GHG emission rate from the landfill facility. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Emission guidelines for municipal solid...

  14. 40 CFR 60.33c - Emission guidelines for municipal solid waste landfill emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Guidelines and Compliance Times for Municipal Solid Waste Landfills § 60.33c Emission guidelines for municipal solid waste landfill emissions. (a) For approval, a State plan shall include control of MSW... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Emission guidelines for municipal solid...

  15. Ecosystem biomass, carbon, and nitrogen five years after restoration with municipal solid waste

    USDA-ARS?s Scientific Manuscript database

    Escalating municipal solid waste generation coupled with decreasing landfill space needed for disposal has increased the pressure on military installations to evaluate novel approaches to handle this waste. One approach to alleviating the amount of municipal solid waste being landfilled is the use o...

  16. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for municipal waste combustor metals. 60.52a Section 60.52a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... September 20, 1994 § 60.52a Standard for municipal waste combustor metals. (a) On and after the date on...

  17. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor metals. 60.52a Section 60.52a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... September 20, 1994 § 60.52a Standard for municipal waste combustor metals. (a) On and after the date on...

  18. Assessing musculoskeletal disorders among municipal waste loaders of Mumbai, India.

    PubMed

    Salve, Pradeep; Chokhandre, Praveen; Bansod, Dhananjay

    2017-10-06

    The study aims to assess the impact of municipal waste loading occupation upon developing musculoskeletal disorders (MSDs) and thereby disabilities among waste loaders. Additionally, the study has identified the potential risk factors raising MSDs and disabilities. A cross-sectional case-control design survey was conducted in 6 out of 24 municipal wards of Mumbai during March-September 2015. The study population consisted of municipal waste loaders (N = 180) and a control group (N = 180). The Standardized Modified Nordic questionnaire was adopted to measures the MSDs and thereby disabilities in the past 12 months. A Propensity Score Matching (PSM) method was applied to assess the impact of waste loading occupation on developing MSDs and disabilities. Waste loaders had a significantly higher risk of developing MSDs as well as disabilities than the control group particularly for low back, hip/ thigh upper back and shoulder. Propensity Score Matching results revealed that the MSDs were significantly higher among waste loaders for hip/thigh (22%), low back (19%), shoulder (18%), and upper back (15%) than matched control group. Likewise, MSDs-related disabilities were found to be significantly higher among waste loaders for low back (20%), hip/ thigh (18%) upper back (13%) and shoulder (8%) than the control group. Duration of work, substance use and mental health were found to be the potential psychosocial factors for developing the risk of MSDs and disabilities. The municipal waste loading occupation raised the risk of MSDs and related disabilities among waste loaders compared to the control group. The preventive and curative measures are strongly recommended to minimize the burden of MSDs and disabilities. Int J Occup Med Environ Health 2017;30(6):875-886. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  19. 75 FR 53268 - Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ...] Adequacy of New Hampshire Municipal Solid Waste Landfill Permit Program AGENCY: Environmental Protection... modification of its approved Municipal Solid Waste Landfill Program. On March 22, 2004, EPA issued final... solid waste landfills by approved states. On June 28, 2010 New Hampshire submitted an application to EPA...

  20. 76 FR 303 - Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...] Alaska: Adequacy of Alaska's Municipal Solid Waste Landfill Permit Program AGENCY: Environmental... modification of its approved Municipal Solid Waste Landfill (MSWLF) permit program. On March 22, 2004, EPA..., Waste, and Toxics, U.S. EPA, Region 10, 1200 Sixth Avenue, Suite 900, Mailstop: AWT-122, Seattle, WA...

  1. Polyhydroxyalkanoate production as a side stream process on a municipal waste water treatment plant.

    PubMed

    Pittmann, T; Steinmetz, H

    2014-09-01

    This work describes the production of polyhydroxyalkanoates (PHAs) as a side stream process on a municipal waste water treatment plant (WWTP) at different operation conditions. Therefore various tests were conducted regarding a high PHA production and stable PHA composition. Influence of substrate concentration, temperature, pH and cycle time of an installed feast/famine-regime were investigated. The results demonstrated a strong influence of the operating conditions on the PHA production. Lower substrate concentration, 20°C, neutral pH-value and a 24h cycle time are preferable for high PHA production up to 28.4% of cell dry weight (CDW). PHA composition was influenced by cycle time only and a stable PHA composition was reached. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Bioaerosols, Noise, and Ultraviolet Radiation Exposures for Municipal Solid Waste Handlers

    PubMed Central

    Ncube, Esper Jacobeth; Voyi, Kuku

    2017-01-01

    Few studies have investigated the occupational hazards of municipal solid waste workers, particularly in developing countries. Resultantly these workers are currently exposed to unknown and unabated occupational hazards that may endanger their health. We determined municipal solid waste workers' work related hazards and associated adverse health endpoints. A multifaceted approach was utilised comprising bioaerosols sampling, occupational noise, thermal conditions measurement, and field based waste compositional analysis. Results from our current study showed highest exposure concentrations for Gram-negative bacteria (6.8 × 103 cfu/m3) and fungi (12.8 × 103 cfu/m3), in the truck cabins. Significant proportions of toxic, infectious, and surgical waste were observed. Conclusively, municipal solid waste workers are exposed to diverse work related risks requiring urgent sound interventions. A framework for assessing occupational risks of these workers must prioritize performance of exposure assessment with regard to the physical, biological, and chemical hazards of the job. PMID:28167969

  3. Bioaerosols, Noise, and Ultraviolet Radiation Exposures for Municipal Solid Waste Handlers.

    PubMed

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-01-01

    Few studies have investigated the occupational hazards of municipal solid waste workers, particularly in developing countries. Resultantly these workers are currently exposed to unknown and unabated occupational hazards that may endanger their health. We determined municipal solid waste workers' work related hazards and associated adverse health endpoints. A multifaceted approach was utilised comprising bioaerosols sampling, occupational noise, thermal conditions measurement, and field based waste compositional analysis. Results from our current study showed highest exposure concentrations for Gram-negative bacteria (6.8 × 10 3  cfu/m 3 ) and fungi (12.8 × 10 3  cfu/m 3 ), in the truck cabins. Significant proportions of toxic, infectious, and surgical waste were observed. Conclusively, municipal solid waste workers are exposed to diverse work related risks requiring urgent sound interventions. A framework for assessing occupational risks of these workers must prioritize performance of exposure assessment with regard to the physical, biological, and chemical hazards of the job.

  4. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    NASA Astrophysics Data System (ADS)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan

    2014-09-01

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  5. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.

    2014-09-12

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressivemore » Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.« less

  6. An exploration into municipal waste charges for environmental management at local level: The case of Spain.

    PubMed

    Puig-Ventosa, Ignasi; Sastre Sanz, Sergio

    2017-11-01

    Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.

  7. AL(0) in municipal waste incinerator ash

    NASA Astrophysics Data System (ADS)

    Stipp, S. L.; Ronsbo, J. G.; Zunic, T. B.; Christensen, T. H.

    2003-04-01

    Disposal of municipal waste is a challenge to society. Waste volume is substantially decreased by incineration but residual ash usually contains a number of toxic components which must be immobilised to insure environmental protection. One element, chromium, is mobile and toxic in its oxidised state as Cr(VI) but it can be reduced to Cr(III) and immobilised. Reduction can be promoted by ash treatment with Fe(0) or Fe(II), but recent evidence shows that at least some Cr(VI) is reduced spontaneously in the ash. Aspects of ash behaviour suggest metallic aluminium as the reducing agent, but no direct evidence of Al(0) has been found until now. We examined filter ash from an energy-producing, municipal-waste incinerator (Vest-forbrænding) near Copenhagen. X-ray diffraction (XRD) identified expected salts of Na, K and Ca such as halite, sylvite, calcite, anhydrite and gypsum as well as quartz, feldspar and some hematite. Wave-dispersive electron microprobe produced elemen-tal maps of the ash; Al-rich areas were analysed quantitatively by comparison with standards. We identified metallic Al particles, averaging 50 to 100 micrometers in di-ameter, often with a fractured, glassy border of aluminum oxide. The particles were porous, explaining fast Cr(VI) reduction and they contained thin exsolution lamellae of Al-alloys of Pb and Cu or Mn, Fe and Ag, which provide clues of the Al(0) origin in the waste. Sometimes Al(0) occurred inside glassy globes of Al2O3. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS) proved that surface Al concentrations on ash particles were below detection, confirming reactivity of the Al(0) bulk. The persistence of reduced Al through the highly oxidising combustion procedure comes as a surprise and is a benefit in the immobilisation of Cr(VI) from municipal-waste incineration residues.

  8. Materials Discarded in the U.S. Municipal Waste Stream, 1960 to 2009 (in tons)

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency (EPA) has collected and reported data on the generation and disposal of waste in the United States for more than 30 years. We use this information to measure the success of waste reduction and recycling programs across the country. Our trash, or municipal solid waste (MSW), is made up of the things we commonly use and then throw away. These materials include items such as packaging, food scraps, grass clippings, sofas, computers, tires, and refrigerators. MSW does not include industrial, hazardous, or construction waste. The data on Materials Discarded in the Municipal Waste Stream, 1960 to 2009, provides estimated data in thousands of tons discarded after recycling and compost recovery for the years 1960, 1970, 1980, 1990, 2000, 2005, 2007, 2008, and 2009. In this data set, discards include combustion with energy recovery. This data table does not include construction & demolition debris, industrial process wastes, or certain other wastes. The Other category includes electrolytes in batteries and fluff pulp, feces, and urine in disposable diapers. Details may not add to totals due to rounding.

  9. Solid-shape energy fuels from recyclable municipal solid waste and plastics

    NASA Astrophysics Data System (ADS)

    Gug, Jeongin

    Diversion of waste streams, such as plastics, wood and paper, from municipal landfills and extraction of useful materials from landfills is an area of increasing interest across the country, especially in densely populated areas. One promising technology for recycling MSW (municipal solid waste) is to burn the high energy content components in standard coal boilers. This research seeks to reform wastes into briquette that are compatible with typical coal combustion processes. In order to comply with the standards of coal-fired power plants, the feedstock must be mechanically robust, moisture resistance, and retain high fuel value. Household waste with high paper and fibers content was used as the base material for this study. It was combined with recyclable plastics such as PE, PP, PET and PS for enhanced binding and energy efficiency. Fuel pellets were processed using a compression molding technique. The resulting moisture absorption, proximate analysis from burning, and mechanical properties were investigated after sample production and then compared with reference data for commercial coals and biomass briquettes. The effects of moisture content, compression pressure and processing temperature were studied to identify the optimal processing conditions with water uptake tests for the durability of samples under humid conditions and burning tests to examine the composition of samples. Lastly, mechanical testing revealed the structural stability of solid fuels. The properties of fuel briquettes produced from waste and recycled plastics improved with higher processing temperature but without charring the material. Optimization of moisture content and removal of air bubbles increased the density, stability and mechanical strength. The sample composition was found to be more similar to biomass fuels than coals because the majority of the starting material was paper-based solid waste. According to the proximate analysis results, the waste fuels can be expected to have

  10. Source Separation and Composting of Organic Municipal Solid Waste.

    ERIC Educational Resources Information Center

    Gould, Mark; And Others

    1992-01-01

    Describes a variety of composting techniques that may be utilized in a municipal level solid waste management program. Suggests how composting system designers should determine the amount and type of organics in the waste stream, evaluate separation approaches and assess collection techniques. Outlines the advantages of mixed waste composting and…

  11. Behavior of cesium in municipal solid waste incineration.

    PubMed

    Oshita, Kazuyuki; Aoki, Hiroshi; Fukutani, Satoshi; Shiota, Kenji; Fujimori, Takashi; Takaoka, Masaki

    2015-05-01

    As a result of the Fukushima Daiichi Nuclear Power Plant accident on March 11, 2011 in Japan radioactive nuclides, primarily (134)Cs and (137)Cs were released, contaminating municipal solid waste and sewage sludge in the area. Although stabilizing the waste and reducing its volume is an important issue differing from Chernobyl nuclear power plant accident, secondary emission of radioactive nuclides as a result of any intermediate remediation process is of concern. Unfortunately, there is little research on the behavior of radioactive nuclides during waste treatment. This study focuses on waste incineration in an effort to clarify the behavior of radioactive nuclides, specifically, refuse-derived fuel (RDF) with added (133)Cs (stable nuclide) or (134)Cs (radioactive nuclide) was incinerated in laboratory- and pilot-scale experiments. Next, thermogravimetric (TG) and differential thermal analysis (DTA) of stable Cs compounds, as well as an X-ray absorption fine structure (XAFS) analysis of Cs concentrated in the ashes were performed to validate the behavior and chemical forms of Cs during the combustion. Our results showed that at higher temperatures and at larger equivalence ratios, (133)Cs was distributed to the bottom ash at lower concentration, and the influence of the equivalence ratio was more significant at lower temperatures. (134)Cs behaved in a similar fashion as (133)Cs. We found through TG-DTA and XAFS analysis that a portion of Cs in RDF vaporizes and is transferred to fly ash where it exists as CsCl in the MSW incinerator. We conclude that Cs-contaminated municipal solid wastes could be incinerated at high temperatures resulting in a small amount of fly ash with a high concentration of radioactive Cs, and a bottom ash with low concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    PubMed

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current

  13. Life cycle assessment of potential municipal solid waste management strategies for Mumbai, India.

    PubMed

    Sharma, Bhupendra K; Chandel, Munish K

    2017-01-01

    Dumping of municipal solid waste into uncontrolled dumpsites is the most common method of waste disposal in most cities of India. These dumpsites are posing a serious challenge to environmental quality and sustainable development. Mumbai, which generates over 9000 t of municipal solid waste daily, also disposes of most of its waste in open dumps. It is important to analyse the impact of municipal solid waste disposal today and what would be the impact under integrated waste management schemes. In this study, life cycle assessment methodology was used to determine the impact of municipal solid waste management under different scenarios. Six different scenarios were developed as alternatives to the current practice of open dumping and partially bioreactor landfilling. The scenarios include landfill with biogas collection, incineration and different combinations of recycling, landfill, composting, anaerobic digestion and incineration. Global warming, acidification, eutrophication and human toxicity were assessed as environmental impact categories. The sensitivity analysis shows that if the recycling rate is increased from 10% to 90%, the environmental impacts as compared with present scenario would reduce from 998.43 kg CO 2 eq t -1 of municipal solid waste, 0.124 kg SO 2 eq t -1 , 0.46 kg PO 4 -3 eq t -1 , 0.44 kg 1,4-DB eq t -1 to 892.34 kg CO 2 eq t -1 , 0.121 kg SO 2 eq t -1 , 0.36 kg PO 4 -3 eq t -1 , 0.40 kg 1,4-DB eq t -1 , respectively. An integrated municipal solid waste management approach with a mix of recycling, composting, anaerobic digestion and landfill had the lowest overall environmental impact. The technologies, such as incineration, would reduce the global warming emission because of the highest avoided emissions, however, human toxicity would increase.

  14. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  15. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  16. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  17. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  18. 40 CFR 60.1810 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit? 60.1810 Section 60.1810 Protection of Environment ENVIRONMENTAL PROTECTION... Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30... combustion unit? (a) If your municipal waste combustion unit generates steam, you must install, calibrate...

  19. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well asmore » for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.« less

  20. GHG emission factors developed for the collection, transport and landfilling of municipal waste in South African municipalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Elena, E-mail: Friedriche@ukzn.ac.za; Trois, Cristina

    2013-04-15

    Highlights: ► An average GHG emission factor for the collection and transport of municipal solid waste in South Africa is calculated. ► A range of GHG emission factors for different types of landfills (including dumps) in South Africa are calculated. ► These factors are compared internationally and their implications for South Africa and developing countries are discussed . ► Areas for new research are highlighted. - Abstract: Greenhouse gas (GHG) emission factors are used with increased frequency for the accounting and reporting of GHG from waste management. However, these factors have been calculated for developed countries of the Northern Hemispheremore » and are lacking for developing countries. This paper shows how such factors have been developed for the collection, transport and landfilling of municipal waste in South Africa. As such it presents a model on how international results and methodology can be adapted and used to calculate country-specific GHG emission factors from waste. For the collection and transport of municipal waste in South Africa, the average diesel consumption is around 5 dm{sup 3} (litres) per tonne of wet waste and the associated GHG emissions are about 15 kg CO{sub 2} equivalents (CO{sub 2} e). Depending on the type of landfill, the GHG emissions from the landfilling of waste have been calculated to range from −145 to 1016 kg CO{sub 2} e per tonne of wet waste, when taking into account carbon storage, and from 441 to 2532 kg CO{sub 2} e per tonne of wet waste, when carbon storage is left out. The highest emission factor per unit of wet waste is for landfill sites without landfill gas collection and these are the dominant waste disposal facilities in South Africa. However, cash strapped municipalities in Africa and the developing world will not be able to significantly upgrade these sites and reduce their GHG burdens if there is no equivalent replacement of the Clean Development Mechanism (CDM) resulting from the Kyoto

  1. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  2. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  3. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  4. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  5. 40 CFR 60.1320 - How do I monitor the load of my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit? 60.1320 Section 60.1320 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Small Municipal Waste Combustion Units for Which Construction is Commenced After... Monitoring Requirements § 60.1320 How do I monitor the load of my municipal waste combustion unit? (a) If...

  6. Effects of lipid concentration on anaerobic co-digestion of municipal biomass wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yifei, E-mail: sunif@buaa.edu.cn; Wang, Dian; Yan, Jiao

    2014-06-01

    Highlights: • Lipid in municipal biomass would not inhibited the anaerobic digestion process. • A lipid concentration of 65% of total VS was the inhibition concentration. • The amount of Brevibacterium decreased with the increasing of the lipid contents. • Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process. - Abstract: The influence of the lipid concentration on the anaerobic co-digestion of municipal biomass waste and waste-activated sludge was assessed by biochemical methane potential (BMP) tests and by bench-scale tests in a mesophilic semi-continuous stirred tank reactor. The effect of increasing the volatile solidmore » (VS) concentration of lipid from 0% to 75% was investigated. BMP tests showed that lipids in municipal biomass waste could enhance the methane production. The results of bench-scale tests showed that a lipids concentration of 65% of total VS was the inhibition concentration. Methane yields increased with increasing lipid concentration when lipid concentrations were below 60%, but when lipid concentration was set as 65% or higher, methane yields decreased sharply. When lipid concentrations were below 60%, the pH values were in the optimum range for the growth of methanogenic bacteria and the ratios of volatile fatty acid (VFA)/alkalinity were in the range of 0.2–0.6. When lipid concentrations exceeded 65%, the pH values were below 5.2, the reactor was acidized and the values of VFA/alkalinity rose to 2.0. The amount of Brevibacterium decreased with increasing lipid content. Long chain fatty acids stacked on the methanogenic bacteria and blocked the mass transfer process, thereby inhibiting anaerobic digestion.« less

  7. Dynamic visualisation of municipal waste management performance in the EU using Ternary Diagram method.

    PubMed

    Pomberger, R; Sarc, R; Lorber, K E

    2017-03-01

    This contribution describes the dynamic visualisation of European (EU 28) municipal waste management performance, using the Ternary Diagram Method. Municipal waste management performance depends primarily on three treatment categories: recycling & composting, incineration and landfilling. The framework of current municipal waste management including recycling targets, etc. is given by the Waste Framework Directive - 2008/98/EC. The proposed Circular Economy Package should stimulate Europe's transition towards more sustainable resources and energy oriented waste management. The Package also includes a revised legislative proposal on waste that sets ambitious recycling rates for municipal waste for 2025 (60%) and 2030 (65%). Additionally, the new calculation method for monitoring the attainment of the targets should be applied. In 2014, ca. 240 million tonnes of municipal waste were generated in the EU. While in 1995, 17% were recycled and composted, 14% incinerated and 64% landfilled, in 2014 ca. 71% were recovered but 28% landfilled only. Considering the treatment performance of the individual EU member states, the EU 28 can be divided into three groups, namely: "Recovery Countries", "Transition Countries" and "Landfilling Countries". Using Ternary Diagram Method, three types of visualization for the municipal waste management performance have been investigated and extensively described. Therefore, for better understanding of municipal waste management performance in the last 20years, dynamic visualisation of the Eurostat table-form data on all 28 member states of the EU has been carried out in three different ways: 1. "Performance Positioning" of waste management unit(s) at a specific date; 2. "Performance dynamics" over a certain time period and; 3. "Performance development" expressed as a track(s). Results obtained show that the Ternary Diagram Method is very well suited to be used for better understanding of past developments and coherences, for monitoring of

  8. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  9. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  10. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  11. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  12. 40 CFR 60.1550 - What municipal waste combustion units must I address in my State plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What municipal waste combustion units... Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of State Plans § 60.1550 What municipal waste combustion units must...

  13. Municipal solid waste management in Phnom Penh, capital city of Cambodia.

    PubMed

    Seng, Bunrith; Kaneko, Hidehiro; Hirayama, Kimiaki; Katayama-Hirayama, Keiko

    2011-05-01

    This paper presents an overview of municipal solid waste management (MSWM) for both technical and regulatory arrangements in the municipality of Phnom Penh (MPP), Cambodia. Problems with the current MSWM are identified, and challenges and recommendations for future improvement are also given in this paper. MPP is a small city with a total area of approximately 374 km(2) and an urban population of about 1.3 million in 2008. For the last 14 years, average annual municipal solid waste (MSW) generated in MPP has increased rapidly from 0.136 million tons in 1995 to 0.361 million tons in 2008. The gross generation rate of MSW per capita was 0.74 kg day(-1). However, the per capita household waste generation was 0.487 kg day(- 1). At 63.3%, food waste is the predominant portion of generated waste, followed by plastics (15.5%), grass and wood (6.8%), and paper and cardboard (6.4%). The remaining waste, including metals, glass, rubber/leather, textiles, and ceramic/ stone, accounted for less than 3%. Waste recycling through informal sectors is very active; recycled waste accounted for about 9.3% of all waste generated in 2003. Currently, the overall technical arrangement, including storage and discharge, collection and transport, and disposal, is still in poor condition, which leads to environmental and health risks. These problems should be solved by improving legislation, environmental education, solid waste management facilities, and management of the waste scavengers.

  14. Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niessen, W.R.; Marks, C.H.; Sommerlad, R.E.

    1996-08-01

    This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition,more » mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy c onversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.« less

  15. Municipal solid waste management in Rasht City, Iran.

    PubMed

    Alavi Moghadam, M R; Mokhtarani, N; Mokhtarani, B

    2009-01-01

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years.

  16. Municipal solid waste management in Rasht City, Iran

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alavi Moghadam, M.R.; Mokhtarani, N.; Mokhtarani, B.

    2009-01-15

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data ofmore » different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years.« less

  17. Assessment of the municipal solid waste management system in Accra, Ghana: A 'Wasteaware' benchmark indicator approach.

    PubMed

    Oduro-Appiah, Kwaku; Scheinberg, Anne; Mensah, Anthony; Afful, Abraham; Boadu, Henry Kofi; de Vries, Nanne

    2017-11-01

    This article assesses the performance of the city of Accra, Ghana, in municipal solid waste management as defined by the integrated sustainable waste management framework. The article reports on a participatory process to socialise the Wasteaware benchmark indicators and apply them to an upgraded set of data and information. The process has engaged 24 key stakeholders for 9 months, to diagram the flow of materials and benchmark three physical components and three governance aspects of the city's municipal solid waste management system. The results indicate that Accra is well below some other lower middle-income cities regarding sustainable modernisation of solid waste services. Collection coverage and capture of 75% and 53%, respectively, are a disappointing result, despite (or perhaps because of) 20 years of formal private sector involvement in service delivery. A total of 62% of municipal solid waste continues to be disposed of in controlled landfills and the reported recycling rate of 5% indicates both a lack of good measurement and a lack of interest in diverting waste from disposal. Drains, illegal dumps and beaches are choked with discarded bottles and plastic packaging. The quality of collection, disposal and recycling score between low and medium on the Wasteaware indicators, and the scores for user inclusivity, financial sustainability and local institutional coherence are low. The analysis suggests that waste and recycling would improve through greater provider inclusivity, especially the recognition and integration of the informal sector, and interventions that respond to user needs for more inclusive decision-making.

  18. COMBUSTION CONTROL OF ORGANIC EMISSIONS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    More than two decades ago, researchers identified benzo(a)pyrene and other organic species in the emissions from incineration of solid waste. Chlorinated dibenzo-p-dioxins and-furans (CDD/CDF) were first detected in municipal waste combustor (MWC) emissions in 1977. Since then, C...

  19. Innovative use of recovered municipal solid waste incineration bottom ash as a component in growing media.

    PubMed

    Sormunen, Annika; Teo, Kanniainen; Tapio, Salo; Riina, Rantsi

    2016-07-01

    The utilisation of municipal solid waste incineration bottom ash has been extensively studied, for example, in the unbound layers of roads and the products of cement and concrete industry. On the other hand, less attention has been given to other innovative utilisation possibilities, such as using the municipal solid waste incineration bottom ash as a component in growing media of plants. The municipal solid waste incineration bottom ash contains useful substances, such as calcium, that can influence plant growth in a positive manner. Therefore, the utilisation of this waste-derived material in the growing media may substitute the use of commercial fertilisers. Since the municipal solid waste incineration bottom ash also contains hazardous substances that can be toxic to plants, the main aim of this study was to add different amounts of recovered municipal solid waste incineration bottom ash in the growing media and to evaluate the effect of this material on plant growth. Based on the obtained results, the concentration of, for example copper and zinc, increased in test plants; ryegrass and barley, when recovered municipal solid waste incineration bottom ash was added in their growing media. On the other hand, this did not have a significant effect on plant growth, if compared with the growth of plants in commercially produced growing medium. Furthermore, the replacement of natural sand with municipal solid waste incineration bottom ash had a positive liming effect in the growing media. Overall, these findings suggest that the utilisation of recovered municipal solid waste incineration bottom ash as a component in growing media is possible and, thus, may allow more widespread and innovative use of this waste-derived material. © The Author(s) 2016.

  20. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  1. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  2. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  3. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  4. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  5. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  6. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  7. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  8. 40 CFR 60.1025 - Do subpart E new source performance standards also apply to my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... standards also apply to my municipal waste combustion unit? 60.1025 Section 60.1025 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... municipal waste combustion unit? If this subpart AAAA applies to your municipal waste combustion unit, then...

  9. 40 CFR Table 2 to Subpart Aaaa of... - Carbon Monoxide Emission Limits for New Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Small Municipal Waste Combustion Units 2 Table 2 to Subpart AAAA of Part 60 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... New Small Municipal Waste Combustion Units For the following municipal waste combustion units You must...

  10. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand.

    PubMed

    Yukalang, Nachalida; Clarke, Beverley; Ross, Kirstin

    2017-09-04

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas.

  11. Barriers to Effective Municipal Solid Waste Management in a Rapidly Urbanizing Area in Thailand

    PubMed Central

    Yukalang, Nachalida; Clarke, Beverley

    2017-01-01

    This study focused on determining the barriers to effective municipal solid waste management (MSWM) in a rapidly urbanizing area in Thailand. The Tha Khon Yang Subdistrict Municipality is a representative example of many local governments in Thailand that have been facing MSWM issues. In-depth interviews with individuals and focus groups were conducted with key informants including the municipality staff, residents, and external organizations. The major influences affecting waste management were categorized into six areas: social-cultural, technical, financial, organizational, and legal-political barriers and population growth. SWOT analysis shows both internal and external factors are playing a role in MSWM: There is good policy and a reasonably sufficient budget. However, there is insufficient infrastructure, weak strategic planning, registration, staff capacity, information systems, engagement with programs; and unorganized waste management and fee collection systems. The location of flood prone areas has impacted on location and operation of landfill sites. There is also poor communication between the municipality and residents and a lack of participation in waste separation programs. However, external support from government and the nearby university could provide opportunities to improve the situation. These findings will help inform municipal decision makers, leading to better municipal solid waste management in newly urbanized areas. PMID:28869572

  12. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  13. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  14. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  15. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  16. 40 CFR 60.1045 - Are there different subcategories of small municipal waste combustion units within this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... small municipal waste combustion units within this subpart? 60.1045 Section 60.1045 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... combustion units within this subpart? (a) Yes, this subpart subcategorizes small municipal waste combustion...

  17. Trends in the management of residual municipal solid waste.

    PubMed

    Rada, E C; Istrate, I A; Ragazzi, M

    2009-06-01

    In agreement with European Union directives, the integrated management of municipal solid waste must be developed ensuring a balanced relationship between the streams of selective collection and the one regarding the residual waste. A theoretical scenario is made where the residual municipal solid waste is composed only of non-recyclable fractions. An important aspect concerns the role of the organic fraction as selective collection can significantly decrease its content in the residual waste. This paper focuses on the planning, design and management consequences of this unsteady scenario. The treatments that are considered are: combustion, gasification, pyrolysis, integrated thermal plants, aerobic mechanical-biological treatments, anaerobic mechanical-biological treatments and other types of treatment. The considerations are based on the experience of the authors not only in terms of development of research but also in terms of transfer of the research results to the real scale, and knowledge of the state-of-the-art of the sector.

  18. Multi-objective optimization of solid waste flows: environmentally sustainable strategies for municipalities.

    PubMed

    Minciardi, Riccardo; Paolucci, Massimo; Robba, Michela; Sacile, Roberto

    2008-11-01

    An approach to sustainable municipal solid waste (MSW) management is presented, with the aim of supporting the decision on the optimal flows of solid waste sent to landfill, recycling and different types of treatment plants, whose sizes are also decision variables. This problem is modeled with a non-linear, multi-objective formulation. Specifically, four objectives to be minimized have been taken into account, which are related to economic costs, unrecycled waste, sanitary landfill disposal and environmental impact (incinerator emissions). An interactive reference point procedure has been developed to support decision making; these methods are considered appropriate for multi-objective decision problems in environmental applications. In addition, interactive methods are generally preferred by decision makers as they can be directly involved in the various steps of the decision process. Some results deriving from the application of the proposed procedure are presented. The application of the procedure is exemplified by considering the interaction with two different decision makers who are assumed to be in charge of planning the MSW system in the municipality of Genova (Italy).

  19. Alternative approaches for better municipal solid waste management in Mumbai, India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rathi, Sarika

    2006-07-01

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads andmore » in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.« less

  20. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation): Final Report. Volume 2. Waste Glass.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWD) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  1. Developing Specifications for Waste Glass, Municipal Waste Combustor Ash and Waste Tires as Highway Fill Materials (Continuation). Final Report. Volume 3. Waste Tires.

    DOT National Transportation Integrated Search

    1995-04-01

    A two year study was conducted as a continuation project for the Florida Department of Transportation (FDOT) to evaluate Municipal Waste Combustor (MWC) ash, Waste Glass, and Waste Tires for use as general highway fill. Initial studies conducted at F...

  2. Influence of effective stress and dry density on the permeability of municipal solid waste.

    PubMed

    Zhang, Zhenying; Wang, Yingfeng; Xu, Hui; Fang, Yuehua; Wu, Dazhi

    2018-05-01

    A landfill is one of the main sites for disposal of municipal solid waste and the current landfill disposal system faces several problems. For instance, excessive leachate water is an important factor leading to landfill instability. Understanding the permeability characteristics of municipal solid waste is a relevant topic in the field of environmental geotechnical engineering. In this paper, the current research progress on permeability characteristics of municipal solid waste is discussed. A review of recent studies indicates that the research in this field is divided into two categories based on the experimental method employed: field tests and laboratory tests. This paper summarizes test methods, landfill locations, waste ages, dry densities and permeability coefficients across different studies that focus on permeability characteristics. Additionally, an experimental study on compressibility and permeability characteristics of fresh municipal solid waste under different effective stresses and compression times was carried out. Moreover, the relationships between the permeability coefficient and effective stress as well as dry density were obtained and a permeability prediction model was established. Finally, the experimental results from the existing literature and this paper were compared and the effects of effective stress and dry density on the permeability characteristics of municipal solid waste were summarized. This study provides the basis for analysis of leachate production in a landfill.

  3. Evaluation of environmental impacts from municipal solid waste management in the municipality of Aarhus, Denmark (EASEWASTE).

    PubMed

    Kirkeby, Janus T; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas H; Bhander, Gurbakhash Singh; Hauschild, Michael

    2006-02-01

    A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.

  4. Electricity production from municipal solid waste using microbial fuel cells.

    PubMed

    Chiu, H Y; Pai, T Y; Liu, M H; Chang, C A; Lo, F C; Chang, T C; Lo, H M; Chiang, C F; Chao, K P; Lo, W Y; Lo, S W; Chu, Y L

    2016-07-01

    The organic content of municipal solid waste has long been an attractive source of renewable energy, mainly as a solid fuel in waste-to-energy plants. This study focuses on the potential to use microbial fuel cells to convert municipal solid waste organics into energy using various operational conditions. The results showed that two-chamber microbial fuel cells with carbon felt and carbon felt allocation had a higher maximal power density (20.12 and 30.47 mW m(-2) for 1.5 and 4 L, respectively) than those of other electrode plate allocations. Most two-chamber microbial fuel cells (1.5 and 4 L) had a higher maximal power density than single-chamber ones with corresponding electrode plate allocations. Municipal solid waste with alkali hydrolysis pre-treatment and K3Fe(CN)6 as an electron acceptor improved the maximal power density to 1817.88 mW m(-2) (~0.49% coulomb efficiency, from 0.05-0.49%). The maximal power density from experiments using individual 1.5 and 4 L two-chamber microbial fuel cells, and serial and parallel connections of 1.5 and 4 L two-chamber microbial fuel cells, was found to be in the order of individual 4 L (30.47 mW m(-2)) > serial connection of 1.5 and 4 L (27.75) > individual 1.5 L (20.12) > parallel connection of 1.5 and 4 L (17.04) two-chamber microbial fuel cells . The power density using municipal solid waste microbial fuel cells was compared with information in the literature and discussed. © The Author(s) 2016.

  5. Quantification of food waste in public catering services - A case study from a Swedish municipality.

    PubMed

    Eriksson, Mattias; Persson Osowski, Christine; Malefors, Christopher; Björkman, Jesper; Eriksson, Emelie

    2017-03-01

    Food waste is a major problem that must be reduced in order to achieve a sustainable food supply chain. Since food waste valorisation measures, like energy recovery, have limited possibilities to fully recover the resources invested in food production, there is a need to prevent food waste. Prevention is most important at the end of the value chain, where the largest number of sub-processes have already taken place and occur in vain if the food is not used for its intended purpose, i.e. consumption. Catering facilities and households are at the very end of the food supply chain, and in Sweden the public catering sector serves a large number of meals through municipal organisations, including schools, preschools and elderly care homes. Since the first step in waste reduction is to establish a baseline measurement in order to identify problems, this study sought to quantify food waste in schools, preschools and elderly care homes in one municipality in Sweden. The quantification was conducted during three months, spread out over three semesters, and was performed in all 30 public kitchen units in the municipality of Sala. The kitchen staff used kitchen scales to quantify the mass of wasted and served food divided into serving waste (with sub-categories), plate waste and other food waste. The food waste level was quantified as 75g of food waste per portion served, or 23% of the mass of food served. However, there was great variation between kitchens, with the waste level ranging from 33g waste per portion served (13%) to 131g waste per portion served (34%). Wasted food consisted of 64% serving waste, 33% plate waste and 3% other food waste. Preschools had a lower waste level than schools, possibly due to preschool carers eating together with the children. Kitchens that received warm food prepared in another kitchen (satellite kitchens) had a 42% higher waste level than kitchens preparing all food themselves (production units), possibly due to the latter having higher

  6. Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE).

    PubMed

    Hansen, Trine Lund; Bhander, Gurbakhash S; Christensen, Thomas Højlund; Bruun, Sander; Jensen, Lars Stoumann

    2006-04-01

    A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decision-support model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4-0.7 PE), acidification (-0.06 (saving)-1.6 PE), nutrient enrichment (-1.0 (saving)-3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste

  7. Elimination of ethanethiol released from municipal wastes by absorption sequencing electrochemical oxidation.

    PubMed

    Gong, Xiao; Yang, Xu; Zheng, Haoyue; Wu, Zucheng

    2017-07-01

    As a typical municipal waste landfill gas, ethanethiol can become an air pollutant because of its low odor threshold concentration and toxicity to human beings. A hybrid process of absorption combined with electrochemical oxidation to degrade ethanethiol was investigated. The ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF 4 ) was employed as an absorbent to capture ethanethiol from the air stream. Electrochemical oxidation demonstrated that ethanethiol could be oxidized on a β-PbO 2 anode modified with fluoride, while [BMIM]BF 4 was used as an electrolyte. After a reaction time of 90 min under a current density of 50 mA/cm 2 , ethanethiol could be thoroughly destructed by the successive attack of hydroxyl radicals (·OH) electrogenerated on the surface of the β-PbO 2 anode, while the sulfur atoms in ethanethiol were ultimately converted to sulfate ions [Formula: see text]. The reaction mechanism is proposed, and the operating condition is also estimated with a kinetic model. This hybrid process could be a promising way to remove thiol compounds from municipal waste landfill gases.

  8. Identification of influencing municipal characteristics regarding household waste generation and their forecasting ability in Biscay.

    PubMed

    Oribe-Garcia, Iraia; Kamara-Esteban, Oihane; Martin, Cristina; Macarulla-Arenaza, Ana M; Alonso-Vicario, Ainhoa

    2015-05-01

    The planning of waste management strategies needs tools to support decisions at all stages of the process. Accurate quantification of the waste to be generated is essential for both the daily management (short-term) and proper design of facilities (long-term). Designing without rigorous knowledge may have serious economic and environmental consequences. The present works aims at identifying relevant socio-economic features of municipalities regarding Household Waste (HW) generation by means of factor models. Factor models face two main drawbacks, data collection and identifying relevant explanatory variables within a heterogeneous group. Grouping similar characteristics observations within a group may favour the deduction of more robust models. The methodology followed has been tested with Biscay Province because it stands out for having very different municipalities ranging from very rural to urban ones. Two main models are developed, one for the overall province and a second one after clustering the municipalities. The results prove that relating municipalities with specific characteristics, improves the results in a very heterogeneous situation. The methodology has identified urban morphology, tourism activity, level of education and economic situation as the most influencing characteristics in HW generation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. DIRECT CONVERSION OF MUNICIPAL AND AGRICULTURAL WASTES TO BIODIESEL AND ETHANOL UTILIZING A UNIQUE EXTREMOPHILIC FUNGUS - PHASE I

    EPA Science Inventory

    Sustainable Bioproducts LLC’s proposed research will further develop an efficient, economical and scalable process for conversion of municipal solid wastes and agricultural wastes to biodiesel and ethanol. The technology is based on use of a novel extremophilic fun...

  10. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    PubMed

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  11. Synthetic fuel for imitation of municipal solid waste in experimental studies of waste incineration.

    PubMed

    Thipse, S S; Sheng, C; Booty, M R; Magee, R S; Dreizin, E L

    2001-08-01

    Synthetic fuel is prepared to imitate municipal solid waste (MSW) in experimental studies of incineration processes. The fuel is composed based on the Environmental Protection Agency reports on the materials contained in MSW. Uniform synthetic fuel pellets are prepared using available and inexpensive components including newsprint, hardwood mulch, low density polyethylene, iron, animal feed, sand, and water to imitate paperbound, wood, yard trimming, plastic, metal, food wastes, and other materials in MSW. The synthetic fuel preparation procedure enables one to reproduce and modify the fuel for a wide range of experiments in which the mechanisms of waste incineration are addressed. The fuel is characterized using standard ASTM tests and it is shown that its parameters, such as combustion enthalpy, density, as well as moisture, ash and fixed carbon contents are adequate for the representation of municipal solid waste. In addition, chlorine, nitrogen, and sulfur contents of the fuel are shown to be similar to those of MSW. Experiments are conducted in which the synthetic fuel is used for operation of a pilot-scale incinerator research facility. Steady-state temperature operation regimes are achieved and reproduced in these experiments. Thermodynamic equilibrium flame conditions are computed using an isentropic one-dimensional equilibrium code for a wide range of fuel/air ratios. The molecular species used to represent the fuel composition included cellulose, water, iron, polyethylene, methanamine, and silica. The predicted concentrations of carbon monoxide, nitric oxides, and oxygen in the combustion products are compared with the respective experimental concentrations in the pilot-scale incinerator exhaust.

  12. Municipal solid waste flow and waste generation characteristics in an urban--rural fringe area in Thailand.

    PubMed

    Hiramatsu, Ai; Hara, Yuji; Sekiyama, Makiko; Honda, Ryo; Chiemchaisri, Chart

    2009-12-01

    In the urban-rural fringe of the Bangkok Metropolitan Region, rapid urbanization is creating a land-use mixture of agricultural fields and residential areas. To develop appropriate policies to enhance recycling of municipal solid waste (MSW), current MSW management was investigated in the oboto (local administrative district) of Bang Maenang in Nonthaburi Province, adjoining Bangkok. The authors conducted a structural interview survey with waste-related organizations and local residents, analysed household waste generation, and performed global positioning system (GPS) tracking of municipal garbage trucks. It was found that MSW was collected and treated by local government, private-sector entities, and the local community separately. Lack of integrated management of these entities complicated waste flow in the study area, and some residences were not served by MSW collection. Organic waste, such as kitchen garbage and yard waste, accounted for a large proportion of waste generation but was underutilized. Through GPS/GIS analysis, the waste collection rate of the generated waste amount was estimated to be 45.5- 51.1% of total generation.

  13. Experimental research of solid waste drying in the process of thermal processing

    NASA Astrophysics Data System (ADS)

    Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.

    2015-10-01

    The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.

  14. A study of tritium in municipal solid waste leachate and gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mutch Jr, R. D.; Manhattan College, Riverdale, NY; Columbia Univ., New York, NY

    2008-07-15

    It has become increasingly clear in the last few years that the vast majority of municipal solid waste landfills produce leachate that contains elevated levels of tritium. The authors recently conducted a study of landfills in New York and New Jersey and found that the mean concentration of tritium in the leachate from ten municipal solid waste (MSW) landfills was 33,800 pCi/L with a peak value of 192,000 pCi/L. A 2003 study in California reported a mean tritium concentration of 99,000 pCi/L with a peak value of 304,000 pCi/L. Studies in Pennsylvania and the UK produced similar results. The USEPAmore » MCL for tritium is 20,000 pCi/L. Tritium is also manifesting itself as landfill gas and landfill gas condensate. Landfill gas condensate samples from landfills in the UK and California were found to have tritium concentrations as high as 54,400 and 513,000 pCi/L, respectively. The tritium found in MSW leachate is believed to derive principally from gaseous tritium lighting devices used in some emergency exit signs, compasses, watches, and even novelty items, such as 'glow stick' key chains. This study reports the findings of recent surveys of leachate from a number of municipal solid waste landfills, both open and closed, from throughout the United States and Europe. The study evaluates the human health and ecological risks posed by elevated tritium levels in municipal solid waste leachate and landfill gas and the implications to their safe management. We also assess the potential risks posed to solid waste management facility workers exposed to tritium-containing waste materials in transfer stations and other solid waste management facilities. (authors)« less

  15. Municipal solid waste development phases: Evidence from EU27.

    PubMed

    Vujić, Goran; Gonzalez-Roof, Alvaro; Stanisavljević, Nemanja; Ragossnig, Arne M

    2015-12-01

    Many countries in the European Union (EU) have very developed waste management systems. Some of its members have managed to reduce their landfilled waste to values close to zero during the last decade. Thus, European Union legislation is very stringent regarding waste management for their members and candidate countries, too. This raises the following questions: Is it possible for developing and developed countries to comply with the European Union waste legislation, and under what conditions? How did waste management develop in relation to the economic development in the countries of the European Union? The correlation between waste management practices and economic development was analysed for 27 of the European Union Member States for the time period between 1995 and 2007. In addition, a regression analysis was performed to estimate landfilling of waste in relation to gross domestic product for every country. The results showed a strong correlation between the waste management variables and the gross domestic product of the EU27 members. The definition of the municipal solid waste management development phases followed a closer analysis of the relation between gross domestic product and landfilled waste. The municipal solid waste management phases are characterised by high landfilling rates at low gross domestic product levels, and landfilling rates near zero at high gross domestic product levels. Hence the results emphasize the importance of wider understanding of what is required for developing countries to comply with the European Union initiatives, and highlight the importance of allowing developing countries to make their own paths of waste management development. © The Author(s) 2015.

  16. Optimization of the treatment cycle of pressed-off leachate produced in a facility processing the organic fraction of municipal solid waste.

    PubMed

    d'Antonio, Luca; Fabbricino, Massimiliano; Pontoni, Ludovico

    2015-01-01

    The paper investigates, at a laboratory scale, the applicability of anaerobic digestion for the treatment of pressed-off leachate produced in a biomechanical treatment plant for municipal solid waste. Batch tests show that the anaerobic process proceeds smoothly and produces about 10,000 mL of methane per litre of treated leachate. The process is characterized by a lag phase lasting about 30 days, and is completed in about 2 months. Chemical oxygen demand (COD) and volatile fatty acids monitoring allows studying process kinetics that are modelled through a triple linear expression. Physical and biological treatments are also investigated to reduce the residual organic charge of the produced digestate. The best performances are obtained via aerobic degradation followed by assisted sedimentation. This cycle reduces the residual COD of about 85%, and allows the correct disposal of the final waste stream.

  17. NOX CONTROL TECHNOLOGIES APPLICABLE TO MUNICIPAL WASTE COMBUSTION

    EPA Science Inventory

    The report documents the key design and operating parameters, commercial status, demonstrated performance, and cost of three technologies available for reducing nitrogen oxide (NOx) emissions from municipal waste combustors (MWCs), and identifies technology research and developme...

  18. Municipal waste stabilization in a reactor with an integrated active and passive aeration system.

    PubMed

    Kasinski, Slawomir; Slota, Monika; Markowski, Michal; Kaminska, Anna

    2016-04-01

    To test whether an integrated passive and active aeration system could be an effective solution for aerobic decomposition of municipal waste in technical conditions, a full-scale composting reactor was designed. The waste was actively aerated for 5d, passively aerated for 35 d, and then actively aerated for 5d, and the entire composting process was monitored. During the 45-day observation period, changes in the fractional, morphological and physico-chemical characteristics of the waste at the top of the reactor differed from those in the center of the reactor. The fractional and morphological analysis made during the entire process of stabilization, showed the total reduction of organic matter measured of 82 wt% and 86 wt% at the respective depths. The reduction of organic matter calculated using the results of Lost of Ignition (LOI) and Total Organic Carbon (TOC) showed, respectively, 40.51-46.62% organic matter loss at the top and 45.33-53.39% in the center of the reactor. At the end of the process, moisture content, LOI and TOC at the top were 3.29%, 6.10% and 4.13% higher, respectively, than in the center. The results showed that application of passive aeration in larger scale simultaneously allows the thermophilic levels to be maintained during municipal solid waste composting process while not inhibiting microbial activity in the reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Municipal solid waste management in Kurdistan Province, Iran.

    PubMed

    Abduli, Mohammad Ali; Nasrabadi, Touraj

    2007-03-01

    Kurdistan Province, with an area of 28,203 square kilometers, is located in a mountainous area in the western part of Iran. From 1967 to 1997, the urban population in the major eight cities of the Kurdistan Province-namely, Baneh, Bijar, Divan Darreh, Saghez, Sanandaj, Ghorveh, Kamyaran, and Marivan-increased from 102,250 to 705,715. The proportion of the population residing in urban areas increased 90 percent during this period. In most of the cities, solid waste handling remains primitive, and well-organized procedures for it have not been established. Traditional methods of disposal, with marginal inclusion of modern conveniences, appear to be the common practice. In general, the shortcomings of the prevailing practices can be summarized as follows: The municipal solid waste management systems (MSWMSs) in this province include unsegregated collection and open dumping of municipal solid wastes. Separation of municipal solid waste in this province is in the hands of scavengers. The MSWMSs in this province lack essential infrastructure. Thus, design and implementation of modern MSWMSs in this province are essential. Principal criteria for and methods of implementing these systems are as follows: (1) rationally evaluating all functional elements so that they operate in a steady-state or equilibrium manner; (2) creating all support elements for the MSWMS in each city; (3) introducing gradual privatization of MSWMS activities; (4) creating guidelines, regulations, and instructions for all elements of MSWMSs; and (5) giving priorities to source separation and recycling programs. This paper reviews the present status of MSWMSs in eight major cities of Kurdistan Province and outlines the principle guidelines and alternatives for MSWMSs.

  20. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua.

    PubMed

    Aulinas Masó, Montserrat; Bonmatí Blasi, August

    2008-07-01

    A pilot-scale study was undertaken to evaluate alternatives to the solid waste management of a Central American municipal market located in Estelí, Nicaragua. The municipal solid waste from the local market is the second largest contributor to the municipal solid waste (MSW) stream. Waste from the market without any previous sorting or treatment is open dumped. The options evaluated in this study were windrow composting, windrow composting with yard waste, bokashi and vermicompost. Significant differences between the properties of composts produced were found; however, all of them reduce the initial waste volume and are potential useful agronomic products for a survival agrarian milieu.

  1. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analysesmore » that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.« less

  2. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.

    PubMed

    Yalcinkaya, Sedat; Malina, Joseph F

    2015-06-01

    The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this

  3. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.

    PubMed

    Wang, Kuen-Sheng; Lin, Kae-Long; Lee, Ching-Hwa

    2009-02-15

    This work describes a novel approach for melting municipal solid waste incinerator (MSWI) fly ash, based on self-propagating reactions, by using energy-efficient simulated waste-derived thermite. The self-propagating characteristics, the properties of the recycled alloy and slag and the partitioning of heavy metals during the process are also studied. Experimental results demonstrate that the mix ratio of fly ash to the starting mixture of less than 30% supports the development of the self-propagating reaction with a melting temperature of 1350-2200 degrees C. Furthermore, metallic iron (or alloy) and the slag were retrieved after activation of the thermite reactions among the starting mixtures. It was noted that more than 91wt.% of iron was retrieved as alloy and the rest of non-reductive oxides as slag. During the thermite reactions, the partition of heavy metals to the SFA and flue gas varied with the characteristics of the target metals: Cd was mainly partitioned to flue gas (75-82%), and partition slightly increased with the increasing fly ash ratio; Pb and Zn, were mainly partitioned to the SFA, and the partition increased with increasing fly ash ratio; Cu was partitioned to the SFA (18-31%) and was not found in the flue gas; and moreover stable Cr and Ni were not identified in both the SFA and flue gas. On the other hand, the determined TCLP leaching concentrations were all well within the current regulatory thresholds, despite the various FA ratios. This suggests that the vitrified fly ash samples were environmental safe in heavy metal leaching. The results of this study suggested that melting of municipal solid waste incinerator fly ash by waste-derived thermite reactions was a feasible approach not only energy-beneficial but also environmental-safe.

  4. Hydrothermal carbonization of autoclaved municipal solid waste pulp and anaerobically treated pulp digestate

    USDA-ARS?s Scientific Manuscript database

    In this study, the autoclaved organic fraction of municipal solid waste pulp (OFMSW) and the digestate from OFMSW pulp after anaerobic digestion (AD) were processed by hydrothermal carbonization (HTC) at 200, 250, and 300 °C for 30 min and 2 h. The focus of this work was to evaluate the potential fo...

  5. Reclamation of landfills and dumps of municipal solid waste in a energy efficient waste management system: methodology and practice

    NASA Astrophysics Data System (ADS)

    Orlova, Tatyana; Melnichuk, Aleksandr; Klimenko, Kseniya; Vitvitskaya, Valentina; Popovych, Valentina; Dunaieva, Ielizaveta; Terleev, Vitaly; Nikonorov, Aleksandr; Togo, Issa; Volkova, Yulia; Mirschel, Wilfried; Garmanov, Vitaly

    2017-10-01

    The article considers the methodological and practical aspects of reclamation of landfills and dumps of municipal solid waste in a waste management system. The general tendencies of system development in the context of elements of the international concept of waste hierarchy are analyzed. Statistics of the formation and burial of domestic waste indicate a strategic non-alternative to the rejection of landfill technologies in favor of environmentally, energy efficient and economically expedient ways of utilization of municipal waste as a world trend. Practical approaches to the study of territories on which there are dumps and landfills are considered to justify the design solutions for reclamation.

  6. Technoeconomic aspects of alternative municipal solid wastes treatment methods.

    PubMed

    Economopoulos, Alexander P

    2010-04-01

    This paper considers selected treatment technologies for comingled domestic and similar wastes and provides technoeconomic data and information, useful for the development of strategic management plans. For this purpose, treatment technologies of interest are reviewed and representative flow diagrams, along with material and energy balances, are presented for the typical composition of wastes in Greece; possible difficulties in the use of treatment products, along with their management implications, are discussed, and; cost functions are developed, allowing assessment of the initial capital investment and annual operating costs. Based on the latter, cost functions are developed for predicting the normalized treatment costs of alternative methods (in euro/t of MSW treated), as function of the quantity of MSW processed by plants built and operated (a) by municipality associations, and (b) by private enterprises. Finally, the alternative technologies considered are evaluated on the basis of their cost aspects, product utilization and compatibility with the EU waste framework Directive 2008/98. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Are municipal solid waste collectors at increased risk of Hepatitis A Virus infection? A Greek cross-sectional study.

    PubMed

    Rachiotis, George; Tsovili, Eva; Papagiannis, Dimitrios; Markaki, Adelais; Hadjichristodoulou, Christos

    2016-12-01

    Municipal solid waste collectors are reportedly at risk for Hepatitis A virus infection (HAV) as an occupational hazard. We aimed to investigate the prevalence and possible risk factors of HAV infection among solid waste collectors in a municipality of the broader region of Attica, Greece. A cross-sectional sero-prevalence study was conducted. Fifty (n=50) waste collectors participated in the study (response rate: 95%). The group of municipal waste collectors was compared to a convenient sample of workers not exposed to solid waste (n=83). Municipal solid waste collectors recorded a higher, but not statistically significant, prevalence of anti-HAV(+) in comparison to subjects without occupational exposure to waste (40% vs 34% respectively p=0,4). No significant associations were found between inappropriate work practices and anti- HAV (+). Education was the only factor independently associated with the risk of HAV infection. This study did not corroborate previous reports of an increased prevalence of Hepatitis A Virus infection among municipal solid waste collectors.

  8. DECHLORINATION-CONTROLLED POLYCHLORINATED DIBENZOFURAN FROM MUNICIPAL WASTE INCINERATORS

    EPA Science Inventory

    The ability to predict polychlorinated dibenzofuran (PCDF) isomer patterns from municipal waste incinerators (MWIs) enables an understanding of PCDF formation that may provide preventive measures. This work develops a model for the pattern prediction, assuming that the peak rati...

  9. Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities.

    PubMed

    Fernández-González, J M; Grindlay, A L; Serrano-Bernardo, F; Rodríguez-Rojas, M I; Zamorano, M

    2017-09-01

    The application of Directive 2008/98/CE on Municipal Solid Waste (MSW) implies the need to introduce technologies to generate energy from waste. Incineration, the most widely used method, is difficult to implement in low populated areas because it requires a large amount of waste to be viable (100,000 tons per year). This paper analyses the economic and environmental costs of different MSW-to-Energy technologies (WtE) in an area comprising of 13 municipalities in southern Spain. We analyse anaerobic digestion (Biomethanization), the production of solid recovered fuel (SRF) and gasification, and compare these approaches to the present Biological Mechanical Treatment (BMT) with elimination of the reject in landfill, and incineration with energy recovery. From an economic standpoint the implementation of WtE systems reduces the cost of running present BMT systems and incineration; gasification presents the lowest value. From the environmental standpoint, Life Cycle Assessment shows that any WtE alternatives, including incineration, present important advantages for the environment when compared to BMT. Finally, in order to select the best alternative, a multi-criteria method is applied, showing that anaerobic digestion is the optimal solution for the area studied. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of biochars produced from solid organic municipal waste on soil quality parameters.

    PubMed

    Randolph, P; Bansode, R R; Hassan, O A; Rehrah, Dj; Ravella, R; Reddy, M R; Watts, D W; Novak, J M; Ahmedna, M

    2017-05-01

    New value-added uses for solid municipal waste are needed for environmental and economic sustainability. Fortunately, value-added biochars can be produced from mixed solid waste, thereby addressing solid waste management issues, and enabling long-term carbon sequestration. We hypothesize that soil deficiencies can be remedied by the application of municipal waste-based biochars. Select municipal organic wastes (newspaper, cardboard, woodchips and landscaping residues) individually or in a 25% blend of all four waste streams were used as feedstocks of biochars. Three sets of pyrolysis temperatures (350, 500, and 750 °C) and 3 sets of pyrolysis residence time (2, 4 and 6 h) were used for biochar preparation. The biochar yield was in the range of 21-62% across all feedstocks and pyrolysis conditions. We observed variations in key biochar properties such as pH, electrical conductivity, bulk density and surface area depending on the feedstocks and production conditions. Biochar increased soil pH and improved its electrical conductivity, aggregate stability, water retention and micronutrient contents. Similarly, leachate from the soil amended with biochar showed increased pH and electrical conductivity. Some elements such as Ca and Mg decreased while NO 3 -N increased in the leachates of soils incubated with biochars. Overall, solid waste-based biochar produced significant improvements to soil fertility parameters indicating that solid municipal wastes hold promising potential as feedstocks for manufacturing value-added biochars with varied physicochemical characteristics, allowing them to not only serve the needs for solid waste management and greenhouse gas mitigation, but also as a resource for improving the quality of depleted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A facility location model for municipal solid waste management system under uncertain environment.

    PubMed

    Yadav, Vinay; Bhurjee, A K; Karmakar, Subhankar; Dikshit, A K

    2017-12-15

    In municipal solid waste management system, decision makers have to develop an insight into the processes namely, waste generation, collection, transportation, processing, and disposal methods. Many parameters (e.g., waste generation rate, functioning costs of facilities, transportation cost, and revenues) in this system are associated with uncertainties. Often, these uncertainties of parameters need to be modeled under a situation of data scarcity for generating probability distribution function or membership function for stochastic mathematical programming or fuzzy mathematical programming respectively, with only information of extreme variations. Moreover, if uncertainties are ignored, then the problems like insufficient capacities of waste management facilities or improper utilization of available funds may be raised. To tackle uncertainties of these parameters in a more efficient manner an algorithm, based on interval analysis, has been developed. This algorithm is applied to find optimal solutions for a facility location model, which is formulated to select economically best locations of transfer stations in a hypothetical urban center. Transfer stations are an integral part of contemporary municipal solid waste management systems, and economic siting of transfer stations ensures financial sustainability of this system. The model is written in a mathematical programming language AMPL with KNITRO as a solver. The developed model selects five economically best locations out of ten potential locations with an optimum overall cost of [394,836, 757,440] Rs. 1 /day ([5906, 11,331] USD/day) approximately. Further, the requirement of uncertainty modeling is explained based on the results of sensitivity analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Risks of municipal solid waste incineration: an environmental perspective.

    PubMed

    Denison, R A; Silbergeld, E K

    1988-09-01

    The central focus of the debate over incineration of municipal solid waste (MSW) has shifted from its apparent management advantages to unresolved risk issues. This shift is a result of the lack of comprehensive consideration of risks associated with incineration. We discuss the need to expand incinerator risk assessment beyond the limited view of incinerators as stationary air pollution sources to encompass the following: other products of incineration, ash in particular, and pollutants other than dioxins, metals in particular; routes of exposure in addition to direct inhalation; health effects in addition to cancer; and the cumulative nature of exposure and health effects induced by many incinerator-associated pollutants. Rational MSW management planning requires that the limitations as well as advantages of incineration be recognized. Incineration is a waste-processing--not a waste disposal--technology, and its products pose substantial management and disposal problems of their own. Consideration of the nature of these products suggests that incineration is ill-suited to manage the municipal wastestream in its entirety. In particular, incineration greatly enhances the mobility and bioavailability of toxic metals present in MSW. These factors suggest that incineration must be viewed as only one component in an integrated MSW management system. The potential for source reduction, separation, and recycling to increase the safety and efficiency of incineration should be counted among their many benefits. Risk considerations dictate that alternatives to the use of toxic metals at the production stage also be examined in designing an effective, long-term MSW management strategy.

  13. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  14. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  15. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  16. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  17. Development of tools for evaluating integrated municipal waste management using life-cycle management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorneloe, S.; Weitz, K.; Nishtala, S.

    1998-08-01

    Municipal solid waste (MSW) management increasingly is based on integrated systems. The US initiated research in 1994 through funding by the US Environmental Protection Agency and the US Department of Energy to develop (1) a decision support tool; (2) a database; and (3) case studies. This paper provides an overview of the research that is in process.

  18. Electrical and electronic plastics waste co-combustion with municipal solid waste for energy recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vehlow, J.; Mark, F.E.

    1997-12-01

    The recovery or disposal of end-of-life electrical and electronic (E+E) equipment is receiving considerable attention from industry organisations such as APME in order to supply factual information which can be used in the development of a clear industry strategy. It is hoped that such information will persuade EU member states to define the best management practices for this waste stream. One of the difficulties regarding the recovery or disposal of E+E waste is a lack of data regarding its behaviour when incinerated. This lack of data has led to unfounded conclusions by sonic parties that plastic wastes contain harmful halogenatedmore » species which are difficult to treat and remove, and when incinerated contribute to the emission of halogenated species and are responsible for the major portion of emissions. APME has a comprehensive testing program investigating the impact of plastics on municipal solid waste (MSW) incineration. APME`s previous work has demonstrated the positive, beneficial effects of mixed waste plastics in the MSW energy recovery process as well as studying halogen behaviour during the combustion of packaging plastics waste and construction foam from the building industry. The current study was designed to evaluate the incineration of MSW containing typical levels of electrical and electronic (E+E) plastic waste, as well as MSW containing E+E waste in amounts up to 12%.« less

  19. Revisiting the elemental composition and the calorific value of the organic fraction of municipal solid wastes.

    PubMed

    Komilis, Dimitrios; Evangelou, Alexandros; Giannakis, Georgios; Lymperis, Constantinos

    2012-03-01

    In this work, the elemental content (C, N, H, S, O), the organic matter content and the calorific value of various organic components that are commonly found in the municipal solid waste stream were measured. The objective of this work was to develop an empirical equation to describe the calorific value of the organic fraction of municipal solid waste as a function of its elemental composition. The MSW components were grouped into paper wastes, food wastes, yard wastes and plastics. Sample sizes ranged from 0.2 to 0.5 kg. In addition to the above individual components, commingled municipal solid wastes were sampled from a bio-drying facility located in Crete (sample sizes ranged from 8 to 15 kg) and were analyzed for the same parameters. Based on the results of this work, an improved empirical model was developed that revealed that carbon, hydrogen and oxygen were the only statistically significant predictors of calorific value. Total organic carbon was statistically similar to total carbon for most materials in this work. The carbon to organic matter ratio of 26 municipal solid waste substrates and of 18 organic composts varied from 0.40 to 0.99. An approximate chemical empirical formula calculated for the organic fraction of commingled municipal solid wastes was C(32)NH(55)O(16). Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The impact of municipal waste combustion in small heat sources

    NASA Astrophysics Data System (ADS)

    Vantúch, Martin; Kaduchová, Katarína; Lenhard, Richard

    2016-06-01

    At present there is a tendency to make greater use for heating houses for burning solid fuel, such as pieces of wood, coal, coke, local sources of heat to burn natural gas. This tendency is given both the high price of natural gas as well as the availability of cheaper solid fuel. In many cases, in the context saving heating costs, respectively in the context of the disposal of waste is co-incinerated with municipal solid fuels and wastes of different composition. This co entails increased production emissions such as CO (carbon monoxide), NOx (nitrogen oxides), particulate matter (particulate matter), PM10, HCl (hydrogen chloride), PCDD/F (polychlorinated dibenzodioxins and dibenzofurans), PCBs (polychlorinated biphenyls) and others. The experiment was focused on the emission factors from the combustion of fossil fuels in combination with municipal waste in conventional boilers designed to burn solid fuel.

  1. A systematic critical review of epidemiological studies on public health concerns of municipal solid waste handling.

    PubMed

    Ncube, France; Ncube, Esper Jacobeth; Voyi, Kuku

    2017-03-01

    The ultimate aim of this review was to summarise the epidemiological evidence on the association between municipal solid waste management operations and health risks to populations residing near landfills and incinerators, waste workers and recyclers. To accomplish this, the sub-aims of this review article were to (1) examine the health risks posed by municipal solid waste management activities, (2) determine the strengths and gaps of available literature on health risks from municipal waste management operations and (3) suggest possible research needs for future studies. The article reviewed epidemiological literature on public health concerns of municipal solid waste handling published in the period 1995-2014. The PubMed and MEDLINE computerised literature searches were employed to identify the relevant papers using the keywords solid waste, waste management, health risks, recycling, landfills and incinerators. Additionally, all references of potential papers were examined to determine more articles that met the inclusion criteria. A total of 379 papers were identified, but after intensive screening only 72 met the inclusion criteria and were reviewed. Of these studies, 33 were on adverse health effects in communities living near waste dumpsites or incinerators, 24 on municipal solid waste workers and 15 on informal waste recyclers. Reviewed studies were unable to demonstrate a causal or non-causal relationship due to various limitations. In light of the above findings, our review concludes that overall epidemiological evidence in reviewed articles is inadequate mainly due to methodological limitations and future research needs to develop tools capable of demonstrating causal or non-causal relationships between specific waste management operations and adverse health endpoints.

  2. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Units a b c Municipal waste combustion technology Limits for class I municipal...

  3. 40 CFR Table 1 to Subpart Fff of... - Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal solid waste at the following MWC sites: (a) Foster Wheeler Charleston Resource Recovery Facility... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Municipal Waste Combustor Units (MWC... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Large Municipal Waste...

  4. 40 CFR Table 1 to Subpart Fff of... - Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal solid waste at the following MWC sites: (a) Foster Wheeler Charleston Resource Recovery Facility... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Municipal Waste Combustor Units (MWC... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Large Municipal Waste...

  5. Application of material flow analysis to municipal solid waste in Maputo City, Mozambique.

    PubMed

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-03-01

    Understanding waste flows within an urban area is important for identifying the main problems and improvement opportunities for efficient waste management. Assessment tools such as material flow analysis (MFA), an extensively applied method in waste management studies, provide a structured and objective evaluating process to characterize the waste management system best, to identify its shortcomings and to propose suitable strategies. This paper presents the application of MFA to municipal solid waste management (MSWM) in Maputo City, the capital of Mozambique. The results included the identification and quantification of the main input and output flows of the MSWM system in 2007 and 2014, from the generation, material recovery and collection, to final disposal and the unaccounted flow of municipal solid waste (MSW). We estimated that the waste generation increased from 397×10 3  tonnes in 2007 to 437×10 3  tonnes in 2014, whereas the total material recovery was insignificant in both years - 3×10 3 and 7×10 3  tonnes, respectively. As for collection and final disposal, the official collection of waste to the local dumpsite in the inner city increased about threefold, from 76×10 3 to 253×10 6  tonnes. For waste unaccounted for, the estimates indicated a reduction during the study period from 300×10 3 to 158×10 3  tonnes, due to the increase of collection services. The emphasized aspects include the need for practical waste reduction strategies, the opportunity to explore the potential for material recovery, careful consideration regarding the growing trend of illegal dumping and the urgency in phasing-out from the harmful practice of open dumping.

  6. The impact of socioeconomic factors on municipal solid waste generation in São Paulo, Brazil.

    PubMed

    Vieira, Victor H Argentino de Morais; Matheus, Dácio R

    2018-01-01

    Social factors have not been sufficiently explored in municipal solid waste management studies. Latin America has produced even fewer studies with this approach; technical and economic investigations have prevailed. We explored the impacts of socioeconomic factors on municipal solid waste generation in Greater Sao Paulo, which includes 39 municipalities. We investigated the relations between municipal solid waste generation and social factors by Pearson's correlation coefficient. The Student's t-test (at p ← 0.01) proved significance, and further regression analysis was performed with significant factors. We considered 10 socioeconomic factors: population, rural population, density, life expectancy, education (secondary, high and undergraduate level), income per capita, inequality and human development. A later multicollinearity analysis resulted in the determination of inequality (r p = 0.625) and income per capita (r p = 0.607) as major drivers. The results showed the relevance of considering social aspects in municipal solid waste management and isolated inequality as an important factor in planning. Inequality must be used as a complementary factor to income, rather than being used exclusively. Inequality may explain differences of waste generation between areas with similar incomes because of consumption patterns. Therefore, unequal realities demand unequal measures to avoid exacerbation, for example, pay-as-you-throw policies instead of uniform fees. Unequal realities also highlight the importance of tiering policies beyond the waste sector, such as sustainable consumption.

  7. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    PubMed

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Municipal solid waste in Brazil: A review.

    PubMed

    Alfaia, Raquel Greice de Souza Marotta; Costa, Alyne Moraes; Campos, Juacyara Carbonelli

    2017-12-01

    The production of municipal solid waste (MSW) represents one of the greatest challenges currently faced by waste managers all around the world. In Brazil, the situation with regard to solid waste management is still deficient in many aspects. In 2015, only 58.7% of the MSW collected in Brazilian cities received appropriate final disposal. It was only as late as 2010 that Brazil established the National Policy on Solid Waste (NPSW) based on the legislation and programmes established in the 1970s in more developed countries. However, the situation with regard to MSW management has changed little since the implementation of the NPSW. Recent data show that, in Brazil, disposal in sanitary landfills is practically the only management approach to MSW. Contrary to expectations, despite the economic recession in 2015 the total annual amount of MSW generated nationwide increased by 1.7%, while in the same period the Brazilian population grew by 0.8% and economic activity decreased by 3.8%. The article describes the panorama with regard to MSW in Brazil from generation to final disposal and discusses the issues related to the delay in implementing the NPSW. The collection of recyclable material, the recycling process, the application of reverse logistics and the determination of the gravimetric composition of MSW in Brazil are also addressed in this article. Finally, a brief comparison is made between MSW management in Brazil and in other countries, the barriers to developing effective waste disposal systems are discussed and some recommendations for future MSW management development in Brazil are given.

  9. Distribution of aquifers, liquid-waste impoundments, and municipal water-supply sources, Massachusetts

    USGS Publications Warehouse

    Delaney, David F.; Maevsky, Anthony

    1980-01-01

    Impoundments of liquid waste are potential sources of ground-water contamination in Massachusetts. The map report, at a scale of 1 inch equals 4 miles, shows the idstribution of aquifers and the locations of municipal water-supply sources and known liquid-waste impoundments. Ground water, an important source of municipal water supply, is produced from shallow sand and gravel aquifers that are generally unconfined, less than 200 feet thick, and yield less than 2,000 gallons per minute to individual wells. These aquifers commonly occupy lowlands and stream valleys and are most extensive in eastern Massachusetts. Surface impoundments of liquid waste are commonly located over these aquifers. These impoundments may leak and allow waste to infiltrate underlying aquifers and alter their water quality. (USGS)

  10. EVALUATION OF MUNICIPAL SOLID WASTE LANDFILL COVER DESIGNS

    EPA Science Inventory

    The HELP (Hydrologic Evaluation of Landfill Performance) Model was used to evaluate the hydrologic behavior of a series of one-, two-, and three-layer cover designs for municipal solid waste landfill cover designs were chosen to isolate the effects of features such as surface veg...

  11. Municipal solid waste generation and disposal in Robe town, Ethiopia.

    PubMed

    Erasu, Duguma; Faye, Tesfaye; Kiros, Amaha; Balew, Abel

    2018-04-20

    The amount of solid waste generated in developing countries is rising from time to time due to economic growth, change in consumer behavior and lifestyles of people. But it is hard to manage and handle the increase of solid waste with existing waste management infrastructure. Thus, the management system of solid waste is very poor and become a serious problem. The main purpose of this study is to quantify the volume of solid waste generated and investigate factors affecting generation and disposal of wastes in the study area. The result of this study indicated that total waste generated from households was about 97.092kg/day.Furthermore, the study reveals that the solid waste generation rate of the town is 0.261kg/person/day.About 57.5% of solid waste is properly disposed of to landfill site whereas the remaining 42.5% is illegally dumped at the roadsides and open fields. Implication Statement Nowadays, in developing countries there is high concentration of people in urban areas and cause for the generation of enormous concentration of municipal waste in urban areas. Therefore this finding will be important for various policy makers and town planners. It may also serve as a benchmark for the municipal authorities of the town for whom the problem is still invisible and negligible and can push environmental protection authorities to reexamine the implementation of their policies and strategies with regard to the broader issues of human and environmental health condition of town dwellers.

  12. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  13. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  14. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  15. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  16. 40 CFR 60.1545 - Does this subpart directly affect municipal waste combustion unit owners and operators in my State?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit owners and operators in my State? 60.1545 Section 60.1545 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... municipal waste combustion unit owners and operators in my State? (a) No, this subpart does not directly...

  17. 40 CFR Table 1 to Subpart Fff of... - Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Municipal Waste Combustor Units (MWC... FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements for Large Municipal Waste... Part 62—Municipal Waste Combustor Units (MWC Units) Excluded From Subpart FFF 1 State MWC units Alabama...

  18. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.

    PubMed

    Abbasi, Maryam; El Hanandeh, Ali

    2016-10-01

    Municipal solid waste (MSW) management is a major concern to local governments to protect human health, the environment and to preserve natural resources. The design and operation of an effective MSW management system requires accurate estimation of future waste generation quantities. The main objective of this study was to develop a model for accurate forecasting of MSW generation that helps waste related organizations to better design and operate effective MSW management systems. Four intelligent system algorithms including support vector machine (SVM), adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN) and k-nearest neighbours (kNN) were tested for their ability to predict monthly waste generation in the Logan City Council region in Queensland, Australia. Results showed artificial intelligence models have good prediction performance and could be successfully applied to establish municipal solid waste forecasting models. Using machine learning algorithms can reliably predict monthly MSW generation by training with waste generation time series. In addition, results suggest that ANFIS system produced the most accurate forecasts of the peaks while kNN was successful in predicting the monthly averages of waste quantities. Based on the results, the total annual MSW generated in Logan City will reach 9.4×10(7)kg by 2020 while the peak monthly waste will reach 9.37×10(6)kg. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Diversity of Cellulolytic Microbes and the Biodegradation of Municipal Solid Waste by a Potential Strain

    PubMed Central

    Gautam, S. P.; Bundela, P. S.; Pandey, A. K.; Jamaluddin; Awasthi, M. K.; Sarsaiya, S.

    2012-01-01

    Municipal solid waste contains high amounts of cellulose, which is an ideal organic waste for the growth of most of microorganism as well as composting by potential microbes. In the present study, Congo red test was performed for screening of microorganism, and, after selecting a potential strains, it was further used for biodegradation of organic municipal solid waste. Forty nine out of the 250 different microbes tested (165 belong to fungi and 85 to bacteria) produced cellulase enzyme and among these Trichoderma viride was found to be a potential strain in the secondary screening. During the biodegradation of organic waste, after 60 days, the average weight losses were 20.10% in the plates and 33.35% in the piles. There was an increase in pH until 20 days. pH however, stabilized after 30 days in the piles. Temperature also stabilized as the composting process progressed in the piles. The high temperature continued until 30 days of decomposition, after which the temperature dropped to 40°C and below during the maturation. Good quality compost was obtained in 60 days. PMID:22518141

  20. Hydrogen production by gasification of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robers, R.

    1994-05-06

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such an energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which is considered to be largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using Aspen Plus{sup {trademark}} flowsheeting software to simulate a process which produces hydrogen gas from MSW; the modelmore » will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design.« less

  1. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  2. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  3. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  4. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  5. 40 CFR 60.1855 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units that use activated carbon? 60.1855 Section 60.1855 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on... waste combustion units that use activated carbon? For municipal waste combustion units that use...

  6. Modelling and evaluating municipal solid waste management strategies in a mega-city: the case of Ho Chi Minh City.

    PubMed

    ThiKimOanh, Le; Bloemhof-Ruwaard, Jacqueline M; van Buuren, Joost Cl; van der Vorst, Jack Gaj; Rulkens, Wim H

    2015-04-01

    Ho Chi Minh City is a large city that will become a mega-city in the near future. The city struggles with a rapidly increasing flow of municipal solid waste and a foreseeable scarcity of land to continue landfilling, the main treatment of municipal solid waste up to now. Therefore, additional municipal solid waste treatment technologies are needed. The objective of this article is to support decision-making towards more sustainable and cost-effective municipal solid waste strategies in developing countries, in particular Vietnam. A quantitative decision support model is developed to optimise the distribution of municipal solid waste from population areas to treatment plants, the treatment technologies and their capacities for the near future given available infrastructure and cost factors. © The Author(s) 2015.

  7. Fate of heavy metals during municipal solid waste incineration.

    PubMed

    Abanades, S; Flamant, G; Gagnepain, B; Gauthier, D

    2002-02-01

    A thermodynamic analysis was performed to determine whether it is suitable to predict the heavy metal (HM) speciation during the Municipal Solid Waste Incineration process. The fate of several selected metals (Cd, Pb, Zn, Cr, Hg, As, Cu, Co, Ni) during incineration was theoretically investigated. The equilibrium analysis predicted the metal partitioning during incineration and determined the impact of operating conditions (temperature and gas composition) on their speciation. The study of the gas composition influence was based on the effects of the contents of oxygen (reducing or oxidising conditions) and chlorine on the HM partitioning. The theoretical HM speciation which was calculated in a complex system representing a burning sample of Municipal Solid Waste can explain the real partitioning (obtained from literature results) of all metals among the various ashes except for Pb. Then, the results of the thermodynamic study were compared with those of characterisation of real incinerator residues, using complementary techniques (chemical extraction series and X-ray micro-analyses). These analysis were performed to determine experimentally the speciation of the three representative metals Cr, Pb, and Zn. The agreement is good for Cr and Zn but not for Pb again, which mainly shows unleachable chemical speciations in the residues. Pb tends to remain in the bottom ash whereas thermodynamics often predicts its complete volatilisation under chlorides, and thus its presence exclusively in fly ash.

  8. 76 FR 53897 - EPA Seeking Input Materials Measurement; Municipal Solid Waste (MSW), Recycling, and Source...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... stakeholder input regarding the efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States'' as part of a broader discussion about sustainable materials management... efficacy and scope of the MSW Characterization Report called ``Municipal Solid Waste in the United States...

  9. Geospatial strategy for sustainable management of municipal solid waste for growing urban environment.

    PubMed

    Pandey, Prem Chandra; Sharma, Laxmi Kant; Nathawat, Mahendra Singh

    2012-04-01

    This paper presents the implementation of a Geospatial approach for improving the Municipal Solid Waste (MSW) disposal suitability site assessment in growing urban environment. The increasing trend of population growth and the absolute amounts of waste disposed of worldwide have increased substantially reflecting changes in consumption patterns, consequently worldwide. MSW is now a bigger problem than ever. Despite an increase in alternative techniques for disposing of waste, land-filling remains the primary means. In this context, the pressures and requirements placed on decision makers dealing with land-filling by government and society have increased, as they now have to make decisions taking into considerations environmental safety and economic practicality. The waste disposed by the municipal corporation in the Bhagalpur City (India) is thought to be different from the landfill waste where clearly scientific criterion for locating suitable disposal sites does not seem to exist. The location of disposal sites of Bhagalpur City represents the unconsciousness about the environmental and public health hazards arising from disposing of waste in improper location. Concerning about urban environment and health aspects of people, a good method of waste management and appropriate technologies needed for urban area of Bhagalpur city to improve this trend using Multi Criteria Geographical Information System and Remote Sensing for selection of suitable disposal sites. The purpose of GIS was to perform process to part restricted to highly suitable land followed by using chosen criteria. GIS modeling with overlay operation has been used to find the suitability site for MSW.

  10. State of municipal solid waste management in Delhi, the capital of India.

    PubMed

    Talyan, Vikash; Dahiya, R P; Sreekrishnan, T R

    2008-01-01

    Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000tonnes/day of MSW, which is projected to rise to 17,000-25,000tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW is collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system.

  11. State of municipal solid waste management in Delhi, the capital of India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talyan, Vikash; Dahiya, R.P.; Sreekrishnan, T.R.

    2008-07-01

    Delhi is the most densely populated and urbanized city of India. The annual growth rate in population during the last decade (1991-2001) was 3.85%, almost double the national average. Delhi is also a commercial hub, providing employment opportunities and accelerating the pace of urbanization, resulting in a corresponding increase in municipal solid waste (MSW) generation. Presently the inhabitants of Delhi generate about 7000 tonnes/day of MSW, which is projected to rise to 17,000-25,000 tonnes/day by the year 2021. MSW management has remained one of the most neglected areas of the municipal system in Delhi. About 70-80% of generated MSW ismore » collected and the rest remains unattended on streets or in small open dumps. Only 9% of the collected MSW is treated through composting, the only treatment option, and rest is disposed in uncontrolled open landfills at the outskirts of the city. The existing composting plants are unable to operate to their intended treatment capacity due to several operational problems. Therefore, along with residue from the composting process, the majority of MSW is disposed in landfills. In absence of leachate and landfill gas collection systems, these landfills are a major source of groundwater contamination and air pollution (including generation of greenhouse gases). This study describes and evaluates the present state of municipal solid waste management in Delhi. The paper also summarizes the proposed policies and initiatives of the Government of Delhi and the Municipal Corporation of Delhi to improve the existing MSW management system.« less

  12. Reuse of municipal solid wastes incineration fly ashes in concrete mixtures.

    PubMed

    Collivignarelli, Carlo; Sorlini, Sabrina

    2002-01-01

    This study is aimed at assessing the feasibility of concrete production using stabilized m.s.w. (municipal solid waste) incineration fly ashes in addition to natural aggregates. The tested fly ashes were washed and milled, then stabilized by a cement-lime process and finally were reused as a "recycled aggregate" for cement mixture production, in substitution of a natural aggregate (with dosage of 200-400 kg m(-3)). These mixtures, after curing, were characterized with conventional physical-mechanical tests (compression, traction, flexure, modulus of elasticity, shrinkage). In samples containing 200 kg(waste) m(-3)(concrete), a good compressive strength was achieved after 28 days of curing. Furthermore, concrete leaching behavior was evaluated by means of different leaching tests, both on milled and on monolithic samples. Experimental results showed a remarkable reduction of metal leaching in comparison with raw waste. In some cases, similar behavior was observed in "natural" concrete (produced with natural aggregates) and in "waste containing" concrete.

  13. Non-composted municipal solid waste byproduct influences soil and plant nutrients five years after soil reclamation

    USDA-ARS?s Scientific Manuscript database

    Concerns for the mounting supply of municipal solid waste being generated combined with decreasing landfill space have compelled military installations to evaluate alternative methods for disposal. One approach to reduce landfilling is the use of a new garbage-processing technology that sterilizes a...

  14. Thermo-Catalytic Reforming of municipal solid waste.

    PubMed

    Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas

    2017-10-01

    Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H 2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content <7wt.% and water content <4wt.%. Due to the bio-oil's chemical and physical properties, the bio-oil was found to be directly miscible with fossil diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H 2 content of 36vol% and HHV of 17.23MJ/Nm 3 , and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H 2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bio-processing of solid wastes and secondary resources for metal extraction - A review.

    PubMed

    Lee, Jae-Chun; Pandey, Banshi Dhar

    2012-01-01

    Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection.

    PubMed

    Singh, Karamjit; Kadambala, Ravi; Jain, Pradeep; Xu, Qiyong; Townsend, Timothy G

    2014-06-01

    Waste hydraulic conductivity and anisotropy represent two important parameters controlling fluid movement in landfills, and thus are the key inputs in design methods where predictions of moisture movement are necessary. Although municipal waste hydraulic conductivity has been estimated in multiple laboratory and field studies, measurements of anisotropy, particularly at full scale, are rare, even though landfilled municipal waste is generally understood to be anisotropic. Measurements from a buried liquids injection well surrounded by pressure transducers at a full-scale landfill in Florida were collected and examined to provide an estimate of in-situ waste anisotropy. Liquids injection was performed at a constant pressure and the resulting pore pressures in the surrounding waste were monitored. Numerical fluid flow modeling was employed to simulate the pore pressures expected to occur under the conditions operated. Nine different simulations were performed at three different lateral hydraulic conductivity values and three different anisotropy values. Measured flowrate and pore pressures collected from conditions of approximate steady state were compared with the simulation results to assess the range of anisotropies. The results support that compacted municipal waste in landfills is anisotropic, provide anisotropy estimates greater than previous measurements, and suggest that anisotropy decreases with landfill depth. © The Author(s) 2014.

  17. Organic compounds in re-circulated leachates of aerobic biological treated municipal solid waste.

    PubMed

    Franke, Matthias; Jandl, Gerald; Leinweber, Peter

    2006-10-01

    Biodegradation of organic matter is required to reduce the potential of municipal solid waste for producing gaseous emissions and leaching contaminants. Therefore, we studied leachates of an aerobic-treated waste from municipal solids and a sewage sludge mixture that were re-circulated to decrease the concentration of biodegradable organic matter in laboratory-scale reactors. After 12 months, the total organic C and biological and chemical oxygen demands were reduced, indicating the biodegradation of organic compounds in the leachates. Curie-point pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) and pyrolysis-field ionization mass spectrometry (Py-FIMS) revealed that phenols, alkylaromatic compounds, N-containing compounds and carbohydrates were the predominate compounds in the leachates and solid waste. Leachate re-circulation led to a higher thermal stability of the residual organic matter as indicated by temperature-resolved Py-FIMS. Admixture of sewage sludge to solid waste was less effective in removing organic compounds from the leachates. It resulted in drastic higher and more bio-resistant loads of organic matter in the leachates and revealed increased proportions of alkylaromatic compounds. The biodegradation of organic matter in leachates, re-circulated through municipal solid waste, offers the potential for improved aerobic waste treatments and should be investigated on a larger scale.

  18. Risk of Potential Exposure Incident in Non-healthcare Workers in Contact with Infectious and Municipal Waste

    PubMed Central

    Kanisek, Sanja; Gmajnić, Rudika; Barać, Ivana

    2018-01-01

    Abstract Introduction The proper classification of sharp and infectious waste in situ by the healthcare workers is an important measure of prevention of sharps and other exposure incidents in non-healthcare workers, who handle such waste. The aim was to examine the practice of classifying sharp and infectious waste in family and dental practices. Methods An analysis of 50 bags of infectious and 50 bags of municipal waste from five family and five dental practices for five days in October 2016 at the Health centre Osijek. Results Healthcare workers in 70% of the practices deposited sharps in infectious waste. In 56% of infectious waste bags, sharp object were found. More risky bags of infectious waste were produced by family practices (64%), but with no significant differences in relation to dental practices (48%), (P=0.143). Disposing of infectious into municipal waste was the case in 90% of the practitioners, where in 60% of municipal waste bags, infectious waste was disposed. Dental practices produced more risky bags of municipal waste (76%) in relation to family practices (44%), but with no significant difference (P=0.714). Conclusions The results of this research point to importance of performing audits of proper disposal of sharps and infectious waste to reduce the risks of injury to non-healthcare workers who come into contact with the said waste. Given results could be used for framing written protocols of proper disposal of sharps and infectious waste that should be visibly available in family and dental practices and for education of healthcare workers. PMID:29651317

  19. Development of Proposals for Solid Municipal Waste Landfill Placing by Example of Regions of the Far North

    NASA Astrophysics Data System (ADS)

    Oznobihina, L. A.; Pelymskaya, O.

    2017-11-01

    The sustainable development of each region, the quality of its environment depends to a great extent on the provision of environmental safety, especially in the field of waste management. The growth of industrial production in the Tyumen region and the improvement of the population social base contributes to a significant increase in production and consumption waste. The article is devoted to the problem of the emergence, recycling and utilization of an increasing amount of solid municipal waste every year. The author considers the unresolved issues of the location, processing and disposal of waste in the Nefteyugansk District, the Khanty-Mansi Autonomous Okrug - Yugra, leading to increase in their volumes, the size of the territory they occupy, increase in the number of unauthorized landfills, intensive pollution of soils, surface and groundwaters and atmospheric air. Proposals for the placement of a comprehensive inter-municipal TKO testing ground have been developed. The most favorable territory for the location of the TKO enterprise was determined.

  20. Analytical study of endocrine-disrupting chemicals in leachate treatment process of municipal solid waste (MSW) landfill sites.

    PubMed

    Asakura, Hiroshi; Matsuto, Toshihiko; Tanaka, Nobutoshi

    2007-01-01

    Influent and processed water were sampled at different points in the leachate treatment facilities of five municipal solid waste (MSW) landfill sites. Then, the concentrations of endocrine-disrupting chemicals (EDCs), namely, alkylphenols (APs), bisphenol A (BPA), phthalic acid esters (PAEs) and organotin compounds (OTs), in the treated leachate samples were determined and the behavior of the EDCs in the treatment processes was discussed. The concentrations of APs were as low as those in surface waters, and no OTs were detected (detection limit: 0.01 microg/L). Meanwhile, diethylhexyl phthalate (DEHP), which was the most abundant of the four substances measured as PAEs, and BPA were found in all of the influent samples. BPA was considerably degraded by aeration, except when the water temperature was low and the total organic carbon (TOC) was high. By contrast, aeration, biological treatment, and coagulation/sedimentation removed only a small amount of DEHP.

  1. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  2. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  3. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  4. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  5. 40 CFR 60.1200 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1200 Section 60.1200 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Good Combustion Practices: Operating Requirements § 60.1200 What are the operating practice...

  6. Cannon shredding of municipal solid waste for the preparation of biological feedstock

    NASA Astrophysics Data System (ADS)

    Burke, J.

    1981-04-01

    Explosive decompression as a method of size reduction of materials found in municipal solid waste (MSW) was studied and preliminary data related to the handling and wet separation of exploded material was gathered. Steam was emphasized as the source of pressure. Municipal refuse was placed in an 8-ft long, 10.75-in. ID steel cannon which was sealed and pressurized. After an appropriate time, the cannon muzzle closure was opened and the test material expelled from the cannon through a constrictive orifice, resulting in explosive decompression. Flash evaporation of pressurized saturated water, expansion of steam, and the strong turbulence at the cannon muzzle accomplished size reduction. Hydraulic processing is shown to be an effective technique for separating heavy and light fractions.

  7. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  8. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  9. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  10. 40 CFR 62.15030 - What are my obligations under this subpart if I reduce my small municipal waste combustion unit's...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart if I reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons... POLLUTANTS Federal Plan Requirements for Small Municipal Waste Combustion Units Constructed on or Before... reduce my small municipal waste combustion unit's combustion capacity to less than 35 tons per day? If...

  11. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  12. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  13. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  14. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  15. 40 CFR 60.1690 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 60.1690 Section 60.1690 Protection of Environment... SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operating Requirements § 60.1690 What...

  16. Anaerobic Treatment of Municipal Solid Waste and Sludge for Energy Production and Recycling of Nutrients

    NASA Astrophysics Data System (ADS)

    Leinonen, S.

    This volume contains 18 papers presented at a Nordic workshop dealing with application of anaerobic decomposition processes on various types of organic wastes, held at the Siikasalmi Research and Experimental Station of the University of Joensuu on 1-2 Oct. 1992. Subject coverage of the presentations extends from the biochemical and microbiological principles of organic waste processing to descriptions and practical experiences of various types of treatment plants. The theoretical and experimental papers include studies on anaerobic and thermophilic degradation processes, methanogenesis, effects of hydrogen, treatment of chlorinated and phenolic compounds, and process modeling, while the practical examples range from treatment of various types of municipal, industrial, and mining wastes to agricultural and fish farm effluents. The papers provide technical descriptions of several biogas plants in operation. Geographically, the presentations span the Nordic and Baltic countries.

  17. Metallic elements fractionation in municipal solid waste incineration residues

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr R.; Kasina, Monika; Michalik, Marek

    2016-04-01

    Municipal solid waste incineration (MSWI) residues are represented by three main materials: bottom ash, fly ash and air pollution control (APC) residues. Among them ˜80 wt% is bottom ash. All of that materials are products of high temperature (>1000° C) treatment of waste. Incineration process allows to obtain significant reduction of waste mass (up to 70%) and volume (up to 90%) what is commonly used in waste management to reduce the amount need to be landfilled or managed in other way. Incineration promote accumulation non-combustible fraction of waste, which part are metallic elements. That type of concentration is object of concerns about the incineration residues impact on the environment and also gives the possibility of attempts to recover them. Metallic elements are not equally distributed among the materials. Several factors influence the process: melting points, volatility and place and forms of metallic occurrence in the incinerated waste. To investigate metallic elements distribution in MSWI residues samples from one of the biggest MSW incineration plant in Poland were collected in 2015. Chemical analysis with emphasis on the metallic elements content were performed using inductively coupled plasma optical emission (ICP-OES) and mass spectrometry (ICP-MS). The bottom ash was a SiO2-CaO-Al2O3-Fe2O3-Na2O rich material, whereas fly ash and APC residues were mostly composed of CaO and SiO2. All of the materials were rich in amorphous phase occurring together with various, mostly silicate crystalline phases. In a mass of bottom ash 11 wt% were metallic elements but also in ashes 8.5 wt% (fly ash) and ˜4.5 wt% (APC residues) of them were present. Among the metallic elements equal distribution between bottom and fly ash was observed for Al (˜3.85 wt%), Mn (770 ppm) and Ni (˜65 ppm). In bottom ash Fe (5.5 wt%), Cr (590 ppm) and Cu (1250 ppm) were concentrated. These values in comparison to fly ash were 5-fold higher for Fe, 3-fold for Cu and 1.5-fold for

  18. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldrin, Alessio, E-mail: aleb@env.dtu.dk; Andersen, Jacob K.; Christensen, Thomas H.

    2011-07-15

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg{sup -1} ww for the non-toxic categoriesmore » and up to 100 mPE Mg{sup -1} ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly.« less

  19. Environmental assessment of garden waste management in the Municipality of Aarhus, Denmark.

    PubMed

    Boldrin, Alessio; Andersen, Jacob K; Christensen, Thomas H

    2011-07-01

    An environmental assessment of six scenarios for handling of garden waste in the Municipality of Aarhus (Denmark) was performed from a life cycle perspective by means of the LCA-model EASEWASTE. In the first (baseline) scenario, the current garden waste management system based on windrow composting was assessed, while in the other five scenarios alternative solutions including incineration and home composting of fractions of the garden waste were evaluated. The environmental profile (normalised to Person Equivalent, PE) of the current garden waste management in Aarhus is in the order of -6 to 8 mPE Mg(-1) ww for the non-toxic categories and up to 100 mPE Mg(-1) ww for the toxic categories. The potential impacts on non-toxic categories are much smaller than what is found for other fractions of municipal solid waste. Incineration (up to 35% of the garden waste) and home composting (up to 18% of the garden waste) seem from an environmental point of view suitable for diverting waste away from the composting facility in order to increase its capacity. In particular the incineration of woody parts of the garden waste improved the environmental profile of the garden waste management significantly. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. SOLID WASTE OPTIONS FOR MUNICIPAL PLANNERS - VERSION 3.1 - A SOFTWARE TOOL FOR PRELIMINARY PLANNING - USER DOCUMENTATION

    EPA Science Inventory

    Municipalities face many challenges in managing nonhazardous solid waste. For instance, landfills are reaching capacity throughout the country, tipping fees are increasing, and regulations affecting the disposal and recycling of municipal solid waste (MSW) are being promulgated ...

  1. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  2. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  3. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  4. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  5. 40 CFR 62.15145 - What are the operating practice requirements for my municipal waste combustion unit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for my municipal waste combustion unit? 62.15145 Section 62.15145 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Good Combustion Practices: Operating Requirements § 62.15145 What are the operating practice requirements for my municipal waste combustion unit? (a) You...

  6. MUNICIPAL SOLID WASTE COMBUSTOR ASH DEMONSTRATION PROGRAM - "THE BOATHOUSE"

    EPA Science Inventory

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 50 tons of MSW combust...

  7. Co-digestion of agricultural and municipal waste to produce energy and soil amendment

    USDA-ARS?s Scientific Manuscript database

    In agriculture, manure and cotton gin waste are major environmental liabilities. Likewise, grass is an important organic component of municipal waste. These wastes were combined and used as substrates in a two-phase, pilot-scale anaerobic digester to evaluate the potential for biogas (methane) produ...

  8. Evaluation of dry solid waste recycling from municipal solid waste: case of Mashhad city, Iran.

    PubMed

    Farzadkia, Mahdi; Jorfi, Sahand; Akbari, Hamideh; Ghasemi, Mehdi

    2012-01-01

    The recycling for recovery and reuse of material and energy resources undoubtedly provides a substantial alternative supply of raw materials and reduces the dependence on virgin feedstock. The main objective of this study was to assess the potential of dry municipal solid waste recycling in Mashhad city, Iran. Several questionnaires were prepared and distributed among various branches of the municipality, related organizations and people. The total amount of solid waste generated in Mashhad in 2008 was 594, 800  tons with per capita solid waste generation rate of 0.609  kg  person(-1) day(-1). Environmental educational programmes via mass media and direct education of civilians were implemented to publicize the advantages and necessity of recycling. The amount of recycled dry solid waste was increased from 2.42% of total dry solid waste (2588.36  ton  year(-1)) in 1999 to 7.22% (10, 165  ton  year(-1)) in 2008. The most important fractions of recycled dry solid waste in Mashhad included paper and board (51.33%), stale bread (14.59%), glass (9.73%), ferrous metals (9.73%), plastic (9.73%), polyethylene terephthalate (2.62%) and non-ferrous metals (0.97%). It can be concluded that unfortunately the potential of dry solid waste recycling in Mashhad has not been considered properly and there is a great effort to be made in order to achieve the desired conditions of recycling.

  9. Stakeholder-based SWOT analysis for successful municipal solid waste management in Lucknow, India.

    PubMed

    Srivastava, P K; Kulshreshtha, K; Mohanty, C S; Pushpangadan, P; Singh, A

    2005-01-01

    The present investigation is a case study of Lucknow, the main metropolis in Northern India, which succumbs to a major problem of municipal solid waste and its management. A qualitative investigation using strengths, weaknesses, opportunities and threats analysis (SWOT) has been successfully implemented through this community participation study. This qualitative investigation emphasizes the limited capabilities of the municipal corporation's resources to provide proper facilitation of the municipal solid waste management (MSWM) services without community participation in Lucknow city. The SWOT analysis was performed to formulate strategic action plans for MSWM in order to mobilize and utilize the community resources on the one hand and municipal corporation's resources on the other. It has allowed the introduction of a participatory approach for better collaboration between the community and municipal corporation in Lucknow (India). With this stakeholder-based SWOT analysis, efforts were made to explore the ways and means of converting the possible "threats" into "opportunities" and changing the "weaknesses" into "strengths" regarding a community-based MSWM programme. By this investigation, concrete strategic action plans were developed for both the community and municipal corporation to improve MSWM in Lucknow.

  10. The impact of nanoparticles on aerobic degradation of municipal solid waste.

    PubMed

    Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan

    2017-04-01

    The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO 2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO 2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg -1 of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min -1 kg -1 aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO 2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl - ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO 2 and Ag nanoparticles at concentrations of 100 mg kg -1 of solid waste do not have significant impacts on aerobic biological processes and waste management systems.

  11. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  12. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  13. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  14. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  15. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  16. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  17. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  18. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  19. 40 CFR 62.15310 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units that use activated carbon? 62.15310 Section 62.15310 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Recordkeeping § 62.15310 What records must I keep for municipal waste combustion units that use activated carbon? For municipal waste combustion units...

  20. 40 CFR 60.1370 - What records must I keep for municipal waste combustion units that use activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units that use activated carbon? 60.1370 Section 60.1370 Protection of Environment... SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which Construction is... Recordkeeping § 60.1370 What records must I keep for municipal waste combustion units that use activated carbon...

  1. A review on automated sorting of source-separated municipal solid waste for recycling.

    PubMed

    Gundupalli, Sathish Paulraj; Hait, Subrata; Thakur, Atul

    2017-02-01

    A crucial prerequisite for recycling forming an integral part of municipal solid waste (MSW) management is sorting of useful materials from source-separated MSW. Researchers have been exploring automated sorting techniques to improve the overall efficiency of recycling process. This paper reviews recent advances in physical processes, sensors, and actuators used as well as control and autonomy related issues in the area of automated sorting and recycling of source-separated MSW. We believe that this paper will provide a comprehensive overview of the state of the art and will help future system designers in the area. In this paper, we also present research challenges in the field of automated waste sorting and recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Validation of enhanced stabilization of municipal solid waste under controlled leachate recirculation using FTIR and XRD.

    PubMed

    Sethi, Sapna; Kothiyal, N C; Nema, Arvind K

    2012-07-01

    Leachate recirculation at neutral PH accompanied with buffer/nutrients addition has been used successfully in earlier stabilization of municipal solid waste in bioreactor landfills. In the present study, efforts were made to enhance the stabilization rate of municipal solid waste (MSW) and organic solid waste (OSW) in simulated landfill bioreactors by controlling the pH of recirculated leachate towards slightly alkaline side in absence of additional buffer and nutrients addition. Enhanced stabilization in waste samples was monitored with the help of analytical tools like Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Diffraction (XRD). Predominance of bands assigned to inorganic compounds and comparatively lower intensities of bands for organic compounds in the FTIR spectra of waste samples degraded with leachate recirculation under controlled pH confirmed higher rate of biodegradation and mineralization of waste than the samples degraded without controlled leachate recirculation. XRD spectra also confirmed to a greater extent of mineralization in the waste samples degraded under leachate recirculation with controlled pH. Comparison of XRD spectra of two types of wastes pointed out higher degree of mineralization in organic solid waste as compared to municipal solid waste.

  3. Municipal solid waste incineration in China and the issue of acidification: A review.

    PubMed

    Ji, Longjie; Lu, Shengyong; Yang, Jie; Du, Cuicui; Chen, Zhiliang; Buekens, Alfons; Yan, Jianhua

    2016-04-01

    In China, incineration is essential for reducing the volume of municipal solid waste arising in its numerous megacities. The evolution of incinerator capacity has been huge, yet it creates strong opposition from a small, but vocal part of the population. The characteristics of Chinese municipal solid waste are analysed and data presented on its calorific value and composition. These are not so favourable for incineration, since the sustained use of auxiliary fuel is necessary for ensuring adequate combustion temperatures. Also, the emission standard for acid gases is more lenient in China than in the European Union, so special attention should be paid to the issue of acidification arising from flue gas. Next, the techniques used in flue gas cleaning in China are reviewed and the acidification potential by cleaned flue gas is estimated. Still, acidification induced by municipal solid waste incinerators remains marginal compared with the effects of coal-fired power plants. © The Author(s) 2016.

  4. Mercury in municipal solid wastes and New Jersey mercury prevention and reduction program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdogan, H.; Stevenson, E.

    1994-12-31

    Mercury is a very toxic heavy metal which accumulates in the brain causing neurological damages involving psychasthenic and vegetative syndrome. At high exposure levels it causes behavioral and personality changes, loss of memory and insomnia. Long-term exposure or exposure during pregnancy to mercury or mercury compounds can permanently damage the kidney and fetus. In addition to potential effects on human health, mercury poisoning can also affect other living organisms. Mercury is different than other heavy metals. It consistently biomagnifies and bioaccumulates within the aquatic food chain. Global sources of mercury release are both natural and anthropogenic. Natural sources include volatilizationmore » of gaseous-mercury iron soils ana rocks, volcanic releases, evaporation from the ocean and other water bodies. Anthropogenic sources are fuel and coal combustion, mining, smelting, manufacturing activities, disposal of sludge, pesticides, animal and food waste, and incineration of municipal solid waste. Worldwide combustion of municipal solid waste is the second largest source of atmospheric emission of mercury. In New Jersey, incineration of solid waste is the largest source of atmospheric emission of mercury. The New Jersey Department of Environmental Protection and Energy (NJDEPE) has developed a comprehensive program to control and prevent emission of mercury resulting from combustion municipal solid waste.« less

  5. HOLISTIC APPROACH TO ENVIRONMENTAL MANAGEMENT OF MUNICIPAL SOLID WASTE

    EPA Science Inventory

    The paper presents results from the application of a new municipal solid waste (MSW) management planning aid to EPA's new facility in the Research Triangle Park, NC. This planning aid, or decision support tool, is computer software that analyzes the cost and environmental impact ...

  6. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants.

  7. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.-W.; Chang, N.-B., E-mail: nchang@mail.ucf.ed; Chen, J.-C.

    2010-07-15

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA) - a production economics tool - to evaluate performance-based efficiencies of 19more » large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world.« less

  8. Environmental performance evaluation of large-scale municipal solid waste incinerators using data envelopment analysis.

    PubMed

    Chen, Ho-Wen; Chang, Ni-Bin; Chen, Jeng-Chung; Tsai, Shu-Ju

    2010-07-01

    Limited to insufficient land resources, incinerators are considered in many countries such as Japan and Germany as the major technology for a waste management scheme capable of dealing with the increasing demand for municipal and industrial solid waste treatment in urban regions. The evaluation of these municipal incinerators in terms of secondary pollution potential, cost-effectiveness, and operational efficiency has become a new focus in the highly interdisciplinary area of production economics, systems analysis, and waste management. This paper aims to demonstrate the application of data envelopment analysis (DEA)--a production economics tool--to evaluate performance-based efficiencies of 19 large-scale municipal incinerators in Taiwan with different operational conditions. A 4-year operational data set from 2002 to 2005 was collected in support of DEA modeling using Monte Carlo simulation to outline the possibility distributions of operational efficiency of these incinerators. Uncertainty analysis using the Monte Carlo simulation provides a balance between simplifications of our analysis and the soundness of capturing the essential random features that complicate solid waste management systems. To cope with future challenges, efforts in the DEA modeling, systems analysis, and prediction of the performance of large-scale municipal solid waste incinerators under normal operation and special conditions were directed toward generating a compromised assessment procedure. Our research findings will eventually lead to the identification of the optimal management strategies for promoting the quality of solid waste incineration, not only in Taiwan, but also elsewhere in the world. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Municipal Solid Waste Composition Study of Selected Area in Gambang, Pahang

    NASA Astrophysics Data System (ADS)

    Mokhtar, Nadiah; Ishak, Wan Faizal Wan; Suraya Romali, Noor; Fatimah Che Osmi, Siti; Armi Abu Samah, Mohd

    2013-06-01

    The amount of municipal solid waste (MSW) generated continue to increase in response to rapid growth in population, change in life style and accelerated urbanization and industrialization process. The study on MSW is important in order to determine the composition further seeks an immediate remedy to minimize the waste generated at the early stage. As most of the MSW goes to the landfill or dumping sites, particularly in Malaysia, closure of filled-up landfill may become an alarm clock for an immediate action of proper solid waste management. This research aims to determine the waste composition generated from selected residential area at Gambang, Kuantan, Pahang which represent Old residential area (ORA), Intermediate residential area (IRA) and New residential area (NRA). The study was conducted by segregating and weighing solid waste in the residential area into 6 main components ie., food waste, paper, plastic, glass, metal and others. In a period of four weeks, samples from the residential unit were taken and analyzed. The MSW generation rates were recorded vary from 0.217 to 0.388 kg person-1day-1. Food waste has become the major solid waste component generated daily which mounted up to 50%. From this research, the result revealed that the recyclable composition of waste generated by residents have a potential to be reuse, recycle and reduce at the point sources.

  10. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  11. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  12. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  13. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  14. 40 CFR 60.1680 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1680 Section 60.1680 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Model Rule-Good Combustion Practices: Operator...

  15. A mathematical model for municipal solid waste management - A case study in Hong Kong.

    PubMed

    Lee, C K M; Yeung, C L; Xiong, Z R; Chung, S H

    2016-12-01

    With the booming economy and increasing population, the accumulation of waste has become an increasingly arduous issue and has aroused the attention from all sectors of society. Hong Kong which has a relative high daily per capita domestic waste generation rate in Asia has not yet established a comprehensive waste management system. This paper conducts a review of waste management approaches and models. Researchers highlight that mathematical models provide useful information for decision-makers to select appropriate choices and save cost. It is suggested to consider municipal solid waste management in a holistic view and improve the utilization of waste management infrastructures. A mathematical model which adopts integer linear programming and mixed integer programming has been developed for Hong Kong municipal solid waste management. A sensitivity analysis was carried out to simulate different scenarios which provide decision-makers important information for establishing Hong Kong waste management system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. MUNICIPAL SOLID WASTE DISPOSAL IN ESTUARIES AND COASTAL MARSHLANDS

    EPA Science Inventory

    This report is a survey of the existing situation with regards to municipal solid waste disposal in the coastal zone. Both the scientific literature and the regulatory community were surveyed to determine the state-of-knowledge of the impact of such disposal on the environment, p...

  17. Using liquid waste streams as the moisture source during the hydrothermal carbonization of municipal solid wastes.

    PubMed

    Li, Liang; Hale, McKenzie; Olsen, Petra; Berge, Nicole D

    2014-11-01

    Hydrothermal carbonization (HTC) is a thermal conversion process that can be an environmentally beneficial approach for the conversion of municipal solid wastes to value-added products. The influence of using activated sludge and landfill leachate as initial moisture sources during the carbonization of paper, food waste and yard waste over time at 250°C was evaluated. Results from batch experiments indicate that the use of activated sludge and landfill leachate are acceptable alternative supplemental liquid sources, ultimately imparting minimal impact on carbonization product characteristics and yields. Regression results indicate that the initial carbon content of the feedstock is more influential than any of the characteristics of the initial liquid source and is statistically significant when describing the relationship associated with all evaluated carbonization products. Initial liquid-phase characteristics are only statistically significant when describing the solids energy content and the mass of carbon in the gas-phase. The use of these alternative liquid sources has the potential to greatly increase the sustainability of the carbonization process. A life cycle assessment is required to quantify the benefits associated with using these alternative liquid sources. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  19. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  20. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  1. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  2. 40 CFR 62.15025 - How do I determine if my small municipal waste combustion unit is covered by an approved and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... municipal waste combustion unit is covered by an approved and effective State or Tribal Plan? 62.15025... Requirements for Small Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15025 How do I determine if my small municipal waste combustion unit is covered...

  3. Critical evaluation of municipal solid waste composting and potential compost markets.

    PubMed

    Farrell, M; Jones, D L

    2009-10-01

    Mechanical biological treatment (MBT) of mixed waste streams is becoming increasingly popular as a method for treating municipal solid waste (MSW). Whilst this process can separate many recyclates from mixed waste, the resultant organic residue can contain high levels of heavy metals and physical and biological contaminants. This review assesses the potential end uses and sustainable markets for this organic residue. Critical evaluation reveals that the best option for using this organic resource is in land remediation and restoration schemes. For example, application of MSW-derived composts at acidic heavy metal contaminated sites has ameliorated soil pollution with minimal risk. We conclude that although MSW-derived composts are of low value, they still represent a valuable resource particularly for use in post-industrial environments. A holistic view should be taken when regulating the use of such composts, taking into account the specific situation of application and the environmental pitfalls of alternative disposal routes.

  4. Possible interactions between recirculated landfill leachate and the stabilized organic fraction of municipal solid waste.

    PubMed

    Calabrò, Paolo S; Mancini, Giuseppe

    2012-05-01

    The stabilized organic fraction of municipal solid waste (SOFMSW) is a product of the mechanical/biological treatment (MBT) of mixed municipal solid waste (MMSW). SOFMSW is considered a 'grey' compost and the presence of pollutants (particularly heavy metals) and residual glass and plastic normally prevents agricultural use, making landfills the typical final destination for SOFMSW. Recirculation of leachate in landfills can be a cost-effective management option, but the long-term sustainability of such a practice must be verified. Column tests were carried out to examine the effect of SOFMSW on leachate recirculation. The results indicate that organic matter may be biologically degraded and metals (copper and zinc) are effectively entrapped through a combination of physical (adsorption), biological (bacterial sulfate reduction), and chemical (precipitation of metal sulfides) processes, while other chemicals (i.e. ammonia nitrogen and chloride) are essentially unaffected by filtration through SOFMSW.

  5. Municipal solid waste landfill leachate treatment by fenton, photo-fenton and fenton-like processes: Effect of some variables

    PubMed Central

    2012-01-01

    Advanced oxidation processes like Fenton and photo-Fenton have been effectively applied to oxidize the persistent organic compounds in solid waste leachate and convert them to unharmful materials and products. However, there are limited data about application of Fenton-like process in leachate treatment. Therefore, this study was designed with the objective of treating municipal landfill leachate by Fenton, Fenton-like and photo–Fenton processes to determine the effect of different variables, by setting up a pilot system. The used leachate was collected from a municipal unsanitary landfill in Qaem-Shahr in the north of Iran. Fenton and Fenton-like processes were conducted by Jar-test method. Photo-Fenton process was performed in a glass photo-reactor. In all processes, H2O2 was used as the oxidant. FeSO4.7H2O and FeCl3.6H2O were used as reagents. All parameters were measured based on standard methods. The results showed that the optimum concentration of H2O2 was equal to 5 g/L for the Fenton-like process and 3 g/L for the Fenton and photo-Fenton processes. The optimum ratio of H2O2: Fe+2/Fe+3 were equal to 8:1 in all processes. At optimum conditions, the amount of COD removal was 69.6%, 65.9% and 83.2% in Fenton, Fenton-like and photo–Fenton processes, respectively. In addition, optimum pH were 3, 5 and 3 and the optimum contact time were 150, 90 and 120 minutes, for Fenton, Fenton-like and photo–Fenton processes, respectively. After all processes, the biodegradability (BOD5/COD ratio) of the treated leachate was increased compared to that of the raw leachate and the highest increase in BOD5/COD ratio was observed in the photo-Fenton process. The efficiency of the Fenton-like process was overally less than Fenton and photo-Fenton processes, meanwhile the Fenton-like process was at higher pH and did not show problems. PMID:23369204

  6. Hydrothermal carbonization of municipal solid waste for carbon sequestration and energy generation

    USDA-ARS?s Scientific Manuscript database

    A fairly new, innovative technique, called hydrothermal carbonization (HTC), has the potential to change the way municipal solid waste (MSW) is managed. HTC is a wet, low temperature (180-350°C), low pressure (in a closed system) thermochemical waste treatment/conversion technology that has been sho...

  7. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    PubMed

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE PAGES

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.; ...

    2016-09-05

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased

  9. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased

  10. Municipal solid waste management in Malaysia: practices and challenges.

    PubMed

    Manaf, Latifah Abd; Samah, Mohd Armi Abu; Zukki, Nur Ilyana Mohd

    2009-11-01

    Rapid economic development and population growth, inadequate infrastructure and expertise, and land scarcity make the management of municipal solid waste become one of Malaysia's most critical environmental issues. The study is aimed at evaluating the generation, characteristics, and management of solid waste in Malaysia based on published information. In general, the per capita generation rate is about 0.5-0.8 kg/person/day in which domestic waste is the primary source. Currently, solid waste is managed by the Ministry of Housing and Local Government, with the participation of the private sector. A new institutional and legislation framework has been structured with the objectives to establish a holistic, integrated, and cost-effective solid waste management system, with an emphasis on environmental protection and public health. Therefore, the hierarchy of solid waste management has given the highest priority to source reduction through 3R, intermediate treatment and final disposal.

  11. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  12. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  13. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  14. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  15. 40 CFR 60.1190 - After the required date for operator certification, who may operate the municipal waste...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification, who may operate the municipal waste combustion unit? 60.1190 Section 60.1190 Protection of... NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustion Units for Which... June 6, 2001 Good Combustion Practices: Operator Certification § 60.1190 After the required date for...

  16. Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids.

    PubMed

    Li, Chenlin; Liang, Ling; Sun, Ning; Thompson, Vicki S; Xu, Feng; Narani, Akash; He, Qian; Tanjore, Deepti; Pray, Todd R; Simmons, Blake A; Singh, Seema

    2017-01-01

    Lignocellulosic biorefineries have tonnage and throughput requirements that must be met year round and there is no single feedstock available in any given region that is capable of meeting the price and availability demands of the biorefineries scheduled for deployment. Significant attention has been historically given to agriculturally derived feedstocks; however, a diverse range of wastes, including municipal solid wastes (MSW), also have the potential to serve as feedstocks for the production of advanced biofuels and have not been extensively studied. In addition, ionic liquid (IL) pretreatment with certain ILs is receiving great interest as a potential process that enables fractionation of a wide range of feedstocks. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars following IL pretreatment, which could potentially provide a means of liberating fermentable sugars from lignocellulose without the use of costly enzymes. However, successful optimization and scale-up of the one-pot acid-assisted IL deconstruction for further commercialization involve challenges such as reactor compatibility, mixing at high solid loading, sugar recovery, and IL recycling, which have not been effectively resolved during the development stages at bench scale. Here, we present the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6 vs 0.2 L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts toward developing a cost-effective IL-based deconstruction technology by drastically eliminating enzyme, reducing water

  17. USER'S GUIDE FOR THE MUNICIPAL SOLID WASTE LIFE-CYCLE DATABASE

    EPA Science Inventory

    The report describes how to use the municipal solid waste (MSW) life cycle database, a software application with Microsoft Access interfaces, that provides environmental data for energy production, materials production, and MSW management activities and equipment. The basic datab...

  18. MERCURY CONTROL IN MUNICIPAL WASTE COMBUSTORS AND COAL-FIRED UTILITIES

    EPA Science Inventory

    Control of mercury (Hg) emissions from municipal waste combustors (MWCs) and coal-fired utilities has attracted attention due to current and potential regulations. Among several techniques evaluated for Hg control, dry sorbent injection (primarily injection of activated carbon) h...

  19. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  20. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  1. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  2. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  3. 40 CFR 60.1565 - What subcategories of small municipal waste combustion units must I include in my State plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... waste combustion units must I include in my State plan? 60.1565 Section 60.1565 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... of small municipal waste combustion units must I include in my State plan? This subpart specifies...

  4. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    PubMed

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Food waste impact on municipal solid waste angle of internal friction.

    PubMed

    Cho, Young Min; Ko, Jae Hac; Chi, Liqun; Townsend, Timothy G

    2011-01-01

    The impact of food waste content on the municipal solid waste (MSW) friction angle was studied. Using reconstituted fresh MSW specimens with different food waste content (0%, 40%, 58%, and 80%), 48 small-scale (100-mm-diameter) direct shear tests and 12 large-scale (430 mm × 430 mm) direct shear tests were performed. A stress-controlled large-scale direct shear test device allowing approximately 170-mm sample horizontal displacement was designed and used. At both testing scales, the mobilized internal friction angle of MSW decreased considerably as food waste content increased. As food waste content increased from 0% to 40% and from 40% to 80%, the mobilized internal friction angles (estimated using the mobilized peak (ultimate) shear strengths of the small-scale direct shear tests) decreased from 39° to 31° and from 31° to 7°, respectively, while those of large-scale tests decreased from 36° to 26° and from 26° to 15°, respectively. Most friction angle measurements produced in this study fell within the range of those previously reported for MSW. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. [Effect of moisture content on anaerobic methanization of municipal solid waste].

    PubMed

    Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore

    2009-03-15

    Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.

  7. Data uncertainties in material flow analysis: Municipal solid waste management system in Maputo City, Mozambique.

    PubMed

    Dos Muchangos, Leticia Sarmento; Tokai, Akihiro; Hanashima, Atsuko

    2017-01-01

    Material flow analysis can effectively trace and quantify the flows and stocks of materials such as solid wastes in urban environments. However, the integrity of material flow analysis results is compromised by data uncertainties, an occurrence that is particularly acute in low-and-middle-income study contexts. This article investigates the uncertainties in the input data and their effects in a material flow analysis study of municipal solid waste management in Maputo City, the capital of Mozambique. The analysis is based on data collected in 2007 and 2014. Initially, the uncertainties and their ranges were identified by the data classification model of Hedbrant and Sörme, followed by the application of sensitivity analysis. The average lower and upper bounds were 29% and 71%, respectively, in 2007, increasing to 41% and 96%, respectively, in 2014. This indicates higher data quality in 2007 than in 2014. Results also show that not only data are partially missing from the established flows such as waste generation to final disposal, but also that they are limited and inconsistent in emerging flows and processes such as waste generation to material recovery (hence the wider variation in the 2014 parameters). The sensitivity analysis further clarified the most influencing parameter and the degree of influence of each parameter on the waste flows and the interrelations among the parameters. The findings highlight the need for an integrated municipal solid waste management approach to avoid transferring or worsening the negative impacts among the parameters and flows.

  8. Energy recovery from organic fractions of municipal solid waste: A case study of Hyderabad city, Pakistan.

    PubMed

    Safar, Korai M; Bux, Mahar R; Aslam, Uqaili M; Ahmed, Memon S; Ahmed, Lashari I

    2016-04-01

    Non-renewable energy sources have remained the choice of the world for centuries. Rapid growth in population and industrialisation have caused their shortage and environmental degradation by using them. Thus, at the present rate of consumption, they will not last very long. In this prospective, this study has been conducted. The estimation of energy in terms of biogas and heat from various organic fractions of municipal solid waste is presented and discussed. The results show that organic fractions of municipal solid waste possess methane potential in the range of 3%-22% and their heat capacity ranges from 3007 to 20,099 kJ kg(-1) Also, theoretical biogas potential of different individual fruit as well as vegetable components and mixed food waste are analysed and estimated in the range of 608-1244 m(3) t(-1) Further, the share of bioenergy from municipal solid waste in the total primary energy supply in Pakistan has been estimated to be 1.82%. About 8.43% of present energy demand of the country could be met from municipal solid waste. The study leads us to the conclusion that the share of imported energy (i.e. 0.1% of total energy supply) and reduction in the amount of energy from fossil fuels can be achieved by adopting a waste-to-energy system in the country. © The Author(s) 2016.

  9. Greenhouse gas contribution of municipal solid waste collection: A case study in the city of Istanbul, Turkey.

    PubMed

    Korkut, Nafiz E; Yaman, Cevat; Küçükağa, Yusuf; Jaunich, Megan K; Demir, İbrahim

    2018-02-01

    This article estimates greenhouse gas emissions and global warming factors resulting from collection of municipal solid waste to the transfer stations or landfills in Istanbul for the year of 2015. The aim of this study is to quantify and compare diesel fuel consumption and estimate the greenhouse gas emissions and global warming factors associated with municipal solid waste collection of the 39 districts of Istanbul. Each district's greenhouse gas emissions resulting from the provision and combustion of diesel fuel was estimated by considering the number of collection trips and distances to municipal solid waste facilities. The estimated greenhouse gases and global warming factors for the districts varied from 61.2 to 2759.1 t CO 2 -eq and from 4.60 to 15.20 kg CO 2 -eq t -1 , respectively. The total greenhouse gas emission was estimated as 46.4E3 t CO 2 -eq. Lastly, the collection data from the districts was used to parameterise a collection model that can be used to estimate fuel consumption associated with municipal solid waste collection. This mechanistic model can then be used to predict future fuel consumption and greenhouse gas emissions associated with municipal solid waste collection based on projected population, waste generation, and distance to transfer stations and landfills. The greenhouse gas emissions can be reduced by decreasing the trip numbers and trip distances, building more transfer stations around the city, and making sure that the collection trucks are full in each trip.

  10. Quantitative Characterization of Aqueous Byproducts from Hydrothermal Liquefaction of Municipal Wastes, Food Industry Wastes, and Biomass Grown on Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddi, Balakrishna; Panisko, Ellen; Wietsma, Thomas

    Hydrothermal liquefaction (HTL) is a viable thermochemical process for converting wet solid wastes into biocrude which can be hydroprocessed to liquid transportation fuel blendstocks and specialty chemicals. The aqueous byproduct from HTL contains significant amounts (20 to 50%) of the feed carbon, which must be used to enhance economic sustainability of the process on an industrial scale. In this study, aqueous fractions produced from HTL of industrial and municipal waste were characterized using a wide variety of analytical approaches. Organic chemical compounds present in these aqueous fractions were identified using two-dimensional gas chromatography equipped with time-of-flight mass spectrometry. Identified compoundsmore » include organic acids, nitrogen compounds, alcohols, aldehydes, and ketones. Conventional gas chromatography and liquid chromatography methods were employed to quantify the identified compounds. Inorganic species, in the aqueous stream of hydrothermal liquefaction of these aqueous byproducts, also were quantified using ion chromatography and inductively coupled plasma optical emission spectroscopy. The concentrations of organic chemical compounds and inorganic species are reported, and the significance of these results is discussed in detail.« less

  11. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  12. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  13. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  14. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  15. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  16. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  17. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  18. 40 CFR Table 2 to Subpart Bbbb of... - Model Rule-Class I Emission Limits for Existing Small Municipal Waste Combustion Units a

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Existing Small Municipal Waste Combustion Units a 2 Table 2 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class I Emission Limits for Existing Small Municipal Waste Combustion Units a For...

  19. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  20. 40 CFR Table 4 to Subpart Bbbb of... - Model Rule-Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Small Municipal Waste Combustion Unit a 4 Table 4 to Subpart BBBB of Part 60 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... Part 60—Model Rule—Class II Emission Limits for Existing Small Municipal Waste Combustion Unit a For...

  1. Methane yield in source-sorted organic fraction of municipal solid waste.

    PubMed

    Davidsson, Asa; Gruvberger, Christopher; Christensen, Thomas H; Hansen, Trine Lund; Jansen, Jes la Cour

    2007-01-01

    Treating the source-separated organic fraction of municipal solid waste (SS-OFMSW) by anaerobic digestion is considered by many municipalities in Europe as an environmentally friendly means of treating organic waste and simultaneously producing methane gas. Methane yield can be used as a parameter for evaluation of the many different systems that exist for sorting and pre-treating waste. Methane yield from the thermophilic pilot scale digestion of 17 types of domestically SS-OFMSW originating from seven full-scale sorting systems was found. The samples were collected during 1 year using worked-out procedures tested statistically to ensure representative samples. Each waste type was identified by its origin and by pre-sorting, collection and pre-treatment methods. In addition to the pilot scale digestion, all samples were examined by chemical analyses and methane potential measurements. A VS-degradation rate of around 80% and a methane yield of 300-400Nm(3) CH(4)/ton VS(in) were achieved with a retention time of 15 days, corresponding to approximately 70% of the methane potential. The different waste samples gave minor variation in chemical composition and thus also in methane yield and methane potential. This indicates that sorting and collection systems in the present study do not significantly affect the amount of methane produced per VS treated.

  2. BIODEGRADATIVE ANALYSIS OF MUNICIPAL SOLID WASTE IN LABORATORY-SCALE LANDFILLS

    EPA Science Inventory

    The report gives results of research to characterize the anaerobic biodegradability of the major biodegradable components of municipal solid waste (MSW). Tests were conducted in quadruplicate in 2-L reactors operated to obtain maximum yields. Measured methane (CH4) yields for gra...

  3. Optimizing Resource and Energy Recovery for Municipal Solid Waste Management

    EPA Science Inventory

    Significant reductions of carbon emissions and air quality impacts can be achieved by optimizing municipal solid waste (MSW) as a resource. Materials and discards management were found to contribute ~40% of overall U.S. GHG emissions as a result of materials extraction, transpo...

  4. Performance evaluation of the bioreactor landfill in treatment and stabilisation of mechanically biologically treated municipal solid waste.

    PubMed

    Lakshmikanthan, P; Sivakumar Babu, G L

    2017-03-01

    The potential of bioreactor landfills to treat mechanically biologically treated municipal solid waste is analysed in this study. Developing countries like India and China have begun to investigate bioreactor landfills for municipal solid waste management. This article describes the impacts of leachate recirculation on waste stabilisation, landfill gas generation, leachate characteristics and long-term waste settlement. A small-scale and large-scale anaerobic cell were filled with mechanically biologically treated municipal solid waste collected from a landfill site at the outskirts of Bangalore, India. Leachate collected from the same landfill site was recirculated at the rate of 2-5 times a month on a regular basis for 370 days. The total quantity of gas generated was around 416 L in the large-scale reactor and 21 L in the small-scale reactor, respectively. Differential settlements ranging from 20%-26% were observed at two different locations in the large reactor, whereas 30% of settlement was observed in the small reactor. The biological oxygen demand/chemical oxygen demand (COD) ratio indicated that the waste in the large reactor was stabilised at the end of 1 year. The performance of the bioreactor with respect to the reactor size, temperature, landfill gas and leachate quality was analysed and it was found that the bioreactor landfill is efficient in the treatment and stabilising of mechanically biologically treated municipal solid waste.

  5. Optimal planning for the sustainable utilization of municipal solid waste.

    PubMed

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J; Serna-González, Medardo; El-Halwagi, Mahmoud M

    2013-12-01

    The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Public Health Risks from Mismanagement of Healthcare Wastes in Shinyanga Municipality Health Facilities, Tanzania

    PubMed Central

    Kuchibanda, Kizito; Mayo, Aloyce W.

    2015-01-01

    The increase of healthcare facilities in Shinyanga municipality has resulted in an increase of healthcare wastes, which poses serious threats to the environment, health workers, and the general public. This research was conducted to investigate management practices of healthcare wastes in Shinyanga municipality with a view of assessing health risks to health workers and the general public. The study, which was carried out in three hospitals, involved the use of questionnaires, in-depth interview, and observation checklist. The results revealed that healthcare wastes are not quantified or segregated in all the three hospitals. Healthcare wastes at the Shinyanga Regional Referral Hospital are disposed of by on-site incineration and burning and some wastes are disposed off-site. At Kolandoto DDH only on-site burning and land disposal are practiced, while at Kambarage UHC healthcare solid wastes are incinerated, disposed of on land disposal, and burned. Waste management workers do not have formal training in waste management techniques and the hospital administrations pay very little attention to appropriate management of healthcare wastes. In light of this, it is evident that management of healthcare solid wastes is not practiced in accordance with the national and WHO's recommended standards. PMID:26779565

  7. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues.

    PubMed

    Kollikkathara, Naushad; Feng, Huan; Yu, Danlin

    2010-11-01

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to form a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. A system dynamic modeling approach for evaluating municipal solid waste generation, landfill capacity and related cost management issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollikkathara, Naushad, E-mail: naushadkp@gmail.co; Feng Huan; Yu Danlin

    2010-11-15

    As planning for sustainable municipal solid waste management has to address several inter-connected issues such as landfill capacity, environmental impacts and financial expenditure, it becomes increasingly necessary to understand the dynamic nature of their interactions. A system dynamics approach designed here attempts to address some of these issues by fitting a model framework for Newark urban region in the US, and running a forecast simulation. The dynamic system developed in this study incorporates the complexity of the waste generation and management process to some extent which is achieved through a combination of simpler sub-processes that are linked together to formmore » a whole. The impact of decision options on the generation of waste in the city, on the remaining landfill capacity of the state, and on the economic cost or benefit actualized by different waste processing options are explored through this approach, providing valuable insights into the urban waste-management process.« less

  9. Optimization of municipal solid waste collection and transportation routes.

    PubMed

    Das, Swapan; Bhattacharyya, Bidyut Kr

    2015-09-01

    Optimization of municipal solid waste (MSW) collection and transportation through source separation becomes one of the major concerns in the MSW management system design, due to the fact that the existing MSW management systems suffer by the high collection and transportation cost. Generally, in a city different waste sources scatter throughout the city in heterogeneous way that increase waste collection and transportation cost in the waste management system. Therefore, a shortest waste collection and transportation strategy can effectively reduce waste collection and transportation cost. In this paper, we propose an optimal MSW collection and transportation scheme that focus on the problem of minimizing the length of each waste collection and transportation route. We first formulize the MSW collection and transportation problem into a mixed integer program. Moreover, we propose a heuristic solution for the waste collection and transportation problem that can provide an optimal way for waste collection and transportation. Extensive simulations and real testbed results show that the proposed solution can significantly improve the MSW performance. Results show that the proposed scheme is able to reduce more than 30% of the total waste collection path length. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Modeling microbiological and chemical processes in municipal solid waste bioreactor, Part II: Application of numerical model BIOKEMOD-3P.

    PubMed

    Gawande, Nitin A; Reinhart, Debra R; Yeh, Gour-Tsyh

    2010-02-01

    Biodegradation process modeling of municipal solid waste (MSW) bioreactor landfills requires the knowledge of various process reactions and corresponding kinetic parameters. Mechanistic models available to date are able to simulate biodegradation processes with the help of pre-defined species and reactions. Some of these models consider the effect of critical parameters such as moisture content, pH, and temperature. Biomass concentration is a vital parameter for any biomass growth model and often not compared with field and laboratory results. A more complex biodegradation model includes a large number of chemical and microbiological species. Increasing the number of species and user defined process reactions in the simulation requires a robust numerical tool. A generalized microbiological and chemical model, BIOKEMOD-3P, was developed to simulate biodegradation processes in three-phases (Gawande et al. 2009). This paper presents the application of this model to simulate laboratory-scale MSW bioreactors under anaerobic conditions. BIOKEMOD-3P was able to closely simulate the experimental data. The results from this study may help in application of this model to full-scale landfill operation.

  11. Developing a holistic strategy for integrated waste management within municipal planning: challenges, policies, solutions and perspectives for Hellenic municipalities in the zero-waste, low-cost direction.

    PubMed

    Zotos, G; Karagiannidis, A; Zampetoglou, S; Malamakis, A; Antonopoulos, I-S; Kontogianni, S; Tchobanoglous, G

    2009-05-01

    The present position paper addresses contemporary waste management options, weaknesses and opportunities faced by Hellenic local authorities. It focuses on state-of-the-art, tested as well as innovative, environmental management tools on a municipal scale and identifies a range of different collaboration schemes between local authorities and related service providers. Currently, a policy implementation gap is still experienced among Hellenic local authorities; it appears that administration at the local level is inadequate to manage and implement many of the general policies proposed; identify, collect, monitor and assess relevant data; and safeguard efficient and effective implementation of MSWM practices in the framework of integrated environmental management as well. This shortfall is partly due to the decentralisation of waste management issues to local authorities without a parallel substantial budgetary and capacity support, thus resulting in local activity remaining often disoriented and isolated from national strategies, therefore yielding significant planning and implementation problems and delays against pressing issues at hand as well as loss or poor use of available funds. This paper develops a systemic approach for MSWM at both the household and the non-household level, summarizes state-of-the-art available tools and compiles a set of guidelines for developing waste management master plans at the municipal level. It aims to provide a framework in the MSWM field for municipalities in Greece as well as other countries facing similar problems under often comparable socioeconomic settings.

  12. Biofuels and bioenergy production from municipal solid waste commingled with agriculturally-derived biomass

    USDA-ARS?s Scientific Manuscript database

    The USDA in partnership with Salinas Valley Solid Waste Authority (SVSWA) and CR3, a technology holding company from Reno, NV, has introduced a biorefinery concept whereby agriculturally- derived biomass is commingled with municipal solid waste (MSW) to produce bioenergy. This team, which originally...

  13. COMPARATIVE ANALYSIS OF HEALTH RISK ASSESSMENTS FOR MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    Quantitative health risk assessments have been performed for a number of proposed municipal waste combustor (MWC) facilities over the past several years. his article presents the results of a comparative analysis of a total of 21 risk assessments, focusing on seven of the most co...

  14. Modelling for environmental assessment of municipal solid waste landfills (part II: biodegradation).

    PubMed

    Garcia de Cortázar, Amaya Lobo; Lantarón, Javier Herrero; Fernández, Oscar Montero; Monzón, Iñaki Tejero; Lamia, Maria Fantelli

    2002-12-01

    The biodegradation module of a simulation program for municipal solid waste landfills (MODUELO) was developed. The biodegradation module carries out the balance of organic material starting with the results of the hydrologic simulation and the waste composition. It simulates the biologic reactions of hydrolysis of solids and the gasification of the dissolved biodegradable material. The results of this module are: organic matter (COD, BOD and elemental components such as carbon, hydrogen, nitrogen, oxygen, sulfur and ash), ammonium nitrogen generated with the gas and transported by the leachates and the potential rates of methane and carbon dioxide generation. The model was calibrated by using the general tendency curves of the pollutants recorded in municipal solid waste landfills, fitting the first part of them to available landfill data. Although the results show some agreement, further work is being done to make MODUELO a useful tool for real landfill simulation.

  15. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    PubMed

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Conversion of MSW (municipal solids waste) to methane in the SOLCON (solids-concentrating) digester

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biljetina, R.; Srivastava, V.J.; Isaacson, H.R.

    1988-01-01

    The Institute of Gas Technology (IGT) has been operating a 1200- gallon, anaerobic solids-concentrating (SOLCON) digester at the Walt Disney World Resort Complex in Lake Buena Vista, Florida since January of 1984. This digester development work is part of a larger effort, sponsored by the Gas Research Institute (GRI) Southern California Edison, that provides effective community waste treatment and disposal options while recovering a valuable methane resource from these wastes. Excellent conversions to methane have been obtained in the SOLCON digester during 4 years of uninterrupted operation. Data were collected on: (1) Wastes from experimental municipal wastewater treatment applications. Watermore » hyacinths were harvested from secondary wastewater treatment channels and combined with sludge from primary clarifiers to maximize potential methane recoveries in the digester. (2) Wastes from agricultural operations. Sorghum was selected as a candidate because it represents both a potential energy crop, as well as, a waste resource if only portions of the plant are converted after grain production. (3) Wastes from municipal waste collection.« less

  17. Multiple stakeholders in multi-criteria decision-making in the context of Municipal Solid Waste Management: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soltani, Atousa; Hewage, Kasun; Reza, Bahareh

    2015-01-15

    Highlights: • We review Municipal Solid Waste Management studies with focus on multiple stakeholders. • We focus on studies with multi-criteria decision analysis methods and discover their trends. • Most studies do not offer solutions for situations where stakeholders compete for more benefits or have unequal voting powers. • Governments and experts are the most participated stakeholders and AHP is the most dominant method. - Abstract: Municipal Solid Waste Management (MSWM) is a complicated process that involves multiple environmental and socio-economic criteria. Decision-makers look for decision support frameworks that can guide in defining alternatives, relevant criteria and their weights, andmore » finding a suitable solution. In addition, decision-making in MSWM problems such as finding proper waste treatment locations or strategies often requires multiple stakeholders such as government, municipalities, industries, experts, and/or general public to get involved. Multi-criteria Decision Analysis (MCDA) is the most popular framework employed in previous studies on MSWM; MCDA methods help multiple stakeholders evaluate the often conflicting criteria, communicate their different preferences, and rank or prioritize MSWM strategies to finally agree on some elements of these strategies and make an applicable decision. This paper reviews and brings together research on the application of MCDA for solving MSWM problems with more focus on the studies that have considered multiple stakeholders and offers solutions for such problems. Results of this study show that AHP is the most common approach in consideration of multiple stakeholders and experts and governments/municipalities are the most common participants in these studies.« less

  18. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting.

    PubMed

    Sim, Edwin Yih Shyang; Wu, Ta Yeong

    2010-10-01

    There is an urgent need globally to find alternative sustainable steps to treat municipal solid wastes (MSW) originated from mismanagement of urban wastes with increasing disposal cost. Furthermore, a conglomeration of ever-increasing population and consumerist lifestyle is contributing towards the generation of more MSW. In this context, vermicomposting offers excellent potential to promote safe, hygienic and sustainable management of biodegradable MSW. It has been demonstrated that, through vermicomposting, MSW such as city garbage, household and kitchen wastes, vegetable wastes, paper wastes, human faeces and others could be sustainably transformed into organic fertiliser or vermicompost that provides great benefits to agricultural soil and plants. Generally, earthworms are sensitive to their environment and require temperature, moisture content, pH and sometimes ventilation at proper levels for the optimum vermicomposting process. Apart from setting the optimum operational conditions for the vermicomposting process, other approaches such as pre-composting, inoculating micro-organisms into MSW and redesigning the conventional vermireactor could be introduced to further enhance the vermicomposting of MSW. Thus the present mini-review discusses the potential of introducing vermicomposting in MSW management, the benefits of vermicomposted MSW to plants, suggestions on how to enhance the vermicomposting of MSW as well as risk management in the vermicomposting of MSW. Copyright © 2010 Society of Chemical Industry.

  19. Modelling municipal solid waste generation: a review.

    PubMed

    Beigl, Peter; Lebersorger, Sandra; Salhofer, Stefan

    2008-01-01

    The objective of this paper is to review previously published models of municipal solid waste generation and to propose an implementation guideline which will provide a compromise between information gain and cost-efficient model development. The 45 modelling approaches identified in a systematic literature review aim at explaining or estimating the present or future waste generation using economic, socio-demographic or management-orientated data. A classification was developed in order to categorise these highly heterogeneous models according to the following criteria--the regional scale, the modelled waste streams, the hypothesised independent variables and the modelling method. A procedural practice guideline was derived from a discussion of the underlying models in order to propose beneficial design options concerning regional sampling (i.e., number and size of observed areas), waste stream definition and investigation, selection of independent variables and model validation procedures. The practical application of the findings was demonstrated with two case studies performed on different regional scales, i.e., on a household and on a city level. The findings of this review are finally summarised in the form of a relevance tree for methodology selection.

  20. Bio-processing of solid wastes and secondary resources for metal extraction - A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-chun; Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk; CSIR - National Metallurgical Laboratory, Jamshedpur 831007

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed inmore » eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.« less

  1. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  2. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  3. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  4. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  5. 40 CFR 60.1640 - What must I do if I plan to permanently close my municipal waste combustion unit and not restart it?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... close my municipal waste combustion unit and not restart it? 60.1640 Section 60.1640 Protection of... NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal Waste Combustion... do if I plan to permanently close my municipal waste combustion unit and not restart it? (a) If you...

  6. COMBUSTION CONTROL OF TRACE ORGANIC AIR POLLUTANTS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) is considering the use of combustion techniques for controlling air emissions of chlorinated dioxins, chlorinated furans, and other trace organics from municipal waste combustion (MWC) facilities. Recommendations for good combustion pr...

  7. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhikun; Zhang, Lei; Li, Aimin, E-mail: leeam@dlut.edu.cn

    Highlights: • Glass ceramic composite is prepared from oil shale fly ash and MSWI bottom ash. • A novel method for the production of glass ceramic composite is presented. • It provides simple route and lower energy consumption in terms of recycling waste. • The vitrified slag can promote the sintering densification process of glass ceramic. • The performances of products decrease with the increase of oil shale fly ash content. - Abstract: Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment.more » In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2 h) showed the properties of density of 1.92 ± 0.05 g/cm{sup 3}, weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was

  8. The effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste.

    PubMed

    Raclavská, Helena; Corsaro, Agnieszka; Hlavsová, Adéla; Juchelková, Dagmar; Zajonc, Ondřej

    2015-03-01

    The investigation of the effect of moisture on the release and enrichment of heavy metals during pyrolysis of municipal solid waste is essential. This is important owing to: (i) the increasing amount of metals in the solid product of pyrolysis beyond the normalised level; (ii) the effect of moisture on the overall cost of pyrolysis process; and (iii) the utilisation of pyrolysis products. Seven metals were selected for evaluation: arsenic, cadmium, chromium, mercury, nickel, lead, and vanadium. Pyrolysis experiments were conducted in a steel retort at 650 °C. The municipal solid waste samples with moisture contents of 0, 30, and 65 wt% were investigated. The relative enrichment index and release of heavy metals were evaluated individually for liquid and solid fractions. A consistent trend was observed for the majority of metals investigated. Reductions of relative enrichment index and release, i.e. an increase of volatility, were observed for arsenic, chromium, cadmium, nickel, and vanadium, with an increase of municipal solid waste moisture. Whereas divergent results were obtained for lead and mercury. The effect of moisture on the relative enrichment index and release was greater at 65 wt% moisture than at 30 wt% for lead, and more remarkable at 30 wt% than at 65 wt% for mercury. © The Author(s) 2015.

  9. A multi-criteria ranking of different technologies for the anaerobic digestion for energy recovery of the organic fraction of municipal solid wastes.

    PubMed

    Karagiannidis, A; Perkoulidis, G

    2009-04-01

    This paper describes a conceptual framework and methodological tool developed for the evaluation of different anaerobic digestion technologies suitable for treating the organic fraction of municipal solid waste, by introducing the multi-criteria decision support method Electre III and demonstrating its related applicability via a test application. Several anaerobic digestion technologies have been proposed over the last years; when compared to biogas recovery from landfills, their advantage is the stability in biogas production and the stabilization of waste prior to final disposal. Anaerobic digestion technologies also show great adaptability to a broad spectrum of different input material beside the organic fraction of municipal solid waste (e.g. agricultural and animal wastes, sewage sludge) and can also be used in remote and isolated communities, either stand-alone or in conjunction to other renewable energy sources. Main driver for this work was the preliminary screening of such methods for potential application in Hellenic islands in the municipal solid waste management sector. Anaerobic digestion technologies follow different approaches to the anaerobic digestion process and also can include production of compost. In the presented multi-criteria analysis exercise, Electre III is implemented for comparing and ranking 5 selected alternative anaerobic digestion technologies. The results of a performed sensitivity analysis are then discussed. In conclusion, the performed multi-criteria approach was found to be a practical and feasible method for the integrated assessment and ranking of anaerobic digestion technologies by also considering different viewpoints and other uncertainties of the decision-making process.

  10. Mesophilic batch anaerobic co-digestion of fruit-juice industrial waste and municipal waste sludge: process and cost-benefit analysis.

    PubMed

    Hosseini Koupaie, E; Barrantes Leiva, M; Eskicioglu, C; Dutil, C

    2014-01-01

    The feasibility of anaerobic co-digestion of two juice-based beverage industrial wastes, screen cake (SC) and thickened waste activated sludge (TWAS), along with municipal sludge cake (MC) was investigated. Experiments were conducted in twenty mesophilic batch 160 ml serum bottles with no inhibition occurred. The statistical analysis proved that the substrate type had statistically significant effect on both ultimate biogas and methane yields (P=0.0003<0.05). The maximum and minimum ultimate cumulative methane yields were 890.90 and 308.34 mL/g-VSremoved from the digesters containing only TWAS and SC as substrate. First-order reaction model well described VS utilization in all digesters. The first 2-day and 10-day specific biodegradation rate constants were statistically higher in the digesters containing SC (P=0.004<0.05) and MC (P=0.0005<0.05), respectively. The cost-benefit analysis showed that the capital, operating and total costs can be decreased by 21.5%, 29.8% and 27.6%, respectively using a co-digester rather than two separate digesters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Thermal behaviour of ESP ash from municipal solid waste incinerators.

    PubMed

    Yang, Y; Xiao, Y; Wilson, N; Voncken, J H L

    2009-07-15

    Stricter environmental regulations demand safer treatment and disposal of incinerator fly ashes. So far no sound technology or a process is available for a sustainable and ecological treatment of the waste incineration ashes, and only partial treatment is practised for temporary and short-term solutions. New processes and technology need to be developed for comprehensive utilization and detoxification of the municipal solid waste (MSW) incinerator residues. To explore the efficiency of thermal stabilisation and controlled vitrification, the thermal behaviour of electrostatic precipitator (ESP) ash was investigated under controlled conditions. The reaction stages are identified with the initial moisture removal, volatilization, melting and slag formation. At the temperature higher than 1100 degrees C, the ESP ashes have a quicker weight loss, and the total weight loss reaches up to 52%, higher than the boiler ash. At 1400 degrees C a salt layer and a homogeneous glassy slag were formed. The effect of thermal treatment on the leaching characteristics of various elements in the ESP ash was evaluated with the availability-leaching test. The leaching values of the vitrified slag are significantly lowered than that of the original ash.

  12. The effect of gender and age structure on municipal waste generation in Poland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talalaj, Izabela Anna, E-mail: izabela.tj@gmail.com; Walery, Maria, E-mail: m.walery@pb.edu.pl

    Highlights: • An effect of gender and age structure on municipal waste generation was presented. • The waste accumulation index is influenced by a number of unemployed women. • Greater share of women in society contributes to greater waste production. • A model describing the analyzed dependences was determined. - Abstract: In this study the effect of gender and age structure on municipal waste generation was investigated. The data from 10-year period, from 2001 to 2010 year, were taken into consideration. The following parameters of gender and age structure were analyzed: men and woman quantity, female to male ratio, numbermore » of working, pre-working and post-working age men/women, number of unemployed men/women. The results have showed a strong correlation of annual per capita waste generation rate with number of unemployed women (r = 0.70) and female to male ratio (r = 0.81). This indicates that waste generation rate is more depended on ratio of men and women that on quantitative size of each group. Using the regression analysis a model describing the dependence between female to male ratio, number of unemployed woman and waste quantity was determined. The model explains 70% of waste quantity variation. Obtained results can be used both to improve waste management and to a fuller understanding of gender behavior.« less

  13. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  14. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  15. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  16. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  17. 40 CFR 62.15035 - Is my small municipal waste combustion unit subject to different requirements based on plant...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Is my small municipal waste combustion... Combustion Units Constructed on or Before August 30, 1999 Applicability of This Subpart § 62.15035 Is my small municipal waste combustion unit subject to different requirements based on plant capacity? This...

  18. EPA ASSESSMENT OF TECHNOLOGIES FOR CONTROLLING EMISSIONS FROM MUNICIPAL WASTE COMBUSTION

    EPA Science Inventory

    The article examines EPA technical activities relating to the development of regulations pertaining to the control of both new and existing municipal waste combustion facilities (MWCs). The activities include: (1) assessing combustion and flue gas cleaning technologies, (2) colle...

  19. 40 CFR 60.53a - Standard for municipal waste combustor organics.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Municipal Waste Combustors for Which Construction is Commenced After December 20, 1989 and on or Before... exceed 30 nanograms per dry standard cubic meter (12 grains per billion dry standard cubic feet), corrected to 7 percent oxygen (dry basis). ...

  20. Recovery and recycling practices in municipal solid waste management in Lagos, Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofoworola, O.F.

    The population of Lagos, the largest city in Nigeria, increased seven times from 1950 to 1980 with a current population of over 10 million inhabitants. The majority of the city's residents are poor. The residents make a heavy demand on resources and, at the same time, generate large quantities of solid waste. Approximately 4 million tonnes of municipal solid waste (MSW) is generated annually in the city, including approximately 0.5 million of untreated industrial waste. This is approximately 1.1 kg/cap/day. Efforts by the various waste management agencies set up by the state government to keep its streets and neighborhoods cleanmore » have achieved only minimal success. This is because more than half of these wastes are left uncollected from the streets and the various locations due to the inadequacy and inefficiency of the waste management system. Whilst the benefits of proper solid waste management (SWM), such as increased revenues for municipal bodies, higher productivity rate, improved sanitation standards and better health conditions, cannot be overemphasized, it is important that there is a reduction in the quantity of recoverable materials in residential and commercial waste streams to minimize the problem of MSW disposal. This paper examines the status of recovery and recycling in current waste management practice in Lagos, Nigeria. Existing recovery and recycling patterns, recovery and recycling technologies, approaches to materials recycling, and the types of materials recovered from MSW are reviewed. Based on these, strategies for improving recovery and recycling practices in the management of MSW in Lagos, Nigeria are suggested.« less

  1. Development of a sintering process for recycling oil shale fly ash and municipal solid waste incineration bottom ash into glass ceramic composite.

    PubMed

    Zhang, Zhikun; Zhang, Lei; Li, Aimin

    2015-04-01

    Oil shale fly ash and municipal solid waste incineration bottom ash are industrial and municipal by-products that require further treatment before disposal to avoid polluting the environment. In the study, they were mixed and vitrified into the slag by the melt-quench process. The obtained vitrified slag was then mixed with various percentages of oil shale fly ash and converted into glass ceramic composites by the subsequent sintering process. Differential thermal analysis was used to study the thermal characteristics and determine the sintering temperatures. X-ray diffraction analysis was used to analyze the crystalline phase compositions. Sintering shrinkage, weight loss on ignition, density and compressive strength were tested to determine the optimum preparation condition and study the co-sintering mechanism of vitrified amorphous slag and oil shale fly ash. The results showed the product performances increased with the increase of sintering temperatures and the proportion of vitrified slag to oil shale fly ash. Glass ceramic composite (vitrified slag content of 80%, oil shale fly ash content of 20%, sintering temperature of 1000 °C and sintering time of 2h) showed the properties of density of 1.92 ± 0.05 g/cm(3), weight loss on ignition of 6.14 ± 0.18%, sintering shrinkage of 22.06 ± 0.6% and compressive strength of 67 ± 14 MPa. The results indicated that it was a comparable waste-based material compared to previous researches. In particular, the energy consumption in the production process was reduced compared to conventional vitrification and sintering method. Chemical resistance and heavy metals leaching results of glass ceramic composites further confirmed the possibility of its engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. [Research advances in control of N2O emission from municipal solid waste landfill sites].

    PubMed

    Cai, Chuan-Yu; Li, Bo; Lü, Hao-Hao; Wu, Wei-Xiang

    2012-05-01

    Landfill is one of the main approaches for municipal solid waste treatment, and landfill site is a main emission source of greenhouse gases nitrous oxide (N2O) and methane (CH4). As a high-efficient trace greenhouse gas, N2O has a very high warming potential, with a warming capacity 296 times of CO2, and has a long-term stability in atmosphere, giving greater damage to the ozone layer. Aiming at the researches in the control of N2O emission from municipal solid waste landfill sites, this paper summarized the characteristics and related affecting factors of the N2O emission from the landfill sites, and put forward a series of the measures adaptable to the N2O emission control of present municipal solid waste landfill sites in China. Some further research focuses on the control of N2O emission from the landfill sites were also presented.

  3. Possible applications for municipal solid waste fly ash.

    PubMed

    Ferreira, C; Ribeiro, A; Ottosen, L

    2003-01-31

    The present study focuses on existing practices related to the reuse of Municipal Solid Waste (MSW) fly ash and identifies new potential uses. Nine possible applications were identified and grouped into four main categories: construction materials (cement, concrete, ceramics, glass and glass-ceramics); geotechnical applications (road pavement, embankments); "agriculture" (soil amendment); and, miscellaneous (sorbent, sludge conditioning). Each application is analysed in detail, including final-product technical characteristics, with a special emphasis on environmental impacts. A comparative analysis of the different options is performed, stressing the advantages but also the weaknesses of each option. This information is systemized in order to provide a framework for the selection of best technology and final products. The results presented here show new possibilities for this waste reuse in a short-term, in a wide range of fields, resulting in great advantages in waste minimization as well as resources conservation.

  4. IMPACT OF DECISION-MAKING STRATEGIES AND COMMUNICATION PROCESSES ON THE PUBLIC ACCEPTABILITY OF MUNICIPAL WASTE COMBUSTION RESIDUE UTILIZATION IN THE UNITED STATES

    EPA Science Inventory

    Of the identified current and proposed construction projects in which municipal solid waste combustion residues replace traditionally used materials, approximately half are located on landfills or other property controlled by project sponsors, one third are in publicly accessible...

  5. CONTROL OF DIOXIN, FURAN, AND MERCURY EMISSIONS FROM MUNICIPAL WASTE COMBUSTORS

    EPA Science Inventory

    There is a significant public and scientific concern over the potential risks of air pollution emissions from municipal waste combustors (MWCs). The primary pollutants of concern are polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs), and mercury (Hg). Depending on...

  6. Energy content of municipal solid waste bales.

    PubMed

    Ozbay, Ismail; Durmusoglu, Ertan

    2013-07-01

    Baling technology is a preferred method for temporary storage of municipal solid waste (MSW) prior to final disposal. If incineration is intended for final disposal of the bales, the energy content of the baled MSW gains importance. In this study, nine cylindrical bales containing a mix of different waste materials were constructed and several parameters, including total carbon (TC), total organic carbon (TOC), total Kjeldahl nitrogen, moisture content, loss on ignition, gross calorific value and net calorific value (NCV) were determined before the baling and at the end of 10 months of storage. In addition, the relationships between the waste materials and the energy contents of the bales were investigated by the bivariate correlation analyses. At the end, linear regression models were developed in order to forecast the decrease of energy content during storage. While the NCVs of the waste materials before the baling ranged between 6.2 and 23.7 MJ kg(-1) dry basis, they ranged from 1.0 to 16.4 MJ kg(-1) dry basis at the end of the storage period. Moreover, food wastes exhibited the highest negative correlation with NCVs, whereas plastics have significant positive correlation with both NCVs and TCs. Similarly, TOCs and carbon/nitrogen ratios decreased with the increase in food amounts inside the bales. In addition, textile, wood and yard wastes increase the energy content of the bales slightly over the storage period.

  7. Analysis of the contaminants released from municipal solid waste landfill site: A case study.

    PubMed

    Samadder, S R; Prabhakar, R; Khan, D; Kishan, D; Chauhan, M S

    2017-02-15

    Release and transport of leachate from municipal solid waste landfills pose a potential hazard to both surrounding ecosystems and human populations. In the present study, soil, groundwater, and surface water samples were collected from the periphery of a municipal solid waste landfill (located at Ranital of Jabalpur, Madhya Pradesh, India) for laboratory analysis to understand the release of contaminants. The landfill does not receive any solid wastes for dumping now as the same is under a landfill closure plan. Groundwater and soil samples were collected from the bore holes of 15m deep drilled along the periphery of the landfill and the surface water samples were collected from the existing surface water courses near the landfill. The landfill had neither any bottom liner nor any leachate collection and treatment system. Thus the leachate generated from the landfills finds paths into the groundwater and surrounding surface water courses. Concentrations of various physico-chemical parameters including some toxic metals (in collected groundwater, soil, and surface water samples) and microbiological parameters (in surface water samples) were determined. The analyzed data were integrated into ArcGIS environment and the spatial distribution of the metals and other physic- chemical parameter across the landfill was extrapolated to observe the distribution. The statistical analysis and spatial variations indicated the leaching of metals from the landfill to the groundwater aquifer system. The study will help the readers and the municipal engineers to understand the release of contaminants from landfills for better management of municipal solid wastes. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Municipal solid waste management in Beijing City.

    PubMed

    Li, Zhen-shan; Yang, Lei; Qu, Xiao-Yan; Sui, Yu-mei

    2009-09-01

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km(2) with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted for less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.

  9. Recovery of essential nutrients from municipal solid waste--Impact of waste management infrastructure and governance aspects.

    PubMed

    Zabaleta, Imanol; Rodic, Ljiljana

    2015-10-01

    Every year 120-140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Multiple stakeholders in multi-criteria decision-making in the context of Municipal Solid Waste Management: A review.

    PubMed

    Soltani, Atousa; Hewage, Kasun; Reza, Bahareh; Sadiq, Rehan

    2015-01-01

    Municipal Solid Waste Management (MSWM) is a complicated process that involves multiple environmental and socio-economic criteria. Decision-makers look for decision support frameworks that can guide in defining alternatives, relevant criteria and their weights, and finding a suitable solution. In addition, decision-making in MSWM problems such as finding proper waste treatment locations or strategies often requires multiple stakeholders such as government, municipalities, industries, experts, and/or general public to get involved. Multi-criteria Decision Analysis (MCDA) is the most popular framework employed in previous studies on MSWM; MCDA methods help multiple stakeholders evaluate the often conflicting criteria, communicate their different preferences, and rank or prioritize MSWM strategies to finally agree on some elements of these strategies and make an applicable decision. This paper reviews and brings together research on the application of MCDA for solving MSWM problems with more focus on the studies that have considered multiple stakeholders and offers solutions for such problems. Results of this study show that AHP is the most common approach in consideration of multiple stakeholders and experts and governments/municipalities are the most common participants in these studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Emission from open burning of municipal solid waste in India.

    PubMed

    Kumari, Kanchan; Kumar, Sunil; Rajagopal, Vineel; Khare, Ankur; Kumar, Rakesh

    2017-07-27

    Open burning of Municipal Solid Waste (MSW) is a potential non-point source of emission, which causes greater concern especially in developing countries such as India. Lack of awareness about environmental impact of open burning, and ignorance of the fact, i.e. 'Open burning is a source of emission of carcinogenic substances' are major hindrances towards an appropriate municipal solid waste management system in India. The paper highlights the open burning of MSW practices in India, and the current and projected emission of 10 major pollutants (dioxin, furans, particulate matter, carbon monoxide, sulphur oxides, nitrogen oxides, benzene, toluene, ethyl benzene and 1-hexene) emitted due to the open burning of MSW. Waste to Energy potential of MSW was also estimated adopting effective biological and thermal techniques. Statistical techniques were applied to analyse the data and current and projected emission of various pollutants were estimated. Data pertaining to population, MSW generation and its collection efficiency were compiled for 29 States and 7 Union Territories. Thereafter, emission of 10 pollutants was measured following methodology prescribed in Intergovernmental Panel on Climate Change guideline for National Greenhouse Gas Inventories, 2006. The study revealed that people living in Metropolitan cities are more affected by emissions from open burning.

  12. Biogas production from the mechanically pretreated, liquid fraction of sorted organic municipal solid wastes.

    PubMed

    Alvarado-Lassman, A; Méndez-Contreras, J M; Martínez-Sibaja, A; Rosas-Mendoza, E S; Vallejo-Cantú, N A

    2017-06-01

    The high liquid content in fruit and vegetable wastes makes it convenient to mechanically separate these wastes into mostly liquid and solid fractions by means of pretreatment. Then, the liquid fraction can be treated using a high-rate anaerobic biofilm reactor to produce biogas, simultaneously reducing the amount of solids that must be landfilled. In this work, the specific composition of municipal solid waste (MSW) in a public market was determined; then, the sorted organic fraction of municipal solid waste was treated mechanically to separate and characterize the mostly liquid and solid fractions. Then, the mesophilic anaerobic digestion for biogas production of the first fraction was evaluated. The anaerobic digestion resulted in a reduced hydraulic retention time of two days with high removal of chemical oxygen demand, that is, 88% on average, with the additional benefit of reducing the mass of the solids that had to be landfilled by about 80%.

  13. A historical context of municipal solid waste management in the United States.

    PubMed

    Louis, Garrick E

    2004-08-01

    Municipal solid waste management (MSWM) in the United States is a system comprised of regulatory, administrative, market, technology, and social subcomponents, and can only be understood in the context of its historical evolution. American cities lacked organized public works for street cleaning, refuse collection, water treatment, and human waste removal until the early 1800s. Recurrent epidemics forced efforts to improve public health and the environment. The belief in anticontagionism led to the construction of water treatment and sewerage works during the nineteenth century, by sanitary engineers working for regional public health authorities. This infrastructure was capital intensive and required regional institutions to finance and administer it. By the time attention turned to solid waste management in the 1880s, funding was not available for a regional infrastructure. Thus, solid waste management was established as a local responsibility, centred on nearby municipal dumps. George Waring of New York City organized solid waste management around engineering unit operations; including street sweeping, refuse collection, transportation, resource recovery and disposal. This approach was adopted nationwide, and was managed by City Departments of Sanitation. Innovations such as the introduction of trucks, motorized street sweepers, incineration, and sanitary landfill were developed in the following decades. The Resource Conservation and Recovery Act of 1976 (RCRA), is the defining legislation for MSWM practice in America today. It forced the closure of open dumps nationwide, and required regional planning for MSWM. The closure of municipal dumps caused a 'garbage crisis' in the late 1980s and early 1990s. Private companies assumed an expanded role in MSWM through regional facilities that required the transportation of MSW across state lines. These transboundary movements of MSW created the issue of flow control, in which the US Supreme Court affirmed the protection

  14. Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier.

    PubMed

    Pandey, Daya Shankar; Pan, Indranil; Das, Saptarshi; Leahy, James J; Kwapinski, Witold

    2015-03-01

    A multi-gene genetic programming technique is proposed as a new method to predict syngas yield production and the lower heating value for municipal solid waste gasification in a fluidized bed gasifier. The study shows that the predicted outputs of the municipal solid waste gasification process are in good agreement with the experimental dataset and also generalise well to validation (untrained) data. Published experimental datasets are used for model training and validation purposes. The results show the effectiveness of the genetic programming technique for solving complex nonlinear regression problems. The multi-gene genetic programming are also compared with a single-gene genetic programming model to show the relative merits and demerits of the technique. This study demonstrates that the genetic programming based data-driven modelling strategy can be a good candidate for developing models for other types of fuels as well. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England.

    PubMed

    Papageorgiou, A; Barton, J R; Karagiannidis, A

    2009-07-01

    Waste management activities contribute to global greenhouse gas emissions approximately by 4%. In particular the disposal of waste in landfills generates methane that has high global warming potential. Effective mitigation of greenhouse gas emissions is important and could provide environmental benefits and sustainable development, as well as reduce adverse impacts on public health. The European and UK waste policy force sustainable waste management and especially diversion from landfill, through reduction, reuse, recycling and composting, and recovery of value from waste. Energy from waste is a waste management option that could provide diversion from landfill and at the same time save a significant amount of greenhouse gas emissions, since it recovers energy from waste which usually replaces an equivalent amount of energy generated from fossil fuels. Energy from waste is a wide definition and includes technologies such as incineration of waste with energy recovery, or combustion of waste-derived fuels for energy production or advanced thermal treatment of waste with technologies such as gasification and pyrolysis, with energy recovery. The present study assessed the greenhouse gas emission impacts of three technologies that could be used for the treatment of Municipal Solid Waste in order to recover energy from it. These technologies are Mass Burn Incineration with energy recovery, Mechanical Biological Treatment via bio-drying and Mechanical Heat Treatment, which is a relatively new and uninvestigated method, compared to the other two. Mechanical Biological Treatment and Mechanical Heat Treatment can turn Municipal Solid Waste into Solid Recovered Fuel that could be combusted for energy production or replace other fuels in various industrial processes. The analysis showed that performance of these two technologies depends strongly on the final use of the produced fuel and they could produce GHG emissions savings only when there is end market for the fuel. On the

  16. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    PubMed

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  17. Performance of mechanical biological treatment of residual municipal waste in Poland

    NASA Astrophysics Data System (ADS)

    den Boer, Emilia; Jędrczak, Andrzej

    2017-11-01

    The number and capacity of mechanical-biological treatment (MBT) plants in Europe increased significantly in the past two decades as a response to the legal obligation to limit the landfilling of biodegradable waste in landfills and to increase recycling and energy recovery from waste. The aim of these plants is to prepare residual municipal waste for recovery and disposal operations, including especially separation and stabilization of the easily biodegradable fraction (the biofraction). The final products of MBP technology are recyclables, stabilate, high calorific fraction which is used for the production of refuse derived fuel (RDF) and the remaining residual fraction. The shares of the output fractions, especially of the recyclables and RDF determine the overall efficiency of MBT technology in diverting waste from landfills. In this paper results of an assessment of one exemplary MBT plant are provided. The analysis was performed within a comparative study in which 20 selected MBT plants in Poland were subject to a detailed analysis, focusing, both at the design parameters as well as operational ones. The selected plant showed relatively higher overall materials recovery efficiency. With the view to circular economy targets, increased automation of the mechanical waste treatment will be required to support achieving high level diversion from landfills. The study reviled that stabilisation of biofraction should be improved by a better control of process conditions, especially moisture content.

  18. Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, P

    1994-07-01

    US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technicalmore » reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.« less

  19. Vehicle-Routing Optimization for Municipal Solid Waste Collection Using Genetic Algorithm: The Case of Southern Nablus City

    NASA Astrophysics Data System (ADS)

    Assaf, Ramiz; Saleh, Yahya

    2017-09-01

    Municipalities are responsible for solid waste collectiont for environmental, social and economic purposes. Practices of municipalities should be effective and efficient, with the objectives of reducing the total incurred costs in the solid waste collection network concurrently achieving the highest service level. This study aims at finding the best routes of solid waste collection network in Nablus city-Palestine. More specifically, the study seeks the optimal route that minimizes the total travelled distance by the trucks and hence the resulted costs. The current situation is evaluated and the problem is modelled as a Vehicle Routing Problem (VRP). The VRP is then optimized via a genetic algorithm. Specifically, compared to the current situation, the trucks total travelled distance was reduced by 66%, whereas the collection time was reduced from 7 hours per truck-trip to 2.3 hours. The findings of this study is useful for all municipality policy makers that are responsible for solid waste collection.

  20. Web-GIS oriented systems viability for municipal solid waste selective collection optimization in developed and transient economies.

    PubMed

    Rada, E C; Ragazzi, M; Fedrizzi, P

    2013-04-01

    Municipal solid waste management is a multidisciplinary activity that includes generation, source separation, storage, collection, transfer and transport, processing and recovery, and, last but not least, disposal. The optimization of waste collection, through source separation, is compulsory where a landfill based management must be overcome. In this paper, a few aspects related to the implementation of a Web-GIS based system are analyzed. This approach is critically analyzed referring to the experience of two Italian case studies and two additional extra-European case studies. The first case is one of the best examples of selective collection optimization in Italy. The obtained efficiency is very high: 80% of waste is source separated for recycling purposes. In the second reference case, the local administration is going to be faced with the optimization of waste collection through Web-GIS oriented technologies for the first time. The starting scenario is far from an optimized management of municipal solid waste. The last two case studies concern pilot experiences in China and Malaysia. Each step of the Web-GIS oriented strategy is comparatively discussed referring to typical scenarios of developed and transient economies. The main result is that transient economies are ready to move toward Web oriented tools for MSW management, but this opportunity is not yet well exploited in the sector. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Optimal routing for efficient municipal solid waste transportation by using ArcGIS application in Chennai, India.

    PubMed

    Sanjeevi, V; Shahabudeen, P

    2016-01-01

    Worldwide, about US$410 billion is spent every year to manage four billion tonnes of municipal solid wastes (MSW). Transport cost alone constitutes more than 50% of the total expenditure on solid waste management (SWM) in major cities of the developed world and the collection and transport cost is about 85% in the developing world. There is a need to improve the ability of the city administrators to manage the municipal solid wastes with least cost. Since 2000, new technologies such as geographical information system (GIS) and related optimization software have been used to optimize the haul route distances. The city limits of Chennai were extended from 175 to 426 km(2) in 2011, leading to sub-optimum levels in solid waste transportation of 4840 tonnes per day. After developing a spatial database for the whole of Chennai with 200 wards, the route optimization procedures have been run for the transport of solid wastes from 13 wards (generating nodes) to one transfer station (intermediary before landfill), using ArcGIS. The optimization process reduced the distances travelled by 9.93%. The annual total cost incurred for this segment alone is Indian Rupees (INR) 226.1 million. Savings in terms of time taken for both the current and shortest paths have also been computed, considering traffic conditions. The overall savings are thus very meaningful and call for optimization of the haul routes for the entire Chennai. © The Author(s) 2015.

  2. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment.

    PubMed

    de Souza, Samuel Nm; Horttanainen, Mika; Antonelli, Jhonatas; Klaus, Otávia; Lindino, Cleber A; Nogueira, Carlos Ec

    2014-10-01

    This article presents an analysis of possibilities for electrical energy production by using municipal solid waste disposed in the biggest Brazilian cities. Currently, the municipal solid waste in Brazil is collected and disposed of at landfills, but there are also other technologies, which in addition to dealing with the garbage can also provide benefits in terms of energy provision. The following scenarios were studied in this work: electricity production from landfill gas (reference scenario); incineration of all municipal solid waste; anaerobic digestion of organic waste and incineration of refuse-derived fuel fractions after being separated in separation plants. According to this study, the biggest cities in Brazil generate about 18.9 million tonnes of municipal solid waste per year (2011), of which 51.5% is biogenic matter. The overall domestic consumption of electricity is 480,120 GWh y(-1) in Brazil and the municipal solid waste incineration in the 16 largest cities in the country could replace 1.8% of it using incinerators. The city of São Paulo could produce 637 GWh y(-1) with landfill gas, 2368 GWh y(-1) with incineration of municipal solid waste and 1177 GWh y(-1) with incineration of refuse-derived fuel. The latter two scenarios could replace 27% and 13.5% of the residential electrical energy consumption in the city. This shows that thermal treatment might be a viable option of waste-to-energy in Brazil. © The Author(s) 2014.

  3. Effect of storage conditions on the calorific value of municipal solid waste.

    PubMed

    Nzioka, Antony Mutua; Hwang, Hyeon-Uk; Kim, Myung-Gyun; Yan, Cao Zheng; Lee, Chang-Soo; Kim, Young-Ju

    2017-08-01

    Storage conditions are considered to be an important factor as far as waste material characteristics are concerned. This experimental investigation was conducted using municipal solid waste (MSW) with a high moisture content and varying composition of organic waste. The objective of this study was to understand the effect of storage conditions and temperature on the moisture content and calorific value of the waste. Samples were subjected to two different storage conditions and investigated at specified temperatures. The composition of sample materials investigated was varied for each storage condition and temperature respectively. Gross calorific value was determined experimentally while net calorific value was calculated using empirical formulas proposed by other researchers. Results showed minimal changes in moisture content as well as in gross and net calorific values when the samples were subjected to sealed storage conditions. Moisture content reduced due to the ventilation process and the rate of moisture removal increased with a rise in storage temperature. As expected, rate of moisture removal had a positive effect on gross and net calorific values. Net calorific values also increased at varying rates with a simultaneous decrease in moisture content. Experimental investigation showed the effectiveness of ventilation in improving the combustion characteristics of the waste.

  4. Geopolymers based on the valorization of Municipal Solid Waste Incineration residues

    NASA Astrophysics Data System (ADS)

    Giro-Paloma, J.; Maldonado-Alameda, A.; Formosa, J.; Barbieri, L.; Chimenos, J. M.; Lancellotti, I.

    2017-10-01

    The proper management of Municipal Solid Waste (MSW) has become one of the main environmental commitments for developed countries due to the uncontrolled growth of waste caused by the consumption patterns of modern societies. Nowadays, municipal solid waste incineration (MSWI) is one of the most feasible solutions and it is estimated to increase in Europe where the accessibility of landfill is restricted. Bottom ash (BA) is the most significant by-product from MSWI as it accounts for 85 - 95 % of the solid product resulting from combustion, which is classified as a non-hazardous residue that can be revalorized as a secondary aggregate in road sub-base, bulk lightweight filler in construction. In this way, revalorization of weathered BA (WBA) for the production of geopolymers may be a good alternative to common reuse as secondary aggregate material; however, the chemical process to obtain these materials involves several challenges that could disturb the stability of the material, mainly from the environmental point of view. Accordingly, it is necessary that geopolymers are able to stabilize heavy metals contained in the WBA in order to be classified as non-hazardous materials. In this regard, the SiO2/Al2O3 ratio plays an important role for the encapsulation of heavy metals and other toxic elements. The aim of this research is to formulate geopolymers starting from the 0 - 2 mm particle size fraction of WBA, as a unique raw material used as aluminumsilicate precursor. Likewise, leaching tests of the geopolymers formulated were performed to assess their environmental impact. The findings show that it is possible to formulate geopolymers using 100 % WBA as precursor, although more investigations are needed to sustain that geopolymer obtained can be considered as non-hazardous materials.

  5. Battery collection in municipal waste management in Japan: Challenges for hazardous substance control and safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terazono, Atsushi, E-mail: terazono@nies.go.jp; Oguchi, Masahiro; Iino, Shigenori

    Highlights: • Consumers need to pay attention to the specific collection rules for each type of battery in each municipality in Japan. • 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. • Despite announcements by producers and municipalities, only 2.0% of discarded cylindrical dry batteries were insulated. • Batteries made up an average of 4.6% of the total collected small WEEE under the small WEEE recycling scheme in Japan. • Exchangeable batteries were used in almost all of mobile phones, but the removal rate was as low as 22% for mobilemore » phones. - Abstract: To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using

  6. Strategies for the municipal waste management system to take advantage of carbon trading under competing policies: The role of energy from waste in Sydney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Hanandeh, Ali; El-Zein, Abbas

    2009-07-15

    Climate change is a driving force behind some recent environmental legislation around the world. Greenhouse gas emission reduction targets have been set in many industrialised countries. A change in current practices of almost all greenhouse-emitting industrial sectors is unavoidable, if the set targets is to be achieved. Although, waste disposal contributes around 3% of the total greenhouse gas emissions in Australia (mainly due to fugitive methane emissions from landfills), the carbon credit and trading scheme set to start in 2010 presents significant challenges and opportunities to municipal solid waste practitioners. Technological advances in waste management, if adopted properly, allow themore » municipal solid waste sector to act as carbon sink, hence earning tradable carbon credits. However, due to the complexity of the system and its inherent uncertainties, optimizing it for carbon credits may worsen its performance under other criteria. We use an integrated, stochastic multi-criteria decision-making tool that we developed earlier to analyse the carbon credit potential of Sydney municipal solid waste under eleven possible future strategies. We find that the changing legislative environment is likely to make current practices highly non-optimal and increase pressures for a change of waste management strategy.« less

  7. Slags and ashes from municipal waste incineration in Poland - mineralogical and chemical composition

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr; Michalik, Marek

    2013-04-01

    In the next few years there will be a large change in the waste management system in Poland. Its primary aim will be reduction of the amount of landfilled waste by enhancing level of recycling, waste segregation, composting of biomass and incineration. The biggest investment during this transformation is construction of nine incinerators with assumed slags production around 200 thousand tons per year. Slag production is accompanied by fly ash generating. This ash can be a valuable raw material as fly ash from the power industry. Waste management system transformation will cause big increase in slag production in comparison to the present amount and will require taking necessary steps to ensure environmental safety. For this purpose, studies of slags and fly ashes in terms of environmental risk and potential impact on human health are significant. The object of the study are fly ashes and slags produced in the biggest municipal waste incineration power plant in Poland. Two series of samples obtained in municipal waste incineration process were studied in order to characterize mineralogical and chemical composition and to determine the concentrations of heavy metals and their possible negative environmental impact. Characteristics of these materials will be the basis for determining their value in application, for example in building industry. Mineralogical characteristic of slags was based on X-ray diffraction. Characteristic of structures and forms of occurrence of mineral phases was based on the optical microscopy and SEM imaging coupled with EDS analysis. Chemical analysis were performed using ICP-MS/ICP-AES methods. They allowed to follow variability between studied samples and gave basic information about metals. Metals in samples of slag and ashes are present as component of mineral phases and in the form of metallic inclusions in glass or minerals. Potentially hazardous concentrations for environment are observed for copper (330-4900ppm), zinc (1500-8100ppm

  8. LIFE-CYCLE EVALUATION OF GREENHOUSE GAS EMISSIONS FROM MUNICIPAL SOLID WASTE MANAGEMENT IN THE UNITED STATES

    EPA Science Inventory

    The paper discusses a life-cycle evaluation of greenhouse gas (GHG) emissions from municipal soild waste (MSW) management in the U.S. (NOTE: Using integrated waste management, recycling/composting, waste-to-energy, and better control of landfill gas, communities across the U.S. a...

  9. Enhanced Fuzzy-OWA model for municipal solid waste landfill site selection

    NASA Astrophysics Data System (ADS)

    Ahmad, Siti Zubaidah; Ahamad, Mohd Sanusi S.; Yusoff, Mohd Suffian; Abujayyab, Sohaib K. M.

    2017-10-01

    In Malaysia, the municipal solid waste landfill site is an essential facility that needs to be evaluated as its demand is infrequently getting higher. The increment of waste generation forces the government to cater the appropriate site for waste disposal. However, the selection process for new landfill sites is a difficult task with regard to land scarcity and time consumption. In addition, the complication will proliferate when there are various criteria to be considered. Therefore, this paper intends to show the significance of the fuzzy logic-ordered weighted average (Fuzzy-OWA) model for the landfill site suitability analysis. The model was developed to generalize the multi-criteria combination that was extended to the GIS applications as part of the decision support module. OWA has the capability to implement different combination operators through the selection of appropriate order weight that is possible in changing the form of aggregation such as minimum, intermediate and maximum types of combination. OWA give six forms of aggregation results that have their specific significance that indirectly evaluates the environmental, physical and socio-economic (EPSE) criteria respectively. Nevertheless, one of the aggregated results has shown similarity with the weighted linear combination (WLC) method.

  10. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  11. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  12. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  13. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  14. 40 CFR Table 5 to Subpart Jjj of... - Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Existing Small Municipal Waste Combustion Units 5 Table 5 to Subpart JJJ of Part 62 Protection of... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 62—Carbon Monoxide Emission Limits for Existing Small Municipal Waste Combustion Units...

  15. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: characterization of physicochemical parameters and microbial enzymatic dynamic.

    PubMed

    Awasthi, Mukesh Kumar; Pandey, Akhilesh Kumar; Bundela, Pushpendra Singh; Khan, Jamaluddin

    2015-04-01

    The effect of various bulking waste such as wood shaving, agricultural and yard trimming waste combined with organic fraction of municipal solid waste (OFMSW) composting was investigated through assessing their influence on microbial enzymatic activities and quality of finished compost. All three piles of OFMSW with different bulking waste were inoculated with microbial consortium. The results revealed that OFMSW combined with wood shaving and microbial consortium (Phanerochaete chrysosporium, Trichoderma viride and Pseudomonas aeruginosa) were helpful tool to facilitate the enzymatic activity and shortened composting period within 4 weeks. Maximum enzymatic activity were observed in pile 1 and 3 during the first 3 weeks, while in pile 2 relatively very low. But phosphatase activity was relatively higher in all piles until the end of the process. Maturity parameters of compost quality also favored the pile 1 as the best formulation for OFMSW composting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Municipal solid waste management in Beijing City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zhenshan; Key Laboratory for Environmental and Urban Sciences, Shenzhen Graduate School, Peking University, Shenzhen 518055; Yang Lei

    2009-09-15

    This paper presents an overview of municipal solid waste (MSW) management in Beijing City. Beijing, the capital of China, has a land area of approximately 1368.32 km{sup 2} with an urban population of about 13.33 million in 2006. Over the past three decades, MSW generation in Beijing City has increased tremendously from 1.04 million tons in 1978 to 4.134 million tons in 2006. The average generation rate of MSW in 2006 was 0.85 kg/capita/day. Food waste comprised 63.39%, followed by paper (11.07%), plastics (12.7%) and dust (5.78%). While all other wastes including tiles, textiles, glass, metals and wood accounted formore » less than 3%. Currently, 90% of MSW generated in Beijing is landfilled, 8% is incinerated and 2% is composted. Source separation collection, as a waste reduction method, has been carried out in a total of 2255 demonstration residential and commercial areas (covering about 4.7 million people) up to the end of 2007. Demonstration districts should be promoted over a wider range instead of demonstration communities. The capacity of transfer stations and treatment plants is an urgent problem as these sites are seriously overloaded. These problems should first be solved by constructing more sites and converting to new treatment technologies. Improvements in legislation, public education and the management of waste pickers are problematic issues which need to be addressed.« less

  17. Feasibility analysis of municipal solid waste mass burning in the Region of East Macedonia--Thrace in Greece.

    PubMed

    Athanasiou, C J; Tsalkidis, D A; Kalogirou, E; Voudrias, E A

    2015-06-01

    The present work conducts a preliminary techno-economic feasibility study for a single municipal solid waste mass burning to an electricity plant for the total municipal solid waste potential of the Region of Eastern Macedonia - Thrace, in Greece. For a certain applied and highly efficient technology and an installed capacity of 400,000 t of municipal solid waste per year, the available electrical power to grid would be approximately 260 GWh per year (overall plant efficiency 20.5% of the lower heating value). The investment for such a plant was estimated at €200m. Taking into account that 37.9% of the municipal solid waste lower heating value can be attributed to their renewable fractions, and Greek Law 3851/2010, which transposes Directive 2009/28/EC for Renewable Energy Sources, the price of the generated electricity was calculated at €53.19/MWhe. Under these conditions, the economic feasibility of such an investment depends crucially on the imposed gate fees. Thus, in the gate fee range of 50-110 € t(-1), the internal rate of return increases from 5% to above 15%, whereas the corresponding pay-out time periods decrease from 11 to about 4 years. © The Author(s) 2015.

  18. Large Municipal Waste Combustors (LMWC): New Source Performance Standards (NSPS) and Emissions Guidelines

    EPA Pesticide Factsheets

    Learn about the NSPS, emission guidelines and compliance times for large municipal waste combustors (MWC) by reading the rule summary, rule history and the federal register citations and supporting documents

  19. A framework for assessment and characterisation of municipal solid waste landfill leachate: an application to the Turbhe landfill, Navi Mumbai, India.

    PubMed

    Mishra, Harshit; Rathod, Merwan; Karmakar, Subhankar; Kumar, Rakesh

    2016-06-01

    Rapid industrialisation, growing population and changing lifestyles are the root causes for the generation of huge amounts of solid waste in developing countries. In India, disposal of municipal solid waste (MSW) through open dumping is the most common waste disposal method. Unfortunately, leachate generation from landfill is high due to the prolonged and prominent monsoon season in India. As leachate generation rate is high in most of the tropical countries, long-term and extensive monitoring efforts are expected to evaluate actual environmental pollution potential due to leachate contamination. However, the leachate characterisation involves a comprehensive process, which has numerous shortcomings and uncertainties possibly due to the complex nature of landfilling process, heterogeneous waste characteristics, widely varying hydrologic conditions and selection of analytes. In order to develop a sustainable MSW management strategy for protecting the surface and ground water resources, particularly from MSW landfill leachate contamination, assessment and characterisation of leachate are necessary. Numerous studies have been conducted in the past to characterise leachate quality from various municipal landfills; unfortunately, none of these propose a framework or protocol. The present study proposes a generic framework for municipal landfill leachate assessment and characterisation. The proposed framework can be applied to design any type of landfill leachate quality monitoring programme and also to facilitate improved leachate treatment activities. A landfill site located at Turbhe, Navi Mumbai, India, which had not been investigated earlier, has been selected as a case study. The proposed framework has been demonstrated on the Turbhe landfill site which is a comparatively new and the only sanitary landfill in Navi Mumbai.

  20. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    NASA Astrophysics Data System (ADS)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  1. Recovery of essential nutrients from municipal solid waste – Impact of waste management infrastructure and governance aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabaleta, Imanol, E-mail: imanol.zabaleta@eawag.ch; Rodic, Ljiljana, E-mail: ljiljana.rodic@gmail.com

    Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system,more » both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.« less

  2. Analysis of the energy potential of municipal solid waste for the thermal treatment technology development in Poland

    NASA Astrophysics Data System (ADS)

    Midor, Katarzyna; Jąderko, Karolina

    2017-11-01

    The problem of overproduction of waste has been a local issue for many years. Since the new environment law came into effect, the current approach to waste management has changed significantly. The accessible technological possibilities of thermal waste treatment with the energy recovery set a new area of research over the process of choosing effective and rational way of calorific waste management. The objective of this article is to provide assessment results of the analysed energy potential in waste management system in the form of calorific waste stream. In includes all the activities and actions required to manage municipal solid waste from its inception to its final disposal i.e. collection, transport, treatment and disposal. The graphical representation of waste flow indicates the lost opportunities of waste energy recovery. Visual research method was supported and founded on value stream mapping. On the basis of the results were presented the directions of further improvement of calorific waste stream mapping for the purposes of implementation the thermal treatment technology in the selected waste management region.

  3. The potential of biogas production from municipal solid waste in a tropical climate.

    PubMed

    Getahun, Tadesse; Gebrehiwot, Mulat; Ambelu, Argaw; Van Gerven, Tom; Van der Bruggen, Bart

    2014-07-01

    The objective of this study was to estimate the potential of organic municipal solid waste generated in an urban setting in a tropical climate to produce biogas. Five different categories of wastes were considered: fruit waste, food waste, yard waste, paper waste, and mixed waste. These fractions were assessed for their efficiency for biogas production in a laboratory-scale batch digester for a total period of 8 weeks at a temperature of 15-30 °C. During this period, fruit waste, food waste, yard waste, paper waste, and mixed waste were observed to produce 0.15, 0.17, 0.10, 0.08, and 0.15 m(3) of biogas per kilogram of volatile solids, respectively. The biogas produced and caloric value of each feedstock was in the range of 1.25 × 10(-3) m(3) (17 kWh)/cap/day (paper waste) to 15 × 10(-3) m(3) (170 kWh)/cap/day (mixed waste). Paper waste produced the least (<1×10(-3)(<17.8 kWh)/cap/day), and mixed waste produced the highest methane yield (10 × 10(-3) m(3) (178 kWh)/cap/day). Thus, mixed waste was found to be more efficient than other feedstocks for biogas and methane production; this was mainly related to the better C/N ratio in mixed waste. Taking the total waste production in Jimma into account, the total mixed organic solid waste could produce 865 × 10(3) m(3) (5.4 m(3)/capita) of biogas or 537 × 10(3) m(3) (3.4 m(3)/capita) of methane per year. The total caloric value of methane production potential from mixed organic municipal solid waste was many times higher than the total energy requirement of the area.

  4. Regionalization of municipal solid waste management in Japan: balancing the proximity principle with economic efficiency.

    PubMed

    Okuda, Itaru; Thomson, Vivian E

    2007-07-01

    The proximity principle - disposing of waste close to its origin - has been a central value in municipal solid waste (MSW) management in Japan for the last 30 years and its widespread adoption has helped resolve numerous "Not in My Backyard" issues related to MSW management. However, MSW management costs have soared, in large part because of aggressive recycling efforts and because most MSW is incinerated in a country that has scarce landfill capacity. In addition, smaller, less sophisticated incinerators have been closed because of high dioxin emissions. Rising costs combined with the closure of smaller incinerators have shifted MSW management policy toward regionalization, which is the sharing of waste management facilities across municipalities. Despite the increased use of regionalized MSW facilities, the proximity principle remains the central value in Japanese MSW management. Municipal solid waste management has become increasingly regionalized in the United States, too, but different driving forces are at work in these two countries. The transition to regionalized MSW management in Japan results from strong governmental control at all levels, with the central government providing funds and policy direction and prefectures and municipalities being the primary implementing authorities. By contrast, market forces are a much stronger force with US MSW management, where local governments - with state government oversight - have primary responsibility for MSW management. We describe recent changes in Japan's MSW programs. We examine the connections between MSW facility regionalization, on the one hand, and, on the other hand, the proximity principle, coordination among local governments, central government control, and financing mechanisms.

  5. Study on detecting leachate leakage of municipal solid waste landfill site.

    PubMed

    Liu, Jiangang; Cao, Xianxian; Ai, Yingbo; Zhou, Dongdong; Han, Qiting

    2015-06-01

    The article studies the detection of the leakage passage of leachate in a waste landfill dam. The leachate of waste landfill has its own features, like high conductivity, high chroma and an increasing temperature, also, the horizontal flow velocity of groundwater on the leakage site increases. This article proposes a comprehensive tracing method to identify the leakage site of an impermeable membrane by using these features. This method has been applied to determine two leakage sites of the Yahu municipal solid waste landfill site in Pingshan District, Shenzhen, China, which shows that there are two leachate leakage passages in the waste landfill dam A between NZK-2 and NZK-3, and between NZK-6 and NZK-7. © The Author(s) 2015.

  6. Slope failures in municipal solid waste dumps and landfills: a review.

    PubMed

    Blight, Geoffrey

    2008-10-01

    Between 1977 and 2005 six large-scale failures of municipal solid waste dumps and landfills have been recorded in the technical literature. The volumes of waste mobilized in the failures varied from 10-12 000 m(3) in a failure that killed nearly 300 people to 1.5 million m(3) in a failure that caused no deaths or injuries. Of the six failures, four occurred in dumps that, as far as is known, had not been subjected to any prior technical investigation of their shear stability. The remaining two failures occurred in engineer-designed landfills, one of which practised leachate recirculation, and the other co-disposed of liquid waste along with solid waste. The paper reviews, describes and analyses the failures and summarizes their causes.

  7. Effective dialogue: Enhanced public engagement as a legitimising tool for municipal waste management decision-making

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garnett, Kenisha, E-mail: k.garnett@cranfield.ac.uk; Cooper, Tim, E-mail: t.h.cooper@ntu.ac.uk

    2014-12-15

    Highlights: • A review of public engagement in waste management decision-making is undertaken. • Enhanced public engagement is explored as a means to legitimise waste decisions. • Analytical–deliberative processes are explored as a tool for effective dialogue. • Considerations for integrating public values with technical analysis are outlined. • Insights into the design of appropriate public engagement processes are provided. - Abstract: The complexity of municipal waste management decision-making has increased in recent years, accompanied by growing scrutiny from stakeholders, including local communities. This complexity reflects a socio-technical framing of the risks and social impacts associated with selecting technologies andmore » sites for waste treatment and disposal facilities. Consequently there is growing pressure on local authorities for stakeholders (including communities) to be given an early opportunity to shape local waste policy in order to encourage swift planning, development and acceptance of the technologies needed to meet statutory targets to divert waste from landfill. This paper presents findings from a research project that explored the use of analytical–deliberative processes as a legitimising tool for waste management decision-making. Adopting a mixed methods approach, the study revealed that communicating the practical benefits of more inclusive forms of engagement is proving difficult even though planning and policy delays are hindering development and implementation of waste management infrastructure. Adopting analytical–deliberative processes at a more strategic level will require local authorities and practitioners to demonstrate how expert-citizen deliberations may foster progress in resolving controversial issues, through change in individuals, communities and institutions. The findings suggest that a significant shift in culture will be necessary for local authorities to realise the potential of more inclusive

  8. Waste picker livelihoods and inclusive neoliberal municipal solid waste management policies: The case of the La Chureca garbage dump site in Managua, Nicaragua.

    PubMed

    Hartmann, Chris

    2018-01-01

    The modernization (i.e. mechanization, formalization, and capital intensification) and enclosure of municipal solid waste management (MSWM) systems threaten waste picker livelihoods. From 2009 to 2013, a major development project, embodying traditional neoliberal policies with inclusive social policies, transformed the Managua, Nicaragua, municipal solid waste site from an open-air dump where as many as 2,000 informal waste pickers toiled to a sanitary landfill. To investigate waste pickers' social and economic condition, including labor characteristics, household income, and poverty incidence, after the project's completion, 146 semi-structured survey questionnaires were administered to four communities adjacent to the landfill and 45 semi-structured interviews were completed with key stakeholders. Findings indicate that hundreds of waste pickers were displaced by the project, employment benefits from the project were unevenly distributed by neighborhood, and informal waste picking endures due to persistent impoverishment, thereby contributing to continued social and economic marginalization and environmental degradation. The findings highlight the limitations of inclusive neoliberal development efforts to transform MSWM in a low-income country. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  10. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  11. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  12. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  13. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  14. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  15. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  16. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  17. 40 CFR Table 2 to Subpart Jjj of... - Class I Emission Limits for Existing Small Municipal Waste Combustion Limits

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Small Municipal Waste Combustion Limits 2 Table 2 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 62—Class I Emission Limits for Existing Small Municipal Waste Combustion Limits ER31JA03.006...

  18. 40 CFR Table 4 to Subpart Jjj of... - Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Small Municipal Waste Combustion Unitsa 4 Table 4 to Subpart JJJ of Part 62 Protection of Environment... Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 62—Class II Emission Limits for Existing Small Municipal Waste Combustion Unitsa ER31JA03.009...

  19. A review on technological options of waste to energy for effective management of municipal solid waste.

    PubMed

    Kumar, Atul; Samadder, S R

    2017-11-01

    Approximately one-fourth population across the world rely on traditional fuels (kerosene, natural gas, biomass residue, firewood, coal, animal dung, etc.) for domestic use despite significant socioeconomic and technological development. Fossil fuel reserves are being exploited at a very fast rate to meet the increasing energy demands, so there is a need to find alternative sources of energy before all the fossil fuel reserves are depleted. Waste to energy (WTE) can be considered as a potential alternative source of energy, which is economically viable and environmentally sustainable. The present study reviewed the current global scenario of WTE technological options (incineration, pyrolysis, gasification, anaerobic digestion, and landfilling with gas recovery) for effective energy recovery and the challenges faced by developed and developing countries. This review will provide a framework for evaluating WTE technological options based on case studies of developed and developing countries. Unsanitary landfilling is the most commonly practiced waste disposal option in the developing countries. However, developed countries have realised the potential of WTE technologies for effective municipal solid waste management (MSWM). This review will help the policy makers and the implementing authorities involved in MSWM to understand the current status, challenges and barriers for effective management of municipal solid waste. This review concluded WTE as a potential renewable source of energy, which will partly meet the energy demand and ensure effective MSWM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Jose M., E-mail: joseman@sas.upenn.edu; Plaza, Cesar; Polo, Alfredo

    2012-01-15

    ) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.« less

  1. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste.

    PubMed

    Wimmer, Bernhard; Hrad, Marlies; Huber-Humer, Marion; Watzinger, Andrea; Wyhlidal, Stefan; Reichenauer, Thomas G

    2013-10-01

    Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ(13)C, δ(2)H and δ(18)O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration. We found significant differences in the δ(13)C-value of the dissolved inorganic carbon (δ(13)C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ(13)C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ(13)C-DIC of -20‰ to -25‰. The production of methane under anaerobic conditions caused an increase in δ(13)C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ(13)C-DIC of about -20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation-reduction status of MSW landfills. Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and

  2. Resource recovery from municipal solid waste by mechanical heat treatment: An opportunity

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Ibrahim, Nurazim; Zawawi, Mohd Hafiz

    2017-04-01

    Municipal solid waste (MSW) stream in Malaysia consists of 50 to 60 % of food wastes. In general, food wastes are commingled in nature and very difficult to be managed in sustainable manner due to high moisture content. Consequently, by dumping food wastes together with inert wastes to the landfill as final disposal destination incurs large space area and reducing the lifespan of landfill. Therefore, certain fraction of the MSW as such; food wastes (FW) can be diverted from total disposal at the landfill that can improve landfill lifespan and environmental conservation. This study aims to determine the resource characteristics of FW extracted from USM cafeteria by means of mechanical heat treatment in the presence of autoclaving technology. Sampling of FW were conducted by collecting FW samples from disposal storage at designated area within USM campus. FW characteristics was performed prior and autoclaving process. The results have demonstrated that bones fraction was the highest followed by vegetable and rice with 39, 27 and 10%, respectively. Meanwhile, based on autoclaving technique, moisture content of the FW (fresh waste) were able to be reduced ranging from 65-85% to 59-69% (treated waste). Meanwhile, chemical characteristics of treated FW results in pH, TOC, TKN, C/N ratio, TP, and TK 5.12, 27,6%, 1.6%, 17.3%, 0.9% and 0.36%. The results revealed that autoclaving technology is a promising approach for MSW diversion that can be transformed into useful byproducts such as fertilizer, RDF and recyclable items.

  3. Master Plan Jakarta, Indonesia: The Giant Seawall and the need for structural treatment of municipal waste water.

    PubMed

    van der Wulp, Simon A; Dsikowitzky, Larissa; Hesse, Karl Jürgen; Schwarzbauer, Jan

    2016-09-30

    In order to take actions against the annual flooding in Jakarta, the construction of a Giant Seawall has been proposed in the Master Plan for National Capital Integrated Coastal Development. The seawall provides a combination of technical solutions against flooding, but these will heavily modify the mass transports in the near-coastal area of Jakarta Bay. This study presents numerical simulations of river flux of total nitrogen and N,N-diethyl-m-toluamide, a molecular tracer for municipal waste water for similar scenarios as described in the Master Plan. Model results demonstrate a strong accumulation of municipal wastes and nutrients in the planned reservoirs to extremely high levels which will result in drastic adverse eutrophication effects if the treatment of municipal waste water is not dealt with in the same priority as the construction of the Giant Seawall. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Innovative bioresource management technologies for recovery of ammonia and phosphorus from livestock and municipal wastes

    USDA-ARS?s Scientific Manuscript database

    The recovery of nutrients from wastes for re-use as concentrated plant fertilizers is a new paradigm in agricultural and municipal waste management. Nutrient pollution has diverse and far-reaching effects on the economy, impacting many sectors that depend on clean water. Treatment technologies have ...

  5. Operator models for delivering municipal solid waste management services in developing countries. Part A: The evidence base.

    PubMed

    Wilson, David C; Kanjogera, Jennifer Bangirana; Soós, Reka; Briciu, Cosmin; Smith, Stephen R; Whiteman, Andrew D; Spies, Sandra; Oelz, Barbara

    2017-08-01

    This article presents the evidence base for 'operator models' - that is, how to deliver a sustainable service through the interaction of the 'client', 'revenue collector' and 'operator' functions - for municipal solid waste management in emerging and developing countries. The companion article addresses a selection of locally appropriate operator models. The evidence shows that no 'standard' operator model is effective in all developing countries and circumstances. Each city uses a mix of different operator models; 134 cases showed on average 2.5 models per city, each applying to different elements of municipal solid waste management - that is, street sweeping, primary collection, secondary collection, transfer, recycling, resource recovery and disposal or a combination. Operator models were analysed in detail for 28 case studies; the article summarises evidence across all elements and in more detail for waste collection. Operators fall into three main groups: The public sector, formal private sector, and micro-service providers including micro-, community-based and informal enterprises. Micro-service providers emerge as a common group; they are effective in expanding primary collection service coverage into poor- or peri-urban neighbourhoods and in delivering recycling. Both public and private sector operators can deliver effective services in the appropriate situation; what matters more is a strong client organisation responsible for municipal solid waste management within the municipality, with stable political and financial backing and capacity to manage service delivery. Revenue collection is also integral to operator models: Generally the municipality pays the operator from direct charges and/or indirect taxes, rather than the operator collecting fees directly from the service user.

  6. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  7. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  8. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  9. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  10. 40 CFR 62.15400 - When must I submit a title V permit application for my existing small municipal waste combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... application for my existing small municipal waste combustion unit? 62.15400 Section 62.15400 Protection of... Combustion Units Constructed on or Before August 30, 1999 Title V Requirements § 62.15400 When must I submit a title V permit application for my existing small municipal waste combustion unit? (a) You must...

  11. Effective dialogue: enhanced public engagement as a legitimising tool for municipal waste management decision-making.

    PubMed

    Garnett, Kenisha; Cooper, Tim

    2014-12-01

    The complexity of municipal waste management decision-making has increased in recent years, accompanied by growing scrutiny from stakeholders, including local communities. This complexity reflects a socio-technical framing of the risks and social impacts associated with selecting technologies and sites for waste treatment and disposal facilities. Consequently there is growing pressure on local authorities for stakeholders (including communities) to be given an early opportunity to shape local waste policy in order to encourage swift planning, development and acceptance of the technologies needed to meet statutory targets to divert waste from landfill. This paper presents findings from a research project that explored the use of analytical-deliberative processes as a legitimising tool for waste management decision-making. Adopting a mixed methods approach, the study revealed that communicating the practical benefits of more inclusive forms of engagement is proving difficult even though planning and policy delays are hindering development and implementation of waste management infrastructure. Adopting analytical-deliberative processes at a more strategic level will require local authorities and practitioners to demonstrate how expert-citizen deliberations may foster progress in resolving controversial issues, through change in individuals, communities and institutions. The findings suggest that a significant shift in culture will be necessary for local authorities to realise the potential of more inclusive decision processes. This calls for political actors and civic society to collaborate in institutionalising public involvement in both strategic and local planning structures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Reverse logistics network for municipal solid waste management: The inclusion of waste pickers as a Brazilian legal requirement.

    PubMed

    Ferri, Giovane Lopes; Chaves, Gisele de Lorena Diniz; Ribeiro, Glaydston Mattos

    2015-06-01

    This study proposes a reverse logistics network involved in the management of municipal solid waste (MSW) to solve the challenge of economically managing these wastes considering the recent legal requirements of the Brazilian Waste Management Policy. The feasibility of the allocation of MSW material recovery facilities (MRF) as intermediate points between the generators of these wastes and the options for reuse and disposal was evaluated, as well as the participation of associations and cooperatives of waste pickers. This network was mathematically modelled and validated through a scenario analysis of the municipality of São Mateus, which makes the location model more complete and applicable in practice. The mathematical model allows the determination of the number of facilities required for the reverse logistics network, their location, capacities, and product flows between these facilities. The fixed costs of installation and operation of the proposed MRF were balanced with the reduction of transport costs, allowing the inclusion of waste pickers to the reverse logistics network. The main contribution of this study lies in the proposition of a reverse logistics network for MSW simultaneously involving legal, environmental, economic and social criteria, which is a very complex goal. This study can guide practices in other countries that have realities similar to those in Brazil of accelerated urbanisation without adequate planning for solid waste management, added to the strong presence of waste pickers that, through the characteristic of social vulnerability, must be included in the system. In addition to the theoretical contribution to the reverse logistics network problem, this study aids in decision-making for public managers who have limited technical and administrative capacities for the management of solid wastes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  14. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  15. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  16. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  17. 40 CFR 62.14105 - Requirements for municipal waste combustor operator training and certification.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator of an affected facility must develop and update on a yearly basis a site-specific operating manual... subpart; (2) A description of basic combustion theory applicable to a municipal waste combustor unit; (3...

  18. Quantifying Methane Abatement Efficiency at Three Municipal Solid Waste Landfills; Final Report

    EPA Science Inventory

    Measurements were conducted at three municipal solid waste landfills to compare fugitive methane emissions from the landfill cells to the quantity of collected gas (i.e., gas collection efficiency). The measurements were conducted over a multi-week sampling campaign using EPA Oth...

  19. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste

    PubMed Central

    Durso, Lisa M.; Harhay, Dayna M.; Schmidt, John W.

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two “low impact” environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar

  20. Antimicrobial-Resistant Bacterial Populations and Antimicrobial Resistance Genes Obtained from Environments Impacted by Livestock and Municipal Waste.

    PubMed

    Agga, Getahun E; Arthur, Terrance M; Durso, Lisa M; Harhay, Dayna M; Schmidt, John W

    2015-01-01

    This study compared the populations of antimicrobial-resistant bacteria and the repertoire of antimicrobial resistance genes in four environments: effluent of three municipal wastewater treatment facilities, three cattle feedlot runoff catchment ponds, three swine waste lagoons, and two "low impact" environments (an urban lake and a relict prairie). Multiple liquid and solid samples were collected from each environment. The prevalences and concentrations of antimicrobial-resistant (AMR) Gram-negative (Escherichia coli and Salmonella enterica) and Gram-positive (enterococci) bacteria were determined from individual samples (n = 174). The prevalences of 84 antimicrobial resistance genes in metagenomic DNA isolated from samples pooled (n = 44) by collection date, location, and sample type were determined. The prevalences and concentrations of AMR E. coli and Salmonella were similar among the livestock and municipal sample sources. The levels of erythromycin-resistant enterococci were significantly higher in liquid samples from cattle catchment ponds and swine waste lagoons than in liquid samples from municipal wastewater treatment facilities, but solid samples from these environments did not differ significantly. Similarly, trimethoprim/sulfamethoxazole-resistant E. coli concentrations were significantly higher in swine liquid than in municipal liquid samples, but there was no difference in solid samples. Multivariate analysis of the distribution of antimicrobial resistance genes using principal coordinate analysis showed distinct clustering of samples with livestock (cattle and swine), low impact environment and municipal samples forming three separate clusters. The numbers of class A beta-lactamase, class C beta-lactamase, and fluoroquinolone resistance genes detected were significantly higher (P < 0.05) in municipal samples than in cattle runoff or swine lagoon samples. In conclusion, we report that AMR is a very widespread phenomenon and that similar prevalences