Code of Federal Regulations, 2014 CFR
2014-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
Code of Federal Regulations, 2013 CFR
2013-07-01
... this subpart. Field gas means feedstock gas entering the natural gas processing plant. In light liquid... field gas before the extraction step in the process. Natural gas liquids means the hydrocarbons, such as... (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2013 CFR
2013-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Code of Federal Regulations, 2014 CFR
2014-07-01
... for reasons of national security.” Condensate means hydrocarbon liquid separated from natural gas that... processing plant (gas plant) means any processing site engaged in the extraction of natural gas liquids from field gas, fractionation of mixed natural gas liquids to natural gas products, or both, classified as...
Apparatus for the liquefaction of natural gas and methods relating to same
Turner, Terry D [Ammon, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-09-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates a vapor from the liquid natural gas. A portion of the liquid gas is used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line or recirculation within the system for further processing.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Carney, Francis H [Idaho Falls, ID
2009-09-29
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through an expander creating work output. A compressor may be driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream.
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
40 CFR 98.230 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... processing means the separation of natural gas liquids (NGLs) or non-methane gases from produced natural gas... following: forced extraction of natural gas liquids, sulfur and carbon dioxide removal, fractionation of... includes processing plants that fractionate gas liquids, and processing plants that do not fractionate gas...
Wilding, Bruce M; Turner, Terry D
2014-12-02
A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.
Apparatus for the liquefaction of natural gas and methods relating to same
Wilding, Bruce M [Idaho Falls, ID; Bingham, Dennis N [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID; Turner, Terry D [Ammon, ID; Raterman, Kevin T [Idaho Falls, ID; Palmer, Gary L [Shelley, ID; Klingler, Kerry M [Idaho Falls, ID; Vranicar, John J [Concord, CA
2007-05-22
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Rateman, Kevin T.; Palmer, Gary L.; Klinger, Kerry M.; Vranicar, John J.
2005-11-08
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2005-05-03
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO2) clean-up cycle.
Apparatus For The Liquefaaction Of Natural Gas And Methods Relating To Same
Wilding, Bruce M.; Bingham, Dennis N.; McKellar, Michael G.; Turner, Terry D.; Raterman, Kevin T.; Palmer, Gary L.; Klingler, Kerry M.; Vranicar, John J.
2003-06-24
An apparatus and method for producing liquefied natural gas. A liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream passes through a turbo expander creating work output. A compressor is driven by the work output and compresses the process stream. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is divided into first and second portions with the first portion being expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. The second portion of the cooled, compressed process stream is also expanded and used to cool the compressed process stream. Additional features and techniques may be integrated with the liquefaction process including a water clean-up cycle and a carbon dioxide (CO.sub.2) clean-up cycle.
Mathematical simulation of the process of condensing natural gas
NASA Astrophysics Data System (ADS)
Tastandieva, G. M.
2015-01-01
Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.
Apparatus for the liquefaction of a gas and methods relating to same
Turner, Terry D [Idaho Falls, ID; Wilding, Bruce M [Idaho Falls, ID; McKellar, Michael G [Idaho Falls, ID
2009-12-29
Apparatuses and methods are provided for producing liquefied gas, such as liquefied natural gas. In one embodiment, a liquefaction plant may be coupled to a source of unpurified natural gas, such as a natural gas pipeline at a pressure letdown station. A portion of the gas is drawn off and split into a process stream and a cooling stream. The cooling stream may be sequentially pass through a compressor and an expander. The process stream may also pass through a compressor. The compressed process stream is cooled, such as by the expanded cooling stream. The cooled, compressed process stream is expanded to liquefy the natural gas. A gas-liquid separator separates the vapor from the liquid natural gas. A portion of the liquid gas may be used for additional cooling. Gas produced within the system may be recompressed for reintroduction into a receiving line.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... measurement of inlet production, residue gas, fuel gas, flare gas, condensate, natural gas liquids, or any... governing gas and liquid hydrocarbon production measurement. We have recently completed the first phase of... Requirements for Measurement Facilities Used for the Royalty Valuation of Processed Natural Gas AGENCY: Bureau...
Natural Gas Processing Plants in the United States: 2010 Update
2011-01-01
This special report presents an analysis of natural gas processing plants in the United States as of 2009 and highlights characteristics of this segment of the industry. The purpose of the paper is to examine the role of natural gas processing plants in the natural gas supply chain and to provide an overview and summary of processing plant characteristics in the United States, such as locations, capacities, and operations.
Natural Gas Processing: The Crucial Link Between NG Production & Its Transportation to Market
2006-01-01
This special report examines the processing plant segment of the natural gas industry, providing a discussion and an analysis of how the gas processing segment has changed following the restructuring of the natural gas industry in the 1990s and the trends that have developed during that time.
The experiment of the elemental mercury was removed from natural gas by 4A molecular sieve
NASA Astrophysics Data System (ADS)
Jiang, Cong; Chen, Yanhao
2018-04-01
Most of the world's natural gas fields contain elemental mercury and mercury compounds, and the amount of mercury in natural gas is generally 1μg/m3 200μg/m3. This paper analyzes the mercury removal principle of chemical adsorption process, the characteristics and application of mercury removal gent and the factors that affect the efficiency of mercury removal. The mercury in the natural gas is adsorbed by the mercury-silver reaction of the 4 molecular sieve after the manned treatment. The limits for mercury content for natural gas for different uses and different treatment processes are also different. From the environmental protection, safety and other factors, it is recommended that the mercury content of natural gas in the pipeline is less than 28μg / m3, and the mercury content of the raw material gas in the equipment such as natural gas liquefaction and natural gas condensate recovery is less than 0.01μg/m3. This paper mainly analyzes the existence of mercury in natural gas, and the experimental research process of using 4A molecular sieve to absorb mercury in natural gas.
75 FR 35632 - Transparency Provisions of Section 23 of the Natural Gas Act
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-23
... pipeline- quality natural gas. For instance, some Respondents questioned whether pipeline-quality natural gas that is sold directly into an interstate or intrastate natural gas pipeline without processing... reported transactions of pipeline-quality gas under the assumption that ``unprocessed natural gas'' was...
Code of Federal Regulations, 2010 CFR
2010-04-01
... the pre-filing review of any pipeline or other natural gas facilities, including facilities not... from the subject LNG terminal facilities to the existing natural gas pipeline infrastructure. (b) Other... and review process for LNG terminal facilities and other natural gas facilities prior to filing of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...
Code of Federal Regulations, 2011 CFR
2011-07-01
... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...
Code of Federal Regulations, 2012 CFR
2012-07-01
... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody... dehydration unit is passed to remove entrained gas and hydrocarbon liquid. The GCG separator is commonly...
NASA Astrophysics Data System (ADS)
Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Ramadhan, I. T.
2017-02-01
The main problem is the process of natural gas storage and distribution, because in normal conditions of natural gas in the gas phase causes the storage capacity be small and efficient to use. The technology is commonly used Compressed Natural Gas (CNG) and Liquefied Natural Gas (LNG). The weakness of this technology safety level is low because the requirement for high-pressure CNG (250 bar) and LNG requires a low temperature (-161°C). It takes innovation in the storage of natural gas using the technology ANG (Adsorbed Natural Gas) with activated carbon as an adsorbent, causing natural gas can be stored in a low pressure of about 34.5. In this research, preparation of activated carbon using waste plastic polyethylene terephthalate (PET). PET plastic waste is a good raw material for making activated carbon because of its availability and the price is a lot cheaper. Besides plastic PET has the appropriate characteristics as activated carbon raw material required for the storage of natural gas because the material is hard and has a high carbon content of about 62.5% wt. The process of making activated carbon done is carbonized at a temperature of 400 ° C and physical activation using CO2 gas at a temperature of 975 ° C. The parameters varied in the activation process is the flow rate of carbon dioxide and activation time. The results obtained in the carbonization process yield of 21.47%, while the yield on the activation process by 62%. At the optimum process conditions, the CO2 flow rate of 200 ml/min and the activation time of 240 minutes, the value % burn off amounted to 86.69% and a surface area of 1591.72 m2/g.
Code of Federal Regulations, 2011 CFR
2011-04-01
... search for crude oil, including condensate and natural gas liquids, or natural gas (“oil and gas”) in...) Gathering, treating, and field processing (as in the case of processing gas to extract liquid hydrocarbons... first point at which oil, gas, or gas liquids, natural or synthetic, are delivered to a main pipeline, a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... means hydrocarbon (petroleum) liquid with an initial producing gas-to-oil ratio (GOR) less than 0.31... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody...
Code of Federal Regulations, 2013 CFR
2013-07-01
... means hydrocarbon (petroleum) liquid with an initial producing gas-to-oil ratio (GOR) less than 0.31... of hydrocarbon liquids or natural gas: after processing and/or treatment in the producing operations... point at which such liquids or natural gas enters a natural gas processing plant is a point of custody...
Hydrocarbon gas liquids production and related industrial development
2016-01-01
Hydrocarbon gas liquids (HGL) are produced at refineries from crude oil and at natural gas processing plants from unprocessed natural gas. From 2010 to 2015, total HGL production increased by 42%. Natural gas processing plants accounted for all the increase, with recovered natural gas plant liquids (NGPL)—light hydrocarbon gases such as propane—rising by 58%, from 2.07 million barrels per day (b/d) in 2010 to 3.27 million b/d in 2015, while refinery output of HGL declined by 7%. The rapid increase in NGPL output was the result of rapid growth in natural gas production, as production shifted to tight gas and shale gas resources, and as producers targeted formations likely to yield natural gas with high liquids content. Annual Energy Outlook 2016 results suggest varying rates of future NGPL production growth, depending on relative crude oil and natural gas prices.
M Wright, Mark; Seifkar, Navid; Green, William H; Román-Leshkov, Yuriy
2015-07-07
Natural gas has the potential to increase the biofuel production output by combining gas- and biomass-to-liquids (GBTL) processes followed by naphtha and diesel fuel synthesis via Fischer-Tropsch (FT). This study reflects on the use of commercial-ready configurations of GBTL technologies and the environmental impact of enhancing biofuels with natural gas. The autothermal and steam-methane reforming processes for natural gas conversion and the gasification of biomass for FT fuel synthesis are modeled to estimate system well-to-wheel emissions and compare them to limits established by U.S. renewable fuel mandates. We show that natural gas can enhance FT biofuel production by reducing the need for water-gas shift (WGS) of biomass-derived syngas to achieve appropriate H2/CO ratios. Specifically, fuel yields are increased from less than 60 gallons per ton to over 100 gallons per ton with increasing natural gas input. However, GBTL facilities would need to limit natural gas use to less than 19.1% on a LHV energy basis (7.83 wt %) to avoid exceeding the emissions limits established by the Renewable Fuels Standard (RFS2) for clean, advanced biofuels. This effectively constitutes a blending limit that constrains the use of natural gas for enhancing the biomass-to-liquids (BTL) process.
75 FR 39934 - Oil and Natural Gas Sector-Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-13
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OAR-2010-0505; FRL-9174-8] Oil and Natural Gas Sector... EPA's review of air regulations affecting the oil and natural gas industry. The review in progress covers oil and natural gas exploration and production, as well as natural gas processing, transmission...
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Royalty on processed gas. 1202.151 Section 1202.151 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Federal Gas § 1202.151 Royalty on processed gas. (a)(1) A royalty, as provided...
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Royalty on processed gas. 1202.151 Section 1202.151 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Federal Gas § 1202.151 Royalty on processed gas. (a)(1) A royalty, as provided...
30 CFR 1202.151 - Royalty on processed gas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Royalty on processed gas. 1202.151 Section 1202.151 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE ROYALTIES Federal Gas § 1202.151 Royalty on processed gas. (a)(1) A royalty, as provided...
NASA Astrophysics Data System (ADS)
Yuliusman; Nasruddin; Sanal, A.; Bernama, A.; Haris, F.; Hardhi, M.
2017-07-01
Indonesia imports high amount of Fuel Oil. Although Indonesia has abundant amount of natural gas reserve, the obstacle lies within the process of natural gas storage itself. In order to create a safe repository, the ANG (Adsorbed Natural Gas) technology is planned. ANG technology in itself has been researched much to manufacture PET-based activated carbon for natural gas storage, but ANG still has several drawbacks. This study begins with making preparations for the equipment and materials that will be used, by characterizing the natural gas, measuring the empty volume, and degassing. The next step will be to examine the adsorption process. The maximum storage capacity obtained in this study for a temperature of 27°C and pressure of 35 bar is 0.0586 kg/kg, while for the desorption process, a maximum value for desorption efficiency was obtained on 35°C temperature with a value of 73.39%.
Carbon dioxide removal process
Baker, Richard W.; Da Costa, Andre R.; Lokhandwala, Kaaeid A.
2003-11-18
A process and apparatus for separating carbon dioxide from gas, especially natural gas, that also contains C.sub.3+ hydrocarbons. The invention uses two or three membrane separation steps, optionally in conjunction with cooling/condensation under pressure, to yield a lighter, sweeter product natural gas stream, and/or a carbon dioxide stream of reinjection quality and/or a natural gas liquids (NGL) stream.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-17
... natural gas 7/22/1998 6/17/1998 Repeal and readoption disapproval. processing, as Section treating, or 116... for Changes at Certain Natural Gas Processing, Treating, or Compression Facilities 1. What is the... the following grounds: This definition exempts changes at certain natural gas processing, treating, or...
76 FR 30878 - Federal Oil and Gas Valuation
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-27
... when gas is processed, in lieu of valuing residue gas and extracted liquid products separately... natural gas liquids (NGL) price similar to a ``frac spread'' or a ``processing margin.'' Certain plant... No. ONRR-2011-0005] RIN 1012-AA01 Federal Oil and Gas Valuation AGENCY: Office of Natural Resources...
Code of Federal Regulations, 2011 CFR
2011-04-01
... and review process for LNG terminal facilities and other natural gas facilities prior to filing of... COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATIONS FOR CERTIFICATES OF PUBLIC CONVENIENCE AND NECESSITY AND FOR ORDERS PERMITTING AND APPROVING ABANDONMENT UNDER SECTION 7 OF THE NATURAL...
40 CFR 98.406 - Data reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.406 Data..., isobutane, and pentanes plus. (3) Annual volumes in Mscf of natural gas received for processing. (4) Annual... report for each LDC shall contain the following information. (1) Annual volume in Mscf of natural gas...
40 CFR 98.406 - Data reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.406 Data..., isobutane, and pentanes plus. (3) Annual volumes in Mscf of natural gas received for processing. (4) Annual... Mscf of natural gas received by the LDC at its city gate stations for redelivery on the LDC's...
40 CFR 98.406 - Data reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.406 Data..., isobutane, and pentanes plus. (3) Annual volumes in Mscf of natural gas received for processing. (4) Annual... Mscf of natural gas received by the LDC at its city gate stations for redelivery on the LDC's...
40 CFR 98.403 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.403... natural gas processing plants from local production, received as a liquid and vaporized for delivery, or... local production, or natural gas that was received as a liquid, vaporized and delivered, and any other...
40 CFR 98.406 - Data reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.406 Data..., isobutane, and pentanes plus. (3) Annual volumes in Mscf of natural gas received for processing. (4) Annual... shall contain the following information. (1) Annual volume in Mscf of natural gas received by the LDC at...
40 CFR 98.406 - Data reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.406 Data..., isobutane, and pentanes plus. (3) Annual volumes in Mscf of natural gas received for processing. (4) Annual... Mscf of natural gas received by the LDC at its city gate stations for redelivery on the LDC's...
Code of Federal Regulations, 2013 CFR
2013-04-01
... natural gas liquids, or natural gas (“oil and gas”) in their natural states and original locations; (B... processing gas to extract liquid hydrocarbons); and (D) Extraction of saleable hydrocarbons, in the solid... production function as: a. The first point at which oil, gas, or gas liquids, natural or synthetic, are...
Code of Federal Regulations, 2012 CFR
2012-04-01
... natural gas liquids, or natural gas (“oil and gas”) in their natural states and original locations; (B... processing gas to extract liquid hydrocarbons); and (D) Extraction of saleable hydrocarbons, in the solid... production function as: a. The first point at which oil, gas, or gas liquids, natural or synthetic, are...
Utility negotiating strategies for end-users
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studebaker, J.M.
This exciting new book discusses how retail electricity and natural gas consumers can learn to negotiate a concessionary rate with their utility service -- new, and post-deregulation. This includes survey resources that are available to the retail customer and negotiation processes that one should become familiar with in the electric utility industry. The contents include: Electricity -- an overview; Regulation of electricity -- now; Basic procedures for reducing electricity costs; Negotiation of electricity costs; Negotiation on electricity that is provided by marketers; The retail wheeling transaction; The retail wheeling contract process; Natural gas negotiation strategies; Regulation of natural gas utilities;more » Developing a strategy for reducing natural gas costs; Process of getting the natural gas to the customer; How to select an agent; and Negotiating with an agent.« less
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2014 CFR
2014-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2010 CFR
2010-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2013 CFR
2013-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2012 CFR
2012-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
16 CFR 802.3 - Acquisitions of carbon-based mineral reserves.
Code of Federal Regulations, 2011 CFR
2011-01-01
... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands together with... gas, shale or tar sands, or rights to reserves of oil, natural gas, shale or tar sands and associated... pipeline and pipeline system or processing facility which transports or processes oil and gas after it...
30 CFR 1206.158 - Processing allowances-general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... processing plant relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except... INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Gas § 1206.158 Processing allowances—general. (a) Where the value of gas is determined pursuant to § 1206.153 of this subpart, a deduction shall be...
Methane’s Role in Promoting Sustainable Development in the Oil and Natural Gas Industry
The document summarizes a number of established methods to identify, measure and reduce methane emissions from a variety of equipment and processes in oil and gas production and natural gas processing and transmission facilities.
US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-10-18
This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reservesmore » and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.« less
Alternative Fuels Data Center: Propane Production and Distribution
produced from liquid components recovered during natural gas processing. These components include ethane & Incentives Propane Production and Distribution Propane is a by-product of natural gas processing distribution showing propane originating from three sources: 1) gas well and gas plant, 2) oil well and
Code of Federal Regulations, 2011 CFR
2011-07-01
... feedstock gas entering the natural gas processing plant. In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485(e) or § 60.633(h)(2). In wet gas... the process. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane...
Code of Federal Regulations, 2010 CFR
2010-07-01
... feedstock gas entering the natural gas processing plant. In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485(e) or § 60.633(h)(2). In wet gas... the process. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane...
Code of Federal Regulations, 2012 CFR
2012-07-01
... feedstock gas entering the natural gas processing plant. In light liquid service means that the piece of equipment contains a liquid that meets the conditions specified in § 60.485(e) or § 60.633(h)(2). In wet gas... the process. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and pentane...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... Pipeline transportation of natural gas. 221210 Natural gas distribution facilities. 211 Extractors of crude... natural gas processing facilities in transmission pipelines or into storage. 40 CFR Sec. 98.230(a)(4). A... and inaccuracies in reporting''. Pipeline Quality Yes. Natural Gas. CEC/ AXPC asserted that ``[t]here...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects; Notice of Alaska Natural Gas Transportation Projects Open Season Pre-Filing Workshop January 5, 2010. On January 12, 2010... and process for commenting upon and holding an open season for an Alaska Natural Gas Transportation...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-09
... Governing the Conduct of Open Seasons for Alaska Natural Gas Transportation Projects; Notice of Alaska Natural Gas Transportation Projects Open Season Pre-Filing Workshop February 2, 2010. On February 11, 2010... and process for holding and commenting on an open season for an Alaska Natural Gas Transportation...
U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, John H.; Grape, Steven G.; Green, Rhonda S.
1998-12-01
This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, leasemore » condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.« less
Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.
Ulvestad, Marte; Overland, Indra
2012-06-01
THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO 2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG.
Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines
Ulvestad, Marte; Overland, Indra
2012-01-01
This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... to as natural gas liquids or NGLs. Interstate pipelines have a limit on how much NGLs natural gas can... gas processing plant to remove those liquids before it can be transported on interstate pipelines... Gas Transmission, and Trailblazer pipelines, as well as associated processing and storage capacity. On...
Lokhandwala, Kaaeid A.
2000-01-01
A process for conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas, so that it can be used as combustion fuel to run gas-powered equipment, including compressors, in the gas field or the gas processing plant. Compared with prior art processes, the invention creates lesser quantities of low-pressure gas per unit volume of fuel gas produced. Optionally, the process can also produce an NGL product.
Saha, Dipendu; Grappe, Hippolyte A; Chakraborty, Amlan; Orkoulas, Gerassimos
2016-10-12
In today's perspective, natural gas has gained considerable attention, due to its low emission, indigenous availability, and improvement in the extraction technology. Upon extraction, it undergoes several purification protocols including dehydration, sweetening, and inert rejection. Although purification is a commercially established technology, several drawbacks of the current process provide an essential impetus for developing newer separation protocols, most importantly, adsorption and membrane separation. This Review summarizes the needs of natural gas separation, gives an overview of the current technology, and provides a detailed discussion of the progress in research on separation and purification of natural gas including the benefits and drawbacks of each of the processes. The transportation sector is another growing sector of natural gas utilization, and it requires an efficient and safe on-board storage system. Compressed natural gas (CNG) and liquefied natural gas (LNG) are the most common forms in which natural gas can be stored. Adsorbed natural gas (ANG) is an alternate storage system of natural gas, which is advantageous as compared to CNG and LNG in terms of safety and also in terms of temperature and pressure requirements. This Review provides a detailed discussion on ANG along with computation predictions. The catalytic conversion of methane to different useful chemicals including syngas, methanol, formaldehyde, dimethyl ether, heavier hydrocarbons, aromatics, and hydrogen is also reviewed. Finally, direct utilization of methane onto fuel cells is also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krause, Theodore
This goal of this project was to develop a new hybrid fuel cell technology that operates directly on natural gas or biogas to generate electrical energy and to produce ethane or ethylene from methane, the main component of natural gas or biogas, which can be converted to a liquid fuel or high-value chemical using existing process technologies. By taking advantage of the modularity and scalability of fuel cell technology, this combined fuel cell/chemical process technology targets the recovery of stranded natural gas available at the well pad or biogas produced at waste water treatment plants and municipal landfills by convertingmore » it to a liquid fuel or chemical. By converting the stranded gas to a liquid fuel or chemical, it can be cost-effectively transported to market thus allowing the stranded natural gas or biogas to be monetized instead of flared, producing CO2, a greenhouse gas, because the volumes produced at these locations are too small to be economically recovered using current gas-to-liquids process technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-01
The objective of this proposed program is to evaluate the potential of rotating gas-liquid contactors for natural gas processing by expanding the currently available database. This expansion will focus on application of this technology to environments representative of those typically encountered in natural gas processing plants. Operational and reliability concerns will be addressed while generating pertinent engineering data relating to the mass-transfer process. Work to be performed this reporting period are: complete all negotiations and processing of agreements; complete assembly, modifications, shakedown, and conduct fluid dynamic studies using the plastic rotary contactor unit; confirmation of project test matrix; and locate,more » and transport an amine plant and dehydration plant. Accomplishment for this period are presented.« less
CFD Investigation of Pollutant Emission in Can-Type Combustor Firing Natural Gas, LNG and Syngas
NASA Astrophysics Data System (ADS)
Hasini, H.; Fadhil, SSA; Mat Zian, N.; Om, NI
2016-03-01
CFD investigation of flow, combustion process and pollutant emission using natural gas, liquefied natural gas and syngas of different composition is carried out. The combustor is a can-type combustor commonly used in thermal power plant gas turbine. The investigation emphasis on the comparison of pollutant emission such in particular CO2, and NOx between different fuels. The numerical calculation for basic flow and combustion process is done using the framework of ANSYS Fluent with appropriate model assumptions. Prediction of pollutant species concentration at combustor exit shows significant reduction of CO2 and NOx for syngas combustion compared to conventional natural gas and LNG combustion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-02-01
This Supplement to AP-42 addresses pollutant-generating activity from Bituminous and Subbituminous Coal Combustion; Anthracite Coal Combustion; Fuel Oil Combustion; Natural Gas Combustion; Wood Waste Combustion in Boilers; Lignite Combustion; Waste Oil Combustion: Stationary Gas Turbines for Electricity Generation; Heavy-duty Natural Gas-fired Pipeline Compressor Engines; Large Stationary Diesel and all Stationary Dual-fuel engines; Natural Gas Processing; Organic Liquid Storage Tanks; Meat Smokehouses; Meat Rendering Plants; Canned Fruits and Vegetables; Dehydrated Fruits and Vegetables; Pickles, Sauces and Salad Dressing; Grain Elevators and Processes; Cereal Breakfast Foods; Pasta Manufacturing; Vegetable Oil Processing; Wines and Brandy; Coffee Roasting; Charcoal; Coal Cleaning; Frit Manufacturing; Sandmore » and Gravel Processing; Diatomite Processing; Talc Processing; Vermiculite Processing; paved Roads; and Unpaved Roads. Also included is information on Generalized Particle Size Distributions.« less
NASA Astrophysics Data System (ADS)
Cao, Wenbin; Guernsey, Scott B.; Linn, Scott C.
2018-07-01
We examine the frequency and character of price jumps in front month oil and natural gas futures prices. Prices are sampled every five seconds over the period 2006-2014. Our test results indicate that jumps in crude oil and natural gas futures prices can be decomposed into an infinite activity jump diffusion process and a less frequent but larger jump process. We also find that we cannot reject the hypothesis that Brownian motion is also present in both return series. The results are based on a battery of tests that are "model free". We further find that jumps account for respectively 36 and 41 percent of the realized variances of the crude oil and the natural gas returns.
Controlling Air Pollution from the Oil and Natural Gas Industry
EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.
77 FR 45593 - Proposed Agency Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-01
... Report of the Origin of Natural Gas Liquids, and Form EIA-816, Monthly Natural Gas Liquids Report, as....: NEW; (2) Information Collection Request Title: Monthly Gas Processing and Liquids Report; (3) Type of... collection form that is a combination of the Form EIA-64A, Annual Report of the Origin of Natural Gas Liquids...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-17
... propose to construct gas processing facilities in the project area to separate natural gas liquids from... natural gas liquids to market pipelines located near Wamsutter, Wyoming (approximately 100 miles south of... Environmental Impact Statement (EIS) for the proposed Moneta Divide Natural Gas and Oil Development Project...
Nitrogen removal from natural gas using two types of membranes
Baker, Richard W.; Lokhandwala, Kaaeid A.; Wijmans, Johannes G.; Da Costa, Andre R.
2003-10-07
A process for treating natural gas or other methane-rich gas to remove excess nitrogen. The invention relies on two-stage membrane separation, using methane-selective membranes for the first stage and nitrogen-selective membranes for the second stage. The process enables the nitrogen content of the gas to be substantially reduced, without requiring the membranes to be operated at very low temperatures.
Revisions in Natural Gas Monthly Consumption and Price Data, 2004 - 2007
2009-01-01
This report summarizes the method in which natural gas consumption data are collected and processed for publication and details the most notable revisions in natural gas consumption data for the period 2004 to 2007. It is intended to assist data users in evaluating the quality of the monthly consumption and price data for residential, commercial, and industrial consumers of natural gas.
30 CFR 1206.153 - Valuation standards-processed gas.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Valuation standards-processed gas. 1206.153 Section 1206.153 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL... notification shall be by letter to the ONRR Director for Office of Natural Resources or his/her designee. The...
30 CFR 1206.153 - Valuation standards-processed gas.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Valuation standards-processed gas. 1206.153 Section 1206.153 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL... notification shall be by letter to the ONRR Director for Office of Natural Resources or his/her designee. The...
30 CFR 1206.153 - Valuation standards-processed gas.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Valuation standards-processed gas. 1206.153 Section 1206.153 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL... notification shall be by letter to the ONRR Director for Office of Natural Resources or his/her designee. The...
Carbon Capture: A Technology Assessment
2013-10-21
gases produced at power plants burning coal or natural gas. Here, the captured CO2 is sold as a commodity to nearby industries such as food ...the food and beverage industry.19 A number of vendors currently offer commercial amine-based processes, including the Fluor Daniel Econamine FG Plus...Sleipner West Gas Field (North Sea, Norway) Natural gas separation 1996 N/A Amine (Aker) 1.0 Petronas Gas Processing Plant (Kuala Lumpur, Malaysia
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-29
.... 115112 Repellent and fertilizer applications. 211111 Natural gas plant. 211111 Oil and gas production. 211112 Fractionation of natural gas liquids. 212234 Copper mining and processing. [[Page 66755
30 CFR 206.158 - Processing allowances-general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except as provided in... MANAGEMENT PRODUCT VALUATION Federal Gas § 206.158 Processing allowances—general. (a) Where the value of gas... actual costs of processing. (b) Processing costs must be allocated among the gas plant products. A...
30 CFR 206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2010 CFR
2010-07-01
... for each gas plant product and processing plant relationship. Natural gas liquids are considered as... THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Indian Gas Processing Allowances § 206.179 What general requirements regarding processing allowances apply to me? (a) When you value any gas plant...
Mobile monitoring of fugitive methane emissions from natural gas consumer industries
Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not yet been well quantified. This presentation introduces new m...
The Mobile Monitoring of fugitive methane emissions from natural gas consumer industries
Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools ...
Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klint, V.W.; Dale, P.R.; Stephenson, C.
1997-10-01
Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) processmore » for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.« less
US crude oil, natural gas, and natural gas liquids reserves 1996 annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisionsmore » for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.« less
The report gives results of an examination of mercury (Hg) in liquid and gaseous hydrocarbons that are produced and/or processed in the U.S. The Hg associated with petroleum and natural gas production and processing enters the environment primarily via solid waste streams (drilli...
Methane/nitrogen separation process
Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.
1997-09-23
A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.
Methane/nitrogen separation process
Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott
1997-01-01
A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.
40 CFR 80.1403 - Which fuels are not subject to the 20% GHG thresholds?
Code of Federal Regulations, 2010 CFR
2010-07-01
... construction after December 19, 2007, and are fired with natural gas, biomass, or a combination thereof, the... are fired with natural gas, biomass, or a combination thereof at all times the facility operated... produced through processes fired with natural gas, biomass, or any combination thereof. (e) The annual...
Life-cycle analysis of shale gas and natural gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, C.E.; Han, J.; Burnham, A.
2012-01-27
The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. Using the current state of knowledge of the recovery, processing, and distribution of shale gas and conventional natural gas, we have estimated up-to-date, life-cycle greenhouse gas emissions. In addition, we have developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps - such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings - that need to be addressed further. Our base case results showmore » that shale gas life-cycle emissions are 6% lower than those of conventional natural gas. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty regarding whether shale gas emissions are indeed lower than conventional gas emissions. This life-cycle analysis provides insight into the critical stages in the natural gas industry where emissions occur and where opportunities exist to reduce the greenhouse gas footprint of natural gas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, Howard, S.; Lu, Yingzhong
The overall objective of this project is to develop a new low-cost and energy efficient Natural Gas Liquid (NGL) recovery process - through a combination of theoretical, bench-scale and pilot-scale testing - so that it could be offered to the natural gas industry for commercialization. The new process, known as the IROA process, is based on U.S. patent No. 6,553,784, which if commercialized, has the potential of achieving substantial energy savings compared to currently used cryogenic technology. When successfully developed, this technology will benefit the petrochemical industry, which uses NGL as feedstocks, and will also benefit other chemical industries thatmore » utilize gas-liquid separation and distillation under similar operating conditions. Specific goals and objectives of the overall program include: (i) collecting relevant physical property and Vapor Liquid Equilibrium (VLE) data for the design and evaluation of the new technology, (ii) solving critical R&D issues including the identification of suitable dehydration and NGL absorbing solvents, inhibiting corrosion, and specifying proper packing structure and materials, (iii) designing, construction and operation of bench and pilot-scale units to verify design performance, (iv) computer simulation of the process using commercial software simulation platforms such as Aspen-Plus and HYSYS, and (v) preparation of a commercialization plan and identification of industrial partners that are interested in utilizing the new technology. NGL is a collective term for C2+ hydrocarbons present in the natural gas. Historically, the commercial value of the separated NGL components has been greater than the thermal value of these liquids in the gas. The revenue derived from extracting NGLs is crucial to ensuring the overall profitability of the domestic natural gas production industry and therefore of ensuring a secure and reliable supply in the 48 contiguous states. However, rising natural gas prices have dramatically reduced the economic incentive to extract NGLs from domestically produced natural gas. Successful gas processors will be those who adopt technologies that are less energy intensive, have lower capital and operating costs and offer the flexibility to tailor the plant performance to maximize product revenue as market conditions change, while maintaining overall system efficiency. Presently, cryogenic turbo-expander technology is the dominant NGL recovery process and it is used throughout the world. This process is known to be highly energy intensive, as substantial energy is required to recompress the processed gas back to pipeline pressure. The purpose of this project is to develop a new NGL separation process that is flexible in terms of ethane rejection and can reduce energy consumption by 20-30% from current levels, particularly for ethane recoveries of less than 70%. The new process integrates the dehydration of the raw natural gas stream and the removal of NGLs in such a way that heat recovery is maximized and pressure losses are minimized so that high-value equipment such as the compressor, turbo-expander, and a separate dehydration unit are not required. GTI completed a techno-economic evaluation of the new process based on an Aspen-HYSYS simulation model. The evaluation incorporated purchased equipment cost estimates obtained from equipment suppliers and two different commercial software packages; namely, Aspen-Icarus and Preliminary Design and Quoting Service (PDQ$). For a 100 MMscfd gas processing plant, the annualized capital cost for the new technology was found to be about 10% lower than that of conventional technology for C2 recovery above 70% and about 40% lower than that of conventional technology for C2 recovery below 50%. It was also found that at around 40-50% C2 recovery (which is economically justifiable at the current natural gas prices), the energy cost to recover NGL using the new technology is about 50% of that of conventional cryogenic technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bosio, J.; Wilcox, P.; Sembsmoen, O.
A joint-venture, high-pressure, large-flow-rate facility to test, qualify, and research new natural-gas metering systems has been built by Den Norske Stats Oljeselskap A.S. (Statoil) and Total Marine Norsk A.S. Located near Haugesund in the Stavanger area, the lab, designated the Karsto Metering and Technology Laboratory, or K-Lab, is adjacent to Norway's first natural-gas-processing plant. It receives natural gas from across the Norwegian Trench from the Statfjord complex and after processing it sends it on to Emden, West Germany. The gas, which is produced in the North Sea, is transported to United Kingdom and the European continent through a high-pressure pipelinemore » network. The importance of gas-metering technology has been emphasized by oil and gas companies as well as by national regulatory authorities.« less
NASA Astrophysics Data System (ADS)
Tan, Hongbo; Zhao, Qingxuan; Sun, Nannan; Li, Yanzhong
2016-12-01
Taking advantage of the refrigerating effect in the expansion at an appropriate temperature, a fraction of high-pressure natural gas transported by pipelines could be liquefied in a city gate station through a well-organized pressure reducing process without consuming any extra energy. The authors proposed such a new process, which mainly consists of a turbo-expander driven booster, throttle valves, multi-stream heat exchangers and separators, to yield liquefied natural gas (LNG) and liquid light hydrocarbons (LLHs) utilizing the high-pressure of the pipelines. Based on the assessment of the effects of several key parameters on the system performance by a steady-state simulation in Aspen HYSYS, an optimal design condition of the proposed process was determined. The results showed that the new process is more appropriate to be applied in a pressure reducing station (PRS) for the pipelines with higher pressure. For the feed gas at the pressure of 10 MPa, the maximum total liquefaction rate (ytot) of 15.4% and the maximum exergy utilizing rate (EUR) of 21.7% could be reached at the optimal condition. The present process could be used as a small-scale natural gas liquefying and peak-shaving plant at a city gate station.
Code of Federal Regulations, 2014 CFR
2014-10-01
... representative thereof. Petroleum means crude oil, condensate, natural gasoline, natural gas liquids, and... distilling and processing of crude oil, unfinished oils, natural gas liquids, blend stocks and other... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...
Code of Federal Regulations, 2013 CFR
2013-10-01
... representative thereof. Petroleum means crude oil, condensate, natural gasoline, natural gas liquids, and... distilling and processing of crude oil, unfinished oils, natural gas liquids, blend stocks and other... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY...
Additive Manufacturing of Porous Metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dehoff, Ryan R.; Kirka, Michael M.
2017-06-01
Currently, helium is obtained through separation from natural gas. The current industrial process incurs significant costs and requires large energy resources to successfully achieve separation. Through utilizing Additive Manufacturing (AM) technologies it is possible to reduce both of these burdens when refining helium gas. The ability to engineer porosity levels within Inconel 718 discs for controlled separation of helium from natural gas was investigated. Arrays of samples fabricated using the electron beam melting process were analyzed for their relative porosity density. Based upon the measurements, full scale discs were fabricated, and subsequently tested to determine their effectiveness in separating heliummore » from liquefied natural gas.« less
Air impacts of increased natural gas acquisition, processing, and use: a critical review.
Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B
2014-01-01
During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource.
NASA Astrophysics Data System (ADS)
Schoell, M.; Etiope, G.
2015-12-01
Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-12
... Intent To Prepare an Environmental Impact Statement for the Proposed Normally Pressured Lance Natural Gas...) Natural Gas Development Project and by this notice are announcing the beginning of the scoping process to... the NPL Natural Gas Development Project by any of the following methods: E-mail: [email protected
Gas Hydrate Storage of Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudy Rogers; John Etheridge
2006-03-31
Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.« less
77 FR 13200 - Texas: Final Authorization of State Hazardous Waste Management Program Revision
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
....1. Such wastes are termed ``oil and gas wastes.'' The TCEQ has responsibility to administer the RCRA program, however, hazardous waste generated at natural gas or natural gas liquids processing plants or... with the exploration, development, or production of oil or gas or geothermal resources and other...
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances... gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances... gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances... gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
... gas resources regulations to update some fees that cover BSEE's cost of processing and filing certain... natural gas on the OCS and to reflect advancements in technology and new information. The BSEE also..., Crude Petroleum and Natural Gas Extraction, and 213111, Drilling Oil and Gas Wells. For these NAICS code...
H2S mediated thermal and photochemical methane activation
Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric
2013-01-01
Sustainable, low temperature methods of natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) in mixture with methane, CH4, altogether deemed as sub-quality or “sour” gas. We propose a unique method for activating this “sour” gas to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3, and an energy carrier, such as H2. For this purpose, we computationally investigated H2S mediated methane activation to form a reactive CH3SH species via direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4+H2S complex results in a barrier-less relaxation via a conical intersection to form a ground state CH3SH+H2 complex. The resulting CH3SH can further be heterogeneously coupled over acidic catalysts to form higher hydrocarbons while the H2 can be used as a fuel. This process is very different from a conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced controllability over the process conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the currently industrially used methane steam reforming (SMR). PMID:24150813
Code of Federal Regulations, 2014 CFR
2014-07-01
... or delivered as undifferentiated product. Natural Gas Liquids (NGLs) for the purposes of reporting under this subpart means hydrocarbons that are separated from natural gas as liquids through the process... GREENHOUSE GAS REPORTING Suppliers of Petroleum Products § 98.398 Definitions. Except as specified in this...
NASA Astrophysics Data System (ADS)
Huang, Cunping; T-Raissi, Ali
Sub-quality natural gas (SQNG) is defined as natural gas whose composition exceeds pipeline specifications of nitrogen, carbon dioxide (CO 2) and/or hydrogen sulfide (H 2S). Approximately one-third of the U.S. natural gas resource is sub-quality gas [1]. Due to the high cost of removing H 2S from hydrocarbons using current processing technologies, SQNG wells are often capped and the gas remains in the ground. We propose and analyze a two-step hydrogen production scheme using SQNG as feedstock. The first step of the process involves hydrocarbon processing (via steam-methane reformation, autothermal steam-methane reformation, pyrolysis and autothermal pyrolysis) in the presence of H 2S. Our analyses reveal that H 2S existing in SQNG is stable and can be considered as an inert gas. No sulfur dioxide (SO 2) and/or sulfur trioxide (SO 3) is formed from the introduction of oxygen to SQNG. In the second step, after the separation of hydrogen from the main stream, un-reacted H 2S is used to reform the remaining methane, generating more hydrogen and carbon disulfide (CS 2). Thermodynamic analyses on SQNG feedstock containing up to 10% (v/v) H 2S have shown that no H 2S separation is required in this process. The Part I of this paper includes only thermodynamic analyses for SQNG pyrolysis and autothermal pyrolysis.
NASA Astrophysics Data System (ADS)
Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong
2018-01-01
Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.
Study of alternatives to the Natural Gas Policy Act of 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-11-01
This report presents the results of the Department of Energy's review of natural gas policies. Its purpose is to define and evaluate alternatives to current policy which deregulate the US natural gas market. The review was initiated in March of 1981 for three reasons. First, natural gas plays a critical role in US energy markets, accounting for 25 percent of US energy use. Second, oil and gas market conditions have changed considerably since current natural gas policies were established in 1978. Indeed, in recognition of these changes, Congress modified national policy on gas use during the budget reconciliation process. Third,more » the Administration is committed to evaluating whether the costs of massive Federal intervention into the operation of markets outweigh the benefits. This study focuses on the wellhead and incremental pricing provisions of the Natural Gas Policy Act of 1978 (NGPA). It seeks to quantify the costs and benefits of alternative natural gas strategies. Specifically, the study evaluates the impacts of proposals to modify the NGPA on: efficiency of natural gas markets; oil import levels and energy security; supply, demand, and price of natural gas; performance of the US economy; and consumer wellbeing. The consequences of current and alternative gas policies under mid-range assumptions about future conditions are presented in Chapters II-V. Substantial uncertainty, however, surrounds the future course of the US natural gas market.« less
New York City Housing Authority Settlement
MarkWest is engaged in the gathering, transportation, and processing of natural gas, the transportation, fractionation, marketing, and storage of natural gas liquids, and the gathering and transportation of crude oil.
30 CFR 1206.179 - What general requirements regarding processing allowances apply to me?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Gas Processing... value any gas plant product under § 1206.174, you may deduct from value the reasonable actual costs of processing. (b) You must allocate processing costs among the gas plant products. You must determine a...
Methane Emissions from United States Natural Gas Gathering and Processing.
Marchese, Anthony J; Vaughn, Timothy L; Zimmerle, Daniel J; Martinez, David M; Williams, Laurie L; Robinson, Allen L; Mitchell, Austin L; Subramanian, R; Tkacik, Daniel S; Roscioli, Joseph R; Herndon, Scott C
2015-09-01
New facility-level methane (CH4) emissions measurements obtained from 114 natural gas gathering facilities and 16 processing plants in 13 U.S. states were combined with facility counts obtained from state and national databases in a Monte Carlo simulation to estimate CH4 emissions from U.S. natural gas gathering and processing operations. Total annual CH4 emissions of 2421 (+245/-237) Gg were estimated for all U.S. gathering and processing operations, which represents a CH4 loss rate of 0.47% (±0.05%) when normalized by 2012 CH4 production. Over 90% of those emissions were attributed to normal operation of gathering facilities (1697 +189/-185 Gg) and processing plants (506 +55/-52 Gg), with the balance attributed to gathering pipelines and processing plant routine maintenance and upsets. The median CH4 emissions estimate for processing plants is a factor of 1.7 lower than the 2012 EPA Greenhouse Gas Inventory (GHGI) estimate, with the difference due largely to fewer reciprocating compressors, and a factor of 3.0 higher than that reported under the EPA Greenhouse Gas Reporting Program. Since gathering operations are currently embedded within the production segment of the EPA GHGI, direct comparison to our results is complicated. However, the study results suggest that CH4 emissions from gathering are substantially higher than the current EPA GHGI estimate and are equivalent to 30% of the total net CH4 emissions in the natural gas systems GHGI. Because CH4 emissions from most gathering facilities are not reported under the current rule and not all source categories are reported for processing plants, the total CH4 emissions from gathering and processing reported under the EPA GHGRP (180 Gg) represents only 14% of that tabulated in the EPA GHGI and 7% of that predicted from this study.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-16
...This action finalizes the review of new source performance standards for the listed oil and natural gas source category. In this action the EPA revised the new source performance standards for volatile organic compounds from leaking components at onshore natural gas processing plants and new source performance standards for sulfur dioxide emissions from natural gas processing plants. The EPA also established standards for certain oil and gas operations not covered by the existing standards. In addition to the operations covered by the existing standards, the newly established standards will regulate volatile organic compound emissions from gas wells, centrifugal compressors, reciprocating compressors, pneumatic controllers and storage vessels. This action also finalizes the residual risk and technology review for the Oil and Natural Gas Production source category and the Natural Gas Transmission and Storage source category. This action includes revisions to the existing leak detection and repair requirements. In addition, the EPA has established in this action emission limits reflecting maximum achievable control technology for certain currently uncontrolled emission sources in these source categories. This action also includes modification and addition of testing and monitoring and related notification, recordkeeping and reporting requirements, as well as other minor technical revisions to the national emission standards for hazardous air pollutants. This action finalizes revisions to the regulatory provisions related to emissions during periods of startup, shutdown and malfunction.
An approach for estimating toxic releases of H2S-containing natural gas.
Jianwen, Zhang; Da, Lei; Wenxing, Feng
2014-01-15
China is well known being rich in sulfurous natural gas with huge deposits widely distributed all over the country. Due to the toxic nature, the release of hydrogen sulfide-containing natural gas from the pipelines intends to impose serious threats to the human, society and environment around the release sources. CFD algorithm is adopted to simulate the dispersion process of gas, and the results prove that Gaussian plume model is suitable for determining the affected region of the well blowout of sulfide hydrogen-containing natural gas. In accordance with the analysis of release scenarios, the present study proposes a new approach for estimating the risk of hydrogen sulfide poisoning hazards, as caused by sulfide-hydrogen-containing natural gas releases. Historical accident-statistical data from the EGIG (European Gas Pipeline Incident Data Group) and the Britain Gas Transco are integrated into the approach. Also, the dose-load effect is introduced to exploit the hazards' effects by two essential parameters - toxic concentration and exposure time. The approach was applied to three release scenarios occurring on the East-Sichuan Gas Transportation Project, and the individual risk and societal risk are classified and discussed. Results show that societal risk varies significantly with different factors, including population density, distance from pipeline, operating conditions and so on. Concerning the dispersion process of hazardous gas, available safe egress time was studied from the perspective of individual fatality risks. The present approach can provide reliable support for the safety management and maintenance of natural gas pipelines as well as evacuations that may occur after release incidents. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The New Brunswick government intends to award a franchise to establish natural gas distribution in the province. To this end, the province wishes to invite bids from qualified entities to establish gas distribution facilities. The province will select the preferred bidder(s) through a two-stage competitive bidding process. This document details the province`s policy objectives, questions and issues to be addressed in stage 1 of the process, and the schedule for the process. Appendices include copies of relevant provincial statutes and regulations.
MarkWest Clean Air Act Settlement Information Sheet
MarkWest is engaged in the gathering, transportation, and processing of natural gas, the transportation, fractionation, marketing, and storage of natural gas liquids, and the gathering and transportation of crude oil.
Process for injecting liquid in moving natural gas streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivers, J.B. Jr.; Budke, H.T. Jr.
1979-01-02
Western Chemical Co.'s simplified, low-cost method of treating pressurized, moving natural gas streams in order to control problems created by entrained water facilitates the downstream treatment of the gas and increases product yields by lessening the formation of oil and water emulsions and hydrates that can coat and clog the processing equipment, while also minimizing equipment corrosion. The method involves introducing into the moving gas stream an agent that includes a polymer having recurring quaternized pyridinium groups for controlling the emulsion, hydrate, and corrosion problems. The method is especially effective when the entrained water contains surfactants, detergents, soaps, etc. Inmore » preferred forms, a low-molecular-weight copolymer of styrene and 2-vinyl pyridine dispersed in water is atomized into the gas stream adjacent to cooling and scrubbing stations. The method is particularly useful in connection with natural gas products plants.« less
NASA Astrophysics Data System (ADS)
Wang, B.
2013-12-01
Shale gas is natural gas that is found trapped within shale formations. And it has become an increasingly important source of natural gas in the United States since start of this century. Because shales ordinarily have insufficient permeability to allow significant fluid flow to a well bore, so gas production in commercial quantities requires fractures to provide permeability. Usually, the shale gas boom is due to modern technology in hydraulic fracturing to create extensive artificial fractures around well bores. In the same time, horizontal drilling is often used with shale gas wells, to create maximum borehole surface area in contact with shale. However, the extraction and use of shale gas can affect the environment through the leaking of extraction into water supplies, and the pollution caused by improper processing of natural gas. The challenge to prevent pollution is that shale gas extractions varies widely even in the two wells that in the same project. What's more, the enormous amounts of water will be needed for drilling, while some of the largest sources of shale gas are found in deserts. So if we can find some technologies to substitute the water in the fracking process, we will not only solve the environmental problems, but also the water supply issues. There are already some methods that have been studied for this purpose, like the CO2 fracking process by Tsuyoshi Ishida et al. I will also propose our new method called air-pressure system for fracking the shales without using water in the fracking process at last.
76 FR 63915 - DCP Midstream, LP; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... application pursuant to Section 7(c) of the Natural Gas Act and Part 157 of the Commission's Regulations, for... diameter pipeline (the LaSalle Residue Line) connecting DCP's new non-jurisdictional natural gas processing... non-jurisdictional gas gathering company having facilities in Texas, Oklahoma, New Mexico, Louisiana...
Procedure for preparation for shipment of natural gas storage vessel
NASA Technical Reports Server (NTRS)
Amawd, A. M.
1974-01-01
A method for preparing a natural gas storage vessel for shipment is presented. The gas is stored at 3,000 pounds per square inch. The safety precautions to be observed are emphasized. The equipment and process for purging the tank and sampling the exit gas flow are described. A diagram of the pressure vessel and the equipment is provided.
Renewable Natural Gas Clean-up Challenges and Applications
2011-01-13
produced from digesters ─ Animal manure (dairy cows, swine) ─ Waste water treatment facilities > Methane from Landfills > RNG produced from...AGR used in process • Two stage + trim methanation reactor • Dehydration to achieve gas pipeline specifications ~ 70% conversion efficiency 21... digestion of agricultural waste for on-site electricity generation ─Altamont Landfill—Landfill gas (LFG) cleanup for production of liquefied natural gas
Energy Security of Army Installations & Islanding Methodologies
2012-01-16
islanding of energy generation and distribution networks including electricity, natural gas , steam , liquid fuel, water, and others for the diverse...in geopolitics and war/peace/terrorism Breakthrough in reformation process of synthetic fuel production Hydrogen focused energy sector Oil and gas ...of synthetic AMf Q production Hydrogen focused energy sector D Of and gas remain available and cost-effective Natural Gas prices cut In
H2S-mediated thermal and photochemical methane activation.
Baltrusaitis, Jonas; de Graaf, Coen; Broer, Ria; Patterson, Eric V
2013-12-02
Sustainable, low-temperature methods for natural gas activation are critical in addressing current and foreseeable energy and hydrocarbon feedstock needs. Large portions of natural gas resources are still too expensive to process due to their high content of hydrogen sulfide gas (H2S) mixed with methane, deemed altogether as sub-quality or "sour" gas. We propose a unique method of activation to form a mixture of sulfur-containing hydrocarbon intermediates, CH3SH and CH3SCH3 , and an energy carrier such as H2. For this purpose, we investigated the H2S-mediated methane activation to form a reactive CH3SH species by means of direct photolysis of sub-quality natural gas. Photoexcitation of hydrogen sulfide in the CH4 + H2S complex resulted in a barrierless relaxation by a conical intersection to form a ground-state CH3SH + H2 complex. The resulting CH3SH could further be coupled over acidic catalysts to form higher hydrocarbons, and the resulting H2 used as a fuel. This process is very different from conventional thermal or radical-based processes and can be driven photolytically at low temperatures, with enhanced control over the conditions currently used in industrial oxidative natural gas activation. Finally, the proposed process is CO2 neutral, as opposed to the current industrial steam methane reforming (SMR). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Natural gas operations: considerations on process transients, design, and control.
Manenti, Flavio
2012-03-01
This manuscript highlights tangible benefits deriving from the dynamic simulation and control of operational transients of natural gas processing plants. Relevant improvements in safety, controllability, operability, and flexibility are obtained not only within the traditional applications, i.e. plant start-up and shutdown, but also in certain fields apparently time-independent such as the feasibility studies of gas processing plant layout and the process design of processes. Specifically, this paper enhances the myopic steady-state approach and its main shortcomings with respect to the more detailed studies that take into consideration the non-steady state behaviors. A portion of a gas processing facility is considered as case study. Process transients, design, and control solutions apparently more appealing from a steady-state approach are compared to the corresponding dynamic simulation solutions. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Trends in high performance compressors for petrochemical and natural gas industry in China
NASA Astrophysics Data System (ADS)
Zhao, Yuanyang; Li, Liansheng
2015-08-01
Compressors are the key equipment in the petrochemical and natural gas industry system. The performance and reliability of them are very important for the process system. The application status of petrochemical & natural gas compressors in China is presented in this paper. The present status of design and operating technologies of compressors in China are mentioned in this paper. The turbo, reciprocating and twin screw compressors are discussed. The market demands for different structure compressors in process gas industries are analysed. This paper also introduces the research and developments for high performance compressors in China. The recent research results on efficiency improvement methods, stability improvement, online monitor and fault diagnosis will also be presented in details.
NASA Astrophysics Data System (ADS)
Qyyum, Muhammad Abdul; Wei, Feng; Hussain, Arif; Ali, Wahid; Sehee, Oh; Lee, Moonyong
2017-11-01
This research work unfolds a simple, safe, and environment-friendly energy efficient novel vortex tube-based natural gas liquefaction process (LNG). A vortex tube was introduced to the popular N2-expander liquefaction process to enhance the liquefaction efficiency. The process structure and condition were modified and optimized to take a potential advantage of the vortex tube on the natural gas liquefaction cycle. Two commercial simulators ANSYS® and Aspen HYSYS® were used to investigate the application of vortex tube in the refrigeration cycle of LNG process. The Computational fluid dynamics (CFD) model was used to simulate the vortex tube with nitrogen (N2) as a working fluid. Subsequently, the results of the CFD model were embedded in the Aspen HYSYS® to validate the proposed LNG liquefaction process. The proposed natural gas liquefaction process was optimized using the knowledge-based optimization (KBO) approach. The overall energy consumption was chosen as an objective function for optimization. The performance of the proposed liquefaction process was compared with the conventional N2-expander liquefaction process. The vortex tube-based LNG process showed a significant improvement of energy efficiency by 20% in comparison with the conventional N2-expander liquefaction process. This high energy efficiency was mainly due to the isentropic expansion of the vortex tube. It turned out that the high energy efficiency of vortex tube-based process is totally dependent on the refrigerant cold fraction, operating conditions as well as refrigerant cycle configurations.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
...This action announces how the EPA proposes to address the reviews of the new source performance standards for volatile organic compound and sulfur dioxide emissions from natural gas processing plants. We are proposing to add to the source category list any oil and gas operation not covered by the current listing. This action also includes proposed amendments to the existing new source performance standards for volatile organic compounds from natural gas processing plants and proposed standards for operations that are not covered by the existing new source performance standards. In addition, this action proposes how the EPA will address the residual risk and technology review conducted for the oil and natural gas production and natural gas transmission and storage national emission standards for hazardous air pollutants. This action further proposes standards for emission sources within these two source categories that are not currently addressed, as well as amendments to improve aspects of these national emission standards for hazardous air pollutants related to applicability and implementation. Finally, this action addresses provisions in these new source performance standards and national emission standards for hazardous air pollutants related to emissions during periods of startup, shutdown and malfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malone, R.D.
This is volume II of papers which were presented at the natural gas RD&D contractors review meeting. Topics include: natural gas upgrading, storage, well drilling, completion, and stimulation. Individual papers were processed separately for the United States Department of Energy databases.
Magnolia Waco Properties, LLC Residential Property Renovation Rule Settlement Information Sheet
MarkWest is engaged in the gathering, transportation, and processing of natural gas, the transportation, fractionation, marketing, and storage of natural gas liquids, and the gathering and transportation of crude oil.
Learn more about the NSPS regulation for SO2 emissions from onshore natural gas processing by reading the rule history, rule summary, federal register notices and the code of federal regulations subpart
Code of Federal Regulations, 2014 CFR
2014-07-01
... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section... for affected facilities at onshore natural gas processing plants? (a) You may comply with the... is detected. (4)(i) Any pressure relief device that is located in a nonfractionating plant that is...
Code of Federal Regulations, 2013 CFR
2013-07-01
... equipment leak standards for affected facilities at onshore natural gas processing plants? 60.5401 Section... for affected facilities at onshore natural gas processing plants? (a) You may comply with the... is detected. (4)(i) Any pressure relief device that is located in a nonfractionating plant that is...
Greater focus needed on methane leakage from natural gas infrastructure.
Alvarez, Ramón A; Pacala, Stephen W; Winebrake, James J; Chameides, William L; Hamburg, Steven P
2012-04-24
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH(4) leakage were capped at a level 45-70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH(4) losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas.
Greater focus needed on methane leakage from natural gas infrastructure
Alvarez, Ramón A.; Pacala, Stephen W.; Winebrake, James J.; Chameides, William L.; Hamburg, Steven P.
2012-01-01
Natural gas is seen by many as the future of American energy: a fuel that can provide energy independence and reduce greenhouse gas emissions in the process. However, there has also been confusion about the climate implications of increased use of natural gas for electric power and transportation. We propose and illustrate the use of technology warming potentials as a robust and transparent way to compare the cumulative radiative forcing created by alternative technologies fueled by natural gas and oil or coal by using the best available estimates of greenhouse gas emissions from each fuel cycle (i.e., production, transportation and use). We find that a shift to compressed natural gas vehicles from gasoline or diesel vehicles leads to greater radiative forcing of the climate for 80 or 280 yr, respectively, before beginning to produce benefits. Compressed natural gas vehicles could produce climate benefits on all time frames if the well-to-wheels CH4 leakage were capped at a level 45–70% below current estimates. By contrast, using natural gas instead of coal for electric power plants can reduce radiative forcing immediately, and reducing CH4 losses from the production and transportation of natural gas would produce even greater benefits. There is a need for the natural gas industry and science community to help obtain better emissions data and for increased efforts to reduce methane leakage in order to minimize the climate footprint of natural gas. PMID:22493226
40 CFR 63.640 - Applicability and designation of affected source.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...
40 CFR 63.640 - Applicability and designation of affected source.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reformer catalyst regeneration vents, and sulfur plant vents; and (5) Emission points routed to a fuel gas... required for refinery fuel gas systems or emission points routed to refinery fuel gas systems. (e) The... petroleum refining process unit that is subject to this subpart; (3) Units processing natural gas liquids...
Turboexpander plant designs can provide high ethane recovery without inlet CO/sub 2/ removal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkinson, J.D.; Hudson, H.M.
1982-05-03
New turboexpander plant designs can process natural gas streams containing moderate amounts of carbon dioxide (CO/sub 2/) for high ethane recovery without inlet gas treating. The designs will handle a wide range of inlet ethane-plus fractions. They also offer reduced horsepower requirements compared to other processes. CO/sub 2/ is a typical component of most natural gas streams. In many cases, processing of these gas streams in a turboexpander plant for high ethane recovery requires pre-treatment of the gas for CO/sub 2/ removal. This is required to avoid the formation of solid CO/sub 2/ (freezing) in the cold sections of themore » process and/or to meet necessary residue gas and liquid product CO/sub 2/ specifications. Depending on the quantities involved, the CO/sub 2/ removal systems is generally a significant portion of both the installed cost and operating cost for the ethane recovery facility. Therefore, turboexpander plant designs that are capable of handling increased quantities of CO/sub 2/ in the feed gas without freezing can offer the gas processor substantial economic benefits.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, Alexis T.; Alger, Monty M.; Flytzani-Stephanopoulos, Maria
A decade ago, the U.S. chemical industry was in decline. Of the more than 40 chemical manufacturing plants being built worldwide in the mid-2000s with more than $1 billion in capitalization, none were under construction in the United States. Today, as a result of abundant domestic supplies of affordable natural gas and natural gas liquids resulting from the dramatic rise in shale gas production, the U.S. chemical industry has gone from the world’s highest-cost producer in 2005 to among the lowest-cost producers today. The low cost and increased supply of natural gas and natural gas liquids provides an opportunity tomore » discover and develop new catalysts and processes to enable the direct conversion of natural gas and natural gas liquids into value-added chemicals with a lower carbon footprint. The economic implications of developing advanced technologies to utilize and process natural gas and natural gas liquids for chemical production could be significant, as commodity, intermediate, and fine chemicals represent a higher-economic-value use of shale gas compared with its use as a fuel. To better understand the opportunities for catalysis research in an era of shifting feedstocks for chemical production and to identify the gaps in the current research portfolio, the National Academies of Sciences, Engineering, and Medicine conducted an interactive, multidisciplinary workshop in March 2016. The goal of this workshop was to identify advances in catalysis that can enable the United States to fully realize the potential of the shale gas revolution for the U.S. chemical industry and, as a result, to help target the efforts of U.S. researchers and funding agencies on those areas of science and technology development that are most critical to achieving these advances. This publication summarizes the presentations and discussions from the workshop.« less
NASA Astrophysics Data System (ADS)
Wu, Jitan; He, Tianbiao; Ju, Yonglin
2018-04-01
The plate-fin heat exchanger (PFHE), which has been widely used in natural gas liquefaction (LNG) industry at present, has some disadvantages such as being sensitive to the impurities in the feed gas, such as water, CO2 and H2S. Compared with the PFHE, the brazed plate heat exchanger (BPHE), which has been applied in some boil off gas (BOG) recycling LNG plants of small to middle size, has simpler inherent structure and higher impurity tolerance. In this study the BPHE is suggested to replace the PFHE to simplify or even omit the massive CO2 purification equipment for the LNG process. A set of experimental apparatus is designed and constructed to investigate the influence of the CO2 concentration of the natural gas on solid precipitation inside a typical BPHE meanly by considering the flow resistance throughout the LNG process. The results show that the maximum allowable CO2 concentration of the natural gas liquefied in the BPHE is two orders of magnitude higher than that in the PFHE under the same condition. In addition, the solid-liquid separation for the CO2 impurity is studied and the reasonable separating temperature is obtained. The solid CO2 should be separated below 135 K under the pressure of 3 MPa.
76 FR 16728 - Announcement of the American Petroleum Institute's Standards Activities
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... voluntary standards for equipment, materials, operations, and processes for the petroleum and natural gas... Techniques for Designing and/or Optimizing Gas-lift Wells and Systems, 1st Ed. RP 13K, Chemical Analysis of... Q2, Quality Management Systems for Service Supply Organizations for the Petroleum and Natural Gas...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-06
... and potable water pipelines, a transmission line, a natural gas supply pipeline, a CO 2 pipeline... line. HECA would also construct an approximately 8-mile natural gas supply pipeline extending southeast... produce synthesis gas (syngas), which would then be processed and purified to produce a hydrogen-rich fuel...
Carbothermal Reduction of Quartz with Carbon from Natural Gas
NASA Astrophysics Data System (ADS)
Li, Fei; Tangstad, Merete
2017-04-01
Carbothermal reaction between quartz and two different carbons originating from natural gas were investigated in this paper. One of two carbons is the commercial carbon black produced from natural gas in a medium thermal production process. The other carbon is obtained from natural gas cracking at 1273 K (1000 °C) deposited directly on the quartz pellet. At the 1923 K (1650 °C) and CO atmosphere, the impact of carbon content, pellet structure, gas transfer, and heating rate are investigated in a thermo-gravimetric furnace. The reaction process can be divided into two steps: an initial SiC-producing step followed by a SiO-producing step. Higher carbon content and increased gas transfer improves the reaction rate of SiC-producing step, while the thicker carbon coating in carbon-deposited pellet hinders reaction rate. Better gas transfer of sample holder improves reaction rate but causes more SiO loss. Heating rate has almost no influence on reaction. Mass balance analysis shows that mole ratios between SiO2, free carbon, and SiC in the SiC-producing step and SiO-producing step in CO and Ar fit the reaction SiO2(s) + 3 C(s) = SiC(s) + 2 CO(g). SiC-particle and SiC-coating formation process in mixed pellet and carbon-deposited pellet are proposed. SiC whiskers formed in the voids of these two types of pellets.
2009-07-01
light industry and therefore was largely an agricultural support base for the economy. Aluminum and uranium production and processing were the major...Tajikistan is not a producer/exporter of energy resources although has oil and natural gas reserves. The country has a pipeline importing natural gas from...Uzbekistan. The country also imports gas from Uzbekistan. The total length of gas pipeline is 549 km and 38 km of oil pipelines. Railroads
NASA Astrophysics Data System (ADS)
Englander, J.; Brandt, A. R.
2017-12-01
There has been numerous studies in quantifying the scale of fugitive emissions from across the natural gas value chain. These studies have typically focused on either specific types of equipment (such as valves) or on a single part of the life-cycle of natural gas production (such as gathering stations).1,2 However it has been demonstrated that average emissions factors are not sufficient for representing leaks in the natural gas system.3 In this work, we develop a robust estimate of fugitive emissions rates by incorporating all publicly available studies done at the component up to the process level. From these known studies, we create a database of leaks with normalized nomenclature from which leak estimates can be drawn from actual leak observations. From this database, and parameterized by meta-data such as location, scale of study, or placement in the life-cycle, we construct stochastic emissions factors specific for each process unit. This will be an integrated tool as part of the Oil production greenhouse gas estimator (OPGEE) as well as the Fugitive Emissions Abatement Simulation Toolkit (FEAST) models to enhances their treatment of venting and fugitive emissions, and will be flexible to include user provided data and input parameters.4,51. Thoma, ED et al. Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions. J. Environ. Prot. 2017. 2. Marchese, AJ et al. Methane Emissions from United States Natural Gas Gathering and Processing. ES&T 2015. doi:10.1021/acs.est.5b02275 3. Brandt, AR et al. Methane Leaks from Natural Gas Systems Follow Extreme Distributions. ES&T 2016. doi:10.1021/acs.est.6b04303 4. El-Houjeiri, HM et al. An open-source LCA tool estimating greenhouse gas emissions from crude oil production using field characteristics. ES&T 2013. doi: 10.1021/es304570m 5. Kemp, CE et al. Comparing Natural Gas Leakage Detection Technologies Using an Open-Source `Virtual Gas Field' Simulator. ES&T 2016. doi:10.1021/acs.est.5b06068
NASA Astrophysics Data System (ADS)
Chen, G. B.; Zhong, Y. K.; Zheng, X. L.; Li, Q. F.; Xie, X. M.; Gan, Z. H.; Huang, Y. H.; Tang, K.; Kong, B.; Qiu, L. M.
2003-12-01
A novel gas-phase inlet configuration in the natural circulation system instead of the liquid-phase inlet is introduced to cool down a cryogenic pump system from room temperature to cryogenic temperatures, effectively. The experimental apparatus is illustrated and test process is described. Heat transfer and pressure drop data during the cool-down process are recorded and portrayed. By contrast with liquid-phase inlet configuration, experimental results demonstrate that the natural circulation with the gas-phase inlet configuration is an easier and more controllable way to cool down the pump system and maintain it at cryogenic temperatures.
Roscioli, J. R.; Yacovitch, T. I.; Floerchinger, C.; ...
2015-05-07
Increased natural gas production in recent years has spurred intense interest in methane (CH 4) emissions associated with its production, gathering, processing, transmission, and distribution. Gathering and processing facilities (G&P facilities) are unique in that the wide range of gas sources (shale, coal-bed, tight gas, conventional, etc.) results in a wide range of gas compositions, which in turn requires an array of technologies to prepare the gas for pipeline transmission and distribution. We present an overview and detailed description of the measurement method and analysis approach used during a 20-week field campaign studying CH 4 emissions from the natural gasmore » G&P facilities between October 2013 and April 2014. Dual-tracer flux measurements and on-site observations were used to address the magnitude and origins of CH 4 emissions from these facilities. The use of a second tracer as an internal standard revealed plume-specific uncertainties in the measured emission rates of 20–47%, depending upon plume classification. Furthermore, combining downwind methane, ethane (C 2H 6), carbon monoxide (CO), carbon dioxide (CO 2), and tracer gas measurements with on-site tracer gas release allows for quantification of facility emissions and in some cases a more detailed picture of source locations.« less
Learn about the NSPS regulation for equipment leaks of Volatile Organic Compounds (VOC) from onshore natural gas processing plants by reading the rule summary, rule history, federal register citations, and the code of federal regulations
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fermentation using natural gas, biomass, or biogas for process energy 6 Biodiesel, and renewable diesel Soy... renewable biomass and petroleum 4 Biodiesel Canola oil Trans-Esterification using natural gas or biomass for process energy 4 Biodiesel, and renewable diesel Soy bean oil;Oil from annual covercrops; Algal oil...
Hybrid life-cycle assessment of natural gas based fuel chains for transportation.
Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G
2006-04-15
This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.
Transition metal catalysis in the generation of petroleum and natural gas. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mango, F.D.
1997-01-21
This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalyticallymore » robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process: The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mango, F.D.
1997-01-21
This project originated on the premise that natural gas could be formed catalytically in the earth rather than thermally as commonly believed. The intention was to test this hypothetical view and to explore generally the role of sedimentary metals in the generation of light hydrocarbons (C1 - C9). We showed the metalliferous source rocks are indeed catalytic in the generation of natural gas. Various metal compounds in the pure state show the same levels of catalytic activity as sedimentary rocks and the products are identical. Nickel is particularly active among the early transition metals and is projected to remain catalyticallymore » robust at all stages of catagenesis. Nickel oxide promotes the formation of n-alkanes in addition to natural gas (NG), demonstrating the full scope of the hypothetical catalytic process. The composition of catalytic gas duplicates the entire range of natural gas, from so-called wet gas to dry gas (60 to 95+ wt % methane), while gas generated thermally is consistently depleted in methane (10 to 60 wt % methane). These results support the view that metal catalysis is a major pathway through which natural gas is formed in the earth.« less
NASA Astrophysics Data System (ADS)
Steinberg, M.; Dong, Yuanji
1993-10-01
The Hynol process is proposed to meet the demand for an economical process for methanol production with reduced CO2 emission. This new process consists of three reaction steps: (1) hydrogasification of biomass, (2) steam reforming of the produced gas with additional natural gas feedstock, and (3) methanol synthesis of the hydrogen and carbon monoxide produced during the previous two steps. The H2-rich gas remaining after methanol synthesis is recycled to gasify the biomass in an energy neutral reactor so that there is no need for an expensive oxygen plant as required by commercial steam gasifiers. Recycling gas allows the methanol synthesis reactor to perform at a relatively lower pressure than conventional while the plant still maintains high methanol yield. Energy recovery designed into the process minimizes heat loss and increases the process thermal efficiency. If the Hynol methanol is used as an alternative and more efficient automotive fuel, an overall 41% reduction in CO2 emission can be achieved compared to the use of conventional gasoline fuel. A preliminary economic estimate shows that the total capital investment for a Hynol plant is 40% lower than that for a conventional biomass gasification plant. The methanol production cost is $0.43/gal for a 1085 million gal/yr Hynol plant which is competitive with current U.S. methanol and equivalent gasoline prices. Process flowsheet and simulation data using biomass and natural gas as cofeedstocks are presented. The Hynol process can convert any condensed carbonaceous material, especially municipal solid waste (MSW), to produce methanol.
Nucleation and growth constraints and outcome in the natural gas hydrate system
NASA Astrophysics Data System (ADS)
Osegovic, J. P.; Max, M. D.
2016-12-01
Hydrate formation processes are functions of energy distribution constrained by physical and kinetic parameters. The generation of energy and energy derivative plots of a constrained growth crucible are used to demonstrate nucleation probability zones (phase origin(s)). Nucleation sets the stage for growth by further constraining the pathways through changes in heat capacity, heat flow coefficient, and enthalpy which in turn modify the mass and energy flow into the hydrate formation region. Nucleation events result from the accumulation of materials and energy relative to pressure, temperature, and composition. Nucleation induction is predictive (a frequency parameter) rather than directly dependent on time. Growth, as mass tranfer into a new phase, adds time as a direct parameter. Growth has direct feedback on phase transfer, energy dynamics, and mass export/import rates. Many studies have shown that hydrate growth is largely an equilibrium process controlled by either mass or energy flows. Subtle changes in the overall energy distribution shift the equilibrium in a predictable fashion. We will demonstrate the localization of hydrate nucleation in a reservoir followed by likely evolution of growth in a capped, sand filled environment. The gas hydrate stability zone (GHSZ) can be characterized as a semi-batch crystallizer in which nucleation and growth of natural gas hydrate (NGH) is a continuous process that may result in very large concentrations of NGH. Gas flux, or the relative concentration of hydrate-forming gas is the critical factor in a GHSZ. In an open groundwater system in which flow rate exceeds diffusion transport rate, dissolved natural gas is transported into and through the GHSZ. In a closed system, such as a geological trap, diffusion of hydrate-forming gas from a free gas zone below the GHSZ is the primary mechanism for movement of gas reactants. Because of the lower molecular weight of methane, where diffusion is the principal transport mechanism, the natural system can be a purification process for formation of increasingly pure NGH from a mixed gas solution over time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond Hobbs
2007-05-31
The Advanced Hydrogasification Process (AHP)--conversion of coal to methane--is being developed through NETL with a DOE Grant and has successfully completed its first phase of development. The results so far are encouraging and have led to commitment by DOE/NETL to begin a second phase--bench scale reactor vessel testing, expanded engineering analysis and economic perspective review. During the next decade new means of generating electricity, and other forms of energy, will be introduced. The members of the AHP Team envision a need for expanded sources of natural gas or substitutes for natural gas, to fuel power generating plants. The initial workmore » the team has completed on a process to use hydrogen to convert coal to methane (pipeline ready gas) shows promising potential. The Team has intentionally slanted its efforts toward the needs of US electric utilities, particularly on fuels that can be used near urban centers where the greatest need for new electric generation is found. The process, as it has evolved, would produce methane from coal by adding hydrogen. The process appears to be efficient using western coals for conversion to a highly sought after fuel with significantly reduced CO{sub 2} emissions. Utilities have a natural interest in the preservation of their industry, which will require a dramatic reduction in stack emissions and an increase in sustainable technologies. Utilities tend to rank long-term stable supplies of fuel higher than most industries and are willing to trade some ratio of cost for stability. The need for sustainability, stability and environmentally compatible production are key drivers in the formation and progression of the AHP development. In Phase II, the team will add a focus on water conservation to determine how the basic gasification process can be best integrated with all the plant components to minimize water consumption during SNG production. The process allows for several CO{sub 2} reduction options including consumption of the CO{sub 2} in the original process as converted to methane. The process could under another option avoid emissions following the conversion to SNG through an adjunct algae conversion process. The algae would then be converted to fuels or other products. An additional application of the algae process at the end use natural gas fired plant could further reduce emissions. The APS team fully recognizes the competition facing the process from natural gas and imported liquid natural gas. While we expect those resources to set the price for methane in the near-term, the team's work to date indicates that the AHP process can be commercially competitive, with the added benefit of assuring long-term energy supplies from North American resources. Conversion of coal to a more readily transportable fuel that can be employed near load centers with an overall reduction of greenhouses gases is edging closer to reality.« less
Code of Federal Regulations, 2011 CFR
2011-07-01
... Natural Gas Processing Plants. § 60.632 Standards. (a) Each owner or operator subject to the provisions of... that it contains or contacts the field gas before the extraction step in the process. For purposes of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Natural Gas Processing Plants. § 60.632 Standards. (a) Each owner or operator subject to the provisions of... that it contains or contacts the field gas before the extraction step in the process. For purposes of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rotman, D.
After nearly a decade of work and $150 million in development costs. Exxon Research and Engineering (ER&E; Florham Park, NJ) says its natural gas conversion process based on Fischer-Tropsch technology is ready for full-scale commercialization. ER&E is looking to entice one of Exxon`s other business units into building a plant based on the process. The Exxon technology makes refinery or petrochemical feedstocks from natural gas in an integrated three-step process, including fluid-bed reactor to make synthesis gas and a hydrocarbon synthesis step using a proprietary Fischer-Tropsch catalyst. Exxon has successfully demonstrated the process at a pilot plant in Baton Rouge,more » LA but says no commercialization decision has been made. ER&E estimates that to commercialize the technology economically will require a large gas conversion plant-with a price tag of about $2 billion.« less
30 CFR 1206.158 - Processing allowances-general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except as provided in... RESOURCES REVENUE PRODUCT VALUATION Federal Gas § 1206.158 Processing allowances—general. (a) Where the value of gas is determined pursuant to § 1206.153 of this subpart, a deduction shall be allowed for the...
30 CFR 1206.158 - Processing allowances-general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except as provided in... RESOURCES REVENUE PRODUCT VALUATION Federal Gas § 1206.158 Processing allowances—general. (a) Where the value of gas is determined pursuant to § 1206.153 of this subpart, a deduction shall be allowed for the...
30 CFR 1206.158 - Processing allowances-general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... relationship. Natural gas liquids (NGL's) shall be considered as one product. (c)(1) Except as provided in... RESOURCES REVENUE PRODUCT VALUATION Federal Gas § 1206.158 Processing allowances—general. (a) Where the value of gas is determined pursuant to § 1206.153 of this subpart, a deduction shall be allowed for the...
Hydraulic fracturing for natural gas: impact on health and environment.
Carpenter, David O
2016-03-01
Shale deposits exist in many parts of the world and contain relatively large amounts of natural gas and oil. Recent technological developments in the process of horizontal hydraulic fracturing (hydrofracturing or fracking) have suddenly made it economically feasible to extract natural gas from shale. While natural gas is a much cleaner burning fuel than coal, there are a number of significant threats to human health from the extraction process as currently practiced. There are immediate threats to health resulting from air pollution from volatile organic compounds, which contain carcinogens such as benzene and ethyl-benzene, and which have adverse neurologic and respiratory effects. Hydrogen sulfide, a component of natural gas, is a potent neuro- and respiratory toxin. In addition, levels of formaldehyde are elevated around fracking sites due to truck traffic and conversion of methane to formaldehyde by sunlight. There are major concerns about water contamination because the chemicals used can get into both ground and surface water. Much of the produced water (up to 40% of what is injected) comes back out of the gas well with significant radioactivity because radium in subsurface rock is relatively water soluble. There are significant long-term threats beyond cancer, including exacerbation of climate change due to the release of methane into the atmosphere, and increased earthquake activity due to disruption of subsurface tectonic plates. While fracking for natural gas has significant economic benefits, and while natural gas is theoretically a better fossil fuel as compared to coal and oil, current fracking practices pose significant adverse health effects to workers and near-by residents. The health of the public should not be compromized simply for the economic benefits to the industry.
Development and test of combustion chamber for Stirling engine heated by natural gas
NASA Astrophysics Data System (ADS)
Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu
2014-04-01
The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.
Hydrogasification reactor and method of operating same
Hobbs, Raymond; Karner, Donald; Sun, Xiaolei; Boyle, John; Noguchi, Fuyuki
2013-09-10
The present invention provides a system and method for evaluating effects of process parameters on hydrogasification processes. The system includes a hydrogasification reactor, a pressurized feed system, a hopper system, a hydrogen gas source, and a carrier gas source. Pressurized carbonaceous material, such as coal, is fed to the reactor using the carrier gas and reacted with hydrogen to produce natural gas.
A thermodynamic analysis of the environmental indicators of natural gas combustion processes
NASA Astrophysics Data System (ADS)
Elsukov, V. K.
2010-07-01
Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.
Environmental Impact of Natural Gas Hydrate Production
NASA Astrophysics Data System (ADS)
Max, M. D.; Johnson, A. H.
2017-12-01
Unmet conventional energy demand is encouraging a number of deep energy importing nations closer to production of their potentially very large Natural Gas Hydrate (NGH) resources. As methane and other natural gases are potent greenhouse gases, concerns exist about the possible environmental risks associated NGH development. Accidental of natural gas would have environmental consequences. However, the special characteristics of NGH and production models indicate a very low environmental risk from the reservoir to the deepwater wellhead that is much lower than for conventional deepwater gas. NGH is naturally stable in its solid form in the reservoir and shutting in the gas can be achieved by stopping NGH conversion and gas production in the reservoir. Rapid shut down results in re-crystallization of gas and stabilization of the reservoir through NGH reformation. In addition, new options for innovative technologies have the potential to allow safe development of NGH at a fraction of the current estimated cost. Gas produced from NGH is about the same as processed conventional gas, although almost certainly more pure. Leakage of gas during transport is not a production issue. Gas transport leakage is a matter for best practices regulation that is rigorously enforced.
EIA's Natural Gas Production Data
2009-01-01
This special report examines the stages of natural gas processing from the wellhead to the pipeline network through which the raw product becomes ready for transportation and eventual consumption, and how this sequence is reflected in the data published by the Energy Information Administration (EIA).
DOT National Transportation Integrated Search
2009-01-01
These guidelines provide recommendations for the assessment of new and existing natural gas and liquid hydrocarbon pipelines subjected to potential ground displacements resulting from landslides and subsidence. The process of defining landslide and s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kauffmann, B.G.
1995-07-01
The paper describes an infrared radiant heat process to de-ice aircraft. A typical 727 aircraft de-icing costs $2000--3000 using the current glycol method. The natural gas powered heater would only cost $400 per aircraft and would not pose the environmental problems that the glycol does. It is estimated that one Infratek system could consume 3.8 million cubic feet of natural gas each year during the de-icing season. Large airports might have as many as 10 units. 3.8 million cu. ft. of gas is equal to about 40 New York residential customers or eight New York commercial customers.
Gasoline from natural gas by sulfur processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erekson, E.J.; Miao, F.Q.
1995-12-31
The overall objective of this research project is to develop a catalytic process to convert natural gas to liquid transportation fuels. The process, called the HSM (Hydrogen Sulfide-Methane) Process, consists of two steps that each utilize a catalyst and sulfur-containing intermediates: (1) converting natural gas to CS{sub 2} and (2) converting CS{sub 2} to gasoline range liquids. Catalysts have been found that convert methane to carbon disulfide in yields up to 98%. This exceeds the target of 40% yields for the first step. The best rate for CS{sub 2} formation was 132 g CS{sub 2}/kg-cat-h. The best rate for hydrogenmore » production is 220 L H{sub 2} /kg-cat-h. A preliminary economic study shows that in a refinery application hydrogen made by the HSM technology would cost $0.25-R1.00/1000 SCF. Experimental data will be generated to facilitate evaluation of the overall commercial viability of the process.« less
Gas projects surge in the Middle East as governments seek new revenue sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, M.D.
The rapid development of natural gas and condensate reserves in the Middle East results from a simple motivation: the desire of governments to earn revenues. For the past decade, Middle East governments have run budget deficits, which they funded by drawing down foreign assets and issuing debt. Now in the process of structural economic reform, they have begun to use an under-utilized resource--natural gas, of which Middle East governments own about one third of the world`s reserves. Governments receive revenues from several sources in natural gas developments, which makes the projects very attractive. Revenue comes from the sale of themore » natural gas in the domestic market and, if exported, the international market; the sale of associated condensates; the additional exports of crude oil or refined products if natural gas is substituted for refined products in domestic markets; the increased sale of crude oil if natural gas is injected into reservoirs to maintain pressure; and the sale of petrochemicals where natural gas is used as feedstock. Large projects under way in the Middle East highlight the consequences of multiple revenue sources and interlinked costs of natural gas and condensate development. Other countries in the region are undertaking similar projects, so examples cited represent only a portion of what is occurring. The paper describes Abu Dhabi, Qatar, Saudi Arabia, and Iran.« less
Thermodynamic design of natural gas liquefaction cycles for offshore application
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung
2014-09-01
A thermodynamic study is carried out for natural gas liquefaction cycles applicable to offshore floating plants, as partial efforts of an ongoing governmental project in Korea. For offshore liquefaction, the most suitable cycle may be different from the on-land LNG processes under operation, because compactness and simple operation are important as well as thermodynamic efficiency. As a turbine-based cycle, closed Claude cycle is proposed to use NG (natural gas) itself as refrigerant. The optimal condition for NG Claude cycle is determined with a process simulator (Aspen HYSYS), and the results are compared with fully-developed C3-MR (propane pre-cooled mixed refrigerant) JT cycles and various N2 (nitrogen) Brayton cycles in terms of efficiency and compactness. The newly proposed NG Claude cycle could be a good candidate for offshore LNG processes.
NASA Astrophysics Data System (ADS)
Dyrdin, V. V.; Smirnov, V. G.; Kim, T. L.; Manakov, A. Yu.; Fofanov, A. A.; Kartopolova, I. S.
2017-06-01
The physical processes occurring in the coal - natural gas system under the gas pressure release were studied experimentally. The possibility of gas hydrates presence in the inner space of natural coal was shown, which decomposition leads to an increase in the amount of gas passing into the free state. The decomposition of gas hydrates can be caused either by the seam temperature increase or the pressure decrease to lower than the gas hydrates equilibrium curve. The contribution of methane released during gas hydrates decomposition should be taken into account in the design of safe mining technologies for coal seams prone to gas dynamic phenomena.
Nataraj, Shankar; Russek, Steven Lee; Dyer, Paul Nigel
2000-01-01
Natural gas or other methane-containing feed gas is converted to a C.sub.5 -C.sub.19 hydrocarbon liquid in an integrated system comprising an oxygenative synthesis gas generator, a non-oxygenative synthesis gas generator, and a hydrocarbon synthesis process such as the Fischer-Tropsch process. The oxygenative synthesis gas generator is a mixed conducting membrane reactor system and the non-oxygenative synthesis gas generator is preferably a heat exchange reformer wherein heat is provided by hot synthesis gas product from the mixed conducting membrane reactor system. Offgas and water from the Fischer-Tropsch process can be recycled to the synthesis gas generation system individually or in combination.
NASA Astrophysics Data System (ADS)
Yuliusman; Afdhol, M. K.; Sanal, Alristo; Nasruddin
2018-03-01
Indonesia imports fuel (fuel oil) in large quantities. Indonesia has reserves of methane gas in the form of natural gas in large numbers but has obstacles in the process of storage. To produce a storage tank to a safe condition then proclaimed to use ANG (Adsorbed Natural Gas) technology. Manufacture of activated PET based activated carbon for storage of natural gas where technology has been widely studied, but still has some shortcomings. Therefore to predict the performance of ANG technology, modeling of ANG tank with Fluent CFD program is done so the condition inside the ANG tank can be known and can be used to increased the performance of ANG technology. Therefore, in this experiment natural gas storage test is done at the ANG tank model using Fluent CFD program. This experiment is begin with preparation tools and material by characterize the natural gas and activated carbon followed by create the mesh and model of ANG tank. The next process is state the characteristic of activated carbon and fluid in this experiment. The last process is run the simulation using the condition that already been stated which is at 27°C and 35 bar during 15 minutes. The result is at adsorption contour we can see that adsorption is higher at the top of the tank because the input of the adsorbent is at the top of the ANG tank so the adsorbate distribution is uneven that cause the adsorbate concentration at the top of the ANG tank is higher than the bottom tank.
Process control of turboexpander plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guffey, C.G.; Heenan, W.A.
1984-05-01
The turboexpander process uses the high pressure of the natural gas stream to drive a rotating expander wheel to extract mechanical work from the flowing stream. The removal of energy and the reduced pressure result in a large refrigeration effect which condenses ethane, propane and heavier components in the natural gas as liquids for recovery and sale. The recovered work is transmitted directly to a shaft which usually drives a gas recompressor. This compressor increases the pressure of the dry residue gas after liquid recovery. Operation of the demethanizer or de-ethanizer at the low pressure of the main gas streammore » eliminates the requirement for a separate demethanizer overhead gas booster compressor. There are many variations of this simplified process including supplemental inlet refrigeration, parallel trains of heat exchangers, side reboilers on the demethanizer and multiple expanders which must be controlled and affect the dynamic response to variable changes. This paper excludes these complications in the analysis of the system.« less
Lee, Inkyu; Park, Jinwoo; Moon, Il
2017-12-01
This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couto, J.A.
1975-06-01
Liquid hydrocarbons contained in Argentina's Pico Truncade natural gas caused a number of serious pipeline transmission and gas processing problems. Gas del Estado has installed a series of efficient liquid removal devices at the producing fields. A flow chart of the gasoline stripping process is illustrated, as are 2 types of heat exchangers. This process of gasoline stripping (gas condensate recovery) integrates various operations which normally are performed independently: separation of the poor condensate in the gas, stabilization of the same, and incorporation of the light components (products of the stabilization) in the main gas flow.
Petrobras eyes LNG project in Amazon region
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-08-07
The Brazilian state oil company has proved gas reserves in the Rio Urucu area of the Amazon jungle totaling 1.84 tcf. That compares with 3.08 tcf contained in the offshore Campos basin, source of most of Brazil`s oil and gas production. The environmentally sensitive Urucu region is one of the most dense, remote jungles in the world. Because of environmental concerns about pipelines in the rain forest and a government emphasis on boosting the natural gas share of Brazil`s energy mix, a small liquefied natural gas project is shaping up as the best option for developing and marketing Urucu gas.more » The amazon campaign underscores a government initiative to boost Brazilian consumption of natural gas. In Brazil natural gas accounts for only 4% of primary energy consumption. Some years ago, the government set an official goal of boosting the gas share of the primary energy mix to 10% by 2000. The paper discusses current drilling activities, gas production and processing, the logistics of the upper Amazon, and gas markets.« less
Increasing efficiency of TPP fuel suply system due to LNG usage as a reserve fuel
NASA Astrophysics Data System (ADS)
Zhigulina, E. V.; Khromchenkov, V. G.; Mischner, J.; Yavorovsky, Y. V.
2017-11-01
The paper is devoted to the analysis of fuel economy efficiency increase possibility at thermal power plants (TPP) due to the transition from the use of black oil as a reserve fuel to liquefied natural gas (LNG) produced at the very station. The work represents the technical solution that allows to generate, to store and to use LNG as the reserve fuel TPP. The annual amounts of black oil and natural gas that are needed to ensure the reliable operation of several power plants in Russia were assessed. Some original schemes of the liquefied natural gas production and storing as alternative reserve fuel generated by means of application of expansion turbines are proposed. The simulation results of the expansion process for two compositions of natural gas with different contents of high-boiling fractions are presented. The dependences of the condensation outlet and power generation from the flow initial parameters and from the natural gas composition are obtained and analysed. It was shown that the choice of a particular circuit design depends primarily on the specific natural gas composition. The calculations have proved the effectiveness and the technical ability to use liquefied natural gas as a backup fuel at reconstructed and newly designed gas power station.
NASA Astrophysics Data System (ADS)
Danilishin, A. M.; Kozhukhov, Y. V.; Neverov, V. V.; Malev, K. G.; Mironov, Y. R.
2017-08-01
The aim of this work is the validation study for the numerical modeling of characteristics of a multistage centrifugal compressor for natural gas. In the research process was the analysis used grid interfaces and software systems. The result revealed discrepancies between the simulated and experimental characteristics and outlined the future work plan.
METHANE STEAM REACTION OVER NICKEL CATALYSTS IN THE HYNOL PROCESS
The report discusses the reaction of methane-steam over nickel catalysts in the Hynol process, a process that uses biomass and natural gas as feedstocks to maximize methanol yields and minimize greenhouse gas emissions. EPA's APPCD has established a laboratory in which to conduct...
49 CFR 192.625 - Odorization of gas.
Code of Federal Regulations, 2010 CFR
2010-10-01
...; (iii) A gas dehydration plant; or (iv) An industrial plant using gas in a process where the presence of... 49 Transportation 3 2010-10-01 2010-10-01 false Odorization of gas. 192.625 Section 192.625... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS...
Pace slows in northern Rockies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-03-01
This paper deals with recent natural gas development and production in the northern Rocky Mountain region. Because of restricted gas markets, the pace has slowed construction of gas processing and gathering facilities. The gas and oil companies which are planning or building new projects are discussed.
In-situ Micro-structural Studies of Gas Hydrate Formation in Sedimentary Matrices
NASA Astrophysics Data System (ADS)
Kuhs, Werner F.; Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Schwarz, Jens-Oliver; Wolf, Martin; Enzmann, Frieder; Kersten, Michael; Haberthür, David
2015-04-01
The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in-situ with sub-micron resolution. Here, we report on synchrotron-based micro-tomographic studies by which the nucleation and growth processes of gas hydrate were observed in different sedimentary matrices (natural quartz, glass beds with different surface properties, with and without admixtures of kaolinite and montmorillonite) at varying water saturation. The nucleation sites can be easily identified and the growth pattern is clearly established. In under-saturated sediments the nucleation starts at the water-gas interface and proceeds from there to form predominantly isometric single crystals of 10-20μm size. Using a newly developed synchrotron-based method we have determined the crystallite size distributions (CSD) of the gas hydrate in the sedimentary matrix confirming in a quantitative and statistically relevant manner the impressions from the tomographic reconstructions. It is noteworthy that the CSDs from synthetic hydrates are distinctly smaller than those of natural gas hydrates [1], which suggest that coarsening processes take place in the sedimentary matrix after the initial hydrate formation. Understanding the processes of formation and coarsening may eventually permit the determination of the age of gas hydrates in sedimentary matrices [2], which are largely unknown at present. Furthermore, the full micro-structural picture and its evolution will enable quantitative digital rock physics modeling to reveal poroelastic properties and in this way to support the exploration and exploitation of gas hydrate resources in the future. [1] Klapp S.A., Hemes S., Klein H., Bohrmann G., McDonald I., Kuhs W.F. Grain size measurements of natural gas hydrates. Marine Geology 2010; 274(1-4):85-94. [2] Klapp S.A., Klein H, Kuhs W.F. First determination of gas hydrate crystallite size distribution using high-energy synchrotron radiation. Geophys.Res.Letters, 2007 ; 34 : L13608, DOI:10.1029/2006GL029134
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranhos, Elizabeth; Kozak, Tracy G.; Boyd, William
This report provides an overview of the regulatory frameworks governing natural gas supply chain infrastructure siting, construction, operation, and maintenance. Information was drawn from a number of sources, including published analyses, government reports, in addition to relevant statutes, court decisions and regulatory language, as needed. The scope includes all onshore facilities that contribute to methane emissions from the natural gas sector, focusing on three areas of state and federal regulations: (1) natural gas pipeline infrastructure siting and transportation service (including gathering, transmission, and distribution pipelines), (2) natural gas pipeline safety, and (3) air emissions associated with the natural gas supplymore » chain. In addition, the report identifies the incentives under current regulatory frameworks to invest in measures to reduce leakage, as well as the barriers facing investment in infrastructure improvement to reduce leakage. Policy recommendations regarding how federal or state authorities could regulate methane emissions are not provided; rather, existing frameworks are identified and some of the options for modifying existing regulations or adopting new regulations to reduce methane leakage are discussed.« less
NASA Astrophysics Data System (ADS)
Roslyakov, P. V.; Proskurin, Y. V.; Khokhlov, D. A.; Zaichenko, M. N.
2018-03-01
The aim of this work is to research operations of modern combined low-emission swirl burner with a capacity of 2.2 MW for fire-tube boiler type KV-GM-2.0, to ensure the effective burning of natural gas, crude oil and diesel fuel. For this purpose, a computer model of the burner and furnace chamber has been developed. The paper presents the results of numerical investigations of the burner operation, using the example of natural gas in a working load range from 40 to 100%. The basic features of processes of fuel burning in the cramped conditions of the flame tube have been identified to fundamentally differ from similar processes in the furnaces of steam boilers. The influence of the design of burners and their operating modes on incomplete combustion of fuel and the formation of nitrogen oxides has been determined.
Assessing fugitive emissions of CH4 from high-pressure gas pipelines
NASA Astrophysics Data System (ADS)
Worrall, Fred; Boothroyd, Ian; Davies, Richard
2017-04-01
The impact of unconventional natural gas production using hydraulic fracturing methods from shale gas basins has been assessed using life-cycle emissions inventories, covering areas such as pre-production, production and transmission processes. The transmission of natural gas from well pad to processing plants and its transport to domestic sites is an important source of fugitive CH4, yet emissions factors and fluxes from transmission processes are often based upon ver out of date measurements. It is important to determine accurate measurements of natural gas losses when compressed and transported between production and processing facilities so as to accurately determine life-cycle CH4 emissions. This study considers CH4 emissions from the UK National Transmission System (NTS) of high pressure natural gas pipelines. Mobile surveys of CH4 emissions using a Picarro Surveyor cavity-ring-down spectrometer were conducted across four areas in the UK, with routes bisecting high pressure pipelines and separate control routes away from the pipelines. A manual survey of soil gas measurements was also conducted along one of the high pressure pipelines using a tunable diode laser. When wind adjusted 92 km of high pressure pipeline and 72 km of control route were drive over a 10 day period. When wind and distance adjusted CH4 fluxes were significantly greater on routes with a pipeline than those without. The smallest leak detectable was 3% above ambient (1.03 relative concentration) with any leaks below 3% above ambient assumed ambient. The number of leaks detected along the pipelines correlate to the estimated length of pipe joints, inferring that there are constant fugitive CH4 emissions from these joints. When scaled up to the UK's National Transmission System pipeline length of 7600 km gives a fugitive CH4 flux of 4700 ± 2864 kt CH4/yr - this fugitive emission from high pressure pipelines is 0.016% of the annual gas supply.
Study of Catalyst Variation Effect in Glycerol Conversion Process to Hydrogen Gas by Steam Reforming
NASA Astrophysics Data System (ADS)
Widayat; Hartono, R.; Elizabeth, E.; Annisa, A. N.
2018-04-01
Along with the economic development, needs of energy being increase too. Hydrogen as alternative energy has many usages. Besides that, hydrogen is one source of energy that is a clean fuel, but process production of hydrogen from natural gas as a raw material has been used for a long time. Therefore, there is need new invention to produce hydrogen from the others raw material. Glycerol, a byproduct of biodiesel production, is a compound which can be used as a raw material for hydrogen production. By using glycerol as a raw material of hydrogen production, we can get added value of glycerol as well as an energy source solution. The process production of hydrogen by steam reforming is a thermochemical process with efficiency 70%. This process needs contribution of catalyst to improve its efficiency and selectivity of the process. In this study will be examined the effect variation of catalyst for glycerol conversion process to hydrogen by steam reforming. The method for catalyst preparation was variation of catalyst impregnation composition, catalyst calcined with difference concentration of hydrochloric acid and calcined with difference hydrochloric acid ratio. After that, all of catalyst which have been prepared, used for steam reforming process for hydrogen production from glycerol as a raw material. From the study, the highest yield of hydrogen gas showed in the process production by natural zeolite catalyst with 1:15 Hydrochloric acid ratio was 42.28%. Hydrogen yield for 2M calcined natural zeolite catalyst was 38.37%, for ZSM-5 catalyst was 15.83%, for 0.5M calcined natural zeolite was 13.09% and for ultrasonic natural zeolite was 11.43%. The lowest yield of hydrogen gas showed in catalyst 2Zn/ZSM-5 with 11.22%. This result showed that hydrogen yield product was affected by catalyst variation because of the catalyst has difference characteristic and difference catalytic activity after the catalyst preparation process.
NASA Astrophysics Data System (ADS)
Mikhailovna Smolenskaya, Natalia; Vladimirovich Smolenskii, Victor; Vladimirovich Korneev, Nicholas
2018-02-01
The work is devoted to the substantiation and practical implementation of a new approach for estimating the change in internal energy by pressure and volume. The pressure is measured with a calibrated sensor. The change in volume inside the cylinder is determined by changing the position of the piston. The position of the piston is precisely determined by the angle of rotation of the crankshaft. On the basis of the proposed approach, the thermodynamic efficiency of the working process of spark ignition engines on natural gas with the addition of hydrogen was estimated. Experimental studies were carried out on a single-cylinder unit UIT-85. Their analysis showed an increase in the thermodynamic efficiency of the working process with the addition of hydrogen in a compressed natural gas (CNG).The results obtained make it possible to determine the characteristic of heat release from the analysis of experimental data. The effect of hydrogen addition on the CNG combustion process is estimated.
Simulation of subsea gas hydrate exploitation
NASA Astrophysics Data System (ADS)
Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge
2014-05-01
The recovery of methane from gas hydrate layers that have been detected in several subsea sediments and permafrost regions around the world is a promising perspective to overcome future shortages in natural gas supply. Being aware that conventional natural gas resources are limited, research is going on to develop technologies for the production of natural gas from such new sources. Thus various research programs have started since the early 1990s in Japan, USA, Canada, India, and Germany to investigate hydrate deposits and develop required technologies. In recent years, intensive research has focussed on the capture and storage of CO2 from combustion processes to reduce climate impact. While different natural or man-made reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid CO2, the storage of CO2 as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in the form of hydrates. Regarding technological implementation many problems have to be overcome. Especially mixing, heat and mass transfer in the reservoir are limiting factors causing very long process times. Within the scope of the German research project »SUGAR« different technological approaches for the optimized exploitation of gas hydrate deposits are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical processes are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs. Simulations based on geological field data have been carried out. The studies focus on the potential of gas production from turbidites and their fitness for CO2 storage. The effects occurring during gas production and CO2 storage within a hydrate deposit are identified and described for various scenarios. The behavior of relevant process parameters such as pressure, temperature and phase saturations is discussed and compared for different strategies: simple depressurization, simultaneous and subsequent methane production together with CO2 injection.
Process for injecting liquid in moving natural gas streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budke, H.T. Jr.; Rivers, J.B. Jr.
1979-01-02
A simplified, low-cost method of treating pressurized, moving natural gas streams in order to control problems created by entrained water in the gas is provided which facilitates downstream treatment of the gas and increases product yields by lessening the formation of oil and water emulsions and hydrates which can coat and clog processing equipment, while also minimizing corrosion of the latter. The method involves introduction of an agent into the moving gas stream which includes a polymer having recurring quaternized pyridinium groups therein for controlling the emulsion, hydrate, and corrosion problems. The method is especially effective when the entrained watermore » contains surfactants, detergents, soaps, and the like. In preferred forms a low moleuclar weight copolymer of styrene and 2-vinyl pyridine dispersed in water is atomized into the gas stream adjacent cooling and scrubbing stations. 8 claims.« less
NASA Astrophysics Data System (ADS)
Rella, Chris; Jacobson, Gloria; Crosson, Eric; Karion, Anna; Petron, Gabrielle; Sweeney, Colm
2013-04-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation. However, given that the global warming potential of methane is many times greater than that of carbon dioxide (Solomon et al. 2007), the importance of quantifying the fugitive emissions of methane throughout the natural gas production and distribution process becomes clear (Howarth et al. 2011). A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis. In particular, the 13CH4 signature of natural gas (-35 to -40 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-45 to -70 permil). In this paper we present measurements of mobile field 13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in two intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, and the Uintah basin in Utah. Mobile isotope measurements in the nocturnal boundary layer have been made, over a total path of 100s of km throughout the regions, allowing spatially resolved measurements of the regional isotope signature. Secondly, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in these regions, by making measurements of the isotope ratio directly in the downwind plume from each source. These data are combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities in the regions. The fraction of total methane emissions in the Denver-Julesburg basin that can be attributed to natural gas fugitive emissions has been determined to be 71 +/- 9%. References: 1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). IPCC, 2007: Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2. R.W. Howarth, R. Santoro, and A. Ingraffea. "Methane and the greenhouse-gas footprint of natural gas from shale formations." Climate Change, 106, 679 (2011).
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2011 CFR
2011-07-01
... estimates, or analogous projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs... INTERIOR MINERALS REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
... Abandonment and Replacement Project and Request for Comments on Environmental Issues February 5, 2010. The... Replacement Project, involving the abandonment and replacement of facilities by Southern Natural Gas Company... process to determine whether the project is in the public convenience and necessity. This notice announces...
78 FR 35658 - Spectra Energy Corp., Application for a New or Amended Presidential Permit
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
... transactions. Spectra Energy owns and operates a large diversified portfolio of natural gas-related energy assets in the areas of gathering and processing, transmission, and distribution. Its natural gas pipeline..., to Caster, Wyoming and includes five pump stations. The Express Pipeline has been in operation since...
NEW MATERIAL NEEDS FOR HYDROCARBON FUEL PROCESSING: Generating Hydrogen for the PEM Fuel Cell
NASA Astrophysics Data System (ADS)
Farrauto, R.; Hwang, S.; Shore, L.; Ruettinger, W.; Lampert, J.; Giroux, T.; Liu, Y.; Ilinich, O.
2003-08-01
The hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevik, James; Pamminger, Michael; Wallner, Thomas
Interest in natural gas as an alternative fuel source to petroleum fuels for light-duty vehicle applications has increased due to its domestic availability and stable price compared to gasoline. With its higher hydrogen-to-carbon ratio, natural gas has the potential to reduce engine out carbon dioxide emissions, which has shown to be a strong greenhouse gas contributor. For part-load conditions, the lower flame speeds of natural gas can lead to an increased duration in the inflammation process with traditional port-injection. Direct-injection of natural gas can increase in-cylinder turbulence and has the potential to reduce problems typically associated with port-injection of naturalmore » gas, such as lower flame speeds and poor dilution tolerance. A study was designed and executed to investigate the effects of direct-injection of natural gas at part-load conditions. Steady-state tests were performed on a single-cylinder research engine representative of current gasoline direct-injection engines. Tests were performed with direct-injection in the central and side location. The start of injection was varied under stoichiometric conditions in order to study the effects on the mixture formation process. In addition, exhaust gas recirculation was introduced at select conditions in order to investigate the dilution tolerance. Relevant combustion metrics were then analyzed for each scenario. Experimental results suggest that regardless of the injector location, varying the start of injection has a strong impact on the mixture formation process. Delaying the start of injection from 300 to 120°CA BTDC can reduce the early flame development process by nearly 15°CA. While injecting into the cylinder after the intake valves have closed has shown to produce the fastest combustion process, this does not necessarily lead to the highest efficiency, due to increases in pumping and wall heat losses. When comparing the two injection configurations, the side location shows the best performance in terms of combustion metrics and efficiencies. For both systems, part-load dilution tolerance is affected by the injection timing, due to the induced turbulence from the gaseous injection event. CFD simulation results have shown that there is a fundamental difference in how the two injection locations affect the mixture formation process. Delayed injection timing increases the turbulence level in the cylinder at the time of the spark, but reduces the available time for proper mixing. Side injection delivers a gaseous jet that interacts more effectively with the intake induced flow field, and this improves the engine performance in terms of efficiency.« less
Kraussler, Michael; Schindler, Philipp; Hofbauer, Hermann
2017-08-01
This work presents an experimental approach aiming the production of a gas mixture composed of H 2 and CH 4 , which should serve as natural gas substitute in industrial applications. Therefore, a lab-scale process chain employing a water gas shift unit, scrubbing units, and a pressure swing adsorption unit was operated with tar-rich product gas extracted from a commercial dual fluidized bed biomass steam gasification plant. A gas mixture with a volumetric fraction of about 80% H 2 and 19% CH 4 and with minor fractions of CO and CO 2 was produced by employing carbon molecular sieve as adsorbent. Moreover, the produced gas mixture had a lower heating value of about 15.5MJ·m -3 and a lower Wobbe index of about 43.4MJ·m -3 , which is similar to the typical Wobbe index of natural gas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Struchtemeyer, Christopher G.; Davis, James P.; Elshahed, Mostafa S.
2011-01-01
The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and drilling mud samples from seven wells in the Barnett Shale during the drilling process. Using quantitative real-time PCR and microbial enumerations, we show that the addition of mud components to drilling water increased total bacterial numbers, as well as the numbers of culturable aerobic heterotrophs, acid producers, and sulfate reducers. The addition of sterile drilling muds to microcosms that contained drilling water stimulated sulfide production. Pyrosequencing-based phylogenetic surveys of the microbial communities in drilling waters and drilling muds showed a marked transition from typical freshwater communities to less diverse communities dominated by Firmicutes and Gammaproteobacteria. The community shifts observed reflected changes in temperature, pH, oxygen availability, and concentrations of sulfate, sulfonate, and carbon additives associated with the mud formulation process. Finally, several of the phylotypes observed in drilling muds belonged to lineages that were thought to be indigenous to marine and terrestrial fossil fuel formations. Our results suggest a possible alternative exogenous origin of such phylotypes via enrichment and introduction to oil and natural gas reservoirs during the drilling process. PMID:21602366
Struchtemeyer, Christopher G; Davis, James P; Elshahed, Mostafa S
2011-07-01
The Barnett Shale in north central Texas contains natural gas generated by high temperatures (120 to 150°C) during the Mississippian Period (300 to 350 million years ago). In spite of the thermogenic origin of this gas, biogenic sulfide production and microbiologically induced corrosion have been observed at several natural gas wells in this formation. It was hypothesized that microorganisms in drilling muds were responsible for these deleterious effects. Here we collected drilling water and drilling mud samples from seven wells in the Barnett Shale during the drilling process. Using quantitative real-time PCR and microbial enumerations, we show that the addition of mud components to drilling water increased total bacterial numbers, as well as the numbers of culturable aerobic heterotrophs, acid producers, and sulfate reducers. The addition of sterile drilling muds to microcosms that contained drilling water stimulated sulfide production. Pyrosequencing-based phylogenetic surveys of the microbial communities in drilling waters and drilling muds showed a marked transition from typical freshwater communities to less diverse communities dominated by Firmicutes and Gammaproteobacteria. The community shifts observed reflected changes in temperature, pH, oxygen availability, and concentrations of sulfate, sulfonate, and carbon additives associated with the mud formulation process. Finally, several of the phylotypes observed in drilling muds belonged to lineages that were thought to be indigenous to marine and terrestrial fossil fuel formations. Our results suggest a possible alternative exogenous origin of such phylotypes via enrichment and introduction to oil and natural gas reservoirs during the drilling process.
Global energy strategies: Looking over the horizon
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-12-31
This document presents reports which were presented at the 1996 Cambridge Energy Research Associate`s (CERA) Executive Conference. Topics include: the political and economic outlook; CERA`s 1996 outlook; the energy company of the 21st century; oil market dynamics; natural gas business; generating strategies; growth opportunities in the oil industry; emerging oil and gas strategies; natural gas market; Asia Pacific energy; Latin America energy; California`s energy future; European gas and power opportunities; Russian and FSU energy. Individual reports were processed separately for the Department of Energy databases.
NASA Astrophysics Data System (ADS)
Łaciak, Mariusz
2013-06-01
The increase in demand for natural gas in the world, cause that the production of liquefied natural gas (LNG) and in consequences its regasification becoming more common process related to its transportation. Liquefied gas is transported in the tanks at a temperature of about 111K at atmospheric pressure. The process required to convert LNG from a liquid to a gas phase for further pipeline transport, allows the use of exergy of LNG to various applications, including for electricity generation. Exergy analysis is a well known technique for analyzing irreversible losses in a separate process. It allows to specify the distribution, the source and size of the irreversible losses in energy systems, and thus provide guidelines for energy efficiency. Because both the LNG regasification and liquefaction of natural gas are energy intensive, exergy analysis process is essential for designing highly efficient cryogenic installations. Wzrost zapotrzebowania na gaz ziemny na świecie powoduje, że produkcja skroplonego gazu ziemnego (LNG), a w konsekwencji jego regazyfikacja, staje się coraz bardziej powszechnym procesem związanym z jego transportem. Skroplony gaz transportowany jest w zbiornikach w temperaturze około 111K pod ciśnieniem atmosferycznym. Przebieg procesu regazyfikacji niezbędny do zamiany LNG z fazy ciekłej w gazową dla dalszego transportu w sieci, umożliwia wykorzystanie egzergii LNG do różnych zastosowań, między innymi do produkcji energii elektrycznej. Analiza egzergii jest znaną techniką analizowania nieodwracalnych strat w wydzielonym procesie. Pozwala na określenie dystrybucji, źródła i wielkości nieodwracalnych strat w systemach energetycznych, a więc ustalić wytyczne dotyczące efektywnego zużycia energii. Ponieważ zarówno regazyfikacja LNG jak i skraplanie gazu ziemnego są energochłonne, proces analizy egzergii jest niezbędny do projektowania wysoce wydajnych instalacji kriogenicznych.
Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong
2016-08-16
Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.
Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong
2016-01-01
Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes. PMID:27526869
NASA Astrophysics Data System (ADS)
Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Cho, Seong Jun; Lee, Ju Dong; Lee, Kun-Hong
2016-08-01
Natural gas hydrates are solid hydrogen-bonded water crystals containing small molecular gases. The amount of natural gas stored as hydrates in permafrost and ocean sediments is twice that of all other fossil fuels combined. However, hydrate blockages also hinder oil/gas pipeline transportation, and, despite their huge potential as energy sources, our insufficient understanding of hydrates has limited their extraction. Here, we report how the presence of amino acids in water induces changes in its structure and thus interrupts the formation of methane and natural gas hydrates. The perturbation of the structure of water by amino acids and the resulting selective inhibition of hydrate cage formation were observed directly. A strong correlation was found between the inhibition efficiencies of amino acids and their physicochemical properties, which demonstrates the importance of their direct interactions with water and the resulting dissolution environment. The inhibition of methane and natural gas hydrate formation by amino acids has the potential to be highly beneficial in practical applications such as hydrate exploitation, oil/gas transportation, and flow assurance. Further, the interactions between amino acids and water are essential to the equilibria and dynamics of many physical, chemical, biological, and environmental processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seewald, Jeffrey, S.
Results of prior DOE supported research conducted at the Woods Hole Oceanographic Institution have demonstrated the participation of sedimentary minerals and water as reactants and catalysts in chemical transformations associated with the degradation of oil and the formation of low molecular weight organic compounds. The occurrence of such processes in natural environments can be difficult to recognize because the composition of organic alteration products may not be substantially different than those produced by thermal cracking. The goals of this study were the development of diagnostic tools based on hydrogen and carbon isotopes that can be used to identify geochemical processesmore » responsible for the formation of thermogenic natural gas. In addition, our activities were expanded to include experimental investigation of CO2 reduction in aqueous systems at elevated temperature and pressures and an assessment of microbial activity in relatively low temperature (<70°C) natural gas reservoirs in southeastern Oklahoma. Specific objectives included: A laboratory investigation of geochemical processes that regulate the hydrogen isotope composition of low molecular weight hydrocarbons in natural gas at elevated temperatures and pressures. A laboratory investigation of factors that regulate the carbon isotope composition of organic acids in basinal brines. A laboratory assessment of the role of methanol during reduction of CO2 to CH4 under hydrothermal conditions. Characterization of microbial ecosystems in coproduced fluids from the Potato Hills gas field to assess the role of microbes in the generation of natural gas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santore, R.R.; Friedman, S.; Reiss, J.
1993-12-31
Since its beginning, Pittsburgh Energy Technology Center`s (PETC) primary function has been to study and conduct research on coal and its uses and applications. PETC has also been investigating ways in which natural gas can be employed to enhance the use of coal and to convert natural gas into liquid products that can be more readily transported and stored. This review contains five articles which reflect PETC`s mission: State-of-the-Art High Performance Power Systems [HIPPS]; Unconventional Fuel Uses of Natural Gas; Micronized Magnetite -- Beneficiation and Benefits; Reburning for NO{sub x} Reduction; and An Update of PETC`s Process Research Facility.
In-ground operation of Geothermic Fuel Cells for unconventional oil and gas recovery
NASA Astrophysics Data System (ADS)
Sullivan, Neal; Anyenya, Gladys; Haun, Buddy; Daubenspeck, Mark; Bonadies, Joseph; Kerr, Rick; Fischer, Bernhard; Wright, Adam; Jones, Gerald; Li, Robert; Wall, Mark; Forbes, Alan; Savage, Marshall
2016-01-01
This paper presents operating and performance characteristics of a nine-stack solid-oxide fuel cell combined-heat-and-power system. Integrated with a natural-gas fuel processor, air compressor, reactant-gas preheater, and diagnostics and control equipment, the system is designed for use in unconventional oil-and-gas processing. Termed a ;Geothermic Fuel Cell; (GFC), the heat liberated by the fuel cell during electricity generation is harnessed to process oil shale into high-quality crude oil and natural gas. The 1.5-kWe SOFC stacks are packaged within three-stack GFC modules. Three GFC modules are mechanically and electrically coupled to a reactant-gas preheater and installed within the earth. During operation, significant heat is conducted from the Geothermic Fuel Cell to the surrounding geology. The complete system was continuously operated on hydrogen and natural-gas fuels for ∼600 h. A quasi-steady operating point was established to favor heat generation (29.1 kWth) over electricity production (4.4 kWe). Thermodynamic analysis reveals a combined-heat-and-power efficiency of 55% at this condition. Heat flux to the geology averaged 3.2 kW m-1 across the 9-m length of the Geothermic Fuel Cell-preheater assembly. System performance is reviewed; some suggestions for improvement are proposed.
... global population has increased and our reliance on fossil fuels (such as coal, oil and natural gas) ... agricultural sources for the gas, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid ...
Internal combustion engine for natural gas compressor operation
Hagen, Christopher; Babbitt, Guy
2016-12-27
This application concerns systems and methods for compressing natural gas with an internal combustion engine. In a representative embodiment, a method is featured which includes placing a first cylinder of an internal combustion engine in a compressor mode, and compressing a gas within the first cylinder, using the cylinder as a reciprocating compressor. In some embodiments a compression check valve system is used to regulate pressure and flow within cylinders of the engine during a compression process.
Super-emitters in natural gas infrastructure are caused by abnormal process conditions
NASA Astrophysics Data System (ADS)
Zavala-Araiza, Daniel; Alvarez, Ramón A.; Lyon, David R.; Allen, David T.; Marchese, Anthony J.; Zimmerle, Daniel J.; Hamburg, Steven P.
2017-01-01
Effectively mitigating methane emissions from the natural gas supply chain requires addressing the disproportionate influence of high-emitting sources. Here we use a Monte Carlo simulation to aggregate methane emissions from all components on natural gas production sites in the Barnett Shale production region (Texas). Our total emission estimates are two-thirds of those derived from independent site-based measurements. Although some high-emitting operations occur by design (condensate flashing and liquid unloadings), they occur more than an order of magnitude less frequently than required to explain the reported frequency at which high site-based emissions are observed. We conclude that the occurrence of abnormal process conditions (for example, malfunctions upstream of the point of emissions; equipment issues) cause additional emissions that explain the gap between component-based and site-based emissions. Such abnormal conditions can cause a substantial proportion of a site's gas production to be emitted to the atmosphere and are the defining attribute of super-emitting sites.
Aircraft-Based Estimate of Total Methane Emissions from the Barnett Shale Region.
Karion, Anna; Sweeney, Colm; Kort, Eric A; Shepson, Paul B; Brewer, Alan; Cambaliza, Maria; Conley, Stephen A; Davis, Ken; Deng, Aijun; Hardesty, Mike; Herndon, Scott C; Lauvaux, Thomas; Lavoie, Tegan; Lyon, David; Newberger, Tim; Pétron, Gabrielle; Rella, Chris; Smith, Mackenzie; Wolter, Sonja; Yacovitch, Tara I; Tans, Pieter
2015-07-07
We present estimates of regional methane (CH4) emissions from oil and natural gas operations in the Barnett Shale, Texas, using airborne atmospheric measurements. Using a mass balance approach on eight different flight days in March and October 2013, the total CH4 emissions for the region are estimated to be 76 ± 13 × 10(3) kg hr(-1) (equivalent to 0.66 ± 0.11 Tg CH4 yr(-1); 95% confidence interval (CI)). We estimate that 60 ± 11 × 10(3) kg CH4 hr(-1) (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate agrees with the U.S. Environmental Protection Agency (EPA) estimate for nationwide CH4 emissions from the natural gas sector when scaled by natural gas production, but it is higher than emissions reported by the EDGAR inventory or by industry to EPA's Greenhouse Gas Reporting Program. This study is the first to show consistency between mass balance results on so many different days and in two different seasons, enabling better quantification of the related uncertainty. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production.
Putting the Deep Biosphere and Gas Hydrates on the Map
ERIC Educational Resources Information Center
Sikorski, Janelle J.; Briggs, Brandon R.
2016-01-01
Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2013 CFR
2013-07-01
... projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs, based on historical... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.89 What is...
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2010 CFR
2010-07-01
... projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs, based on historical... RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General Required Reports § 203.89 What is...
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2012 CFR
2012-07-01
... projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs, based on historical... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.89 What is...
30 CFR 203.89 - What is in a cost report?
Code of Federal Regulations, 2014 CFR
2014-07-01
... projects. These costs cover: (1) Oil or gas tariffs from pipeline or tankerage; (2) Trunkline and tieback lines; and (3) Gas plant processing for natural gas liquids. (e) Abandonment costs, based on historical... REVENUE MANAGEMENT RELIEF OR REDUCTION IN ROYALTY RATES OCS Oil, Gas, and Sulfur General § 203.89 What is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-06
... areas in the energy industry, including coal, oil, natural gas, and nuclear energy, as well as in... higher power ratings. 12. In processing and refining crude oil into petroleum products, oil refineries... energy industry, including coal, oil, natural gas, and nuclear energy, as well as in renewable resources...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-16
... Floridian Natural Gas Amendment Project and Request for Comments on Environmental Issues The staff of the... scoping process is to focus the analysis in the EA on the important environmental issues. By this notice.../or special expertise with respect to the environmental issues related to this project to formally...
Alternative Fuels Data Center: Natural Gas Fuel Safety
intentionally added when put into the local distribution network of pipelines. This is to give it a distinctive when the fueling nozzle is being connected or disconnected during the refueling process. This is normal and should quickly dissipate when fueling has been completed. Natural gas is lighter than air, so
On numerical model of time-dependent processes in three-dimensional porous heat-releasing objects
NASA Astrophysics Data System (ADS)
Lutsenko, Nickolay A.
2016-10-01
The gas flows in the gravity field through porous objects with heat-releasing sources are investigated when the self-regulation of the flow rate of the gas passing through the porous object takes place. Such objects can appear after various natural or man-made disasters (like the exploded unit of the Chernobyl NPP). The mathematical model and the original numerical method, based on a combination of explicit and implicit finite difference schemes, are developed for investigating the time-dependent processes in 3D porous energy-releasing objects. The advantage of the numerical model is its ability to describe unsteady processes under both natural convection and forced filtration. The gas cooling of 3D porous objects with different distribution of heat sources is studied using computational experiment.
Generating Aromatics From CO2 on Mars or Natural Gas on Earth
NASA Technical Reports Server (NTRS)
Muscatello, Anthony C.; Zubrin, Robert; Berggren, Mark
2006-01-01
Methane to aromatics on Mars ( METAMARS ) is the name of a process originally intended as a means of converting Martian atmospheric carbon dioxide to aromatic hydrocarbons and oxygen, which would be used as propellants for spacecraft to return to Earth. The process has been demonstrated on Earth on a laboratory scale. A truncated version of the process could be used on Earth to convert natural gas to aromatic hydrocarbon liquids. The greater (relative to natural gas) density of aromatic hydrocarbon liquids makes it more economically feasible to ship them to distant markets. Hence, this process makes it feasible to exploit some reserves of natural gas that, heretofore, have been considered as being "stranded" too far from markets to be of economic value. In the full version of METAMARS, carbon dioxide is frozen out of the atmosphere and fed to a Sabatier reactor along with hydrogen (which, on Mars, would have been brought from Earth). In the Sabatier reactor, these feedstocks are converted to methane and water. The water is condensed and electrolyzed to oxygen (which is liquefied) and hydrogen (which is recycled to the Sabatier reactor). The methane is sent to an aromatization reactor, wherein, over a molybdenum-on-zeolite catalyst at a temperature 700 C, it is partially converted into aromatic hydrocarbons (specifically, benzene, toluene, and naphthalene) along with hydrogen. The aromatics are collected by freezing, while unreacted methane and hydrogen are separated by a membrane. Most of the hydrogen is recycled to the Sabatier reactor, while the methane and a small portion of the hydrogen are recycled to the aromatization reactor. The partial recycle of hydrogen to the aromatization reactor greatly increases the catalyst lifetime and eases its regeneration by preventing the formation of graphitic carbon, which could damage the catalyst. (Moreover, if graphitic carbon were allowed to form, it would be necessary to use oxygen to remove it.) Because the aromatics contain only one hydrogen atom per carbon atom, METAMARS produces four times as much propellant from a given amount of hydrogen as does a related process that includes the Sabatier reaction and electrolysis but not aromatization. In the terrestrial version of METAMARS, the Sabatier reactor and electrolyzer would be omitted, while the hydrogen/ methane membrane-separating membrane, the aromatization reactor, and the unreacted-gas-recycling subsystem would be retained. Natural gas would be fed directly to the aromatization reactor. Because natural gas consists of higher hydrocarbons in addition to methane, the aromatization subprocess should be more efficient than it is for methane alone.
The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs.
Zhang, Zhaobin; Li, Xiao
2016-08-23
The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network.
The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs
Zhang, Zhaobin; Li, Xiao
2016-01-01
The shearing of natural fractures is important in the permeability enhancement of shale gas reservoirs during hydraulic fracturing treatment. In this work, the shearing mechanisms of natural fractures are analyzed using a newly proposed numerical model based on the displacement discontinuities method. The fluid-rock coupling system of the model is carefully designed to calculate the shearing of fractures. Both a single fracture and a complex fracture network are used to investigate the shear mechanisms. The investigation based on a single fracture shows that the non-ignorable shearing length of a natural fracture could be formed before the natural fracture is filled by pressurized fluid. Therefore, for the hydraulic fracturing treatment of the naturally fractured shale gas reservoirs, the shear strength of shale is generally more important than the tensile strength. The fluid-rock coupling propagation processes of a complex fracture network are simulated under different crustal stress conditions and the results agree well with those of the single fracture. The propagation processes of complex fracture network show that a smaller crustal stress difference is unfavorable to the shearing of natural fractures, but is favorable to the formation of complex fracture network. PMID:28773834
Numerical modeling of underground storage system for natural gas
NASA Astrophysics Data System (ADS)
Ding, J.; Wang, S.
2017-12-01
Natural gas is an important type of base-load energy, and its supply needs to be adjusted according to different demands in different seasons. For example, since natural gas is increasingly used to replace coal for winter heating, the demand for natural gas in winter is much higher than that in other seasons. As storage systems are the essential tools for balancing seasonal supply and demand, the design and simulation of natural gas storage systems form an important research direction. In this study, a large-scale underground storage system for natural gas is simulated based on theoretical analysis and finite element modeling.It is proven that the problem of axi-symmetric Darcy porous flow of ideal gas is governed by the Boussinesq equation. In terms of the exact solution to the Boussinesq equation, the basic operating characteristics of the underground storage system is analyzed, and it is demonstrated that the propagation distance of the pore pressure is proportional to the 1/4 power of the mass flow rate and to the 1/2 power of the propagation time. This quantitative relationship can be used to guide the overall design of natural gas underground storage systems.In order to fully capture the two-way coupling between pore pressure and elastic matrix deformation, a poro-elastic finite element model for natural gas storage is developed. Based on the numerical model, the dynamic processes of gas injection, storage and extraction are simulated, and the corresponding time-dependent surface deformations are obtained. The modeling results not only provide a theoretical basis for real-time monitoring for the operating status of the underground storage system through surface deformation measurements, but also demonstrate that a year-round balance can be achieved through periodic gas injection and extraction.This work is supported by the CAS "100 talents" Program and the National Natural Science Foundation of China (41371090).
Secondary migration and leakage of methane from a major tight-gas system
NASA Astrophysics Data System (ADS)
Wood, James M.; Sanei, Hamed
2016-11-01
Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere.
Secondary migration and leakage of methane from a major tight-gas system
Wood, James M.; Sanei, Hamed
2016-01-01
Tight-gas and shale-gas systems can undergo significant depressurization during basin uplift and erosion of overburden due primarily to the natural leakage of hydrocarbon fluids. To date, geologic factors governing hydrocarbon leakage from such systems are poorly documented and understood. Here we show, in a study of produced natural gas from 1,907 petroleum wells drilled into a Triassic tight-gas system in western Canada, that hydrocarbon fluid loss is focused along distinct curvilinear pathways controlled by stratigraphic trends with superior matrix permeability and likely also structural trends with enhanced fracture permeability. Natural gas along these pathways is preferentially enriched in methane because of selective secondary migration and phase separation processes. The leakage and secondary migration of thermogenic methane to surficial strata is part of an ongoing carbon cycle in which organic carbon in the deep sedimentary basin transforms into methane, and ultimately reaches the near-surface groundwater and atmosphere. PMID:27874012
Heldenbrant, David J; Koech, Phillip K; Rainbolt, James E; Bearden, Mark D; Zheng, Feng
2014-02-18
A system and process are disclosed for selective removal and recovery of H.sub.2S from a gaseous volume, e.g., from natural gas. Anhydrous organic, sorbents chemically capture H.sub.2S gas to form hydrosulfide salts. Regeneration of the capture solvent involves addition of an anti-solvent that releases the captured H.sub.2S gas from the capture sorbent. The capture sorbent and anti-solvent are reactivated for reuse, e.g., by simple distillation.
40 CFR 60.5430 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... control vessels, bottoms receivers or knockout vessels. (3) Pressure vessels designed to operate in excess... supply natural gas to the process control device (e.g., level control, temperature control, pressure control) where the supply gas pressure is modulated by the process condition, and then flows to the valve...
Purification process for .sup.153Gd produced in natural europium targets
Johnsen, Amanda M; Soderquist, Chuck Z; McNamara, Bruce K; Risher, Darrell R
2013-04-23
An alteration of the traditional zinc/zinc-amalgam reduction procedure which eliminates both the hazardous mercury and dangerous hydrogen gas generation. In order to avoid the presence of water and hydrated protons in the working solution, which can oxidize Eu.sup.2+ and cause hydrogen gas production, a process utilizing methanol as the process solvent is described. While methanol presents some flammability hazard in a radiological hot cell, it can be better managed and is less of a flammability hazard than hydrogen gas generation.
Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.
2003-06-03
A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.
Struchtemeyer, Christopher G; Elshahed, Mostafa S
2012-07-01
Hydraulic fracturing is used to increase the permeability of shale gas formations and involves pumping large volumes of fluids into these formations. A portion of the frac fluid remains in the formation after the fracturing process is complete, which could potentially contribute to deleterious microbially induced processes in natural gas wells. Here, we report on the geochemical and microbiological properties of frac and flowback waters from two newly drilled natural gas wells in the Barnett Shale in North Central Texas. Most probable number studies showed that biocide treatments did not kill all the bacteria in the fracturing fluids. Pyrosequencing-based 16S rRNA diversity analyses indicated that the microbial communities in the flowback waters were less diverse and completely distinct from the communities in frac waters. These differences in frac and flowback water communities appeared to reflect changes in the geochemistry of fracturing fluids that occurred during the frac process. The flowback communities also appeared well adapted to survive biocide treatments and the anoxic conditions and high temperatures encountered in the Barnett Shale. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Milheim, L.E.; Slonecker, E.T.; Roig-Silva, C.M.; Malizia, A.R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Lackawanna County and Wayne County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Armstrong County and Indiana County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Milheim, L.E.; Slonecker, E.T.; Roig-Silva, C.M.; Malizia, A.R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Somerset County and Westmoreland County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Slonecker, Terry E.; Milheim, Lesley E.; Roig-Silva, Coral M.; Malizia, Alexander R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Sullivan County and Wyoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.; Gillenwater, B.H.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Fayette County and Lycoming County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Roig-Silva, Coral M.; Slonecker, E. Terry; Milheim, Lesley E.; Malizia, Alexander R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Beaver County and Butler County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
Synthetic natural gas in California: When and why. [from coal
NASA Technical Reports Server (NTRS)
Wood, W. B.
1978-01-01
A coal gasification plant planned for northwestern New Mexico to produce 250 MMCFD of pipeline quality gas (SNG) using the German Lurgi process is discussed. The SNG will be commingled with natural gas in existing pipelines for delivery to southern California and the Midwest. Cost of the plant is figured at more than $1.4 billion in January 1978 dollars with a current inflation rate of $255,000 for each day of delay. Plant start-up is now scheduled for 1984.
NASA Astrophysics Data System (ADS)
Kern, J.
2015-12-01
Electric power utilities are increasingly cognizant of the risks water scarcity and rising temperatures pose for generators that use water as a "fuel" (i.e., hydroelectric dams) and generators that use water for cooling (i.e., coal, natural gas and nuclear). At the same time, utilities are under increasing market and policy pressure to retire coal-fired generation, the primary source of carbon emissions in the electric power sector. Due to falling costs of renewables and low natural gas prices, retiring coal fired generation is mostly being replaced with combined cycle natural gas, wind and solar. An immediate benefit of this shift has been a reduction in water withdrawals per megawatt-hour and reduced thermal impacts in surface water systems. In the process of retiring older coal-fired power plants, many of which use water intensive open-loop cooling systems, utilities are making their systems less vulnerable to water scarcity and higher water temperatures. However, it is not clear whether financial risks from water scarcity will decrease as result of this change. In particular, the choice to replace coal with natural gas combined cycle plants leaves utilities financially exposed to natural gas prices, especially during droughts when natural gas generation is used to replace lost hydropower production. Utility-scale solar, while more expensive than natural gas combined cycle generation, gives utilities an opportunity to simultaneously reduce their exposure to water scarcity and fuel price risk. In this study, we assess how switching from coal to natural gas and solar changes a utility's financial exposure to drought. We model impacts on retail prices and a utility's rate of return under current conditions and non-stationarity in natural gas prices and temperature and streamflows to determine whether increased exposure to natural gas prices offsets corresponding gains in water use efficiency. We also evaluate whether utility scale solar is an effective hedge against the combined effects of drought and natural gas price volatility—one that increases costs on average but reduces exposure to large drought-related losses.
Natural oscillations of a gas in an elongated combustion chamber
NASA Astrophysics Data System (ADS)
Nesterov, S. V.; Akulenko, L. D.; Baydulov, V. G.
2017-02-01
For the analysis of the frequencies and shapes of the natural oscillations of a gas in an elongated rectilinear combustion chamber, this chamber can be treated as a kind of an organ pipe that has the following specific features: 1. the chamber has an inlet and outlet nozzles; 2. a gas mixture burns in the combustion chamber; 3. the combustion materials flow out from the outlet nozzle; 4. the gas flows in such a way that its velocity in the larger part (closer to the outlet nozzle) of the chamber exceeds the speed of sound (Mach number M > 1). There are only separate domains (one or several), where M < 1. The excitation of the natural oscillations of the gas and an increase in the amplitude of such oscillations can lead to instability of the combustion process [1].
Efficient electrochemical refrigeration power plant using natural gas with ∼100% CO2 capture
NASA Astrophysics Data System (ADS)
Al-musleh, Easa I.; Mallapragada, Dharik S.; Agrawal, Rakesh
2015-01-01
We propose an efficient Natural Gas (NG) based Solid Oxide Fuel Cell (SOFC) power plant equipped with ∼100% CO2 capture. The power plant uses a unique refrigeration based process to capture and liquefy CO2 from the SOFC exhaust. The capture of CO2 is carried out via condensation and purification using two rectifying columns operating at different pressures. The uncondensed gas mixture, comprising of relatively high purity unconverted fuel, is recycled to the SOFC and found to boost the power generation of the SOFC by 22%, when compared to a stand alone SOFC. If Liquefied Natural Gas (LNG) is available at the plant gate, then the refrigeration available from its evaporation is used for CO2 Capture and Liquefaction (CO2CL). If NG is utilized, then a Mixed Refrigerant (MR) vapor compression cycle is utilized for CO2CL. Alternatively, the necessary refrigeration can be supplied by evaporating the captured liquid CO2 at a lower pressure, which is then compressed to supercritical pressures for pipeline transportation. From rigorous simulations, the power generation efficiency of the proposed processes is found to be 70-76% based on lower heating value (LHV). The benefit of the proposed processes is evident when the efficiency of 73% for a conventional SOFC-Gas turbine power plant without CO2 capture is compared with an equivalent efficiency of 71.2% for the proposed process with CO2CL.
New Methodology for Natural Gas Production Estimates
2010-01-01
A new methodology is implemented with the monthly natural gas production estimates from the EIA-914 survey this month. The estimates, to be released April 29, 2010, include revisions for all of 2009. The fundamental changes in the new process include the timeliness of the historical data used for estimation and the frequency of sample updates, both of which are improved.
Burruss, Robert A.; Ryder, Robert T.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
The geochemical processes that control the distribution of hydrocarbons in the regional accumulation of natural gas and crude oil in reservoirs of Early Silurian age in the central Appalachian basin are not well understood. Gas and oil samples from 14 wells along a down-dip transect through the accumulation in northeastern Ohio and northwestern Pennsylvania were analyzed for molecular and stable isotopic compositions to look for evidence of hydrocarbon source, thermal maturation, migration, and alteration parameters. The correlation of carbon and hydrogen stable isotopic composition of methane with thermal maturation indicates that the deepest gases are more thermally mature than independent estimates of thermal maturity of the reservoir horizon based on the conodont alteration index. This correlation indicates that the natural gas charge in the deepest parts of the regional accumulation sampled in this study originated in deeper parts of the Appalachian basin and migrated into place. Other processes, including mixing and late-stage alteration of hydrocarbons, may also impact the observed compositions of natural gases and crude oils.
Enhance gas processing with reflux heat-exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, A.J.
1994-05-01
Despite recent successes of membrane-based separations in low-throughput applications, cryogenic processing remains the best route for separating and purifying gas mixtures, especially when high recoveries are required. Now conventional units are being modified to yield even higher recoveries at lower costs. Throughout the chemical process industries (CPI), this is being accomplished with reflux or plate-fin exchangers, especially for processing of natural gas, and offgases from refineries and petrochemical facilities. The concept of utilizing a heat exchanger as a multi stage rectification device is not new. However, only in the last fifteen years or so has accurate design of reflux exchangersmore » become feasible. Also helpful have been the availability of prediction techniques for high-quality thermodynamic data, and process simulators that can rapidly solve the complex material, equilibrium and enthalpy relationships involved in simulating the performance of reflux exchangers. Four projects that show the value and effectiveness of reflux exchangers are discussed below in more detail. The first example considers hydrogen recovery from demethanizer overheads; the second highlights a low energy process for NGL and LPG recovery from natural gas. The third is a simple process for recovery of ethylene from fluid-catalytic cracker (FCC) offgas; and the fourth is a similar process for olefin recovery from dehydrogenation-reactor offgas.« less
NASA Astrophysics Data System (ADS)
Chebotarev, Victor; Koroleva, Alla; Pirozhnikova, Anastasia
2017-10-01
Use of recuperator in heat producing plants for utilization of natural gas combustion products allows to achieve the saving of gas fuel and also provides for environmental sanitation. Decrease of the volumes of natural gas combustion due to utilization of heat provides not only for reduction of harmful agents in the combustion products discharged into the atmosphere, but also creates conditions for increase of energy saving in heating processes of heat producing plants due to air overheating in the recuperator. Grapho-analytical method of determination of energy saving and reduction of discharges of combustion products into the atmosphere is represented in the article. Multifunctional diagram is developed, allowing to determine simultaneously savings from reduction of volumes of natural gas combusted and from reduction of amounts of harmful agents in the combustion products discharged into the atmosphere. Calculation of natural gas economy for heat producing plant taking into consideration certain capacity is carried out.
Biogas desulfurization and biogas upgrading using a hybrid membrane system--modeling study.
Makaruk, A; Miltner, M; Harasek, M
2013-01-01
Membrane gas permeation using glassy membranes proved to be a suitable method for biogas upgrading and natural gas substitute production on account of low energy consumption and high compactness. Glassy membranes are very effective in the separation of bulk carbon dioxide and water from a methane-containing stream. However, the content of hydrogen sulfide can be lowered only partially. This work employs process modeling based upon the finite difference method to evaluate a hybrid membrane system built of a combination of rubbery and glassy membranes. The former are responsible for the separation of hydrogen sulfide and the latter separate carbon dioxide to produce standard-conform natural gas substitute. The evaluation focuses on the most critical upgrading parameters like achievable gas purity, methane recovery and specific energy consumption. The obtained results indicate that the evaluated hybrid membrane configuration is a potentially efficient system for the biogas processing tasks that do not require high methane recoveries, and allows effective desulfurization for medium and high hydrogen sulfide concentrations without additional process steps.
The absorption of energetic electrons by molecular hydrogen gas
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Victor, G. A.; Dalgarno, A.
1975-01-01
The processes by which energetic electrons lose energy in a weakly ionized gas of molecular hydrogen are analyzed, and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization, and heating efficiencies are computed for electrons with energies up to 100 eV absorbed in a gas with fractional ionizations up to 0.01, and the mean energy per pair of neutral hydrogen atoms is calculated.
Electron energy deposition in N2 gas
NASA Technical Reports Server (NTRS)
Fox, J. L.; Victor, G. A.
1988-01-01
The processes by which energetic electrons lose energy in a weakly ionized gas of molecular nitrogen are analyzed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization, dissociation and heating efficiencies are computed for energies up to 200 eV absorbed in a gas with fractional ionizations varying from 10(-6) to 10(-2). Individual vibrational excitations up to the seventh vibrational level are presented.
Modeling uncertainty in producing natural gas from tight sands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chermak, J.M.; Dahl, C.A.; Patrick, R.H
1995-12-31
Since accurate geologic, petroleum engineering, and economic information are essential ingredients in making profitable production decisions for natural gas, we combine these ingredients in a dynamic framework to model natural gas reservoir production decisions. We begin with the certainty case before proceeding to consider how uncertainty might be incorporated in the decision process. Our production model uses dynamic optimal control to combine economic information with geological constraints to develop optimal production decisions. To incorporate uncertainty into the model, we develop probability distributions on geologic properties for the population of tight gas sand wells and perform a Monte Carlo study tomore » select a sample of wells. Geological production factors, completion factors, and financial information are combined into the hybrid economic-petroleum reservoir engineering model to determine the optimal production profile, initial gas stock, and net present value (NPV) for an individual well. To model the probability of the production abandonment decision, the NPV data is converted to a binary dependent variable. A logit model is used to model this decision as a function of the above geological and economic data to give probability relationships. Additional ways to incorporate uncertainty into the decision process include confidence intervals and utility theory.« less
Maimoun, Mousa; Madani, Kaveh; Reinhart, Debra
2016-04-15
Historically, the U.S. waste collection fleet was dominated by diesel-fueled waste collection vehicles (WCVs); the growing need for sustainable waste collection has urged decision makers to incorporate economically efficient alternative fuels, while mitigating environmental impacts. The pros and cons of alternative fuels complicate the decisions making process, calling for a comprehensive study that assesses the multiple factors involved. Multi-criteria decision analysis (MCDA) methods allow decision makers to select the best alternatives with respect to selection criteria. In this study, two MCDA methods, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) and Simple Additive Weighting (SAW), were used to rank fuel alternatives for the U.S. waste collection industry with respect to a multi-level environmental and financial decision matrix. The environmental criteria consisted of life-cycle emissions, tail-pipe emissions, water footprint (WFP), and power density, while the financial criteria comprised of vehicle cost, fuel price, fuel price stability, and fueling station availability. The overall analysis showed that conventional diesel is still the best option, followed by hydraulic-hybrid WCVs, landfill gas (LFG) sourced natural gas, fossil natural gas, and biodiesel. The elimination of the WFP and power density criteria from the environmental criteria ranked biodiesel 100 (BD100) as an environmentally better alternative compared to other fossil fuels (diesel and natural gas). This result showed that considering the WFP and power density as environmental criteria can make a difference in the decision process. The elimination of the fueling station and fuel price stability criteria from the decision matrix ranked fossil natural gas second after LFG-sourced natural gas. This scenario was found to represent the status quo of the waste collection industry. A sensitivity analysis for the status quo scenario showed the overall ranking of diesel and fossil natural gas to be more sensitive to changing fuel prices as compared to other alternatives. Copyright © 2016 Elsevier B.V. All rights reserved.
Milheim, L. E.; Slonecker, E. T.; Roig-Silva, C. M.; Winters, S. G.; Ballew, J. R.
2014-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing hydrocarbon-rich geologic formations, have led to an intense effort to find and extract unconventional natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique for extraction, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Cameron, Clarion, Elk, Forest, Jefferson, McKean, Potter, and Warren Counties in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication. In this region, natural gas and oil development disturbed approximately 5,255 hectares (ha) (conventional, 2,400 ha; Marcellus, 357 ha; and oil, 1,883 ha) of land of which 3,507 ha were forested land and 610 ha were agricultural land. Eighty percent of that total disturbance was from conventional natural gas and oil development.
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Winters, S.G.
2014-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Conventional natural gas wells, which sometimes use the same technique, are commonly located in the same general area as the Marcellus Shale and are frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Bedford, Blair, Cambria, Centre, Clearfield, Clinton, Columbia, Huntingdon, and Luzerne Counties in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication. In this region, natural gas development disturbed approximately 943 hectares of land in which forest sustained three times the amount of disturbance as agricultural land. One-quarter of that total disturbance was from Marcellus natural gas development.
Energy recovery with turboexpander processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holm, J.
1985-07-01
Although the primary function of turboexpanders has been to provide efficient, low-temperature refrigeration, the energy thus extracted has also been an important additional feature. Today, turboexpanders are proven reliable and used widely in the following applications discussed in this article: industrial gases; natural gas (NG) processing; production of liquefied natural gas (LNG); flashing hydrocarbon liquids; NG pressure letdown energy recovery; oilfield cogeneration; and recovery of energy from waste heat. Turboexpander applications for energy conservation resulted because available turboexpanders have the required high-performance capabilities and reliability. At the same time, the development of these energy conservation practices and processes helped furthermore » improve turboexpanders.« less
Reported health conditions in animals residing near natural gas wells in southwestern Pennsylvania.
Slizovskiy, I B; Conti, L A; Trufan, S J; Reif, J S; Lamers, V T; Stowe, M H; Dziura, J; Rabinowitz, P M
2015-01-01
Natural gas extraction activities, including the use of horizontal drilling and hydraulic fracturing, may pose potential health risks to both human and animal populations in close proximity to sites of extraction activity. Because animals may have increased exposure to contaminated water and air as well as increased susceptibility to contaminant exposures compared to nearby humans, animal disease events in communities living near natural gas extraction may provide "sentinel" information useful for human health risk assessment. Community health evaluations as well as health impact assessments (HIAs) of natural gas exploration should therefore consider the inclusion of animal health metrics in their assessment process. We report on a community environmental health survey conducted in an area of active natural gas drilling, which included the collection of health data on 2452 companion and backyard animals residing in 157 randomly-selected households of Washington County, Pennsylvania (USA). There were a total of 127 reported health conditions, most commonly among dogs. When reports from all animals were considered, there were no significant associations between reported health condition and household proximity to natural gas wells. When dogs were analyzed separately, we found an elevated risk of 'any' reported health condition in households less than 1km from the nearest gas well (OR = 3.2, 95% CI 1.07-9.7), with dermal conditions being the most common of canine disorders. While these results should be considered hypothesis generating and preliminary, they suggest value in ongoing assessments of pet dogs as well as other animals to better elucidate the health impacts of natural gas extraction on nearby communities.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Pumps in light liquid service, valves in gas/vapor and light liquid service, and pressure relief devices....482-7(a), and paragraph (b)(1) of this section. (e) Pumps in light liquid service, valves in gas/vapor... Natural Gas Processing Plants. § 60.633 Exceptions. (a) Each owner or operator subject to the provisions...
Segmentation of Natural Gas Customers in Industrial Sector Using Self-Organizing Map (SOM) Method
NASA Astrophysics Data System (ADS)
Masbar Rus, A. M.; Pramudita, R.; Surjandari, I.
2018-03-01
The usage of the natural gas which is non-renewable energy, needs to be more efficient. Therefore, customer segmentation becomes necessary to set up a marketing strategy to be right on target or to determine an appropriate fee. This research was conducted at PT PGN using one of data mining method, i.e. Self-Organizing Map (SOM). The clustering process is based on the characteristic of its customers as a reference to create the customer segmentation of natural gas customers. The input variables of this research are variable of area, type of customer, the industrial sector, the average usage, standard deviation of the usage, and the total deviation. As a result, 37 cluster and 9 segment from 838 customer data are formed. These 9 segments then employed to illustrate the general characteristic of the natural gas customer of PT PGN.
Evaluation of phase separator number in hydrodesulfurization (HDS) unit
NASA Astrophysics Data System (ADS)
Jayanti, A. D.; Indarto, A.
2016-11-01
The removal process of acid gases such as H2S in natural gas processing industry is required in order to meet sales gas specification. Hydrodesulfurization (HDS)is one of the processes in the refinery that is dedicated to reduce sulphur.InHDS unit, phase separator plays important role to remove H2S from hydrocarbons, operated at a certain pressure and temperature. Optimization of the number of separator performed on the system is then evaluated to understand the performance and economics. From the evaluation, it shows that all systems were able to meet the specifications of H2S in the desired product. However, one separator system resulted the highest capital and operational costs. The process of H2S removal with two separator systems showed the best performance in terms of both energy efficiency with the lowest capital and operating cost. The two separator system is then recommended as a reference in the HDS unit to process the removal of H2S from natural gas.
Production of Substitute Natural Gas from Coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrew Lucero
2009-01-31
The goal of this research program was to develop and demonstrate a novel gasification technology to produce substitute natural gas (SNG) from coal. The technology relies on a continuous sequential processing method that differs substantially from the historic methanation or hydro-gasification processing technologies. The thermo-chemistry relies on all the same reactions, but the processing sequences are different. The proposed concept is appropriate for western sub-bituminous coals, which tend to be composed of about half fixed carbon and about half volatile matter (dry ash-free basis). In the most general terms the process requires four steps (1) separating the fixed carbon frommore » the volatile matter (pyrolysis); (2) converting the volatile fraction into syngas (reforming); (3) reacting the syngas with heated carbon to make methane-rich fuel gas (methanation and hydro-gasification); and (4) generating process heat by combusting residual char (combustion). A key feature of this technology is that no oxygen plant is needed for char combustion.« less
Generation of ethylene tracer by noncatalytic pyrolysis of natural gas at elevated pressure
Lu, Y.; Chen, S.; Rostam-Abadi, M.; Ruch, R.; Coleman, D.; Benson, L.J.
2005-01-01
There is a critical need within the pipeline gas industry for an inexpensive and reliable technology to generate an identification tag or tracer that can be added to pipeline gas to identify gas that may escape and improve the deliverability and management of gas in underground storage fields. Ethylene is an ideal tracer, because it does not exist naturally in the pipeline gas, and because its physical properties are similar to the pipeline gas components. A pyrolysis process, known as the Tragen process, has been developed to continuously convert the ???2%-4% ethane component present in pipeline gas into ethylene at common pipeline pressures of 800 psi. In our studies of the Tragen process, pyrolysis without steam addition achieved a maximum ethylene yield of 28%-35% at a temperature range of 700-775 ??C, corresponding to an ethylene concentration of 4600-5800 ppm in the product gas. Coke deposition was determined to occur at a significant rate in the pyrolysis reactor without steam addition. The ?? 13C isotopic analysis of gas components showed a ?? 13C value of ethylene similar to ethane in the pipeline gas, indicating that most of the ethylene was generated from decomposition of the ethane in the raw gas. However, ?? 13C isotopic analysis of the deposited coke showed that coke was primarily produced from methane, rather than from ethane or other heavier hydrocarbons. No coke deposition was observed with the addition of steam at concentrations of > 20% by volume. The dilution with steam also improved the ethylene yield. ?? 2005 American Chemical Society.
Venezuela natural gas for vehicles project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsicobetre, D.; Molero, T.
1998-12-31
The Natural Gas for Vehicles (NGV) Project in Venezuela describes the development and growth of the NGV project in the country. Venezuela is a prolific oil producer with advanced exploration, production, refining and solid marketing infrastructure. Gas production is 5.2 Bscfd. The Venezuelan Government and the oil state owned company Petroleos de Venezuela (PDVSA), pursued the opportunity of using natural gas for vehicles based on the huge amounts of gas reserves present and produced every day associated with the oil production. A nationwide gas pipeline network crosses the country from south to west reaching the most important cities and servingmore » domestic and industrial purposes but there are no facilities to process or export liquefied natural gas. NGV has been introduced gradually in Venezuela over the last eight years by PDVSA. One hundred forty-five NGV stations have been installed and another 25 are under construction. Work done comprises displacement or relocation of existing gasoline equipment, civil work, installation and commissioning of equipment. The acceptance and usage of the NGV system is reflected in the more than 17,000 vehicles that have been converted to date using the equivalent of 2,000 bbl oil/day.« less
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbingmore » liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less
Quantifying methane emissions from natural gas production in north-eastern Pennsylvania
NASA Astrophysics Data System (ADS)
Barkley, Zachary R.; Lauvaux, Thomas; Davis, Kenneth J.; Deng, Aijun; Miles, Natasha L.; Richardson, Scott J.; Cao, Yanni; Sweeney, Colm; Karion, Anna; Smith, MacKenzie; Kort, Eric A.; Schwietzke, Stefan; Murphy, Thomas; Cervone, Guido; Martins, Douglas; Maasakkers, Joannes D.
2017-11-01
Natural gas infrastructure releases methane (CH4), a potent greenhouse gas, into the atmosphere. The estimated emission rate associated with the production and transportation of natural gas is uncertain, hindering our understanding of its greenhouse footprint. This study presents a new application of inverse methodology for estimating regional emission rates from natural gas production and gathering facilities in north-eastern Pennsylvania. An inventory of CH4 emissions was compiled for major sources in Pennsylvania. This inventory served as input emission data for the Weather Research and Forecasting model with chemistry enabled (WRF-Chem), and atmospheric CH4 mole fraction fields were generated at 3 km resolution. Simulated atmospheric CH4 enhancements from WRF-Chem were compared to observations obtained from a 3-week flight campaign in May 2015. Modelled enhancements from sources not associated with upstream natural gas processes were assumed constant and known and therefore removed from the optimization procedure, creating a set of observed enhancements from natural gas only. Simulated emission rates from unconventional production were then adjusted to minimize the mismatch between aircraft observations and model-simulated mole fractions for 10 flights. To evaluate the method, an aircraft mass balance calculation was performed for four flights where conditions permitted its use. Using the model optimization approach, the weighted mean emission rate from unconventional natural gas production and gathering facilities in north-eastern Pennsylvania approach is found to be 0.36 % of total gas production, with a 2σ confidence interval between 0.27 and 0.45 % of production. Similarly, the mean emission estimates using the aircraft mass balance approach are calculated to be 0.40 % of regional natural gas production, with a 2σ confidence interval between 0.08 and 0.72 % of production. These emission rates as a percent of production are lower than rates found in any other basin using a top-down methodology, and may be indicative of some characteristics of the basin that make sources from the north-eastern Marcellus region unique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.
1997-09-01
In the oxidative conversion of natural gas to ethylene/lower olefins over SrO (17.3 wt.%)/La{sub 2}O{sub 3} (17.9 wt.%)/SA5205 catalyst diluted with inert solid particles (inerts/catalyst(w/w) = 2.0) in the presence of limited O{sub 2}, the exothermic oxidative conversion reactions of natural gas are coupled with the endothermic C{sub 2+} hydrocarbon thermal cracking reactions for avoiding hot spot formation and eliminating heat removal problems. Because of this, the process is operated in the most energy-efficient and safe manner. The influence of various process variables (viz. temperature, NG/O{sub 2} and steam/NG ratios in feed, and space velocity) on the conversion of carbonmore » and also of the individual hydrocarbons in natural gas, the selectivity for C{sub 2}-C{sub 4} olefins, and also on the net heat of reactions in the process has been thoroughly investigated. By carrying out the process at 800--850 C in the presence of steam (H{sub 2}O/NG {le} 0.2) and using limited O{sub 2} in the feed (NG/O{sub 2} = 12--18), high selectivity for ethylene (about 60%) or C{sub 2}-C{sub 4} olefins (above 80%) at the carbon conversion (>15%) of practical interest could be achieved at high space velocity ({ge}34,000 cm{sup 3}/g (catalyst) h), requiring no external energy and also without forming coke or tar-like products. The net heat of reactions can be controlled and the process can be made mildly exothermic or even close to thermoneutral by manipulating the O{sub 2} concentration in the feed.« less
New challenges and opportunities for industrial biotechnology.
Chen, Guo-Qiang
2012-08-20
Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al.
Hendrick, Margaret F; Ackley, Robert; Sanaie-Movahed, Bahare; Tang, Xiaojing; Phillips, Nathan G
2016-06-01
Fugitive emissions from natural gas systems are the largest anthropogenic source of the greenhouse gas methane (CH4) in the U.S. and contribute to the risk of explosions in urban environments. Here, we report on a survey of CH4 emissions from 100 natural gas leaks in cast iron distribution mains in Metro Boston, MA. Direct measures of CH4 flux from individual leaks ranged from 4.0 - 2.3 × 10(4) g CH4•day(-1). The distribution of leak size is positively skewed, with 7% of leaks contributing 50% of total CH4 emissions measured. We identify parallels in the skewed distribution of leak size found in downstream systems with midstream and upstream stages of the gas process chain. Fixing 'superemitter' leaks will disproportionately stem greenhouse gas emissions. Fifteen percent of leaks surveyed qualified as potentially explosive (Grade 1), and we found no difference in CH4 flux between Grade 1 leaks and all remaining leaks surveyed (p = 0.24). All leaks must be addressed, as even small leaks cannot be disregarded as 'safely leaking.' Key methodological impediments to quantifying and addressing the impacts of leaking natural gas distribution infrastructure involve inconsistencies in the manner in which gas leaks are defined, detected, and classified. To address this need, we propose a two-part leak classification system that reflects both the safety and climatic impacts of natural gas leaks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hill, Eric A.; Chrisler, William B.; Beliaev, Alex S.; ...
2017-01-03
A new co-cultivation technology is presented that converts greenhouse gasses, CH 4 and CO 2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O 2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O 2 depleted reactor and does not require CH 4/O 2 mixturesmore » to be fed into the system, thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Eric A.; Chrisler, William B.; Beliaev, Alex S.
A new co-cultivation technology is presented that converts greenhouse gasses, CH 4 and CO 2, into microbial biomass. The methanotrophic bacterium, Methylomicrobium alcaliphilum 20z, was coupled to a cyanobacterium, Synechococcus PCC 7002 via oxygenic photosynthesis. The system exhibited robust growth on diverse gas mixtures ranging from biogas to those representative of a natural gas feedstock. A continuous processes was developed on a synthetic natural gas feed that achieved steady-state by imposing coupled light and O 2 limitations on the cyanobacterium and methanotroph, respectively. Continuous co-cultivation resulted in an O 2 depleted reactor and does not require CH 4/O 2 mixturesmore » to be fed into the system, thereby enhancing process safety considerations over traditional methanotroph mono-culture platforms. This co-culture technology is scalable with respect to its ability to utilize different gas streams and its biological components constructed from model bacteria that can be metabolically customized to produce a range of biofuels and bioproducts.« less
Method of generating hydrocarbon reagents from diesel, natural gas and other logistical fuels
Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA
2010-06-29
The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.
Method of Generating Hydrocarbon Reagents from Diesel, Natural Gas and Other Logistical Fuels
Herling, Darrell R [Richland, WA; Aardahl, Chris L [Richland, WA; Rozmiarek, Robert T [Middleton, WI; Rappe, Kenneth G [Richland, WA; Wang, Yong [Richland, WA; Holladay, Jamelyn D [Kennewick, WA
2008-10-14
The present invention provides a process for producing reagents for a chemical reaction by introducing a fuel containing hydrocarbons into a flash distillation process wherein the fuel is separated into a first component having a lower average molecular weight and a second component having a higher average molecular weight. The first component is then reformed to produce synthesis gas wherein the synthesis gas is reacted catalytically to produce the desire reagent.
2013-05-15
rates, but conservatively, two weeks to several months), firm delivery contracts (which are based on the capacity of the transmission pipelines and...gas is not guaranteed as it is not part of the capacity planning process). 0 20 40 60 80 100 120 0 2 4 6 8 10 12 D ur at io n of st or ag e su pp...military installations. For example, Tinker AFB, Robins AFB, and MCAGCC Twentynine Palms all have natural gas-fired generation or cogeneration on site
Technical Parameters Modeling of a Gas Probe Foaming Using an Active Experimental Type Research
NASA Astrophysics Data System (ADS)
Tîtu, A. M.; Sandu, A. V.; Pop, A. B.; Ceocea, C.; Tîtu, S.
2018-06-01
The present paper deals with a current and complex topic, namely - a technical problem solving regarding the modeling and then optimization of some technical parameters related to the natural gas extraction process. The study subject is to optimize the gas probe sputtering using experimental research methods and data processing by regular probe intervention with different sputtering agents. This procedure makes that the hydrostatic pressure to be reduced by the foam formation from the water deposit and the scrubbing agent which can be removed from the surface by the produced gas flow. The probe production data was analyzed and the so-called candidate for the research itself emerged. This is an extremely complex study and it was carried out on the field works, finding that due to the severe gas field depletion the wells flow decreases and the start of their loading with deposit water, was registered. It was required the regular wells foaming, to optimize the daily production flow and the disposal of the wellbore accumulated water. In order to analyze the process of natural gas production, the factorial experiment and other methods were used. The reason of this choice is that the method can offer very good research results with a small number of experimental data. Finally, through this study the extraction process problems were identified by analyzing and optimizing the technical parameters, which led to a quality improvement of the extraction process.
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranesmore » provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues.« less
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment continues. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide muchmore » greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2013 CFR
2013-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
A novel ethanol gas sensor-ZnS/ cyclohexylamine hybrid nanowires.
Xu, Lin; Song, Hongwei; Zhang, Tong; Fan, Huitao; Fan, Libo; Wang, Yu; Dong, Biao; Bai, Xue
2011-03-01
We fabricated a novel ethanol gas sensor based on organic-inorganic ZnS/cyclohexylamine (CHA) nanowires via a solvothermal route. The sensor exhibited significantly better performance with response time of approximately 0.6 s and recovery time of approximately 10 s even under a low ethanol concentration and the high surface area, small nanofiber diameter, and hybrid nature made the ZnS/CHA nanowire gas sensor have high sensitivity to ethanol gas at a lower operating current of 160 mA. Moreover, the gas sensing mechanism was proposed on the basis of the two simultaneous steps to explain the adsorbing process due to the hybrid nature. This work indicates that the ZnS/CHA hybrid can be a novel candidate for the ethanol gas sensor with high performance.
Pacheco, Diana M; Bergerson, Joule A; Alvarez-Majmutov, Anton; Chen, Jinwen; MacLean, Heather L
2016-12-20
A life cycle-based model, OSTUM (Oil Sands Technologies for Upgrading Model), which evaluates the energy intensity and greenhouse gas (GHG) emissions of current oil sands upgrading technologies, is developed. Upgrading converts oil sands bitumen into high quality synthetic crude oil (SCO), a refinery feedstock. OSTUM's novel attributes include the following: the breadth of technologies and upgrading operations options that can be analyzed, energy intensity and GHG emissions being estimated at the process unit level, it not being dependent on a proprietary process simulator, and use of publicly available data. OSTUM is applied to a hypothetical, but realistic, upgrading operation based on delayed coking, the most common upgrading technology, resulting in emissions of 328 kg CO 2 e/m 3 SCO. The primary contributor to upgrading emissions (45%) is the use of natural gas for hydrogen production through steam methane reforming, followed by the use of natural gas as fuel in the rest of the process units' heaters (39%). OSTUM's results are in agreement with those of a process simulation model developed by CanmetENERGY, other literature, and confidential data of a commercial upgrading operation. For the application of the model, emissions are found to be most sensitive to the amount of natural gas utilized as feedstock by the steam methane reformer. OSTUM is capable of evaluating the impact of different technologies, feedstock qualities, operating conditions, and fuel mixes on upgrading emissions, and its life cycle perspective allows easy incorporation of results into well-to-wheel analyses.
High-efficiency power production from natural gas with carbon capture
NASA Astrophysics Data System (ADS)
Adams, Thomas A.; Barton, Paul I.
A unique electricity generation process uses natural gas and solid oxide fuel cells at high electrical efficiency (74%HHV) and zero atmospheric emissions. The process contains a steam reformer heat-integrated with the fuel cells to provide the heat necessary for reforming. The fuel cells are powered with H 2 and avoid carbon deposition issues. 100% CO 2 capture is achieved downstream of the fuel cells with very little energy penalty using a multi-stage flash cascade process, where high-purity water is produced as a side product. Alternative reforming techniques such as CO 2 reforming, autothermal reforming, and partial oxidation are considered. The capital and energy costs of the proposed process are considered to determine the levelized cost of electricity, which is low when compared to other similar carbon capture-enabled processes.
A method to predict equilibrium conditions of gas hydrate formation in porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, M.A.; Pooladi-Darvish, M.; Bishnoi, P.R.
1999-06-01
In the petroleum industry, it is desirable to avoid the formation of gas hydrates. When gas hydrates form, they tend to agglomerate and block pipelines and process equipment. However, naturally occurring gas hydrates that form in the permafrost region or in deep oceans represent a vast untouched natural gas reserve. Although the exact amount of gas in the hydrate form is not known, it is believed to be comparable to the known amount of gas in the free state. Numerous methods for the recovery of natural gas from hydrate fields have been proposed. These techniques include thermal decomposition, depressurization, andmore » chemical injection. To fully exploit hydrate reserves, it will be necessary to know the decomposition/formation conditions of the gas hydrate in porous media. A predictive model has been developed to determine the incipient hydrate formation conditions in porous media. The only additional information that is needed to determine the incipient hydrate formation conditions is the pore radius, surface energy per unit area, and wetting angle. It was found that the model performed well in predicting the experimental data of Handa and Stupin.« less
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Fisher, G.B.
2012-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in the area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is commonly located in the same general area as the Marcellus Shale and is frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Greene County and Tioga County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics are also used to quantify these changes and are included in this publication.
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.; Marr, D.A.; Fisher, G.B.
2012-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in the area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is often located in the same general area as the Marcellus Shale and is frequently developed in clusters across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Bradford County and Washington County, Pennsylvania, between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is used to quantify these changes and are included in this publication.
Slonecker, E.T.; Milheim, L.E.; Roig-Silva, C.M.; Malizia, A.R.
2013-01-01
Increased demands for cleaner burning energy, coupled with the relatively recent technological advances in accessing unconventional hydrocarbon-rich geologic formations, have led to an intense effort to find and extract natural gas from various underground sources around the country. One of these sources, the Marcellus Shale, located in the Allegheny Plateau, is currently undergoing extensive drilling and production. The technology used to extract gas in the Marcellus Shale is known as hydraulic fracturing and has garnered much attention because of its use of large amounts of fresh water, its use of proprietary fluids for the hydraulic-fracturing process, its potential to release contaminants into the environment, and its potential effect on water resources. Nonetheless, development of natural gas extraction wells in the Marcellus Shale is only part of the overall natural gas story in this area of Pennsylvania. Coalbed methane, which is sometimes extracted using the same technique, is commonly located in the same general area as the Marcellus Shale and is frequently developed in clusters of wells across the landscape. The combined effects of these two natural gas extraction methods create potentially serious patterns of disturbance on the landscape. This document quantifies the landscape changes and consequences of natural gas extraction for Allegheny County and Susquehanna County in Pennsylvania between 2004 and 2010. Patterns of landscape disturbance related to natural gas extraction activities were collected and digitized using National Agriculture Imagery Program (NAIP) imagery for 2004, 2005/2006, 2008, and 2010. The disturbance patterns were then used to measure changes in land cover and land use using the National Land Cover Database (NLCD) of 2001. A series of landscape metrics is also used to quantify these changes and is included in this publication.
NASA Astrophysics Data System (ADS)
Wunch, D.; Toon, G. C.; Hedelius, J.; Vizenor, N.; Roehl, C. M.; Saad, K.; Blavier, J. F.; Blake, D. R.; Wennberg, P. O.
2016-12-01
In California's South Coast Air Basin (SoCAB), the methane emissions inferred from atmospheric measurements exceed estimates based on inventories. We seek to provide insight into the sources of the discrepancy with two records of atmospheric trace gas total column abundances in the SoCAB: one temporally sparse dataset that began in the late 1980s, and a temporally dense dataset that began in 2012. We use their measurements of ethane and methane to partition the sources of the excess methane. The early few years of the sparse record show a rapid decline in ethane emissions at a much faster rate than decreasing vehicle exhaust or natural gas and crude oil production can explain. Between 2010 and 2015, ethane emissions have grown gradually, which is in contrast to the steady production of natural gas liquids over that time. Since 2012, ethane to methane ratios in the natural gas withdrawn from a storage facility within the SoCAB have been increasing; these ratios are tracked in our atmospheric measurements with about half of the rate of increase. From this, we infer that about half of the excess methane in the SoCAB between 2012-2015 is attributable to losses from the natural gas infrastructure.
Low Carbon Technology Options for the Natural Gas ...
The ultimate goal of this task is to perform environmental and economic analysis of natural gas based power production technologies (different routes) to investigate and evaluate strategies for reducing emissions from the power sector. It is a broad research area. Initially, the research will be focused on the preliminary analyses of hydrogen fuel based power production technologies utilizing hydrogen fuel in a large size, heavy-duty gas turbines in integrated reformer combined cycle (IRCC) and integrated gasification combined cycle (IGCC) for electric power generation. The research will be expanded step-by-step to include other advanced (e.g., Net Power, a potentially transformative technology utilizing a high efficiency CO2 conversion cycle (Allam cycle), and chemical looping etc.) pre-combustion and post-combustion technologies applied to natural gas, other fossil fuels (coal and heavy oil) and biomass/biofuel based on findings. Screening analysis is already under development and data for the analysis is being processed. The immediate action on this task include preliminary economic and environmental analysis of power production technologies applied to natural gas. Data for catalytic reforming technology to produce hydrogen from natural gas is being collected and compiled on Microsoft Excel. The model will be expanded for exploring and comparing various technologies scenarios to meet our goal. The primary focus of this study is to: 1) understand the chemic
Gis-Based Site Selection for Underground Natural Resources Using Fuzzy Ahp-Owa
NASA Astrophysics Data System (ADS)
Sabzevari, A. R.; Delavar, M. R.
2017-09-01
Fuel consumption has significantly increased due to the growth of the population. A solution to address this problem is the underground storage of natural gas. The first step to reach this goal is to select suitable places for the storage. In this study, site selection for the underground natural gas reservoirs has been performed using a multi-criteria decision-making in a GIS environment. The "Ordered Weighted Average" (OWA) operator is one of the multi-criteria decision-making methods for ranking the criteria and consideration of uncertainty in the interaction among the criteria. In this paper, Fuzzy AHP_OWA (FAHP_OWA) is used to determine optimal sites for the underground natural gas reservoirs. Fuzzy AHP_OWA considers the decision maker's risk taking and risk aversion during the decision-making process. Gas consumption rate, temperature, distance from main transportation network, distance from gas production centers, population density and distance from gas distribution networks are the criteria used in this research. Results show that the northeast and west of Iran and the areas around Tehran (Tehran and Alborz Provinces) have a higher attraction for constructing a natural gas reservoir. The performance of the used method was also evaluated. This evaluation was performed using the location of the existing natural gas reservoirs in the country and the site selection maps for each of the quantifiers. It is verified that the method used in this study is capable of modeling different decision-making strategies used by the decision maker with about 88 percent of agreement between the modeling and test data.
Bioconversion of natural gas to liquid fuel: opportunities and challenges.
Fei, Qiang; Guarnieri, Michael T; Tao, Ling; Laurens, Lieve M L; Dowe, Nancy; Pienkos, Philip T
2014-01-01
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Bioconversion of Natural Gas to Liquid Fuel. Opportunities and Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Qiang; Guarnieri, Michael T.; Tao, Ling
2014-05-01
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Moreover, methanotrophic bacteria are capable of convertingmore » methane into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. Our review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel.« less
Bioconversion of natural gas to liquid fuel: Opportunities and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fei, Q; Guarnieri, MT; Tao, L
2014-05-01
Natural gas is a mixture of low molecular weight hydrocarbon gases that can be generated from either fossil or anthropogenic resources. Although natural gas is used as a transportation fuel, constraints in storage, relatively low energy content (MJ/L), and delivery have limited widespread adoption. Advanced utilization of natural gas has been explored for biofuel production by microorganisms. In recent years, the aerobic bioconversion of natural gas (or primarily the methane content of natural gas) into liquid fuels (Bio-GTL) by biocatalysts (methanotrophs) has gained increasing attention as a promising alternative for drop-in biofuel production. Methanotrophic bacteria are capable of converting methanemore » into microbial lipids, which can in turn be converted into renewable diesel via a hydrotreating process. In this paper, biodiversity, catalytic properties and key enzymes and pathways of these microbes are summarized. Bioprocess technologies are discussed based upon existing literature, including cultivation conditions, fermentation modes, bioreactor design, and lipid extraction and upgrading. This review also outlines the potential of Bio-GTL using methane as an alternative carbon source as well as the major challenges and future research needs of microbial lipid accumulation derived from methane, key performance index, and techno-economic analysis. An analysis of raw material costs suggests that methane-derived diesel fuel has the potential to be competitive with petroleum-derived diesel. (C) 2014 The Authors. Published by Elsevier Inc.« less
Complete liquefaction methods and apparatus
Turner, Terry D.; Wilding, Bruce M.
2013-10-15
A method and apparatus are described to provide complete gas utilization in the liquefaction operation from a source of gas without return of natural gas to the source thereof from the process and apparatus. The mass flow rate of gas input into the system and apparatus may be substantially equal to the mass flow rate of liquefied product output from the system, such as for storage or use.
Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rue, David
The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work inmore » this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner was stable over the full oxygen to fuel firing range (0.8 to 1.05 of fuel gas stoichiometry) and with all fuel gases (natural gas and two syngas compositions), with steam, and without steam. The lower Btu content of the syngases presented no combustion difficulties. The molten bed was stable throughout testing. The molten bed was easily established as a bed of molten glass. As the composition changed from glass cullet to cullet with slag, no instabilities were encountered. The bed temperature and product syngas temperature remained stable throughout testing, demonstrating that the bed serves as a good heat sink for the gasification process. Product syngas temperature measured above the bed was stable at ~1600ºF. Testing found that syngas quality measured as H 2/CO ratio increased with decreasing oxygen to fuel gas stoichiometric ratio, higher steam to inlet carbon ratio, higher temperature, and syngas compared with natural gas. The highest H 2/CO ratios achieved were in the range of 0.70 to 0.78. These values are well below the targets of 1.5 to 2.0 that were expected and were predicted by modeling. The team, however, is encouraged that the HMB process can and will achieve H 2/CO ratios up to 2.0. Changes needed include direct injection of coal into the molten bed of slag to prevent coal particle bypass into the product gas stream, elevation of the molten bed temperature to approximately 2500ºF, and further decrease of the oxygen to fuel gas ratio to well below the 0.85 minimum ratio used in the testing in this project.« less
Yan, Zhao-Da; Zhou, Chong-Guang; Su, Shi-Chuan; Liu, Zhen-Tao; Wang, Xi-Zhen
2003-01-01
In order to predict and improve the performance of natural gas/diesel dual fuel engine (DFE), a combustion rate model based on forward neural network was built to study the combustion process of the DFE. The effect of the operating parameters on combustion rate was also studied by means of this model. The study showed that the predicted results were good agreement with the experimental data. It was proved that the developed combustion rate model could be used to successfully predict and optimize the combustion process of dual fuel engine.
Yang, Yan; Wen, Chuang; Wang, Shuli; Feng, Yuqing
2014-01-01
A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions. PMID:25338207
26 CFR 48.4081-1 - Taxable fuel; definitions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... xylene); (L) Natural gasoline; (M) Pentane; (N) Pentane mixture; (O) Polymer gasoline; (P) Raffinate; (Q... hydrocarbon stream that is produced in a natural gas processing plant is not a gasoline blendstock if the...
A Feasibility Study of Burning Waste Paper in Coal-Fired Boilers on Air Force Installations
1993-09-01
from coal emissions is known as wet flue - gas desulfurization . This process involves the spraying of pulverized limestone (CaCO3 ) mixed with water...conversion to natural gas fuel or additional air : 13-tion controls . However, both of these options can be very costly, and a 6 less expensive alternative may...into the flue gas . The SO, is absorbed by the spray, creating calcium sulfite (Masters, 1991:349). The process is represented in equation form as CaCO3
Deng, Yajun; Hu, Hongbing; Yu, Bo; Sun, Dongliang; Hou, Lei; Liang, Yongtu
2018-01-15
The rupture of a high-pressure natural gas pipeline can pose a serious threat to human life and environment. In this research, a method has been proposed to simulate the release of natural gas from the rupture of high-pressure pipelines in any terrain. The process of gas releases from the rupture of a high-pressure pipeline is divided into three stages, namely the discharge, jet, and dispersion stages. Firstly, a discharge model is established to calculate the release rate of the orifice. Secondly, an improved jet model is proposed to obtain the parameters of the pseudo source. Thirdly, a fast-modeling method applicable to any terrain is introduced. Finally, based upon these three steps, a dispersion model, which can take any terrain into account, is established. Then, the dispersion scenarios of released gas in four different terrains are studied. Moreover, the effects of pipeline pressure, pipeline diameter, wind speed and concentration of hydrogen sulfide on the dispersion scenario in real terrain are systematically analyzed. The results provide significant guidance for risk assessment and contingency planning of a ruptured natural gas pipeline. Copyright © 2017. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-05-01
In an energy-efficiency study at its refinery near Salt Lake City, Utah, Chevron focused on light hydrocarbons processing. The company found it could recover hydrocarbons from its fuel gas system and sell them. By using process simulation models of special distillation columns and associated reboilers and condensers, Chevron could predict the performance of potential equipment configuration changes and process modifications. More than 25,000 MMBtu in natural gas could be saved annually if a debutanizer upgrade project and a new saturated gas plant project were completed. Together, these projects would save $4.4 million annually.
Ethane C-C clumping in natural gas : a proxy for cracking processes ?
NASA Astrophysics Data System (ADS)
Clog, M. D.; Ferreira, A. A.; Santos Neto, E. V.; Eiler, J. M.
2014-12-01
Ethane (C2H6) is the second-most abundant alkane in most natural gas reservoirs, and is used to produce ethylene for petrochemical industries. It is arguably the simplest molecule that can manifest multiple 13C substitutions. There are several plausible controls on Δ13C2H6in natural gas: thermodynamically controlled homogeneous isotope exchange reactions analogous to those behind carbonate clumped isotope thermometry; inheritance from larger biomolecules that undergo thermal degradation to produce natural gas; mixing of natural gases that differ markedly in bulk isotopic composition; diffusive fractionation; or combinations of these and/or other, less expected fractionations. There is little basis for predicting which of these will control isotopic variations among natural ethanes, but we think it likely that addition of this new isotopic proxy will reveal new insights into the natural chemistry of ethane. We have developed a method to measure the abundance of 13C2H6 in natural samples, using high-resolution mass spectrometry. We define Δ13C2H6 as 1000 . ((13C2H6/12C2H6)measured/(13C2H6/12C2H6)stochastic -1). We studied several suites of natural gas samples and experimentally produced or modified ethane. Natural ethanes, including closely related samples from a single natural gas field, exhibit surprisingly large ranges in Δ13C2H6 (4 ‰ overall; up to 3 ‰ in one gas field). Such ranges cannot be explained by thermodynamic equilibrium at a range of different temperatures, or by diffusive fractionation. Kinetic isotope effects associated with 'cracking' reactions, and/or inheritance of non-equilibrium carbon isotope structures from source organics are more likely causes. We observe a correlation between Δ13C2H6 and the concentration of alkanes other than methane in several suites of natural gases, suggesting the causes of clumped isotope variations are tied to the controls on gas wetness. An experiment examining ethane residual to high-temperature pyrolysis confirms this trend could be an isotopic fingerprint for ethane destruction.
A reconnaissance study of 13C-13C clumping in ethane from natural gas
NASA Astrophysics Data System (ADS)
Clog, Matthieu; Lawson, Michael; Peterson, Brian; Ferreira, Alexandre A.; Santos Neto, Eugenio V.; Eiler, John M.
2018-02-01
Ethane is the second most abundant alkane in most natural gas reservoirs. Its bulk isotopic compositions (δ13C and δD) are used to understand conditions and progress of cracking reactions that lead to the accumulation of hydrocarbons. Bulk isotopic compositions are dominated by the concentrations of singly-substituted isotopologues (13CH3-12CH3 for δ13C and 12CDH2-12CH3 for δD). However, multiply-substituted isotopologues can bring additional independent constraints on the origins of natural ethane. The 13C2H6 isotopologue is particularly interesting as it can potentially inform the distribution of 13C atoms in the parent biomolecules whose thermal cracking lead to the production of natural gas. This work presents methods to purify ethane from natural gas samples and quantify the abundance of the rare isotopologue 13C2H6 in ethane at natural abundances to a precision of ±0.12 ‰ using a high-resolution gas source mass spectrometer. To investigate the natural variability in carbon-carbon clumping, we measured twenty-five samples of thermogenic ethane from a range of geological settings, supported by two hydrous pyrolysis of shales experiments and a dry pyrolysis of ethane experiment. The natural gas samples exhibit a range of 'clumped isotope' signatures (Δ13C2H6) at least 30 times larger than our analytical precision, and significantly larger than expected for thermodynamic equilibration of the carbon-carbon bonds during or after formation of ethane, inheritance from the distribution of isotopes in organic molecules or different extents of cracking of the source. However we show a relationship between the Δ13C2H6 and the proportion of alkanes in natural gas samples, which we believe can be associated to the extent of secondary ethane cracking. This scenario is consistent with the results of laboratory experiments, where breaking down ethane leaves the residue with a low Δ13C2H6 compared to the initial gas. Carbon-carbon clumping is therefore a new potential tracer suitable for the study of kinetic processes associated with natural gas.
New challenges and opportunities for industrial biotechnology
2012-01-01
Industrial biotechnology has not developed as fast as expected due to some challenges including the emergences of alternative energy sources, especially shale gas, natural gas hydrate (or gas hydrate) and sand oil et al. The weaknesses of microbial or enzymatic processes compared with the chemical processing also make industrial biotech products less competitive with the chemical ones. However, many opportunities are still there if industrial biotech processes can be as similar as the chemical ones. Taking advantages of the molecular biology and synthetic biology methods as well as changing process patterns, we can develop bioprocesses as competitive as chemical ones, these including the minimized cells, open and continuous fermentation processes et al. PMID:22905695
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klint, B.W.; Dale, P.R.; Stephenson, C.
This topical report consists of the two titled projects. Surface Acoustic Wave/Gas Chromatography (SAW/GC) provides a cost-effective system for collecting real-time field screening data for characterization of vapor streams contaminated with volatile organic compounds (VOCs). The Model 4100 can be used in a field screening mode to produce chromatograms in 10 seconds. This capability will allow a project manager to make immediate decisions and to avoid the long delays and high costs associated with analysis by off-site analytical laboratories. The Model 4100 is currently under evaluation by the California Environmental Protection Agency Technology Certification Program. Initial certification focuses upon themore » following organics: cis-dichloroethylene, chloroform, carbon tetrachloride, trichlorethylene, tetrachloroethylene, tetrachloroethane, benzene, ethylbenzene, toluene, and o-xylene. In the second study the CNG Claus process is being evaluated for conversion and recovery of elemental sulfur from hydrogen sulfide, especially found in low quality natural gas. This report describes the design, construction and operation of a pilot scale plant built to demonstrate the technical feasibility of the integrated CNG Claus process.« less
Philip A. Marcus; Ethan T. Smith
1979-01-01
Five petroleum-related facilities often sited in the coastal zone during development of Outer Continental oil and gas can change the visual appearance of coastal areas. These facilities are service bases, platform fabrication yards, marine terminals and associated storage facilities, oil and gas processing facilities, and liquified natural gas terminals. Examples of...
78 FR 53083 - Leasing of Osage Reservation Lands for Oil and Gas Mining
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-28
... simplification to make one new definition of ``raw natural gas'' or ``gas''; Adds new definitions for ``avoidably... aggregate, or by the private sector, of $100 million or more in any one year. The rule's requirements will... subject to the NEPA process either collectively or case by case.'' No extraordinary circumstances exist...
Sources and flux of natural gases from Mono Lake, California
Oremland, R.S.; Miller, L.G.; Whiticar, Michael J.
1987-01-01
The ability to identify a formation mechanism for natural gas in a particular environment requires consideration of several geochemical factors when there are multiple sources present. Four primary sources of methane have been identified in Mono Lake. Two of these sources were associated with numerous natural gas seeps which occur at various locations in the lake and extend beyond its present boundary; the two other gas sources result from current microbiological processes. In the natural gas seeps, we observed flow rates as high as 160 moles CH4 day-1, and estimate total lakewide annual seep flux to be 2.1 ?? 106 moles CH4. Geochemical parameters (??13CH4,??DCH4,CH4/[C2H6+ C3H8]) and ??14CH4measurements revealed that most of the seeps originate from a paleo-biogenic (??13CH4 = about -70%.). natural gas deposit of Pleistocene age which underlies the current and former lakebed. Gas seeps in the vicinity of hot springs had, in combination with the biogenic gas, a prominent thermogenic gas component resulting from hydrothermal alteration of buried organic matter. Current microbiological processes responsible for sources of natural gas in the lake included pelagic meth- anogenesis and decomposition of terrestrial grasses in the littoral zone. Methanogenesis in the pelagic sediments resulted in methane saturation (2-3 mM at 50 cm; ??13CH4 = about -85%.). Interstitial sulfate decreased from 133 mM at the surface to 35 mM by 110 cm depth, indicating that sulfate-reduction and methanogenesis operated concurrently. Methane diffused out of the sediments resulting in concentrations of about 50 ??M in the anoxic bottom waters. Methane oxidation in the oxic/anoxic boundry lowered the concentration by >98%, but values in surface waters (0.1-1.3??M) were supersaturated with respect to the atmosphere. The ??13CH4 (range = -21.8 to -71.8%.) of this unoxidized residual methane was enriched in 13C relative to methane in the bottom water and sediments. Average outward flux of this methane was 2.77 ?? 107 moles yr-1. A fourth, but minor source of methane (??13CH4 = -55.2%.) was associated with the decomposition of terrestrial grasses taking place in the lake's recently expanded littoral zone. ?? 1987.
NASA Astrophysics Data System (ADS)
Eliseeva, O. A.; Luk'yanova, A. S.; Tarasov, A. E.
2010-12-01
The gas industry in Russia will develop under conditions of the persistence of existing risks and emergence of the new ones caused by the world financial crisis, increased uncertainty in estimating world prices for natural gas, together with disturbed balance between interests of gas producers and consumers, and threat of loss of the competitiveness of Russian natural gas on foreign markets. In this context, in choosing a strategy of the development of the gas industry and its production-and-financial program, it is necessary to carry out a risk analysis of optimum decisions. Specific features of carrying out a risk analysis and results of the risk analysis of strategic decisions that would provide enhanced steadiness and the effectiveness of the development of the gas industry under conditions of the uncertainty of both external and internal factors are presented.
Microwave Heating-Assisted Catalytic Dry Reforming of Methane to Syngas.
Hamzehlouia, Sepehr; Jaffer, Shaffiq A; Chaouki, Jamal
2018-06-12
Natural gas is a robust and environmentally friendlier alternative to oil resources for energy and chemicals production. However, gas is distributed globally within shales and hydrates, which are generally remote and difficult reserves to produce. The accessibility, transportation, and distribution, therefore, bring major capital costs. With today's low and foreseen low price of natural gas, conversion of natural gas to higher value-added chemicals is highly sought by industry. Dry reforming of methane (DRM) is a technology pathway to convert two critical greenhouse gas components, CH 4 and CO 2 , to syngas, a commodity chemical feedstock. To date, the challenges of carbon deposition on the catalyst and evolution of secondary gas-phase products have prevented the commercial application of the DRM process. The recent exponential growth of renewable electricity resources, wind and solar power, provides a major opportunity to activate reactions by harnessing low-cost carbon-free energy via microwave-heating. This study takes advantage of differences in dielectric properties of materials to enable selective heating by microwave to create a large thermal gradient between a catalyst surface and the gas phase. Consequently, the reaction kinetics at the higher temperature catalyst surface are promoted while the reactions of lower temperature secondary gas-phase are reduced.
Impacts of Marcellus Shale Natural Gas Production on Regional Air Quality
NASA Astrophysics Data System (ADS)
Swarthout, R.; Russo, R. S.; Zhou, Y.; Mitchell, B.; Miller, B.; Lipsky, E. M.; Sive, B. C.
2012-12-01
Natural gas is a clean burning alternative to other fossil fuels, producing lower carbon dioxide (CO2) emissions during combustion. Gas deposits located within shale rock or tight sand formations are difficult to access using conventional drilling techniques. However, horizontal drilling coupled with hydraulic fracturing is now widely used to enhance natural gas extraction. Potential environmental impacts of these practices are currently being assessed because of the rapid expansion of natural gas production in the U.S. Natural gas production has contributed to the deterioration of air quality in several regions, such as in Wyoming and Utah, that were near or downwind of natural gas basins. We conducted a field campaign in southwestern Pennsylvania on 16-18 June 2012 to investigate the impact of gas production operations in the Marcellus Shale on regional air quality. A total of 235 whole air samples were collected in 2-liter electropolished stainless- steel canisters throughout southwestern Pennsylvania in a regular grid pattern that covered an area of approximately 8500 square km. Day and night samples were collected at each grid point and additional samples were collected near active wells, flaring wells, fluid retention reservoirs, transmission pipelines, and a processing plant to assess the influence of different stages of the gas production operation on emissions. The samples were analyzed at Appalachian State University for methane (CH4), CO2, C2-C10 nonmethane hydrocarbons (NMHCs), C1-C2 halocarbons, C1-C5 alkyl nitrates and selected reduced sulfur compounds. In-situ measurements of ozone (O3), CH4, CO2, nitric oxide (NO), total reactive nitrogen (NOy), formaldehyde (HCHO), and a range of volatile organic compounds (VOCs) were carried out at an upwind site and a site near active gas wells using a mobile lab. Emissions associated with gas production were observed throughout the study region. Elevated mixing ratios of CH4 and CO2 were observed in the southwest and northeast portions of the study area indicating multiple emission sources. We also present comparisons of VOC fingerprints observed in the Marcellus Shale to our previous observations of natural gas emissions from the Denver-Julesburg Basin in northeast Colorado to identify tracers for these different natural gas sources.
The Spatial Footprint of Natural Gas-Fired Electricity
NASA Astrophysics Data System (ADS)
Jordaan, S. M.; Heath, G.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.; Marceau, D.
2015-12-01
Consistent comparisons of the amount of land required for different electricity generation technologies are challenging because land use associated with fossil fuel acquisition and delivery has not been well characterized or empirically grounded. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity (m2/MWh generated) through the novel combination of inventories of natural gas-related infrastructure, satellite imagery analysis and gas production estimates. We focus on seven counties that represent 98% of the total gas production in the Barnett Shale (Texas), evaluating over 500 sites across five life cycle stages (gas production, gathering, processing, transmission, and power generation as well as produced water disposal). We find that a large fraction of total life cycle land use is related to gathering (midstream) infrastructure, particularly pipelines; access roads related to all stages also contribute a large life cycle share. Results were sensitive to several inputs, including well lifetime, pipeline right of way, number of wells per site, variability of heat rate for electricity generation, and facility lifetime. Through this work, we have demonstrated a novel, highly-resolved and empirical method for estimating life cycle land use from natural gas infrastructure in an important production region. When replicated for other gas production regions and other fuels, the results can enable more empirically-grounded and robust comparisons of the land footprint of alternative energy choices.
Assessment of advanced coal gasification processes
NASA Technical Reports Server (NTRS)
Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.
1981-01-01
A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.
Electrochemical and partial oxidation of methane
NASA Astrophysics Data System (ADS)
Singh, Rahul
2008-10-01
Hydrogen has been the most common fuel used for the fuel cell research but there remains challenging technological hurdles and storage issues with hydrogen fuel. The direct electrochemical oxidation of CH4 (a major component of natural gas) in a solid oxide fuel cell (SOFC) to generate electricity has a potential of commercialization in the area of auxiliary and portable power units and battery chargers. They offer significant advantages over an external reformer based SOFC, namely, (i) simplicity in the overall system architecture and balance of plant, (ii) more efficient and (iii) availability of constant concentration of fuel in the anode compartment of SOFC providing stability factor. The extreme operational temperature of a SOFC at 700-1000°C provides a thermodynamically favorable pathway to deposit carbon on the most commonly used Ni anode from CH4 according to the following reaction (CH4 = C + 2H2), thus deteriorating the cell performance, stability and durability. The coking problem on the anode has been a serious and challenging issue faced by the catalyst research community worldwide. This dissertation presents (i) a novel fabricated bi-metallic Cu-Ni anode by electroless plating of Cu on Ni anode demonstrating significantly reduced or negligible coke deposition on the anode for CH4 and natural gas fuel after long term exposure, (ii) a thorough microstructural examination of Ni and Cu-Ni anode exposed to H2, CH4 and natural gas after long term exposure at 750°C by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction and (iii) in situ electrochemical analysis of Ni and Cu-Ni for H2, CH4 and natural gas during long term exposure at 750°C by impedance spectroscopy. A careful investigation of variation in the microstructure and performance characteristics (voltage-current curve and impedance) of Ni and Cu-Ni anode before and after a long term exposure of CH4 and natural gas would allow us to test the validation of a negligible coke formation on the novel fabricated anode by electroless plating process. Hydrogen is an environmentally cleaner source of energy. The recent increase in the demand of hydrogen as fuel for all types of fuel cells and petroleum refining process has boosted the need of production of hydrogen. Methane, a major component of natural gas is the major feedstock for production of hydrogen. The route of partial oxidation of methane to produce syngas (CO + H2) offers significant advantages over commercialized steam reforming process for higher efficiency and lower energy requirements. Partial oxidation of methane was studied by pulsing O2 into a CH4 flow over Rh/Al2O3 in a sequence of in situ infrared (IR) cell and fixed bed reactor at 773 K. The results obtained from the sequence of an IR cell followed by a fixed bed reactor show that (i) adsorbed CO produced possesses a long residence time, indicating that adsorbed oxygen leading to the formation of CO is significantly different from those leading to CO2 and (ii) CO2 is not an intermediate species for the formation of CO. In situ IR of pulse reaction coupled with alternating reactor sequence is an effective approach to study the primary and secondary reactions as well as the nature of their adsorbed species. As reported earlier, hydrogen remains to be the most effective fuel for fuel cells, the production of high purity hydrogen from naturally available resources such as coal, petroleum, and natural gas requires a number of energy-intensive steps, making fuel cell processes for stationary electric power generation prohibitively uneconomic. Direct use of coal or coal gas as the feed is a promising approach for low cost electricity generation. Coal gas solid oxide fuel cell was studied by pyrolyzing Ohio #5 coal to coal gas and transporting to a Cu anode solid oxide fuel cell to generate power. The study of coal-gas solid oxide fuel cell is divided into two sections, i.e., (i) understanding the composition of coal gas by in situ infrared spectroscopy combined with mass spectrometry and (ii) evaluating the performance of coal gas for power generation based on the composition on a Cu-SOFC. The voltage-current performance curve for coal gas suggests that hydrogen and methane rich coal gas performed better than CO2 or D2O concentrated coal gas. A slow rate of reforming reaction of D2O than CO2 with coal and coal gas was observed during pyrolysis reaction. The coal and coke (by-product of pyrolysis) were characterized by Raman spectrometer to reveal the effect of pyrolysis on the structural properties of coal.
Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.
Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick
2016-01-01
Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.
NASA Astrophysics Data System (ADS)
Rao, Vikram; Gupta, Raghubir
2015-03-01
Oil currently holds a monopoly on transportation fuels. Until recently biofuels were seen as the means to break this stranglehold. They will still have a part to play, but the lead role has been handed to natural gas, almost solely due to the increased availability of shale gas. The spread between oil and gas prices, unprecedented in its scale and duration, will cause a secular shift away from oil as a raw material. In the transport fuel sector, natural gas will gain traction first in the displacement of diesel fuel. Substantial innovation is occurring in the methods of producing liquid fuel from shale gas at the well site, in particular in the development of small scale distributed processes. In some cases, the financing of such small-scale plants may require new business models.
Hydrogen generation from natural gas for the fuel cell systems of tomorrow
NASA Astrophysics Data System (ADS)
Dicks, Andrew L.
In most cases hydrogen is the preferred fuel for use in the present generation of fuel cells being developed for commercial applications. Of all the potential sources of hydrogen, natural gas offers many advantages. It is widely available, clean, and can be converted to hydrogen relatively easily. When catalytic steam reforming is used to generate hydrogen from natural gas, it is essential that sulfur compounds in the natural gas are removed upstream of the reformer and various types of desulfurisation processes are available. In addition, the quality of fuel required for each type of fuel cell varies according to the anode material used, and the cell temperature. Low temperature cells will not tolerate high concentrations of carbon monoxide, whereas the molten fuel cell (MCFC) and solid oxide fuel cell (SOFC) anodes contain nickel on which it is possible to electrochemically oxidise carbon monoxide directly. The ability to internally reform fuel gas is a feature of the MCFC and SOFC. Internal reforming can give benefits in terms of increased electrical efficiency owing to the reduction in the required cell cooling and therefore parasitic system losses. Direct electrocatalysis of hydrocarbon oxidation has been the elusive goal of fuel cell developers over many years and recent laboratory results are encouraging. This paper reviews the principal methods of converting natural gas into hydrogen, namely catalytic steam reforming, autothermic reforming, pyrolysis and partial oxidation; it reviews currently available purification techniques and discusses some recent advances in internal reforming and the direct use of natural gas in fuel cells.
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. KPS and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Potting and module materials testing were initiated. Preliminary design of the bench-scale equipment continues.« less
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. Potting and module materials testing continued. Preliminary design of the bench-scale equipment continues.« less
Kassotis, Christopher D.; Tillitt, Donald E.; Davis, J. Wade; Hormann, Anette M.; Nagel, Susan C.
2014-01-01
The rapid rise in natural gas extraction using hydraulic fracturing increases the potential for contamination of surface and ground water from chemicals used throughout the process. Hundreds of products containing more than 750 chemicals and components are potentially used throughout the extraction process, including more than 100 known or suspected endocrine-disrupting chemicals. We hypothesized thataselected subset of chemicalsusedin natural gas drilling operationsandalso surface and ground water samples collected in a drilling-dense region of Garfield County, Colorado, would exhibit estrogen and androgen receptor activities. Water samples were collected, solid-phase extracted, and measured for estrogen and androgen receptor activities using reporter gene assays in human cell lines. Of the 39 unique water samples, 89%, 41%, 12%, and 46% exhibited estrogenic, antiestrogenic, androgenic, and antiandrogenic activities, respectively. Testing of a subset of natural gas drilling chemicals revealed novel antiestrogenic, novel antiandrogenic, and limited estrogenic activities. The Colorado River, the drainage basin for this region, exhibited moderate levels of estrogenic, antiestrogenic, and antiandrogenic activities, suggesting that higher localized activity at sites with known natural gas–related spills surrounding the river might be contributing to the multiple receptor activities observed in this water source. The majority of water samples collected from sites in a drilling-dense region of Colorado exhibited more estrogenic, antiestrogenic, or antiandrogenic activities than reference sites with limited nearby drilling operations. Our data suggest that natural gas drilling operationsmayresult in elevated endocrine-disrupting chemical activity in surface and ground water.
Gas hydrate inhibition by perturbation of liquid water structure
NASA Astrophysics Data System (ADS)
Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong
2015-06-01
Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.
Gas hydrate inhibition by perturbation of liquid water structure.
Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong
2015-06-17
Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.
Estimates of Methane and Ethane Emissions from the Barnett Shale Using Atmospheric Measurements
NASA Astrophysics Data System (ADS)
Karion, A.; Sweeney, C.; Kort, E. A.; Shepson, P. B.; Conley, S. A.; Lauvaux, T.; Davis, K. J.; Deng, A.; Lyon, D. R.; Smith, M. L.
2015-12-01
Recent development of horizontal drilling technology and advances in hydraulic fracturing techniques by the oil and gas industry have dramatically increased onshore U.S. natural gas and oil production in the last several years. The primary component of natural gas is methane (CH4), a powerful greenhouse gas; therefore, natural gas leakage into the atmosphere affects its climate impact. We present estimates of regional methane (CH4) and ethane (C2H6) emissions from oil and natural gas operations in the Barnett Shale, Texas, made in March and October 2013 as part of the Environmental Defense Fund's Barnett Coordinated Campaign. The Barnett is one of the largest production basins in the United States, with 8% of total U.S. natural gas production, and thus, our results represent a crucial step toward determining the greenhouse gas footprint of U.S. onshore natural gas production. Using a mass balance approach on eight different flight days the total CH4 emissions for the region are estimated to be 76 ± 13x 103 kg/hr, or 0.66 ± 0.11 Tg CH4 /yr; (95% CI). Repeated mass balance flights in the same basin on eight different days and two seasons demonstrate the consistency of the mass balance approach. On the basis of airborne C2H6 and CH4 measurements, we find 71-85% of the observed CH4 emissions quantified in the Barnett Shale are derived from fossil sources. The average C2H6 flux was 6.6 ± 0.2 x 103 kg/hr and consistent across six days in spring and fall of 2013. This result is the first demonstration of this approach for C2H6. We estimate that 60±11x103 kg CH4/hr (95% CI) are emitted by natural gas and oil operations, including production, processing, and distribution in the urban areas of Dallas and Fort Worth. This estimate is significantly higher than emissions reported by the EDGAR inventory or by industry to EPA's Greenhouse Gas Reporting Program.
NASA Astrophysics Data System (ADS)
Maksimov, Vyacheslav I.; Nagornova, Tatiana A.; Glazyrin, Viktor P.; Shestakov, Igor A.
2016-02-01
Is numerically investigated the process of convective heat transfer in the reservoirs of liquefied natural gas (LNG). The regimes of natural convection in a closed rectangular region with different intensity of heat exchange at the external borders are investigated. Is solved the time-dependent system of energy and Navier-Stokes equations in the dimensionless variables "vorticity - the stream function". Are obtained distributions of the hydrodynamic parameters and temperatures, that characterize basic regularities of the processes. The special features of the formation of circulation flows are isolated and the analysis of the temperature distribution in the solution region is carried out. Is shown the influence of geometric characteristics and intensity of heat exchange on the outer boundaries of reservoir on the temperature field in the LNG storage.
NASA Astrophysics Data System (ADS)
Gruzin, A. V.; Gruzin, V. V.; Shalay, V. V.
2018-04-01
Analysis of existing technologies for preparing foundation beds of oil and gas buildings and structures has revealed the lack of reasoned recommendations on the selection of rational technical and technological parameters of compaction. To study the nature of the dynamics of fast processes during compaction of foundation beds of oil and gas facilities, a specialized software and hardware system was developed. The method of calculating the basic technical parameters of the equipment for recording fast processes is presented, as well as the algorithm for processing the experimental data. The performed preliminary studies confirmed the accuracy of the decisions made and the calculations performed.
A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems
NASA Astrophysics Data System (ADS)
White, M. D.
2012-12-01
The potential energy resource of natural gas hydrates held in geologic accumulations, using lower volumetric estimates, is sufficient to meet the world demand for natural gas for nearly eight decades, at current rates of increase. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. The thermodynamic complexity of gas hydrate systems makes numerical simulation a particularly attractive research tool for understanding production strategies and experimental observations. Simply stated, producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. Alternatively, the guest-molecule exchange technology releases CH4 by replacing it with more thermodynamically stable molecules (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it potentially releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, nonaqueous liquid, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulations that predict the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. The phase equilibria for the ternary gas hydrate system within the gas hydrate stability range of composition, temperature and pressure, includes regions where the gas hydrate is in equilibrium with gas, nonaqueous liquid, or mixtures of gas and nonaqeuous liquid near the CO2-CH4-N2 mixture critical point. In these regions, solutions to cubic equations of state can be nonconvergent without accurate initial guesses. A hybrid tabular-cubic equation of state is described which avoids convergence issues, but conserves the characteristics and advantages of the cubic equation of state approaches to phase equilibria calculations. The application of interest will be the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.
Greenhouse gas emissions from soil under changing environmental conditions
USDA-ARS?s Scientific Manuscript database
This manuscript is the Guest Editors’ Introduction to a special issue on greenhouse gas emissions from agriculture. The papers were assembled following presentation at EuroSoil 2012. Exchange of greenhouse gases between soils and the atmosphere is a natural consequence of several ecosystem process...
Role of turboexpanders in low-temperature processing is growing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atwood, L.
1969-01-20
The word turboexpander is, in some respects, an unfortunate choice of names since it implies there is a fundamental difference between a turboexpander and a turbine. Actually an expander is a turbine and a turbine is an expander. In simplest terms a turboexpander converts the energy of high-pressure gas into kinetic energy by increasing the velocity of the gas in the nozzles. It then converts this energy into work by the action of the high-velocity jets impinging on the expander blades. This describes an expander where all the pressure drop occurs in the nozzle. By far, the largest current applicationmore » for expansion turbines is in air-separation plants. These plants separate air into its various constituents for the tonnage production of oxygen, nitrogen, argon, etc. The recovery of helium from natural gas and the liquefaction of natural gas for storage and transportation are 2 processes requiring large quantities of refrigeration at low temperatures. Turbine expanders can be used to advantage in these systems.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... Natural Gas Company, Southern Natural Gas Company, Florida Gas Transmission Company, LLC, Transcontinental... notice that on March 5, 2010, Northern Natural Gas Company (Northern Natural), 1111 South 103rd Street, Omaha, Nebraska 68124- 1000, filed on behalf of itself and other owners, Southern Natural Gas Company...
TGS pipeline primed for Argentine growth, CEO says
DOE Office of Scientific and Technical Information (OSTI.GOV)
Share, J.
Nowhere in Latin America has the privatization process been more aggressively pursued than in Argentina where President Carlos Menem has successfully turned over the bulk of state companies to the private sector. In the energy sector, that meant the divestiture in 1992 of Gas del Estado, the state-owned integrated gas transportation and distribution company. It was split in two transportation companies: Transportadora de Gas del Sur (TGS) and Transportadora de Gas del Norte (TGN), and eight distribution companies. TGS is the largest transporter of natural gas in Argentina, delivering more than 60 percent of that nation`s total gas consumption withmore » a capacity of 1.9 Bcf/d. This is the second in a series of Pipeline and Gas Journal special reports that discuss the evolving strategies of the natural gas industry as it continues to restructure amid deregulation. The article focuses on TGS, the Argentine pipeline system in which Enron Corp. is a key participant.« less
MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim Merkel; Karl Amo; Richard Baker
2009-03-31
The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plantmore » energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.« less
NASA Astrophysics Data System (ADS)
Atherton, Emmaline; Risk, David; Fougère, Chelsea; Lavoie, Martin; Marshall, Alex; Werring, John; Williams, James P.; Minions, Christina
2017-10-01
North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s-1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s-1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom-up estimates of 78 000 t of methane for all oil and gas sector sources in British Columbia. Current bottom-up methods for estimating methane emissions do not normally calculate the fraction of emitting oil and gas infrastructure with thorough on-ground measurements. However, this study demonstrates that mobile surveys could provide a more accurate representation of the number of emission sources in an oil and gas development. This study presents the first mobile collection of methane emissions from oil and gas infrastructure in British Columbia, and these results can be used to inform policy development in an era of methane emission reduction efforts.
Hydrogen and elemental carbon production from natural gas and other hydrocarbons
Detering, Brent A.; Kong, Peter C.
2002-01-01
Diatomic hydrogen and unsaturated hydrocarbons are produced as reactor gases in a fast quench reactor. During the fast quench, the unsaturated hydrocarbons are further decomposed by reheating the reactor gases. More diatomic hydrogen is produced, along with elemental carbon. Other gas may be added at different stages in the process to form a desired end product and prevent back reactions. The product is a substantially clean-burning hydrogen fuel that leaves no greenhouse gas emissions, and elemental carbon that may be used in powder form as a commodity for several processes.
Helium extraction and nitrogen removal from LNG boil-off gas
NASA Astrophysics Data System (ADS)
Xiong, L.; Peng, N.; Liu, L.; Gong, L.
2017-02-01
The helium bearing boil off gas (BOG) from liquid natural gas (LNG) storage tank in LNG plant, which has a helium concentration of about 1%, has attracted the attention in China as a new helium source. As the BOG is usually reused by re-condensing to recover methane, it is likely to cause continuous accumulation of nitrogen in the unit, thus a nitrogen removal process must be integrated. This paper describes a conceptional cryogenic separation system aiming at recovering methane, helium and nitrogen from BOG based on cryogenic distillation and condensation process.
NASA Astrophysics Data System (ADS)
Tsai, Tracy; Rella, Chris; Crosson, Eric
2013-04-01
Quantification of fugitive methane emissions from unconventional natural gas (i.e. shale gas, tight sand gas, etc.) production, processing, and transport is essential for scientists, policy-makers, and the energy industry, because methane has a global warming potential of at least 21 times that of carbon dioxide over a span of 100 years [1]. Therefore, fugitive emissions reduce any environmental benefits to using natural gas instead of traditional fossil fuels [2]. Current measurement techniques involve first locating all the possible leaks and then measuring the emission of each leak. This technique is a painstaking and slow process that cannot be scaled up to the large size of the natural gas industry in which there are at least half a million natural gas wells in the United States alone [3]. An alternative method is to calculate the emission of a plume through dispersion modeling. This method is a scalable approach since all the individual leaks within a natural gas facility can be aggregated into a single plume measurement. However, plume dispersion modeling requires additional knowledge of the distance to the source, atmospheric turbulence, and local topography, and it is a mathematically intensive process. Therefore, there is a need for an instrument capable of simple, rapid, and accurate measurements of fugitive methane emissions on a per well head scale. We will present the "plume camera" instrument, which simultaneously measures methane at different spatial points or pixels. The spatial correlation between methane measurements provides spatial information of the plume, and in addition to the wind measurement collected with a sonic anemometer, the flux can be determined. Unlike the plume dispersion model, this approach does not require knowledge of the distance to the source and atmospheric conditions. Moreover, the instrument can fit inside a standard car such that emission measurements can be performed on a per well head basis. In a controlled experiment with known releases from a methane tank, a 2-pixel plume camera measured 496 ± 160 sccm from a release of 650 sccm located 21 m away, and 4,180 ± 962 sccm from a release of 3,400 sccm located 49 m away. These results in addition to results with a higher-pixel camera will be discussed. Field campaign data collected with the plume camera pixels mounted onto a vehicle and driven through the natural gas fields in the Uintah Basin (Utah, United States) will also be presented along with the limitations and advantages of the instrument. References: 1. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.). IPCC, 2007: Climate Change 2007: The Physical Science Basis of the Fourth Assessment Report. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 2. R.W. Howarth, R. Santoro, and A. Ingraffea. "Methane and the greenhouse-gas footprint of natural gas from shale formations." Climate Change, 106, 679 (2011). 3. U.S. Energy Information Administration. "Number of Producing Wells."
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The original concept envisioned for the use of Fischer-Tropsch processing (FTP) of United States associated natural gas in this study was to provide a way of utilizing gas which could not be brought to market because a pipeline was not available or for which there was no local use. Conversion of gas by FTP could provide a means of utilizing offshore associated gas which would not require installation of a pipeline or re-injection. The premium quality F-T hydrocarbons produced by conversion of the gas can be transported in the same way as the crude oil or in combination (blended) withmore » it, eliminating the need for a separate gas transport system. FTP will produce a synthetic crude oil, thus increasing the effective size of the resource. The two conventional approaches currently used in US territory for handling of natural gas associated with crude petroleum production are re-injection and pipelining. Conversion of natural gas to a liquid product which can be transported to shore by tanker can be accomplished by FTP to produce hydrocarbons, or by conversion to chemical products such as methanol or ammonia, or by cryogenic liquefaction (LNG). This study considers FTP and briefly compares it to methanol and LNG. The Energy International Corporation cobalt catalyst, ratio adjusted, slurry bubble column F-T process was used as the basis for the study and the comparisons. An offshore F-T plant can best be accommodated by an FPSO (Floating Production, Storage, Offloading vessel) based on a converted surplus tanker, such as have been frequently used around the world recently. Other structure types used in deep water (platforms) are more expensive and cannot handle the required load.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadle, L.J.; Berry, D.A.; Syamlal, Madhava
2007-07-01
Coal gasification is the process of reacting coal with oxygen, steam, and carbon dioxide to form a product gas containing hydrogen and carbon monoxide. Gasification is essentially incomplete combustion. The chemical and physical processes are quite similar, the main difference being the nature of the final products. From a processing point of view the main operating difference is that gasification consumes heat evolved during combustion. Under the reducing environment of gasification the sulfur in the coal is released as hydrogen sulfide rather than sulfur dioxide and the coal's nitrogen is converted mostly to ammonia rather than nitrogen oxides. These reducedmore » forms of sulfur and nitrogen are easily isolated, captured, and utilized, and thus gasification is a clean coal technology with better environmental performance than coal combustion. Depending on the type of gasifier and the operating conditions, gasification can be used to produce a fuel gas suitable for any number of applications. A low heating value fuel gas is produced from an air blown gasifier for use as an industrial fuel and for power production. A medium heating value fuel gas is produced from enriched oxygen blown gasification for use as a synthesis gas in the production of chemicals such as ammonia, methanol, and transportation fuels. A high heating value gas can be produced from shifting the medium heating value product gas over catalysts to produce a substitute or synthetic natural gas (SNG).« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
Code of Federal Regulations, 2010 CFR
2010-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
Code of Federal Regulations, 2012 CFR
2012-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
Code of Federal Regulations, 2011 CFR
2011-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
Code of Federal Regulations, 2014 CFR
2014-07-01
... natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). National Contingency Plan, or NCP means the National Oil and... under section 101(14)(A) through (F) of the Act, nor does it include natural gas, liquefied natural gas...
NASA Astrophysics Data System (ADS)
Qiu, Zeyang; Liang, Wei; Wang, Xue; Lin, Yang; Zhang, Meng
2017-05-01
As an important part of national energy supply system, transmission pipelines for natural gas are possible to cause serious environmental pollution, life and property loss in case of accident. The third party damage is one of the most significant causes for natural gas pipeline system accidents, and it is very important to establish an effective quantitative risk assessment model of the third party damage for reducing the number of gas pipelines operation accidents. Against the third party damage accident has the characteristics such as diversity, complexity and uncertainty, this paper establishes a quantitative risk assessment model of the third party damage based on Analytic Hierarchy Process (AHP) and Fuzzy Comprehensive Evaluation (FCE). Firstly, risk sources of third party damage should be identified exactly, and the weight of factors could be determined via improved AHP, finally the importance of each factor is calculated by fuzzy comprehensive evaluation model. The results show that the quantitative risk assessment model is suitable for the third party damage of natural gas pipelines and improvement measures could be put forward to avoid accidents based on the importance of each factor.
NASA Astrophysics Data System (ADS)
Thorpe, A. K.; Frankenberg, C.; Thompson, D. R.; Duren, R. M.; Aubrey, A. D.; Bue, B. D.; Green, R. O.; Gerilowski, K.; Krings, T.; Borchardt, J.; Kort, E. A.; Sweeney, C.; Conley, S. A.; Roberts, D. A.; Dennison, P. E.; Ayasse, A.
2016-12-01
Imaging spectrometers like the next generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG) can map large regions with the high spatial resolution necessary to resolve methane (CH4) and carbon dioxide (CO2) emissions. This capability is aided by real time detection and geolocation of gas plumes, permitting unambiguous identification of individual emission source locations and communication to ground teams for rapid follow up. We present results from AVIRIS-NG flight campaigns in the Four Corners region (Colorado and New Mexico) and the San Joaquin Valley (California). Over three hundred plumes were observed, reflecting emissions from anthropogenic and natural sources. Examples of plumes will be shown for a number of sources, including CH4 from well completions, gas processing plants, tanks, pipeline leaks, natural seeps, and CO2 from power plants. Despite these promising results, an imaging spectrometer built exclusively for quantitative mapping of gas plumes would have improved sensitivity compared to AVIRIS-NG. For example, an instrument providing a 1 nm spectral sampling (2,000-2,400 micron) would permit mapping CH4, CO2, H2O, CO, and N2O from more diffuse sources using both airborne and orbital platforms. The ability to identify emission sources offers the potential to constrain regional greenhouse gas budgets and improve partitioning between anthropogenic and natural emission sources. Because the CH4 lifetime is only about 9 years and CH4 has a Global Warming Potential 86 times that of CO2 for a 20 year time interval, mitigating these emissions is a particularly cost-effective approach to reduce overall atmospheric radiative forcing. Fig. 1. True color image subset with superimposed gas plumes showing concentrations in ppmm. Left: AVIRIS-NG observed CH4 plumes from natural gas processing plant extending over 500 m downwind of multiple emissions sources. Right: Multiple CO2 plumes observed from coal-fired power plant.
NASA Astrophysics Data System (ADS)
Gilman, J.; Lerner, B. M.; Warneke, C.; Graus, M.; Lui, R.; Koss, A.; Yuan, B.; Murphy, S. M.; Alvarez, S. L.; Lefer, B. L.; Min, K. E.; Brown, S. S.; Roberts, J. M.; Osthoff, H. D.; Hatch, C. D.; Peischl, J.; Ryerson, T. B.; De Gouw, J. A.
2014-12-01
According to the U.S. Energy and Information Administration (EIA), domestic production of natural gas from shale formations is currently at the highest levels in U.S. history. Shale gas production may also result in the production of natural gas plant liquids (NGPLs) such as ethane and propane as well as natural gas condensate composed of a complex mixture of non-methane hydrocarbons containing more than ~5 carbon atoms (e.g., hexane, cyclohexane, and benzene). The amounts of natural gas liquids and condensate produced depends on the particular reservoir. The source signature of primary emissions of hydrocarbons to the atmosphere within each shale play will therefore depend on the composition of the raw natural gas as well as the industrial processes and equipment used to extract, separate, store, and transport the raw materials. Characterizing the primary emissions of VOCs from natural gas production is critical to assessing the local and regional atmospheric impacts such as the photochemical formation of ozone and secondary formation of organic aerosol. This study utilizes ground-based measurements of a full suite of volatile organic compounds (VOCs) in two western U.S. basins, the Uintah (2012-2014 winter measurements only) and Denver-Julesburg (winter 2011 and summer 2012), and airborne measurements over the Haynesville, Fayetteville, and Marcellus shale basins (summer 2013). By comparing the observed VOC to propane enhancement ratios, we show that each basin has a unique VOC source signature associated with oil and natural gas operations. Of the shale basins studied, the Uintah basin had the largest overall VOC to propane enhancement ratios while the Marcellus had the lowest. For the western basins, we will compare the composition of oxygenated VOCs produced from photochemical oxidation of VOC precursors and contrast the oxygenated VOC mixture to a "typical" summertime urban VOC mixture. The relative roles of alkanes, alkenes, aromatics, and cycloalkanes as precursors for C2-C6 aldehydes and ketones, and C3-C4 alkyl nitrates will be investigated.
17 CFR 250.58 - Exemption of investments in certain nonutility companies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... facilities relating to electric and compressed natural gas powered vehicles; (iv) The sale of electric and gas appliances; equipment to promote new technologies, or new applications for existing technologies... and commercialization of technologies or processes that utilize coal waste by-products as an integral...
Field studies of pine, spruce and aspen periodically subjected to sulfur gas emissions
A. H. Legge; R. G. Amundson; D. R. Jaques; R. B. Walker
1976-01-01
Field studies of photosynthesis in Pinus contorta/Pinus banksiana (lodgepole pine/jack pine) hybrids, Picea glauca (white spruce) and Populus tremuloides (aspen) subjected to SO2 and H2S from a nearby natural gas processing plant were initiated near Whitecourt,...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, C.M.; Jordan, P.D.; Nicot, J.-P.
2010-08-01
The Certification Framework (CF) is a simple risk assessment approach for evaluating CO{sub 2} and brine leakage risk at geologic carbon sequestration (GCS) sites. In the In Salah CO{sub 2} storage project assessed here, five wells at Krechba produce natural gas from the Carboniferous C10.2 reservoir with 1.7-2% CO{sub 2} that is delivered to the Krechba gas processing plant, which also receives high-CO{sub 2} natural gas ({approx}10% by mole fraction) from additional deeper gas reservoirs and fields to the south. The gas processing plant strips CO{sub 2} from the natural gas that is then injected through three long horizontal wellsmore » into the water leg of the Carboniferous gas reservoir at a depth of approximately 1,800 m. This injection process has been going on successfully since 2004. The stored CO{sub 2} has been monitored over the last five years by a Joint Industry Project (JIP) - a collaboration of BP, Sonatrach, and Statoil with co-funding from US DOE and EU DG Research. Over the years the JIP has carried out extensive analyses of the Krechba system including two risk assessment efforts, one before injection started, and one carried out by URS Corporation in September 2008. The long history of injection at Krechba, and the accompanying characterization, modeling, and performance data provide a unique opportunity to test and evaluate risk assessment approaches. We apply the CF to the In Salah CO{sub 2} storage project at two different stages in the state of knowledge of the project: (1) at the pre-injection stage, using data available just prior to injection around mid-2004; and (2) after four years of injection (September 2008) to be comparable to the other risk assessments. The main risk drivers for the project are CO{sub 2} leakage into potable groundwater and into the natural gas cap. Both well leakage and fault/fracture leakage are likely under some conditions, but overall the risk is low due to ongoing mitigation and monitoring activities. Results of the application of the CF during these different state-of-knowledge periods show that the assessment of likelihood of various leakage scenarios increased as more information became available, while assessment of impact stayed the same. Ongoing mitigation, modeling, and monitoring of the injection process is recommended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chao, S.S.; Attari, A.
1995-01-01
The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent withmore » XRF and an IGT developed sorbent with GFAA for total arsenic measurement.« less
Automated soil gas monitoring chamber
Edwards, Nelson T.; Riggs, Jeffery S.
2003-07-29
A chamber for trapping soil gases as they evolve from the soil without disturbance to the soil and to the natural microclimate within the chamber has been invented. The chamber opens between measurements and therefore does not alter the metabolic processes that influence soil gas efflux rates. A multiple chamber system provides for repetitive multi-point sampling, undisturbed metabolic soil processes between sampling, and an essentially airtight sampling chamber operating at ambient pressure.
Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site
Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich
2016-01-01
Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.
Mineral resource of the month: perlite
Bolen, Wallace
2003-01-01
Perlite is found in most homes, workplaces and schools. Most of the white ceiling tiles in offices and classrooms are made primarily of perlite. The soil around potted plants also has small white grains of perlite. Other than in these lightweight construction products and horticultural soil mixes, perlite is used in food processing for filtration and in natural gas processing as a low-temperature insulation that aids the gas liquefaction process. Perlite is also an excellent high temperature insulator and resists burning.
Land-Energy Nexus: Life Cycle Land Use of Natural Gas-Fired Electricity
NASA Astrophysics Data System (ADS)
Heath, G.; Jordaan, S.; Macknick, J.; Mohammadi, E.; Ben-Horin, D.; Urrea, V.
2014-12-01
Comparisons of the land required for different types of energy are challenging due to the fact that upstream land use of fossil fuel technologies is not well characterized. This research focuses on improving estimates of the life cycle land use of natural gas-fired electricity through the novel combination of inventories of the location of natural gas-related infrastructure, satellite imagery analysis and gas production data. Land area per unit generation is calculated as the sum of natural gas life cycle stages divided by the throughput of natural gas, combined with the land use of the power plant divided by the generation of the power plant. Five natural gas life cycle stages are evaluated for their area: production, gathering, processing, transmission and disposal. The power plant stage is characterized by a thermal efficiency ηth, which converts MegaJoules (MJ) to kilowatt hours (kWh). We focus on seven counties in the Barnett shale region in Texas that represent over 90% of total Barnett Shale gas production. In addition to assessing the gathering and transmission pipeline network, approximately 500 sites are evaluated from the five life cycle stages plus power plants. For instance, assuming a 50 foot right-of-way for transmission pipelines, this part of the Barnett pipeline network occupies nearly 26,000 acres. Site, road and water components to total area are categorized. Methods are developed to scale up sampled results for each component type to the full population of sites within the Barnett. Uncertainty and variability are charaterized. Well-level production data are examined by integrating commercial datasets with advanced methods for quantifying estimated ultimate recovery (EUR) for wells, then summed to estimate natural gas produced in an entire play. Wells that are spatially coincident are merged using ArcGIS. All other sites are normalized by an estimate of gas throughput. Prior land use estimates are used to validate the satellite imagery analysis. Results of this research will provide a step towards better quantifying the land footprint of energy production activities and a methodologically consistent baseline from which more robust comparisons with alternative energy choices can be made.
A spatially resolved fuel-based inventory of Utah and Colorado oil and natural gas emissions
NASA Astrophysics Data System (ADS)
Gorchov Negron, A.; McDonald, B. C.; De Gouw, J. A.; Frost, G. J.
2015-12-01
A fuel-based approach is presented for estimating emissions from US oil and natural gas production that utilizes state-level fuel surveys of oil and gas engine activity, well-level production data, and emission factors for oil and gas equipment. Emissions of carbon dioxide (CO2) and nitrogen oxides (NOx) are mapped on a 4 km x 4 km horizontal grid for 2013-14 in Utah and Colorado. Emission sources include combustion from exploration (e.g., drilling), production (e.g., heaters, dehydrators, and compressor engines), and natural gas processing plants, which comprise a large fraction of the local combustion activity in oil and gas basins. Fuel-based emission factors of NOx are from the U.S. Environmental Protection Agency, and applied to spatially-resolved maps of CO2 emissions. Preliminary NOx emissions from this study are estimated for the Uintah Basin, Utah, to be ~5300 metric tons of NO2-equivalent in 2013. Our result compares well with an observations-based top-down emissions estimate of NOx derived from a previous study, ~4200 metric tons of NO2-equivalent. By contrast, the 2011 National Emissions Inventory estimates oil and gas emissions of NOx to be ~3 times higher than our study in the Uintah Basin. We intend to expand our fuel-based approach to map combustion-related emissions in other U.S. oil and natural gas basins and compare with additional observational datasets.
Field Testing of Cryogenic Carbon Capture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sayre, Aaron; Frankman, Dave; Baxter, Andrew
Sustainable Energy Solutions has been developing Cryogenic Carbon Capture™ (CCC) since 2008. In that time two processes have been developed, the External Cooling Loop and Compressed Flue Gas Cryogenic Carbon Capture processes (CCC ECL™ and CCC CFG™ respectively). The CCC ECL™ process has been scaled up to a 1TPD CO2 system. In this process the flue gas is cooled by an external refrigerant loop. SES has tested CCC ECL™ on real flue gas slip streams from subbituminous coal, bituminous coal, biomass, natural gas, shredded tires, and municipal waste fuels at field sites that include utility power stations, heating plants, cementmore » kilns, and pilot-scale research reactors. The CO2 concentrations from these tests ranged from 5 to 22% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at a modest rate. The CCC CFG™ process has been scaled up to a .25 ton per day system. This system has been tested on real flue gas streams including subbituminous coal, bituminous coal and natural gas at field sites that include utility power stations, heating plants, and pilot-scale research reactors. CO2 concentrations for these tests ranged from 5 to 15% on a dry basis. CO2 capture ranged from 95-99+% during these tests. Several other condensable species were also captured including NO2, SO2 and PMxx at 95+%. NO was also captured at 90+%. Hg capture was also verified and the resulting effluent from CCC CFG™ was below a 1ppt concentration. This paper will focus on discussion of the capabilities of CCC, the results of field testing and the future steps surrounding the development of this technology.« less
Seismic reflections identify finite differences in gas hydrate resources
Dillon, William P.; Max, M.
1999-01-01
Gas hydrate is a gas-bearing, ice-like crystalline solid. The substance's build ing blocks consist of a gas molecule (generally methane) sur-rounded by a cage of water molecules. The total amount of methane in hydrate in the world is immense - the most recent speculative estimate centers on values of 21x1015 cu meters. Thus, it may represent a future energy resource. This estimate was presented by Keith Kvenvolden at the International Symposium on Methane Hydrates, Resources in the Near Future, sponsor ed by Japanese National Oil Company (Tokyo, October, 1998).But, as with any natural resource, there is a need to find naturally occurring concentrations in order to effectively extract gas. We need to answer four basic questions:Do methane hydrate concentrations suitable for methane extraction exist?How can we recognize these concentrations?Where are concentrations located?What processes control methane hydrate concentrations?Gas hydrate occurs naturally at the pressure/ temperature/chemical conditions that are present within ocean floor sediments at water depths greater than about 500 meters. The gas hydrate stability zone (GHSZ) extends from the sea bottom downward to a depth where the natural increase in temperature causes the hydrate to melt (dissociate), even though the downward pressure increase is working to increase gas hydrate stability.Thus, the base of the GHSZ tends to parallel the seafloor at any given water depth (pressure), because the sub-seafloor isotherms (depths of constant temperature) generally parallel the seafloor. The layer at which gas hydrate is stable commonly extends from the sea floor to several hundred meters below it. The gas in most gas hydrates is methane, generated by bacteria in the sediments. In some cases, it can be higher carbon-number, thermogenic hydrocarbon gases that rise from greater depths.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Matt; Hamilton, Chris
This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal tomore » liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-26
... Natural Gas Company; Southern Natural Gas Company, L.L.C.; Florida Gas Transmission Company, LLC; Notice of Application Take notice that on June 4, 2013, Northern Natural Gas Company (Northern), 1111 South 103rd Street, Omaha, Nebraska 68124; on behalf of itself, Southern Natural Gas Company, L.L.C., and...
NASA Astrophysics Data System (ADS)
Łaciak, Mariusz
2012-11-01
The increase in natural gas consumption by the general public and industry development, in particular the petrochemical and chemical industries, has made increasing the world interest in using gas replacement for natural gas, both as mixtures of flammable gases and gas mixtures as LPG with air (SNG - Synthetic Natural Gas). Economic analysis in many cases prove that to ensure interchangeability of gas would cost less than the increase in pipeline capacity to deliver the same quantity of natural gas. In addition, SNG systems and installations, could be considered as investments to improve security and flexibility of gas supply. Known existing methods for determining the interchangeability of gases in gas gear based on Wobbe index, which determines the heat input and the burning rate tide, which in turn is related to flame stability. Exceeding the Wobbe index of a value increases the amount of carbon monoxide in the exhaust than the permissible concentration. Methods of determining the interchangeability of gases is characterized by a gas in relation to the above-described phenomena by means of quantitative indicators, or using diagrams interchangeability, where the gas is characterized by the position of a point in a coordinate system. The best known method for determining the interchangeability of gases is Delbourg method, in which the gas is characterized by the revised (expanded) Wobbe Index (Wr), the combustion potential, rate of soot formation (Ic) and the ratio of the formation of yellow ends (I). Universal way to determine the interchangeability of gas is also Weaver accounting method. It does not require determination of the reference gas. It is designed for utensils for household gas and gas pressure p = 1.25 kPa. The criteria and definition of gas interchangeability volatility in practice to the combustion in a gas gear. In the case of gas exchange in industrial furnaces, interchangeability criteria are usually not very useful because of other conditions of combustion and heat exchange. In industrial reheating furnace gas is combusted in a sealed combustion chambers. Air supply is regulated. The exhaust gases are discharged into canals and the chimney to the atmosphere. The temperature difference between load (fuel gas) and the flame is much less than in the case of gas household appliances. In the furnace heat exchange takes place mainly by radiation in 85% to 95%. The value of heat flux flowing from the gas to a heated charge is not proportional to the heat load burners. Interchangeability of gas is linked by adding to natural gas, a certain amount of gas that is a substitute for natural gas in meeting the criteria for substitution in order to ensure certainty of supply of natural gas to customers. Gases that can be used in the processes of blending and used as replacement gases are mainly a mixture of propane and propane - butane (LPG - Liquid Petroleum Gas), landfill gas or biogas (LFG - Landfill Gas) and dimethyl ether (DME). One of the more well-known gas mixtures used in many countries around the world to compensate for peak demands is a mixture containing about 75% of natural gas and approximately 25% propane / air (LPG / air). Also in Poland is prepared to amend the provisions in this regard (at this moment - oxygen in the gas network can not exceed 0.2%). In this paper, the calculations of interchangeability of gas mixtures LFG - LPG and LPG - air (SNG) for natural gas was made. It was determined whether the analyzed mixtures have similar stable flame zones regardless of the quality of LFG fuel and whether they may in whole or in part replace CH4, without any modification of equipment suction air for combustion. The obtained results will determine whether the fuel can be used as a replacement for natural gas used in such household appliances and, possibly, industrial burners. In connection with the possibility of changes in the quality of LFG, depending on such factors as storage time, as pre-treatment, will be determined the degree of interchangeability of LFG as a fuel mixed with regard to its quality.
Proceedings of the 1995 SAE alternative fuels conference. P-294
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-12-31
This volume contains 32 papers and five panel discussions related to the fuel substitution of trucks, automobiles, buses, cargo handling equipment, diesel passenger cars, and pickup trucks. Fuels discussed include liquefied natural gas, natural gas, ethanol fuels, methanol fuels, dimethyl ether, methyl esters from various sources (rape oil, used cooking oils, soya, and canola oils), hydrogen fuels, and biodiesel. Other topics include fuel cell powered vehicles, infrastructure requirements for fuel substitution, and economics. Papers have been processed separately for inclusion on the data base.
Turboexpander calculations using a generalized equation of state correlation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, M.S.; Starling, K.E.
1975-01-01
A generalized method for predicting the thermodynamic properties of natural gas fluids has been developed and tested. The results of several comparisons between thermodynamic property values predicted by the method and experimental data are presented. Comparisons of predicted and experimental vapor-liquid equilibrium are presented. These comparisons indicate that the generalized correlation can be used to predict many thermodynamic properties of natural gas and LNG. Turboexpander calculations are presented to show the utility of the generalized correlation for process design calculations.
Room-temperature ionic liquids and composite materials: platform technologies for CO(2) capture.
Bara, Jason E; Camper, Dean E; Gin, Douglas L; Noble, Richard D
2010-01-19
Clean energy production has become one of the most prominent global issues of the early 21st century, prompting social, economic, and scientific debates regarding energy usage, energy sources, and sustainable energy strategies. The reduction of greenhouse gas emissions, specifically carbon dioxide (CO(2)), figures prominently in the discussions on the future of global energy policy. Billions of tons of annual CO(2) emissions are the direct result of fossil fuel combustion to generate electricity. Producing clean energy from abundant sources such as coal will require a massive infrastructure and highly efficient capture technologies to curb CO(2) emissions. Current technologies for CO(2) removal from other gases, such as those used in natural gas sweetening, are also capable of capturing CO(2) from power plant emissions. Aqueous amine processes are found in the vast majority of natural gas sweetening operations in the United States. However, conventional aqueous amine processes are highly energy intensive; their implementation for postcombustion CO(2) capture from power plant emissions would drastically cut plant output and efficiency. Membranes, another technology used in natural gas sweetening, have been proposed as an alternative mechanism for CO(2) capture from flue gas. Although membranes offer a potentially less energy-intensive approach, their development and industrial implementation lags far behind that of amine processes. Thus, to minimize the impact of postcombustion CO(2) capture on the economics of energy production, advances are needed in both of these areas. In this Account, we review our recent research devoted to absorptive processes and membranes. Specifically, we have explored the use of room-temperature ionic liquids (RTILs) in absorptive and membrane technologies for CO(2) capture. RTILs present a highly versatile and tunable platform for the development of new processes and materials aimed at the capture of CO(2) from power plant flue gas and in natural gas sweetening. The desirable properties of RTIL solvents, such as negligible vapor pressures, thermal stability, and a large liquid range, make them interesting candidates as new materials in well-known CO(2) capture processes. Here, we focus on the use of RTILs (1) as absorbents, including in combination with amines, and (2) in the design of polymer membranes. RTIL amine solvents have many potential advantages over aqueous amines, and the versatile chemistry of imidazolium-based RTILs also allows for the generation of new types of CO(2)-selective polymer membranes. RTIL and RTIL-based composites can compete with, or improve upon, current technologies. Moreover, owing to our experience in this area, we are developing new imidazolium-based polymer architectures and thermotropic and lyotropic liquid crystals as highly tailorable materials based on and capable of interacting with RTILs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192.937 What is a...
Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study
Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...
Study of Hydrogen Production Method using Latent Heat of Liquefied Natural Gas
NASA Astrophysics Data System (ADS)
Ogawa, Masaru; Seki, Tatsuyoshi; Honda, Hiroshi; Nakamura, Motomu; Takatani, Yoshiaki
In recent years, Fuel Cell Electrical Vehicle is expected to improve urban environment. Particularly a hydrogen fuel type FCEV expected for urban use, because its excellent characters such as short startup time, high responsibility and zero emission. On the other hand, as far as hydrogen production is concerned, large amount of CO2 is exhausted into the atmosphere by the process of LNG reforming. In our research, we studied the utilization of LNG latent heat for hydrogen gas production process as well as liquefied hydrogen process. Furthermore, CO2---Capturing as liquid state or solid state from hydrogen gas production process by LNG is also studied. Results of research shows that LNG latent heat is very effect to cool hydrogen gas for conventional hydrogen liquefied process. However, the LNG latent heat is not available for LNG reforming process. If we want to use LNG latent heat for this process, we have to develop new hydrogen gas produce process. In this new method, both hydrogen and CO2 is cooled by LNG directly, and CO2 is removed from the reforming gas. In order to make this method practical, we should develop a new type heat-exchanger to prevent solid CO2 from interfering the performance of it.
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
40 CFR 310.3 - What terms have specific definitions?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., and the term does not include natural gas, natural gas liquids, liquefied natural gas, or synthetic gas usable for fuel (or mixtures of natural gas and such synthetic gas). (g) Local emergency response... substance under section 101(14)(A) through (F) of CERCLA, nor does it include natural gas, liquefied natural...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... interconnect pipelines to four existing offshore pipelines (Dauphin Natural Gas Pipeline, Williams Natural Gas Pipeline, Destin Natural Gas Pipeline, and Viosca Knoll Gathering System [VKGS] Gas Pipeline) that connect to the onshore natural gas transmission pipeline system. Natural gas would be delivered to customers...
Microstructural characteristics of natural gas hydrates hosted in various sand sediments.
Zhao, Jiafei; Yang, Lei; Liu, Yu; Song, Yongchen
2015-09-21
Natural gas hydrates have aroused worldwide interest due to their energy potential and possible impact on climate. The occurrence of natural gas hydrates hosted in the pores of sediments governs the seismic exploration, resource assessment, stability of deposits, and gas production from natural gas hydrate reserves. In order to investigate the microstructure of natural gas hydrates occurring in pores, natural gas hydrate-bearing sediments were visualized using microfocus X-ray computed tomography (CT). Various types of sands with different grain sizes and wettability were used to study the effect of porous materials on the occurrence of natural gas hydrates. Spatial distributions of methane gas, natural gas hydrates, water, and sands were directly identified. This work indicates that natural gas hydrates tend to reside mainly within pore spaces and do not come in contact with adjacent sands. Such an occurring model of natural gas hydrates is termed the floating model. Furthermore, natural gas hydrates were observed to nucleate at gas-water interfaces as lens-shaped clusters. Smaller sand grain sizes contribute to higher hydrate saturation. The wetting behavior of various sands had little effect on the occurrence of natural gas hydrates within pores. Additionally, geometric properties of the sediments were collected through CT image reconstructions. These findings will be instructive for understanding the microstructure of natural gas hydrates within major global reserves and for future resource utilization of natural gas hydrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhary, V.R.; Mulla, S.A.R.; Rajput, A.M.
1997-06-01
Noncatalytic oxypyrolysis of C{sub 2+}-hydrocarbons from natural gas at 700--850 C in the presence of steam and limited oxygen yields ethylene and propylene with appreciable conversion and high selectivity but with almost no coke or tarlike product formation. In this process, the exothermic oxidative hydrocarbon conversion reactions are coupled directly with the endothermic cracking of C{sub 2+}-hydrocarbons by their simultaneous occurrence. Hence, the process operates in a most energy-efficient and safe (or nonhazardous) manner and also can be made almost thermoneutral or mildly endothermic/exothermic, thus requiring little or no external energy for the hydrocarbon conversion reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.
2007-09-01
Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleummore » infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate« less
NASA Astrophysics Data System (ADS)
Jones, A. P.
2016-12-01
Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of `polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm `carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.
Modelling of the combustion velocity in UIT-85 on sustainable alternative gas fuel
NASA Astrophysics Data System (ADS)
Smolenskaya, N. M.; Korneev, N. V.
2017-05-01
The flame propagation velocity is one of the determining parameters characterizing the intensity of combustion process in the cylinder of an engine with spark ignition. Strengthening of requirements for toxicity and efficiency of the ICE contributes to gradual transition to sustainable alternative fuels, which include the mixture of natural gas with hydrogen. Currently, studies of conditions and regularities of combustion of this fuel to improve efficiency of its application are carried out in many countries. Therefore, the work is devoted to modeling the average propagation velocities of natural gas flame front laced with hydrogen to 15% by weight of the fuel, and determining the possibility of assessing the heat release characteristics on the average velocities of the flame front propagation in the primary and secondary phases of combustion. Experimental studies, conducted the on single cylinder universal installation UIT-85, showed the presence of relationship of the heat release characteristics with the parameters of the flame front propagation. Based on the analysis of experimental data, the empirical dependences for determination of average velocities of flame front propagation in the first and main phases of combustion, taking into account the change in various parameters of engine operation with spark ignition, were obtained. The obtained results allow to determine the characteristics of heat dissipation and to assess the impact of addition of hydrogen to the natural gas combustion process, that is needed to identify ways of improvement of the combustion process efficiency, including when you change the throttling parameters.
Code of Federal Regulations, 2010 CFR
2010-04-01
... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural gas...
Code of Federal Regulations, 2011 CFR
2011-04-01
... the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. 382.202 Section 382.202... GENERAL RULES ANNUAL CHARGES Annual Charges § 382.202 Annual charges under the Natural Gas Act and Natural Gas Policy Act of 1978 and related statutes. The adjusted costs of administration of the natural gas...
NASA Astrophysics Data System (ADS)
Rella, C.; Jacobson, G. A.; Crosson, E.; Sweeney, C.; Karion, A.; Petron, G.
2012-12-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Given that the global warming potential of methane is many times greater than that of carbon dioxide (Forster et al. 2007), the importance of quantifying methane emissions becomes clear. Companion presentations at this meeting describe efforts to quantify the overall methane emissions in two separate gas producing areas in Colorado and Utah during intensive field campaigns undertaken in 2012. A key step in the process of assessing the emissions arising from natural gas production activities is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One method for assessing the contribution of these different sources is stable isotope analysis. In particular, the δ13CH4 signature of natural gas (-37 permil) is significantly different that the signature of other significant sources of methane, such as landfills or ruminants (-50 to -70 permil). In this paper we present measurements of δ13CH4 in Colorado in Weld County, a region of intense natural gas production, using a mobile δ13CH4¬ analyzer capable of high-precision measurements of the stable isotope ratio of methane at ambient levels. This analyzer was used to make stable isotope measurements at a fixed location near the center of the gas producing region, from which an overall isotope ratio for the regional emissions is determined. In addition, mobile measurements in the nocturnal boundary layer have been made, over a total distance of 150 km throughout Weld County, allowing spatially resolved measurements of this isotope signature. Finally, this analyzer was used to quantify the isotopic signature of those individual sources (natural gas fugitive emissions, concentrated animal feeding operations, and landfills) that constitute the majority of methane emissions in this region, by making measurements of the isotope ratio directly in the downwind plume from each source. These data are combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities in the region. The results are compared to inventories as well as other measurement techniques, and the uncertainty of the measurement is estimated.
SDSS-IV MaNGA: A SERENDIPITOUS OBSERVATION OF A POTENTIAL GAS ACCRETION EVENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Edmond; Stark, David V.; Huang, Song
The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric H α complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This H α extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this H α extension could be diffuse ionized gas, a gas accretion event, or something else. We findmore » that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.« less
SDSS-IV MaNGA: A Serendipitous Observation of a Potential Gas Accretion Event
NASA Astrophysics Data System (ADS)
Cheung, Edmond; Stark, David V.; Huang, Song; Rubin, Kate H. R.; Lin, Lihwai; Tremonti, Christy; Zhang, Kai; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Drory, Niv; Gelfand, Joseph D.; Knapen, Johan H.; Maiolino, Roberto; Malanushenko, Olena; Masters, Karen L.; Merrifield, Michael R.; Pace, Zach; Pan, Kaike; Riffel, Rogemar A.; Roman-Lopes, Alexandre; Rujopakarn, Wiphu; Schneider, Donald P.; Stott, John P.; Thomas, Daniel; Weijmans, Anne-Marie
2016-12-01
The nature of warm, ionized gas outside of galaxies may illuminate several key galaxy evolutionary processes. A serendipitous observation by the MaNGA survey has revealed a large, asymmetric Hα complex with no optical counterpart that extends ≈8″ (≈6.3 kpc) beyond the effective radius of a dusty, starbursting galaxy. This Hα extension is approximately three times the effective radius of the host galaxy and displays a tail-like morphology. We analyze its gas-phase metallicities, gaseous kinematics, and emission-line ratios and discuss whether this Hα extension could be diffuse ionized gas, a gas accretion event, or something else. We find that this warm, ionized gas structure is most consistent with gas accretion through recycled wind material, which could be an important process that regulates the low-mass end of the galaxy stellar mass function.
Demonstration of an ethane spectrometer for methane source identification.
Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E
2014-07-15
Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Ming; Abdelaziz, Omar; Yin, Hongxi
2014-11-01
Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60more » C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erbar, J.H.; Maddox, R.N.
1981-07-06
Expansion processes, using either Joule-Thomson or isentropic principles play an important role in the processing of natural gas streams for liquid recovery and/or hydrocarbon-dewpoint control. Constant-enthalpy expansion has been an integral part of gas processing schemes for many years. The constant entropy, or isentropic, process is more recent but has achieved wide-spread popularity. In typcial flow sheets for expansion processess, the expansion device is shown to be a value or choke. It also could be an expansion turbine to indicate an isentropic expansion. The expansion may be to lower pressure; or, in the case of turboexpansion, it could recover materialmore » or produce work. More frequently, the aim of the expansion is to produce low temperature and enhance liquid recovery.« less
Williams, R.L.; Mayer, K.U.; Amos, R.T.; Blowes, D.W.; Ptacek, C.J.; Bain, J.G.
2007-01-01
The strongly reducing nature of permeable reactive barrier (PRB) treatment materials can lead to gas production, potentially resulting in the formation of gas bubbles and ebullition. Degassing in organic C based PRB systems due to the production of gases (primarily CO2 and CH4) is investigated using the depletion of naturally occurring non-reactive gases Ar and N2, to identify, confirm, and quantify chemical and physical processes. Sampling and analysis of dissolved gases were performed at the Nickel Rim Mine Organic Carbon PRB, which was designed for the treatment of groundwater contaminated by low quality mine drainage characterized by slightly acidic pH, and elevated Fe(II) and SO4 concentrations. A simple 4-gas degassing model was used to analyze the dissolved gas data, and the results indicate that SO4 reduction is by far the dominant process of organic C consumption within the barrier. The data provided additional information to delineate rates of microbially mediated SO4 reduction and confirm the presence of slow and fast flow zones within the barrier. Degassing was incorporated into multicomponent reactive transport simulations for the barrier and the simulations were successful in reproducing observed dissolved gas trends.
Influence of temperature on methane hydrate formation.
Zhang, Peng; Wu, Qingbai; Mu, Cuicui
2017-08-11
During gas hydrate formation process, a phase transition of liquid water exists naturally, implying that temperature has an important influence on hydrate formation. In this study, methane hydrate was formed within the same media. The experimental system was kept at 1.45, 6.49, and 12.91 °C respectively, and then different pressurization modes were applied in steps. We proposed a new indicator, namely the slope of the gas flow rates against time (dν g /dt), to represent the intrinsic driving force for hydrate formation. The driving force was calculated as a fixed value at the different stages of formation, including initial nucleation/growth, secondary nucleation/growth, and decay. The amounts of gas consumed at each stage were also calculated. The results show that the driving force during each stage follows an inverse relation with temperature, whereas the amount of consumed gas is proportional to temperature. This opposite trend indicates that the influences of temperature on the specific formation processes and final amounts of gas contained in hydrate should be considered separately. Our results also suggest that the specific ambient temperature under which hydrate is formed should be taken into consideration, when explaining the formation of different configurations and saturations of gas hydrates in natural reservoirs.
U.S. Natural Gas Markets: Mid-Term Prospects for Natural Gas Supply
2001-01-01
This service report describes the recent behavior of natural gas markets with respect to natural gas prices, their potential future behavior, the potential future supply contribution of liquefied natural gas and increased access to federally restricted resources, and the need for improved natural gas data.
Combined Brayton-JT cycles with refrigerants for natural gas liquefaction
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Park, Jae Hoon; Lee, Sanggyu; Choe, Kun Hyung
2012-06-01
Thermodynamic cycles for natural gas liquefaction with single-component refrigerants are investigated under a governmental project in Korea, aiming at new processes to meet the requirements on high efficiency, large capacity, and simple equipment. Based upon the optimization theory recently published by the present authors, it is proposed to replace the methane-JT cycle in conventional cascade process with a nitrogen-Brayton cycle. A variety of systems to combine nitrogen-Brayton, ethane-JT and propane-JT cycles are simulated with Aspen HYSYS and quantitatively compared in terms of thermodynamic efficiency, flow rate of refrigerants, and estimated size of heat exchangers. A specific Brayton-JT cycle is suggested with detailed thermodynamic data for further process development. The suggested cycle is expected to be more efficient and simpler than the existing cascade process, while still taking advantage of easy and robust operation with single-component refrigerants.
Thermodynamic model effects on the design and optimization of natural gas plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, S.; Zabaloy, M.; Brignole, E.A.
1999-07-01
The design and optimization of natural gas plants is carried out on the basis of process simulators. The physical property package is generally based on cubic equations of state. By rigorous thermodynamics phase equilibrium conditions, thermodynamic functions, equilibrium phase separations, work and heat are computed. The aim of this work is to analyze the NGL turboexpansion process and identify possible process computations that are more sensitive to model predictions accuracy. Three equations of state, PR, SRK and Peneloux modification, are used to study the effect of property predictions on process calculations and plant optimization. It is shown that turboexpander plantsmore » have moderate sensitivity with respect to phase equilibrium computations, but higher accuracy is required for the prediction of enthalpy and turboexpansion work. The effect of modeling CO{sub 2} solubility is also critical in mixtures with high CO{sub 2} content in the feed.« less
NASA Astrophysics Data System (ADS)
Andreassen, K.; Hubbard, A.; Patton, H.; Vadakkepuliyambatta, S.; Winsborrow, M.; Plaza-Faverola, A. A.; Serov, P.
2017-12-01
Large-scale methane releases from thawing Arctic gas hydrates is a major concern, yet the processes and fluxes involved remain elusive. We present geophysical data indicating two contrasting processes of natural methane emissions from the seafloor of the northern Barents Sea, Polar North Atlantic. Abundant gas flares, acoustically imaged in the water column reveal slow, gradual release of methane bubbles, a process that is commonly documented from nearby areas, elsewhere in the Arctic and along continental margins worldwide. Conversely, giant craters across the study area indicate a very different process. We propose that these are blow-out craters, formed through large-scale, abrupt methane expulsion induced when gas hydrates destabilized after the Barents Sea Ice Sheet retreated from the area. The data reveal over 100 giant seafloor craters within an area of 440 km2. These are up to 1000 m in diameter, 30 m deep and with a semi-circular to elliptical shape. We also identified numerous large seafloor mounds, which we infer to have formed by the expansion of gas hydrate accumulations within the shallow subsurface, so-called gas hydrate pingos. These are up to 1100 m wide and 20 m high. Smaller craters and mounds < 200 m wide and with varying relief are abundant across the study site. The empirical observations and analyses are combined with numerical modelling of ice sheet, isostatic and gas hydrate evolution and indicate that during glaciation, natural gas migrating from underlying hydrocarbon reservoirs was stored as subglacial gas hydrates. On ice sheet retreat, methane from these hydrate reservoirs and underlying free gas built up and abruptly released, forming the giant mounds and craters observed in the study area today. Petroleum basins are abundant beneath formerly and presently glaciated regions. We infer that episodes of subglacial sequestration of gas hydrates and underlying free gas and subsequent abrupt expulsions were common and widespread throughout Quaternary glacial cycles. The presented conceptual model for the evolution of giant craters can also serve as an analogue for future destabilization of glacially influenced hydrate reservoirs.
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting inmore » equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project. Efforts this quarter have concentrated on field site selection. ChevronTexaco has nominated their Headlee Gas Plant in Odessa, TX for a commercial-scale dehydration test. Design and cost estimation for this new site are underway. A HazOp review was conducted. Potting and module materials testing continued. Preliminary design of the bench-scale equipment continues. A status meeting was held in Morgantown, WV with the DOE Project Manager.« less
Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor
NASA Astrophysics Data System (ADS)
Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-Faverola, A.; Gudlaugsson, E.; Serov, P.; Deryabin, A.; Mattingsdal, R.; Mienert, J.; Bünz, S.
2017-06-01
Widespread methane release from thawing Arctic gas hydrates is a major concern, yet the processes, sources, and fluxes involved remain unconstrained. We present geophysical data documenting a cluster of kilometer-wide craters and mounds from the Barents Sea floor associated with large-scale methane expulsion. Combined with ice sheet/gas hydrate modeling, our results indicate that during glaciation, natural gas migrated from underlying hydrocarbon reservoirs and was sequestered extensively as subglacial gas hydrates. Upon ice sheet retreat, methane from this hydrate reservoir concentrated in massive mounds before being abruptly released to form craters. We propose that these processes were likely widespread across past glaciated petroleum provinces and that they also provide an analog for the potential future destabilization of subglacial gas hydrate reservoirs beneath contemporary ice sheets.
Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems
NASA Astrophysics Data System (ADS)
White, M. D.
2011-12-01
Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. This paper describes and demonstrates a numerical solution scheme for ternary hydrate systems that seeks a balance between accuracy and computational efficiency. This scheme uses a generalize cubic equation of state, functional forms for the hydrate equilibria and cage occupancies, variable switching scheme for phase transitions, and kinetic exchange of hydrate formers (i.e., CH4, CO2, and N2) between the mobile phases (i.e., aqueous, liquid CO2, and gas) and hydrate phase. Accuracy of the scheme will be evaluated by comparing property values and phase equilibria against experimental data. Computational efficiency of the scheme will be evaluated by comparing the base scheme against variants. The application of interest will the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.
40 CFR 60.5430 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... natural gas liquids from field gas, the fractionation of the liquids into natural gas products, or other... gas unit means a unit used to cool natural gas to the point at which it is condensed into a liquid... pressurized natural gas. Natural gas liquids means the hydrocarbons, such as ethane, propane, butane, and...
NASA Astrophysics Data System (ADS)
Nakaten, Natalie; Islam, Rafiqul; Kempka, Thomas
2014-05-01
The application of underground coal gasification (UCG) with proven carbon mitigation techniques may provide a carbon neutral approach to tackle electricity and fertilizer supply shortages in Bangladesh. UCG facilitates the utilization of deep-seated coal seams, not economically exploitable by conventional coal mining. The high-calorific synthesis gas produced by UCG can be used for e.g. electricity generation or as chemical raw material for hydrogen, methanol and fertilizer production. Kempka et al. (2010) carried out an integrated assessment of UCG operation, demonstrating that about 19 % of the CO2 produced during UCG may be mitigated by CO2 utilization in fertilizer production. In the present study, we investigated an extension of the UCG system by introducing excess CO2 storage in the gas deposit of the Bahkrabad gas field (40 km east of Dhaka, Bangladesh). This gas field still holds natural gas resources of 12.8 million tons of LNG equivalent, but is close to abandonment due to a low reservoir pressure. Consequently, applying enhanced gas recovery (EGR) by injection of excess carbon dioxide from the coupled UCG-urea process may mitigate carbon emissions and support natural gas production from the Bahkrabad gas field. To carry out an integrated techno-economic assessment of the coupled system, we adapted the techno-economic UCG-CCS model developed by Nakaten et al. (2014) to consider the urea and EGR processes. Reservoir simulations addressing EGR in the Bakhrabad gas field by utilization of excess carbon dioxide from the UCG process were carried out to account for the induced pressure increase in the reservoir, and thus additional gas recovery potentials. The Jamalganj coal field in Northwest Bangladesh provides favorable geological and infrastructural conditions for a UCG operation at coal seam depths of 640 m to 1,158 m. Excess CO2 can be transported via existing pipeline networks to the Bahkrabad gas field (about 300 km distance from the coal deposit) to be injected in the scope of the scheduled EGR operation. Our techno-economic modeling results considering EGR reservoir simulations demonstrate that an economic and carbon neutral operation of UCG combined with fertilizer production and CCS is feasible. The suggested approach may provide a bridging technology to tackle fertilizer and power supply shortages in Bangladesh, and in addition support further production from depleting natural gas deposits. References Kempka, T., Plötz, M.L., Hamann, J., Deowan, S.A., Azzam, R. (2010) Carbon dioxide utilisation for carbamide production by application of the coupled UCG-urea process. Energy Procedia 4: 2200-2205. Nakaten, N., Schlüter, R., Azzam, R., Kempka, T. (2014) Development of a techno-economic model for dynamic calculation of COE, energy demand and CO2 emissions of an integrated UCG-CCS process. Energy (in print). Doi 10.1016/j.energy.2014.01.014
Hu, Xuan; Li, Wei-dong; Li, Ou; Hao, Jiang-bo; Liu, Jia-kun
2012-09-01
To study the effect of gas-turbine green discoloring and drying processing method on the quality of various Lonicerae Japonicae Flos herbs. DIKMA DiamonsilTM-C18 column (4.6 mm x 250 mm, 5 microm) was adopted using HPLC Waters 1525 and eluted with acetonitrile and 0.1% phosphate acid as the mobile phase. The flow rate was 1.0 mL x min(-1) , the column temperature was 25 degrees C the detection wavelength was 355 nm. After being processed by the gas-turbine green discoloring and drying method, tetraploid Lonicerae Japonicae Flos showed a green color. The contents of chlorogenic acid and galuteolin were 5.31% and 0.105% , both significantly higher by 18.0% and 32.1% than those of diploid Lonicerae Japonicae Flos processed by the same method. The content of chlorogenic acid in tetraploid Lonicerae Japonicae Flos processed the gas-turbine green discoloring and drying method were also remarkably higher than that of tetraploid and diploid Lonicerae Japonicae Flos processed by traditional processing method of natural drying. The gas-turbine green discoloring and drying processing method is a new-type drying method suitable for tetraploid Lonicerae Japonicae Flos. Under the condition of gas-turbine green discoloring and drying processing, tetraploid Lonicerae Japonicae Flos shows much higher quality than Lonicerae Japonicae Flos, suggesting that it is a good variety worth popularizing and applying.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-27
... application under Section 7 of the Natural Gas Act and Part 157 the Commission's Rules and Regulations for...-388 at Texas Eastern Transmission, LP-- Summerfield, Tennessee Gas--Pipeline-Gilmore, Rockies Express... Utica Shale production for processing at one of Blue Racer's plants--Natrium, Lewis or Berne. Blue Racer...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mercaptan/Ethanol + Hydrogen sulfide Methanol/H.P. Synthesis from natural gas via synthetic gas Oxo Alcohols... + Ammonia n-Propyl alcohol/Hydrogenation of propionaldehyde, Oxo process SAN resin/Suspension polymerization... methanol Acetaldehyde/Oxidation of ethylene with cupric chloride catalyst Acetic acid/Catalytic oxidation...
USDA-ARS?s Scientific Manuscript database
Gas-permeable membranes coupled with low-rate aeration are useful to recover ammonium from livestock effluents. In this study, the role of inorganic carbon (bicarbonate) to enhance the nitrogen (N) recovery process was evaluated using synthetic effluents with various ammonium to bicarbonate molar ra...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaylock, Myra L.; LaFleur, Chris Bensdotter; Muna, Alice Baca
Safety standards development for maintenance facilities of liquid and compressed natural gas fueled vehicles is required to ensure proper facility design and operating procedures. Standard development organizations are utilizing risk-informed concepts to develop natural gas vehicle (NGV) codes and standards so that maintenance facilities meet acceptable risk levels. The present report summarizes Phase II work for existing NGV repair facility code requirements and highlights inconsistencies that need quantitative analysis into their effectiveness. A Hazardous and Operability study was performed to identify key scenarios of interest using risk ranking. Detailed simulations and modeling were performed to estimate the location and behaviormore » of natural gas releases based on these scenarios. Specific code conflicts were identified, and ineffective code requirements were highlighted and resolutions proposed. These include ventilation rate basis on area or volume, as well as a ceiling offset which seems ineffective at protecting against flammable gas concentrations. ACKNOWLEDGEMENTS The authors gratefully acknowledge Bill Houf (SNL -- Retired) for his assistance with the set-up and post-processing of the numerical simulations. The authors also acknowledge Doug Horne (retired) for his helpful discussions. We would also like to acknowledge the support from the Clean Cities program of DOE's Vehicle Technology Office.« less
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
40 CFR 98.400 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.400 Definition of the source category. This supplier category consists of natural gas liquids fractionators and local natural gas distribution companies. (a) Natural gas liquids fractionators are installations that...
Method for controlling clathrate hydrates in fluid systems
Sloan, Jr., Earle D.
1995-01-01
Discussed is a process for preventing clathrate hydrate masses from impeding the flow of fluid in a fluid system. An additive is contacted with clathrate hydrate masses in the system to prevent those clathrate hydrate masses from impeding fluid flow. The process is particularly useful in the natural gas and petroleum production, transportation and processing industry where gas hydrate formation can cause serious problems. Additives preferably contain one or more five member and/or six member cyclic chemical groupings. Additives include poly(N-vinyl-2-pyrrolidone) and hydroxyethylcellulose, either in combination or alone.
The report examines process alternatives for the optimal use of natural gas and biomass for production of fuel-cell vehicle fuel, emphasizing maximum displacement of petroleum and maximum reduction of overall fuel-cycle carbon dioxide (CO2) emissions at least cost. Three routes a...
Studies investigate effects of hydraulic fracturing
NASA Astrophysics Data System (ADS)
Balcerak, Ernie
2012-11-01
The use of hydraulic fracturing, also known as fracking, to enhance the retrieval of natural gas from shale has been increasing dramatically—the number of natural gas wells rose about 50% since 2000. Shale gas has been hailed as a relatively low-cost, abundant energy source that is cleaner than coal. However, fracking involves injecting large volumes of water, sand, and chemicals into deep shale gas reservoirs under high pressure to open fractures through which the gas can travel, and the process has generated much controversy. The popular press, advocacy organizations, and the documentary film Gasland by Josh Fox have helped bring this issue to a broad audience. Many have suggested that fracking has resulted in contaminated drinking water supplies, enhanced seismic activity, demands for large quantities of water that compete with other uses, and challenges in managing large volumes of resulting wastewater. As demand for expanded domestic energy production intensifies, there is potential for substantially increased use of fracking together with other recovery techniques for "unconventional gas resources," like extended horizontal drilling.
18 CFR 284.263 - Exemption from section 7 of Natural Gas Act and certain regulatory conditions.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 7 of Natural Gas Act and certain regulatory conditions. 284.263 Section 284.263 Conservation of... UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale...
Alternative Fuels Data Center: Natural Gas
Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on
18 CFR 284.263 - Exemption from section 7 of Natural Gas Act and certain regulatory conditions.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 7 of Natural Gas Act and certain regulatory conditions. 284.263 Section 284.263 Conservation of... UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES CERTAIN SALES AND TRANSPORTATION OF NATURAL GAS UNDER THE NATURAL GAS POLICY ACT OF 1978 AND RELATED AUTHORITIES Emergency Natural Gas Sale...
2012-01-01
This assessment of the natural gas sector in Iran, with a focus on Iran’s natural gas exports, was prepared pursuant to section 505 (a) of the Iran Threat Reduction and Syria Human Rights Act of 2012 (Public Law No: 112-158). As requested, it includes: (1) an assessment of exports of natural gas from Iran; (2) an identification of the countries that purchase the most natural gas from Iran; (3) an assessment of alternative supplies of natural gas available to those countries; (4) an assessment of the impact a reduction in exports of natural gas from Iran would have on global natural gas supplies and the price of natural gas, especially in countries identified under number (2); and (5) such other information as the Administrator considers appropriate.
NASA Astrophysics Data System (ADS)
Janicki, Georg; Schlüter, Stefan; Hennig, Torsten; Deerberg, Görge
2013-04-01
The recovery of methane from gas hydrate layers that have been detected in several submarine sediments and permafrost regions around the world so far is considered to be a promising measure to overcome future shortages in natural gas as fuel or raw material for chemical syntheses. Being aware that natural gas resources that can be exploited with conventional technologies are limited, research is going on to open up new sources and develop technologies to produce methane and other energy carriers. Thus various research programs have started since the early 1990s in Japan, USA, Canada, South Korea, India, China and Germany to investigate hydrate deposits and develop technologies to destabilize the hydrates and obtain the pure gas. In recent years, intensive research has focussed on the capture and storage of carbon dioxide from combustion processes to reduce climate change. While different natural or manmade reservoirs like deep aquifers, exhausted oil and gas deposits or other geological formations are considered to store gaseous or liquid carbon dioxide, the storage of carbon dioxide as hydrate in former methane hydrate fields is another promising alternative. Due to beneficial stability conditions, methane recovery may be well combined with CO2 storage in form of hydrates. This has been shown in several laboratory tests and simulations - technical field tests are still in preparation. Within the scope of the German research project »SUGAR«, different technological approaches are evaluated and compared by means of dynamic system simulations and analysis. Detailed mathematical models for the most relevant chemical and physical effects are developed. The basic mechanisms of gas hydrate formation/dissociation and heat and mass transport in porous media are considered and implemented into simulation programs like CMG STARS and COMSOL Multiphysics. New simulations based on field data have been carried out. The studies focus on the evaluation of the gas production potential from turbidites and their ability for carbon dioxide storage. The effects occurring during gas production and CO2 storage within a hydrate deposit are identified and described for various scenarios. The behaviour of relevant process parameters such as pressure, temperature and phase saturations is discussed and compared for different production strategies: depressurization, CO2 injection after depressurization and simultaneous methane production and CO2 injection.
Evolution of light hydrocarbon gases in subsurface processes: Constraints from chemical equilibrium
NASA Astrophysics Data System (ADS)
Sugisaki, Ryuichi; Nagamine, Koichiro
1995-06-01
The behaviour of CH 4, C 2H 6 and C 3H 8 in subsurface processes such as magma intrusion, volcanic gas discharge and natural gas generation have been examined from the viewpoint of chemical equilibrium. It seems that equilibrium among these three hydrocarbons is attainable at about 200°C. When a system at high temperatures is cooled, re-equilibration is continued until a low temperature is reached. The rate at which re-equilibration is achieved, however, steadily diminishes and, below 200°C, the reaction between the hydrocarbons stops and the gas composition at this time is frozen in, and it remains unchanged in a metastable state for a long period of geological time. Natural gas compositions from various fields have shown that, when a hydrocarbon system out of chemical equilibrium is heated, it gradually approaches equilibrium above 150°C. On the way towards equilibration, compositions of thermogenic gases apparently temporarily show a thermodynamic equilibrium constant at a temperature that is higher than the real equilibrium temperature expected from the ambient temperature of the samples; in contrast, biogenic gases indicate a lower temperature. In lower temperature regions, kinetic effects probably control the gas composition; the compositions are essentially subjected to genetic processes operating on the gases (such as pyrolysis of organic material and bacterial activity) and they fluctuate substantially. Examination of volcanic gases and pyrolysis experimental data, however, have suggested that the equilibration rate of these hydrocarbons is sluggish in comparison with that of reactive inorganic species such as H 2S and SO 2. The view presented in this study will be helpful in understanding the genetic processes that create oil and gas and the migration of these hydrocarbons and in interpreting the origins of magmatic gases.
NASA Technical Reports Server (NTRS)
Jones, Amber; White, Charles; Castillo, Christopher; Hitimana, Emmanuel; Nguyen, Kenny; Mishra, Shikher; Clark, Walt
2014-01-01
Much of Central Africa's economy is centered on oil production. Oil deposits lie below vast amounts of compressed natural gas. The latter is often flared off during oil extraction due to a lack of the infrastructure needed to utilize it for productive energy generation. Though gas flaring is discouraged by many due to its contributions to greenhouse emissions, it represents a waste process and is rarely tracked or recorded in this region. In contrast to this energy waste, roughly 80% of Africa's population lacks access to electricity and in turn uses biomass such as wood for heat and light. In addition to the dangers incurred from collecting and using biomass, the practice commonly leads to ecological change through the acquisition of wood from forests surrounding urban areas. The objective of this project was to gain insight on domestic energy usage in Central Africa, specifically Angola, Gabon, and the Republic of Congo. This was done through an analysis of deforestation, an estimation of gas flared, and a suitability study for the infrastructure needed to realize the natural gas resources. The energy from potential natural gas production was compared to the energy equivalent of the biomass being harvested. A site suitability study for natural gas pipeline routes from flare sites to populous locations was conducted to assess the feasibility of utilizing natural gas for domestic energy needs. Analyses and results were shared with project partners, as well as this project's open source approach to assessing the energy sector. Ultimately, Africa's growth demands energy for its people, and natural gas is already being produced by the flourishing petroleum industry in numerous African countries. By utilizing this gas, Africa could reduce flaring, recuperate the financial and environmental loss that flaring accounts for, and unlock a plentiful domestic energy source for its people. II. Introduction Background Africa is home to numerous burgeoning economies; a significant number rely on oil production as their primary source of revenue. Relative to its size and population density, the continent has a wealth of natural resources, including oil and natural gas deposits. The exploration of these resources is not a new endeavor, but rather one that spans decades, up to a century in some places. Their resources, if realized, could provide a great means of economic and social mobility for the people of Africa. Currently, Africa represents about 12 % of the energy market, yet at the same time, consumes only 3 % of the world's energy (Kasekende 2009). The higher
NASA Astrophysics Data System (ADS)
Harkness, J.; Darrah, T.; Warner, N. R.; Whyte, C. J.; Moore, M. T.; Millot, R.; Kloppmann, W.; Jackson, R. B.; Vengosh, A.
2017-12-01
Naturally occurring methane is nearly ubiquitous in most sedimentary basins and delineating the effects of anthropogenic contamination sources from geogenic sources is a major challenge for evaluating the impact of unconventional shale gas development on water quality. This study employs a broadly integrated study of various geochemical techniques to investigate the geochemical variations of groundwater and surface water before, during, and after hydraulic fracturing.This approache combines inorganic geochemistry (major cations and anions), stable isotopes of select inorganic constituents including strontium (87Sr/86Sr), boron (δ11B), lithium (δ7Li), and carbon (δ13C-DIC), select hydrocarbon molecular (methane, ethane, propane, butane, and pentane) and isotopic tracers (δ13C-CH4, δ13C-C2H6), tritium (3H), and noble gas elemental and isotopic composition (He, Ne, Ar) to apportion natural and anthropogenic sources of natural gas and salt contaminants both before and after drilling. Methane above 1 ccSTP/L in groundwater samples awas strongly associated with elevated salinity (chloride >50 mg/L).The geochemical and isotopic analysis indicate saline groundwater originated via naturally occurring processes, presumably from the migration of deeper methane-rich brines that have interacted extensively with coal lithologies. The chemistry and gas compostion of both saline and fresh groundwater wells did not change following the installation of nearby shale-gas wells.The results of this study emphasize the value of baseline characterization of water quality in areas of fossil fuel exploration. Overall this study presents a comprehensive geochemical framework that can be used as a template for assessing the sources of elevated hydrocarbons and salts to water resources in areas potentially impacted by oil and gas development.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... natural gas. 211112 Natural gas liquid extraction facilities. Petrochemical Production 32511 Ethylene.... Suppliers of Natural Gas and NGLs 221210 Natural gas distribution facilities. 211112 Natural gas liquid... Gas Reporting Rule, which are provided in the Special Rules Governing Certain Information Obtained...
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Chao, J.; Forde, O.; Prystupa, E.; Mayer, K. U.; Black, T. A.; Tannant, D. D.; Crowe, S.; Hallam, S.; Mayer, B.; Lauer, R. M.; van Geloven, C.; Welch, L. A.; Salas, C.; Levson, V.; Risk, D. A.; Beckie, R. D.
2017-12-01
Fugitive gas, comprised primarily of methane, can be unintentionally released from upstream oil and gas development either at surface from leaky infrastructure or in the subsurface through failure of energy well bore integrity. For the latter, defective cement seals around energy well casings may permit buoyant flow of natural gas from the deeper subsurface towards shallow aquifers, the ground surface and potentially into the atmosphere. Concerns associated with fugitive gas release at surface and in the subsurface include contributions to greenhouse gas emissions, subsurface migration leading to accumulation in nearby infrastructure and impacts to groundwater quality. Current knowledge of the extent of fugitive gas leakage including how to best detect and monitor over time, and particularly its migration and fate in the subsurface, is incomplete. We have established an experimental field observatory for evaluating fugitive gas leakage in an area of historic and ongoing hydrocarbon resource development within the Montney Resource Play of the Western Canadian Sedimentary Basin, British Columbia, Canada. Natural gas will be intentionally released at surface and up to 25 m below surface at various rates and durations. Resulting migration patterns and impacts will be evaluated through examination of the geology, hydrogeology, hydro-geochemistry, isotope geochemistry, hydro-geophysics, vadose zone and soil gas processes, microbiology, and atmospheric conditions. The use of unmanned aerial vehicles and remote sensors for monitoring and detection of methane will also be assessed for suitability as environmental monitoring tools. Here we outline the experimental design and describe initial research conducted to develop a detailed site conceptual model of the field observatory. Subsequently, results attained from pilot surface and sub-surface controlled natural gas releases conducted in late summer 2017 will be presented as well as results of numerical modelling conducted to plan methane release experiments in 2018 and onwards. This research will create knowledge which informs strategies to detect and monitor fugitive gas fluxes at the surface and in groundwater; as well as guide associated regulatory and technical policies.
Role of natural gas in meeting an electric sector emissions ...
With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At high leakage levels, these methane emissions could outweigh the benefits of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is asked to meet a specific CO2 reduction target and the availability of natural gas changes. Scenarios are run with a range of upstream methane emission leakage rates from natural gas production. While the total CO2 emissions are reduced in most scenarios, total greenhouse gas emissions show an increase or no change when both natural gas availability and methane emissions from natural gas production are high. Article presents summary of results from an analyses of natural gas resource availability and power sector emissions reduction strategies under different estimates of methane leakage rates during natural gas extraction and production. This was study was undertaken as part of the Energy Modeling Forum Study #31:
Exploration and Production of Hydrocarbon Resources in Coastal Alabama and Mississippi.
1984-11-01
and R.L. Bluntzer. 984. Laud Subsidence Near Oil and Gas Fields , Houston, Texas. Ground Water 22(4):450-459. Holzworth, G.C. 1972. Mixing Heights, Wind... field is abandoned., The operation of drilling rigs, offshore production facilities, and onshore gas and oil cleaning and processing facilities would...a pipeline releasing natural gas containing hydrogen sulfide could endanger human health and be harmful .-. to plants and animals near the point of
Ceramic membranes with mixed conductivity and their application
NASA Astrophysics Data System (ADS)
Kozhevnikov, V. L.; Leonidov, I. A.; Patrakeev, M. V.
2013-08-01
Data on the catalytic reactors with ceramic membranes possessing mixed oxygen ion and electronic conductivity that make it possible to integrate the processes of oxygen separation and oxidation are analyzed and generalized. The development of this approach is of interest for the design of energy efficient and environmentally friendly processes for processing natural gas and other raw materials. The general issues concerning the primary processing of light alkanes in reactors with oxygen separating membranes are expounded and general demands to the membrane materials are discussed. Particular attention is paid to the process of oxidative conversion of methane to synthesis gas. The bibliography includes 110 references.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-15
... the sales natural gas pipeline or to an emissions control unit when a natural gas sales pipeline is... vapor recovery unit (VRU) to be injected into a natural gas sales pipeline for conveyance to a natural gas plant. In the event that pipeline injection of recoverable natural gas is temporarily infeasible...
Methane storage in metal-organic frameworks.
He, Yabing; Zhou, Wei; Qian, Guodong; Chen, Banglin
2014-08-21
Natural gas (NG), whose main component is methane, is an attractive fuel for vehicular applications. Realization of safe, cheap and convenient means and materials for high-capacity methane storage can significantly facilitate the implementation of natural gas fuelled vehicles. The physisorption based process involving porous materials offers an efficient storage methodology and the emerging porous metal-organic frameworks have been explored as potential candidates because of their extraordinarily high porosities, tunable pore/cage sizes and easily immobilized functional sites. In this view, we provide an overview of the current status of metal-organic frameworks for methane storage.
CARNOL PROCESS FOR CO2 MITIGATION FROM POWER PLANTS AND THE TRANSFORMATION SECTOR
The report describes an alternative mitigation process that would convert waste carbon dioxide (CO2) to carbon an methanol using natural gas as process feedstock. The process yields 1 mole of methanol from each mole of CO2 recovered, resulting in a net zero CO2 emission when the ...
18 CFR 152.1 - Exemption applications and blanket certificates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... implementing the Natural Gas Act, “vehicular natural gas” or “VNG” means natural gas that will be used, in... Commission's regulations implementing the Natural Gas Act, vehicular natural gas, or VNG, is deemed to be... REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER NATURAL GAS ACT APPLICATION FOR EXEMPTION FROM...
NASA Astrophysics Data System (ADS)
Wang, Yangyang; Chen, Jianfa; Pang, Xiongqi; Zhang, Baoshou; Wang, Yifan; He, Liwen; Chen, Zeya; Zhang, Guoqiang
2018-05-01
Natural gases in the Carboniferous Donghe Sandstone reservoir within the Block HD4 of the Hadexun Oilfield, Tarim Basin are characterized by abnormally low total hydrocarbon gas contents (<65%), low methane contents (<10%) and low dryness coefficients (<0.5), and a reversal of the normal trend of carbon isotope ratios, showing δ13C methane (C1) > δ13C ethane (C2) < δ13C propane (C3) < δ13C butane (C4). Specifically, methane is enriched in 13C with the variations in δ13C1 values between gases from Block HD4 and gases from its neighboring blocks reaching 10‰. This type of abnormal gas has never been reported previously in the Tarim Basin and such large variations in δ13C have rarely been observed in other basins globally. Based on a comprehensive analysis of gas geochemical data and the geological setting of the Carboniferous reservoirs in the Hadexun Oilfield, we reveal that the anomalies of the gas compositions and carbon isotope ratios in the Donghe Sandstone reservoir are caused by gas diffusion through the poorly-sealed caprock rather than by pathways such as gas mixing, microorganism degradation, different kerogen types or thermal maturity degrees of source rocks. The documentation of an in-reservoir gas diffusion during the post entrapment process as a major cause for gas geochemical anomalies may offer important insight into exploring natural gas resources in deeply buried sedimentary basins.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-27
... natural gas. 211112 Natural gas liquid extraction facilities. Table 1 of this preamble is not intended to... Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems: Revisions to Best Available... regulations for Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. Specifically, EPA is...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-18
.... Suppliers of Natural Gas and 221210 Natural gas Natural Gas Liquids. distribution facilities. 211112 Natural gas liquid extraction facilities. Suppliers of Industrial 325120 Industrial gas Greenhouse Gases..., 75 FR Natural Gas Liquids. 66434, 75 FR 79092. Suppliers of Industrial OO 74 FR 56260, 75 FR...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This document contains emission factors and process information for more than 200 air pollution source categories. This Supplement to AP-42 addresses pollutant-generating activity from Bituminous And Subbituminous Coal Combustion, Anthracite Coal Combustion, Fuel Oil Combustion, Natural Gas Combustion, Liquefied Petroleum Gas Combustion, Wood Waste Combustion In Boilers, Lignite Combustion, Bagasse Combustion In Sugar Mills, Residential Fireplaces, Residential Wood Stoves, Waste Oil Combustion, Stationary Gas Turbines For Electricity Generation, Heavy-duty Natural Gas-fired Pipeline Compressor Engines And Turbines, Gasoline and Diesel Industrial Engines, Large Stationary Diesel And All Stationary Dual-fuel Engines, Adipic Acid, Cotton Ginning, Alfafalfa Dehydrating, Malt Beverages, Ceramic Products Manufacturing,more » Electroplating, Wildfires And Prescribed Burning, Emissions From Soils-Greenhouse Gases, Termites-Greenhouse Gases, and Lightning Emissions-Greenhouse Gases.« less
NASA Astrophysics Data System (ADS)
Iqbal, S.; Benim, A. C.; Fischer, S.; Joos, F.; Kluβ, D.; Wiedermann, A.
2016-10-01
Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally. In the investigation, an emphasis is placed upon the external flue gas recirculation, which is a promising technology for increasing the efficiency of the carbon capture and storage process, which, however, can change the combustion behaviour significantly. A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas. Flames are also investigated numerically using the open source CFD software OpenFOAM. In the numerical simulations, a laminar flamelet model based on mixture fraction and reaction progress variable is adopted. As turbulence model, the SST model is used within a URANS concept. Computational results are compared with the experimental data, where a fair agreement is observed.
On the physics-based processes behind production-induced seismicity in natural gas fields
NASA Astrophysics Data System (ADS)
Zbinden, Dominik; Rinaldi, Antonio Pio; Urpi, Luca; Wiemer, Stefan
2017-05-01
Induced seismicity due to natural gas production is observed at different sites worldwide. Common understanding states that the pressure drop caused by gas production leads to compaction, which affects the stress field in the reservoir and the surrounding rock formations and hence reactivates preexisting faults and induces earthquakes. In this study, we show that the multiphase fluid flow involved in natural gas extraction activities should be included. We use a fully coupled fluid flow and geomechanics simulator, which accounts for stress-dependent permeability and linear poroelasticity, to better determine the conditions leading to fault reactivation. In our model setup, gas is produced from a porous reservoir, divided into two compartments that are offset by a normal fault. Results show that fluid flow plays a major role in pore pressure and stress evolution within the fault. Fault strength is significantly reduced due to fluid flow into the fault zone from the neighboring reservoir compartment and other formations. We also analyze scenarios for minimizing seismicity after a period of production, such as (i) well shut-in and (ii) gas reinjection. In the case of well shut-in, a highly stressed fault zone can still be reactivated several decades after production has ceased, although on average the shut-in results in a reduction in seismicity. In the case of gas reinjection, fault reactivation can be avoided if gas is injected directly into the compartment under depletion. However, gas reinjection into a neighboring compartment does not stop the fault from being reactivated.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
Code of Federal Regulations, 2010 CFR
2010-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
Code of Federal Regulations, 2012 CFR
2012-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
Code of Federal Regulations, 2011 CFR
2011-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
Code of Federal Regulations, 2013 CFR
2013-01-01
... (certain other petroleum products); 1C983 (Natural gas liquids and other natural gas derivatives); 1C984 (certain manufactured gas and synthetic natural gas (except when commingled with natural gas and thus...
76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-25
... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... the Following Under NYSE Arca Equities Rule 8.200: ProShares Short DJ-UBS Natural Gas, ProShares Ultra DJ-UBS Natural Gas and ProShares UltraShort DJ-UBS Natural Gas August 15, 2011. I. Introduction On... DJ-UBS Natural Gas, ProShares Ultra DJ-UBS Natural Gas, and ProShares UltraShort DJ-UBS Natural Gas...
Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines
NASA Astrophysics Data System (ADS)
Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.
2012-12-01
Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.
Shock wave calibration of under-expanded natural gas fuel jets
NASA Astrophysics Data System (ADS)
White, T. R.; Milton, B. E.
2008-10-01
Natural gas, a fuel abundant in nature, cannot be used by itself in conventional diesel engines because of its low cetane number. However, it can be used as the primary fuel with ignition by a pilot diesel spray. This is called dual-fuelling. The gas may be introduced either into the inlet manifold or, preferably, directly into the cylinder where it is injected as a short duration, intermittent, sonic jet. For accurate delivery in the latter case, a constant flow-rate from the injector is required into the constantly varying pressure in the cylinder. Thus, a sonic (choked) jet is required which is generally highly under-expanded. Immediately at the nozzle exit, a shock structure develops which can provide essential information about the downstream flow. This shock structure, generally referred to as a “barrel” shock, provides a key to understanding the full injection process. It is examined both experimentally and numerically in this paper.
An Aerial ``Sniffer Dog'' for Methane
NASA Astrophysics Data System (ADS)
Nathan, Brian; Schaefer, Dave; Zondlo, Mark; Khan, Amir; Lary, David
2012-10-01
The Earth's surface and its atmosphere maintain a ``Radiation Balance.'' Any factor which influences this balance is labeled as a mechanism of ``Radiative Forcing'' (RF). Greenhouse Gas (GHG) concentrations are among the most important forcing mechanisms. Methane, the second-most-abundant noncondensing greenhouse gas, is over 25 times more effective per molecule at radiating heat than the most abundant, Carbon Dioxide. Methane is also the principal component of Natural Gas, and gas leaks can cause explosions. Additionally, massive quantities of methane reside (in the form of natural gas) in underground shale basins. Recent technological advancements--specifically the combination of horizontal drilling and hydraulic fracturing--have allowed drillers access to portions of these ``plays'' which were previously unreachable, leading to an exponential growth in the shale gas industry. Presently, very little is known about the amount of methane which escapes into the global atmosphere from the extraction process. By using remote-controlled robotic helicopters equipped with specially developed trace gas laser sensors, we can get a 3-D profile of where and how methane is being released into the global atmosphere.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
Code of Federal Regulations, 2014 CFR
2014-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
Code of Federal Regulations, 2012 CFR
2012-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
Code of Federal Regulations, 2011 CFR
2011-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
Code of Federal Regulations, 2013 CFR
2013-01-01
... (Other petroleum products); (C) ECCN 1C983 (Natural gas liquids and other natural gas derivatives); and (D) ECCN 1C984 (Manufactured gas and synthetic natural gas (except when commingled with natural gas...
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
40 CFR 98.405 - Procedures for estimating missing data.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids... of natural gas liquids or natural gas supplied during any period is unavailable (e.g., if a flow...
Fuel Gas Demonstration Plant Program. Volume I. Demonstration plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-01-01
The objective of this project is for Babcock Contractors Inc. (BCI) to provide process designs, and gasifier retort design for a fuel gas demonstration plant for Erie Mining Company at Hoyt Lake, Minnesota. The fuel gas produced will be used to supplement natural gas and fuel oil for iron ore pellet induration. The fuel gas demonstration plant will consist of five stirred, two-stage fixed-bed gasifier retorts capable of handling caking and non-caking coals, and provisions for the installation of a sixth retort. The process and unit design has been based on operation with caking coals; however, the retorts have beenmore » designed for easy conversion to handle non-caking coals. The demonstration unit has been designed to provide for expansion to a commercial plant (described in Commercial Plant Package) in an economical manner.« less
NASA Technical Reports Server (NTRS)
Williams, J. R.
1974-01-01
The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.
A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process
NASA Astrophysics Data System (ADS)
Jia, B.; Tsau, J. S.; Barati, R.
2017-12-01
Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.
Using the Bongwana natural CO2 release to understand leakage processes and develop monitoring
NASA Astrophysics Data System (ADS)
Jones, David; Johnson, Gareth; Hicks, Nigel; Bond, Clare; Gilfillan, Stuart; Kremer, Yannick; Lister, Bob; Nkwane, Mzikayise; Maupa, Thulani; Munyangane, Portia; Robey, Kate; Saunders, Ian; Shipton, Zoe; Pearce, Jonathan; Haszeldine, Stuart
2016-04-01
Natural CO2 leakage along the Bongwana Fault in South Africa is being studied to help understand processes of CO2 leakage and develop monitoring protocols. The Bongwana Fault crops out over approximately 80 km in KwaZulu-Natal province, South Africa. In outcrop the fault is expressed as a broad fracture corridor in Dwyka Tillite, with fractures oriented approximately N-S. Natural emissions of CO2 occur at various points along the fault, manifest as travertine cones and terraces, bubbling in the rivers and as gas fluxes through soil. Exposed rock outcrop shows evidence for Fe-staining around fractures and is locally extensively kaolinitised. The gas has also been released through a shallow water well, and was exploited commercially in the past. Preliminary studies have been carried out to better document the surface emissions using near surface gas monitoring, understand the origin of the gas through major gas composition and stable and noble gas isotopes and improve understanding of the structural controls on gas leakage through mapping. In addition the impact of the leaking CO2 on local water sources (surface and ground) is being investigated, along with the seismic activity of the fault. The investigation will help to build technical capacity in South Africa and to develop monitoring techniques and plans for a future CO2 storage pilot there. Early results suggest that CO2 leakage is confined to a relatively small number of spatially-restricted locations along the weakly seismically active fault. Fracture permeability appears to be the main method by which the CO2 migrates to the surface. The bulk of the CO2 is of deep origin with a minor contribution from near surface biogenic processes as determined by major gas composition. Water chemistry, including pH, DO and TDS is notably different between CO2-rich and CO2-poor sites. Soil gas content and flux effectively delineates the fault trace in active leakage sites. The fault provides an effective testing ground for field-based monitoring with results to date indicating the methods and technologies tested successfully detect leaking CO2. Further work will investigate the source of the CO2 and attempt to quantify CO2 flux rates and detection thresholds.
Alternative Fuels Data Center: Natural Gas Related Links
, AGA provides services to member natural gas pipelines, marketers, gatherers, international gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center : Natural Gas Related Links to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Related
With advances in natural gas extraction technologies, there is an increase in availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but unce...
2016-01-01
Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090
Shale Gas in Europe: pragmatic perspectives and actions
NASA Astrophysics Data System (ADS)
Hübner, A.; Horsfield, B.; Kapp, I.
2012-10-01
Natural gas will continue to play a key role in the EU's energy mix in the coming years, with unconventional gas' role increasing in importance as new resources are exploited worldwide. As far as Europe's own shale gas resources are concerned, it is especially the public's perception and level of acceptance that will make or break shale gas in the near-term. Both the pros and cons need to be discussed based on factual argument rather than speculation. Research organizations such as ours (GFZ German Research Centre for Geosciences) have an active and defining role to play in remedying this deficiency. As far as science and technology developments are concerned, the project "Gas Shales in Europe" (GASH) and the shale gas activities of "GeoEnergie" (GeoEn) are the first major initiatives in Europe focused on shale gas. Basic and applied geoscientific research is conducted to understand the fundamental nature and interdependencies of the processes leading to shale gas formation. When it comes to knowledge transfer, the perceived and real risks associated with shale gas exploitation need immediate evaluation in Europe using scientific analysis. To proactively target these issues, the GFZ and partners are launching the European sustainable Operating Practices (E-SOP) Initiative for Unconventional Resources. The web-based Shale Gas Information Platform (SHIP) brings these issues into the public domain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, R.L.; Brown, S.S.D.; Ferguson, S.P.
1995-12-31
The objectives of this program are to (a) develop a process for converting natural gas to methyl chloride via an oxyhydrochlorination route using highly selective, stable catalysts in a fixed-bed, (b) design a reactor capable of removing the large amount of heat generated in the process so as to control the reaction, (c) develop a recovery system capable of removing the methyl chloride from the product stream and (d) determine the economics and commercial viability of the process. The general approach has been as follows: (a) design and build a laboratory scale reactor, (b) define and synthesize suitable OHC catalystsmore » for evaluation, (c) select first generation OHC catalyst for Process Development Unit (PDU) trials, (d) design, construct and startup PDU, (e) evaluate packed bed reactor design, (f) optimize process, in particular, product recovery operations, (g) determine economics of process, (h) complete preliminary engineering design for Phase II and (i) make scale-up decision and formulate business plan for Phase II. Conclusions regarding process development and catalyst development are presented.« less
Potential Cost-Effective Opportunities for Methane Emission Abatement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Ethan; Steinberg, Daniel; Hodson, Elke
2015-08-01
The energy sector was responsible for approximately 84% of carbon dioxide equivalent (CO 2e) greenhouse gas (GHG) emissions in the U.S. in 2012 (EPA 2014a). Methane is the second most important GHG, contributing 9% of total U.S. CO 2e emissions. A large portion of those methane emissions result from energy production and use; the natural gas, coal, and oil industries produce approximately 39% of anthropogenic methane emissions in the U.S. As a result, fossil-fuel systems have been consistently identified as high priority sectors to contribute to U.S. GHG reduction goals (White House 2015). Only two studies have recently attempted tomore » quantify the abatement potential and cost associated with the breadth of opportunities to reduce GHG emissions within natural gas, oil, and coal supply chains in the United States, namely the U.S. Environmental Protection Agency (EPA) (2013a) and ICF (2014). EPA, in its 2013 analysis, estimated the marginal cost of abatement for non-CO 2 GHG emissions from the natural gas, oil, and coal supply chains for multiple regions globally, including the United States. Building on this work, ICF International (ICF) (2014) provided an update and re-analysis of the potential opportunities in U.S. natural gas and oil systems. In this report we synthesize these previously published estimates as well as incorporate additional data provided by ICF to provide a comprehensive national analysis of methane abatement opportunities and their associated costs across the natural gas, oil, and coal supply chains. Results are presented as a suite of marginal abatement cost curves (MACCs), which depict the total potential and cost of reducing emissions through different abatement measures. We report results by sector (natural gas, oil, and coal) and by supply chain segment - production, gathering and boosting, processing, transmission and storage, or distribution - to facilitate identification of which sectors and supply chain segments provide the greatest opportunities for low cost abatement.« less
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
40 CFR 98.401 - Reporting threshold.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Natural Gas and Natural Gas Liquids § 98.401 Reporting threshold. Any supplier of natural gas and natural gas liquids that meets the requirements of § 98.2(a)(4...
Klett, T.R.; Schenk, Christopher J.; Wandrey, Craig J.; Charpentier, Ronald R.; Cook, Troy A.; Brownfield, Michael E.; Pitman, Janet K.; Pollastro, Richard M.
2012-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated volumes of undiscovered, technically recoverable, conventional petroleum resources for the Assam, Bombay, Cauvery, and Krishna–Godavari Provinces, South Asia. The estimated mean volumes are as follows: (1) Assam Province, 273 million barrels of crude oil, 1,559 billion cubic feet of natural gas, and 43 million barrels of natural gas liquids; (2) Bombay Province, 1,854 million barrels of crude oil, 15,417 billion cubic feet of natural gas, and 498 million barrels of natural gas liquids; (3) Cauvery Province, 941 million barrels of crude oil, 25,208 billion cubic feet of natural gas, and 654 million barrels of natural gas liquids; and (4) Krishna–Godavari Province, 466 million barrels of crude oil, 37,168 billion cubic feet of natural gas, and 484 million barrels of natural gas liquids. The totals for the four provinces are 3,534 million barrels of crude oil, 79,352 billion cubic feet of natural gas, and 1,679 million barrels of natural gas liquids.
Development of Advanced Membranes Technology Platform for Hydrocarbon Separations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalthod, Dr Dilip
2010-03-01
Virtually all natural gas is dehydrated during its production, transmission and storage, mostly by absorption processes. Membranes offer many potential advantages over absorption, including smaller footprints, lighter-weight packages, packaging flexibility, minimal electrical power duty, amenability to expansion due to system modularity, reduced maintenance costs, reduced emissions of heavy hydrocarbons, no liquid waste streams, and amenability to unmanned operation. The latter is particularly valuable because new natural gas sources are generally located in remote onshore and offshore sites. Most commercially-available membranes for natural gas upgrading involve high capital costs, high methane loss and performance degradation from operational upsets – all ofmore » which are barriers to their widespread adoption by the industry. The original focus of the project was to develop and demonstrate robust, high-performance membranes for natural gas dehydration. The first task completed was a user needs-and-wants study to 1) clarify the expectations of system fabricators and end users of the new separations equipment, and 2) establish the required technical and commercial targets for the membrane products. Following this, membrane system modeling and membrane development in the lab proceeded in parallel. Membrane module diameter and length, as well as and the fiber outer and inner fiber diameter, were optimized from a mathematical model that accounts for the relevant fluid dynamics and permeation phenomena. Module design was evaluated in the context of overall system design, capital costs and energy consumption, including the process scheme (particularly sweep generation), feed pretreatment, system layout, and process control. This study provided targets for membrane permeation coefficients and membrane geometry in a commercial offering that would be competitive with absorption systems. A commercially-available polymer with good tensile strength and chemical resistance was selected for membrane development. A novel dope composition and spinning process were developed, which provide a new approach to controlling membrane porosity and wall and skin morphology. A hollow-fiber membrane with an external dense “skin” was produced that has a high water vapor permeation coefficient and selectivity, durability when in operation at 1000 psig and 70°C, and the ability to withstand aromatic and aliphatic hydrocarbon vapors for an extended period. The fiber meets the technical requirements for a commercial product offering in gas dehydration. It can be readily manufactured with some changes in process equipment and process conditions, and is an excellent candidate for scale-up to full-size membrane modules.« less
Hunt, Andrew G.; Stern, Laura; Pohlman, John W.; Ruppel, Carolyn; Moscati, Richard J.; Landis, Gary P.
2013-01-01
As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean-atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.
40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Controls applicable to natural gas... Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After... feet of natural gas per month shall equip each pump from which natural gas is introduced into natural...
40 CFR 80.33 - Controls applicable to natural gas retailers and wholesale purchaser-consumers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Controls applicable to natural gas... Prohibitions § 80.33 Controls applicable to natural gas retailers and wholesale purchaser-consumers. (a) After... feet of natural gas per month shall equip each pump from which natural gas is introduced into natural...
Gas processing developments. Why not use methanol for hydrate control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, R.B.; Bucklin, R.W.
1983-04-01
Hydrate formation in turboexpander plants can be avoided more economically by using methanol than by using solid bed dehydration. Although the first turboexpander plant used methanol, most expander installations now have used solid bed dehydration. The reasons are obscure, since methanol often grants greater ease of operation as well as lower capital and operating costs, especially when the water in the feed gas is low or when recompression is required. Natural gas generally contains water before processing. High pressure, low temperature, or both favor the combination of water with light gases to form hydrates. Free water always must be presentmore » for hydrates to form. Hydrates cause problems by plugging pipelines, valves, and other process equipment. Therefore, proper equipment design requires accurate prediction of the limiting conditions at which hydrates are formed anytime a gas stream containing hydrate formers and free water is cooled below 80 F. (16 refs.)« less
Controlling Gas-Flow Mass Ratios
NASA Technical Reports Server (NTRS)
Morris, Brian G.
1990-01-01
Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.
Microbially-Enhanced Coal Bed Methane: Strategies for Increased Biogenic Production
NASA Astrophysics Data System (ADS)
Davis, K.; Barhart, E. P.; Schweitzer, H. D.; Cunningham, A. B.; Gerlach, R.; Hiebert, R.; Fields, M. W.
2014-12-01
Coal is the largest fossil fuel resource in the United States. Most of this coal is deep in the subsurface making it costly and potentially dangerous to extract. However, in many of these deep coal seams, methane, the main component of natural gas, has been discovered and successfully harvested. Coal bed methane (CBM) currently accounts for approximately 7.5% of the natural gas produced in the U.S. Combustion of natural gas produces substantially less CO2 and toxic emissions (e.g. heavy metals) than combustion of coal or oil thereby making it a cleaner energy source. In the large coal seams of the Powder River Basin (PRB) in southeast Montana and northeast Wyoming, CBM is produced almost entirely by biogenic processes. The in situ conversion of coal to CBM by the native microbial community is of particular interest for present and future natural gas sources as it provides the potential to harvest energy from coal seams with lesser environmental impacts than mining and burning coal. Research at Montana State University has shown the potential for enhancing the subsurface microbial processes that produce CBM. Long-term batch enrichments have investigated the methane enhancement potential of yeast extract as well as algal and cyanobacterial biomass additions with increased methane production observed with all three additions when compared to no addition. Future work includes quantification of CBM enhancement and normalization of additions. This presentation addresses the options thus far investigated for increasing CBM production and the next steps for developing the enhanced in situ conversion of coal to CBM.
Sampling and analysis of natural gas trace constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attari, A.; Chao, S.
1993-09-01
Major and minor components of natural gas are routinely analyzed by gas chromatography (GC), using a thermal conductivity (TC). The best results obtained by these methods can report no better than 0.01 mole percent of each measured component. Even the extended method of analysis by flame ionization detector (FID) can only improve on the detection limit of hydrocarbons. The gas industry needs better information on all trace constituents of natural gas, whether native or inadvertently added during gas processing that may adversely influence the operation of equipment or the safety of the consumer. The presence of arsenic and mercury inmore » some gas deposits have now been documented in international literature as causing not only human toxicity but also damaging to the field equipment. Yet, no standard methods of sampling and analysis exist to provide this much needed information. In this paper the authors report the results of a three-year program to develop an extensive array of sampling and analysis methods for speciation and measurement of trace constituents of natural gas. A cryogenic sampler operating at near 200 K ({minus}99 F) and at pipeline pressures up to 12.4 {times} 10{sup 6}Pa (1800 psig) has been developed to preconcentrate and recover all trace constituents with boiling points above butanes. Specific analytical methods have been developed for speciating and measurement of many trace components (corresponding to US EPA air toxics) by GC-AED and GC-MS, and for determining various target compounds by other techniques. Moisture, oxygen and sulfur contents are measured on site using dedicated field instruments. Arsenic, mercury and radon are sampled by specific solid sorbents for subsequent laboratory analysis.« less
DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.
The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... States natural gas pipeline system. CE FLNG states that the source of natural gas supply will come from... purchase gas for export from any point in the U.S. interstate pipeline system. CE FLNG states that this... Authorization To Export Liquefied Natural Gas Produced From Domestic Natural Gas Resources to Non-Free Trade...
Petroleum Market Model of the National Energy Modeling System. Part 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcoholsmore » and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.« less
Fuels Containing Methane of Natural Gas in Solution
NASA Technical Reports Server (NTRS)
Sullivan, Thomas A.
2004-01-01
While exploring ways of producing better fuels for propulsion of a spacecraft on the Mars sample return mission, a researcher at Johnson Space Center (JSC) devised a way of blending fuel by combining methane or natural gas with a second fuel to produce a fuel that can be maintained in liquid form at ambient temperature and under moderate pressure. The use of such a blended fuel would be a departure for both spacecraft engines and terrestrial internal combustion engines. For spacecraft, it would enable reduction of weights on long flights. For the automotive industry on Earth, such a fuel could be easily distributed and could be a less expensive, more efficient, and cleaner-burning alternative to conventional fossil fuels. The concept of blending fuels is not new: for example, the production of gasoline includes the addition of liquid octane enhancers. For the future, it has been commonly suggested to substitute methane or compressed natural gas for octane-enhanced gasoline as a fuel for internal-combustion engines. Unfortunately, methane or natural gas must be stored either as a compressed gas (if kept at ambient temperature) or as a cryogenic liquid. The ranges of automobiles would be reduced from their present values because of limitations on the capacities for storage of these fuels. Moreover, technical challenges are posed by the need to develop equipment to handle these fuels and, especially, to fill tanks acceptably rapidly. The JSC alternative to provide a blended fuel that can be maintained in liquid form at moderate pressure at ambient temperature has not been previously tried. A blended automotive fuel according to this approach would be made by dissolving natural gas in gasoline. The autogenous pressure of this fuel would eliminate the need for a vehicle fuel pump, but a pressure and/or flow regulator would be needed to moderate the effects of temperature and to respond to changing engine power demands. Because the fuel would flash as it entered engine cylinders, relative to gasoline, it would disperse more readily and therefore would mix with air more nearly completely. As a consequence, this fuel would burn more nearly completely (and, hence, more cleanly) than gasoline does. The storage density of this fuel would be similar to that of gasoline, but its energy density would be such that the mileage (more precisely, the distance traveled per unit volume of fuel) would be greater than that of either gasoline or compressed natural gas. Because the pressure needed to maintain the fuel in liquid form would be more nearly constant and generally lower than that needed to maintain compressed natural gas in liquid form, the pressure rating of a tank used to hold this fuel could be lower than that of a tank used to hold compressed natural gas. A mixture of natural gas and gasoline could be distributed more easily than could some alternative fuels. A massive investment in new equipment would not be necessary: One could utilize the present fuel-distribution infrastructure and could blend the gasoline and natural gas at almost any place in the production or distribution process - perhaps even at the retail fuel pump. Yet another advantage afforded by use of a blend of gasoline and natural gas would be a reduction in the amount of gasoline consumed. Because natural gas costs less than gasoline does and is in abundant supply in the United States, the cost of automotive fuel and the demand for imported oil could be reduced.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... application describes an offshore natural gas deepwater port facility that would be located approximately 16.2...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-17
... DEPARTMENT OF TRANSPORTATION Maritime Administration [USCG-2010-0993] Liberty Natural Gas LLC, Liberty Liquefied Natural Gas (LNG) Deepwater Port License Application AGENCY: Maritime Administration... announce they have received an application for the licensing of a natural gas deepwater port and the...
7 CFR 2900.4 - Natural gas requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements for...
77 FR 32624 - Eastern Shore Natural Gas Company; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-01
... Natural Gas Company; Notice of Application Take notice that on May 14, 2012, Eastern Shore Natural Gas... Natural Gas Act (NGA) and Part 157 of the Commission's regulations, requesting authorization to construct..., Eastern Shore Natural Gas Company, 1110 Forrest Avenue, Suite 201, Dover, Delaware, 19904, or by calling...
Alternative Fuels Data Center: Natural Gas Benefits
Benefits to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Benefits on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Benefits on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Benefits on Google Bookmark Alternative Fuels Data Center: Natural Gas
Alternative Fuels Data Center: Natural Gas Production
Production to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production on Google Bookmark Alternative Fuels Data Center: Natural Gas
Alternative Fuels Data Center: Conventional Natural Gas Production
Conventional Natural Gas Production to someone by E-mail Share Alternative Fuels Data Center : Conventional Natural Gas Production on Facebook Tweet about Alternative Fuels Data Center: Conventional Natural Gas Production on Twitter Bookmark Alternative Fuels Data Center: Conventional Natural Gas Production
7 CFR 2900.4 - Natural gas requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 15 2011-01-01 2011-01-01 false Natural gas requirements. 2900.4 Section 2900.4..., DEPARTMENT OF AGRICULTURE ESSENTIAL AGRICULTURAL USES AND VOLUMETRIC REQUIREMENTS-NATURAL GAS POLICY ACT § 2900.4 Natural gas requirements. For purposes of Section 401(c), NGPA, the natural gas requirements for...
77 FR 33453 - Agency Information Collection Extension
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... Report of the Origin of Natural Gas Liquids. Comments are invited on: (a) Whether the proposed extended... accurate annual estimates of U.S. proved crude oil, natural gas, and natural gas liquids reserves, and EIA..., natural gas, and natural gas liquids to facilitate national energy policy decisions. These estimates are...