Sample records for processing plant low-level

  1. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support.

  2. Down-regulation of respiration in pear fruit depends on temperature.

    PubMed

    Ho, Quang Tri; Hertog, Maarten L A T M; Verboven, Pieter; Ambaw, Alemayehu; Rogge, Seppe; Verlinden, Bert E; Nicolaï, Bart M

    2018-04-09

    The respiration rate of plant tissues decreases when the amount of available O2 is reduced. There is, however, a debate on whether the respiration rate is controlled either by diffusion limitation of oxygen or through regulatory processes at the level of the transcriptome. We used experimental and modelling approaches to demonstrate that both diffusion limitation and metabolic regulation affect the response of respiration of bulky plant organs such as fruit to reduced O2 levels in the surrounding atmosphere. Diffusion limitation greatly affects fruit respiration at high temperature, but at low temperature respiration is reduced through a regulatory process, presumably a response to a signal generated by a plant oxygen sensor. The response of respiration to O2 is time dependent and is highly sensitive, particularly at low O2 levels in the surrounding atmosphere. Down-regulation of the respiration at low temperatures may save internal O2 and relieve hypoxic conditions in the fruit.

  3. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)

  4. 77 FR 34229 - Idaho: Final Authorization of State Hazardous Waste Management Program; Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... capability for the disposal of remote-handled low-level radioactive waste ((LLW) generated at the Idaho... (FONSI), for the Remote-Handled Low-Level Radioactive Waste Onsite Disposal (RHLLWOD) on an Environmental... regulating phosphate (mineral processing) plants within the state. In response to this commenter's concerns...

  5. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce

    PubMed Central

    Lai, Huafang; He, Junyun; Engle, Michael; Diamond, Michael S.; Chen, Qiang

    2011-01-01

    Summary Pharmaceutical protein production in plants has been greatly promoted by the development of viral-based vectors and transient expression systems. Tobacco and related Nicotiana species are currently the most common host plants for generation of plant-made pharmaceutical proteins (PMPs). Downstream processing of target PMPs from these plants, however, is hindered by potential technical and regulatory difficulties due to the presence of high levels of phenolics and toxic alkaloids. Here, we explored the use of lettuce, which grows quickly yet produces low levels of secondary metabolites, and viral vector-based transient expression systems to develop a robust PMP production platform. Our results showed that a geminiviral replicon system based on the bean yellow dwarf virus permits high-level expression in lettuce of virus-like particles (VLP) derived from the Norwalk virus capsid protein and therapeutic monoclonal antibodies (mAbs) against Ebola and West Nile viruses. These vaccine and therapeutic candidates can be readily purified from lettuce leaves with scalable processing methods while fully retaining functional activity. Furthermore, this study also demonstrated the feasibility of using commercially produced lettuce for high-level PMP production. This allows our production system to have access to unlimited quantities of inexpensive plant material for large-scale production. These results establish a new production platform for biological pharmaceutical agents that is effective, safe, low-cost, and amenable to large-scale manufacturing. PMID:21883868

  6. Physiological Significance of Low Atmospheric CO 2 for Plant-Climate Interactions

    NASA Astrophysics Data System (ADS)

    Cowling, Sharon A.; Sykes, Martin T.

    1999-09-01

    Methods of palaeoclimate reconstruction from pollen are built upon the assumption that plant-climate interactions remain the same through time or that these interactions are independent of changes in atmospheric CO2. The latter may be problematic because air trapped in polar ice caps indicates that atmospheric CO2 has fluctuated significantly over at least the past 400,000 yr, and likely the last 1.6 million yr. Three other points indicate potential biases for vegetation-based climate proxies. First, C3-plant physiological research shows that the processes that determine growth optima in plants (photosynthesis, mitochondrial respiration, photorespiration) are all highly CO2-dependent, and thus were likely affected by the lower CO2 levels of the last glacial maximum. Second, the ratio of carbon assimilation per unit transpiration (called water-use efficiency) is sensitive to changes in atmospheric CO2 through effects on stomatal conductance and may have altered C3-plant responses to drought. Third, leaf gas-exchange experiments indicate that the response of plants to carbon-depleting environmental stresses are strengthened under low CO2 relative to today. This paper reviews the scope of research addressing the consequences of low atmospheric CO2 for plant and ecosystem processes and highlights why consideration of the physiological effects of low atmospheric CO2 on plant function is recommended for any future refinements to pollen-based palaeoclimatic reconstructions.

  7. Department of Energy Technology Readiness Assessments - Process Guide and Training Plan

    DTIC Science & Technology

    2008-09-12

    Hanford Waste Treatment and Immobilization Plant ( WTP ) Analytical Laboratory, Low Activity Waste (LAW) Facility and Balance of Facilities (3 TRAs... WTP High-Level Waste (HLW) Facility – WTP Pre-Treatment (PT) Facility – Hanford River Protection Project Low Activity Waste Treatment Alternatives

  8. Maintenance of CO2 level in a BLSS by controlling solid waste treatment unit

    NASA Astrophysics Data System (ADS)

    Dong, Yingying; Li, Leyuan; Liu, Hong; Fu, Yuming; Xie, Beizhen; Hu, Dawei; Liu, Dianlei; Dong, Chen; Liu, Guanghui

    A bioregenerative life support system (BLSS) is an artificial closed ecosystem for providing basic human life support for long-duration, far-distance space explorations such as lunar bases. In such a system, the circulation of gases is one of the main factor for realizing a higher closure degree. O2 produced by higher plants goes to humans, as well as microorganisms for the treatment of inedible plant biomass and human wastes; CO2 produced by the crew and microorganisms is provided for plant growth. During this process, an excessively high CO2 level will depress plant growth and may be harmful to human health; and if the CO2 level is too low, plant growth will also be affected. Thus, keeping the balance between CO2 and O2 levels is a crucial problem. In this study, a high-efficiency, controllable solid waste treatment unit is constructed, which adopts microbial fermentation of the mixture of inedible biomass and human wastes. CO2 production during the fermentation process is controlled by adjusting fermentation temperature, aeration rate, moisture, etc., so as to meet the CO2 requirement of plants

  9. The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes.

    PubMed

    Habibi, Ghader; Ajory, Neda

    2015-11-01

    Photosynthesis is a biological process most affected by water deficit. Plants have various photosynthetic mechanisms that are matched to specific climatic zones. We studied the photosynthetic plasticity of C3 plants at water deficit using ecotypes of Marrubium vulgare L. from high (2,200 m) and low (1,100 m) elevation sites in the Mishou-Dagh Mountains of Iran. Under experimental drought, high-altitude plants showed more tolerance to water stress based on most of the parameters studied as compared to the low-altitude plants. Increased tolerance in high-altitude plants was achieved by lower levels of daytime stomatal conductance (g s) and reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v /F m ) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). High-altitude plants exhibited higher water use efficiency (WUE) than that in low-altitude plants depending on the presence of thick leaves and the reduced daytime stomatal conductance. Additionally, we have studied the oscillation in H(+) content and diel gas exchange patterns to determine the occurrence of C3 or weak CAM (Crassulacean acid metabolism) in M. vulgare through 15 days drought stress. Under water-stressed conditions, low-altitude plants exhibited stomatal conductance and acid fluctuations characteristic of C3 photosynthesis, though high-altitude plants exhibited more pronounced increases in nocturnal acidity and phosphoenolpyruvate carboxylase (PEPC) activity, suggesting photosynthetic flexibility. These results indicated that the regulation of carotenoids, NPQ, stomatal conductance and diel patterns of CO2 exchange presented the larger differences among studied plants at different altitudes and seem to be the protecting mechanisms controlling the photosynthetic performance of M. vulgare plants under drought conditions.

  10. The impact of plant chemical diversity on plant-herbivore interactions at the community level.

    PubMed

    Salazar, Diego; Jaramillo, Alejandra; Marquis, Robert J

    2016-08-01

    Understanding the role of diversity in ecosystem processes and species interactions is a central goal of ecology. For plant-herbivore interactions, it has been hypothesized that when plant species diversity is reduced, loss of plant biomass to herbivores increases. Although long-standing, this hypothesis has received mixed support. Increasing plant chemical diversity with increasing plant taxonomic diversity is likely to be important for plant-herbivore interactions at the community level, but the role of chemical diversity is unexplored. Here we assess the effect of volatile chemical diversity on patterns of herbivore damage in naturally occurring patches of Piper (Piperaceae) shrubs in a Costa Rican lowland wet forest. Volatile chemical diversity negatively affected total, specialist, and generalist herbivore damage. Furthermore, there were differences between the effects of high-volatility and low-volatility chemical diversity on herbivore damage. High-volatility diversity reduced specialist herbivory, while low-volatility diversity reduced generalist herbivory. Our data suggest that, although increased plant diversity is expected to reduce average herbivore damage, this pattern is likely mediated by the diversity of defensive compounds and general classes of anti-herbivore traits, as well as the degree of specialization of the herbivores attacking those plants.

  11. Enhanced Indirect Somatic Embryogenesis of Date Palm Using Low Levels of Seawater.

    PubMed

    Taha, Rania A

    2017-01-01

    Date palm tolerates salinity, drought, and high temperatures. Arid and semiarid zones, especially the Middle East region, need a huge number of date palms for cultivation. To meet this demand, tissue culture techniques have great potential for mass production of plantlets, especially using the indirect embryogenesis technique; any improvement of these techniques is a worthy objective. Low levels of salinity can enhance growth and development of tolerant plants. A low level of seawater, a natural source of salinity, reduces the time required for micropropagation processes of date palm cv. Malkaby when added to MS medium. Medium containing seawater at 500 ppm total dissolved solid (TDS) (12.2 mL/L) improves callus proliferation, whereas 1500 ppm (36.59 mL/L) enhances plant regeneration including multiplication of secondary embryos, embryo germination, and rooting.

  12. Effects of irradiance on non-structural carbohydrates, growth, and hypoglycemic activity of Rhynchelytrum repens (Willd.) C.E. Hubb. (Poaceae).

    PubMed

    Souza, A; de Paula, A C C F F; Figueiredo-Ribeiro, R C L

    2004-08-01

    Irradiance is a crucial factor in plant development. Different radiant energy levels cause different responses related to plant growth and the production and distribution of dry matter. Considering the relationship between light availability and metabolism of carbohydrates and derived compounds, the aim of this work was to assess the effects of irradiance on non-structural carbohydrate contents and composition, as well as on the hypoglycemiant activity of Rhynchelytrum repens, a pantropical grass species popularly used for diabetes treatment. Plants of R. repens growing under natural irradiance (NI) showed increased content of total soluble carbohydrate (TSC), higher fluctuations in starch content (SC) and higher number of tillers. The flowering process of these plants was preceded by an increase in sucrose. However, their water content was low when compared to that of plants cultivated under low irradiance (LI). The ratio root/aerial organs and SC showed no significant differences in plants grown under LI, although TSC increased and a lower number of tillers were observed during the experimental period. In both conditions, sucrose was the ubiquitous sugar and seemed to be involved in the flowering process. A reduction in the blood sugar level was observed through the intra-peritoneal (IP) administration of the precipitate of aqueous extracts obtained from plants growing in both conditions of light; the supernatant fraction showed no hypoglycemic effect.

  13. Molecular and cellular aspects of calcium action in plants

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.

    1988-01-01

    Calcium is known to be a second messenger in many developmental processes in animal systems, but it has only recently become evident that Ca is an important intracellular messenger in plants as well. The level of free Ca concentration in the cytoplasm is extremely low, and it is influenced by extracellular signals such as light, gravity, and hormones. Investigations from our laboratory indicated that Ca and its binding protein, calmodulin, play an important role in stimulus-response coupling by regulating enzyme activities, especially through protein phosphorylation. In vivo and in vitro protein phosphorylation studies have revealed Ca-dependent changes in various plant tissues. We have also been able to influence various physiological processes such as cell elongation, abscission, senescence, and tuberization by altering extracellular and intracellular Ca levels. Other examples of Ca-mediated processes in plants are as follows: a) cell division, b) geotropism, c) protoplasmic streaming, d) stomatal control, e) chloroplast movement, f) secretion, g) hormone-dependent changes, h) enzyme activation, and i) protein phosphorylation.

  14. An Overview of Signaling Regulons During Cold Stress Tolerance in Plants

    PubMed Central

    Pareek, Amit; Khurana, Ashima; Sharma, Arun K.; Kumar, Rahul

    2017-01-01

    Plants, being sessile organisms, constantly withstand environmental fluctuations, including low-temperature, also referred as cold stress. Whereas cold poses serious challenges at both physiological and developmental levels to plants growing in tropical or sub-tropical regions, plants from temperate climatic regions can withstand chilling or freezing temperatures. Several cold inducible genes have already been isolated and used in transgenic approach to generate cold tolerant plants. The conventional breeding methods and marker assisted selection have helped in developing plant with improved cold tolerance, however, the development of freezing tolerant plants through cold acclimation remains an unaccomplished task. Therefore, it is essential to have a clear understanding of how low temperature sensing strategies and corresponding signal transduction act during cold acclimation process. Herein, we synthesize the available information on the molecular mechanisms underlying cold sensing and signaling with an aim that the summarized literature will help develop efficient strategies to obtain cold tolerant plants. PMID:29204079

  15. Occupational Exposure to Bioaerosols in Norwegian Crab Processing Plants.

    PubMed

    Thomassen, Marte R; Kamath, Sandip D; Lopata, Andreas L; Madsen, Anne Mette; Eduard, Wijnand; Bang, Berit E; Aasmoe, Lisbeth

    2016-08-01

    Aerosolization of components when processing king crab (Paralithodes camtschaticus) and edible crab (Cancer pagurus) may cause occupational health problems when inhaled by workers. A cross-sectional study was carried out in three king crab plants and one edible crab plant. Personal exposure measurements were performed throughout work shifts. Air was collected for measurement of tropomyosin, total protein, endotoxin, trypsin, and N-acetyl-β-d-glucosaminidase (NAGase). T-tests and ANOVAs were used to compare the levels of exposure in the different plants and areas in the plants. Total protein and tropomyosin levels were highest in the edible crab plant, endotoxin levels were highest in king crab plants. King crab exposure levels were highest during raw processing. Tropomyosin levels were highest during raw king crab processing with geometric mean (GM) 9.6 versus 2.5ng m(-3) during cooked processing. Conversely, edible crab tropomyosin levels were highest during cooked processing with GM 45.4 versus 8.7ng m(-3) during raw processing. Endotoxin levels were higher in king crab plants than in the edible crab plant with GM = 6285.5 endotoxin units (EU) m(-3) versus 72 EU m(-3). In the edible crab plant, NAGase levels were highest during raw processing with GM = 853 pmol4-methylumbelliferone (MU) m(-3) versus 422 pmol4-MU m(-3) during cooked processing. Trypsin activity was found in both king crab and edible crab plants and levels were higher in raw than cooked processing. Differences in exposure levels between plants and worker groups (raw and cooked processing) were identified. Norwegian crab processing workers are exposed to airborne proteins, tropomyosin, endotoxins, trypsin, and NAGase in their breathing zone. Levels vary between worker groups and factories. © The Author 2016. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  16. Effect of dissimilatory iron and sulfate reduction on arsenic dynamics in the wetland rhizosphere and its bioaccumulation in plants

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Zhang, Z.; Moon, H. S.; Myneni, S.

    2015-12-01

    The mobility of arsenic in soils is linked to biogeochemical redox processes. The presence of wetland plants in riparian wetlands has a significant impact on the biogeochemical dynamics of the soil/sediment-redoxcline due to the release of root exudates and root turnover and oxygen transfer from the roots into the surrounding sediment. Micro-environmental redox conditions in the rhizosphere affect As, Fe, and S speciation as well as Fe(III) plaque deposition, which affects arsenic transport and uptake by plants. To investigate the dynamics of As coupled to S and Fe cycling in wetlands, mesocosms were operated in a greenhouse under various conditions (high and low Fe, high and low sulfate, with plant and without plants) for four months. Results show that the presence of plants, high Fe, and high SO42- levels enhanced As sequestration in these soils. We hypothesize that this compounding effect is because plants release biodegradable organic carbon, which is used by microorganism to reduce ferrihydrite and SO42- to generate FeS, FeS2, and/or orpiment (As2S3). Over the concentration range studied, As immobilization in soil and uptake by Scirpus actus was mainly controlled by SO42- rather than Fe levels. Under high sulfate levels, As immobilization in soil increased by 50% and As concentrations in plant roots increased by 97%, whereas no significant changes in plant As levels were seen for varying Fe concentrations. More than 80% of As was sequestrated in soils rather than plant uptake. Pore water As speciation analyses indicate that 20% more As(V) was reduced to As(III) under high sulfate as than low sulfate levels and that low Fe was more favorable to the As dissimilatory reduction. More dissimilatory arsenate-respiring bacteria (DARB) under high sulfate were confirmed by quantitative PCR. Arsenic distribution in plant leafs and roots after 30 days of exposure to As was analyzed via Synchrotron X-ray fluorescence analyses. The uptake of As by plants was distributed along leaf veins. The distribution of As in roots was correlated with the distribution of Fe in the roots, rather than with Ca or Zn. These observations expand our understanding of how Fe and S influences microbial As redox metabolisms and provide insights into the biogeochemical coupling between As and S as well as Fe in As contaminated wetlands.

  17. Effects of Planting and Processing Modes on the Degradation of Dithianon and Pyraclostrobin in Chinese Yam (Dioscorea spp.).

    PubMed

    Shi, Kaiwei; Wu, Xujin; Ma, Jingwei; Zhang, Junfeng; Zhou, Ling; Wang, Hong; Li, Li

    2017-12-06

    The yam (Dioscorea spp.) is widely cultivated in China. The degradation of dithianon and pyraclostrobin in yams with different planting and processing treatments was investigated in this article. An analytical method for two pesticides in yam and yam plant was developed, and recoveries were between 77% and 93%, with relative standard deviations from 0.8% to 7.4%, respectively. On the basis of this method, half-lives for plants grown on stakes versus plants grown without stakes were compared. The results indicated that the half-life for pesticide residues for plants grown on stakes versus plants grown without stakes differed as 6.7 versus 3.1 days for dithianon and 5.4 versus 5.2 days for pyraclostrobin. Dithianon was significantly influenced by planting mode because of its low stability under sunlight. The processing factors of various processing treatments (hot air-drying, vacuum freeze-drying, microwave vacuum-drying, infrared-drying, steaming, and boiling) were all <1, indicating that those processes can reduce residues of two pesticides at different levels. Significant amounts of residues were removed during the boiling treatment, whereas the others showed less effect.

  18. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minish Shah; Nich Degenstein; Monica Zanfir

    2012-06-30

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plantsmore » burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions, produce high purity CO{sub 2} relatively free of trace impurities and achieve ~99% CO{sub 2} capture rate while lowering the CO{sub 2} capture costs.« less

  19. DNA Damage Levels Determine Cyclobutyl Pyrimidine Dimer Repair Mechanisms in Alfalfa Seedlings.

    PubMed Central

    Quaite, F. E.; Takayanagi, S.; Ruffini, J.; Sutherland, J. C.; Sutherland, B. M.

    1994-01-01

    Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage. PMID:12244228

  20. Long-distance transport of phytohormones through the plant vascular system.

    PubMed

    Lacombe, Benoit; Achard, Patrick

    2016-12-01

    Phytohormones are a group of low abundance molecules that activate various metabolic and developmental processes in response to environmental and endogenous signals. Like animal hormones, plant hormones often have distinct source and target tissues, hence ensuring long-range communication at the whole-plant level. Plants rely on various hormone distribution mechanisms depending on the distance and the direction of the transport. Here, we highlight the recent findings on the long-distance movement of plant hormones within the vasculature, from the physiological role to the molecular mechanism of the transport. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. PROCESS DEVELOPMENT QUARTERLY REPORT. II. PILOT PLANT WORK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, N. ed.

    1957-05-01

    Progress is reported on the gross solubility of U in digestions of Mallinokrodt feed materials, studies of variables affecting U purity in a TBP hexane extraction cycle, low-acid flowsheet for TBP--hexane extraction process based on a 440 g U/liter in lM HNO/sub 3/ digest liquor, hacking studies in the pilot plant pumperdecanter system, recovery of U from residues from the dingot process, lowering the H level in dingot metal, forging of dingot bar stock, dingot extrusion, fubrication of UO/sub 2/ fuel elements, and the determination of H content of derby and ingot metal. (W.L.H.)

  2. The Pepper WPP Domain Protein, CaWDP1, Acts as a Novel Negative Regulator of Drought Stress via ABA Signaling.

    PubMed

    Park, Chanmi; Lim, Chae Woo; Baek, Woonhee; Kim, Jung-Hyun; Lim, Sohee; Kim, Sang Hyon; Kim, Kyung-Nam; Lee, Sung Chul

    2017-04-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone ABA regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we report the identification and characterization of a novel CaWDP1 (Capsicum annuum) protein. The expression of CaWDP1 in pepper leaves was induced by ABA, drought and NaCl treatments, suggesting its role in the abiotic stress response. CaWDP1 proteins show conserved sequence homology with other known WDP1 proteins, and they are localized in the nucleus and cytoplasm. We generated CaWDP1-silenced peppers via virus-induced gene silencing (VIGS). We evaluated the responses of these CaWDP1-silenced pepper plants and CaWDP1-overexpressing (OX) transgenic Arabidopsis plants to ABA and drought. CaWDP1-silenced pepper plants displayed enhanced tolerance to drought stress, and this was characterized by low levels of leaf water loss in the drought-treated leaves. In contrast to CaWDP1-silenced plants, CaWDP1-OX plants exhibited an ABA-hyposensitive and drought-susceptible phenotype, which was accompanied by high levels of leaf water loss, low leaf temperatures, increased stomatal pore size and low expression levels of stress-responsive genes. Our results indicate that CaWDP1, a novel pepper negative regulator of ABA, regulates the ABA-mediated defense response to drought stress. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans.

    PubMed

    Friedman, Mendel

    2015-06-01

    Potentially toxic acrylamide is largely derived from the heat-inducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant-derived foods including cereals, coffees, almonds, olives, potatoes, and sweet potatoes. This review surveys and consolidates the following dietary aspects of acrylamide: distribution in food, exposure and consumption by diverse populations, reduction of the content in different food categories, and mitigation of adverse in vivo effects. Methods to reduce acrylamide levels include selecting commercial food with a low acrylamide content, selecting cereal and potato varieties with low levels of asparagine and reducing sugars, selecting processing conditions that minimize acrylamide formation, adding food-compatible compounds and plant extracts to food formulations before processing that inhibit acrylamide formation during processing of cereal products, coffees, teas, olives, almonds, and potato products, and reducing multiorgan toxicity (antifertility, carcinogenicity, neurotoxicity, teratogenicity). The herein described observations and recommendations are of scientific interest for food chemistry, pharmacology, and toxicology, but also have the potential to benefit nutrition, food safety, and human health.

  4. Optimal allocation in annual plants and its implications for drought response

    NASA Astrophysics Data System (ADS)

    Caldararu, Silvia; Smith, Matthew; Purves, Drew

    2015-04-01

    The concept of plant optimality refers to the plastic behaviour of plants that results in lifetime and offspring fitness. Optimality concepts have been used in vegetation models for a variety of processes, including stomatal conductance, leaf phenology and biomass allocation. Including optimality in vegetation models has the advantages of creating process based models with a relatively low complexity in terms of parameter numbers but which are capable of reproducing complex plant behaviour. We present a general model of plant growth for annual plants based on the hypothesis that plants allocate biomass to aboveground and belowground vegetative organs in order to maintain an optimal C:N ratio. The model also represents reproductive growth through a second optimality criteria, which states that plants flower when they reach peak nitrogen uptake. We apply this model to wheat and maize crops at 15 locations corresponding to FLUXNET cropland sites. The model parameters are data constrained using a Bayesian fitting algorithm to eddy covariance data, satellite derived vegetation indices, specifically the MODIS fAPAR product and field level crop yield data. We use the model to simulate the plant drought response under the assumption of plant optimality and show that the plants maintain unstressed total biomass levels under drought for a reduction in precipitation of up to 40%. Beyond that level plant response stops being plastic and growth decreases sharply. This behaviour results simply from the optimal allocation criteria as the model includes no explicit drought sensitivity component. Models that use plant optimality concepts are a useful tool for simulation plant response to stress without the addition of artificial thresholds and parameters.

  5. Quantifying the associations between fungal endophytes and biocontrol-induced herbivory of invasive purple loosestrife (Lythrum salicaria L.).

    PubMed

    David, Aaron S; Quiram, Gina L; Sirota, Jennie I; Seabloom, Eric W

    2016-01-01

    Fungal endophytes are one of several groups of heterotrophic organisms that associate with living plants. The net effects of these groups of organisms on each other and ultimately on their host plants depend in part on how they facilitate or antagonize one another. In this study we quantified the associations between endophyte communities and herbivory induced by a biological control in the invasive Lythrum salicaria at various spatial scales using a culture-based approach. We found positive associations between herbivory damage and endophyte isolation frequency and richness at the site level and weak, positive associations at the leaf level. Herbivory damage was more strongly influenced by processes at the site level than were endophyte isolation frequency and community structure, which were influenced by processes at the plant and leaf levels. Furthermore, endophytic taxa found in low herbivory sites were nested subsets of those taxa found at high herbivory sites. Our findings suggest that endophyte communities of L. salicaria are associated with, and potentially facilitated by, biocontrol-induced herbivory. Quantifying the associations between heterotrophic groups ultimately may lead to a clearer understanding of their complex interactions with plants. © 2016 by The Mycological Society of America.

  6. Biological-Physical Feedbacks Determine Coastal Environmental Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Moore, L. J.; Duran Vinent, O.; Walters, D.; Fagherazzi, S.; Mariotti, G.; Young, D.; Wolner, C. V.

    2012-12-01

    As low-lying coastal landforms, transitional between marine and terrestrial realms, barrier islands are especially sensitive to changing environmental conditions. Interactions among biological and physical processes appear to play a critical role in determining how these landscapes will evolve in the future as sea level rises, storm intensity increases and plant species composition changes. Within a new conceptual framework, barrier islands tend to exist in one of two primary states. "Low" islands have little relief above sea level and are dominated by external processes, responding quickly on short time scales to changes in forcing (e.g., storms, sea level rise, etc.), migrating rapidly and generally being low in ecological diversity and productivity. In contrast, "high" islands are less vulnerable to storms, tend to be dominated by internal processes (e.g., sand trapping by vegetation), require long time periods to respond to changes in forcing, migrate slowly (if at all) and host a range of plant species and morphological environments including shrubs, small trees and vegetated secondary and tertiary dunes with intervening swales. The continued existence of barrier island landforms will depend on the degree to which islands can maintain elevation above sea level while also responding to changes in forcing by migrating landward. A long-term morphological-behavior model exploring coupled barrier-marsh evolution and a new ecomorphodynamic model representing the formation/recovery of dunes as a function of storms, shed light on the role of interactions among biological and physical processes on barrier island response to climate change. Results suggest that connections between the marsh and barrier realms, which are mediated by biological processes in the marsh environment, are highly sensitive to factors such as sea level rise rate, antecedent morphology and marsh composition. Results also suggest that feedbacks between sediment transport and vegetation involved in dune building may allow small, gradual changes in storms to cause abrupt, nonlinear transitions from the high to low island state.

  7. Tidal marsh susceptibility to sea-level rise: importance of local-scale models

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Elliott-Fisk, Deborah L.; Takekawa, John Y.

    2015-01-01

    Increasing concern over sea-level rise impacts to coastal tidal marsh ecosystems has led to modeling efforts to anticipate outcomes for resource management decision making. Few studies on the Pacific coast of North America have modeled sea-level rise marsh susceptibility at a scale relevant to local wildlife populations and plant communities. Here, we use a novel approach in developing an empirical sea-level rise ecological response model that can be applied to key management questions. Calculated elevation change over 13 y for a 324-ha portion of San Pablo Bay National Wildlife Refuge, California, USA, was used to represent local accretion and subsidence processes. Next, we coupled detailed plant community and elevation surveys with measured rates of inundation frequency to model marsh state changes to 2100. By grouping plant communities into low, mid, and high marsh habitats, we were able to assess wildlife species vulnerability and to better understand outcomes for habitat resiliency. Starting study-site conditions were comprised of 78% (253-ha) high marsh, 7% (30-ha) mid marsh, and 4% (18-ha) low marsh habitats, dominated by pickleweed Sarcocornia pacifica and cordgrass Spartina spp. Only under the low sea-level rise scenario (44 cm by 2100) did our models show persistence of some marsh habitats to 2100, with the area dominated by low marsh habitats. Under mid (93 cm by 2100) and high sea-level rise scenarios (166 cm by 2100), most mid and high marsh habitat was lost by 2070, with only 15% (65 ha) remaining, and a complete loss of these habitats by 2080. Low marsh habitat increased temporarily under all three sea-level rise scenarios, with the peak (286 ha) in 2070, adding habitat for the endemic endangered California Ridgway’s rail Rallus obsoletus obsoletus. Under mid and high sea-level rise scenarios, an almost complete conversion to mudflat occurred, with most of the area below mean sea level. Our modeling assumed no marsh migration upslope due to human levee and infrastructure preventing these types of processes. Other modeling efforts done for this area have projected marsh persistence to 2100, but our modeling effort with site-specific datasets allowed us to model at a finer resolution with much higher local confidence, resulting in different results for management. Our results suggest that projected sea-level rise will have significant impacts on marsh plant communities and obligate wildlife, including those already under federal and state protection. Comprehensive modeling as done here improves the potential to implement adaptive management strategies and prevent marsh habitat and wildlife loss in the future.

  8. Adaptation of the symbiotic Mesorhizobium-chickpea relationship to phosphate deficiency relies on reprogramming of whole-plant metabolism.

    PubMed

    Nasr Esfahani, Maryam; Kusano, Miyako; Nguyen, Kien Huu; Watanabe, Yasuko; Ha, Chien Van; Saito, Kazuki; Sulieman, Saad; Herrera-Estrella, Luis; Tran, L S

    2016-08-09

    Low inorganic phosphate (Pi) availability is a major constraint for efficient nitrogen fixation in legumes, including chickpea. To elucidate the mechanisms involved in nodule acclimation to low Pi availability, two Mesorhizobium-chickpea associations exhibiting differential symbiotic performances, Mesorhizobium ciceri CP-31 (McCP-31)-chickpea and Mesorhizobium mediterranum SWRI9 (MmSWRI9)-chickpea, were comprehensively studied under both control and low Pi conditions. MmSWRI9-chickpea showed a lower symbiotic efficiency under low Pi availability than McCP-31-chickpea as evidenced by reduced growth parameters and down-regulation of nifD and nifK These differences can be attributed to decline in Pi level in MmSWRI9-induced nodules under low Pi stress, which coincided with up-regulation of several key Pi starvation-responsive genes, and accumulation of asparagine in nodules and the levels of identified amino acids in Pi-deficient leaves of MmSWRI9-inoculated plants exceeding the shoot nitrogen requirement during Pi starvation, indicative of nitrogen feedback inhibition. Conversely, Pi levels increased in nodules of Pi-stressed McCP-31-inoculated plants, because these plants evolved various metabolic and biochemical strategies to maintain nodular Pi homeostasis under Pi deficiency. These adaptations involve the activation of alternative pathways of carbon metabolism, enhanced production and exudation of organic acids from roots into the rhizosphere, and the ability to protect nodule metabolism against Pi deficiency-induced oxidative stress. Collectively, the adaptation of symbiotic efficiency under Pi deficiency resulted from highly coordinated processes with an extensive reprogramming of whole-plant metabolism. The findings of this study will enable us to design effective breeding and genetic engineering strategies to enhance symbiotic efficiency in legume crops.

  9. Spatial patterns of plant litter in a tidal freshwater marsh and implications for marsh persistence.

    PubMed

    Elmore, Andrew J; Engelhardt, Katharina A M; Cadol, Daniel; Palinkas, Cindy M

    2016-04-01

    The maintenance of marsh platform elevation under conditions of sea level rise is dependent on mineral sediment supply to marsh surfaces and conversion of above- and belowground plant biomass to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here, we explore spatial pattern in a variable related to aboveground biomass, plant litter, to reveal its role in the maintenance of marsh surfaces. Plant litter persisting through the dormant season represents the more recalcitrant portion of plant biomass, and as such has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, aboveground biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located within the Potomac River estuary, USA. LiDAR and field observations show that plant litter structure becomes more prominent with increasing elevation. Spatial patterns in litter structure exhibit stability from year to year and correlate with patterns in soil organic matter content, revealed by measuring the loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important tradeoff with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, aboveground litter contributes organic matter to soil development. This organic matter contribution has the potential to eclipse that of belowground biomass as the root:shoot ratio of dominant species at high elevations is low compared to that of dominant species at low elevations. Because of these tradeoffs in mineral and organic matter incorporation into soil across elevation gradients, the rate of marsh surface elevation change is remarkably consistent across elevation. Because of the role of plant litter in marsh ecosystem processes, monitoring and assessment of these dynamic geomorphic marsh landscapes might be streamlined through the measurement of plant litter structure, either via LiDAR technologies or field observation.

  10. Microbial contamination level of air in animal waste utilization plants.

    PubMed

    Chmielowiec-Korzeniowska, Anna; Tymczyna, Leszek; Drabik, Agata; Krzosek, Łukasz

    2016-01-01

    The aim of this research was evaluation of microbial contamination of air within and in the vicinity of animal waste disposal plants. Air samples were analyzed to determine total bacterial and fungal counts as well as microbial species composition. Measurements of climate conditions (temperature, humidity, air motion) and total dust concentration were also performed. Total numbers of bacteria and fungi surpassed the threshold limit values for production halls. The most abundant bacteria detected were those consisting of physiological microflora of animal dermis and mucosa. Fungal species composition proved to be most differentiated in the air beyond the plant area. Aspergillus versicolor, a pathogenic and allergenic filamentous fungus, was isolated only inside the rendering plant processing hall. The measurement results showed a low sanitary-hygienic state of air in the plant processing halls and substantial air pollution in its immediate vicinity.

  11. Enhancing the Process of Anaerobic Ammonium Oxidation Coupled to Iron Reduction in Constructed Wetland Mesocosms with Supplementation of Ferric Iron Hydroxides

    NASA Astrophysics Data System (ADS)

    Shuai, W.; Jaffe, P. R.

    2017-12-01

    Effective ammonium (NH4+) removal has been a challenge in wastewater treatment processes. Aeration, which is required for the conventional NH4+ removal approach by ammonium oxidizing bacteria, is an energy intensive process during the operation of wastewater treatment plant. The efficiency of NH4+ oxidation in natural systems is also limited by oxygen transfer in water and sediments. The objective of this study is to enhance NH4+ removal by applying a novel microbial process, anaerobic NH4+ oxidation coupled to iron (Fe) reduction (also known as Feammox), in constructed wetlands (CW). Our studies have shown that an Acidimicrobiaceae bacterium named A6 can carry out the Feammox process using ferric Fe (Fe(III)) minerals like ferrihydrite as their electron acceptor. To investigate the properties of the Feammox process in CW as well as the influence of electrodes, Feammox bacterium A6 was inoculated in planted CW mesocosms with electrodes installed at multiple depths. CW mesocosms were operated using high NH4+ nutrient solution as inflow under high or low sediment Fe(III) level. During the operation, NH4+ and ferrous Fe concentration, pore water pH, voltages between electrodes, oxidation reduction potential and dissolved oxygen were measured. At the end of the experiment, CW sediment samples at different depths were taken, DNAs were extracted and quantitative polymerase chain reaction and pyrosequencing were performed to analyze the microbial communities. The results show that the high Fe level CW mesocosm has much higher NH4+ removal ability than the low Fe level CW mesocosm after Fe-reducing conditions are developed. This indicates the enhanced NH4+ removal can be attributed to elevated Feammox activity in high Fe level CW mesocosm. The microbial community structures are different in high or low Fe level CW mesocosms and on or away from the installed electrodes. The voltages between cathode and anode increased after the injection of A6 enrichment culture in low Fe level CW mesocosm but remained stable in high Fe level CW mesocosm, indicating A6 may use electrodes as their electron acceptor in the scarcity of Fe(III). The application of Feammox process in Fe-rich CW is promising in providing a cost and energy effective NH4+ removal approach, and the electrogenesis of A6 may also be useful in enhancing the Feammox process.

  12. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  13. Fermentable short chain carbohydrate (FODMAP) content of common plant-based foods and processed foods suitable for vegetarian- and vegan-based eating patterns.

    PubMed

    Tuck, C; Ly, E; Bogatyrev, A; Costetsou, I; Gibson, P; Barrett, J; Muir, J

    2018-06-01

    The low FODMAP (fermentable, oligo-, di-, mono-saccharides and polyols) diet is an effective strategy to improve symptoms of irritable bowel syndrome. However, combining the low FODMAP diet with another dietary restriction such as vegetarianism/veganism is challenging. Greater knowledge about the FODMAP composition of plant-based foods and food processing practices common to vegetarian/vegan eating patterns would assist in the implementation of the diet in this patient population. The present study aimed to quantify the FODMAP content of plant-based foods common in vegetarian/vegan diets and to investigate whether food processing can impact FODMAP levels. Total FODMAP content was quantified in 35 foods, including fructose-in-excess-of-glucose, lactose, sorbitol, mannitol, galacto-oligosaccharide and total fructan, using high-performance-liquid-chromatography and enzymatic assays. The effects of cooking, sprouting, pickling, fermentation, activation and canning on FODMAP content were assessed. The Monash University criteria to classify foods as low FODMAP was used. Of the 35 foods, 20 were classified as low FODMAP, including canned coconut milk (0.24 g serve -1 ), dulse (0.02 serve -1 ), nutritional yeast (0.01 serve -1 ), soy cheese (0.03 serve -1 ), tempeh (0.26 serve -1 ), wheat gluten (0.13 serve -1 ) and wheat grass (0.05 serve -1 ). No FODMAPs were detected in agar-agar, egg replacer, vegan egg yolk, kelp noodles and spirulina. Food processing techniques that produced the greatest reduction in FODMAP content included pickling and canning. The present study provides a greater FODMAP composition knowledge of plant-based foods that can now be applied to the dietetic management of vegetarians/vegans requiring a low FODMAP diet. Food processing lowered the FODMAP content of foods, thereby increasing options for patients following a low FODMAP diet. © 2018 The British Dietetic Association Ltd.

  14. Interactive effects of aluminum, phosphorus and mycorrhizae on growth and nutrient uptake of Panicum virgatum L. (Poaceae).

    PubMed

    Koslowsky, S D; Boener, R E

    1989-01-01

    The effects of Al on Panicum virgatum (switchgrass), a widespread perennial grass, were determined in relation to factors which might interact with Al in the soil. Plants were grown for 8 weeks in sand culture and were treated with 3 Al levels (0.5, 2.0, 5.0 mM), 2 P levels (0.065, 0.161 mM), 2 inoculum types (vesicular-arbuscular mycorrhizal (VAM) inoculum or VAM-free soil inoculum) and 2 inoculum sources (a high Al forest in NY or a low Al forest in Ohio) in a factorial design. Plant growth decreased with increasing Al and increased with increasing P, but the Al effect was less at high P than low P. VAM-inoculated plants outgrew non-VAM plants, especially at low and medium Al levels. Total P and Ca uptake decreased with increasing Al concentration, especially at low P levels. VAM inoculation did not result in increased P uptake at any Al level though VAM plants took up significantly more Ca than non-VAM plants at any Al level. VAM plants had lower tissue Al concentrations and took up less Al than non-VAM plants; Al uptake increased with increasing soil Al in non-VAM plants but not in VAM plants. Plants given inoculum from the high Al site had significantly lower tissue Al than plants given the low Al site inoculum, regardless of VAM status. We conclude that the presence of a VAM infection, moderate levels of soil P, and the source of the inoculum can reduce the effects of soluble Al. We discuss potential physiological and edaphic mechanisms by which Al may be immobilized and Ca availability increased in the presence of VAM fungi and other soil microflora.

  15. Effect of phosphate, iron and sulfate reduction on arsenic dynamics and bioaccumulation in constructed wetlands

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Moon, H. S.; Myneni, S.; Jaffe, P. R.

    2016-12-01

    Constructed wetlands are economically viable and highly efficient in the treatment of high As waters discharged from smelting process in the mining industry. However, arsenic (As) dynamics and bioaccumulation in constructed wetlands coupled to nutrients loading and associated biogeochemical changes are confounding and not well understood. In this study, we investigated the effect of phosphate, iron and sulfate reduction on As dynamics in the wetland rhizosphere and its bioaccumulation in plants using greenhouse mesocosms. Results show that high Fe (50µM ferrihydrite/g soil) and SO42- (5mM) treatments are most favorable for As sequestration in soils in the presence of wetland plants (Scirpus actus), probably because the biodegradable plant exudates released into the rhizosphere facilitates the microbial reduction of Fe(III), SO42- and As(V) to sequester As by precipitation/coprecipitation. Whereas, from the transition of oxidizing to reducing conditions, the loading of high phosphate (100µM) enhances the As release into groundwater and its accumulation in the plants, due to the competitive sorption between phosphate and arsenate as well as the reductive dissolution of Fe and As. As retention in soils and accumulation in plants were mainly controlled by SO42- rather than Fe levels. Compared with low SO42- (0.1mM) treatment, high SO42- resulted in 2 times more As in soils, 30 times more As in roots, and 49% less As in leaves. The As levels in soils are negatively correlated with the As levels in plant roots. An As speciation analysis in pore water indicated that 19% more dissolved As was reduced under high SO42- than low SO42- levels, and 30% more As(III) was detected under high PO43- than low PO43- levels, which is consistent with the fact that more dissimilatory arsenate-respiring bacteria were found under high SO42- and high PO43- levels.

  16. A review on bisphenol A occurrences, health effects and treatment process via membrane technology for drinking water.

    PubMed

    Muhamad, Mimi Suliza; Salim, Mohd Razman; Lau, Woei Jye; Yusop, Zulkifli

    2016-06-01

    Massive utilization of bisphenol A (BPA) in the industrial production of polycarbonate plastics has led to the occurrence of this compound (at μg/L to ng/L level) in the water treatment plant. Nowadays, the presence of BPA in drinking water sources is a major concern among society because BPA is one of the endocrine disruption compounds (EDCs) that can cause hazard to human health even at extremely low concentration level. Parallel to these issues, membrane technology has emerged as the most feasible treatment process to eliminate this recalcitrant contaminant via physical separation mechanism. This paper reviews the occurrences and effects of BPA toward living organisms as well as the application of membrane technology for their removal in water treatment plant. The potential applications of using polymeric membranes for BPA removal are also discussed. Literature revealed that modifying membrane surface using blending approach is the simple yet effective method to improve membrane properties with respect to BPA removal without compromising water permeability. The regeneration process helps in maintaining the performances of membrane at desired level. The application of large-scale membrane process in treatment plant shows the feasibility of the technology for removing BPA and possible future prospect in water treatment process.

  17. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)« less

  18. Passive Adsorption of Volatile Monoterpene in Pest Control: Aided by Proximity and Disrupted by Ozone.

    PubMed

    Mofikoya, Adedayo O; Kim, Tae Ho; Abd El-Raheem, Ahmed M; Blande, James D; Kivimäenpää, Minna; Holopainen, Jarmo K

    2017-11-08

    Plant volatiles mediate a range of interactions across and within trophic levels, including plant-plant interactions. Volatiles emitted by a plant may trigger physiological responses in neighboring plants or adhere to their surfaces, which, in turn, may affect the responses of the neighboring plant to herbivory. These volatiles are subject to chemical reactions during transport in air currents, especially in a polluted atmosphere. We conducted a field experiment to test for the adsorption of dispenser-released myrcene on the surfaces of cabbage plants and the effects of distance from the dispenser and elevated ozone levels (1.4× ambient) on the process. We also tested the effects of the same treatments on oviposition on cabbage plants by naturally occurring Plutella xylostella. Under low ambient ozone conditions of central Finland, there was evidence for the adsorption and re-release of myrcene by cabbage plants growing at a distance of 50 cm from myrcene dispensers. This effect was absent at elevated ozone levels. The number of eggs deposited by P. xylostella was generally lower in plots under elevated ozone compared to ambient control plots. Our results indicate that passive adsorption and re-release of a volatile monoterpene can occur in nature; however, this process is dependent upon the distance between emitter source and receiver plants as well as the concentration of atmospheric pollutants in the air. We conclude that, in the development of field-scale use of plant volatiles in modern pest control, the effects of distances and air pollution should be considered.

  19. Water and Nitrogen Limitations of Ecosystem Processes Across Three Dryland Plant Communities

    NASA Astrophysics Data System (ADS)

    Beltz, C.; Lauenroth, W. K.; Burke, I. C.

    2017-12-01

    The availability of water and nitrogen (N) play a major role in controlling the distribution of ecosystem types and the rates of ecosystem processes across the globe. Both these resources are being altered by human activity. Anthropogenic fixation of N has increased inputs into the biosphere from 0.5 kg N ha-1 yr-1 to upwards of 10 kg N ha-1 yr-1, while the amount and seasonality of precipitation are expected to continue to change. Within dryland environments, the relationships between increasingly available N and ecosystem processes are especially complex due to dryland's characteristic strong limitation by low and highly variable precipitation. Other experiments have shown that this interplay between N and water can cause temporally complex co-limitation and spatially complex responses with variable effects on ecosystems, such as those to net primary productivity, soil respiration, and plant community composition. Research spanning multiple dryland plant communities is critical for generalizing findings to the 40% of the Earth's terrestrial surface covered in dryland ecosystems. Given IPCC projections in which both N availability and precipitation are altered, examining their interactive effect across multiple plant communities is critical to increasing our understanding of the limitations to ecosystem process in drylands. We are studying a gradient of three plant communities representing a C4 grassland (shortgrass steppe), a C3/C4 grassland (mixed grass prairie), and a shrub-dominated ecosystem with C3 and C4 grasses (sagebrush steppe). We added two levels of N (10 kg N ha-1 and 100 kg N ha-1) and increased summer monthly precipitation by 20%. Sites responded differently to treatments, with the scale of effect varying by treatment. The high-level nitrogen increased soil N availability and soil respiration, while decreasing soil carbon in the labile pool in the upper soil layers. These results will allow for better understanding of increased N in combination with altered water availability across different plant communities and ecosystems, particularly helping to close the gap in knowledge on the effects of low-level, chronic N addition in drylands.

  20. Overexpression of the Arabidopsis CBF3 Transcriptional Activator Mimics Multiple Biochemical Changes Associated with Cold Acclimation1

    PubMed Central

    Gilmour, Sarah J.; Sebolt, Audrey M.; Salazar, Maite P.; Everard, John D.; Thomashow, Michael F.

    2000-01-01

    We further investigated the role of the Arabidopsis CBF regulatory genes in cold acclimation, the process whereby certain plants increase in freezing tolerance upon exposure to low temperature. The CBF genes, which are rapidly induced in response to low temperature, encode transcriptional activators that control the expression of genes containing the C-repeat/dehydration responsive element DNA regulatory element in their promoters. Constitutive expression of either CBF1 or CBF3 (also known as DREB1b and DREB1a, respectively) in transgenic Arabidopsis plants has been shown to induce the expression of target COR (cold-regulated) genes and to enhance freezing tolerance in nonacclimated plants. Here we demonstrate that overexpression of CBF3 in Arabidopsis also increases the freezing tolerance of cold-acclimated plants. Moreover, we show that it results in multiple biochemical changes associated with cold acclimation: CBF3-expressing plants had elevated levels of proline (Pro) and total soluble sugars, including sucrose, raffinose, glucose, and fructose. Plants overexpressing CBF3 also had elevated P5CS transcript levels suggesting that the increase in Pro levels resulted, at least in part, from increased expression of the key Pro biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthase. These results lead us to propose that CBF3 integrates the activation of multiple components of the cold acclimation response. PMID:11115899

  1. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis.

    PubMed

    Tschoep, Hendrik; Gibon, Yves; Carillo, Petronia; Armengaud, Patrick; Szecowka, Marek; Nunes-Nesi, Adriano; Fernie, Alisdair R; Koehl, Karin; Stitt, Mark

    2009-03-01

    We have established a simple soil-based experimental system that allows a small and sustained restriction of growth of Arabidopsis by low nitrogen (N). Plants were grown in a large volume of a peat-vermiculite mix that contained very low levels of inorganic N. As a control, inorganic N was added in solid form to the peat-vermiculite mix, or plants were grown in conventional nutrient-rich solids. The low N growth regime led to a sustained 20% decrease of the relative growth rate over a period of 2 weeks, resulting in a two- to threefold decrease in biomass in 35- to 40-day-old plants. Plants in the low N regime contained lower levels of nitrate, lower nitrate reductase activity, lower levels of malate, fumarate and other organic acids and slightly higher levels of starch, as expected from published studies of N-limited plants. However, their rosette protein content was unaltered, and total and many individual amino acid levels increased compared with N-replete plants. This metabolic phenotype reveals that Arabidopsis responds adaptively to low N by decreasing the rate of growth, while maintaining the overall protein content, and maintaining or even increasing the levels of many amino acids.

  2. The redox state of the apoplast influences the acclimation of photosynthesis and leaf metabolism to changing irradiance

    PubMed Central

    Karpinska, Barbara; Zhang, Kaiming; Rasool, Brwa; Pastok, Daria; Morris, Jenny; Verrall, Susan R.; Hedley, Pete E.

    2017-01-01

    Abstract The redox state of the apoplast is largely determined by ascorbate oxidase (AO) activity. The influence of AO activity on leaf acclimation to changing irradiance was explored in wild‐type (WT) and transgenic tobacco (Nicotiana tobaccum) lines containing either high [pumpkin AO (PAO)] or low [tobacco AO (TAO)] AO activity at low [low light (LL); 250 μmol m−2 s−1] and high [high light (HL); 1600 μmol m−2 s−1] irradiance and following the transition from HL to LL. AO activities changed over the photoperiod, particularly in the PAO plants. AO activity had little effect on leaf ascorbate, which was significantly higher under HL than under LL. Apoplastic ascorbate/dehydroascorbate (DHA) ratios and threonate levels were modified by AO activity. Despite decreased levels of transcripts encoding ascorbate synthesis enzymes, leaf ascorbate increased over the first photoperiod following the transition from HL to LL, to much higher levels than LL‐grown plants. Photosynthesis rates were significantly higher in the TAO leaves than in WT or PAO plants grown under HL but not under LL. Sub‐sets of amino acids and fatty acids were lower in TAO and WT leaves than in the PAO plants under HL, and following the transition to LL. Light acclimation processes are therefore influenced by the apoplastic as well as chloroplastic redox state. PMID:28369975

  3. Two Populations of Viral Minichromosomes Are Present in a Geminivirus-Infected Plant Showing Symptom Remission (Recovery).

    PubMed

    Ceniceros-Ojeda, Esther Adriana; Rodríguez-Negrete, Edgar Antonio; Rivera-Bustamante, Rafael Francisco

    2016-04-01

    Geminiviruses are important plant pathogens characterized by circular, single-stranded DNA (ssDNA) genomes. However, in the nuclei of infected cells, viral double-stranded DNA (dsDNA) associates with host histones to form a minichromosome. In phloem-limited geminiviruses, the characterization of viral minichromosomes is hindered by the low concentration of recovered complexes due to the small number of infected cells. Nevertheless, geminiviruses are both inducers and targets of the host posttranscriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) machinery. We have previously characterized a "recovery" phenomenon observed in pepper plants infected with pepper golden mosaic virus (PepGMV) that is associated with a reduction of viral DNA and RNA levels, the presence of virus-related siRNAs, and an increase in the levels of viral DNA methylation. Initial micrococcal nuclease-based assays pinpointed the presence of different viral chromatin complexes in symptomatic and recovered tissues. Using the pepper-PepGMV system, we developed a methodology to obtain a viral minichromosome-enriched fraction that does not disturb the basic chromatin structural integrity, as evaluated by the detection of core histones. Using this procedure, we have further characterized two populations of viral minichromosomes in PepGMV-infected plants. After further purification using sucrose gradient sedimentation, we also observed that minichromosomes isolated from symptomatic tissue showed a relaxed conformation (based on their sedimentation rate), are associated with a chromatin activation marker (H3K4me3), and present a low level of DNA methylation. The minichromosome population obtained from recovered tissue, on the other hand, sedimented as a compact structure, is associated with a chromatin-repressive marker (H3K9me2), and presents a high level of DNA methylation. Viral minichromosomes have been reported in several animal and plant models. However, in the case of geminiviruses, there has been some recent discussion about the importance of this structure and the significance of the epigenetic modifications that it can undergo during the infective cycle. Major problems in this type of studies are the low concentration of these complexes in an infected plant and the asynchronicity of infected cells along the process; therefore, the complexes isolated in a given moment usually represent a mixture of cells at different infection stages. The recovery process observed in PepGMV-infected plants and the isolation procedure described here provide two distinct populations of minichromosomes that will allow a more precise characterization of the modifications of viral DNA and its host proteins associated along the infective cycle. This structure could be also an interesting model to study several processes involving plant chromatin. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Two Populations of Viral Minichromosomes Are Present in a Geminivirus-Infected Plant Showing Symptom Remission (Recovery)

    PubMed Central

    Ceniceros-Ojeda, Esther Adriana; Rodríguez-Negrete, Edgar Antonio

    2016-01-01

    ABSTRACT Geminiviruses are important plant pathogens characterized by circular, single-stranded DNA (ssDNA) genomes. However, in the nuclei of infected cells, viral double-stranded DNA (dsDNA) associates with host histones to form a minichromosome. In phloem-limited geminiviruses, the characterization of viral minichromosomes is hindered by the low concentration of recovered complexes due to the small number of infected cells. Nevertheless, geminiviruses are both inducers and targets of the host posttranscriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) machinery. We have previously characterized a “recovery” phenomenon observed in pepper plants infected with pepper golden mosaic virus (PepGMV) that is associated with a reduction of viral DNA and RNA levels, the presence of virus-related siRNAs, and an increase in the levels of viral DNA methylation. Initial micrococcal nuclease-based assays pinpointed the presence of different viral chromatin complexes in symptomatic and recovered tissues. Using the pepper-PepGMV system, we developed a methodology to obtain a viral minichromosome-enriched fraction that does not disturb the basic chromatin structural integrity, as evaluated by the detection of core histones. Using this procedure, we have further characterized two populations of viral minichromosomes in PepGMV-infected plants. After further purification using sucrose gradient sedimentation, we also observed that minichromosomes isolated from symptomatic tissue showed a relaxed conformation (based on their sedimentation rate), are associated with a chromatin activation marker (H3K4me3), and present a low level of DNA methylation. The minichromosome population obtained from recovered tissue, on the other hand, sedimented as a compact structure, is associated with a chromatin-repressive marker (H3K9me2), and presents a high level of DNA methylation. IMPORTANCE Viral minichromosomes have been reported in several animal and plant models. However, in the case of geminiviruses, there has been some recent discussion about the importance of this structure and the significance of the epigenetic modifications that it can undergo during the infective cycle. Major problems in this type of studies are the low concentration of these complexes in an infected plant and the asynchronicity of infected cells along the process; therefore, the complexes isolated in a given moment usually represent a mixture of cells at different infection stages. The recovery process observed in PepGMV-infected plants and the isolation procedure described here provide two distinct populations of minichromosomes that will allow a more precise characterization of the modifications of viral DNA and its host proteins associated along the infective cycle. This structure could be also an interesting model to study several processes involving plant chromatin. PMID:26792752

  5. Key acclimation responses to phosphorus deficiency in maize plants are influenced by exogenous nitric oxide.

    PubMed

    Ramos-Artuso, Facundo; Galatro, Andrea; Buet, Agustina; Santa-María, Guillermo E; Simontacchi, Marcela

    2018-03-01

    Improving phosphorus (P) acquisition and utilization in crops is of great importance in order to achieve a good plant nutritional state and maximize biomass production while minimizing the addition of fertilizers, and the concomitant risk of eutrophication. This study explores to which extent key processes involved in P-acquisition, and other acclimation mechanisms to low P supply in maize (Zea mays L.) plants, are affected by the addition of a nitric oxide (NO) donor (S-nitrosoglutathione, GSNO). Plants grown in a complete culture solution were exposed to four treatments performed by the combination of two P levels (0 and 0.5 mM), and two GSNO levels (0 and 0.1 mM), and responses to P-deprivation were then studied. Major plant responses related to P-deprivation were affected by the presence of the NO donor. In roots, the activity of acid phosphatases was significantly increased in P-depleted plants simultaneously exposed to GSNO. Acidification of the culture solution also increased in plants that had been grown in the presence of the NO donor. Furthermore, the potential capability displayed by roots of P-deprived plants for P-uptake, was higher in the plants that had been treated with GSNO. These results indicate that exogenous NO addition affects fundamental acclimation responses of maize plants to P scarcity, particularly and positively those that help plants to sustain P-acquisition under low P availability. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. NO3- , PO43- and SO42- deprivation reduced LKT1-mediated low-affinity K+ uptake and SKOR-mediated K+ translocation in tomato and Arabidopsis plants.

    PubMed

    Ródenas, Reyes; García-Legaz, Manuel Francisco; López-Gómez, Elvira; Martínez, Vicente; Rubio, Francisco; Ángeles Botella, M

    2017-08-01

    Regulation of essential macronutrients acquisition by plants in response to their availability is a key process for plant adaptation to changing environments. Here we show in tomato and Arabidopsis plants that when they are subjected to NO 3 - , PO 4 3 - and SO 4 2 - deprivation, low-affinity K + uptake and K + translocation to the shoot are reduced. In parallel, these nutritional deficiencies produce reductions in the messenger levels of the genes encoding the main systems for low-affinity K + uptake and K + translocation, i.e. AKT1 and SKOR in Arabidopsis and LKT1 and the tomato homolog of SKOR, SlSKOR in tomato, respectively. The results suggest that the shortage of one nutrient produces a general downregulation of the acquisition of other nutrients. In the case of K + nutrient, one of the mechanisms for such a response resides in the transcriptional repression of the genes encoding the systems for K + uptake and translocation. © 2017 Scandinavian Plant Physiology Society.

  7. The Role of Endogenous Strigolactones and Their Interaction with ABA during the Infection Process of the Parasitic Weed Phelipanche ramosa in Tomato Plants

    PubMed Central

    Cheng, Xi; Floková, Kristýna; Bouwmeester, Harro; Ruyter-Spira, Carolien

    2017-01-01

    The root parasitic plant species Phelipanche ramosa, branched broomrape, causes severe damage to economically important crops such as tomato. Its seed germination is triggered by host-derived signals upon which it invades the host root. In tomato, strigolactones (SLs) are the main germination stimulants for P. ramosa. Therefore, the development of low SL-producing lines may be an approach to combat the parasitic weed problem. However, since SLs are also a plant hormone controlling many aspects of plant development, SL deficiency may also have an effect on post-germination stages of the infection process, during the parasite-host interaction. In this study, we show that SL-deficient tomato plants (Solanum lycopersicum; SlCCD8 RNAi lines), infected with pre-germinated P. ramosa seeds, display an increased infection level and faster development of the parasite, which suggests a positive role for SLs in the host defense against parasitic plant invasion. Furthermore, we show that SL-deficient tomato plants lose their characteristic SL-deficient phenotype during an infection with P. ramosa through a reduction in the number of internodes and the number and length of secondary branches. Infection with P. ramosa resulted in increased levels of abscisic acid (ABA) in the leaves and roots of both wild type and SL-deficient lines. Upon parasite infection, the level of the conjugate ABA-glucose ester (ABA-GE) also increased in leaves of both wild type and SL-deficient lines and in roots of one SL-deficient line. The uninfected SL-deficient lines had a higher leaf ABA-GE level than the wild type. Despite the high levels of ABA, stomatal aperture and water loss rate were not affected by parasite infection in the SL-deficient line, while in wild type tomato stomatal aperture and water loss increased upon infection. Future studies are needed to further underpin the role that SLs play in the interaction of hosts with parasitic plants and which other plant hormones interact with the SLs during this process. PMID:28392795

  8. The Role of Endogenous Strigolactones and Their Interaction with ABA during the Infection Process of the Parasitic Weed Phelipanche ramosa in Tomato Plants.

    PubMed

    Cheng, Xi; Floková, Kristýna; Bouwmeester, Harro; Ruyter-Spira, Carolien

    2017-01-01

    The root parasitic plant species Phelipanche ramosa , branched broomrape, causes severe damage to economically important crops such as tomato. Its seed germination is triggered by host-derived signals upon which it invades the host root. In tomato, strigolactones (SLs) are the main germination stimulants for P. ramosa . Therefore, the development of low SL-producing lines may be an approach to combat the parasitic weed problem. However, since SLs are also a plant hormone controlling many aspects of plant development, SL deficiency may also have an effect on post-germination stages of the infection process, during the parasite-host interaction. In this study, we show that SL-deficient tomato plants ( Solanum lycopersicum; SlCCD8 RNAi lines), infected with pre-germinated P. ramosa seeds, display an increased infection level and faster development of the parasite, which suggests a positive role for SLs in the host defense against parasitic plant invasion. Furthermore, we show that SL-deficient tomato plants lose their characteristic SL-deficient phenotype during an infection with P. ramosa through a reduction in the number of internodes and the number and length of secondary branches. Infection with P. ramosa resulted in increased levels of abscisic acid (ABA) in the leaves and roots of both wild type and SL-deficient lines. Upon parasite infection, the level of the conjugate ABA-glucose ester (ABA-GE) also increased in leaves of both wild type and SL-deficient lines and in roots of one SL-deficient line. The uninfected SL-deficient lines had a higher leaf ABA-GE level than the wild type. Despite the high levels of ABA, stomatal aperture and water loss rate were not affected by parasite infection in the SL-deficient line, while in wild type tomato stomatal aperture and water loss increased upon infection. Future studies are needed to further underpin the role that SLs play in the interaction of hosts with parasitic plants and which other plant hormones interact with the SLs during this process.

  9. Hormone Profiling in Plant Tissues.

    PubMed

    Müller, Maren; Munné-Bosch, Sergi

    2017-01-01

    Plant hormones are for a long time known to act as chemical messengers in the regulation of physiological processes during a plant's life cycle, from germination to senescence. Furthermore, plant hormones simultaneously coordinate physiological responses to biotic and abiotic stresses. To study the hormonal regulation of physiological processes, three main approaches have been used (1) exogenous application of hormones, (2) correlative studies through measurements of endogenous hormone levels, and (3) use of transgenic and/or mutant plants altered in hormone metabolism or signaling. A plant hormone profiling method is useful to unravel cross talk between hormones and help unravel the hormonal regulation of physiological processes in studies using any of the aforementioned approaches. However, hormone profiling is still particularly challenging due to their very low abundance in plant tissues. In this chapter, a sensitive, rapid, and accurate method to quantify all the five "classic" classes of plant hormones plus other plant growth regulators, such as jasmonates, salicylic acid, melatonin, and brassinosteroids is described. The method includes a fast and simple extraction procedure without time consuming steps as purification or derivatization, followed by optimized ultrahigh-performance liquid chromatography coupled to electrospray ionization-tandem mass spectrometry (UHPLC-MS/MS) analysis. This protocol facilitates the high-throughput analysis of hormone profiling and is applicable to different plant tissues.

  10. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus.

    PubMed

    Nascentes, Renan F; Carbonari, Caio A; Simões, Plinio S; Brunelli, Marcela C; Velini, Edivaldo D; Duke, Stephen O

    2018-05-01

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage and environmental parameters. Glyphosate hormesis is well established, but relatively little is known of the mechanism of this phenomenon. The objective of this study was to determine if low doses of glyphosate that cause growth stimulation in sugarcane and eucalyptus concomitantly stimulate CO 2 assimilation. Shoot dry weight in both species increased at both 40 and 60 days after application of 6.2 to 20.2 g a.e. ha -1 glyphosate. The level of enhanced shoot dry weight was 11 to 37%, depending on the time after treatment and the species. Concomitantly, CO 2 assimilation, stomatal conductance and transpiration were increased by glyphosate doses similar to those that caused growth increases. Glyphosate applied at low doses increased the dry weight of sugarcane and eucalyptus plants in all experiments. This hormetic effect was related to low dose effects on CO 2 assimilation rate, stomatal conductance and transpiration rate, indicating that low glyphosate doses enhance photosynthesis of plants. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient.

    PubMed

    Måren, Inger Elisabeth; Kapfer, Jutta; Aarrestad, Per Arild; Grytnes, John-Arvid; Vandvik, Vigdis

    2018-01-01

    Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance. © 2017 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  12. Storm surges and climate change implications for tidal marshes: Insight from the San Francisco Bay Estuary, California, USA

    USGS Publications Warehouse

    Thorne, Karen M.; Buffington, Kevin J.; Swanson, Kathleen; Takekawa, John Y.

    2013-01-01

    Tidal marshes are dynamic ecosystems, which are influenced by oceanic and freshwater processes and daily changes in sea level. Projected sea-level rise and changes in storm frequency and intensity will affect tidal marshes by altering suspended sediment supply, plant communities, and the inundation duration and depth of the marsh platform. The objective of this research was to evaluate if regional weather conditions resulting in low-pressure storms changed tidal conditions locally within three tidal marshes. We hypothesized that regional storms will increase sea level heights locally, resulting in increased inundation of the tidal marsh platform and plant communities. Using site-level measurements of elevation, plant communities, and water levels, we present results from two storm events in 2010 and 2011 from the San Francisco Bay Estuary (SFBE), California, USA. The January 2010 storm had the lowest recorded sea level pressure in the last 30 years for this region. During the storm episodes, the duration of tidal marsh inundation was 1.8 and 3.1 times greater than average for that time of year, respectively. At peak storm surges, over 65% in 2010 and 93% in 2011 of the plant community was under water. We also discuss the implications of these types of storms and projected sea-level rise on the structure and function of the tidal marshes and how that will impact the hydro-geomorphic processes and marsh biotic communities.

  13. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes.

    PubMed

    Ge, Zhen-Ming; Wang, Heng; Cao, Hao-Bin; Zhao, Bin; Zhou, Xiao; Peltola, Heli; Cui, Li-Fang; Li, Xiu-Zhen; Zhang, Li-Quan

    2016-06-23

    The impacts of sea-level rise (SLR) on coastal ecosystems have attracted worldwide attention in relation to global change. In this study, the salt marsh model for the Yangtze Estuary (SMM-YE, developed in China) and the Sea Level Affecting Marshes Model (SLAMM, developed in the U.S.) were used to simulate the effects of SLR on the coastal salt marshes in eastern China. The changes in the dominant species in the plant community were also considered. Predictions based on the SLAMM indicated a trend of habitat degradation up to 2100; total salt marsh habitat area continued to decline (4-16%) based on the low-level scenario, with greater losses (6-25%) predicted under the high-level scenario. The SMM-YE showed that the salt marshes could be resilient to threats of SLR through the processes of accretion of mudflats, vegetation expansion and sediment trapping by plants. This model predicted that salt marsh areas increased (3-6%) under the low-level scenario. The decrease in the total habitat area with the SMM-YE under the high-level scenario was much lower than the SLAMM prediction. Nevertheless, SLR might negatively affect the salt marsh species that are not adapted to prolonged inundation. An adaptive strategy for responding to changes in sediment resources is necessary in the Yangtze Estuary.

  14. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes

    NASA Astrophysics Data System (ADS)

    Ge, Zhen-Ming; Wang, Heng; Cao, Hao-Bin; Zhao, Bin; Zhou, Xiao; Peltola, Heli; Cui, Li-Fang; Li, Xiu-Zhen; Zhang, Li-Quan

    2016-06-01

    The impacts of sea-level rise (SLR) on coastal ecosystems have attracted worldwide attention in relation to global change. In this study, the salt marsh model for the Yangtze Estuary (SMM-YE, developed in China) and the Sea Level Affecting Marshes Model (SLAMM, developed in the U.S.) were used to simulate the effects of SLR on the coastal salt marshes in eastern China. The changes in the dominant species in the plant community were also considered. Predictions based on the SLAMM indicated a trend of habitat degradation up to 2100; total salt marsh habitat area continued to decline (4-16%) based on the low-level scenario, with greater losses (6-25%) predicted under the high-level scenario. The SMM-YE showed that the salt marshes could be resilient to threats of SLR through the processes of accretion of mudflats, vegetation expansion and sediment trapping by plants. This model predicted that salt marsh areas increased (3-6%) under the low-level scenario. The decrease in the total habitat area with the SMM-YE under the high-level scenario was much lower than the SLAMM prediction. Nevertheless, SLR might negatively affect the salt marsh species that are not adapted to prolonged inundation. An adaptive strategy for responding to changes in sediment resources is necessary in the Yangtze Estuary.

  15. Consistent patterns of high alpha and low beta diversity in tropical parasitic and free-living protists.

    PubMed

    Lentendu, Guillaume; Mahé, Frédéric; Bass, David; Rueckert, Sonja; Stoeck, Thorsten; Dunthorn, Micah

    2018-05-30

    Tropical animals and plants are known to have high alpha diversity within forests, but low beta diversity between forests. By contrast, it is unknown whether microbes inhabiting the same ecosystems exhibit similar biogeographic patterns. To evaluate the biogeographies of tropical protists, we used metabarcoding data of species sampled in the soils of three lowland Neotropical rainforests. Taxa-area and distance-decay relationships for three of the dominant protist taxa and their subtaxa were estimated at both the OTU and phylogenetic levels, with presence-absence and abundance-based measures. These estimates were compared to null models. High local alpha and low regional beta diversity patterns were consistently found for both the parasitic Apicomplexa and the largely free-living Cercozoa and Ciliophora. Similar to animals and plants, the protists showed spatial structures between forests at the OTU and phylogenetic levels, and only at the phylogenetic level within forests. These results suggest that the biogeographies of macro- and micro-organismal eukaryotes in lowland Neotropical rainforests are partially structured by the same general processes. However, and unlike the animals and plants, the protist OTUs did not exhibit spatial structures within forests, which hinders our ability to estimate the local and regional diversity of protists in tropical forests. © 2018 John Wiley & Sons Ltd.

  16. Mapping drought conditions using multi-year windows

    Treesearch

    Frank H. Koch; John W. Coulston; William D. Smith

    2012-01-01

    Drought, especially persistent drought, may impact forests in direct and indirect ways. Low to moderate drought stress directly reduces plant growth processes at the cellular level, while more severe stress also substantially diminishes photosynthesis (Kareiva and others 1993, Mattson and Haack 1987). Indirectly, forest communities subjected to drought stress may be...

  17. Long-lived radionuclides in residues from operation and decommissioning of nuclear power plants

    NASA Astrophysics Data System (ADS)

    López-Gutiérrez, J. M.; Gómez-Guzmán, J. M.; Chamizo, E.; Peruchena, J. I.; García-León, M.

    2013-01-01

    Radioactive residues, in order to be classified as Low-Level Waste (LLW), need to fulfil certain conditions; the limitation of the maximum activity from long-lived radionuclides is one of these requirements. In order to verify compliance to this limitation, the abundance of these radionuclides in the residue must be determined. However, performing this determination through radiometric methods constitutes a laborious task. In this work, 129I concentrations, 239+240Pu activities, and 240Pu/239Pu ratios are determined in low-level radioactive residues, including resins and dry sludge, from nuclear power plants in Spain. The use of Accelerator Mass Spectrometry (AMS) enables high sensitivities to be achieved, and hence these magnitudes can be re determined with good precision. Results present a high dispersion between the 129I and 239+240Pu activities found in various aliquots of the same sample, which suggests the existence of a mixture of resins with a variety of histories in the same container. As a conclusion, it is shown that activities and isotopic ratios can provide information on the processes that occur in power plants throughout the history of the residues. Furthermore, wipes from the monitoring of surface contamination of the José Cabrera decommissioning process have been analyzed for 129I determination. The wide range of measured activities indicates an effective dispersal of 129I throughout the various locations within a nuclear power plant. Not only could these measurements be employed in the contamination monitoring of the decommissioning process, but also in the modelling of the presence of other iodine isotopes.

  18. Archaeogenomic insights into the adaptation of plants to the human environment: pushing plant-hominin co-evolution back to the Pliocene.

    PubMed

    Allaby, Robin G; Kistler, Logan; Gutaker, Rafal M; Ware, Roselyn; Kitchen, James L; Smith, Oliver; Clarke, Andrew C

    2015-02-01

    The colonization of the human environment by plants, and the consequent evolution of domesticated forms is increasingly being viewed as a co-evolutionary plant-human process that occurred over a long time period, with evidence for the co-evolutionary relationship between plants and humans reaching ever deeper into the hominin past. This developing view is characterized by a change in emphasis on the drivers of evolution in the case of plants. Rather than individual species being passive recipients of artificial selection pressures and ultimately becoming domesticates, entire plant communities adapted to the human environment. This evolutionary scenario leads to systems level genetic expectations from models that can be explored through ancient DNA and Next Generation Sequencing approaches. Emerging evidence suggests that domesticated genomes fit well with these expectations, with periods of stable complex evolution characterized by large amounts of change associated with relatively small selective value, punctuated by periods in which changes in one-half of the plant-hominin relationship cause rapid, low-complexity adaptation in the other. A corollary of a single plant-hominin co-evolutionary process is that clues about the initiation of the domestication process may well lie deep within the hominin lineage. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Gasoline from coal in the state of Illinois: feasibility study. Volume I. Design. [KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-01-01

    Volume 1 describes the proposed plant: KBW gasification process, ICI low-pressure methanol process and Mobil M-gasoline process, and also with ancillary processes, such as oxygen plant, shift process, RECTISOL purification process, sulfur recovery equipment and pollution control equipment. Numerous engineering diagrams are included. (LTN)

  20. P-MASS and P-GBA: Two new hardware developments for growing plants in space

    NASA Technical Reports Server (NTRS)

    Hoehn, Alexander; Luttges, Marvin W.; Robinson, Michael C.; Stodieck, Louis S.; Kliss, Mark H.

    1994-01-01

    Plant growth, and especially plant performance experiments in microgravity are limited by the currently available plant growth facilities (low light levels, inadequate nutrient delivery and atmosphere conditioning systems, insufficient science instrumentation, infrequent flight opportunities). In addition, mission durations of 10 to 14 days aboard the NSTS Space Shuttle allow for only brief periods of microgravity exposure with respect to the life cycle of a plant. Based on seed germination experiments, using the Generic BioProcessing Apparatus hardware (GBA), two new payloads have been designed specifically for plant growth. These payloads provide new opportunities for plant gravitational and space biology research and emphasize the investigation of plant performance (photosynthesis, biomass accumulations) in microgravity. The Plant-Module for Autonomous Space Support (P-MASS) was designed to utilize microgravity exposure times in excess of 30 days on the first flight of the recoverable COMET satellite (Commercial Experiment Transporter). The Plant-Generic Bioprocessing Apparatus (P-GBA), is designed for the National Space Transportation System (NSTS) Space Shuttle middeck and the SPACEHAB environment. The P-GBA is an evolution from the GBA hardware and P-MASS (plant chamber and instrumentation). The available light levels of both payloads more than double currently available capabilities.

  1. Functional specifications for a radioactive waste decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.

    1989-09-01

    It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less

  2. Importance of Fluctuations in Light on Plant Photosynthetic Acclimation1[CC-BY

    PubMed Central

    2017-01-01

    The acclimation of plants to light has been studied extensively, yet little is known about the effect of dynamic fluctuations in light on plant phenotype and acclimatory responses. We mimicked natural fluctuations in light over a diurnal period to examine the effect on the photosynthetic processes and growth of Arabidopsis (Arabidopsis thaliana). High and low light intensities, delivered via a realistic dynamic fluctuating or square wave pattern, were used to grow and assess plants. Plants subjected to square wave light had thicker leaves and greater photosynthetic capacity compared with fluctuating light-grown plants. This, together with elevated levels of proteins associated with electron transport, indicates greater investment in leaf structural components and photosynthetic processes. In contrast, plants grown under fluctuating light had thinner leaves, lower leaf light absorption, but maintained similar photosynthetic rates per unit leaf area to square wave-grown plants. Despite high light use efficiency, plants grown under fluctuating light had a slow growth rate early in development, likely due to the fact that plants grown under fluctuating conditions were not able to fully utilize the light energy absorbed for carbon fixation. Diurnal leaf-level measurements revealed a negative feedback control of photosynthesis, resulting in a decrease in total diurnal carbon assimilated of at least 20%. These findings highlight that growing plants under square wave growth conditions ultimately fails to predict plant performance under realistic light regimes and stress the importance of considering fluctuations in incident light in future experiments that aim to infer plant productivity under natural conditions in the field. PMID:28184008

  3. Waste receiving and processing facility module 1 data management system software project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.E.

    1994-11-02

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  4. Breckinridge Project, initial effort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-01-01

    Report V, Volume 4 provides descriptions, data, and drawings pertaining to Instrument and Plant Air Systems (Plant 36), Telecommunication Systems (Plant 37), Inert Gas Systems (Plant 38), Purge and Flush Oil Systems (Plant 39), Site Development and Roads (Plant 40), Buildings (Plant 41), Solid Waste Management (Plant 42), and Landfill (Plant 44). Instrument and Plant Air Systems (Plant 36) includes all equipment and piping necessary to supply instrument and utility air to the process plants and offsite facilities. Telecommunication Systems (Plant 37) includes the equipment and wiring for: communication throughout the facility; communication between plant data processing systems and offsitemore » computing facilities; and communication with transportation carriers. Inert Gas Systems (Plant 38) provides high purity and low purity nitrogen streams for plant startup and normal operation. Purge and Flush Oil Systems (Plant 39) provides purge and flush oils to various plants. Site Development and Roads (Plant 40) provides site leveling, the addition of roads, fencing, and drainage, and the placement of fills, pilings, footings, and foundations for plants. Buildings (Plant 41) provides buildings for equipment and for personnel, including utilities, lighting, sanitary facilities, heating, air conditioning, and ventilation. Solid Waste Management (Plant 42) identifies, characterizes, segregates, and transports the various types of solid wastes to either Landfill (Plant 44) or outside disposal sites. Landfill (Plant 44) provides disposal of both nonhazardous and hazardous solid wastes. Information is included (as applicable) for each of the eight plants described.« less

  5. Contribution of WUSCHEL-related homeobox (WOX) genes to identify the phylogenetic relationships among Petunia species

    PubMed Central

    Segatto, Ana Lúcia Anversa; Thompson, Claudia Elizabeth; Freitas, Loreta Brandão

    2016-01-01

    Abstract Developmental genes are believed to contribute to major changes during plant evolution, from infrageneric to higher levels. Due to their putative high sequence conservation, developmental genes are rarely used as molecular markers, and few studies including these sequences at low taxonomic levels exist. WUSCHEL-related homeobox genes (WOX) are transcription factors exclusively present in plants and are involved in developmental processes. In this study, we characterized the infrageneric genetic variation of Petunia WOX genes. We obtained phylogenetic relationships consistent with other phylogenies based on nuclear markers, but with higher statistical support, resolution in terminals, and compatibility with flower morphological changes. PMID:27768156

  6. Effects of lanthanum(III) on nitrogen metabolism of soybean seedlings under elevated UV-B radiation.

    PubMed

    Cao, Rui; Huang, Xiao-hua; Zhou, Qing; Cheng, Xiao-ying

    2007-01-01

    The hydroponic culture experiments of soybean bean seedlings were conducted to investigate the effect of lanthanum (La) on nitrogen metabolism under two different levels of elevated UV-B radiation (UV-B, 280-320 nm). The whole process of nitrogen metabolism involves uptake and transport of nitrate, nitrate assimilation, ammonium assimilation, amino acid biosynthesis, and protein synthesis. Compared with the control, UV-B radiation with the intensity of low level 0.15 W/m2 and high level 0.45 W/m2 significantly affected the whole nitrogen metabolism in soybean seedlings (p < 0.05). It restricted uptake and transport of NO3(-), inhibited activity of some key nitrogen-metabolism-related enzymes, such as: nitrate reductase (NR) to the nitrate reduction, glutamine systhetase (GS) and glutamine synthase (GOGAT) to the ammonia assimilation, while it increased the content of free amino acids and decreased that of soluble protein as well. The damage effect of high level of UV-B radiation on nitrogen metabolism was greater than that of low level. And UV-B radiation promoted the activity of the anti-adversity enzyme glutamate dehydrogenase (GDH), which reduced the toxicity of excess ammonia in plant. After pretreatment with the optimum concentration of La (20 mg/L), La could increase the activity of NR, GS, GOGAT, and GDH, and ammonia assimilation, but decrease nitrate and ammonia accumulation. In conclusion, La could relieve the damage effect of UV-B radiation on plant by regulating nitrogen metabolism process, and its alleviating effect under low level was better than that under the high one.

  7. Building dismantlement and site remediation at the Apollo Fuel Plant: When is technology the answer?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walton, L.

    1995-01-01

    The Apollo fuel plant was located in Pennsylvania on a site known to have been used continuously for stell production from before the Civil War until after World War II. Then the site became a nuclear fuel chemical processing plants. Finally it was used to convert uranium hexafluoride to various oxide fuel forms. After the fuel manufacturing operations were teminated, the processing equipment was partially decontaminated, removed, packaged and shipped to a licensed low-level radioactive waste burial site. The work was completed in 1984. In 1990 a detailed site characterization was initiated to establishe the extent of contamination and tomore » plan the building dismantlement and soil remediation efforts. This article discusses the site characterization and remedial action at the site in the following subsections: characterization; criticality control; mobile containment; soil washing; in-process measurements; and the final outcome of the project.« less

  8. W-007H B Plant Process Condensate Treatment Facility. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rippy, G.L.

    1995-01-20

    B Plant Process Condensate (BCP) liquid effluent stream is the condensed vapors originating from the operation of the B Plant low-level liquid waste concentration system. In the past, the BCP stream was discharged into the soil column under a compliance plan which expired January 1, 1987. Currently, the BCP stream is inactive, awaiting restart of the E-23-3 Concentrator. B Plant Steam Condensate (BCS) liquid effluent stream is the spent steam condensate used to supply heat to the E-23-3 Concentrator. The tube bundles in the E-23-3 Concentrator discharge to the BCS. In the past, the BCS stream was discharged into themore » soil column. Currently, the BCS stream is inactive. This project shall provide liquid effluent systems (BCP/BCS/BCE) capable of operating for a minimum of 20 years, which does not include the anticipated decontamination and decommissioning (D and D) period.« less

  9. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress

    PubMed Central

    Simontacchi, Marcela; Galatro, Andrea; Ramos-Artuso, Facundo; Santa-María, Guillermo E.

    2015-01-01

    Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant’s ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant’s priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation. PMID:26617619

  10. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress.

    PubMed

    Pandey, Renu; Zinta, Gaurav; AbdElgawad, Hamada; Ahmad, Altaf; Jain, Vanita; Janssens, Ivan A

    2015-01-01

    Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P-limitation responses in plants. Analysis of expression patterns of some typical P-limitation induced genes under high [CO2] suggests that long-term exposure of plants to high [CO2] would have a tendency to stimulate similar transcriptional responses as observed under P-limitation. However, studies on the combined effect of high [CO2] and low P on gene expression are scarce. Such studies would provide insights into the development of P efficient crops in the context of anticipated increases in atmospheric [CO2]. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants.

    PubMed

    Porcel, Rosa; Zamarreño, Ángel María; García-Mina, José María; Aroca, Ricardo

    2014-01-25

    Plant growth-promoting rhizobacteria (PGPR) are naturally occurring soil bacteria which benefit plants by improving plant productivity and immunity. The mechanisms involved in these processes include the regulation of plant hormone levels such as ethylene and abscisic acid (ABA). The aim of the present study was to determine whether the activity of Bacillus megaterium PGPR is affected by the endogenous ABA content of the host plant. The ABA-deficient tomato mutants flacca and sitiens and their near-isogenic wild-type parental lines were used. Growth, stomatal conductance, shoot hormone concentration, competition assay for colonization of tomato root tips, and root expression of plant genes expected to be modulated by ABA and PGPR were examined. Contrary to the wild-type plants in which PGPR stimulated growth rates, PGPR caused growth inhibition in ABA-deficient mutant plants. PGPR also triggered an over accumulation of ethylene in ABA-deficient plants which correlated with a higher expression of the pathogenesis-related gene Sl-PR1b. Positive correlation between over-accumulation of ethylene and a higher expression of Sl-PR1b in ABA-deficient mutant plants could indicate that maintenance of normal plant endogenous ABA content may be essential for the growth promoting action of B. megaterium by keeping low levels of ethylene production.

  12. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines.

    PubMed

    Brestic, Marian; Zivcak, Marek; Kunderlikova, Kristyna; Allakhverdiev, Suleyman I

    2016-12-01

    The effects of high temperature on CO 2 assimilation rate, processes associated with photosynthetic electron and proton transport, as well as photoprotective responses, were studied in chlorophyll b-deficient mutant lines (ANK-32A and ANK-32B) and wild type (WT) of wheat (Triticum aestivum L.). Despite the low chlorophyll content and chlorophyll a-to-b ratio, the non-stressed mutant plants had the similar level of CO 2 assimilation and photosynthetic responses as WT. However, in ANK mutant plants exposed to prolonged high temperature episode (42 °C for ~10 h), we observed lower CO 2 assimilation compared to WT, especially when a high CO 2 supply was provided. In all heat-exposed plants, we found approximately the same level of PSII photoinhibition, but the decrease in content of photooxidizable PSI was higher in ANK mutant plants compared to WT. The PSI damage can be well explained by the level of overreduction of PSI acceptor side observed in plants exposed to high temperature, which was, in turn, the result of the insufficient transthylakoid proton gradient associated with low non-photochemical quenching and lack of ability to downregulate the linear electron transport to keep the reduction state of PSI acceptor side low enough. Compared to WT, the ANK mutant lines had lower capacity to drive the cyclic electron transport around PSI in moderate and high light; it confirms the protective role of cyclic electron transport for the protection of PSI against photoinhibition. Our results, however, also suggest that the inactivation of PSI in heat stress conditions can be the protective mechanism against photooxidative damage of chloroplast and cell structures.

  13. Raspberry Pi-powered imaging for plant phenotyping.

    PubMed

    Tovar, Jose C; Hoyer, J Steen; Lin, Andy; Tielking, Allison; Callen, Steven T; Elizabeth Castillo, S; Miller, Michael; Tessman, Monica; Fahlgren, Noah; Carrington, James C; Nusinow, Dmitri A; Gehan, Malia A

    2018-03-01

    Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.

  14. Row erupts over US firm's plan to import nuclear waste

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-06-01

    A controversy is brewing in the US over a plan by a firm in Utah to import, process and dispose of 20 000 tonnes of low-level radioactive waste from decommissioned nuclear reactors built in Italy by American companies. EnergySolutions intends to recycle some of this waste at a site near Oak Ridge, Tennessee, so that it can be re-used as shielding blocks in nuclear plants. The firm then wants to dispose of the remaining radioactive material at a site in Clive, Utah, where over 90% of low-level radioactive waste generated in the US is currently buried.

  15. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  16. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions

    PubMed Central

    Gleadow, Ros; Pegg, Amelia; Blomstedt, Cecilia K.

    2016-01-01

    Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants. PMID:27506218

  17. Cis- and trans-zeatin differentially modulate plant immunity.

    PubMed

    Großkinsky, Dominik K; Edelsbrunner, Kerstin; Pfeifhofer, Hartwig; van der Graaff, Eric; Roitsch, Thomas

    2013-07-01

    Phytohormones are essential regulators of various processes in plant growth and development. Several phytohormones are also known to regulate plant responses to environmental stress and pathogens. Only recently, cytokinins have been demonstrated to play an important role in plant immunity. Increased levels of cytokinins such as trans-zeatin, which are considered highly active, induced resistance against mainly (hemi)biotrophic pathogens in different plant species. In contrast, cis-zeatin is commonly regarded as a cytokinin exhibiting low or no activity. Here we comparatively study the impact of both zeatin isomers on the infection of Nicotiana tabacum by the (hemi)biotrophic microbial pathogen Pseudomonas syringae. We demonstrate a biological effect of cis-zeatin and a differential effect of the two zeatin isomers on symptom development, defense responses and bacterial multiplication.

  18. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana.

    PubMed

    Lee, Chin-Mei; Thomashow, Michael F

    2012-09-11

    The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures.

  19. Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana

    PubMed Central

    Lee, Chin-Mei; Thomashow, Michael F.

    2012-01-01

    The CBF (C-repeat binding factor) pathway has a major role in plant cold acclimation, the process whereby certain plants increase in freezing tolerance in response to low nonfreezing temperatures. In Arabidopsis thaliana, the pathway is characterized by rapid cold induction of CBF1, CBF2, and CBF3, which encode transcriptional activators, followed by induction of CBF-targeted genes that impart freezing tolerance. At warm temperatures, CBF transcript levels are low, but oscillate due to circadian regulation with peak expression occurring at 8 h after dawn (zeitgeber time 8; ZT8). Here, we establish that the CBF pathway is also regulated by photoperiod at warm temperatures. At ZT8, CBF transcript levels in short-day (SD; 8-h photoperiod) plants were three- to fivefold higher than in long-day plants (LD; 16-h photoperiod). Moreover, the freezing tolerance of SD plants was greater than that of LD plants. Genetic analysis indicated that phytochrome B (PHYB) and two phytochrome-interacting factors, PIF4 and PIF7, act to down-regulate the CBF pathway and freezing tolerance under LD conditions. Down-regulation of the CBF pathway in LD plants correlated with higher PIF4 and PIF7 transcript levels and greater stability of the PIF4 and PIF7 proteins under LD conditions. Our results indicate that during the warm LD growing season, the CBF pathway is actively repressed by PHYB, PIF4, and PIF7, thus mitigating allocation of energy and nutrient resources toward unneeded frost protection. This repression is relieved by shortening day length resulting in up-regulation of the CBF pathway and increased freezing tolerance in preparation for coming cold temperatures. PMID:22927419

  20. Phytoremediation: using green plants to clean up contaminate soil, groundwater, and wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negri, M.C.; Hinchman, R.R.; Gatliff, E.G.

    1996-07-01

    Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds and radioactive compounds in soil or water. Our research includes a successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. A greenhouse experiment on zinc uptakemore » in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data indicating high levels of zinc (4,200 ppm) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from experimental pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 ppm Zn in the dry root tissue. These levels of sequestered zinc exceed the levels found in either roots or tops of many of the known ``hyperaccumulator`` species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Available techniques and equipment for harvesting plant roots, including young tree roots, are being evaluated and modified as necessary for use with phytoremediation plants.« less

  1. Maintenance or Collapse: Responses of Extraplastidic Membrane Lipid Composition to Desiccation in the Resurrection Plant Paraisometrum mileense

    PubMed Central

    Yu, Buzhu; Yu, Xiaomei; Li, Weiqi

    2014-01-01

    Resurrection plants usually grow in specific or extreme habitats and have the capacity to survive almost complete water loss. We characterized the physiological and biochemical responses of Paraisometrum mileense to extreme desiccation and found that it is a resurrection plant. We profiled the changes in lipid molecular species during dehydration and rehydration in P. mileense, and compared these with corresponding changes in the desiccation-sensitive plant Arabidopsis thaliana. One day of desiccation was lethal for A. thaliana but not for P. mileense. After desiccation and subsequent rewatering, A. thaliana showed dramatic lipid degradation accompanied by large increases in levels of phosphatidic acid (PA) and diacylglycerol (DAG). In contrast, desiccation and rewatering of P. mileense significantly decreased the level of monogalactosyldiacylglycerol and increased the unsaturation of membrane lipids, without changing the level of extraplastidic lipids. Lethal desiccation in P. mileense caused massive lipid degradation, whereas the PA content remained at a low level similar to that of fresh leaves. Neither damage nor repair processes, nor increases in PA, occurred during non-lethal desiccation in P. mileense. The activity of phospholipase D, the main source of PA, was much lower in P. mileense than in A. thaliana under control conditions, or after either dehydration or rehydration. It was demonstrated that low rates of phospholipase D-mediated PA formation in P. mileense might limit its ability to degrade lipids to PA, thereby maintaining membrane integrity following desiccation. PMID:25068901

  2. Soil Oxidation-Reduction in Wetlands and Its Impact on Plant Functioning

    PubMed Central

    Pezeshki, S. R.; DeLaune, R. D.

    2012-01-01

    Soil flooding in wetlands is accompanied by changes in soil physical and chemical characteristics. These changes include the lowering of soil redox potential (Eh) leading to increasing demand for oxygen within the soil profile as well as production of soil phytotoxins that are by-products of soil reduction and thus, imposing potentially severe stress on plant roots. Various methods are utilized for quantifying plant responses to reducing soil conditions that include measurement of radial oxygen transport, plant enzymatic responses, and assessment of anatomical/morphological changes. However, the chemical properties and reducing nature of soil environment in which plant roots are grown, including oxygen demand, and other associated processes that occur in wetland soils, pose a challenge to evaluation and comparison of plant responses that are reported in the literature. This review emphasizes soil-plant interactions in wetlands, drawing attention to the importance of quantifying the intensity and capacity of soil reduction for proper evaluation of wetland plant responses, particularly at the process and whole-plant levels. Furthermore, while root oxygen-deficiency may partially account for plant stress responses, the importance of soil phytotoxins, produced as by-products of low soil Eh conditions, is discussed and the need for development of methods to allow differentiation of plant responses to reduced or anaerobic soil conditions vs. soil phytotoxins is emphasized. PMID:24832223

  3. Transcriptomic changes in wind-exposed poplar leaves are dependent on developmental stage.

    PubMed

    Fluch, Silvia; Olmo, Christian Carlo; Tauber, Stefanie; Stierschneider, Michael; Kopecky, Dieter; Reichenauer, Thomas G; Matusíková, Ildikó

    2008-10-01

    Responses of plant tissue to environmental challenges can vary among different plant parts and among plants of different ages. Investment into defense has been proposed to be influenced by fitness value and/or allocation of available resources. Here we show at first time at transcriptome level that plant defense is non-linear. On very young, expanding, adult and old leaves of Populus nigra plants exposed to air perturbation, we studied the ontogenic trajectory of gene expression changes to such a low-dose factor similar to wind. Although plant responses to mechanical sensation (wind, touch) are described and summarized as thigmomorphogenesis, the knowledge on the molecular background of plant responses to wind is largely incomplete. Our data describe which genes are activated during a ubiquitous and continuous environmental factor such as wind, and based on existing knowledge complement the picture on ongoing processes.

  4. Application of computational methods to analyse and investigate physical and chemical processes of high-temperature mineralizing of condensed substances in gas stream

    NASA Astrophysics Data System (ADS)

    Markelov, A. Y.; Shiryaevskii, V. L.; Kudrinskiy, A. A.; Anpilov, S. V.; Bobrakov, A. N.

    2017-11-01

    A computational method of analysis of physical and chemical processes of high-temperature mineralizing of low-level radioactive waste in gas stream in the process of plasma treatment of radioactive waste in shaft furnaces was introduced. It was shown that the thermodynamic simulation method allows fairly adequately describing the changes in the composition of the pyrogas withdrawn from the shaft furnace at different waste treatment regimes. This offers a possibility of developing environmentally and economically viable technologies and small-sized low-cost facilities for plasma treatment of radioactive waste to be applied at currently operating nuclear power plants.

  5. Performance calculations for 200-1000 MWe MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.

    1981-01-01

    The effects of MHD generator length, level of oxygen enrichment, and oxygen production power on the performance of MHD/steam power plants ranging from 200 to 1000 MW in electrical output are investigated. The plants considered use oxygen enriched combustion air preheated to 1100 F. Both plants in which the MHD generator is cooled with low temperature and pressure boiler feedwater and plants in which the generator is cooled with high temperature and pressure boiler feedwater are considered. For plants using low temperature boiler feedwater for generator cooling the maximum thermodynamic efficiency is obtained with shorter generators and a lower level of oxygen enrichment compared to plants using high temperature boiler feedwater for generator cooling. The generator length at which the maximum plant efficiency occurs increases with power plant size for plants with a generator cooled by low temperature feedwater. Also shown is the relationship of the magnet stored energy requirement of the generator length and the power plant performance. Possible cost/performance tradeoffs between magnet cost and plant performance are indicated.

  6. Nickel and zinc isotope fractionation in hyperaccumulating and nonaccumulating plants.

    PubMed

    Deng, Teng-Hao-Bo; Cloquet, Christophe; Tang, Ye-Tao; Sterckeman, Thibault; Echevarria, Guillaume; Estrade, Nicolas; Morel, Jean-Louis; Qiu, Rong-Liang

    2014-10-21

    Until now, there has been little data on the isotope fractionation of nickel (Ni) in higher plants and how this can be affected by plant Ni and zinc (Zn) homeostasis. A hydroponic cultivation was conducted to investigate the isotope fractionation of Ni and Zn during plant uptake and translocation processes. The nonaccumulator Thlaspi arvense, the Ni hyperaccumulator Alyssum murale and the Ni and Zn hyperaccumulator Noccaea caerulescens were grown in low (2 μM) and high (50 μM) Ni and Zn solutions. Results showed that plants were inclined to absorb light Ni isotopes, presumably due to the functioning of low-affinity transport systems across root cell membrane. The Ni isotope fractionation between plant and solution was greater in the hyperaccumulators grown in low Zn treatments (Δ(60)Ni(plant-solution) = -0.90 to -0.63‰) than that in the nonaccumulator T. arvense (Δ(60)Ni(plant-solution) = -0.21‰), thus indicating a greater permeability of the low-affinity transport system in hyperaccumulators. Light isotope enrichment of Zn was observed in most of the plants (Δ(66)Zn(plant-solution) = -0.23 to -0.10‰), but to a lesser extent than for Ni. The rapid uptake of Zn on the root surfaces caused concentration gradients, which induced ion diffusion in the rhizosphere and could result in light Zn isotope enrichment in the hyperaccumulator N. caerulescens. In high Zn treatment, Zn could compete with Ni during the uptake process, which reduced Ni concentration in plants and decreased the extent of Ni isotope fractionation (Δ(60)Ni(plant-solution) = -0.11 to -0.07‰), indicating that plants might take up Ni through a low-affinity transport system of Zn. We propose that isotope composition analysis for transition elements could become an empirical tool to study plant physiological processes.

  7. Boron transport in plants: co-ordinated regulation of transporters

    PubMed Central

    Miwa, Kyoko; Fujiwara, Toru

    2010-01-01

    Background The essentiality of boron (B) for plant growth was established >85 years ago. In the last decade, it has been revealed that one of the physiological roles of B is cross-linking the pectic polysaccharide rhamnogalacturonan II in primary cell walls. Borate cross-linking of pectic networks serves both for physical strength of cell walls and for cell adhesion. On the other hand, high concentrations of B are toxic to plant growth. To avoid deficiency and toxicity problems, it is important for plants to maintain their tissue B concentrations within an optimum range by regulating transport processes. Boron transport was long believed to be a passive, unregulated process, but the identification of B transporters has suggested that plants sense and respond to the B conditions and regulate transporters to maintain B homeostasis. Scope Transporters responsible for efficient B uptake by roots, xylem loading and B distribution among leaves have been described. These transporters are required under B limitation for efficient acquisition and utilization of B. Transporters important for tolerating high B levels in the environment have also been identified, and these transporters export B from roots back to the soil. Two types of transporters are involved in these processes: NIPs (nodulin-26-like intrinsic proteins), boric acid channels, and BORs, B exporters. It is demonstrated that the expression of genes encoding these transporters is finely regulated in response to B availability in the environment to ensure tissue B homeostasis. Furthermore, plants tolerant to stress produced by low B or high B in the environment can be generated through altered expression of these transporters. Conclusions The identification of the first B transporter led to the discovery that B transport was a process mediated not only by passive diffusion but also by transporters whose activity was regulated in response to B conditions. Now it is evident that plants sense internal and external B conditions and regulate B transport by modulating the expression and/or accumulation of these transporters. Results obtained in model plants are applicable to other plant species, and such knowledge may be useful in designing plants or crops tolerant to soils containing low or high B. PMID:20228086

  8. Identification of a low digestibility δ-Conglutin in yellow lupin (Lupinus luteus L.) seed meal for atlantic salmon (Salmo salar L.) by coupling 2D-PAGE and mass spectrometry.

    PubMed

    Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J

    2013-01-01

    The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein.

  9. Identification of a Low Digestibility δ-Conglutin in Yellow Lupin (Lupinus luteus L.) Seed Meal for Atlantic Salmon (Salmo salar L.) by Coupling 2D-PAGE and Mass Spectrometry

    PubMed Central

    Ogura, Takahiro; Hernández, Adrián; Aizawa, Tomoko; Ogihara, Jun; Sunairi, Michio; Alcaino, Javier; Salvo-Garrido, Haroldo; Maureira-Butler, Iván J.

    2013-01-01

    The need of quality protein in the aquaculture sector has forced the incorporation of alternative plant proteins into feeding diets. However, most plant proteins show lower digestibility levels than fish meal proteins, especially in carnivorous fishes. Manipulation of protein content by plant breeding can improve the digestibility rate of plant proteins in fish, but the identification of low digestibility proteins is essential. A reduction of low digestibility proteins will not only increase feed efficiency, but also reduce water pollution. Little is known about specific digestible protein profiles and/or molecular identification of more bioavailable plant proteins in fish diets. In this study, we identified low digestibility L. luteus seed proteins using Atlantic salmon (Salmo salar) crude digestive enzymes in an in vitro assay. Low digestibility proteins were identified by comparing SDS-PAGE banding profiles of digested and non-digested lupin seed proteins. Gel image analysis detected a major 12 kDa protein band in both lupin meal and protein isolate digested products. The 12 kDa was confirmed by 2D-PAGE gels and the extracted protein was analyzed with an ion trap mass spectrometer in tandem mass mode. The MS/MS data showed that the 12 kDa low digestibility protein was a large chain δconglutin, a common seed storage protein of yellow lupin. Comparison of the protein band profiles between lupin meal and protein isolates showed that the isolatation process did not affect the low digestibility of the 12 kDa protein. PMID:24278278

  10. Contrasts between whole-plant and local nutrient levels determine root growth and death in Ailanthus altissima (Simaroubaceae).

    PubMed

    Hu, Fengqin; Mou, Paul P; Weiner, Jacob; Li, Shuo

    2014-05-01

    • There is an ongoing debate about the importance of whole-plant control vs. local modular mechanisms for root growth. We conducted a split-root experiment with different patch/background levels of nitrogen to examine whether local root growth and death are controlled by local resource levels or at the whole-plant level.• Three microrhizotrons with 0, 10, and 100 µg N/g growth medium levels (74 g growth medium each) were attached to pots of high or low soil N in which one Ailanthus altissima individual was growing. One fine root was guided into each of the microrhizotrons and photographed every 4 d. Plants were harvested after 28 d; root growth and mortality in the microrhizotrons were recorded. Changes in root length, number of laterals, and interlateral length were determined from the photos and analyzed.• While overall plant growth was influenced by background N level, both patch and background N levels influenced root growth and mortality in patches. Local roots proliferated most when the patch N level was high and background level low, and they proliferated least and showed highest mortality when patch N was low and the background level high.• The fate of roots growing in a patch is influenced by the resource environment of the plant's other roots as well as the resource levels in the patch itself. Thus, the growth and death of roots in patches is determined by both modular and whole-plant mechanisms. © 2014 Botanical Society of America, Inc.

  11. A Cold-Inducible DEAD-Box RNA Helicase from Arabidopsis thaliana Regulates Plant Growth and Development under Low Temperature.

    PubMed

    Liu, Yuelin; Tabata, Daisuke; Imai, Ryozo

    2016-01-01

    DEAD-box RNA helicases comprise a large family and are involved in a range of RNA processing events. Here, we identified one of the Arabidopsis thaliana DEAD-box RNA helicases, AtRH7, as an interactor of Arabidopsis COLD SHOCK DOMAIN PROTEIN 3 (AtCSP3), which is an RNA chaperone involved in cold adaptation. Promoter:GUS transgenic plants revealed that AtRH7 is expressed ubiquitously and that its levels of the expression are higher in rapidly growing tissues. Knockout mutant lines displayed several morphological alterations such as disturbed vein pattern, pointed first true leaves, and short roots, which resemble ribosome-related mutants of Arabidopsis. In addition, aberrant floral development was also observed in rh7 mutants. When the mutants were germinated at low temperature (12°C), both radicle and first leaf emergence were severely delayed; after exposure of seedlings to a long period of cold, the mutants developed aberrant, fewer, and smaller leaves. RNA blots and circular RT-PCR revealed that 35S and 18S rRNA precursors accumulated to higher levels in the mutants than in WT under both normal and cold conditions, suggesting the mutants are partially impaired in pre-rRNA processing. Taken together, the results suggest that AtRH7 affects rRNA biogenesis and plays an important role in plant growth under cold.

  12. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya

    PubMed Central

    Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly (P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly (P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree. PMID:29808161

  13. Good Manufacturing Practices and Microbial Contamination Sources in Orange Fleshed Sweet Potato Puree Processing Plant in Kenya.

    PubMed

    Malavi, Derick Nyabera; Muzhingi, Tawanda; Abong', George Ooko

    2018-01-01

    Limited information exists on the status of hygiene and probable sources of microbial contamination in Orange Fleshed Sweet Potato (OFSP) puree processing. The current study is aimed at determining the level of compliance to Good Manufacturing Practices (GMPs), hygiene, and microbial quality in OFSP puree processing plant in Kenya. Intensive observation and interviews using a structured GMPs checklist, environmental sampling, and microbial analysis by standard microbiological methods were used in data collection. The results indicated low level of compliance to GMPs with an overall compliance score of 58%. Microbial counts on food equipment surfaces, installations, and personnel hands and in packaged OFSP puree were above the recommended microbial safety and quality legal limits. Steaming significantly ( P < 0.05) reduced microbial load in OFSP cooked roots but the counts significantly ( P < 0.05) increased in the puree due to postprocessing contamination. Total counts, yeasts and molds, Enterobacteriaceae, total coliforms, and E. coli and S. aureus counts in OFSP puree were 8.0, 4.0, 6.6, 5.8, 4.8, and 5.9 log 10 cfu/g, respectively. In conclusion, equipment surfaces, personnel hands, and processing water were major sources of contamination in OFSP puree processing and handling. Plant hygiene inspection, environmental monitoring, and food safety trainings are recommended to improve hygiene, microbial quality, and safety of OFSP puree.

  14. Chilling response of plants: importance of galactolipase, free fatty acids and free radicals.

    PubMed

    Kaniuga, Z

    2008-03-01

    The chilling response of plants is complex and based on the interplay of two important metabolic processes--lipolytic degradation of membrane lipids and a set of oxidative reactions leading to lipid peroxidation and membrane damage evoked in chilling-sensitive (CS) plants subjected to low temperature and light. The effects of chilling of detached leaves and intact plants differ and are often neglected during experiments. In closely-related species, the activity of several constitutive enzymes (i.e. superoxide dismutase, ascorbate peroxidase and glutathione reductase) appears to be higher in chilling-tolerant (CT) than in CS species; while in several native, closely-related CS species, lipid acyl hydrolase (galactolipase) activity is higher than in CT species. Moreover, in chilling-insensitive (CI) plants, galactolipase activity is very low and is neither activated by detachment of leaves nor under stress conditions in growing plants. Dark and low-temperature treatments of detached leaves of CS species and post-chilling recovery of growing plants in the light activate galactolipase, which is responsible for the release of free fatty acids (FFA), the main substrates of peroxidation by lipoxygenase and free radicals. In several CS species, increased galactolipase activity is an important factor contributing to chilling susceptibility. Thus, it seems likely that enhancement of chilling tolerance may be achieved by genetically suppressing galactolipase in order to reduce both the degradation of chloroplast lipids and the level of released FFA, and thereby avoiding the deleterious action of their peroxidation products on plant tissues.

  15. Function of the Golgi-located phosphate transporter PHT4;6 is critical for senescence-associated processes in Arabidopsis

    PubMed Central

    Hassler, Sebastian; Jung, Benjamin; Lemke, Lilia; Novák, Ondřej; Strnad, Miroslav; Martinoia, Enrico; Neuhaus, H. Ekkehard

    2016-01-01

    The phosphate transporter PHT4;6 locates to the trans-Golgi compartment, and its impaired activity causes altered intracellular phosphate compartmentation, leading to low cytosolic Pi levels, a blockage of Golgi-related processes such as protein glycosylation and hemicellulose biosynthesis, and a dwarf phenotype. However, it was unclear whether altered Pi homeostasis in pht4;6 mutants causes further cellular problems, typically associated with limited phosphate availability. Here we report that pht4;6 mutants exhibit a markedly increased disposition to induce dark-induced senescence. In control experiments, in which pht4;6 mutants and wild-type plants developed similarly, we confirmed that accelerated dark-induced senescence in mutants is not a ‘pleiotropic’ process associated with the dwarf phenotype. In fact, accelerated dark-induced senescence in pht4;6 mutants correlates strongly with increased levels of toxic NH4 + and higher sensitivity to ammonium, which probably contribute to the inability of pht4;6 mutants to recover from dark treatment. Experiments with modified levels of either salicylic acid (SA) or trans-zeatin (tZ) demonstrate that altered concentrations of these compounds in pht4;6 plants act as major cellular mediators for dark-induced senescence. This conclusion gained further support from the notion that the expression of the pht4;6 gene is, in contrast to genes coding for major phosphate importers, substantially induced by tZ. Taken together, our findings point to a critical function of PHT4;6 to control cellular phosphate levels, in particular the cytosolic Pi availability, required to energize plant primary metabolism for proper plant development. Phosphate and its allocation mediated by PHT4;6 is critical to prevent onset of dark-induced senescence. PMID:27325894

  16. Nutrient metal elements in plants.

    PubMed

    DalCorso, Giovanni; Manara, Anna; Piasentin, Silvia; Furini, Antonella

    2014-10-01

    Plants need many different metal elements for growth, development and reproduction, which must be mobilized from the soil matrix and absorbed by the roots as metal ions. Once taken up by the roots, metal ions are allocated to different parts of the plant by the vascular tissues. Metals are naturally present in the soil, but human activities, ranging from mining and agriculture to sewage processing and heavy industry, have increased the amount of metal pollution in the environment. Plants are challenged by environmental metal ion concentrations that fluctuate from low to high toxic levels, and have therefore evolved mechanisms to cope with such phenomena. In this review, we focus on recent data that provide insight into the molecular mechanisms of metal absorption and transport by plants, also considering the effect of metal deficiency and toxicity. We also highlight the positive effects of some non-essential metals on plant fitness.

  17. Overexpression of the rubisco activase gene improves growth and low temperature and weak light tolerance in Cucumis sativus.

    PubMed

    Bi, Huangai; Liu, Peipei; Jiang, Zhensheng; Ai, Xizhen

    2017-10-01

    Rubisco activase (RCA) is an important enzyme that can catalyze the carboxylation and oxygenation activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), which is involved in the photosynthetic carbon reduction cycle. Here, we studied the effects of changes in RCA activity on photosynthesis, growth and development, as well as the low temperature and weak light tolerance of RCA overexpressing transgenic cucumber (Cucumis sativus) plants. CsRCA overexpression increased the plant height, leaf area and dry matter, and decreased the root/top ratio in transgenic cucumber plants compared with the wild-type (WT) plants. Low temperature and low light stress led to decreases in the CsRCA expression and protein levels, the photosynthetic rate (Pn) and the stomatal conductance (Gs), but an increase in the intercellular CO 2 (Ci) concentration in cucumber leaves. The actual photochemical efficiency and maximal photochemical efficiency of photosystem II in cucumber seedlings also declined, but the initial fluorescence increased during low temperature and weak light stress. Transgenic plants showed a lower decrease in the CsRCA expression level and actual and maximal photochemical efficiencies, as well as increases in the Ci and initial fluorescence relative to the WT plants. Low temperature and low light stress resulted in a significant increase in the malondialdehyde (MDA) content; however, this increase was reduced in transgenic plants compared with that in WT plants. Thus, the overexpression of CsRCA may promote the growth and low temperature and low light tolerance of cucumber plants in solar greenhouses. © 2017 Scandinavian Plant Physiology Society.

  18. Atmospheric CO2 Alters Resistance of Arabidopsis to Pseudomonas syringae by Affecting Abscisic Acid Accumulation and Stomatal Responsiveness to Coronatine

    PubMed Central

    Zhou, Yeling; Vroegop-Vos, Irene; Schuurink, Robert C.; Pieterse, Corné M. J.; Van Wees, Saskia C. M.

    2017-01-01

    Atmospheric CO2 influences plant growth and stomatal aperture. Effects of high or low CO2 levels on plant disease resistance are less well understood. Here, resistance of Arabidopsis thaliana against the foliar pathogen Pseudomonas syringae pv. tomato DC3000 (Pst) was investigated at three different CO2 levels: high (800 ppm), ambient (450 ppm), and low (150 ppm). Under all conditions tested, infection by Pst resulted in stomatal closure within 1 h after inoculation. However, subsequent stomatal reopening at 4 h, triggered by the virulence factor coronatine (COR), occurred only at ambient and high CO2, but not at low CO2. Moreover, infection by Pst was reduced at low CO2 to the same extent as infection by mutant Pst cor-. Under all CO2 conditions, the ABA mutants aba2-1 and abi1-1 were as resistant to Pst as wild-type plants under low CO2, which contained less ABA. Moreover, stomatal reopening mediated by COR was dependent on ABA. Our results suggest that reduced ABA levels at low CO2 contribute to the observed enhanced resistance to Pst by deregulation of virulence responses. This implies that enhanced ABA levels at increasing CO2 levels may have a role in weakening plant defense. PMID:28559899

  19. Presence and transcriptional activity of anaerobic fungi in agricultural biogas plants.

    PubMed

    Dollhofer, Veronika; Callaghan, Tony M; Griffith, Gareth W; Lebuhn, Michael; Bauer, Johann

    2017-07-01

    Bioaugmentation with anaerobic fungi (AF) is promising for improved biogas generation from lignocelluloses-rich substrates. However, before implementing AF into biogas processes it is necessary to investigate their natural occurrence, community structure and transcriptional activity in agricultural biogas plants. Thus, AF were detected with three specific PCR based methods: (i) Copies of their 18S genes were found in 7 of 10 biogas plants. (ii) Transcripts of a GH5 endoglucanase gene were present at low level in two digesters, indicating transcriptional cellulolytic activity of AF. (iii) Phylogeny of the AF-community was inferred with the 28S gene. A new Piromyces species was isolated from a PCR-positive digester. Evidence for AF was only found in biogas plants operated with high proportions of animal feces. Thus, AF were most likely transferred into digesters with animal derived substrates. Additionally, high process temperatures in combination with long retention times seemed to impede AF survival and activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Plant species potentially suitable for cover on low-level solid nuclear waste disposal sites: a literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenkert, A.L.; Parr, P.D.; Taylor, F.G.

    This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management ofmore » vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables.« less

  1. A novel fuzzy-logic control strategy minimizing N2O emissions.

    PubMed

    Boiocchi, Riccardo; Gernaey, Krist V; Sin, Gürkan

    2017-10-15

    A novel control strategy for achieving low N 2 O emissions and low effluent NH 4 + concentration is here proposed. The control strategy uses the measurements of ammonium and nitrate concentrations in inlet and outlet of the aerobic zone of a wastewater treatment plant to calculate a ratio indicating the balance among the microbial groups. More specifically, the ratio will indicate if there is a complete nitrification. In case nitrification is not complete, the controller will adjust the aeration level of the plant in order to inhibit the production of N 2 O from AOB and HB denitrification. The controller was implemented using the fuzzy logic approach. It was comprehensively tested for different model structures and different sets of model parameters with regards to its ability of mitigating N 2 O emissions for future applications in real wastewater treatment plants. It is concluded that the control strategy is useful for those plants having AOB denitrification as the main N 2 O producing process. However, in treatment plants having incomplete NH 2 OH oxidation as the main N 2 O producing pathway, a cascade controller configuration adapting the oxygen supply to respect only the effluent ammonium concentration limits was found to be more effective to ensure low N 2 O emissions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Resilience of cassava (Manihot esculenta Crantz) to salinity: implications for food security in low-lying regions.

    PubMed

    Gleadow, Ros; Pegg, Amelia; Blomstedt, Cecilia K

    2016-10-01

    Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  3. Treatment options for low-level radiologically contaminated ORNL filtercake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hom-Ti; Bostick, W.D.

    1996-04-01

    Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less

  4. Among-Population Variation in Microbial Community Structure in the Floral Nectar of the Bee-Pollinated Forest Herb Pulmonaria officinalis L

    PubMed Central

    Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart

    2013-01-01

    Background Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. Methodology/Principal Findings We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0–4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2–13) OTUs0.03 and 7.9 (range 2–16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. Conclusions/Significance We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar. PMID:23536759

  5. Among-population variation in microbial community structure in the floral nectar of the bee-pollinated forest herb Pulmonaria officinalis L.

    PubMed

    Jacquemyn, Hans; Lenaerts, Marijke; Brys, Rein; Willems, Kris; Honnay, Olivier; Lievens, Bart

    2013-01-01

    Microbial communities in floral nectar have been shown to be characterized by low levels of species diversity, yet little is known about among-plant population variation in microbial community composition. We investigated the microbial community structure (yeasts and bacteria) in floral nectar of ten fragmented populations of the bee-pollinated forest herb Pulmonaria officinalis. We also explored possible relationships between plant population size and microbial diversity in nectar, and related microbial community composition to the distance separating plant populations. Culturable bacteria and yeasts occurring in the floral nectar of a total of 100 plant individuals were isolated and identified by partially sequencing the 16S rRNA gene and D1/D2 domains of the 26S rRNA gene, respectively. A total of 9 and 11 yeast and 28 and 39 bacterial OTUs was found, taking into account a 3% (OTU0.03) and 1% sequence dissimilarity cut-off (OTU0.01). OTU richness at the plant population level (i.e. the number of OTUs per population) was low for yeasts (mean: 1.7, range: 0-4 OTUs0.01/0.03 per population), whereas on average 6.9 (range: 2-13) OTUs0.03 and 7.9 (range 2-16) OTUs0.01 per population were found for bacteria. Both for yeasts and bacteria, OTU richness was not significantly related to plant population size. Similarity in community composition among populations was low (average Jaccard index: 0.14), and did not decline with increasing distance between populations. We found low similarity in microbial community structure among populations, suggesting that the assembly of nectar microbiota is to a large extent context-dependent. Although the precise factors that affect variation in microbial community structure in floral nectar require further study, our results indicate that both local and regional processes may contribute to among-population variation in microbial community structure in nectar.

  6. Factors associated with Listeria monocytogenes contamination of cold-smoked pork products produced in Latvia and Lithuania.

    PubMed

    Bērziņs, Aivars; Hörman, Ari; Lundén, Janne; Korkeala, Hannu

    2007-04-10

    A total of 312 samples of sliced, vacuum packaged, cold-smoked pork from 15 meat processing plants in Latvia and Lithuania, obtained over a 15-month period from 2003 until 2004, were analyzed for the presence of Listeria monocytogenes at the end of their shelf-life. Overall, 120 samples (38%) tested positive for L. monocytogenes. Despite the long storing period, the levels of L. monocytogenes in cold-smoked pork products were low. Manufacturing processes were studied at seven meat processing plants. A new approach with a logistic multivariable regression model was applied to identify the main factors associated with L. monocytogenes contamination during the manufacturing of cold-smoked pork products. Brining by injection was a significant factor (odds ratio 10.66; P<0.05) for contamination of product with L. monocytogenes. Moreover, long cold-smoking times (> or = 12 h) had a significant predictive value (odds ratio 24.38; P<0.014) for a sample to test positive for L. monocytogenes. Pulsed-field gel electrophoresis results indicated that various sources of L. monocytogenes contamination existed over periods of time in several meat processing plants. In two meat processing plants, persistent L. monocytogenes strains belonging to serotypes 1/2a and 1/2c were found.

  7. Mortality and cancer morbidity in workers exposed to low levels of vinyl chloride monomer at a polyvinyl chloride processing plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagmar, L.; Akesson, B.; Nielsen, J.

    1990-01-01

    To study whether exposure to low levels of vinyl chloride monomer (VCM) causes increased risk for cancer morbidity and death from ischemic heart disease, a cohort study was performed among 2,031 male workers at a polyvinyl chloride (PVC) processing plant who had been employed for at least 3 months during the period 1945-1980. An almost significantly increased total mortality (SMR = 116, 95% CI 99-136) was found. Deaths caused by violence or intoxication were significantly increased (SMR = 153, 95% CI 109-213), but not deaths from ischemic heart disease (SMR = 100, 95% CI 73-135). A significant increase in totalmore » cancer morbidity was observed (SMR = 128, 95% CI 101-161). Respiratory cancers were significantly increased (SMR = 213, 95% CI 127-346). Furthermore, six brain tumors (vs. 2.6 expected) were observed. This increase, however, was not significant (SMR = 229, 95% CI 84-498). No liver hemangiosarcoma was observed. Applying a latency period of greater than or equal to 10 years from start of employment did not change the risk patterns. There were no significant exposure-response associations between exposure estimates for VCM, asbestos, and plasticizers and cancer morbidity.« less

  8. Firmicutes dominate the bacterial taxa within sugar-cane processing plants

    PubMed Central

    Sharmin, Farhana; Wakelin, Steve; Huygens, Flavia; Hargreaves, Megan

    2013-01-01

    Sugar cane processing sites are characterised by high sugar/hemicellulose levels, available moisture and warm conditions, and are relatively unexplored unique microbial environments. The PhyloChip microarray was used to investigate bacterial diversity and community composition in three Australian sugar cane processing plants. These ecosystems were highly complex and dominated by four main Phyla, Firmicutes (the most dominant), followed by Proteobacteria, Bacteroidetes, and Chloroflexi. Significant variation (p < 0.05) in community structure occurred between samples collected from ‘floor dump sediment’, ‘cooling tower water’, and ‘bagasse leachate’. Many bacterial Classes contributed to these differences, however most were of low numerical abundance. Separation in community composition was also linked to Classes of Firmicutes, particularly Bacillales, Lactobacillales and Clostridiales, whose dominance is likely to be linked to their physiology as ‘lactic acid bacteria’, capable of fermenting the sugars present. This process may help displace other bacterial taxa, providing a competitive advantage for Firmicutes bacteria. PMID:24177592

  9. Phenotypic plasticity of sun and shade ecotypes of Stellaria longipes in response to light quality signaling, gibberellins and auxin.

    PubMed

    Kurepin, Leonid V; Pharis, Richard P; Neil Emery, R J; Reid, David M; Chinnappa, C C

    2015-09-01

    Stellaria longipes plant communities (ecotypes) occur in several environmentally distinct habitats along the eastern slopes of southern Alberta's Rocky Mountains. One ecotype occurs in a prairie habitat at ∼1000 m elevation where Stellaria plants grow in an environment in which the light is filtered by taller neighbouring vegetation, i.e. sunlight with a low red to far-red (R/FR) ratio. This ecotype exhibits a high degree of phenotypic plasticity by increasing stem elongation in response to the low R/FR ratio light signal. Another Stellaria ecotype occurs nearby at ∼2400 m elevation in a much cooler alpine habitat, one where plants rarely experience low R/FR ratio shade light. Stem elongation of plants is largely regulated by gibberellins (GAs) and auxin, indole-3-acetic acid (IAA). Shoots of the prairie ecotype plants show increased IAA levels under low R/FR ratio light and they also increase their stem growth in response to applied IAA. The alpine ecotype plants show neither response. Plants from both ecotypes produce high levels of growth-active GA1 under low R/FR ratio light, though they differ appreciably in their catabolism of GA1. The alpine ecotype plants exhibit very high levels of GA8, the inactive product of GA1 metabolism, under both normal and low R/FR ratio light. Alpine origin plants may de-activate GA1 by conversion to GA8 via a constitutively high level of expression of the GA2ox gene, thereby maintaining their dwarf phenotype and exhibiting a reduced phenotypic plasticity in terms of shoot elongation. In contrast, prairie plants exhibit a high degree of phenotypic plasticity, using low R/FR ratio light-mediated changes in GA and IAA concentrations to increase shoot elongation, thereby accessing direct sunlight to optimize photosynthesis. There thus appear to be complex adaptation strategies for the two ecotypes, ones which involve modifications in the homeostasis of endogenous hormones. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. Process Analyzer

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Under a NASA Small Business Innovation Research (SBIR) contract, Axiomatics Corporation developed a shunting Dielectric Sensor to determine the nutrient level and analyze plant nutrient solutions in the CELSS, NASA's space life support program. (CELSS is an experimental facility investigating closed-cycle plant growth and food processing for long duration manned missions.) The DiComp system incorporates a shunt electrode and is especially sensitive to changes in dielectric property changes in materials at measurements much lower than conventional sensors. The analyzer has exceptional capabilities for predicting composition of liquid streams or reactions. It measures concentrations and solids content up to 100 percent in applications like agricultural products, petrochemicals, food and beverages. The sensor is easily installed; maintenance is low, and it can be calibrated on line. The software automates data collection and analysis.

  11. A highly stable minimally processed plant-derived recombinant acetylcholinesterase for nerve agent detection in adverse conditions

    PubMed Central

    Rosenberg, Yvonne J.; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori

    2015-01-01

    Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1–2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product. PMID:26268538

  12. A highly stable minimally processed plant-derived recombinant acetylcholinesterase for nerve agent detection in adverse conditions.

    PubMed

    Rosenberg, Yvonne J; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori

    2015-08-13

    Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1-2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product.

  13. [Analysis of effects of salt stress on absorption and accumulation of mineral elements in Elymus spp. using atomic absorption spectrophotometer].

    PubMed

    Jia, Ya-xiong; Sun, Lei; He, Feng; Wan, Li-qiang; Yuan, Qing-hua; Li, Xiang-lin

    2008-12-01

    Salinization contributes significantly to soil degradation and the growth and survival of plants. A high level of salts imposes both ionic and osmotic stresses on plants, resulting in an excessive accumulation of sodium (Na) in plant tissues. Na toxicity disrupts the uptake of soil nutrients. Plant uptake and absorption of macro-elements under salt stress have been studied in plants, but there is little literature addressing the effect of salt stress on plant accumulation and absorption of micro-elements. Species in Elymus genus are among the most important forage plants on high-salinity soils in China An experiment was conducted to study the effect of salt stress on accumulation and absorption of both macro- and micro-elements by wild plants of Elymus genus. Plant samples taken from two populations with different salt tolerance were tested and the level of 4 macro-elements, namely Na, K, Ca and Mg, and 4 micro-elements, namely Cu, Fe, Mn, Zn was determined using atomic absorption spectrophotometer. The relationship between the selection of elements in the process of absorption and accumulation and salt tolerance was also analyzed. The results showed that the level of Na in root and leaf tissues increased with increasing salt stress. The level of Na in leaf tissue of plants with high salt tolerance (HS) was significantly higher than that in plants with low salt tolerance (P<0.05). The level of K and Ca decreased in response to increasing salt stress, while that in HS was higher than in LS. The level of Fe and Zn in the tissues of both roots and leaves increased. No significant difference was detected between HS and LS samples in the level of Cu in root tissues, while that of Cu in leaf tissue of both samples increased. The level of Mn decreased with increasing salt stress, but was higher in HS than in LS. Fe and Zn in roots and leaves of HS were lower than in those of LS.

  14. Developmental Expression of Violaxanthin De-Epoxidase in Leaves of Tobacco Growing under High and Low Light1

    PubMed Central

    Bugos, Robert C.; Chang, Sue-Hwei; Yamamoto, Harry Y.

    1999-01-01

    Violaxanthin de-epoxidase (VDE) is a lumen-localized enzyme that catalyzes the de-epoxidation of violaxanthin in the thylakoid membrane upon formation of a transthylakoid pH gradient. We investigated the developmental expression of VDE in leaves of mature tobacco (Nicotiana tabacum) plants grown under high-light conditions (in the field) and low-light conditions (in a growth chamber). The difference in light conditions was evident by the increased pool size (violaxanthin + antheraxanthin + zeaxanthin, VAZ) throughout leaf development in field-grown plants. VDE activity based on chlorophyll or leaf area was low in the youngest leaves, with the levels increasing with increasing leaf age in both high- and low-light-grown plants. However, in high-light-grown plants, the younger leaves in early leaf expansion showed a more rapid increase in VDE activity and maintained higher levels of VDE transcript in more leaves, indicating that high light may induce greater levels of VDE. VDE transcript levels decreased substantially in leaves of mid-leaf expansion, while the levels of enzyme continued to increase, suggesting that the VDE enzyme does not turn over rapidly. The level of VDE changed in an inverse, nonlinear relationship with respect to the VAZ pool, suggesting that enzyme levels could be indirectly regulated by the VAZ pool. PMID:10482676

  15. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light.

    PubMed

    Bugos, R C; Chang, S H; Yamamoto, H Y

    1999-09-01

    Violaxanthin de-epoxidase (VDE) is a lumen-localized enzyme that catalyzes the de-epoxidation of violaxanthin in the thylakoid membrane upon formation of a transthylakoid pH gradient. We investigated the developmental expression of VDE in leaves of mature tobacco (Nicotiana tabacum) plants grown under high-light conditions (in the field) and low-light conditions (in a growth chamber). The difference in light conditions was evident by the increased pool size (violaxanthin + antheraxanthin + zeaxanthin, VAZ) throughout leaf development in field-grown plants. VDE activity based on chlorophyll or leaf area was low in the youngest leaves, with the levels increasing with increasing leaf age in both high- and low-light-grown plants. However, in high-light-grown plants, the younger leaves in early leaf expansion showed a more rapid increase in VDE activity and maintained higher levels of VDE transcript in more leaves, indicating that high light may induce greater levels of VDE. VDE transcript levels decreased substantially in leaves of mid-leaf expansion, while the levels of enzyme continued to increase, suggesting that the VDE enzyme does not turn over rapidly. The level of VDE changed in an inverse, nonlinear relationship with respect to the VAZ pool, suggesting that enzyme levels could be indirectly regulated by the VAZ pool.

  16. Population density of North American elk: effects on plant diversity.

    PubMed

    Stewart, Kelley M; Bowyer, R Terry; Kie, John G; Dick, Brian L; Ruess, Roger W

    2009-08-01

    Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory.

  17. Heavy metal and nutrient uptake in plants colonizing post-flotation copper tailings.

    PubMed

    Kasowska, Dorota; Gediga, Krzysztof; Spiak, Zofia

    2018-01-01

    Copper ore mining and processing release hazardous post-flotation wastes that are difficult for remediation. The studied tailings were extremely rich in Cu (1800 mg kg -1 ) and contaminated with Co and Mn, and contained very little available forms of P, Fe, and Zn. The plants growing in tailings were distinctly enriched in Cu, Cd, Co, Ni, and Pb, and the concentration of copper achived the critical toxicity level in shoots of Cerastium arvense and Polygonum aviculare. The redundancy analysis demonstrated significant relationship between the concentration of available forms of studied elements in substrate and the chemical composition of plant shoots. Results of the principal component analysis enabled to distinguish groups of plants which significantly differed in the pattern of element accumulation. The grass species Agrostis stolonifera and Calamagrostis epigejos growing in the tailings accumulated significantly lower amounts of Cu, but they also had the lowest levels of P, Fe, and Zn in comparison to dicotyledonous. A. stolonifera occurred to be the most suitable species for phytostabilization of the tailings with regard to its low shoot Cu content and more efficient acquisition of limiting nutrients in relation to C. epigejos. The amendments improving texture, phosphorus fertilization, and the introduction of native leguminous species were recommended for application in the phytoremediation process of the tailings.

  18. Activation of photoprotective winter photoinhibition in plants from different environments: a literature compilation and meta-analysis.

    PubMed

    Míguez, Fátima; Fernández-Marín, Beatriz; Becerril, José María; García-Plazaola, José Ignacio

    2015-12-01

    Overwintering plants face a pronounced imbalance between light capture and use of that excitation for photosynthesis. In response, plants upregulate thermal dissipation, with concomitant reductions in photochemical efficiency, in a process characterized by a slow recovery upon warming. These sustained depressions of photochemical efficiency are termed winter photoinhibition (WPI) here. WPI has been extensively studied in conifers and in few overwintering crops, but other plant species have received less attention. Furthermore, the literature shows some controversies about the association of WPI with xanthophylls and the environmental conditions that control xanthophylls conversion. To overview current knowledge and identify knowledge gaps on WPI mechanisms, we performed a comprehensive meta-analysis of literature published over the period 1991-2011. All publications containing measurements of Fv/Fm for a cold period and a corresponding warm control were included in our final database of 190 studies on 162 species. WPI was estimated as the relative decrease in Fv/Fm. High WPI was always accompanied by a high (A + Z)/(V + A + Z). Activation of lasting WPI was directly related to air temperature, with a threshold of around 0°C. Tropical plants presented earlier (at a temperature of >0°C) and higher WPI than non-tropical plants. We conclude that (1) activation of a xanthophyll-dependent mechanism of WPI is a requisite for maintaining photosynthetic structures at sub-zero temperatures, while (2) absence (or low levels) of WPI is not necessarily related to low (A + Z)/(V + A + Z); and (3) the air temperature that triggers lasting WPI, and the maximum level of WPI, do not depend on plant growth habit or bioclimatic origin of species. © 2015 Scandinavian Plant Physiology Society.

  19. Performance of the full-scale biological nutrient removal plant at Noosa in Queensland, Australia: nutrient removal and disinfection.

    PubMed

    Urbain, V; Wright, P; Thomas, M

    2001-01-01

    Stringent effluent quality guidelines are progressively implemented in coastal and sensitive areas in Australia. Biological Nutrient Removal (BNR) plants are becoming a standard often including a tertiary treatment for disinfection. The BNR plant in Noosa - Queensland is designed to produce a treated effluent with less than 5 mg/l of BOD5, 5 mg/l of total nitrogen, 1 mg/l of total phosphorus, 5 mg/l of suspended solids and total coliforms of less than 10/100 ml. A flexible multi-stage biological process with a prefermentation stage, followed by sand filtration and UV disinfection was implemented to achieve this level of treatment. Acetic acid is added for phosphorus removal because: i) the volatile fatty acids (VFA) concentration in raw wastewater varies a lot, and ii) the prefermenter had to be turned off due to odor problems on the primary sedimentation tanks. An endogenous anoxic zone was added to the process to further reduce the nitrate concentration. This resulted in some secondary P-release events, a situation that happens when low nitrate and low phosphorus objectives are targeted. Long-term performance data and specific results on nitrogen removal and disinfection are presented in this paper.

  20. Energy Efficiency of Low-Temperature Deaeration of Makeup Water for a District Heating System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharapov, V. I., E-mail: vlad-sharapov2008@yandex.ru; Kudryavtseva, E. V.

    2016-07-15

    It is shown that the temperature of makeup water in district heating systems has a strong effect on the energy efficiency of turbines of thermal power plants. A low-temperature deaeration process that considerably improves the energy efficiency of thermal power plants is developed. The desorbing agent is the gas supplied to the burners of the boiler. The energy efficiency of the process for a typical unit of thermal power plant is assessed.

  1. Interaction of Vesicular-arbuscular Mycorrhizal Fungi and Phosphorus with Meloidogyne incognita on Tomato.

    PubMed

    Cason, K M; Hussey, R S; Roncadori, R W

    1983-07-01

    The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 mug [low P] or 30 mug [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 mu/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.

  2. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.

    PubMed

    Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa

    2017-03-01

    Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Assessment of oxidative stress markers and concentrations of selected elements in the leaves of Cassia occidentalis growing wild on a coal fly ash basin.

    PubMed

    Love, Amit; Banerjee, B D; Babu, C R

    2013-08-01

    Assessment of oxidative stress levels and tissue concentrations of elements in plants growing wild on fly ash basins is critical for realistic hazard identification of fly ash disposal areas. Hitherto, levels of oxidative stress markers in plants growing wild on fly ash basins have not been adequately investigated. We report here concentrations of selected metal and metalloid elements and levels of oxidative stress markers in leaves of Cassia occidentalis growing wild on a fly ash basin (Badarpur Thermal Power Station site) and a reference site (Garhi Mandu Van site). Plants growing on the fly ash basin had significantly high foliar concentration of As, Ni, Pb and Se and low foliar concentration of Mn and Fe compared to the plants growing on the reference site. The plants inhabiting the fly ash basin showed signs of oxidative stress and had elevated levels of lipid peroxidation, electrolyte leakage from cells and low levels of chlorophyll a and total carotenoids compared to plants growing at the reference site. The levels of both protein thiols and nonprotein thiols were elevated in plants growing on the fly ash basin compared to plants growing on the reference site. However, no differences were observed in the levels of cysteine, reduced glutathione and oxidized glutathione in plants growing at both the sites. Our study suggests that: (1) fly ash triggers oxidative stress responses in plants growing wild on fly ash basin, and (2) elevated levels of protein thiols and nonprotein thiols may have a role in protecting the plants from environmental stress.

  4. Arabidopsis plants grown in the field and climate chambers significantly differ in leaf morphology and photosystem components

    PubMed Central

    2012-01-01

    Background Plants exhibit phenotypic plasticity and respond to differences in environmental conditions by acclimation. We have systematically compared leaves of Arabidopsis thaliana plants grown in the field and under controlled low, normal and high light conditions in the laboratory to determine their most prominent phenotypic differences. Results Compared to plants grown under field conditions, the "indoor plants" had larger leaves, modified leaf shapes and longer petioles. Their pigment composition also significantly differed; indoor plants had reduced levels of xanthophyll pigments. In addition, Lhcb1 and Lhcb2 levels were up to three times higher in the indoor plants, but differences in the PSI antenna were much smaller, with only the low-abundance Lhca5 protein showing altered levels. Both isoforms of early-light-induced protein (ELIP) were absent in the indoor plants, and they had less non-photochemical quenching (NPQ). The field-grown plants had a high capacity to perform state transitions. Plants lacking ELIPs did not have reduced growth or seed set rates, but their mortality rates were sometimes higher. NPQ levels between natural accessions grown under different conditions were not correlated. Conclusion Our results indicate that comparative analysis of field-grown plants with those grown under artificial conditions is important for a full understanding of plant plasticity and adaptation. PMID:22236032

  5. The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens

    PubMed Central

    Soto-Suárez, Mauricio; Baldrich, Patricia; Weigel, Detlef; Rubio-Somoza, Ignacio; San Segundo, Blanca

    2017-01-01

    MicroRNAs (miRNAs) play a pivotal role in regulating gene expression during plant development. Although a substantial fraction of plant miRNAs has proven responsive to pathogen infection, their role in disease resistance remains largely unknown, especially during fungal infections. In this study, we screened Arabidopsis thaliana lines in which miRNA activity has been reduced using artificial miRNA target mimics (MIM lines) for their response to fungal pathogens. Reduced activity of miR396 (MIM396 plants) was found to confer broad resistance to necrotrophic and hemibiotrophic fungal pathogens. MiR396 levels gradually decreased during fungal infection, thus, enabling its GRF (GROWTH-REGULATING FACTOR) transcription factor target genes to trigger host reprogramming. Pathogen resistance in MIM396 plants is based on a superactivation of defense responses consistent with a priming event during pathogen infection. Notably, low levels of miR396 are not translated in developmental defects in absence of pathogen challenge. Our findings support a role of miR396 in regulating plant immunity, and broaden our knowledge about the molecular players and processes that sustain defense priming. That miR396 modulates innate immunity without growth costs also suggests fine-tuning of miR396 levels as an effective biotechnological means for protection against pathogen infection. PMID:28332603

  6. Identification and functional characterization of the pepper CaDRT1 gene involved in the ABA-mediated drought stress response.

    PubMed

    Baek, Woonhee; Lim, Sohee; Lee, Sung Chul

    2016-05-01

    Plants are constantly challenged by various environmental stresses, including high salinity and drought, and they have evolved defense mechanisms to counteract the deleterious effects of these stresses. The plant hormone abscisic acid (ABA) regulates plant growth and developmental processes and mediates abiotic stress responses. Here, we identified the Capsicum annuum DRought Tolerance 1 (CaDRT1) gene from pepper leaves treated with ABA. CaDRT1 was strongly expressed in pepper leaves in response to environmental stresses and after ABA treatment, suggesting that the CaDRT1 protein functions in the abiotic stress response. Knockdown expression of CaDRT1 via virus-induced gene silencing resulted in a high level of drought susceptibility, and this was characterized by increased transpirational water loss via decreased stomatal closure. CaDRT1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative, seedling, and adult stages. Additionally, these CaDRT1-OX plants exhibited a drought-tolerant phenotype characterized by low levels of transpirational water loss, high leaf temperatures, increased stomatal closure, and enhanced expression levels of drought-responsive genes. Taken together, our results suggest that CaDRT1 is a positive regulator of the ABA-mediated drought stress response.

  7. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis

    PubMed Central

    Cook, Daniel; Fowler, Sarah; Fiehn, Oliver; Thomashow, Michael F.

    2004-01-01

    The Arabidopsis CBF cold response pathway has a central role in cold acclimation, the process whereby plants increase in freezing tolerance in response to low nonfreezing temperatures. Here we examined the changes that occur in the Arabidopsis metabolome in response to low temperature and assessed the role of the CBF cold response pathway in bringing about these modifications. Of 434 metabolites monitored by GC-time-of-flight MS, 325 (75%) were found to increase in Arabidopsis Wassilewskija-2 (Ws-2) plants in response to low temperature. Of these 325 metabolites, 256 (79%) also increased in nonacclimated Ws-2 plants in response to overexpression of C-repeat/dehydration responsive element-binding factor (CBF)3. Extensive cold-induced changes also occurred in the metabolome of Arabidopsis Cape Verde Islands-1 (Cvi-1) plants, which were found to be less freezing tolerant than Ws-2 plants. However, low-temperature-induced expression of CBF1, CBF2, CBF3, and CBF-targeted genes was much lower in Cvi-1 than in Ws-2 plants, and the low-temperature metabolome of Cvi-1 plants was depleted in metabolites affected by CBF3 overexpression. Taken together, the results indicate that the metabolome of Arabidopsis is extensively reconfigured in response to low temperature, and that the CBF cold response pathway has a prominent role in this process. PMID:15383661

  8. How Low Can You Go? The Importance of Quantifying Minimum Generation Levels for Renewable Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul L; Brinkman, Gregory L; Mai, Trieu T

    One of the significant limitations of solar and wind deployment is declining value caused by the limited correlation of renewable energy supply and electricity demand as well as limited flexibility of the power system. Limited flexibility can result from thermal and hydro plants that cannot turn off or reduce output due to technical or economic limits. These limits include the operating range of conventional thermal power plants, the need for process heat from combined heat and power plants, and restrictions on hydro unit operation. To appropriately analyze regional and national energy policies related to renewable deployment, these limits must bemore » accurately captured in grid planning models. In this work, we summarize data sources and methods for U.S. power plants that can be used to capture minimum generation levels in grid planning tools, such as production cost models. We also provide case studies for two locations in the U.S. (California and Texas) that demonstrate the sensitivity of variable generation (VG) curtailment to grid flexibility assumptions which shows the importance of analyzing (and documenting) minimum generation levels in studies of increased VG penetration.« less

  9. Membrane thickening aerobic digestion processes.

    PubMed

    Woo, Bryen

    2014-01-01

    Sludge management accounts for approximately 60% of the total wastewater treatment plant expenditure and laws for sludge disposal are becoming increasingly stringent, therefore much consideration is required when designing a solids handling process. A membrane thickening aerobic digestion process integrates a controlled aerobic digestion process with pre-thickening waste activated sludge using membrane technology. This process typically features an anoxic tank, an aerated membrane thickener operating in loop with a first-stage digester followed by second-stage digestion. Membrane thickening aerobic digestion processes can handle sludge from any liquid treatment process and is best for facilities obligated to meet low total phosphorus and nitrogen discharge limits. Membrane thickening aerobic digestion processes offer many advantages including: producing a reusable quality permeate with minimal levels of total phosphorus and nitrogen that can be recycled to the head works of a plant, protecting the performance of a biological nutrient removal liquid treatment process without requiring chemical addition, providing reliable thickening up to 4% solids concentration without the use of polymers or attention to decanting, increasing sludge storage capacities in existing tanks, minimizing the footprint of new tanks, reducing disposal costs, and providing Class B stabilization.

  10. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation.

    PubMed

    Evers, J B; Vos, J; Yin, X; Romero, P; van der Putten, P E L; Struik, P C

    2010-05-01

    Intimate relationships exist between form and function of plants, determining many processes governing their growth and development. However, in most crop simulation models that have been created to simulate plant growth and, for example, predict biomass production, plant structure has been neglected. In this study, a detailed simulation model of growth and development of spring wheat (Triticum aestivum) is presented, which integrates degree of tillering and canopy architecture with organ-level light interception, photosynthesis, and dry-matter partitioning. An existing spatially explicit 3D architectural model of wheat development was extended with routines for organ-level microclimate, photosynthesis, assimilate distribution within the plant structure according to organ demands, and organ growth and development. Outgrowth of tiller buds was made dependent on the ratio between assimilate supply and demand of the plants. Organ-level photosynthesis, biomass production, and bud outgrowth were simulated satisfactorily. However, to improve crop simulation results more efforts are needed mechanistically to model other major plant physiological processes such as nitrogen uptake and distribution, tiller death, and leaf senescence. Nevertheless, the work presented here is a significant step forwards towards a mechanistic functional-structural plant model, which integrates plant architecture with key plant processes.

  11. Phytoremediation: Using green plants to clean up contaminated soil, groundwater, and wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negri, M.C.; Hinchman, R.R.

    1996-05-01

    Phytoremediation, an emerging cleanup technology for contaminated soils, groundwater, and wastewater that is both low-tech and low-cost, is defined as the engineered use of green plants (including grasses, forbs, and woody species) to remove, contain, or render harmless such environmental contaminants as heavy metals, trace elements, organic compounds ({open_quotes}organics{close_quotes}), and radioactive compounds in soil or water. Current research at Argonne National Laboratory includes a successful field demonstration of a plant bioreactor for processing the salty wastewater from petroleum wells; the demonstration is currently under way at a natural gas well site in Oklahoma, in cooperation with Devon Energy Corporation. Amore » greenhouse experiment on zinc uptake in hybrid poplar (Populus sp.) was initiated in 1995. These experiments are being conducted to confirm and extend field data from Applied Natural Sciences, Inc. (our CRADA partner), indicating high levels of zinc (4,200 ppm) in leaves of hybrid poplar growing as a cleanup system at a site with zinc contamination in the root zone of some of the trees. Analyses of soil water from experimental pots that had received several doses of zinc indicated that the zinc was totally sequestered by the plants in about 4 hours during a single pass through the root system. The data also showed concentrations of sequestered metal of >38,000 ppm Zn in the dry root tissue. These levels of sequestered zinc exceed the levels found in either roots or tops of many of the known {open_quotes}hyperaccumulator{close_quotes} species. Because the roots sequester most of the contaminant taken up in most plants, a major objective of this program is to determine the feasibility of root harvesting as a method to maximize the removal of contaminants from soils. Available techniques and equipment for harvesting plant roots, including young tree roots, are being evaluated and modified as necessary for use with phytoremediation plants.« less

  12. Ceramization of low and intermediate level radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiquet, O.; Berson, X.

    1993-12-31

    A ceramic conditioning is studied for a large variety of low and intermediate level wastes. These wastes arise from several waste streams coming from all process steps of the fuel cycle. The physical properties of ceramics can advantageously be used for radioactive waste immobilization. Their chemical durability can offer a barrier against external aggression. More over, some minerals have possible host sites in their crystal structure for heavy elements which can confer the best immobilization mechanism. The general route for development studies is described giving compositions and process choices. Investigations have been conducted on clay materials and on the processmore » parameters which condition the final product properties. Two practical examples are described concerning chemical precipitation sludge resulting from liquid waste treatment and chamot used as a fluidized bed in a graphite incinerator. Important process parameters are put in evidence and the possibility of a pilot plant development is briefly mentioned. Results of investigations are promising to define a new route of conditioning.« less

  13. Plant Interactions with Changes in Coverage of Biological Soil Crusts and Water Regime in Mu Us Sandland, China

    PubMed Central

    Gao, Shuqin; Pan, Xu; Cui, Qingguo; Hu, Yukun; Ye, Xuehua; Dong, Ming

    2014-01-01

    Plant interactions greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs) on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species (Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis) were subjected to three levels of coverage of BSCs and three levels of water supply. The results show that: 1) BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2) effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3) plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes. PMID:24498173

  14. Plant interactions with changes in coverage of biological soil crusts and water regime in Mu Us Sandland, China.

    PubMed

    Gao, Shuqin; Pan, Xu; Cui, Qingguo; Hu, Yukun; Ye, Xuehua; Dong, Ming

    2014-01-01

    Plant interactions greatly affect plant community structure. Dryland ecosystems are characterized by low amounts of unpredictable precipitation as well as by often having biological soil crusts (BSCs) on the soil surface. In dryland plant communities, plants interact mostly as they compete for water resources, and the direction and intensity of plant interaction varies as a function of the temporal fluctuation in water availability. Since BSCs influence water redistribution to some extent, a greenhouse experiment was conducted to test the hypothesis that the intensity and direction of plant interactions in a dryland plant community can be modified by BSCs. In the experiment, 14 combinations of four plant species (Artemisia ordosica, Artemisia sphaerocephala, Chloris virgata and Setaria viridis) were subjected to three levels of coverage of BSCs and three levels of water supply. The results show that: 1) BSCs affected plant interaction intensity for the four plant species: a 100% coverage of BSCs significantly reduced the intensity of competition between neighboring plants, while it was highest with a 50% coverage of BSCs in combination with the target species of A. sphaerocephala and C. virgata; 2) effects of the coverage of BSCs on plant interactions were modified by water regime when the target species were C. virgata and S. viridis; 3) plant interactions were species-specific. In conclusion, the percent coverage of BSCs affected plant interactions, and the effects were species-specific and could be modified by water regimes. Further studies should focus on effects of the coverage of BSCs on plant-soil hydrological processes.

  15. Intron retention regulates the expression of pectin methyl esterase inhibitor (Pmei) genes during wheat growth and development.

    PubMed

    Rocchi, V; Janni, M; Bellincampi, D; Giardina, T; D'Ovidio, R

    2012-03-01

    Pectin is an important component of the plant cell wall and its remodelling occurs during normal plant growth or following stress responses. Pectin is secreted into the cell wall in a highly methyl-esterified form and subsequently de-methyl-esterified by pectin methyl esterase (PME), whose activity is controlled by the pectin methyl esterase inhibitor protein (PMEI). Cereal cell wall contains a low amount of pectin; nonetheless the level and pattern of pectin methyl esterification play a primary role during development or pathogen infection. Since few data are available on the role of PMEI in plant development and defence of cereal species, we isolated and characterised three Pmei genes (Tdpmei2.1, Tdpmei2.2 and Tdpmei3) and their encoded products in wheat. Sequence comparisons showed a low level of intra- and inter-specific sequence conservation of PMEIs. Tdpmei2.1 and Tdpmei2.2 share 94% identity at protein level, but only 20% identity with the product of Tdpmei3. All three Tdpmei genes code for functional inhibitors of plant PMEs and do not inhibit microbial PMEs or a plant invertase. RT-PCR analyses demonstrated, for the first time to our knowledge, that Pmei genes are regulated by intron retention. Processed and unprocessed transcripts of Tdpmei2.1 and Tdpmei2.2 accumulated in several organs, but anthers contained only mature transcripts. Tdpmei3 lacks introns and its transcript accumulated mainly in stem internodes. These findings suggest that products encoded by these Tdpmei genes control organ- or tissue-specific activity of specific PME isoforms in wheat. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGDmore » & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.« less

  17. PCDD/F enviromental impact from municipal solid waste bio-drying plant.

    PubMed

    Rada, E C; Ragazzi, M; Zardi, D; Laiti, L; Ferrari, A

    2011-06-01

    The present work indentifies some environmental and health impacts of a municipal solid waste bio-drying plant taking into account the PCDD/F release into the atmosphere, its concentration at ground level and its deposition. Four scenarios are presented for the process air treatment and management: biofilter or regenerative thermal oxidation treatment, at two different heights. A Gaussian dispersion model, AERMOD, was used in order to model the dispersion and deposition of the PCDD/F emissions into the atmosphere. Considerations on health risk, from different exposure pathways are presented using an original approach. The case of biofilter at ground level resulted the most critical, depending on the low dispersion of the pollutants. Suggestions on technical solutions for the optimization of the impact are presented. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Overwintering of herbaceous plants in a changing climate. Still more questions than answers.

    PubMed

    Rapacz, Marcin; Ergon, Ashild; Höglind, Mats; Jørgensen, Marit; Jurczyk, Barbara; Ostrem, Liv; Rognli, Odd Arne; Tronsmo, Anne Marte

    2014-08-01

    The increase in surface temperature of the Earth indicates a lower risk of exposure for temperate grassland and crop to extremely low temperatures. However, the risk of low winter survival rate, especially in higher latitudes may not be smaller, due to complex interactions among different environmental factors. For example, the frequency, degree and length of extreme winter warming events, leading to snowmelt during winter increased, affecting the risks of anoxia, ice encasement and freezing of plants not covered with snow. Future climate projections suggest that cold acclimation will occur later in autumn, under shorter photoperiod and lower light intensity, which may affect the energy partitioning between the elongation growth, accumulation of organic reserves and cold acclimation. Rising CO2 levels may also disturb the cold acclimation process. Predicting problems with winter pathogens is also very complex, because climate change may greatly influence the pathogen population and because the plant resistance to these pathogens is increased by cold acclimation. All these factors, often with contradictory effects on winter survival, make plant overwintering viability under future climates an open question. Close cooperation between climatologists, ecologists, plant physiologists, geneticists and plant breeders is strongly required to predict and prevent possible problems. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Tansley Review No. 104, Calcium Physiology and Terrestrial Ecosystem Processes

    Treesearch

    S.B. McLaughlin; R. Wimmer

    1999-01-01

    Calcium occupies a unique position among plant nutrients both chemically and functionally. Its chemical properties allow it to exist in a wide range of binding states and to serve in both structural and messenger roles. Despite its importance in many plant processes, Ca mobility is low, making Ca uptake and distribution rate a limiting process for many key plant...

  20. Hydrophobin fusion of an influenza virus hemagglutinin allows high transient expression in Nicotiana benthamiana, easy purification and immune response with neutralizing activity.

    PubMed

    Jacquet, Nicolas; Navarre, Catherine; Desmecht, Daniel; Boutry, Marc

    2014-01-01

    The expression of recombinant hemagglutinin in plants is a promising alternative to the current egg-based production system for the influenza vaccines. Protein-stabilizing fusion partners have been developed to overcome the low production yields and the high downstream process costs associated with the plant expression system. In this context, we tested the fusion of hydrophobin I to the hemagglutinin ectodomain of the influenza A (H1N1)pdm09 virus controlled by the hybrid En2PMA4 transcriptional promoter to rapidly produce high levels of recombinant antigen by transient expression in agro-infiltrated Nicotiana benthamiana leaves. The fusion increased the expression level by a factor of ∼ 2.5 compared to the unfused protein allowing a high accumulation level of 8.6% of the total soluble proteins. Hemagglutinin was located in ER-derived protein bodies and was successfully purified by combining an aqueous-two phase partition system and a salting out step. Hydrophobin interactions allowed the formation of high molecular weight hemagglutinin structures, while unfused proteins were produced as monomers. Purified protein was shown to be biologically active and to induce neutralizing antibodies after mice immunization. Hydrophobin fusion to influenza hemagglutinin might therefore be a promising approach for rapid, easy, and low cost production of seasonal or pandemic influenza vaccines in plants.

  1. Stages in the Terraforming of Mars: the Transition to Flowering Plants

    NASA Astrophysics Data System (ADS)

    Graham, James M.

    2003-01-01

    The process of the biological terraforming of Mars can be compared to the process of primary ecological succession on terrestrial barren rocks. Each stage in the succession alters the environment in such a way that the next stage in the process becomes possible. The initial stage in terraforming Mars will be dominated by microorganisms and lichens. The initial stage will begin the process of removing carbon dioxide from the Martian atmosphere, adding oxygen and nitrogen, and adding organics to the regolith to produce a true Martian soil. The second stage will be dominated by bryophytes, simple plants such as mosses and liverworts, which will draw down the carbon dioxide level of the Martian atmosphere and raise the level of oxygen. The carbon dioxide removed will be locked up in peatlands and permafrost. The critical limiting factors for the introduction of flowering plants are the level of oxygen in the atmosphere and the lack of animal pollinators. The majority of flowering plants require a minimum oxygen level of 20 to 50 mbar. Most flowering plants require these minimal oxygen levels to support aerobic respiration in their roots and germination of their seeds. Many flowering plant species also must have animal pollinators to complete reproduction. Certain aquatic plants and arctic plants, however, are highly tolerant of anoxic conditions. Some of these same arctic plants can successfully reproduce without animal pollinators by employing one or more alternate reproductive mechanisms such as vegetative propagation, apomixis, autogamy and anemophily. Thus by judicious selection of existing terrestrial plants and possibly genetic engineering, it may be possible to circumvent critical limitations and introduce flowering plants to Mars at an earlier stage in terraforming.

  2. Edible Plants and Their Influence on the Gut Microbiome and Acne

    PubMed Central

    Clark, Ashley K.; Haas, Kelly N.; Sivamani, Raja K.

    2017-01-01

    Acne vulgaris affects most people at some point in their lives. Due to unclear etiology, likely with multiple factors, targeted and low-risk treatments have yet to be developed. In this review, we explore the multiple causes of acne and how plant-based foods and supplements can control these. The proposed causative factors include insulin resistance, sex hormone imbalances, inflammation and microbial dysbiosis. There is an emerging body of work on the human gut microbiome and how it mediates feedback between the foods we eat and our bodies. The gut microbiome is also an important mediator of inflammation in the gut and systemically. A low-glycemic load diet, one rich in plant fibers and low in processed foods, has been linked to an improvement in acne, possibly through gut changes or attenuation of insulin levels. Though there is much interest in the human microbiome, there is much more unknown, especially along the gut-skin axis. Collectively, the evidence suggests that approaches such as plant-based foods and supplements may be a viable alternative to the current first line standard of care for moderate acne, which typically includes antibiotics. Though patient compliance with major dietary changes is likely much lower than with medications, it is a treatment avenue that warrants further study and development. PMID:28513546

  3. Glycerolipidome responses to freezing- and chilling-induced injuries: examples in Arabidopsis and rice.

    PubMed

    Zheng, Guowei; Li, Lixia; Li, Weiqi

    2016-03-22

    Glycerolipids are the principal constituent of cellular membranes; remodelling of glycerolipids plays important roles in temperature adaptation in plants. Temperate plants can endure freezing stress, but even chilling at above-zero temperatures can induce death in tropical species. However, little is known about the differences in glycerolipid response to low temperatures between chilling-sensitive and freezing-tolerant plants. Using ESI-MS/MS-based lipidomic analysis, we compared the glycerolipidome of chilling (4 and 10 °C)-treated rice with that of freezing (-6 and -12 °C)-treated Arabidopsis, both immediately after these low-temperature treatments and after a subsequent recovery culture period. Arabidopsis is a 16:3 plant that harbours both eukaryotic and prokaryotic-type lipid synthesis pathways, while rice is an 18:3 plant that harbours only the eukaryotic lipid synthesis pathway. Arabidopsis contains higher levels of galactolipids than rice and has a higher double bond index (DBI). Arabidopsis contains lower levels of high melting point phosphatidylglycerol (PG) molecules and has a lower average acyl chain length (ACL). Marked phospholipid degradation occurred during the recovery culture period of non-lethal chilling treated rice, but did not occur in non-lethal freezing treated Arabidopsis. Glycerolipids with larger head groups were synthesized more in Arabidopsis than in rice at sub-lethal low-temperatures. Levels of phosphatidic acid (PA) and phosphatidylinositol (PI) rose in both plants after low-temperature treatment. The DBI and ACL of total lipids did not change during low-temperature treatment. A higher DBI and a lower ACL could make the membranes of Arabidopsis more fluid at low temperatures. The ability to synthesize glycerolipids containing a larger head group may correlate with low-temperature tolerance. The low-temperature-induced increase of PA may play a dual role in plant responses to low temperatures: as a lipid signal that initiates tolerance responses, and as a structural molecule that, on extensive in large accumulation, could damage the integrity of membranes. Changes in ACL and DBI are responses of plants to long-term low temperature.

  4. Sodium chloride accumulation in glycophyte plants with cyanobacterial symbionts

    PubMed Central

    Sancho, Leopoldo G; Pintado, Ana; Saco, Dolores; Martín, Soledad; Arróniz-Crespo, María; Angel Casermeiro, Miguel; de la Cruz Caravaca, Maria Teresa; Cameron, Steven; Rozzi, Ricardo

    2017-01-01

    Abstract The majority of plant species are glycophytes and are not salt-tolerant and maintain low sodium levels within their tissues; if. high tissue sodium concentrations do occur, it is in response to elevated environmental salt levels. Here we report an apparently novel and taxonomically diverse grouping of plants that continuously maintain high tissue sodium contents and share the rare feature of possessing symbiotic cyanobacteria. Leaves of Gunnera magellanica in Tierra del Fuego always had sodium contents (dry weight basis) of around 4.26 g kg−1, about 20 times greater than measured in other higher plants in the community (0.29 g kg−1). Potassium and chloride levels were also elevated. This was not a response to soil sodium and chloride levels as these were low at all sites. High sodium contents were also confirmed in G. magellanica from several other sites in Tierra del Fuego, in plants taken to, and cultivated in Madrid for 2 years at low soil salt conditions, and also in other free living or cultivated species of Gunnera from the UK and New Zealand. Gunnera species are the only angiosperms that possess cyanobacterial symbionts so we analysed other plants that have this rather rare symbiosis, all being glycophytes. Samples of Azolla, a floating aquatic fern, from Europe and New Zealand all had even higher sodium levels than Gunnera. Roots of the gymnosperm Cycas revoluta had lower sodium contents (2.52 ± 0.34 g kg−1) but still higher than the non-symbiotic glycophytes. The overaccumulation of salt even when it is at low levels in the environment appears to be linked to the possession of a cyanobacterial symbiosis although the actual functional basis is unclear. PMID:29225764

  5. Johnston Atoll Plutonium Contaminated Soil Cleanup Project. 5th quarterly report, 1 August 94 to 31 October 1994. Technical report, 1 August-31 October 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doane, R.W.; Grant, R.H.

    1996-09-01

    Thermo NUtech is the prime contractor for the Defense Nuclear Agency (DNA), responsible for the operation and maintenance of the Johnston Atoll plutonium Contaminated Soil Cleanup Project. During this production period, the Scope of Work included movement of soil to and from the plant, processing contaminated soil through the Segmented Gate System (SGS) and Soil Washing System, packaging of waste soil for shipment, identification and implementation of process improvements, data collection and validation, and compliance with all applicable regulations governing environmental safety and health. The SGS utilizes arrays of sensitive radiation detectors coupled with sophisticated computer software to segregate contaminatedmore » soil from a moving feed supply on conveyor belts. Contaminated soil is diverted to a `hot path` for plutonium particles greater than 5000 Becquerels or to a supplemental soil washing process designed to remove dispersed low leve%l contamination from a soil faction consisting of very small particles. Low to intermediate levels of contamination are removed from the soil to meet DNA`s criteria for unrestricted use of less than 500 Becquerels per kilogram of soil, with no hot particles. The low level concentrate is expected to be packaged for shipment to an approved defense waste disposal site.« less

  6. RESEARCH REPORT: USE OF VEGETATIVE VIGOR TEST TO DETECT EFFECTS OF LOW LEVELS OF HERBICIDES ON SELECTED NON-CROP PLANTS

    EPA Science Inventory

    To address the need for improved phytotoxicity testing protocols, we evaluated use of the vegetative vigor test methodology for use in determining effects of low concentrations of chemical herbicides on terrestrial non-crop plant species. Species included native plants from Illi...

  7. Effects of detrital influx in the Pennsylvanian Upper Freeport peat swamp

    USGS Publications Warehouse

    Ruppert, L.F.; Stanton, R.W.; Blaine, Cecil C.; Eble, C.F.; Dulong, F.T.

    1991-01-01

    Quartz cathodoluminescence properties and mineralogy of three sets of samples and vegetal and/ or miospore data from two sets of samples from the Upper Freeport coal bed, west-central Pennsylvania, show that detrital influence from a penecontemporaneous channel is limited to an area less than three km from the channel. The sets of samples examined include localities of the coal bed where (1) the coal is thin, split by partings, and near a penecontemporaneous fluvial channel, (2) the coal is relatively thick and located approximately three km from the channel, and (3) the coal is thick and located approximately 12 km from the channel. Samples from locality 1 (nearest the channel) have relatively high-ash yields (low-temperature ash average = 27.3% on a pyrite- and calcite-free basis) and high proportions of quartz and clay minerals. The quartz is primarily detrital, as determined by cathodoluminescent properties, and the ratio of kaolinite to illite is low. In addition, most of the plant remains and miospores indicate peat-forming plants that required low nutrient levels for growth. In contrast, samples from localities 2 and 3, from the more interior parts of the bed, contained predominantly authigenic quartz grains nd yielded low-temperature ash values of less than 14% on a pyrite- and calcite-free basis. The low-temperature ash contains low concentrations of quartz and clay minerals and the ratio of kaolinite to illite is relatively high. Although intact core was not available for paleobotanical analyses, another core collected within 1 km from locality 3 contained plant types interpreted to have required high nutrient levels for growth. These data indicate that mineral formation is dominated by authigenic processes in interior parts of the coal body. Some of the authigenic quartz may have been derived from herbaceous ferns as indicated by patterns in the palynological and paleobotanical data. In contrast, detrital processes appeared to be limited to in areas directly adjacent to the penecontemporaneous channel where the coal bed is high in ash, split by mineral-rich partings, and of little or no economic value. ?? 1991.

  8. Ecology of Arcobacter species in chicken rearing and processing.

    PubMed

    Gude, A; Hillman, T J; Helps, C R; Allen, V M; Corry, J E L

    2005-01-01

    To investigate whether Arcobacter spp. colonize the poultry-rearing environment or whether they are contaminants acquired during transportation and/or from the processing plant. Samples were collected on poultry farms and in the processing plant during slaughter and dressing. Two cultural methods of detection were used. Isolates were identified to species level using a multiplex-polymerase chain reaction (m-PCR) method, either on the initial suspensions, or after enrichment, or on pure cultures of isolates. Of the 62 samples examined from poultry farms, arcobacters were found only outside the rearing sheds (in effluent sludge and stagnant water). Thirty-four samples were examined from the processing plant and 26 were positive for arcobacters. All the isolates were Arcobacter butzleri. Arcobacters were not found in any sample by direct plating nor by m-PCR on the initial suspensions, thus it was concluded that numbers were very low. Arcobacter spp. were not found in samples from the live birds and their immediate environment, but A. butzleri was found in effluent sludge and stagnant water outside the rearing sheds. However, A. butzleri is common in poultry abattoirs, and it appears that poultry carcasses are contaminated during processing. Arcobacters are not found inside poultry-rearing sheds, but are contaminants in the processing environment.

  9. Industrial Membrane Filtration and Short-bed Fractal Separation Systems for Separating Monomers from Heterogeneous Plant Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearney, M; Kochergin, V; Hess, R

    2005-03-31

    Large-scale displacement of petroleum will come from low-cost cellulosic feedstocks such as straw and corn stover crop residues. This project has taken a step toward making this projection a reality by reducing capital and energy costs, the two largest cost factors associated with converting cellulosic biomass to chemicals and fuels. The technology exists for using acid or enzyme hydrolysis processes to convert biomass feedstock (i.e., waste cellulose such as straw, corn stover, and wood) into their base monomeric sugar building blocks, which can, in turn, be processed into chemicals and fuels using a number of innovative fermentation technologies. However, whilemore » these processes are technically possible, practical and economic barriers make these processes only marginally feasible or not feasible at all. These barriers are due in part to the complexity and large fixed and recurring capital costs of unit operations including filtration, chromatographic separation, and ion exchange. This project was designed to help remove these barriers by developing and implementing new purification and separation technologies that will reduce the capital costs of the purification and chromatographic separation units by 50% to 70%. The technologies fundamental to these improvements are: (a) highly efficient clarification and purification systems that use screening and membrane filtration to eliminate suspended solids and colloidal material from feed streams and (b) fractal technology based chromatographic separation and ion exchange systems that can substitute for conventional systems but at much smaller size and cost. A non-hazardous ''raw sugar beet juice'' stream (75 to 100 gal/min) was used for prototype testing of these technologies. This raw beet juice stream from the Amalgamated Sugar LLC plant in Twin Falls, Idaho contained abrasive materials and membrane foulants. Its characteristics were representative of an industrial-scale heterogeneous plant extract/hydrolysis stream, and therefore was an ideal model system for developing new separation equipment. Subsequent testing used both synthetic acid hydrolysate and corn stover derived weak acid hydrolysate (NREL produced). A two-phased approach was used for the research and development described in this project. The first level of study involved testing the new concepts at the bench level. The bench-scale evaluations provided fundamental understanding of the processes, building and testing small prototype systems, and determining the efficiency of the novel processes. The second level of study, macro-level, required building larger systems that directly simulated industrial operations and provided validation of performance to minimize financial risk during commercialization. The project goals and scope included: (1) Development of low-capital alternatives to conventional crop-based purification/separation processes; and (2) Development of each process to the point that transition to commercial operation is low risk. The project reporting period was January 2001 to December 2004. This included a one year extension of the project (without additional funding).« less

  10. Simulation model for plant growth in controlled environment systems

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Wann, M.

    1986-01-01

    The role of the mathematical model is to relate the individual processes to environmental conditions and the behavior of the whole plant. Using the controlled-environment facilities of the phytotron at North Carolina State University for experimentation at the whole-plant level and methods for handling complex models, researchers developed a plant growth model to describe the relationships between hierarchial levels of the crop production system. The fundamental processes that are considered are: (1) interception of photosynthetically active radiation by leaves, (2) absorption of photosynthetically active radiation, (3) photosynthetic transformation of absorbed radiation into chemical energy of carbon bonding in solube carbohydrates in the leaves, (4) translocation between carbohydrate pools in leaves, stems, and roots, (5) flow of energy from carbohydrate pools for respiration, (6) flow from carbohydrate pools for growth, and (7) aging of tissues. These processes are described at the level of organ structure and of elementary function processes. The driving variables of incident photosynthetically active radiation and ambient temperature as inputs pertain to characterization at the whole-plant level. The output of the model is accumulated dry matter partitioned among leaves, stems, and roots; thus, the elementary processes clearly operate under the constraints of the plant structure which is itself the output of the model.

  11. Modeling invasive alien plant species in river systems: Interaction with native ecosystem engineers and effects on hydro-morphodynamic processes

    NASA Astrophysics Data System (ADS)

    van Oorschot, M.; Kleinhans, M. G.; Geerling, G. W.; Egger, G.; Leuven, R. S. E. W.; Middelkoop, H.

    2017-08-01

    Invasive alien plant species negatively impact native plant communities by out-competing species or changing abiotic and biotic conditions in their introduced range. River systems are especially vulnerable to biological invasions, because waterways can function as invasion corridors. Understanding interactions of invasive and native species and their combined effects on river dynamics is essential for developing cost-effective management strategies. However, numerical models for simulating long-term effects of these processes are lacking. This paper investigates how an invasive alien plant species affects native riparian vegetation and hydro-morphodynamics. A morphodynamic model has been coupled to a dynamic vegetation model that predicts establishment, growth and mortality of riparian trees. We introduced an invasive alien species with life-history traits based on Japanese Knotweed (Fallopia japonica), and investigated effects of low- and high propagule pressure on invasion speed, native vegetation and hydro-morphodynamic processes. Results show that high propagule pressure leads to a decline in native species cover due to competition and the creation of unfavorable native colonization sites. With low propagule pressure the invader facilitates native seedling survival by creating favorable hydro-morphodynamic conditions at colonization sites. With high invader abundance, water levels are raised and sediment transport is reduced during the growing season. In winter, when the above-ground invader biomass is gone, results are reversed and the floodplain is more prone to erosion. Invasion effects thus depend on seasonal above- and below ground dynamic vegetation properties and persistence of the invader, on the characteristics of native species it replaces, and the combined interactions with hydro-morphodynamics.

  12. Arabidopsis Transporter MGT6 Mediates Magnesium Uptake and Is Required for Growth under Magnesium Limitation[W

    PubMed Central

    Mao, Dandan; Chen, Jian; Tian, Lianfu; Liu, Zhenhua; Yang, Lei; Tang, Renjie; Li, Jian; Lu, Changqing; Yang, Yonghua; Shi, Jisen; Chen, Liangbi; Li, Dongping; Luan, Sheng

    2014-01-01

    Although magnesium (Mg2+) is the most abundant divalent cation in plant cells, little is known about the mechanism of Mg2+ uptake by plant roots. Here, we report a key function of Magnesium Transport6 (MGT6)/Mitochondrial RNA Splicing2-4 in Mg2+ uptake and low-Mg2+ tolerance in Arabidopsis thaliana. MGT6 is expressed mainly in plant aerial tissues when Mg2+ levels are high in the soil or growth medium. Its expression is highly induced in the roots during Mg2+ deficiency, suggesting a role for MGT6 in response to the low-Mg2+ status in roots. Silencing of MGT6 in transgenic plants by RNA interference (RNAi) resulted in growth retardation under the low-Mg2+ condition, and the phenotype was restored to normal growth after RNAi plants were transferred to Mg2+-sufficient medium. RNAi plants contained lower levels of Mg2+ compared with wild-type plants under low Mg2+ but not under Mg2+-sufficient conditions. Further analysis indicated that MGT6 was localized in the plasma membrane and played a key role in Mg2+ uptake by roots under Mg2+ limitation. We conclude that MGT6 mediates Mg2+ uptake in roots and is required for plant adaptation to a low-Mg2+ environment. PMID:24794135

  13. Differences in the arbuscular mycorrhizal fungi-improved rice resistance to low temperature at two N levels: aspects of N and C metabolism on the plant side.

    PubMed

    Liu, Zhi-Lei; Li, Yuan-Jing; Hou, Hong-Yan; Zhu, Xian-Can; Rai, Vandna; He, Xing-Yuan; Tian, Chun-Jie

    2013-10-01

    We performed an experiment to determine how N and C metabolism is involved in the low-temperature tolerance of mycorrhizal rice (Oryza sativa) at different N levels and examined the possible signaling molecules involved in the stress response of mycorrhizal rice. Pot cultures were performed, and mycorrhizal rice growth was evaluated based on treatments at two temperatures (15 °C and 25 °C) and two N levels (20 mg pot(-1) and 50 mg pot(-1)). The arbuscular mycorrhizal fungi (AMF) colonization of rice resulted in different responses of the plants to low and high N levels. The mycorrhizal rice with the low N supplementation had more positive feedback from the symbiotic AMF, as indicated by accelerated N and C metabolism of rice possibly involving jasmonic acid (JA) and the up-regulation of enzyme activities for N and C metabolism. Furthermore, the response of the mycorrhizal rice plants to low temperature was associated with P uptake and nitric oxide (NO). Crown Copyright © 2013. Published by Elsevier Masson SAS. All rights reserved.

  14. Implications of hydrologic variability on the succession of plants in Great Lakes wetlands

    USGS Publications Warehouse

    Wilcox, Douglas A.

    2004-01-01

    Primary succession of plant communities directed toward a climax is not a typical occurrence in wetlands because these ecological systems are inherently dependent on hydrology, and temporal hydrologic variability often causes reversals or setbacks in succession. Wetlands of the Great Lakes provide good examples for demonstrating the implications of hydrology in driving successional processes and for illustrating potential misinterpretations of apparent successional sequences. Most Great Lakes coastal wetlands follow cyclic patterns in which emergent communities are reduced in area or eliminated by high lake levels and then regenerated from the seed bank during low lake levels. Thus, succession never proceeds for long. Wetlands also develop in ridge and swale terrains in many large embayments of the Great Lakes. These formations contain sequences of wetlands of similar origin but different age that can be several thousand years old, with older wetlands always further from the lake. Analyses of plant communities across a sequence of wetlands at the south end of Lake Michigan showed an apparent successional pattern from submersed to floating to emergent plants as water depth decreased with wetland age. However, paleoecological analyses showed that the observed vegetation changes were driven largely by disturbances associated with increased human settlement in the area. Climate-induced hydrologic changes were also shown to have greater effects on plant-community change than autogenic processes. Other terms, such as zonation, maturation, fluctuations, continuum concept, functional guilds, centrifugal organization, pulse stability, and hump-back models provide additional means of describing organization and changes in vegetation; some of them overlap with succession in describing vegetation processes in Great Lakes wetlands, but each must be used in the proper context with regard to short- and long-term hydrologic variability.

  15. Effects of plant density on recombinant hemagglutinin yields in an Agrobacterium-mediated transient gene expression system using Nicotiana benthamiana plants.

    PubMed

    Fujiuchi, Naomichi; Matsuda, Ryo; Matoba, Nobuyuki; Fujiwara, Kazuhiro

    2017-08-01

    Agrobacterium-mediated transient expression systems enable plants to rapidly produce a wide range of recombinant proteins. To achieve economically feasible upstream production and downstream processing, it is beneficial to obtain high levels of two yield-related quantities of upstream production: recombinant protein content per fresh mass of harvested biomass (g gFM -1 ) and recombinant protein productivity per unit area-time (g m -2 /month). Here, we report that the density of Nicotiana benthamiana plants during upstream production had significant impacts on the yield-related quantities of recombinant hemagglutinin (HA). The two quantities were smaller at a high plant density of 400 plants m -2 than at a low plant density of 100 plants m -2 . The smaller quantities at the high plant density were attributed to: (i) a lower HA content in young leaves, which usually have high HA accumulation potentials; (ii) a lower biomass allocation to the young leaves; and (iii) a high area-time requirement for plants. Thus, plant density is a key factor for improving upstream production in Agrobacterium-mediated transient expression systems. Biotechnol. Bioeng. 2017;114: 1762-1770. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Hemoglobins, programmed cell death and somatic embryogenesis.

    PubMed

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Uptake of heavy metals by Typha capensis from wetland sites polluted by effluent from mineral processing plants: implications of metal-metal interactions.

    PubMed

    Zaranyika, M F; Nyati, W

    2017-10-01

    The aim of the present work was to demonstrate the existence of metal-metal interactions in plants and their implications for the absorption of toxic elements like Cr. Typha capensis , a good accumulator of heavy metals, was chosen for the study. Levels of Fe, Cr, Ni, Cd, Pb, Cu and Zn were determined in the soil and roots, rhizomes, stems and leaves of T. capensis from three Sites A, B and C polluted by effluent from a chrome ore processing plant, a gold ore processing plant, and a nickel ore processing plant, respectively. The levels of Cr were extremely high at Site A at 5415 and 786-16,047 μg g -1 dry weight in the soil and the plant, respectively, while the levels of Ni were high at Site C at 176 and 24-891 μg g -1 in the soil and the plant, respectively. The levels of Fe were high at all three sites at 2502-7500 and 906-13,833 μg g -1 in the soil and plant, respectively. For the rest of the metals, levels were modest at 8.5-148 and 2-264 μg g -1 in the soil and plant, respectively. Pearson's correlation analysis confirmed mutual synergistic metal-metal interactions in the uptake of Zn, Cu, Co, Ni, Fe, and Cr, which are attributed to the similarity in the radii and coordination geometry of the cations of these elements. The implications of such metal-metal interactions (or effects of one metal on the behaviour of another) on the uptake of Cr, a toxic element, and possible Cr detoxification mechanism within the plant, are discussed.

  18. Can biomass responses to warming at plant to ecosystem levels be predicted by leaf-level responses?

    NASA Astrophysics Data System (ADS)

    Xia, J.; Shao, J.; Zhou, X.; Yan, W.; Lu, M.

    2015-12-01

    Global warming has the profound impacts on terrestrial C processes from leaf to ecosystem scales, potentially feeding back to climate dynamics. Although numerous studies had investigated the effects of warming on C processes from leaf to plant and ecosystem levels, how leaf-level responses to warming scale up to biomass responses at plant, population, and community levels are largely unknown. In this study, we compiled a dataset from 468 papers at 300 experimental sites and synthesized the warming effects on leaf-level parameters, and plant, population and ecosystem biomass. Our results showed that responses of plant biomass to warming mainly resulted from the changed leaf area rather than the altered photosynthetic capacity. The response of ecosystem biomass to warming was weaker than those of leaf area and plant biomass. However, the scaling functions from responses of leaf area to plant biomass to warming were different in diverse forest types, but functions were similar in non-forested biomes. In addition, it is challenging to scale the biomass responses from plant up to ecosystem. These results indicated that leaf area might be the appropriate index for plant biomass response to warming, and the interspecific competition might hamper the scaling of the warming effects on plant and ecosystem levels, suggesting that the acclimation capacity of plant community should be incorporated into land surface models to improve the prediction of climate-C cycle feedback.

  19. [Investigation Report of Tripterygium wilfordii and Tripterygium hypoglaucum].

    PubMed

    Liu, Chao; Ge, Xiao-guang; Hao, Qing-xiu; Guo, Lan-ping; Yuan, Qing-jun; Huang, Lu-qi

    2015-02-01

    To get the information of resources, cultivation, commodity circulation and other aspects of Tripterygium wilfordii and Tripterygium hypoglaucum. Collect samples in 13 locations of Tripterygium wilfordii and Tripterygium hypoglaucum, compare their plant morphological characteristics and growth habit, and investigate their wild resources conditions, planting information, easy-confused varieties and different commodity features. (1) Tripterygium wilfordii and Tripterygium hypoglaucum were mainly collected under woods or on the edge of woods,and light and moisture attributed to their distribution to some extent. (2) Wild resources of Tripterygium wilfordii and Tripterygium hypoglaucum were shrinking, and both of their cultivation history were relatively short and their cultivation technique were still in a low level. (3) Due to lack of harvesting and processing standards, decoction pieces, varying from roots, rhizomes to stems of plants, were all sold as commercial medicines. Wild resources of Tripterygium wilfordii and Tripterygium hypoglaucum are shrinking,and the standardized research on cultivation-harvest processing and commercial medicines remains to be further carried out.

  20. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    PubMed Central

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694

  1. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.

    PubMed

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C

    2015-07-29

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  2. Gas-to-gasoline plant half complete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, B.

    New Zealand has reached the midpoint in construction of the world's first commercial natural gas-to-gasoline (GTG) plant. Plans call for mid-1985 mechanical completion of the $1.475 billion GTG project in Motunui; limited production would begin by year-end 1985 with the plant fully on-stream by 1986, yielding about 628,000 tons (570,000 metric tons)/yr or about 14,450 bbl/stream-day of high-octane, low-sulfur gasoline. The process configuration combines for the first time on a commercial scale the ICI low-pressure gas-to-methanol scheme with Mobil's fixed bed zeolite catalyst process for converting methanol to gasoline. The GTG plant will be the world's biggest methanol plant andmore » New Zealand's largest grassroots industrial facility.« less

  3. Pollution profile and biodegradation characteristics of fur-suede processing effluents.

    PubMed

    Yildiz Töre, G; Insel, G; Ubay Cokgör, E; Ferlier, E; Kabdaşli, I; Orhon, D

    2011-07-01

    This study investigated the effect of stream segregation on the biodegradation characteristics of wastewaters generated by fur-suede processing. It was conducted on a plant located in an organized industrial district in Turkey. A detailed in-plant analysis of the process profile and the resulting pollution profile in terms of significant parameters indicated the characteristics of a strong wastewater with a maximum total COD of 4285 mg L(-1), despite the excessive wastewater generation of 205 m3 (ton skin)(-1). Respirometric analysis by model calibration yielded slow biodegradation kinetics and showed that around 50% of the particulate organics were utilized at a rate similar to that of endogenous respiration. A similar analysis on the segregated wastewater streams suggested that biodegradation of the plant effluent is controlled largely by the initial washing/pickling operations. The effect of other effluent streams was not significant due to their relatively low contribution to the overall organic load. The respirometric tests showed that the biodegradation kinetics of the joint treatment plant influent of the district were substantially improved and exhibited typical levels reported for tannery wastewater, so that the inhibitory impact was suppressed to a great extent by dilution and mixing with effluents of the other plants. The chemical treatment step in the joint treatment plant removed the majority of the particulate organics so that 80% of the available COD was utilized in the oxygen uptake rate (OUR) test, a ratio quite compatible with the biodegradable COD fractions of tannery wastewater. Consequently, process kinetics and especially the hydrolysis rate appeared to be significantly improved.

  4. Control of Boreal Forest Soil Microbial Communities and Processes by Plant Secondary Compounds

    NASA Astrophysics Data System (ADS)

    Leewis, M. C.; Leigh, M. B.

    2016-12-01

    Plants release an array of secondary plant metabolites (SPMEs), which vary widely between plant species/progenies and may drive shifts in soil microbial community structure and function. We hypothesize that SPMEs released through litterfall and root turnover in the boreal forest control ecosystem carbon cycling by inhibiting microbial decomposition processes, which are overcome partially by increased aromatic biodegradation of microbial communities that also fortuitously prime soils for accelerated biodegradation of contaminants. Soils and litter (stems, roots, senescing leaves) were collected from 3 different birch progenies from Iceland, Finland, and Siberia that have been reported to contain different SPME content (low, medium, high, respectively) due to differences in herbivory pressure over their natural history, as well as black spruce, all growing in a long-term common tree garden at the Kevo Subarctic Field Research Institute, Finland. We characterized the SPME content of these plant progenies and used a variety of traditional microbiological techniques (e.g., enzyme assays, litter decomposition and contaminant biodegradation rates) and molecular techniques (e.g., high-throughput amplicon sequencing for bacteria and fungi) to assess how different levels of SPMEs may correlate to shifts in microbial community structure and function. Microbial communities (bacterial and fungal) significantly varied in composition as well as leaf litter and diesel biodegradation rates, in accordance with the phytochemistry of the trees present. This study offers novel, fundamental information about phytochemical controls on ecosystem processes, resilience to contaminants, and microbial decomposition processes.

  5. Prokaryotic expression and allergenicity assessment of hygromycin B phosphotransferase protein derived from genetically modified plants.

    PubMed

    Lu, Y; Xu, W; Kang, A; Luo, Y; Guo, F; Yang, R; Zhang, J; Huang, K

    2007-09-01

    The hygromycin B phosphotransferase gene (hpt) has been widely used in the process of plant genetic engineering to produce plants that can secrete the HPT protein. As part of a safety assessment, sufficient quantities of the protein were produced in Escherichia coli to conduct in vitro digestibility and animal studies. Western blotting analysis showed that the HPT protein was digested by simulated gastric fluid within 40 s. ELISA demonstrated that the protein did not induce detectable levels of specific IgE antibodies or histamine in test animals. Alignment of the amino acid sequence of HPT with those of known allergens did not produce evidence of sequence similarities between these allergens and the HPT protein. We conclude that HPT has a low probability to induce allergenicity.

  6. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.

    PubMed

    Gu, April Z; Saunders, A; Neethling, J B; Stensel, H D; Blackall, L L

    2008-08-01

    The abundance and relevance ofAccumulibacter phosphatis (presumed to be polyphosphate-accumulating organisms [PAOs]), Competibacter phosphatis (presumed to be glycogen-accumulating organisms [GAOs]), and tetrad-forming organisms (TFOs) to phosphorus removal performance at six full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants were investigated. Coexistence of various levels of candidate PAOs and GAOs were found at these facilities. Accumulibacter were found to be 5 to 20% of the total bacterial population, and Competibacter were 0 to 20% of the total bacteria population. The TFO abundance varied from nondetectable to dominant. Anaerobic phosphorus (P) release to acetate uptake ratios (P(rel)/HAc(up)) obtained from bench tests were correlated positively with the abundance ratio of Accumulibacter/(Competibacter +TFOs) and negatively with the abundance of (Competibacter +TFOs) for all plants except one, suggesting the relevance of these candidate organisms to EBPR processes. However, effluent phosphorus concentration, amount of phosphorus removed, and process stability in an EBPR system were not directly related to high PAO abundance or mutually exclusive with a high GAO fraction. The plant that had the lowest average effluent phosphorus and highest stability rating had the lowest P(rel)/HAc(up) and the most TFOs. Evaluation of full-scale EBPR performance data indicated that low effluent phosphorus concentration and high process stability are positively correlated with the influent readily biodegradable chemical oxygen demand-to-phosphorus ratio. A system-level carbon-distribution-based conceptual model is proposed for capturing the dynamic competition between PAOs and GAOs and their effect on an EBPR process, and the results from this study seem to support the model hypothesis.

  7. Plant uprooting by flow as a fatigue mechanical process

    NASA Astrophysics Data System (ADS)

    Perona, Paolo; Edmaier, Katharina; Crouzy, Benoît

    2015-04-01

    In river corridors, plant uprooting by flow mostly occurs as a delayed process where flow erosion first causes root exposure until residual anchoring balances hydrodynamic forces on the part of the plant that is exposed to the stream. Because a given plant exposure time to the action of the stream is needed before uprooting occurs (time-to-uprooting), this uprooting mechanism has been denominated Type II, in contrast to Type I, which mostly affect early stage seedlings and is rather instantaneous. In this work, we propose a stochastic framework that describes a (deterministic) mechanical fatigue process perturbed by a (stochastic) process noise, where collapse occurs after a given exposure time. We test the model using the experimental data of Edmaier (2014) and Edmaier et al. (submitted), who investigated vegetation uprooting by flow in the limit of low plant stem-to-sediment size ratio by inducing parallel riverbed erosion within an experimental flume. We first identify the proper timescale and lengthscale for rescaling the model. Then, we show that it describes well all the empirical cumulative distribution functions (cdf) of time-to-uprooting obtained under constant riverbed erosion rate and assuming additive gaussian process noise. By this mean, we explore the level of determinism and stochasticity affecting the time-to-uprooting for Avena sativa in relation to root anchoring and flow drag forces. We eventually ascribe the overall dynamics of the Type II uprooting mechanism to the memory of the plant-soil system that is stored by root anchoring, and discuss related implications thereof. References Edmaier, K., Uprooting mechansims of juvenile vegetation by flow erosion, Ph.D. thesis, EPFL, 2014. Edmaier, K., Crouzy, B. and P. Perona. Experimental characterization of vegetation uprooting by flow. J. of Geophys. Res. - Biogeosci., submitted

  8. Ready-to-eat vegetables production with low-level water chlorination. An evaluation of water quality, and of its impact on end products.

    PubMed

    D'Acunzo, Francesca; Del Cimmuto, Angela; Marinelli, Lucia; Aurigemma, Caterina; De Giusti, Maria

    2012-01-01

    We evaluated the microbiological impact of low-level chlorination (1 ppm free chlorine) on the production of ready-to-eat (RTE) vegetables by monitoring the microbiological quality of irrigation and processing water in two production plants over a 4-season period, as well as the microbiological quality of unprocessed vegetables and RTE product. Water samples were also characterized in terms of some chemical and physico-chemical parameters of relevance in chlorination management. Both producers use water with maximum 1 ppm free chlorine for vegetables rinsing, while the two processes differ by the number of washing cycles. Salmonella spp and Campylobacter spp were detected once in two different irrigation water samples out of nine from one producer. No pathogens were found in the vegetable samples. As expected, the procedure encompassing more washing cycles performed slightly better in terms of total mesophilic count (TMC) when comparing unprocessed and RTE vegetables of the same batch. However, data suggest that low-level chlorination may be insufficient in preventing microbial build-up in the washing equipment and/or batch-to batch cross-contamination.

  9. Seed-based expression systems for plant molecular farming.

    PubMed

    Boothe, Joseph; Nykiforuk, Cory; Shen, Yin; Zaplachinski, Steven; Szarka, Steven; Kuhlman, Philip; Murray, Elizabeth; Morck, Douglas; Moloney, Maurice M

    2010-06-01

    The evolution of the seed system provides enormous adaptability to the gymnosperms and angiosperms, because of the properties of dormancy, nutrient storage and seedling vigour. Many of the unique properties of seeds can be exploited in molecular farming applications, particularly where it is desirable to produce large quantities of a recombinant protein. Seeds of transgenic plants have been widely used to generate a raw material for the extraction and isolation of proteins and polypeptides, which can be processed into valuable biopharmaceuticals. The factors that control high-level accumulation of recombinant proteins in seed are reviewed in the following paragraphs. These include promoters and enhancers, which regulate transcript abundance. However, it is shown that subcellular trafficking and targeting of the desired polypeptides or proteins play a crucial role in their accumulation at economically useful levels. Seeds have proven to be versatile hosts for recombinant proteins of all types, including peptides or short and long polypeptides as well as complex, noncontiguous proteins like antibodies and other immunoglobulins. The extraction and recovery of recombinant proteins from seeds is greatly assisted by their dormancy properties, because this allows for long-term stability of stored products including recombinant proteins and a decoupling of processing from the growth and harvest cycles. Furthermore, the low water content and relatively low bioload of seeds help greatly in designing cost-effective manufacturing processes for the desired active pharmaceutical ingredient. The development of cGMP processes based on seed-derived materials has only been attempted by a few groups to date, but we provide a review of the key issues and criteria based on interactions with Food and Drug Administration and European Medicines Agency. This article uses 'case studies' to highlight the utility of seeds as vehicles for pharmaceutical production including: insulin, human growth hormone, lysozyme and lactoferrin. These examples serve to illustrate the preclinical and, in one case, clinical information required to move these plant-derived molecules through the research phase and into the regulatory pathway en route to eventual approval.

  10. Dynamic protoneural networks in plants

    PubMed Central

    Debono, Marc-Williams

    2013-01-01

    Taking as a basis of discussion Kalanchoe’s spontaneous and evoked extracellular activities recorded at the whole plant level, we put the challenging questions: do these low-voltage variations, together with endocellular events, reflect integrative properties and complex behavior in plants? Does it reflect common perceptive systems in animal and plant species? Is the ability of plants to treat short-term variations and information transfer without nervous system relevant? Is a protoneural construction of the world by lower organisms possible? More generally, the aim of this paper is to reevaluate the probably underestimated role of plant surface potentials in the plant relation life, carefully comparing the biogenesis of both animal and plant organisms in the era of plant neurobiology. Knowing that surface potentials participate at least to morphogenesis, cell to cell coupling, long distance transmission and transduction of stimuli, some hypothesis are given indicating that plants have to be studied as environmental biosensors and non linear dynamic systems able to detect transitional states between perception and response to stimuli. This study is conducted in the frame of the “plasticity paradigm,” which gives a theoretical model of evolutionary processes and suggests some hypothesis about the nature of complexity, information and behavior. PMID:23603975

  11. Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.

    PubMed

    Sudo, Emi; Suzuki, Yuji; Makino, Amane

    2014-11-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) strongly limits photosynthesis at lower CO2 concentration [CO2] whereas [corrected] Rubisco limitation is cancelled by elevated [CO2]. Therefore, increase or reduction in Rubisco content by transformation with a sense or an antisense RBCS construct are expected to alter the biomass production under different CO2 levels. RBCS-sense (125% Rubisco of wild-type) and -antisense (35% Rubisco of wild-type) rice (Oryza sativa L.) plants were grown for 63 days at three different CO2 levels: low [CO2] (28 Pa), normal [CO2] (40 Pa) and elevated [CO2] (120 Pa). The biomass of RBCS-sense plants was 32% and 15% greater at low [CO2] and normal [CO2] than that of the wild-type plants, respectively, but did not differ at elevated [CO2]. Conversely, the biomass of RBCS-antisense plants was the smallest at low [CO2]. Thus, overproduction of Rubisco was effective for biomass production at low [CO2]. Greater biomass production at low [CO2] in RBCS-sense plants was caused by an increase in the net assimilation rate, and associated with an increase in the amount of N uptake. Furthermore, Rubisco overproduction in RBCS-sense plants was also promoted at low [CO2]. Although it seems that low [CO2]-growth additionally stimulates the effect of RBCS overexpression, such a phenomenon observed at low [CO2] was mediated through an increase in total leaf N content. Thus, the dependence of the growth improvement in RBCS-sense rice on growth [CO2] was closely related to the degree of Rubisco overproduction which was accompanied not only by leaf N content but also by whole plant N content. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Treatment of municipal wastewater in a hybrid process using a new suspended carrier with large surface area.

    PubMed

    Christensson, M; Welander, T

    2004-01-01

    An activated sludge/biofilm hybrid process treating municipal wastewater was studied in pilot plant trials. A new type of suspended carrier, with large effective surface area, was employed in the process with the aim of enhancing nitrification. The pilot plant was operated for 1.5 years in five different configurations including pre-denitrification in all five and enhanced biological phosphorus removal in the final two. The wastewater temperature ranged between 11 degrees C and 20 degrees C, and the nominal dissolved oxygen (DO) level was 5-6 mg/L. The nitrification rate obtained on the new carrier within the hybrid stage was in the range of 0.9-1.2 g NH4-N/m2/d corresponding to a volumetric rate of 19-23 g NH4-N/m3/h (total nitrification including nitrification in the suspended solids). More than 80% of the total nitrification took place on the carrier (and the remainder in the suspended solids). The nitrification rate was shown to correlate with DO, decreasing when the DO was decreased. The results supported the idea of using the new carrier as a tool to upgrade plants not having nitrification today or improve nitrification in activated sludge processes not reaching necessary discharge levels. The large surface area present for nitrification makes it possible to obtain high nitrification rates within limited volumes. The possibility to keep the total suspended solid content low (< 3 g/L) and avoiding problems with the filament Microthrix parvicella, are other beneficial properties of the hybrid process.

  13. Allelobiosis in the interference of allelopathic wheat with weeds.

    PubMed

    Li, Yong-Hua; Xia, Zhi-Chao; Kong, Chui-Hua

    2016-11-01

    Plants may chemically affect the performance of neighbouring plants through allelopathy, allelobiosis or both. In spite of increasing knowledge about allelobiosis, defined as the signalling interactions mediated by non-toxic chemicals involved in plant-plant interactions, the phenomenon has received relatively little attention in the scientific literature. This study examined the role of allelobiosis in the interference of allelopathic wheat with weeds. Allelopathic wheat inhibited the growth of five weed species tested, and the allelochemical (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) production of wheat was elicited in the presence of these weeds, even with root segregation. The inhibition and allelochemical levels varied greatly with the mixed species density. Increased inhibition and allelochemical levels occurred at low and medium densities but declined at high densities. All the root exudates and their components of jasmonic acid and salicylic acid from five weeds stimulated allelochemical production. Furthermore, jasmonic acid and salicylic acid were found in plants, root exudates and rhizosphere soils, regardless of weed species, indicating their participation in the signalling interactions defined as allelobiosis. Through root-secreted chemical signals, allelopathic wheat can detect competing weeds and respond by increased allelochemical levels to inhibit them, providing an advantage for its own growth. Allelopathy and allelobiosis are two probably inseparable processes that occur together in wheat-weed chemical interactions. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Phytotoxicity of tin mine waste and accumulation of involved heavy metals in common buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Franzaring, Jürgen; Damsohn, Walter; Fangmeier, Andreas; Schlosser, Sonja; Kurz, Hannes; Büttner, Philipp

    2018-04-16

    Extraction and processing of cassiterite (SnO 2 ) left large tailings with high concentrations of tin, tungsten, molybdenum and lithium. Information on the phytotoxicity of mine waste is important with regard to ecological hazards. Exposure studies help to identify plants useful for the stabilization of waste tips and the phytomining of metals. A greenhouse study was performed using a dilution series of mine waste and four crops, a halophytic and a metallophytic species to derive dose response curves. Based on effective doses for growth reductions, sensitivity increased in the following order: maize > common buckwheat > quinoa > garden bean. Element analyses in different species and compartments of common buckwheat grown in a mixture of standard soil and 25% of the mine waste showed that only low levels of the metals were taken up and that transfer to seed tissues was negligible. As indicated by soil metal levels prior to and after the experiment, only lithium and arsenic proved to be plant available and reached high levels in green tissues while seed levels were low. The experiment confirmed differences in the uptake of metals with regard to elements and species. Common buckwheat is a suited candidate for cultivation on metal polluted soils.

  15. Pilot plant demonstration of stable and efficient high rate biological nutrient removal with low dissolved oxygen conditions.

    PubMed

    Keene, Natalie A; Reusser, Steve R; Scarborough, Matthew J; Grooms, Alan L; Seib, Matt; Santo Domingo, Jorge; Noguera, Daniel R

    2017-09-15

    Aeration in biological nutrient removal (BNR) processes accounts for nearly half of the total electricity costs at many wastewater treatment plants. Even though conventional BNR processes are usually operated to have aerated zones with high dissolved oxygen (DO) concentrations, recent research has shown that nitrification can be maintained using very low-DO concentrations (e.g., below 0.2 mg O 2 /L), and therefore, it may be possible to reduce energy use and costs in BNR facilities by decreasing aeration. However, the effect of reduced aeration on enhanced biological phosphorus removal (EBPR) is not understood. In this study, we investigated, at the pilot-scale level, the effect of using minimal aeration on the performance of an EBPR process. Over a 16-month operational period, we performed stepwise decreases in aeration, reaching an average DO concentration of 0.33 mg O 2 /L with stable operation and nearly 90% phosphorus removal. Under these low-DO conditions, nitrification efficiency was maintained, and nearly 70% of the nitrogen was denitrified, without the need for internal recycling of high nitrate aeration basin effluent to the anoxic zone. At the lowest DO conditions used, we estimate a 25% reduction in energy use for aeration compared to conventional BNR operation. Our improved understanding of the efficiency of low-DO BNR contributes to the global goal of reducing energy consumption during wastewater treatment operations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil?

    PubMed

    Zhao, Yajie; Li, Zhou; Zhang, Jing; Song, Haiyan; Liang, Qianhui; Tao, Jianping; Cornelissen, Johannes H C; Liu, Jinchun

    2017-04-01

    Uneven soil depth and low water availability are the key limiting factors to vegetation restoration and reconstruction in limestone soils such as in vulnerable karst regions. Belowground competition will possibly increase under limited soil resources. Here, we investigate whether low resource availability (including shallow soil, low water availability, and shallow soil and low water availability combined) stimulates the competition between grasses with different root systems in karst soil, by assessing their growth response, biomass allocation, and morphological plasticity. In a full three-way factorial blocked design of soil depth by water availability by neighbor identity, we grew Festuca arundinacea (deep-rooted) and Lolium perenne (shallow-rooted) under normal versus shallow soil depth, high versus low water availability, and in monoculture (conspecific neighbor) versus mixture (neighbor of the other species). The key results were as follows: (1) total biomass and aboveground biomass in either of the species decreased with reduction of resources but were not affected by planting patterns (monoculture or mixture) even at low resource levels. (2) For F. arundinacea, root biomass, root mass fraction, total root length, and root volume were higher in mixture than in monoculture at high resource level (consistent with resource use complementarity), but lower in mixture than in monoculture at low resource levels (consistent with interspecific competition). In contrast for L. perenne, either at high or low resource level, these root traits had mostly similar values at both planting patterns. These results suggest that deep-rooted and shallow-rooted plant species can coexist in karst regions under current climatic regimes. Declining resources, due to shallow soil, a decrease in precipitation, or combined shallow soil and karst drought, increased the root competition between plants of deep-rooted and shallow-rooted species. The root systems of deep-rooted plants may be too small to get sufficient water and nutrients from dry, shallow soil, while shallow-rooted plants will maintain a dominant position with their already adaptive strategy in respect of root biomass allocation and root growth.

  17. Restoring coastal wetlands that were ditched for mosquito control: a preliminary assessment of hydro-leveling as a restoration technique

    USGS Publications Warehouse

    Smith, Thomas J.; Tiling, Ginger; Leasure, Pamela S.

    2007-01-01

    The wetlands surrounding Tampa Bay, Florida were extensively ditched for mosquito control in the 1950s. Spoil from ditch construction was placed adjacent to the wetlands ditches creating mound-like features (spoil-mounds). These mounds represent a loss of 14% of the wetland area in Tampa Bay. Spoil mounds interfere with tidal flow and are locations for non-native plants to colonize (e.g., Schinus terebinthifolius). Removal of the spoil mounds to eliminate exotic plants, restore native vegetation, and re-establish natural hydrology is a restoration priority for environmental managers. Hydro-leveling, a new technique, was tested in a mangrove forest restoration project in 2004. Hydro-leveling uses a high pressure stream of water to wash sediment from the spoil mound into the adjacent wetland and ditch. To assess the effectiveness of this technique, we conducted vegetation surveys in areas that were hydro-leveled and in non-hydro-leveled areas 3 years post-project. Adult Schinus were reduced but not eliminated from hydro-leveled mounds. Schinus seedlings however were absent from hydro-leveled sites. Colonization by native species was sparse. Mangrove seedlings were essentially absent (≈2 m−2) from the centers of hydro-leveled mounds and were in low density on their edges (17 m−2) in comparison to surrounding mangrove forests (105 m−2). Hydro-leveling resulted in mortality of mangroves adjacent to the mounds being leveled. This was probably caused by burial of pneumatophores during the hydro-leveling process. For hydro-leveling to be a useful and successful restoration technique several requirements must be met. Spoil mounds must be lowered to the level of the surrounding wetlands. Spoil must be distributed further into the adjacent wetland to prevent burial of nearby native vegetation. Finally, native species may need to be planted on hydro-leveled areas to speed up the re-vegetation process.

  18. Factors influencing real time internal structural visualization and dynamic process monitoring in plants using synchrotron-based phase contrast X-ray imaging

    PubMed Central

    Karunakaran, Chithra; Lahlali, Rachid; Zhu, Ning; Webb, Adam M.; Schmidt, Marina; Fransishyn, Kyle; Belev, George; Wysokinski, Tomasz; Olson, Jeremy; Cooper, David M. L.; Hallin, Emil

    2015-01-01

    Minimally invasive investigation of plant parts (root, stem, leaves, and flower) has good potential to elucidate the dynamics of plant growth, morphology, physiology, and root-rhizosphere interactions. Laboratory based absorption X-ray imaging and computed tomography (CT) systems are extensively used for in situ feasibility studies of plants grown in natural and artificial soil. These techniques have challenges such as low contrast between soil pore space and roots, long X-ray imaging time, and low spatial resolution. In this study, the use of synchrotron (SR) based phase contrast X-ray imaging (PCI) has been demonstrated as a minimally invasive technique for imaging plants. Above ground plant parts and roots of 10 day old canola and wheat seedlings grown in sandy clay loam soil were successfully scanned and reconstructed. Results confirmed that SR-PCI can deliver good quality images to study dynamic and real time processes such as cavitation and water-refilling in plants. The advantages of SR-PCI, effect of X-ray energy, and effective pixel size to study plant samples have been demonstrated. The use of contrast agents to monitor physiological processes in plants was also investigated and discussed. PMID:26183486

  19. Enhanced determination of abscisic acid (ABA) and abscisic acid glucose ester (ABA-GE) in Cistus albidus plants by liquid chromatography-mass spectrometry in tandem mode.

    PubMed

    López-Carbonell, Marta; Gabasa, Marta; Jáuregui, Olga

    2009-04-01

    An improved, quick and simple method for the extraction and quantification of the phytohormones (+)-abscisic acid (ABA) and its major glucose conjugate, abscisic acid glucose ester (ABA-GE) in plant samples is described. The method includes the addition of deuterium-labeled internal standards to the leaves at the beginning of the extraction for quantification, a simple extraction/centrifugation process and the injection into the liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS-MS) system in multiple reaction monitoring mode (MRM). Quality parameters of the method (detection limits, repeatability, reproducibility and linearity) have been studied. The objective of this work is to show the applicability of this method for quantifying the endogenous content of both ABA and ABA-GE in Cistus albidus plants that have been grown during an annual cycle under Mediterranean field conditions. Leaf samples from winter plants have low levels of ABA which increase in spring and summer showing two peaks that corresponded to April and August. These increases are coincident with the high temperature and solar radiation and the low RWC and RH registered along the year. On the other hand, the endogenous levels of ABA-GE increase until maximum values in July just before the ABA content reaches its highest concentration, decreasing in August and during autumn and winter. Our results suggest that the method is useful for quantifying both compounds in this plant material and represents the advantage of a short-time sample preparation with a high accuracy and viability.

  20. Phytoremediation of soils and water contaminated with toxic elements and radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornish, J.E.; Huddleston, G.J.; Levine, R.S.

    1995-12-31

    At many U.S. Department of Energy (DOE) facilities and other sites, large volumes of soils, sediments and waters are contaminated with heavy metals and/or radionuclides, often at only a relatively small factor above regulatory action levels. In response, the DOE`s Office of Technology Development is evaluating the emerging biotechnology known as phytoremediation; this approach utilizes the accelerated transfer of contaminant mass from solution to either root or above ground biomass. After growth, the plant biomass - containing 100 to 1,000 times the contaminant levels observed with conventional plants - is processed to achieve further volume reduction and contaminant concentration. Thus,more » phytoremediation offers the potential for low cost remediation of highly to moderately contaminated media. Progress made to date by DOE in developing this technology will be summarized and evaluated.« less

  1. Avoiding Toxic Levels of Essential Minerals: A Forgotten Factor in Deer Diet Preferences

    PubMed Central

    Ceacero, Francisco; Landete-Castillejos, Tomás; Olguín, Augusto; Miranda, María; García, Andrés; Martínez, Alberto; Cassinello, Jorge; Miguel, Valentín; Gallego, Laureano

    2015-01-01

    Ungulates select diets with high energy, protein, and sodium contents. However, it is scarcely known the influence of essential minerals other than Na in diet preferences. Moreover, almost no information is available about the possible influence of toxic levels of essential minerals on avoidance of certain plant species. The aim of this research was to test the relative importance of mineral content of plants in diet selection by red deer (Cervus elaphus) in an annual basis. We determined mineral, protein and ash content in 35 common Mediterranean plant species (the most common ones in the study area). These plant species were previously classified as preferred and non-preferred. We found that deer preferred plants with low contents of Ca, Mg, K, P, S, Cu, Sr and Zn. The model obtained was greatly accurate identifying the preferred plant species (91.3% of correct assignments). After a detailed analysis of these minerals (considering deficiencies and toxicity levels both in preferred and non-preferred plants) we suggest that the avoidance of excessive sulphur in diet (i.e., selection for plants with low sulphur content) seems to override the maximization for other nutrients. Low sulphur content seems to be a forgotten factor with certain relevance for explaining diet selection in deer. Recent studies in livestock support this conclusion, which is highlighted here for the first time in diet selection by a wild large herbivore. Our results suggest that future studies should also take into account the toxicity levels of minerals as potential drivers of preferences. PMID:25615596

  2. Avoiding toxic levels of essential minerals: a forgotten factor in deer diet preferences.

    PubMed

    Ceacero, Francisco; Landete-Castillejos, Tomás; Olguín, Augusto; Miranda, María; García, Andrés; Martínez, Alberto; Cassinello, Jorge; Miguel, Valentín; Gallego, Laureano

    2015-01-01

    Ungulates select diets with high energy, protein, and sodium contents. However, it is scarcely known the influence of essential minerals other than Na in diet preferences. Moreover, almost no information is available about the possible influence of toxic levels of essential minerals on avoidance of certain plant species. The aim of this research was to test the relative importance of mineral content of plants in diet selection by red deer (Cervus elaphus) in an annual basis. We determined mineral, protein and ash content in 35 common Mediterranean plant species (the most common ones in the study area). These plant species were previously classified as preferred and non-preferred. We found that deer preferred plants with low contents of Ca, Mg, K, P, S, Cu, Sr and Zn. The model obtained was greatly accurate identifying the preferred plant species (91.3% of correct assignments). After a detailed analysis of these minerals (considering deficiencies and toxicity levels both in preferred and non-preferred plants) we suggest that the avoidance of excessive sulphur in diet (i.e., selection for plants with low sulphur content) seems to override the maximization for other nutrients. Low sulphur content seems to be a forgotten factor with certain relevance for explaining diet selection in deer. Recent studies in livestock support this conclusion, which is highlighted here for the first time in diet selection by a wild large herbivore. Our results suggest that future studies should also take into account the toxicity levels of minerals as potential drivers of preferences.

  3. Effect of enhanced UV-B radiation on pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demchik, S.M.; Day, T.A.

    Three experiments examined the influence of ultraviolet-B radiation (UV-B; 280-320 nm) exposure on reproduction in Brassica rapa (Brassicacaeae). Plants were grown in a greenhouse under three biologically effective UV-B levels that stimulated either an ambient stratospheric ozone level (control), 16% ({open_quotes}low enhanced{close_quotes}), or 32% ({open_quotes}high enhanced{close_quotes}) ozone depletion levels at Morgantown, WV, USA in mid-March. In the first experiment,pollen production and viability per flower were reduced by {approx}50% under both enhanced UV-B levels relative to ambient controls. While plants under high-enhanced UV-B produced over 40% more flowers than plants under the two lower UV-B treatments, whole-plant production of viable pollenmore » was reduced under low-enhanced UV-B to 34% of ambient controls. In the second experiment, the influence of source-plant UV-B exposure on in vitro pollen from plants was examined and whether source-plant UV-B exposure influenced in vitro pollen germination and viability. Pollen from plants under both enhanced-UV-B was reduced from 65 to 18%. Viability of the pollen from plants grown under both enhanced UV-B treatments was reduced to a much lesser extent: only from {approx}43 to 22%. Thus, ambient source-plant pollen was more sensitive to enhanced UV-B levels to fertilize plants growing under ambient-UV-B levels, and assessed subsequent seed production and germination. Seed abortion rates were higher in plants pollinated with pollen from the enhanced UV-B treatments, than from ambient UV-B. Despite this, seed yield (number and mass) per plant was similar, regardless of the UV-B exposure of their pollen source. Our findings demonstrate that enhanced UV-B levels associated with springtime ozone depletion events have the capacity to substantially reduce viable pollen production, and could ultimately reduce reproductive success of B. rapa. 37 refs., 4 figs., 2 tabs.« less

  4. Water stress, CO2 and photoperiod influence hormone levels in wheat

    NASA Technical Reports Server (NTRS)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  5. The Response of Plant Species to Low-Level trampling Stress on Hurricane Island, Maine

    Treesearch

    R.E. Leonard; P.W. Conkling; J.L. McMahon; J.L. McMahon

    1985-01-01

    In 1981, a study was initiated to measure the effects of low-level trampling (100 to 200 tramples) on selected vegetation on Hurricane Island, Maine. Low levels of trampling are representative of general recreational use patterns on most Maine islands. The study was designed to compare percent survival of common island species when subjected to low-level trampling, to...

  6. Genetic Considerations for the Restoration of Smooth Cordgrass (Spartina alterniflora) Within Its Native Range

    USGS Publications Warehouse

    Travis, Steven E.; Proffitt, C. Edward; Edwards, Keith R.

    2006-01-01

    In order to remain viable over many generations, plant populations require the ability to respond adaptively to a changing environment. Such adaptive potential is directly controlled by underlying genetic variation, which can be measured in terms of both heterozygosity at the individual level and clonal, or genotypic diversity at the population level. This report summarizes research relating to the importance of genetic diversity in the restoration of salt marsh smooth cordgrass, Spartina alterniflora, a dominant member of low elevation intertidal marshes throughout the northern Gulf of Mexico and Atlantic Coasts of North America. Recent research has indicated that S. alterniflora is a partially clonal species characterized by the recruitment of seedlings exclusively during the initial colonization phase of population establishment. A major consequence of this finding is that clonal diversity generally peaks rather early in the development of a restored marsh, depending on the rate of natural immigration and/or the clonal diversity of planting units, and then undergoes a steady decline over geological time spans because of stochastic mortality and intraspecific competition. Low levels of clonal diversity resulting from restricted immigration or clonally depauperate planting materials in turn places strict limits on opportunities for outcrossing in a species known to suffer from severe inbreeding depression. Low clonal diversity may further lead to declining levels of heterozyosity of individual clones, which directly affects competitive ability. In addition, the planting of genetically diverse plant materials should take into account the genetic and adaptive differentiation that takes place when plant populations are widely separated in space and/or dwell under varying sets of environmental conditions. Thus, steps should be taken to ensure that S. alterniflora clones developed for restorative plantings are both genetically diverse and sufficiently pre-adapted to environmental conditions at the proposed restoration site. This can be achieved by growing plant materials collected from local sources and by either taking care to maintain relatively high levels of clonal diversity or by planting clones at sufficiently low densities that they will not quickly grow to monopolize a restoration site without first producing several generations of sexual recruits through crosses with nearby native populations.

  7. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions.

    PubMed

    Nieves-Cordones, Manuel; Alemán, Fernando; Martínez, Vicente; Rubio, Francisco

    2010-03-01

    K(+) uptake in the high-affinity range of concentrations and its components have been widely studied. In Arabidposis thaliana, the AtHAK5 transporter and the AtAKT1 channel have been shown to be the main transport proteins involved in this process. Here, we study the role of these two systems under two important stress conditions: low K(+) supply or the presence of salinity. T-DNA insertion lines disrupting AtHAK5 and AtAKT1 are employed for long-term experiments that allow physiological characterization of the mutant lines. We found that AtHAK5 is required for K(+) absorption necessary to sustain plant growth at low K(+) in the absence as well as in the presence of salinity. Salinity greatly reduced AtHAK5 transcript levels and promoted AtAKT1-mediated K(+) efflux, resulting in an important impairment of K(+) nutrition. Although having a limited capacity, AtHAK5 plays a major role for K(+) acquisition from low K(+) concentrations in the presence of salinity.

  8. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.

    PubMed

    Kyne, Dean; Bolin, Bob

    2016-07-12

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  9. Dormancy and germination: How does the crop seed decide?

    PubMed

    Shu, K; Meng, Y J; Shuai, H W; Liu, W G; Du, J B; Liu, J; Yang, W Y

    2015-11-01

    Whether seeds germinate or maintain dormancy is decided upon through very intricate physiological processes. Correct timing of these processes is most important for the plants life cycle. If moist conditions are encountered, a low dormancy level causes pre-harvest sprouting in various crop species, such as wheat, corn and rice, this decreases crop yield and negatively impacts downstream industrial processing. In contrast, a deep level of seed dormancy prevents normal germination even under favourable conditions, resulting in a low emergence rate during agricultural production. Therefore, an optimal seed dormancy level is valuable for modern mechanised agricultural systems. Over the past several years, numerous studies have demonstrated that diverse endogenous and environmental factors regulate the balance between dormancy and germination, such as light, temperature, water status and bacteria in soil, and phytohormones such as ABA (abscisic acid) and GA (gibberellic acid). In this updated review, we highlight recent advances regarding the molecular mechanisms underlying regulation of seed dormancy and germination processes, including the external environmental and internal hormonal cues, and primarily focusing on the staple crop species. Furthermore, future challenges and research directions for developing a full understanding of crop seed dormancy and germination are also discussed. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  10. Calcium Deficiency Triggers Phloem Remobilization of Cadmium in a Hyperaccumulating Species1

    PubMed Central

    Tian, Shengke; Xie, Ruohan; Wang, Haixin; Hu, Yan; Ge, Jun; Liao, Xingcheng; Gao, Xiaoyu; Brown, Patrick; Lin, Xianyong; Lu, Lingli

    2016-01-01

    Understanding cadmium (Cd) accumulation in plants is critical for the development of plant-based strategies for soil remediation and crop safety. Sedum alfredii is a nonbrassica plant species known to hyperaccumulate Cd. The characteristics of Cd uptake, distribution, and retranslocation affected by the Ca status were investigated at cellular levels in S. alfredii. Low Ca supply significantly increased Cd contents in shoots of S. alfredii, particularly in the young leaves. Micro x-ray fluorescence images confirmed that sequestration of Cd was greatly enhanced in the young leaves under Ca deficiency stress, with a significant amount of Cd localized in mesophyll cells, compared to the young leaves supplied with high Ca levels. Cd influx into protoplasts isolated from young leaves was significantly inhibited by the addition of Ca channel inhibitors, but not by pre-exposure to Ca deficiency. In stems, the Cd signal in vascular systems under low Ca levels was 10-fold higher than in those treated with higher Ca levels. A detailed investigation of vascular bundles revealed that an extremely high Cd signal induced by low Ca supply occurred in the phloem tissues, but not in the xylem tissues. Transfer of Cd pretreated plants to nutrient solutions at different Ca levels confirmed that a much higher amount of Cd was reallocated to the new growth tissues under low Ca stress compared to plants supplied with sufficient Ca. These results suggest that Ca deficiency triggered a highly efficient phloem remobilization of Cd in S. alfredii and subsequently enhanced Cd accumulation in its young leaves. PMID:27789737

  11. Description of waste pretreatment and interfacing systems dynamic simulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggestedmore » average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.« less

  12. Polyamines: Bio-Molecules with diverse functions in plant and human health and disease

    NASA Astrophysics Data System (ADS)

    Handa, Avtar K.; Fatima, Tahira; Mattoo, Autar K.

    2018-02-01

    Biogenic amines – polyamines (PAs), particularly putrescine, spermidine and spermine (and thermospermine) are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants – exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources - vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and Yin, categories: beneficial for the physiological processes in healthy cells and detrimental under pathological conditions.

  13. Metabolite profiling during cold acclimation of Lolium perenne genotypes distinct in the level of frost tolerance.

    PubMed

    Bocian, Aleksandra; Zwierzykowski, Zbigniew; Rapacz, Marcin; Koczyk, Grzegorz; Ciesiołka, Danuta; Kosmala, Arkadiusz

    2015-11-01

    Abiotic stresses, including low temperature, can significantly reduce plant yielding. The knowledge on the molecular basis of stress tolerance could help to improve its level in species of relatively high importance to agriculture. Unfortunately, the complex research performed so far mainly on model species and also, to some extent, on cereals does not fully cover the demands of other agricultural plants of temperate climate, including forage grasses. Two Lolium perenne (perennial ryegrass) genotypes with contrasting levels of frost tolerance, the high frost tolerant (HFT) and the low frost tolerant (LFT) genotypes, were selected for comparative metabolomic research. The work focused on the analysis of leaf metabolite accumulation before and after seven separate time points of cold acclimation. Gas chromatography-mass spectrometry (GC/MS) was used to identify amino acids (alanine, proline, glycine, glutamic and aspartic acid, serine, lysine and asparagine), carbohydrates (fructose, glucose, sucrose, raffinose and trehalose) and their derivatives (mannitol, sorbitol and inositol) accumulated in leaves in low temperature. The observed differences in the level of frost tolerance between the analysed genotypes could be partially due to the time point of cold acclimation at which the accumulation level of crucial metabolite started to increase. In the HFT genotype, earlier accumulation was observed for proline and asparagine. The increased amounts of alanine, glutamic and aspartic acids, and asparagine during cold acclimation could be involved in the regulation of photosynthesis intensity in L. perenne. Among the analysed carbohydrates, only raffinose revealed a significant association with the acclimation process in this species.

  14. DNA methylome of the 20-gigabase Norway spruce genome

    PubMed Central

    Ausin, Israel; Feng, Suhua; Yu, Chaowei; Liu, Wanlu; Kuo, Hsuan Yu; Jacobsen, Elise L.; Zhai, Jixian; Gallego-Bartolome, Javier; Wang, Lin; Egertsdotter, Ulrika; Street, Nathaniel R.; Jacobsen, Steven E.; Wang, Haifeng

    2016-01-01

    DNA methylation plays important roles in many biological processes, such as silencing of transposable elements, imprinting, and regulating gene expression. Many studies of DNA methylation have shown its essential roles in angiosperms (flowering plants). However, few studies have examined the roles and patterns of DNA methylation in gymnosperms. Here, we present genome-wide high coverage single-base resolution methylation maps of Norway spruce (Picea abies) from both needles and somatic embryogenesis culture cells via whole genome bisulfite sequencing. On average, DNA methylation levels of CG and CHG of Norway spruce were higher than most other plants studied. CHH methylation was found at a relatively low level; however, at least one copy of most of the RNA-directed DNA methylation pathway genes was found in Norway spruce, and CHH methylation was correlated with levels of siRNAs. In comparison with needles, somatic embryogenesis culture cells that are used for clonally propagating spruce trees showed lower levels of CG and CHG methylation but higher level of CHH methylation, suggesting that like in other species, these culture cells show abnormal methylation patterns. PMID:27911846

  15. Process and apparatus for detecting presence of plant substances

    DOEpatents

    Kirby, John A.

    1991-01-01

    An apparatus and process for detecting the presence of plant substances in a particular environment which comprises the steps of: measuring the background K40 gamma ray radiation level in a particular environment with a 1.46 MeV gamma ray counter system; measuring the amount of K40 gamma ray radiation emanating from a package containing a plant substance being passed through an environment with a counter; and generating an alarm signal when the total K40 gamma ray radiation reaches a predetermined level over and above the background level.

  16. Spatial Patterns of Plant Litter and Sedimentation in a Tidal Freshwater Marsh and Implications for Marsh Persistence

    NASA Astrophysics Data System (ADS)

    Elmore, A. J.; Cadol, D. D.; Palinkas, C. M.; Engelhardt, K. A.

    2014-12-01

    The maintenance of marsh platform elevation under sea level rise is dependent on sedimentation and biomass conversion to soil organic material. These physical and biological processes interact within the tidal zone, resulting in elevation-dependent processes contributing to marsh accretion. Here we explore spatial pattern in plant litter, a variable related to productivity, to understand its role in physical and biological interactions in a freshwater marsh. Plant litter that persists through the dormant season has an extended period of influence on ecosystem processes. We conducted a field and remote sensing analysis of plant litter height, biomass, vertical cover, and stem density (collectively termed plant litter structure) at a tidal freshwater marsh located along the Potomac River estuary. We completed two years of repeat RTK GPS surveys with corresponding measurements of litter height (over 2000 observations) to train a non-parametric random forest decision tree to predict litter height. LiDAR and field observations show that plant litter height increases with increasing elevation, although important deviations from this relationship are apparent. These spatial patterns exhibit stability from year to year and lead to corresponding patterns in soil organic matter content, revealed by loss on ignition of surface sediments. The amount of mineral material embedded within plant litter decreases with increasing elevation, representing an important trade-off with litter structure. Therefore, at low elevations where litter structure is short and sparse, the role of plant litter is to capture sediment; at high elevations where litter structure is tall and dense, litter contributes organic matter to soil development. Despite these tradeoffs, changes in elevation over time are consistent across elevation, with only small positive differences in elevation gain over time at elevations where the most sediment is deposited or where litter exhibits the most biomass.

  17. Enhancement of acid phosphatase secretion and Pi acquisition in Suaeda fruticosa on calcareous soil by high saline level.

    PubMed

    Labidi, Nehla; Snoussi, Sana; Ammari, Manel; Metoui, Wissal; Ben Yousfi, N; Hamrouni, Lamia; Abdelly, C

    2010-12-01

    The aim of this study was to identify the relationship between the adaptive processes of Suaeda fruticosa for Pi acquisition and the physic-chemical and biological characteristics of two soil types under moderate and high saline conditions. Four treatments were established in pots: namely SS100, SS600, CS100 and CS600 where SS stood for sandy soil and CS for calcareous soil, and the indexes 100 and 600 were NaCl concentrations (mM) in irrigation distilled water. Assuming that Pi per g of plant biomass is an indicator of plant efficiency for P acquisition, the results showed that Pi acquisition was easiest on SS100 and was difficult on CS100. The differences in Pi acquisition between plants on SS100 and CS100 could be attributed to the low root surface area (-30%) and to the low alkaline phosphatases (Pases) activities (-50%) in calcareous rhizospheric soil. The high salinity level had no effect on the efficiency of P acquisition on SS but increased this parameter on CS (+50%). In the latter soil type, high acid phosphatase activities were observed in rhizospheric soil at high salinity level. Acid phosphatase seemed to be secreted from the roots. The higher secretion of acid phosphatase in this soil was related to the root lipid peroxidation in response to elevated salinity associated with the augmentation of unsaturated acids which might induce an oxidative damage of the root membrane. Thus we can conclude that in deficient soil such as calcareous, the efficiency of P acquisition in S. fruticosa which was difficult at moderate salinity level can be enhanced by high salinity level.

  18. Homeostasis of the temperature sensitivity of respiration over a range of growth temperatures indicated by a modified Arrhenius model.

    PubMed

    Noguchi, Ko; Yamori, Wataru; Hikosaka, Kouki; Terashima, Ichiro

    2015-07-01

    The temperature dependence of plant respiratory rate (R) changes in response to growth temperature. Here, we used a modified Arrhenius model incorporating the temperature dependence of activation energy (Eo ), and compared the temperature dependence of R between cold-sensitive and cold-tolerant species. We analyzed the temperature dependences of leaf CO2 efflux rate of plants cultivated at low (LT) or high temperature (HT). In plants grown at HT (HT plants), Eo at low measurement temperature varied among species, but Eo at growth temperature in HT plants did not vary and was comparable to that in plants grown at LT (LT plants), suggesting that the limiting process was similar at the respective growth temperatures. In LT plants, the integrated value of loge R, a measure of respiratory capacity, in cold-sensitive species was lower than that in cold-tolerant species. When plants were transferred from HT to LT, the respiratory capacity changed promptly after the transfer compared with the other parameters. These results suggest that a similar process limits R at different growth temperatures, and that the lower capacity of the respiratory system in cold-sensitive species may explain their low growth rate at LT. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  19. Physiological and Proteomics Analyses Reveal the Mechanism of Eichhornia crassipes Tolerance to High-Concentration Cadmium Stress Compared with Pistia stratiotes

    PubMed Central

    Yang, Yunqiang; Yang, Shihai; Sun, Xudong; Yang, Yongping

    2015-01-01

    Cadmium (Cd) pollution is an environmental problem worldwide. Phytoremediation is a convenient method of removing Cd from both soil and water, but its efficiency is still low, especially in aquatic environments. Scientists have been trying to improve the ability of plants to absorb and accumulate Cd based on interactions between plants and Cd, especially the mechanism by which plants resist Cd. Eichhornia crassipes and Pistia stratiotes are aquatic plants commonly used in the phytoremediation of heavy metals. In the present study, we conducted physiological and biochemical analyses to compare the resistance of these two species to Cd stress at 100 mg/L. E. crassipes showed stronger resistance and was therefore used for subsequent comparative proteomics to explore the potential mechanism of E. crassipes tolerance to Cd stress at the protein level. The expression patterns of proteins in different functional categories revealed that the physiological activities and metabolic processes of E. crassipes were affected by exposure to Cd stress. However, when some proteins related to these processes were negatively inhibited, some analogous proteins were induced to compensate for the corresponding functions. As a result, E. crassipes could maintain more stable physiological parameters than P. stratiotes. Many stress-resistance substances and proteins, such as proline and heat shock proteins (HSPs) and post translational modifications, were found to be involved in the protection and repair of functional proteins. In addition, antioxidant enzymes played important roles in ROS detoxification. These findings will facilitate further understanding of the potential mechanism of plant response to Cd stress at the protein level. PMID:25886466

  20. Distribution and prevalence of airborne microorganisms in three commercial poultry processing plants.

    PubMed

    Whyte, P; Collins, J D; McGill, K; Monahan, C; O'Mahony, H

    2001-03-01

    Airborne microbial contaminants and indicator organisms were monitored within three poultry processing plants (plants A, B, and C). In total, 15 cubic feet (c.f.) of air was sampled per location during 15 visits to each plant and quantitatively analyzed for total mesophilic and psychrophilic aerobic counts, thermophilic campylobacters, Escherichia coli, and Enterobacteriaceae. The prevalence of Salmonella spp. in air samples was also evaluated. Significant reductions in total aerobic counts were observed between defeathering and evisceration areas of the three plants (P < 0.05). Mesophilic plate counts were highest in the defeathering areas of all plants compared to equivalent psychrophilic plate counts. Enterobacteriaceae counts were highest in the defeathering areas of all three plants with counts of log10 1.63, 1.53, and 1.18 CFU/15 c.f. recovered in plants A, B, and C, respectively. E. coli enumerated from air samples in the defeathering areas exhibited a similar trend to those obtained for Enterobacteriaceae with log10 1.67, 1.58, and 1.18 CFU for plants A, B, and C, respectively. Thermophilic campylobacters were most frequently isolated from samples in the defeathering areas followed by the evisceration areas. The highest mean counts of the organism were observed in plant A at 21 CFU/15 c.f. sample with plants B and C at 9 and 8 CFU/sample, respectively. With the exception of low levels of Enterobacteriaceae recovered from samples in the on-line air chill in plant A, E. coli, Enterobacteriaceae, or Campylobacter spp. were not isolated from samples in postevisceration sites in any of the plants examined. Salmonella spp. were not recovered from any samples during the course of the investigation.

  1. UV-Induced cell death in plants.

    PubMed

    Nawkar, Ganesh M; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-14

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).

  2. UV-Induced Cell Death in Plants

    PubMed Central

    Nawkar, Ganesh M.; Maibam, Punyakishore; Park, Jung Hoon; Sahi, Vaidurya Pratap; Lee, Sang Yeol; Kang, Chang Ho

    2013-01-01

    Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400–700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280–320 nm) and UV-A (320–390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD). PMID:23344059

  3. The Robustness of Plant-Pollinator Assemblages: Linking Plant Interaction Patterns and Sensitivity to Pollinator Loss

    PubMed Central

    Astegiano, Julia; Massol, François; Vidal, Mariana Morais; Cheptou, Pierre-Olivier; Guimarães, Paulo R.

    2015-01-01

    Most flowering plants depend on pollinators to reproduce. Thus, evaluating the robustness of plant-pollinator assemblages to species loss is a major concern. How species interaction patterns are related to species sensitivity to partner loss may influence the robustness of plant-pollinator assemblages. In plants, both reproductive dependence on pollinators (breeding system) and dispersal ability may modulate plant sensitivity to pollinator loss. For instance, species with strong dependence (e.g. dioecious species) and low dispersal (e.g. seeds dispersed by gravity) may be the most sensitive to pollinator loss. We compared the interaction patterns of plants differing in dependence on pollinators and dispersal ability in a meta-dataset comprising 192 plant species from 13 plant-pollinator networks. In addition, network robustness was compared under different scenarios representing sequences of plant extinctions associated with plant sensitivity to pollinator loss. Species with different dependence on pollinators and dispersal ability showed similar levels of generalization. Although plants with low dispersal ability interacted with more generalized pollinators, low-dispersal plants with strong dependence on pollinators (i.e. the most sensitive to pollinator loss) interacted with more particular sets of pollinators (i.e. shared a low proportion of pollinators with other plants). Only two assemblages showed lower robustness under the scenario considering plant generalization, dependence on pollinators and dispersal ability than under the scenario where extinction sequences only depended on plant generalization (i.e. where higher generalization level was associated with lower probability of extinction). Overall, our results support the idea that species generalization and network topology may be good predictors of assemblage robustness to species loss, independently of plant dispersal ability and breeding system. In contrast, since ecological specialization among partners may increase the probability of disruption of interactions, the fact that the plants most sensitive to pollinator loss interacted with more particular pollinator assemblages suggest that the persistence of these plants and their pollinators might be highly compromised. PMID:25646762

  4. Iso standardization of theoretical activity evaluation method for low and intermediate level activated waste generated at nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makoto Kashiwagi; Garamszeghy, Mike; Lantes, Bertrand

    Disposal of low-and intermediate-level activated waste generated at nuclear power plants is being planned or carried out in many countries. The radioactivity concentrations and/or total quantities of long-lived, difficult-to-measure nuclides (DTM nuclides), such as C-14, Ni-63, Nb-94, α emitting nuclides etc., are often restricted by the safety case for a final repository as determined by each country's safety regulations, and these concentrations or amounts are required to be known and declared. With respect to waste contaminated by contact with process water, the Scaling Factor method (SF method), which is empirically based on sampling and analysis data, has been applied asmore » an important method for determining concentrations of DTM nuclides. This method was standardized by the International Organization for Standardization (ISO) and published in 2007 as ISO21238 'Scaling factor method to determine the radioactivity of low and intermediate-level radioactive waste packages generated at nuclear power plants' [1]. However, for activated metal waste with comparatively high concentrations of radioactivity, such as may be found in reactor control rods and internal structures, direct sampling and radiochemical analysis methods to evaluate the DTM nuclides are limited by access to the material and potentially high personnel radiation exposure. In this case, theoretical calculation methods in combination with empirical methods based on remote radiation surveys need to be used to best advantage for determining the disposal inventory of DTM nuclides while minimizing exposure to radiation workers. Pursuant to this objective a standard for the theoretical evaluation of the radioactivity concentration of DTM nuclides in activated waste, is in process through ISO TC85/SC5 (ISO Technical Committee 85: Nuclear energy, nuclear technologies, and radiological protection; Subcommittee 5: Nuclear fuel cycle). The project team for this ISO standard was formed in 2011 and is composed of experts from 11 countries. The project team has been conducting technical discussions on theoretical methods for determining concentrations of radioactivity, and has developed the draft International Standard of ISO16966 'Theoretical activation calculation method to evaluate the radioactivity of activated waste generated at nuclear reactors' [2]. This paper describes the international standardization process developed by the ISO project team, and outlines the following two theoretical activity evaluation methods:? Point method? Range method. (authors)« less

  5. Effects of site preparation and release on the survival and growth of planted bare-root and container-grown longleaf pine

    Treesearch

    William D. Boyer

    1988-01-01

    Survival and grow of these plantings were observed for 3 years on a variety of coatal plain sites in Georgia.Treatments included high and low levels of pre-planting site preparation, with and without post-planting release with a herbicide. After 3 years, survival was much better for container (79%) than for bare-root (52%) stock. Survival was better with the high level...

  6. Numerical research on the effects the skyglow could have in phytochromes and RQE photoreceptors of plants.

    PubMed

    Solano-Lamphar, H A; Kocifaj, M

    2018-03-01

    The increase of artificial light at night has a terrible impact on organisms with nightlife patterns such as a migration, nutrition, reproduction and collective interaction. Plants are not free from this issue as they have life cycle events occurring not only yearly but also daily. Such events relate to daytime variations with seasons in which the flowers of deciduous trees bloom and the leaves of certain trees fall off and change color. A response of plants to artificial light at night still remains poorly quantified; but recent scientific research suggest that skyglow can disturb plants processes. For instance, low levels of light affect deciduous plants, which shed their leaves as days grow short in the fall. In this paper we model skyglow considering the features of artificial light that can affect natural processes of plants during the night. A case-study was conducted to mimic skyglow effects in real location for which experimental data exist. In our numerical simulations we found that some lighting systems can have an effect on plant photoreceptors and affect the phenology of plants. Specifically, the lamps that emit the electromagnetic energy in a wide spectral range can have greater effect on the photosensitivity of the plants. We believe the results obtained here will motivate botanists to make a targeted experiment to verify or challenge our findings. If the night light can change plant behavior under some conditions, it can have significant implications in botany, biology, or even agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects.

    PubMed

    Wang, Lei; Baskin, Jerry M; Baskin, Carol C; Cornelissen, J Hans C; Dong, Ming; Huang, Zhenying

    2012-09-25

    Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration.

  8. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects

    PubMed Central

    2012-01-01

    Background Maternal effects may influence a range of seed traits simultaneously and are likely to be context-dependent. Disentangling the interactions of plant phenotype and growth environment on various seed traits is important for understanding regeneration and establishment of species in natural environments. Here, we used the seed-dimorphic plant Suaeda aralocaspica to test the hypothesis that seed traits are regulated by multiple maternal effects. Results Plants grown from brown seeds had a higher brown:black seed ratio than plants from black seeds, and germination percentage of brown seeds was higher than that of black seeds under all conditions tested. However, the coefficient of variation (CV) for size of black seeds was higher than that of brown seeds. Seeds had the smallest CV at low nutrient and high salinity for plants from brown seeds and at low nutrient and low salinity for plants from black seeds. Low levels of nutrients increased size and germinability of black seeds but did not change the seed morph ratio or size and germinability of brown seeds. High levels of salinity decreased seed size but did not change the seed morph ratio. Seeds from high-salinity maternal plants had a higher germination percentage regardless of level of germination salinity. Conclusions Our study supports the multiple maternal effects hypothesis. Seed dimorphism, nutrient and salinity interacted in determining a range of seed traits of S. aralocaspica via bet-hedging and anticipatory maternal effects. This study highlights the importance of examining different maternal factors and various offspring traits in studies that estimate maternal effects on regeneration. PMID:23006315

  9. Acclimation improves salt stress tolerance in Zea mays plants.

    PubMed

    Pandolfi, Camilla; Azzarello, Elisa; Mancuso, Stefano; Shabala, Sergey

    2016-08-20

    Plants exposure to low level salinity activates an array of processes leading to an improvement of plant stress tolerance. Although the beneficial effect of acclimation was demonstrated in many herbaceous species, underlying mechanisms behind this phenomenon remain poorly understood. In the present study we have addressed this issue by investigating ionic mechanisms underlying the process of plant acclimation to salinity stress in Zea mays. Effect of acclimation were examined in two parallel sets of experiments: a growth experiment for agronomic assessments, sap analysis, stomatal conductance, chlorophyll content, and confocal laser scanning imaging; and a lab experiment for in vivo ion flux measurements from root tissues. Being exposed to salinity, acclimated plants (1) retain more K(+) but accumulate less Na(+) in roots; (2) have better vacuolar Na(+) sequestration ability in leaves and thus are capable of accumulating larger amounts of Na(+) in the shoot without having any detrimental effect on leaf photochemistry; and (3) rely more on Na(+) for osmotic adjustment in the shoot. At the same time, acclimation affect was not related in increased root Na(+) exclusion ability. It appears that even in a such salt-sensitive species as maize, Na(+) exclusion from uptake is of a much less importance compared with the efficient vacuolar Na(+) sequestration in the shoot. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Changes in community-level riparian plant traits over inundation gradients, Colorado River, Grand Canyon

    USGS Publications Warehouse

    McCoy-Sulentic, Miles; Kolb, Thomas; Merritt, David; Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel; Shafroth, Patrick B.

    2017-01-01

    Comparisons of community-level functional traits across environmental gradients have potential for identifying links among plant characteristics, adaptations to stress and disturbance, and community assembly. We investigated community-level variation in specific leaf area (SLA), plant mature height, seed mass, stem specific gravity (SSG), relative cover of C4 species, and total plant cover over hydrologic zones and gradients in years 2013 and 2014 in the riparian plant community along the Colorado River in the Grand Canyon. Vegetation cover was lowest in the frequently inundated active channel zone, indicating constraints on plant establishment and production by flood disturbance and anaerobic stress. Changes in trait values over hydrologic zones and inundation gradients indicate that frequently inundated plots exhibit a community-level ruderal strategy with adaptation to submergence (high SLA and low SSG, height, seed mass, C4 relative cover), whereas less frequently inundated plots exhibit adaptation to drought and infrequent flood disturbance (low SLA and high SSG, height, seed mass, C4 relative cover). Variation in traits not associated with inundation suggests niche differentiation and multiple modes of community assembly. The results enhance understanding of future responses of riparian communities of the Grand Canyon to anticipated drying and changes in hydrologic regime.

  11. A simple nonnative plant indicator (NNPI) for describing ...

    EPA Pesticide Factsheets

    Background/Question/Methods: Nonnative plants (NNP) are recognized indicators of disturbance to wetlands and other ecosystems, and often are direct stressors competing with native plant species and communities, or altering ecosystem processes. NNP species frequently co-occur and their interactions may have synergistic effects on environmental conditions, native vegetation, and other NNP taxa. We devised a Nonnative Plant Indicator (NNPI) to reflect biological stress from all NNP occurring at particular locations. The NNPI includes three metrics (richness, relative frequency, and relative cover of NNP), which describe different pathways of potential impact. In 2011, the United States (US) Environmental Protection Agency and its partners conducted the first National Wetland Condition Assessment (NWCA), using a survey design permitting extrapolation of results to wetland populations at national and regional scales. Plant species identity and abundance data were collected at 967 probability sites distributed across the conterminous US. We used these data to calculate the component NNPI metrics and then designate a categorical NNPI stressor-level (low, moderate, high, and very high) for each site based on defined thresholds for each metric. Using the R package 'spsurvey', wetland area occurring in each NNPI stressor-level category was estimated for the conterminous US, five large ecoregions, and four broad wetland types. Results/Conclusions: Our results are applicabl

  12. Nutritional update for physicians: plant-based diets.

    PubMed

    Tuso, Philip J; Ismail, Mohamed H; Ha, Benjamin P; Bartolotto, Carole

    2013-01-01

    The objective of this article is to present to physicians an update on plant-based diets. Concerns about the rising cost of health care are being voiced nationwide, even as unhealthy lifestyles are contributing to the spread of obesity, diabetes, and cardiovascular disease. For these reasons, physicians looking for cost-effective interventions to improve health outcomes are becoming more involved in helping their patients adopt healthier lifestyles. Healthy eating may be best achieved with a plant-based diet, which we define as a regimen that encourages whole, plant-based foods and discourages meats, dairy products, and eggs as well as all refined and processed foods. We present a case study as an example of the potential health benefits of such a diet. Research shows that plant-based diets are cost-effective, low-risk interventions that may lower body mass index, blood pressure, HbA1C, and cholesterol levels. They may also reduce the number of medications needed to treat chronic diseases and lower ischemic heart disease mortality rates. Physicians should consider recommending a plant-based diet to all their patients, especially those with high blood pressure, diabetes, cardiovascular disease, or obesity.

  13. Model evaluation of temperature dependency for carbon and nitrogen removal in a full-scale activated sludge plant treating leather-tanning wastewater.

    PubMed

    Görgün, Erdem; Insel, Güçlü; Artan, Nazik; Orhon, Derin

    2007-05-01

    Organic carbon and nitrogen removal performance of a full-scale activated sludge plant treating pre-settled leather tanning wastewater was evaluated under dynamic process temperatures. Emphasis was placed upon observed nitrogen removal depicting a highly variable magnitude with changing process temperatures. As the plant was not specifically designed for this purpose, observed nitrogen removal could be largely attributed to simultaneous nitrification and denitrification presumably occurring at increased process temperatures (T>25 degrees C) and resulting low dissolved oxygen levels (DO<0.5 mgO2/L). Model evaluation using long-term data revealed that the yearly performance of activated sludge reactor could be successfully calibrated by means of temperature dependent parameters associated with nitrification, hydrolysis, ammonification and endogenous decay parameters. In this context, the Arrhenius coefficients of (i) for the maximum autotrophic growth rate, [image omitted]A, (ii) maximum hydrolysis rate, khs and (iii) endogenous heterotrophic decay rate, bH were found to be 1.045, 1.070 and 1.035, respectively. The ammonification rate (ka) defining the degradation of soluble organic nitrogen could not be characterized however via an Arrhenius-type equation.

  14. A novel process for low-sulfur biodiesel production from scum waste.

    PubMed

    Ma, Huan; Addy, Min M; Anderson, Erik; Liu, Weiwei; Liu, Yuhuan; Nie, Yong; Chen, Paul; Cheng, Beijiu; Lei, Hanwu; Ruan, Roger

    2016-08-01

    Scum is an oil-rich waste from the wastewater treatment plants with a high-sulfur level. In this work, a novel process was developed to convert scum to high quality and low sulfur content biodiesel. A combination of solvent extraction and acid washing as pretreatment was developed to lower the sulfur content in the scum feedstock and hence improve biodiesel conversion yield and quality. Glycerin esterification was then employed to convert free fatty acids to glycerides. Moreover, a new distillation process integrating the traditional reflux distillation and adsorptive desulfurization was developed to further remove sulfur from the crude biodiesel. As a result, 70% of the filtered and dried scum was converted to biodiesel with sulfur content lower than 15ppm. The fatty acid methyl ester profiles showed that the refined biodiesel from the new process exhibited a higher quality and better properties than that from traditional process reported in previous studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Contamination of salmon fillets and processing plants with spoilage bacteria.

    PubMed

    Møretrø, Trond; Moen, Birgitte; Heir, Even; Hansen, Anlaug Å; Langsrud, Solveig

    2016-11-21

    The processing environment of salmon processing plants represents a potential major source of bacteria causing spoilage of fresh salmon. In this study, we have identified major contamination routes of important spoilage associated species within the genera Pseudomonas, Shewanella and Photobacterium in pre-rigor processing of salmon. Bacterial counts and culture-independent 16S rRNA gene analysis on salmon fillet from seven processing plants showed higher levels of Pseudomonas spp. and Shewanella spp. in industrially processed fillets compared to salmon processed under strict hygienic conditions. Higher levels of Pseudomonas spp. and Shewanella spp. were found on fillets produced early on the production day compared to later processed fillets. The levels of Photobacterium spp. were not dependent on the processing method or time of processing. In follow-up studies of two plants, bacterial isolates (n=2101) from the in-plant processing environments (sanitized equipment/machines and seawater) and from salmon collected at different sites in the production were identified by partial 16S rRNA gene sequencing. Pseudomonas spp. dominated in equipment/machines after sanitation with 72 and 91% of samples from the two plants being Pseudomonas-positive. The phylogenetic analyses, based on partial 16S rRNA gene sequencing, showed 48 unique sequence profiles of Pseudomonas of which two were dominant. Only six profiles were found on both machines and in fillets in both plants. Shewanella spp. were found on machines after sanitation in the slaughter department while Photobacterium spp. were not detected after sanitation in any parts of the plants. Shewanella spp. and Photobacterium spp. were found on salmon in the slaughter departments. Shewanella was frequently present in seawater tanks used for bleeding/short term storage. In conclusion, this study provides new knowledge on the processing environment as a source of contamination of salmon fillets with Pseudomonas spp. and Shewanella spp., while Photobacterium spp. most likely originate from the live fish and seawater. The study show that strict hygiene during processing is a prerequisite for optimal shelf life of salmon fillets and that about 90% reductions in the initial levels of bacteria on salmon fillets can be obtained using optimal hygienic conditions. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Microchannel Reactor System for Catalytic Hydrogenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeniyi Lawal; Woo Lee; Ron Besser

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less

  17. Effects of plant diversity on microbial nitrogen and phosphorus dynamics in soil

    NASA Astrophysics Data System (ADS)

    Prommer, Judith; Braun, Judith; Daly, Amanda; Gorka, Stefan; Hu, Yuntao; Kaiser, Christina; Martin, Victoria; Meyerhofer, Werner; Walker, Tom W. N.; Wanek, Wolfgang; Wasner, Daniel; Wiesenbauer, Julia; Zezula, David; Zheng, Qing; Richter, Andreas

    2017-04-01

    There is a general consensus that plant diversity affects many ecosystem functions. One example of such an effect is the enhanced aboveground and belowground plant biomass production with increasing species richness, with implications for carbon and nutrient distribution in soil. The Jena Experiment (http://www.the-jena-experiment.de/), a grassland biodiversity experiment established in 2002 in Germany, comprises different levels of plant species richness and different numbers of plant functional groups. It provides the opportunity to examine how changes in biodiversity impact on microbially-mediated nutrient cycling processes. We here report on plant diversity and plant functional composition effects on growth and nitrogen and phosphorus transformation rates, including nitrogen use efficiency, of microbial communities. Microbial growth rates and microbial biomass were positively affected by increasing plant species richness. Amino acid and ammonium concentrations in soil were also positively affected by plant species richness, while phosphate concentrations in contrast were negatively affected. The cycling of organic N in soils (estimated as gross protein depolymerization rates) increased about threefold with plant diversity, while gross N and P mineralization were not significantly affected by either species or functional richness. Microbial nitrogen use efficiency did not respond to different levels of plant diversity but was very high (0.96 and 0.98) across all levels of plant species richness, demonstrating a low N availability for microbes. Taken together this indicates that soil microbial communities were able to meet the well-documented increase in plant N content with species richness, and also the higher N demand of the microbial community by increasing the recycling of organic N such as proteins. In fact, the microbial community even overcompensated the increased plant and microbial N demand, as evidenced by increased levels of free amino acids and ammonium in the soil solution at higher species richness. A possible explanation for increased organic nitrogen transformation rates is the increased microbial biomass, which has previously been related to higher quantity and variety of plant derived compounds that are available to the microbial communities at higher plant diversity. Given that this explanation is right, it is interesting to note that the additional (plant-derived) microbial biomass at higher species richness, did not translate in higher soil P mineralization rates or phosphate availability.

  18. Fuel alcohol production from agricultural lignocellulosic feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, G.E.; Barrier, J.W.; Forsythe, M.L.

    1988-01-01

    A two-stage, low-temperature, ambient pressure, acid hydrolysis process that utilizes separate unit operations to convert hemicellulose and cellulose in agricultural residues and crops to fermentable sugars is being developed and tested. Based on the results of the bench-scale tests, an acid hydrolysis experimental plant to demonstrate the concepts of low-temperature acid hydrolysis on a much larger scale was built. Plant tests using corn stover have been conducted for more that a year and conversion efficiences have equaled those achieved in the laboratory. Laboratory tests to determine the potential for low-temperature acid hydrolysis of other feedstocks - including red clover, alfalfa,more » kobe lespedeza, winter rape, and rye grass - are being conducted. Where applicable, process modifications to include extraction before or after hydrolysis also are being studied. This paper describes the experimental plant and process, results obtained in the plant, results of alternative feedstocks testing in the laboratory, and a plan for an integrated system that will produce other fuels, feed, and food from crops grown on marginal land.« less

  19. Highly specific gene silencing in a monocot species by artificial microRNAs derived from chimeric miRNA precursors

    DOE PAGES

    Carbonell, Alberto; Fahlgren, Noah; Mitchell, Skyler; ...

    2015-05-20

    Artificial microRNAs (amiRNAs) are used for selective gene silencing in plants. However, current methods to produce amiRNA constructs for silencing transcripts in monocot species are not suitable for simple, cost-effective and large-scale synthesis. Here, a series of expression vectors based on Oryza sativa MIR390 (OsMIR390) precursor was developed for high-throughput cloning and high expression of amiRNAs in monocots. Four different amiRNA sequences designed to target specifically endogenous genes and expressed from OsMIR390-based vectors were validated in transgenic Brachypodium distachyon plants. Surprisingly, amiRNAs accumulated to higher levels and were processed more accurately when expressed from chimeric OsMIR390-based precursors that include distalmore » stem-loop sequences from Arabidopsis thaliana MIR390a (AtMIR390a). In all cases, transgenic plants displayed the predicted phenotypes induced by target gene repression, and accumulated high levels of amiRNAs and low levels of the corresponding target transcripts. Genome-wide transcriptome profiling combined with 5-RLM-RACE analysis in transgenic plants confirmed that amiRNAs were highly specific. Finally, significance Statement A series of amiRNA vectors based on Oryza sativa MIR390 (OsMIR390) precursor were developed for simple, cost-effective and large-scale synthesis of amiRNA constructs to silence genes in monocots. Unexpectedly, amiRNAs produced from chimeric OsMIR390-based precursors including Arabidopsis thaliana MIR390a distal stem-loop sequences accumulated elevated levels of highly effective and specific amiRNAs in transgenic Brachypodium distachyon plants.« less

  20. Whole genome-wide transcript profiling to identify differentially expressed genes associated with seed field emergence in two soybean low phytate mutants.

    PubMed

    Yuan, Fengjie; Yu, Xiaomin; Dong, Dekun; Yang, Qinghua; Fu, Xujun; Zhu, Shenlong; Zhu, Danhua

    2017-01-18

    Seed germination is important to soybean (Glycine max) growth and development, ultimately affecting soybean yield. A lower seed field emergence has been the main hindrance for breeding soybeans low in phytate. Although this reduction could be overcome by additional breeding and selection, the mechanisms of seed germination in different low phytate mutants remain unknown. In this study, we performed a comparative transcript analysis of two low phytate soybean mutants (TW-1 and TW-1-M), which have the same mutation, a 2 bp deletion in GmMIPS1, but show a significant difference in seed field emergence, TW-1-M was higher than that of TW-1 . Numerous genes analyzed by RNA-Seq showed markedly different expression levels between TW-1-M and TW-1 mutants. Approximately 30,000-35,000 read-mapped genes and ~21000-25000 expressed genes were identified for each library. There were ~3900-9200 differentially expressed genes (DEGs) in each contrast library, the number of up-regulated genes was similar with down-regulated genes in the mutant TW-1and TW-1-M. Gene ontology functional categories of DEGs indicated that the ethylene-mediated signaling pathway, the abscisic acid-mediated signaling pathway, response to hormone, ethylene biosynthetic process, ethylene metabolic process, regulation of hormone levels, and oxidation-reduction process, regulation of flavonoid biosynthetic process and regulation of abscisic acid-activated signaling pathway had high correlations with seed germination. In total, 2457 DEGs involved in the above functional categories were identified. Twenty-two genes with 20 biological functions were the most highly up/down- regulated (absolute value Log2FC >5) in the high field emergence mutant TW-1-M and were related to metabolic or signaling pathways. Fifty-seven genes with 36 biological functions had the greatest expression abundance (FRPM >100) in germination-related pathways. Seed germination in the soybean low phytate mutants is a very complex process, which involves a series of physiological, morphological and transcriptional changes. Compared with TW-1, TW-1-M had a very different gene expression profile, which included genes related to plant hormones, antioxidation, anti-stress and energy metabolism processes. Our research provides a molecular basis for understanding germination mechanisms, and is also an important resource for the genetic analysis of germination in low phytate crops. Plant hormone- and antioxidation-related genes might strongly contribute to the high germination rate in the TW-1-M mutant.

  1. Assessment of nutrient remobilization through structural changes of palisade and spongy parenchyma in oilseed rape leaves during senescence.

    PubMed

    Sorin, Clément; Musse, Maja; Mariette, François; Bouchereau, Alain; Leport, Laurent

    2015-02-01

    Differential palisade and spongy parenchyma structural changes in oilseed rape leaf were demonstrated. These dismantling processes were linked to early senescence events and associated to remobilization processes. During leaf senescence, an ordered cell dismantling process allows efficient nutrient remobilization. However, in Brassica napus plants, an important amount of nitrogen (N) in fallen leaves is associated with low N remobilization efficiency (NRE). The leaf is a complex organ mainly constituted of palisade and spongy parenchyma characterized by different structures and functions concerning water relations and carbon fixation. The aim of the present study was to demonstrate a specific structural evolution of these parenchyma throughout natural senescence in B. napus, probably linked to differential nutrient remobilization processes. The study was performed on 340 leaves from 32 plants during an 8-week development period under controlled growing conditions. Water distribution and status at the cellular level were investigated by low-field proton nuclear magnetic resonance (NMR), while light and electron microscopy were used to observe cell and plast structure. Physiological parameters were determined on all leaves studied and used as indicators of leaf development and remobilization progress. The results revealed a process of hydration and cell enlargement of leaf tissues associated with senescence. Wide variations were observed in the palisade parenchyma while spongy cells changed only very slightly. The major new functional information revealed was the link between the early senescence events and specific tissue dismantling processes.

  2. Bio-effectors from waste materials as growth promoters, an agronomic and metabolomic study

    NASA Astrophysics Data System (ADS)

    Alwanney, Deaa; Chami, Ziad Al; Angelica De Pascali, Sandra; Cavoski, Ivana; Fanizzi, Francesco Paolo

    2014-05-01

    Nowadays, improving plant performance by providing growth promoters is a main concern of the organic agriculture. As a consequence of increased food demands, more efficient and alternatives of the current plant nutrition strategies are becoming urgent. Recently, a novel concept "bio-effectors" raised on to describe a group of products that are able to improve plant performance and do not belong to fertilizers or pesticides. Agro-Food processing residues are promising materials as bio-effector. Three plant-derived materials: brewers' spent grain (BSG), fennel processing residues (FPR) and lemon processing residues (LPR) were chosen as bio-effector candidates. Plant-derived materials were characterized in term of total macro and micronutrients content. Green extraction methodology and solvent choice (aqueous; ethanol; and aqueous: ethanol mixture 1:1) was based on the extraction yield as main factor. Optimum extracts, to be used on the tomato test plant, were determined using phytotoxicity test (seed germination test) as main constraint. Thereafter, selected extracts were characterized and secondary metabolites profiling were detected by NMR technique. Selected extracts were applied on tomato in a growth chamber at different doses in comparison to humic-like substances as positive control (Ctrl+) and to a Hoagland solution as negative control (Ctrl-). At the end of the experiment, agronomical parameters were determined and NMR-metabolomic profiling were conducted on tomato seedlings. Results are summarized as follow: (i) raw showed an interesting content, either at nutritional or biological level; (ii) aqueous extraction resulted higher yield than other used solvent; (iii) at high extraction ratio (1:25 for BSG; 1:100 for FPR; and 1:200 for LPR) aqueous extracts were not phytotoxic on the tomato test plant; (iv) all aqueous extract are differently rich in nutrients, aminoacids, sugars and low molecular weight molecules; (v) all extract exhibited a growth promotion at low application doses; (vi) regarding plant metabolomics study, all treatments showed a different metabolites in respect to Ctrl- treatment. BSG, LPR and Ctrl+ treatments had similar metabolic profile. Finally, Metabolomic study provided an efficient tool and a key reporter about bio-effectors impact on plants. The visible effect and measured agronomical parameters was emphasized and demonstrated by metabolic profiling which offer insights into the affected plant metabolic pathways. As conclusion, our results supported the prediction that plant derived materials may interfere again in plant production regardless their nutritional content. Keywords: Bio-effectors; Metabolomics; Nuclear Magnetic Resonance (NMR); Barley; Fennel; Lemon; Tomato.

  3. Structural Changes in Senescing Oilseed Rape Leaves at Tissue and Subcellular Levels Monitored by Nuclear Magnetic Resonance Relaxometry through Water Status

    PubMed Central

    Musse, Maja; De Franceschi, Loriane; Cambert, Mireille; Sorin, Clément; Le Caherec, Françoise; Burel, Agnès; Bouchereau, Alain; Mariette, François; Leport, Laurent

    2013-01-01

    Nitrogen use efficiency is relatively low in oilseed rape (Brassica napus) due to weak nitrogen remobilization during leaf senescence. Monitoring the kinetics of water distribution associated with the reorganization of cell structures, therefore, would be valuable to improve the characterization of nutrient recycling in leaf tissues and the associated senescence processes. In this study, nuclear magnetic resonance (NMR) relaxometry was used to describe water distribution and status at the cellular level in different leaf ranks of well-watered plants. It was shown to be able to detect slight variations in the evolution of senescence. The NMR results were linked to physiological characterization of the leaves and to light and electron micrographs. A relationship between cell hydration and leaf senescence was revealed and associated with changes in the NMR signal. The relative intensities and the transverse relaxation times of the NMR signal components associated with vacuole water were positively correlated with senescence, describing water uptake and vacuole and cell enlargement. Moreover, the relative intensity of the NMR signal that we assigned to the chloroplast water decreased during the senescence process, in agreement with the decrease in relative chloroplast volume estimated from micrographs. The results are discussed on the basis of water flux occurring at the cellular level during senescence. One of the main applications of this study would be for plant phenotyping, especially for plants under environmental stress such as nitrogen starvation. PMID:23903438

  4. PLANT - An experimental task for the study of human problem solving in process control. [Production Levels and Network Troubleshooting

    NASA Technical Reports Server (NTRS)

    Morris, N. M.; Rouse, W. B.; Fath, J. L.

    1985-01-01

    An experimental tool for the investigation of human problem-solving behavior is introduced. Production Levels and Network Troubleshooting (PLANT) is a computer-based process-control task which may be used to provide opportunities for subjects to control a dynamic system and diagnose, repair, and compensate for system failures. The task is described in detail, and experiments which have been conducted using PLANT are briefly discussed.

  5. Allelopathic effects of glucosinolate breakdown products in Hanza [Boscia senegalensis (Pers.) Lam.] processing waste water

    PubMed Central

    Rivera-Vega, Loren J.; Krosse, Sebastian; de Graaf, Rob M.; Garvi, Josef; Garvi-Bode, Renate D.; van Dam, Nicole M.

    2015-01-01

    Boscia senegalensis is a drought resistant shrub whose seeds are used in West Africa as food. However, the seeds, or hanza, taste bitter which can be cured by soaking them in water for 4–7 days. The waste water resulting from the processing takes up the bitter taste, which makes it unsuitable for consumption. When used for irrigation, allelopathic effects were observed. Glucosinolates and their breakdown products are the potential causes for both the bitter taste and the allelopathic effects. The objectives of this study are to identify and quantify the glucosinolates present in processed and unprocessed hanza as well as different organs of B. senegalensis, to analyze the chemical composition of the processing water, and to pinpoint the causal agent for the allelopathic properties of the waste water. Hanza (seeds without testa), leaves, branches, unripe, and ripe fruits were collected in three populations and subjected to glucosinolate analyses. Methylglucosinolates (MeGSL) were identified in all plant parts and populations, with the highest concentrations being found in the hanza. The levels of MeGSLs in the hanza reduced significantly during the soaking process. Waste water was collected for 6 days and contained large amounts of macro- and micronutrients, MeGSL as well as methylisothiocyanate (MeITC), resulting from the conversion of glucosinolates. Waste water from days 1–3 (High) and 4–6 (Low) was pooled and used to water seeds from 11 different crops to weeds. The High treatment significantly delayed or reduced germination of all the plant species tested. Using similar levels of MeITC as detected in the waste water, we found that germination of a subset of the plant species was inhibited equally to the waste water treatments. This confirmed that the levels of methylisiothiocyanate in the waste water were sufficient to cause the allelopathic effect. This leads to the possibility of using hanza waste water in weed control programs. PMID:26236325

  6. Optimization of color and antioxidant activity of peach and nectarine puree: scale-up study from pilot to industrial plant.

    PubMed

    Lavelli, Vera; Pompei, Carlo; Casadei, Maria Aurelia

    2008-08-27

    The effects of an innovative process for the manufacture of peach and nectarine purees on the main quality indices, namely, color, consistency, carotenoid and phenolic content, and antioxidant activity, were studied using a peach cultivar that is optimal for nectar processing (cv. Redhaven) and peach and nectarine varieties that undergo a faster browning degradation. The innovative process, operating the pulping/finishing step at room temperature, was compared to the traditional process of hot pulping/finishing. The study comprised initial trials on a pilot plant scale and scaling up to industrial production of the puree and nectar. The quality of products was analyzed at the time of production and as a function of storage of both the puree and the nectar. With respect to the traditional process, the new process, scaled up to industrial levels, improved the color of peach and nectarine products (by increasing the L* value and decreasing the a* value), whatever the variety studied; maintained almost the same levels of carotenoids, hydroxycinnamates, flavan-3-ols, and flavonols; and reduced the level of cyanidin 3-O-glucoside. The presence of cyanidin 3-O-glucoside was correlated to an unstable and undesirable red hue of the products (even if its concentration was very low in all products), and the decreased level obtained by the innovative process was considered to be positive. On the basis of these results, new technology can be proposed for the processing of fruit varieties that are not suitable for puree production using traditional technology. This opens up two possibilities: (a) utilization of fresh market fruit surplus and (b) processing of selected fruit varieties that are rich in antioxidants but have a high browning potential, such as the Stark Red Gold nectarine. Furthermore, as the positive impact of the new technology is optimal at the beginning of storage, it is particularly suitable for fruit-based products with a short shelf life.

  7. Introduction of low-temperature swirl technology of burning as a way of increase in ecological of low power boilers

    NASA Astrophysics Data System (ADS)

    Trinchenko, A. A.; Paramonov, A. P.

    2017-10-01

    Work is devoted to the solution of problems of energy efficiency increase in low power boilers at combustion of solid fuel. The technological method of nitrogen oxides decomposition on a surface of carbon particles with education environmentally friendly carbonic acid and molecular nitrogen is considered during the work of a low-temperature swirl fire chamber. Based on the analysis of physical and chemical processes of a fuel chemically connected energy transition into thermal, using the diffusive and kinetic theory of burning modern approaches the technique, mathematical model and the settlement program for assessment of plant ecological indicators when using a new method are developed. Alternative calculations of furnace process are carried out, quantitative assessment of nitrogen oxides emissions level of the reconstructed boiler is executed. The results of modeling and experimental data have approved that the organization of swirl burning increases overall performance of a fire chamber and considerably reduces emissions of nitrogen oxides.

  8. Feasibility of Biomass Biodrying for Gasification Process

    NASA Astrophysics Data System (ADS)

    Hamidian, Arash

    An important challenge of biomass gasification is the limitation of feedstock quality especially the moisture content, which plays a significant role on the performance of gasification process. Gasification requires low moisture levels (20% and less) and several reports have emphasized on the moisture as a typical problem while gasifying biomass. Moisture affects overall reaction rates in the gasifiers as a result of temperature drop and ultimately increases tar content, decreases gas yield, changes the composition of produced gas and affects the efficiency. Therefore, it is mandatory to pre-treat the biomass before gasification and reduce the moisture content to the suitable and economic level. The well-known solutions are either natural drying (not practical for commercial plants) or conventional drying technologies (have high operating costs). Biodrying is an alternative process, which uses both convective air and heat of biological reactions as a source of energy, to reduce the moisture. In the biodrying reactor heat is generated from exothermic decomposition of organic fraction of biomass and that is why the process is called "self-heating process". Employing such technology for drying biomass at pre-treatment units of gasification process returns several economic and environmental advantages to mills. In Europe, municipal waste treatment (MSW) plants use the biodrying at commercial scale to degrade a part of the biodegradable fraction of waste to generate heat and reduce the moisture content for high quality SRF (Solid Recovered Fuel) production. In Italy, wine industry is seeking to develop biodrying for energy recovery of grape wastes after fermentation and distillation, which returns economic benefits to the industry. In Canada, the development of biodrying technology for pulp and paper industry was started at Ecole polytechnique de Montreal as an option for sludge management solution. Therefore, batch biodrying reactor was successfully developed in 2004 and the pilot-scale continuous system was designed in 2010 to demonstrate the feasibility of mixed sludge biodrying for efficient combustion in biomass boilers. Mixed sludge was biodried in the reactor to 45% moisture level, which was the suitable level for boiler application. Techno-economic analysis also revealed the potential economic benefits for pulp and paper mills. However, considerable uncertainties existed in terms of feasibility of the biodrying technology for other types of biomass that are usually used in the gasification process, mainly because of low nutrient level of typical lignocellulosic biomass used as feedstock. Furthermore, the technology had not been shown to be economically viable in conjunction with gasification process at pulp and paper mills. In this work the feasibility of low-nutrient biomass biodrying was tested by experiments and techno-economic model was developed to identify the performance of biodrying process for commercial-scale application. In the economic analysis, a comprehensive approach for biodrying cost assessment was introduced that is based on the well-known approach widely used in the process industry and few sources of benefits were identified.

  9. Health Consequences of the ‘Great Recession’ on the Employed: Evidence from an Industrial Cohort in Aluminum Manufacturing

    PubMed Central

    Modrek, Sepideh; Cullen, Mark R.

    2013-01-01

    While the negative effects of unemployment have been well studied, the consequences of layoffs and downsizing for those who remain employed are less well understood. This study used human resources and health claims data from a large multi-site fully insured aluminum company to explore the health consequences of downsizing on the remaining workforce. We exploit the variation in the timing and intensity of layoff to categorize 30 plants as high or low layoff plants. Next, we select a stably employed cohort of workers with history of health insurance going back to 2006 to 1) describe the selection process into layoff and 2) explore the association between the severity of plant level layoffs and the incidence of four chronic conditions in the remaining workforce. We examined four health outcomes: incident hypertension, diabetes, asthma/COPD and depression for a cohort of approximately 13,000 employees. Results suggest that there was an increased risk of developing hypertension for workers that remain at the plants with the highest level of layoffs, and increased risk of developing diabetes for salaried workers that remain at the plants with the highest level of layoffs. The hypertension results were robust to a several specification tests. In addition, the study design selected only healthy workers, therefore our results are likely to be a lower bound and suggest that adverse health consequences of the current recession may affect a broader proportion of the population than previously expected. PMID:23849284

  10. Effect of plant diversity on the diversity of soil organic compounds.

    PubMed

    El Moujahid, Lamiae; Le Roux, Xavier; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck

    2017-01-01

    The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms.

  11. Effect of plant diversity on the diversity of soil organic compounds

    PubMed Central

    El Moujahid, Lamiae; Michalet, Serge; Bellvert, Florian; Weigelt, Alexandra; Poly, Franck

    2017-01-01

    The effect of plant diversity on aboveground organisms and processes was largely studied but there is still a lack of knowledge regarding the link between plant diversity and soil characteristics. Here, we analyzed the effect of plant identity and diversity on the diversity of extractible soil organic compounds (ESOC) using 87 experimental grassland plots with different levels of plant diversity and based on a pool of over 50 plant species. Two pools of low molecular weight organic compounds, LMW1 and LMW2, were characterized by GC-MS and HPLC-DAD, respectively. These pools include specific organic acids, fatty acids and phenolics, with more organic acids in LMW1 and more phenolics in LMW2. Plant effect on the diversity of LMW1 and LMW2 compounds was strong and weak, respectively. LMW1 richness observed for bare soil was lower than that observed for all planted soils; and the richness of these soil compounds increased twofold when dominant plant species richness increased from 1 to 6. Comparing the richness of LMW1 compounds observed for a range of plant mixtures and for plant monocultures of species present in these mixtures, we showed that plant species richness increases the richness of these ESOC mainly through complementarity effects among plant species associated with contrasted spectra of soil compounds. This could explain previously reported effects of plant diversity on the diversity of soil heterotrophic microorganisms. PMID:28166250

  12. Anthropocene Survival of Southern New England's Salt ...

    EPA Pesticide Factsheets

    In southern New England, salt marshes are exceptionally vulnerable to the impacts of accelerated sea level rise. Regional rates of sea level rise have been as much as 50 % greater than the global average over past decades, a more than fourfold increase over late Holocene background values. In addition, coastal development blocks many potential marsh migration routes, and compensatory mechanisms relying on positive feedbacks between inundation and sediment deposition are insufficient to counter inundation increases in extreme low-turbidity tidal waters. Accordingly, multiple lines of evidence suggest that marsh submergence is occurring in southern New England. A combination of monitoring data, field re-surveys, radiometric dating, and analysis of peat composition have established that, beginning in the early and mid-twentieth century, the dominant low-marsh plant, Spartina alterniflora, has encroached upward in tidal marshes, and typical high-marsh plants, including Juncus gerardii and Spartina patens, have declined, providing strong evidence that vegetation changes are being driven, at least in part, by higher water levels. Additionally, aerial and satellite imagery show shoreline retreat, widening and headward extension of channels, and new and expanded interior depressions. Papers in this special section highlight changes in marsh-building processes, patterns of vegetation loss, and shifts in species composition. The final papers turn to strategies for minimiz

  13. Study of the effectiveness of a participatory ergonomics intervention in reducing worker pain severity through physical exposure pathways.

    PubMed

    Laing, Andrew C; Frazer, Mardon B; Cole, Donald C; Kerr, Mickey S; Wells, Richard P; Norman, Robert W

    2005-02-01

    A participatory ergonomics programme was implemented in an automotive parts manufacturing factory. An ergonomics change team was formed composed of members from management and the organized labour union. It was hypothesized that the physical change projects implemented as part of this process would result in decreased worker exposures to peak and cumulative physical demands and reduced worker perceptions of physical effort and pain severity. A quasi-experimental design was employed, utilizing a sister plant in the corporation as a referent group. A longitudinal questionnaire approach was used to document pre-post changes in worker perceptions. In general, the physical change projects were rated as improvements by workers and were successful at reducing peak and/or cumulative mechanical exposures. However, there were few systematic changes in perceived effort or pain severity levels. Explanations include the confounding effects of differential production rate and staffing changes at the intervention and referent plants and/or insufficient overall intervention intensity due to a relatively short intervention period, plant and team ambivalence towards the process and the low overall impact on exposure of the particular changes implemented.

  14. Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus.

    PubMed

    Pandey, Renu; Lal, Milan Kumar; Vengavasi, Krishnapriya

    2018-06-04

    Hexaploid wheat is more responsive than tetraploid to the interactive effects of elevated [CO 2 ] and low P in terms of carboxylate efflux, enzyme activity and gene expression (TaPT1 and TaPAP). Availability of mineral nutrients to plants under changing climate has become a serious challenge to food security and economic development. An understanding of how elevated [CO 2 ] influences phosphorus (P) acquisition processes at the whole-plant level would be critical in selecting cultivars as well as to maintain optimum yield in limited-P conditions. Wheat (Triticum aestivum and T. durum) grown hydroponically with sufficient and low P concentration were exposed to elevated and ambient [CO 2 ]. Improved dry matter partitioning towards root resulted in increased root-to-shoot ratio, root length, volume, surface area, root hair length and density at elevated [CO 2 ] with low P. Interaction of low P and [CO 2 ] induced activity of enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase and citrate synthase) in root tissue resulting in twofold increase in carboxylates and acid phosphatase exudation. Physiological absorption capacity of roots showed that plants alter their uptake kinetics by increasing affinity (low K m ) in response to elevated [CO 2 ] under low P supply. Increased relative expression of genes, purple acid phosphatase (TaPAP) and high-affinity Pi transporter (TaPT1) in roots induced by elevated [CO 2 ] and low P supported our physiological observations. Hexaploid wheat (PBW-396) being more responsive to elevated [CO 2 ] at low P supply as compared to tetraploid (PDW-233) necessitates the ploidy effect to be explored further which might be advantageous under changing climate.

  15. Source apportionment and toxicity of atmospheric polycyclic aromatic hydrocarbons by PMF: Quantifying the influence of coal usage in Taiyuan, China

    NASA Astrophysics Data System (ADS)

    Yan, Yulong; He, Qiusheng; Guo, Lili; Li, Hongyan; Zhang, Hefeng; Shao, Min; Wang, Yuhang

    2017-09-01

    Atmospheric polycyclic aromatic hydrocarbons (PAHs) were analyzed in the gas phase and total suspended particulate (TSP) from summer 2014 to spring 2015 in Taiyuan, northern China. Taiyuan is an area with some of the highest atmospheric PAH levels in the world, and the total PAHs was highest in winter, followed by autumn, spring and summer. Low air temperature and a southern wind with low speed often led to higher PAH levels in Taiyuan. Although less than a half fraction, the benzo[a]pyrene equivalent concentration (BEQ) of particulate PAHs was almost equal to that of the total PAHs. Four sources, coal combustion, vehicle emissions, coke processing and biomass burning, were determined by positive matrix factorization (PMF), with contributions of 41.36%, 24.74%, 19.71% and 14.18% to the total PAHs in Taiyuan, respectively. Compared with the total PAHs, the particulate PAH solution underestimated the contribution of the coke processing, especially in winter, and overestimated vehicle emissions. The coke processing had a greater contribution to atmospheric PAHs with a southern wind at low speeds in winter in Taiyuan. Ultimately, the coke plants distributed in the Taiyuan-Linfen-Yuncheng basin should receive greater attention for air quality improvement in Taiyuan.

  16. Study of Low Flow Rate Ladle Bottom Gas Stirring Using Triaxial Vibration Signals

    NASA Astrophysics Data System (ADS)

    Yenus, Jaefer; Brooks, Geoffrey; Dunn, Michelle; Li, Zushu; Goodwin, Tim

    2018-02-01

    Secondary steelmaking plays a great role in enhancing the quality of the final steel product. The metal quality is a function of metal bath stirring in ladles. The metal bath is often stirred by an inert gas to achieve maximum compositional and thermal uniformity throughout the melt. Ladle operators often observe the top surface phenomena, such as level of meniscus disturbance, to evaluate the status of stirring. However, this type of monitoring has significant limitations in assessing the process accurately especially at low gas flow rate bubbling. The present study investigates stirring phenomena using ladle wall triaxial vibration at a low flow rate on a steel-made laboratory model and plant scale for the case of the vacuum tank degasser. Cold model and plant data were successfully modeled by partial least-squares regression to predict the amount of stirring. In the cold model, it was found that the combined vibration signal could predict the stirring power and recirculation speed effectively in specific frequency ranges. Plant trials also revealed that there is a high structure in each data set and in the same frequency ranges at the water model. In the case of industrial data, the degree of linear relationship was strong for data taken from a single heat.

  17. Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions.

    PubMed

    Ikeda, Seishi; Sasaki, Kazuhiro; Okubo, Takashi; Yamashita, Akifumu; Terasawa, Kimihiro; Bao, Zhihua; Liu, Dongyan; Watanabe, Takeshi; Murase, Jun; Asakawa, Susumu; Eda, Shima; Mitsui, Hisayuki; Sato, Tadashi; Minamisawa, Kiwamu

    2014-01-01

    Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here, we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha(-1), respectively). The LN field had received no N fertilizer for 5 years prior to the experiment. The LN and HN plants showed a 50% decrease and a 60% increase in biomass compared with the SN plant biomass, respectively. Analyses of 16S rRNA genes suggested shifts of bacterial communities between the LN and SN root microbiomes, which were statistically confirmed by metagenome analyses. The relative abundances of Burkholderia, Bradyrhizobium and Methylosinus were significantly increased in root microbiome of the LN field relative to the SN field. Conversely, the abundance of methanogenic archaea was reduced in the LN field relative to the SN field. The functional genes for methane oxidation (pmo and mmo) and plant association (acdS and iaaMH) were significantly abundant in the LN root microbiome. Quantitative PCR of pmoA/mcrA genes and a (13)C methane experiment provided evidence of more active methane oxidation in the rice roots of the LN field. In addition, functional genes for the metabolism of N, S, Fe, and aromatic compounds were more abundant in the LN root microbiome. These results suggest that low-N-fertilizer management is an important factor in shaping the microbial community structure containing key microbes for plant associations and biogeochemical processes in paddy rice ecosystems.

  18. Low Nitrogen Fertilization Adapts Rice Root Microbiome to Low Nutrient Environment by Changing Biogeochemical Functions

    PubMed Central

    Ikeda, Seishi; Sasaki, Kazuhiro; Okubo, Takashi; Yamashita, Akifumu; Terasawa, Kimihiro; Bao, Zhihua; Liu, Dongyan; Watanabe, Takeshi; Murase, Jun; Asakawa, Susumu; Eda, Shima; Mitsui, Hisayuki; Sato, Tadashi; Minamisawa, Kiwamu

    2014-01-01

    Reduced fertilizer usage is one of the objectives of field management in the pursuit of sustainable agriculture. Here, we report on shifts of bacterial communities in paddy rice ecosystems with low (LN), standard (SN), and high (HN) levels of N fertilizer application (0, 30, and 300 kg N ha−1, respectively). The LN field had received no N fertilizer for 5 years prior to the experiment. The LN and HN plants showed a 50% decrease and a 60% increase in biomass compared with the SN plant biomass, respectively. Analyses of 16S rRNA genes suggested shifts of bacterial communities between the LN and SN root microbiomes, which were statistically confirmed by metagenome analyses. The relative abundances of Burkholderia, Bradyrhizobium and Methylosinus were significantly increased in root microbiome of the LN field relative to the SN field. Conversely, the abundance of methanogenic archaea was reduced in the LN field relative to the SN field. The functional genes for methane oxidation (pmo and mmo) and plant association (acdS and iaaMH) were significantly abundant in the LN root microbiome. Quantitative PCR of pmoA/mcrA genes and a 13C methane experiment provided evidence of more active methane oxidation in the rice roots of the LN field. In addition, functional genes for the metabolism of N, S, Fe, and aromatic compounds were more abundant in the LN root microbiome. These results suggest that low-N-fertilizer management is an important factor in shaping the microbial community structure containing key microbes for plant associations and biogeochemical processes in paddy rice ecosystems. PMID:24463575

  19. A survey of size-fractionated dust levels in the U.S. wood processing industry.

    PubMed

    Kalliny, Medhat I; Brisolara, Joseph A; Glindmeyer, Henry; Rando, Roy

    2008-08-01

    A survey of size-fractionated dust exposure was carried out in 10 wood processing plants across the United States as part of a 5-year longitudinal respiratory health study. The facilities included a sawmill, plywood assembly plants, secondary wood milling operations, and factories producing finished wood products such as wood furniture and cabinets. Size-fractionated dust exposures were determined using the RespiCon Personal Particle Sampler. There were 2430 valid sets of respirable, thoracic, and inhalable dust samples collected. Overall, geometric mean (geometric standard deviation) exposure levels were found to be 1.44 (2.67), 0.35 (2.65), and 0.18 (2.54) mg/m, for the inhalable, thoracic, and respirable fractions, respectively. Averaged across all samples, the respirable fraction accounted for 16.7% of the inhalable dust mass, whereas the corresponding figure for thoracic fraction as a percentage of the inhalable fraction was 28.7%. Exposures in the furniture manufacturing plants were significantly higher than those in sawmill and plywood assembly plants, wood milling plants, and cabinet manufacturing plants, whereas the sawmill and plywood assembly plants exhibited significantly lower dust levels than the other industry segments. Among work activities, cleaning with compressed air and sanding processes produced the highest size-fractionated dust exposures, whereas forklift drivers demonstrated the lowest respirable and inhalable dust fractions and shipping processes produced the lowest thoracic dust fraction. Other common work activities such as sawing, milling, and clamping exhibited intermediate exposure levels, but there were significant differences in relative ranking of these across the various industry segments. Processing of hardwood and mixed woods generally were associated with higher exposures than were softwood and plywood, although these results were confounded with industry segment also.

  20. Tocopherol-deficient rice plants display increased sensitivity to photooxidative stress.

    PubMed

    Chen, Defu; Chen, Haiwei; Zhang, Luhua; Shi, Xiaoli; Chen, Xiwen

    2014-06-01

    Tocopherols are lipophilic antioxidants that are synthesized exclusively in photosynthetic organisms. Despite extensive in vivo characterization of tocopherol functions in plants, their functions in the monocot model plant, rice, remain to be determined. In this study, transgenic rice plants constitutively silenced for homogentisate phytyltransferase (HPT) and tocopherol cyclase (TC) activity were generated. Silencing of HPT and TC resulted in up to a 98 % reduction in foliar tocopherol content relative to the control plants, which was also confirmed by transcript level analysis. When grown under normal conditions, HPT and TC transgenics showed no distinctive phenotype relative to the control plants, except a slight reduction in plant height and a slight decrease in the first leaf length. However, when exposed to high light at low temperatures, HPT and TC transgenics had a significantly higher leaf yellowing index than the control plants. The tocopherol-deficient plants decreased their total individual chlorophyll levels, their chlorophyll a/b ratio, and the maximum photochemical efficiency of photosystem II, whereas increased lipid peroxidation levels relative to the control plants. Tocopherol deficiency had no effect on ascorbate biosynthesis, but induced glutathione, antheraxanthin, and particularly zeaxanthin biosynthesis for compensation under stressful conditions. However, despite these compensation mechanisms, HPT and TC transgenics still exhibited altered phenotypes under high light at low temperatures. Therefore, it is suggested that tocopherols cannot be replaced and play an indispensable role in photoprotection in rice.

  1. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.

    PubMed

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-02-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. © 2013 CSIRO. Plant Biotechnology Journal published by Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Pilot Plant Demonstration of Stable and Efficient High Rate Biological Nutrient Removal with Low Dissolved Oxygen Conditions

    EPA Science Inventory

    Aeration in biological nutrient removal (BNR) processes accounts for nearly half of the total electricity costs at many wastewater treatment plants. Even though conventional BNR processes are usually operated to have aerated zones with high dissolved oxygen (DO) concentrations, r...

  3. Plant Physiological, Morphological and Yield-Related Responses to Night Temperature Changes across Different Species and Plant Functional Types

    PubMed Central

    Jing, Panpan; Wang, Dan; Zhu, Chunwu; Chen, Jiquan

    2016-01-01

    Land surface temperature over the past decades has shown a faster warming trend during the night than during the day. Extremely low night temperatures have occurred frequently due to the influence of land-sea thermal difference, topography and climate change. This asymmetric night temperature change is expected to affect plant ecophysiology and growth, as the plant carbon consumption processes could be affected more than the assimilation processes because photosynthesis in most plants occurs during the daytime whereas plant respiration occurs throughout the day. The effects of high night temperature (HNT) and low night temperature (LNT) on plant ecophysiological and growing processes and how the effects vary among different plant functional types (PFTs) have not been analyzed extensively. In this meta-analysis, we examined the effect of HNT and LNT on plant physiology and growth across different PFTs and experimental settings. Plant species were grouped according to their photosynthetic pathways (C3, C4, and CAM), growth forms (herbaceous, woody), and economic purposes (crop, non-crop). We found that HNT and LNT both had a negative effect on plant yield, but the effect of HNT on plant yield was primarily related to a reduction in biomass allocation to reproduction organs and the effect of LNT on plant yield was more related to a negative effect on total biomass. Leaf growth was stimulated at HNT and suppressed at LNT. HNT accelerated plants ecophysiological processes, including photosynthesis and dark respiration, while LNT slowed these processes. Overall, the results showed that the effects of night temperature on plant physiology and growth varied between HNT and LNT, among the response variables and PFTs, and depended on the magnitude of temperature change and experimental design. These findings suggest complexities and challenges in seeking general patterns of terrestrial plant growth in HNT and LNT. The PFT specific responses of plants are critical for obtaining credible predictions of the changes in crop production, plant community structure, vegetation dynamics, biodiversity, and ecosystem functioning of terrestrial biomes when asymmetric night temperature change continues. PMID:27933085

  4. Process Security in Chemical Engineering Education

    ERIC Educational Resources Information Center

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  5. Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment.

    PubMed

    Brienza, Monica; Nir, Shlomo; Plantard, Gael; Goetz, Vincent; Chiron, Serge

    2018-06-08

    A tertiary treatment of effluent from a biological domestic wastewater treatment plant was tested by combining filtration and solar photocatalysis. Adsorption was carried out by a sequence of two column filters, the first one filled with granular activated carbon (GAC) and the second one with granulated nano-composite of micelle-montmorillonite mixed with sand (20:100, w/w). The applied solar advanced oxidation process was homogeneous photo-Fenton photocatalysis using peroxymonosulfate (PMS) as oxidant agent. This combination of simple, robust, and low-cost technologies aimed to ensure water disinfection and emerging contaminants (ECs, mainly pharmaceuticals) removal. The filtration step showed good performances in removing dissolved organic matter and practically removing all bacteria such as Escherichia coli and Enterococcus faecalis from the secondary treated water. Solar advanced oxidation processes were efficient in elimination of trace levels of ECs. The final effluent presented an improved sanitary level with acceptable chemical and biological characteristics for irrigation.

  6. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less

  7. Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels.

    PubMed

    López-Hoffman, Laura; Anten, Niels P R; Martínez-Ramos, Miguel; Ackerly, David D

    2007-01-01

    We have studied the interactive effects of salinity and light on Avicennia germinans mangrove seedlings in greenhouse and field experiments. We hypothesized that net photosynthesis, growth, and survivorship rates should increase more with an increase in light availability for plants growing at low salinity than for those growing at high salinity. This hypothesis was supported by our results for net photosynthesis and growth. Net daily photosynthesis did increase more with increasing light for low-salinity plants than for high-salinity plants. Stomatal conductance, leaf-level transpiration, and internal CO(2) concentrations were lower at high than at low salinity. At high light, the ratio of leaf respiration to assimilation was 2.5 times greater at high than at low salinity. Stomatal limitations and increased respiratory costs may explain why, at high salinity, seedlings did not respond to increased light availability with increased net photosynthesis. Seedling mass and growth rates increased more with increasing light availability at low than at high salinity. Ratios of root mass to leaf mass were higher at high salinity, suggesting that either water or nutrient limitations may have limited seedling growth at high salinity in response to increasing light. The interactive effects of salinity and light on seedling size and growth rates observed in the greenhouse were robust in the field, despite the presence of other factors in the field--such as inundation, nutrient gradients, and herbivory. In the field, seedling survivorship was higher at low than at high salinity and increased with light availability. Interestingly, the positive effect of light on seedling survivorship was stronger at high salinity, indicating that growth and survivorship rates are decoupled. In general, this study demonstrates that environmental effects at the leaf-level also influence whole plant growth in mangroves.

  8. Shorter Life Span of Microorganisms and Plants as a Consequence of Shielded Magnetic Environment

    NASA Astrophysics Data System (ADS)

    Dobrota, C.; Piso, I. M.; Bathory, D.

    The geomagnetic field is an essential environmental factor for life and health on this planet. In order to survey how magnetic fields affect the life span and the nitrogenase (an iron-sulphur enzyme) activity of Azotobacter chroococcum as well as the life span, the main organic synthesis and the water balance of plants (22 species), the biological tests were incubated under shielded magnetic field and also in normal geo-magnetic environment. The shielding level was about 10-6 of the terrestrial magnetic field.Life cycles of all organisms require the co-ordinated control of a complex set of interlocked physiological processes and metabolic pathways. Such processes are likely to be regulated by a large number of genes. Our researches suggest that the main point in biological structures, which seems to be affected by the low magnetic environment, is the water molecule. Magnetic field induces a molecular alignment. Under shielded conditions, unstructured water molecules with fewer hydrogen bonds, which are producing a more reactive environment, are occurring. As compared to control, the life span of both microorganisms and plants was shorter in shielded environment. A higher nitrogenase affinity for the substrate was recorded in normal geo-magnetic field compared to low magnetic field. The synthesis of carbohydrates, lipids, proteins and enzymes was modified under experimental conditions. The stomatal conductance was higher between 158 and 300% in shielded environment indicating an important water loss from the plant cells.Our results support the idea that the shielded magnetic environment induces different reactions depending on the time of exposure and on the main metabolic pathways of the cells.

  9. Adaptation and survival of plants in high stress habitats via fungal endophyte conferred stress tolerance

    USGS Publications Warehouse

    Rodriguez, Rusty J.; Woodward, Claire; Redman, Regina S.

    2010-01-01

    From the Arctic to the Antarctic, plants thrive in diverse habitats that impose different levels of adaptive pressures depending on the type and degree of biotic and abiotic stresses inherent to each habitat (Stevens, 1989). At any particular location, the abundance and distribution of individual plant species vary tremendously and is theorized to be based on the ability to tolerate a wide range of edaphic conditions and habitat-specific stresses (Pianka, 1966). The ability of individual plant species to thrive in diverse habitats is commonly referred to as phenotypic plasticity and is thought to involve adaptations based on changes in the plant genome (Givnish, 2002; Pan et al., 2006; Robe and Griffiths, 2000; Schurr et al., 2006). Habitats that impose high levels of abiotic stress are typically colonized with fewer plant species compared to habitats imposing low levels of stress. Moreover, high stress habitats have decreased levels of plant abundance compared to low stress habitats even though these habitats may occur in close proximity to one another (Perelman et al., 2007). This is particularly interesting because all plants are known to perceive, transmit signals, and respond to abiotic stresses such as drought, heat, and salinity (Bartels and Sunkar, 2005; Bohnert et al., 1995). Although there has been extensive research performed to determine the genetic, molecular, and physiological bases of how plants respond to and tolerate stress, the nature of plant adaptation to high stress habitats remains unresolved (Leone et al., 2003; Maggio et al., 2003; Tuberosa et al., 2003). However, recent evidence indicates that a ubiquitous aspect of plant biology (fungal symbiosis) is involved in the adaptation and survival of at least some plants in high stress habitats (Rodriguez et al., 2008).

  10. Visual selection and maintenance of the cell lines with high plant regeneration ability and low ploidy level in Dianthus acicularis by monitoring with flow cytometry analysis.

    PubMed

    Shiba, Tomonori; Mii, Masahiro

    2005-12-01

    Efficient plant regeneration system from cell suspension cultures was established in D. acicularis (2n=90) by monitoring ploidy level and visual selection of the cultures. The ploidy level of the cell cultures closely related to the shoot regeneration ability. The cell lines comprising original ploidy levels (2C+4C cells corresponding to DNA contents of G1 and G2 cells of diploid plant, respectively) showed high regeneration ability, whereas those containing the cells with 8C or higher DNA C-values showed low or no regeneration ability. The highly regenerable cell lines thus selected consisted of compact cell clumps with yellowish color and relatively moderate growth, suggesting that it is possible to select visually the highly regenerable cell lines with the original ploidy level. All the regenerated plantlets from the highly regenerable cell cultures exhibited normal phenotypes and no variations in ploidy level were observed by flow cytometry (FCM) analysis.

  11. The joint Australia/Federal Republic of Germany feasibility study on the conversion of Australian coals into liquid fuels in Australia

    NASA Astrophysics Data System (ADS)

    Imhausen, K. H.

    1982-08-01

    The IG hydrogenation process used commercially in Germany up to 1945, was improved. Pilot plants in Germany are presently under construction or in the start-up phase. A technical concept for the conversion of Australian bituminous coals and/or Australian brown coals into automotive fuels, using coal hydrogenation, gasification and Fisher-Tropsch synthesis was developed. Development of technology, consumption figures and of expenditure/investment for a complete plant, producing about 3 million tons of automotive fuels per year, was also attempted. The results show that standard automotive fuels are produced from bituminous coal, using a combination of high pressure coal hydrogenation and of Fisher-Tropsch synthesis, and from brown coal, using high pressure coal hydrogenation only. Under the assumption that crude oil prices increase 3% more rapidly than yearly inflation, and the raw material cost are staying at a low level, commercial plants are planned.

  12. Polyamines: Bio-Molecules with Diverse Functions in Plant and Human Health and Disease

    PubMed Central

    Handa, Avtar K.; Fatima, Tahira; Mattoo, Autar K.

    2018-01-01

    Biogenic amines—polyamines (PAs), particularly putrescine, spermidine and spermine are ubiquitous in all living cells. Their indispensable roles in many biochemical and physiological processes are becoming commonly known, including promoters of plant life and differential roles in human health and disease. PAs positively impact cellular functions in plants—exemplified by increasing longevity, reviving physiological memory, enhancing carbon and nitrogen resource allocation/signaling, as well as in plant development and responses to extreme environments. Thus, one or more PAs are commonly found in genomic and metabolomics studies using plants, particulary during different abiotic stresses. In humans, a general decline in PA levels with aging occurs parallel with some human health disorders. Also, high PA dose is detrimental to patients suffering from cancer, aging, innate immunity and cognitive impairment during Alzheimer and Parkinson diseases. A dichotomy exists in that while PAs may increase longevity and reduce some age-associated cardiovascular diseases, in disease conditions involving higher cellular proliferation, their intake has negative consequences. Thus, it is essential that PA levels be rigorously quantified in edible plant sources as well as in dietary meats. Such a database can be a guide for medical experts in order to recommend which foods/meats a patient may consume and which ones to avoid. Accordingly, designing both high and low polyamine diets for human consumption are in vogue, particularly in medical conditions where PA intake may be detrimental, for instance, cancer patients. In this review, literature data has been collated for the levels of the three main PAs, putrescine, spermidine and spermine, in different edible sources—vegetables, fruits, cereals, nuts, meat, sea food, cheese, milk, and eggs. Based on our analysis of vast literature, the effects of PAs in human/animal health fall into two broad, Yang and Yin, categories: beneficial for the physiological processes in healthy cells and detrimental under pathological conditions. PMID:29468148

  13. Quantification and colonisation dynamics of Escherichia coli O157:H7 inoculation of microgreens species and plant growth substrates.

    PubMed

    Wright, Kathryn M; Holden, Nicola J

    2018-05-20

    Microgreens are edible plants used in food preparation for their appealing flavours and colours. They are grown beyond the point of harvest of sprouted seeds, and normally include the cotyledons and first true leaves. Their method of production is similar to sprouted seeds, which is known to be favourable for growth of microbial pathogens, although there is little data on the potential of food-borne pathogens such as Shigatoxigenic Escherichia coli (STEC) to colonise these plants. We found colonisation of nine different species of microgreen plants by STEC (isolate Sakai, stx-), with high levels of growth over five days, of approximately 5 orders of magnitude, for plants propagated at 21 °C. STEC (Sakai) formed extensive colonies on external tissue, with some evidence for internalisation via stomatal pores. Several factors impacted the level of colonisation: (1) plant tissue type such that for broccoli microgreens, the highest levels of STEC (Sakai) occurred on cotyledons compared to the true leaf and hypocotyl; (2) the route of contamination such that higher levels occurred with contaminated irrigation water compared to direct seed contamination; (3) inoculation dose, although only at low levels of inoculation (3 log 10 ) compared to medium (5 log 10 ) or high (7 log 10 ) levels; (4) environmental factors, including to some extent humidity, but also plant growth substrate types. It was also evident that a starvation response was induced in STEC (Sakai) in low-nutrient plant irrigation medium. Together these data show that microgreens represent a potential hazard of contamination by food-borne pathogens, and to mitigate the risk, they should be considered in the same manner as sprouted seeds. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  14. Sphagnum growth and ecophysiology during mire succession.

    PubMed

    Laine, Anna M; Juurola, Eija; Hájek, Tomáš; Tuittila, Eeva-Stiina

    2011-12-01

    Sphagnum mosses are widespread in areas where mires exist and constitute a globally important carbon sink. Their ecophysiology is known to be related to the water level, but very little is currently known about the successional trend in Sphagnum. We hypothesized that moss species follow the known vascular plant growth strategy along the successional gradient (i.e., decrease in production and maximal photosynthesis while succession proceeds). To address this hypothesis, we studied links between the growth and related ecophysiological processes of Sphagnum mosses from a time-since-initiation chronosequence of five wetlands. We quantified the rates of increase in biomass and length of different Sphagnum species in relation to their CO(2) assimilation rates, their photosynthetic light reaction efficiencies, and their physiological states, as measured by the chlorophyll fluorescence method. In agreement with our hypothesis, increase in biomass and CO(2) exchange rate of Sphagnum mosses decreased along the successional gradient, following the tactics of more intensely studied vascular plants. Mosses at the young and old ends of the chronosequence showed indications of downregulation, measured as a low ratio between variable and maximum fluorescence (F(v)/F(m)). Our study divided the species into three groups; pioneer species, hollow species, and ombrotrophic hummock formers. The pioneer species S. fimbriatum is a ruderal plant that occurred at the first sites along the chronosequence, which were characterized by low stress but high disturbance. Hollow species are competitive plants that occurred at sites with low stress and low disturbance (i.e., in the wet depressions in the middle and at the old end of the chronosequence). Ombrotrophic hummock species are stress-tolerant plants that occurred at sites with high stress and low disturbance (i.e., at the old end of the chronosequence). The three groups along the mire successional gradient appeared to be somewhat analogous to the three primary strategies suggested by Grime.

  15. WRAP low level waste (LLW) glovebox operational test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into anothermore » 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.« less

  16. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    PubMed Central

    Kyne, Dean; Bolin, Bob

    2016-01-01

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives. PMID:27420080

  17. Separomics applied to the proteomics and peptidomics of low-abundance proteins: Choice of methods and challenges - A review.

    PubMed

    Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves

    2012-06-01

    The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes.

  18. Separomics applied to the proteomics and peptidomics of low-abundance proteins: Choice of methods and challenges – A review

    PubMed Central

    Baracat-Pereira, Maria Cristina; de Oliveira Barbosa, Meire; Magalhães, Marcos Jorge; Carrijo, Lanna Clicia; Games, Patrícia Dias; Almeida, Hebréia Oliveira; Sena Netto, José Fabiano; Pereira, Matheus Rodrigues; de Barros, Everaldo Gonçalves

    2012-01-01

    The enrichment and isolation of proteins are considered limiting steps in proteomic studies. Identification of proteins whose expression is transient, those that are of low-abundance, and of natural peptides not described in databases, is still a great challenge. Plant extracts are in general complex, and contaminants interfere with the identification of proteins involved in important physiological processes, such as plant defense against pathogens. This review discusses the challenges and strategies of separomics applied to the identification of low-abundance proteins and peptides in plants, especially in plants challenged by pathogens. Separomics is described as a group of methodological strategies for the separation of protein molecules for proteomics. Several tools have been used to remove highly abundant proteins from samples and also non-protein contaminants. The use of chromatographic techniques, the partition of the proteome into subproteomes, and an effort to isolate proteins in their native form have allowed the isolation and identification of rare proteins involved in different processes. PMID:22802713

  19. Polyamine interactions with plant hormones: crosstalk at several levels

    USDA-ARS?s Scientific Manuscript database

    Polyamines play important roles in diverse plant growth and development processes including seed germination, tissue lignification, organogenesis, flowering, pollination, embryogenesis, fruit development, ripening, abscission, senescence and stress responses. In all these processes, synergistic and ...

  20. Abscisic Acid Signaling and Abiotic Stress Tolerance in Plants: A Review on Current Knowledge and Future Prospects

    PubMed Central

    Vishwakarma, Kanchan; Upadhyay, Neha; Kumar, Nitin; Yadav, Gaurav; Singh, Jaspreet; Mishra, Rohit K.; Kumar, Vivek; Verma, Rishi; Upadhyay, R. G.; Pandey, Mayank; Sharma, Shivesh

    2017-01-01

    Abiotic stress is one of the severe stresses of environment that lowers the growth and yield of any crop even on irrigated land throughout the world. A major phytohormone abscisic acid (ABA) plays an essential part in acting toward varied range of stresses like heavy metal stress, drought, thermal or heat stress, high level of salinity, low temperature, and radiation stress. Its role is also elaborated in various developmental processes including seed germination, seed dormancy, and closure of stomata. ABA acts by modifying the expression level of gene and subsequent analysis of cis- and trans-acting regulatory elements of responsive promoters. It also interacts with the signaling molecules of processes involved in stress response and development of seeds. On the whole, the stress to a plant can be susceptible or tolerant by taking into account the coordinated activities of various stress-responsive genes. Numbers of transcription factor are involved in regulating the expression of ABA responsive genes by acting together with their respective cis-acting elements. Hence, for improvement in stress-tolerance capacity of plants, it is necessary to understand the mechanism behind it. On this ground, this article enlightens the importance and role of ABA signaling with regard to various stresses as well as regulation of ABA biosynthetic pathway along with the transcription factors for stress tolerance. PMID:28265276

  1. 40 CFR 61.180 - Applicability and designation of sources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61... metallic arsenic production plant and to each arsenic trioxide plant that processes low-grade arsenic...

  2. Carbonic anhydrase levels and internal lacunar CO/sub 2/ concentrations in aquatic macrophytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, C.I.

    1979-01-01

    Carbonic anhydrase levels were examined in a variety of aquatic macrophytes from different habitats. In general, carbonic anhydrase levels increased across the habitat gradient such that activities were low in submersed aquatic macrophytes and high in emergent macrophytes with floating-leaved and free-floating plants exhibiting intermediate activities. Internal lacunar CO/sub 2/ concentrations were analyzed in relation to carbonic anhydrase activities. There was no correlation between these two parameters. Internal CO/sub 2/ concentrations ranged from low to high in submersed macrophytes, but were low in floating-leaved and emergent macrophytes. The observed internal CO/sub 2/ concentrations are discussed in relation to the individualmore » morphologies of the plants and the environments in which they occurred.« less

  3. 40 CFR 61.180 - Applicability and designation of sources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Inorganic Arsenic Emissions From Arsenic Trioxide and Metallic Arsenic Production Facilities § 61... metallic arsenic production plant and to each arsenic trioxide plant that processes low-grade arsenic...

  4. How the Food Processing Industry Is Diversifying Rural Minnesota. JSRI Working Paper.

    ERIC Educational Resources Information Center

    Fennelly, Katherine; Leitner, Helga

    The diversification of rural Minnesota is largely the result of the restructuring of the food processing industry and its recruitment of low-wage laborers. The relocation and expansion of food processing plants into rural areas of Minnesota creates a demand for low-wage labor that can not be met locally. Food processing businesses attract…

  5. Levels of novel hybridization in the saltcedar invasion compared over seven decades

    USDA-ARS?s Scientific Manuscript database

    Hybridization is proposed as one process that can enhance a plant species’ invasive ability. We quantified the levels of hybridization of 180 saltcedar plants (Tamarix spp.) of varying ages that span the history of an invasion along the Green River, UT, USA. Plants ranging in establishment dates fro...

  6. Effect of food processing on exposure assessment studies with mycotoxins.

    PubMed

    Cano-Sancho, German; Sanchis, Vicente; Ramos, Antonio J; Marín, Sonia

    2013-01-01

    The goals of the present work were, on the one hand, to assess the effect of baking on the stability of zearalenone (ZEA) and deoxynivalenol (DON), as well as the transfer of DON from pasta to boiling water, and, on the other hand, to quantify the impact of DON depletion, during cooking of pasta, on overall exposure estimates. Therefore, the bread-making process was simulated on a pilot-plant scale by using naturally contaminated flour with DON and ZEA. Transfer of DON from pasta to water was evaluated at different boiling times. Pasta was prepared on a pilot-plant scale by using naturally contaminated durum wheat flour; subsequently, it was boiled simulating home cooking. The experiments examined the stability of DON and ZEA during the bread-making process, including fermentation with Saccharomyces cerevisiae and baking at 200°C. Our results showed a high transfer of DON from pasta to boiling water, reaching depletion levels of almost 75%, which correlated with levels found in water. Accordingly, these cooking depletion rates were computed through a stochastic exposure model to weight their impact on the final exposure estimates. Finally, statistically significant differences were found in most of the parameters and populations assessed, but these were not enough to consider the process as protective because the contribution of pasta to the overall DON intake was commonly low.

  7. The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada

    NASA Astrophysics Data System (ADS)

    Papiez, Maria R.; Potosnak, Mark J.; Goliff, Wendy S.; Guenther, Alex B.; Matsunaga, Sou N.; Stockwell, William R.

    A three-part study was conducted to quantify the impact of landscaped vegetation on air quality in a rapidly expanding urban area in the arid southeastern United States. The study combines in situ, plant-level measurements, a spatial emissions inventory, and a photochemical box model. Maximum plant-level basal emission rates were moderate: 18.1 μgC gdw -1 h -1 ( Washingtonia spp., palms) for isoprene and 9.56 μgC gdw -1 h -1 ( Fraxinus velutina, Arizona ash) for monoterpenes. Sesquiterpene emission rates were low for plant species selected in this study, with no measurement exceeding 0.1 μgC gdw -1 h -1. The high ambient temperatures combined with moderate plant-level emission factors resulted in landscape emission factors that were low (250-640 μgC m -2 h -1) compared to more mesic environments (e.g., the southeastern United States). The Regional Atmospheric Chemistry Mechanism (RACM) was modified to include a new reaction pathway for ocimene. Using measured concentrations of anthropogenic hydrocarbons and other reactive air pollutants (NO x, ozone), the box model employing the RACM mechanism revealed that these modest emissions could have a significant impact on air quality. For a suburban location that was downwind of the urban core (high NO x; low anthropogenic hydrocarbons), biogenic terpenes increased time-dependent ozone production rates by a factor of 50. Our study demonstrates that low-biomass density landscapes emit sufficient biogenic terpenes to have a significant impact on regional air quality.

  8. Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition.

    PubMed

    Burleigh, Stephen H; Cavagnaro, Tim; Jakobsen, Iver

    2002-07-01

    This study of functional diversity considers symbiotic associations between two plant species, Medicago truncatula and Lycopersicon esculentum, and seven species of arbuscular mycorrhizal fungi (AMF). The objective was to integrate physiological analyses with molecular techniques to test whether functional diversity between AMF species is not only apparent at the level of mycorrhiza formation, plant nutrient uptake and plant growth, but also at the molecular level as observed by variation in the root expression of plant genes involved in the plant's P-starvation response. The seven species of AMF varied widely in their influence on the root expression of MtPT2 and Mt4 from M. truncatula and LePT1 and TPSI1 from L. esculentum. At one extreme was Glomus mosseae, whereby its colonization of M. truncatula resulted in the greatest reduction in MtPT2 and Mt4 gene expression and the highest level of P uptake and growth, while at the other extreme was Gigaspora rosea, whereby colonization resulted in the highest levels of MtPT2 and Mt4 gene expression and the lowest P uptake and growth. The expression of LePT1 and TPSI1 within the roots of L. esculentum was low and relatively uniform across the seven mycorrhizas, reflecting the ability of this cultivar to maintain low and constant shoot P levels despite root colonization by a broad selection of AMF. This study extends current understanding of functional diversity and shows that plants can respond differently to AMF, not only at the level of colonization, nutrient uptake and growth, but also at the level of gene expression.

  9. [Effect of high intensity magnetic field on the processes of early growth in plant seeds and development of honeybees].

    PubMed

    Es'kov, E K; Darkov, A V

    2003-01-01

    The influence of magnetic field on the early growth processes in plant seeds and the postembryonic development of honeybees was studied. Some general trends in the effects of magnetic field and differences in the tolerance of plant seeds and developing honeybees to its action were revealed. Some factors that may be responsible for a low reproducibility of magneto-biological effects are discussed.

  10. 16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  11. Regulation of potassium transport and signaling in plants.

    PubMed

    Wang, Yi; Wu, Wei-Hua

    2017-10-01

    As an essential macronutrient, potassium (K + ) plays crucial roles in diverse physiological processes during plant growth and development. The K + concentration in soils is relatively low and fluctuating. Plants are able to perceive external K + changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K + channels and transporters. As a result, K + homeostasis in plant cells is modulated, which facilitates plant adaptation to K + deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K + channels and transporters as well as their regulatory mechanisms in plant response to low-K + stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Cogeneration Technology Alternatives Study (CTAS). Volume 3: Industrial processes

    NASA Technical Reports Server (NTRS)

    Palmer, W. B.; Gerlaugh, H. E.; Priestley, R. R.

    1980-01-01

    Cogenerating electric power and process heat in single energy conversion systems rather than separately in utility plants and in process boilers is examined in terms of cost savings. The use of various advanced energy conversion systems are examined and compared with each other and with current technology systems for their savings in fuel energy, costs, and emissions in individual plants and on a national level. About fifty industrial processes from the target energy consuming sectors were used as a basis for matching a similar number of energy conversion systems that are considered as candidate which can be made available by the 1985 to 2000 time period. The sectors considered included food, textiles, lumber, paper, chemicals, petroleum, glass, and primary metals. The energy conversion systems included steam and gas turbines, diesels, thermionics, stirling, closed cycle and steam injected gas turbines, and fuel cells. Fuels considered were coal, both coal and petroleum based residual and distillate liquid fuels, and low Btu gas obtained through the on site gasification of coal. An attempt was made to use consistent assumptions and a consistent set of ground rules specified by NASA for determining performance and cost. Data and narrative descriptions of the industrial processes are given.

  13. Influence of Vesicular-Arbuscular Mycorrhizal Fungi on the Response of Potato to Phosphorus Deficiency.

    PubMed

    McArthur, DAJ.; Knowles, N. R.

    1993-01-01

    Morphological and biochemical interactions between a vesicular-arbuscular mycorrhizal (VAM) fungus (Glomus fasciculatum [Thaxt. sensu Gerdemann] Gerdemann and Trappe) and potato (Solanum tuberosum L.) plants during the development of P deficiency were characterized. Nonmycorrhizal (NM) plants grown for 63 d with low abiotic P supply (0.5 mM) produced 34, 52, and 73% less root, shoot, and tuber dry matter, respectively, than plants grown with high P (2.5 mM). The total leaf area and the leaf area:plant dry weight ratio of low-P plants were substantially lower than those of high-P plants. Moreover, a lower shoot:root dry weight ratio and tuber:plant dry weight ratio in low-P plants than in high-P plants characterized a major effect of P deficiency stress on dry matter partitioning. In addition to a slower rate of growth, low-P plants accumulated nonreducing sugars and nitrate. Furthermore, root respiration and leaf nitrate reductase activity were lower in low-P plants than in high-P plants. Low abiotic P supply also induced physiological changes that contributed to the greater efficiency of P acquisition by low-P plants than by high-P plants. For example, allocation of dry matter and P to root growth was less restricted by P deficiency stress than to shoot and tuber growth. Also, the specific activities of root acid phosphatases and vanadate-sensitive microsomal ATPases were enhanced in P-deficient plants. The establishment of a VAM symbiosis by low-P plants was essential for efficient P acquisition, and a greater root infection level for P-stressed plants indicated increased compatibility to the VAM fungus. By 63 d after planting, low-P VAM plants had recovered 42% more of the available soil P than low-P NM plants. However, the VAM fungus only partially alleviated P deficiency stress and did not completely compensate for inadequate abiotic P supply. Although the specific activities of acid phosphatases and microsomal ATPases were only marginally influenced by VAM infection, VAM roots characteristically had a higher protein concentration and, consequently, enhanced microsomal ATPase and acid phosphatase activities on a fresh weight basis compared with NM roots. Morphological and ultrastructural details of VAM plants are discussed in relation to the influence of the VAM symbiosis on P nutrition of potato.

  14. Redox regulation of plant S-nitrosoglutathione reductase activity through post-translational modifications of cysteine residues.

    PubMed

    Tichá, Tereza; Lochman, Jan; Činčalová, Lucie; Luhová, Lenka; Petřivalský, Marek

    2017-12-09

    Nitric oxide (NO) is considered as a signalling molecule involved in a variety of important physiological and pathological processes in plant and animal systems. The major pathway of NO reactions in vivo represents S-nitrosation of thiols to form S-nitrosothiols. S-nitrosoglutathione reductase (GSNOR) is the key enzyme in the degradation pathway of S-nitrosoglutathione (GSNO), a low-molecular weight adduct of NO and glutathione. GSNOR indirectly regulates the level of protein S-nitrosothiol in the cells. This study was focused on the dynamic regulation of the activity of plant GSNORs through reversible S-nitrosation and/or oxidative modifications of target cysteine residues. Pre-incubation with NO/NO - donors or hydrogen peroxide resulted in a decreased reductase and dehydrogenase activity of all studied plant GSNORs. Incubation with thiol reducing agent completely reversed inhibitory effects of nitrosative modifications and partially also oxidative inhibition. In biotin-labelled samples, S-nitrosation of plant GSNORs was confirmed after immunodetection and using mass spectrometry S-nitrosation of conserved Cys271 was identified in tomato GSNOR. Negative regulation of constitutive GSNOR activity in vivo by nitrosative or oxidative modifications might present an important mechanism to control GSNO levels, a critical mediator of the downstream signalling effects of NO, as well as for formaldehyde detoxification in dehydrogenase reaction mode. Copyright © 2017. Published by Elsevier Inc.

  15. Genotypic effects of elevated CO[sub 2] on fecundity in an annual weed (wild radish, Raphanus raphanistrum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, P.S.; Snow, A.A.

    1993-06-01

    Rising atmospheric CO[sub 2] levels may lead to microevolutionary change in native plant populations. To test for within-population variation in genetic responses to elevated p(CO[sub 2]), we exposed five paternal sibships of wild radish to ambient and 2X ambient (700 [mu]bar) p(CO[sub 2]) in 3 m open top chambers for an entre growing season. Seeds were planted singly in 2.5 1 pots filled with locally derived, low fertility soil (160 plants per CO[sub 2] treatment). Net CO[sub 2] assimilation increased 25% in vegetative plants and 48% in reproductive plants growing at elevated p(CO[sub 2]). Every flower was hand-pollinated to mimicmore » natural pollination levels. Lifetime fecundity was greater in the elevated CO[sub 2] treatment, but the magnitude of this effect differed dramatically among paternal sibships: seed production increased 13% overall, yet among paternal sibships seed production varied between 0% and 50% more seeds in elevated p(CO[sub 2]) as compared to ambient. Our results suggest that natural selection can occur due to genotypic differences in the CO[sub 2] response. This process should be considered in estimates of long-term effects of elevated p(CO[sub 2]), especially with regard to anticipated increases in primary productivity.« less

  16. Thermotolerant cyclamen with reduced acrolein and methyl vinyl ketone

    PubMed Central

    Kai, Hiroomi; Hirashima, Keita; Matsuda, Osamu; Ikegami, Hidetoshi; Winkelmann, Traud; Nakahara, Takao; Iba, Koh

    2012-01-01

    Reduced levels of trienoic fatty acids (TAs) in chloroplast membranes induce thermotolerance in several plant species, but the underlying mechanisms remain unclear. TA peroxidation in plant cell membranes generates cytotoxic, TA-derived compounds containing α,β-unsaturated carbonyl groups. The relationship between low TA levels and the amounts of cytotoxic TA-derived compounds was examined using thermotolerant transgenic cyclamen (Cyclamen persicum Mill.) with low TA contents. Changes in the levels of the cytotoxic TA-derived acrolein (ACR), methyl vinyl ketone (MVK), (E)-2-hexenal, 4-hydroxy-2-nonenal, and malondialdehyde were analysed in the leaf tissues of wild-type (WT) and thermotolerant transgenic cyclamen under heat stress. Levels of ACR and MVK in the WT increased in parallel with the occurrence of heat-induced tissue damage, whereas no such changes were observed in the thermotolerant transgenic lines. Furthermore, exogenous ACR and MVK infiltrated into leaves to concentrations similar to those observed in heat-stressed WT leaves caused similar disease symptoms. These results suggest that thermotolerance in transgenic cyclamen depends on reduced production rates of ACR and MVK under heat stress, due to the low level of TAs in these plants. PMID:22511805

  17. Investigations on Chlorophytum comosum ability to remove toluene from air in a closed environment

    NASA Astrophysics Data System (ADS)

    Bulteau, G.; Lakel, A.

    Plants play a major role in bioregenerative systems for air and water supplies. They may also contribute to the removal of volatile organic compounds (VOC) from the air in a closed environment, based on the ability to absorb toxic compounds and to detoxify them. The aim of our work was to study the capabilities of Chlorophytum comosum for toluene removal and to identify the main parts of the plants which are responsible for the elimination. A 1-m3 sealed chamber was designed and built in 8-mm window glass assembled with UV-polymerized glue. It was equipped with one internal fan for air mixing. The other materials (low-emitting and low-adsorptive) were aluminium and PTFE. A cooling system was also used to regulate humidity content which was monitored continuously as well as temperature and carbon dioxide concentration. Experiments were carried out in this chamber with Chlorophytum comosum plants exposed to an initial concentration of 11.5x103 μg toluene m-3. Pollutant concentration was measured every five minutes during several days. Toluene removal was studied in various configurations (potting media, hydroponic conditions{ldots}) in order to document the level of contribution of each component (leaves, roots, microorganisms and soil) of the potted plants. Results show that 54 % of toluene was removed in 72 h with the whole potted plant. A large participation of the soil in the purification process was noticed whereas foliage seemed to have little effect at the light intensity used in the experiments. Moreover, the tests realized with both natural and sterilized soils suggest that soil bacteria (in potting media) play a significant role in the removal process showing that soil and its microorganisms may have complementary roles in the elimination phenomena. Detoxifying function of potted plants could find current applications in improving air quality, in particular indoor air from domestic buildings.

  18. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.

    PubMed

    Mäkelä, Miia R; Marinović, Mila; Nousiainen, Paula; Liwanag, April J M; Benoit, Isabelle; Sipilä, Jussi; Hatakka, Annele; de Vries, Ronald P; Hildén, Kristiina S

    2015-01-01

    The biological conversion of plant lignocellulose plays an essential role not only in carbon cycling in terrestrial ecosystems but also is an important part of the production of second generation biofuels and biochemicals. The presence of the recalcitrant aromatic polymer lignin is one of the major obstacles in the biofuel/biochemical production process and therefore microbial degradation of lignin is receiving a great deal of attention. Fungi are the main degraders of plant biomass, and in particular the basidiomycete white rot fungi are of major importance in converting plant aromatics due to their ability to degrade lignin. However, the aromatic monomers that are released from lignin and other aromatic compounds of plant biomass are toxic for most fungi already at low levels, and therefore conversion of these compounds to less toxic metabolites is essential for fungi. Although the release of aromatic compounds from plant biomass by fungi has been studied extensively, relatively little attention has been given to the metabolic pathways that convert the resulting aromatic monomers. In this review we provide an overview of the aromatic components of plant biomass, and their release and conversion by fungi. Finally, we will summarize the applications of fungal systems related to plant aromatics. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Characterisation and treatment of VOCs in process water from upgrading facilities for compressed biogas (CBG).

    PubMed

    Nilsson Påledal, S; Arrhenius, K; Moestedt, J; Engelbrektsson, J; Stensen, K

    2016-02-01

    Compression and upgrading of biogas to vehicle fuel generates process water, which to varying degrees contains volatile organic compounds (VOCs) originating from the biogas. The compostion of this process water has not yet been studied and scientifically published and there is currently an uncertainty regarding content of VOCs and how the process water should be managed to minimise the impact on health and the environment. The aim of the study was to give an overview about general levels of VOCs in the process water. Characterisation of process water from amine and water scrubbers at plants digesting waste, sewage sludge or agricultural residues showed that both the average concentration and composition of particular VOCs varied depending on the substrate used at the biogas plant, but the divergence was high and the differences for total concentrations from the different substrate groups were only significant for samples from plants using waste compared to residues from agriculture. The characterisation also showed that the content of VOCs varied greatly between different sampling points for same main substrate and between sampling occasions at the same sampling point, indicating that site-specific conditions are important for the results which also indicates that a number of analyses at different times are required in order to make an more exact characterisation with low uncertainty. Inhibition of VOCs in the anaerobic digestion (AD) process was studied in biomethane potential tests, but no inhibition was observed during addition of synthetic process water at concentrations of 11.6 mg and 238 mg VOC/L. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Impact of post-infiltration soil aeration at different growth stages of sub-surface trickle-irrigated tomato plants

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Jia, Zong-xia; Niu, Wen-Quan; Wang, Jing-wei

    2016-07-01

    Sensitivity to low rhizosphere soil aeration may change over time and therefore plant response may also depend on different growth stages of a crop. This study quantified effects of soil aeration during 5 different periods, on growth and yield of trickle-irrigated potted single tomato plants. Irrigation levels were 0.6 to 0.7 (low level) or 0.7 to 0.8 (high level) of total water holding capacity of the pots. Soil was aerated by injecting 2.5 l of air into each pot through the drip tubing immediately after irrigation. Fresh fruit yield, above ground plant dry weight, plant height, and leaf area index response to these treatments were measured. For all these 4 response variables, means of post-infiltration aeration between 58 to 85 days after sowing were 13.4, 43.5, 13.7, and 37.7% higher than those for the non-aerated pots, respectively. The results indicated that: post-infiltration soil aeration can positively impact the yield and growth of sub-surface trickle-irrigated potted tomato plants; positive effects on plant growth can be obtained with aeration during the whole growth period or with aeration for partial periods; positive growth effects of partial periods of aeration appears to persist and result in yield benefit.

  1. Ecological and population genetics of locally rare plants: A review

    Treesearch

    Simon A. Lei

    2001-01-01

    Plant species with limited dispersal ability, narrow geographical and physiological tolerance ranges, as well as with specific habitat and ecological requirements are likely to be rare. Small and isolated populations and species contain low levels of within-population genetic variation in many plant species. The gene pool of plants is a product of phenotype-environment...

  2. Dynamics of organochlorine contaminants in surface water and in Myriophyllum aquaticum plants of the River Xanaes in central Argentina during the annual dry season.

    PubMed

    Schreiber, René; Harguinteguy, Carlos A; Manetti, Martin D

    2013-10-01

    The dynamics of organochlorine pesticides (OCPs) and their major metabolites were studied in surface waters and plants of the River Xanaes (province of Córdoba, Argentina) during the annual dry season. The results of the 5-month monitoring study (April to August 2010) showed similar low contamination levels in nonagricultural mountain and agricultural areas in both water and plants. The concentrations of compounds detected in the surface water were <4.5 ng L(-1), whereas concentrations of these substances in Myriophyllum aquaticum plants were <5 μg kg(-1) (dry weight) with the exception of trans-permethrin (17.6 μg kg(-1), dry weight). Because no notable differences in the contamination level between samples from the mountain and the agricultural area were observed, it was assumed that OCPs may not play an important role in today's pesticide use in this area. Furthermore, the concentration-time trends for OCPs in the submerged plants showed a generally similar elimination behaviour independent of compound and sampling site, thus indicating an integral rather then a substance-specific process, such as partitioning between the plant and the ambient water. As known, rooted macrophytes can take up contaminants by way of roots, so sediments may be the principal source. To understand the dynamics of these compounds in the river area more deeply, thus further research should include study of the river sediment.

  3. Nitric oxide mitigates the effect of water deficit in Crambe abyssinica.

    PubMed

    Batista, Priscila Ferreira; Costa, Alan Carlos; Müller, Caroline; Silva-Filho, Robson de Oliveira; Barbosa da Silva, Fábia; Merchant, Andrew; Mendes, Giselle Camargo; Nascimento, Kelly Juliane Telles

    2018-06-12

    Crambe abyssinica is widely cultivated in the off-season in the Midwest region of Brazil with great potential for biodeisel production. Low precipitation is characteristic of this region, which can drastically affect the productivity of C. abyssinica. Signaling molecules, such as nitric oxide (NO), can potentially alleviate the effects of water stress on plants. Here we test whether nitric oxide, applied by donor sodium nitroprusside (SNP), can alleviate the occurrence of water deficit damages in Crambe plants and maintain physiological and biochemical processes. Crambe plants were sprayed with three doses of SNP (0, 75, and 150 μM) and were submitted to two water levels (100% and 50% of the maximum water holding capacity). After 32 and 136 h, leaves were analyzed to evaluate the concentration of NO, water relations, gas exchange, chlorophyll a fluorescence, chloroplastidic pigments, proline, malondialdehyde, hydrogen peroxide, superoxide anions, and the antioxidant enzymes activity. Application of SNP allowed the maintenance of gas exchange, chlorophyll fluorescence parameters, and activities of antioxidant enzymes in plants exposed to water deficit, as well as increased the concentration of NO, proline, chloroplastidic pigments and osmotic potential. The application of SNP also decreased the concentration of malondialdehyde and reactive oxygen species in plants submitted to water deficit. Thus, the application of SNP prevented the occurrence of symptoms of water deficit in Crambe plants, maintaining the physiological and biochemical responses at reference levels, even under stress conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease.

    PubMed

    Gylling, Helena; Plat, Jogchum; Turley, Stephen; Ginsberg, Henry N; Ellegård, Lars; Jessup, Wendy; Jones, Peter J; Lütjohann, Dieter; Maerz, Winfried; Masana, Luis; Silbernagel, Günther; Staels, Bart; Borén, Jan; Catapano, Alberico L; De Backer, Guy; Deanfield, John; Descamps, Olivier S; Kovanen, Petri T; Riccardi, Gabriele; Tokgözoglu, Lale; Chapman, M John

    2014-02-01

    This EAS Consensus Panel critically appraised evidence relevant to the benefit to risk relationship of functional foods with added plant sterols and/or plant stanols, as components of a healthy lifestyle, to reduce plasma low-density lipoprotein-cholesterol (LDL-C) levels, and thereby lower cardiovascular risk. Plant sterols/stanols (when taken at 2 g/day) cause significant inhibition of cholesterol absorption and lower LDL-C levels by between 8 and 10%. The relative proportions of cholesterol versus sterol/stanol levels are similar in both plasma and tissue, with levels of sterols/stanols being 500-/10,000-fold lower than those of cholesterol, suggesting they are handled similarly to cholesterol in most cells. Despite possible atherogenicity of marked elevations in circulating levels of plant sterols/stanols, protective effects have been observed in some animal models of atherosclerosis. Higher plasma levels of plant sterols/stanols associated with intakes of 2 g/day in man have not been linked to adverse effects on health in long-term human studies. Importantly, at this dose, plant sterol/stanol-mediated LDL-C lowering is additive to that of statins in dyslipidaemic subjects, equivalent to doubling the dose of statin. The reported 6-9% lowering of plasma triglyceride by 2 g/day in hypertriglyceridaemic patients warrants further evaluation. Based on LDL-C lowering and the absence of adverse signals, this EAS Consensus Panel concludes that functional foods with plant sterols/stanols may be considered 1) in individuals with high cholesterol levels at intermediate or low global cardiovascular risk who do not qualify for pharmacotherapy, 2) as an adjunct to pharmacologic therapy in high and very high risk patients who fail to achieve LDL-C targets on statins or are statin- intolerant, 3) and in adults and children (>6 years) with familial hypercholesterolaemia, in line with current guidance. However, it must be acknowledged that there are no randomised, controlled clinical trial data with hard end-points to establish clinical benefit from the use of plant sterols or plant stanols. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  5. Gamma irradiation to improve plant vigour, grain development, and yield attributes of wheat

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder; Datta, P. S.

    2010-02-01

    Utilizing low dose gamma radiation holds promise for physiological crop improvement. Seed treatment of low dose gamma radiation 0.01-0.10 kGy reduced plant height, improved plant vigour, flag leaf area, total and number of EBT. Gamma irradiation increased grain yield due to an increase in number of EBT and grain number while 1000 grain weight was negatively affected. Further uniformity in low dose radiation response in wheat in the field suggests that the affect is essentially at physiological than at genetic level and that role of growth hormones could be crucial.

  6. Dental calculus reveals unique insights into food items, cooking and plant processing in prehistoric central Sudan.

    PubMed

    Buckley, Stephen; Usai, Donatella; Jakob, Tina; Radini, Anita; Hardy, Karen

    2014-01-01

    Accessing information on plant consumption before the adoption of agriculture is challenging. However, there is growing evidence for use of locally available wild plants from an increasing number of pre-agrarian sites, suggesting broad ecological knowledge. The extraction of chemical compounds and microfossils from dental calculus removed from ancient teeth offers an entirely new perspective on dietary reconstruction, as it provides empirical results on material that is already in the mouth. Here we present a suite of results from the multi-period Central Sudanese site of Al Khiday. We demonstrate the ingestion in both pre-agricultural and agricultural periods of Cyperus rotundus tubers. This plant is a good source of carbohydrates and has many useful medicinal and aromatic qualities, though today it is considered to be the world's most costly weed. Its ability to inhibit Streptococcus mutans may have contributed to the unexpectedly low level of caries found in the agricultural population. Other evidence extracted from the dental calculus includes smoke inhalation, dry (roasting) and wet (heating in water) cooking, a second plant possibly from the Triticaceae tribe and plant fibres suggestive of raw material preparation through chewing.

  7. Dental Calculus Reveals Unique Insights into Food Items, Cooking and Plant Processing in Prehistoric Central Sudan

    PubMed Central

    Buckley, Stephen; Usai, Donatella; Jakob, Tina; Radini, Anita; Hardy, Karen

    2014-01-01

    Accessing information on plant consumption before the adoption of agriculture is challenging. However, there is growing evidence for use of locally available wild plants from an increasing number of pre-agrarian sites, suggesting broad ecological knowledge. The extraction of chemical compounds and microfossils from dental calculus removed from ancient teeth offers an entirely new perspective on dietary reconstruction, as it provides empirical results on material that is already in the mouth. Here we present a suite of results from the multi-period Central Sudanese site of Al Khiday. We demonstrate the ingestion in both pre-agricultural and agricultural periods of Cyperus rotundus tubers. This plant is a good source of carbohydrates and has many useful medicinal and aromatic qualities, though today it is considered to be the world's most costly weed. Its ability to inhibit Streptococcus mutans may have contributed to the unexpectedly low level of caries found in the agricultural population. Other evidence extracted from the dental calculus includes smoke inhalation, dry (roasting) and wet (heating in water) cooking, a second plant possibly from the Triticaceae tribe and plant fibres suggestive of raw material preparation through chewing. PMID:25028938

  8. Phytoremediation of soils contaminated with toxic elements and radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornish, J.E.; Goldberg, W.C.; Levine, R.S.

    1995-12-31

    At many US Department of Energy (US DOE) facilities and other sites, surface soils over relatively large areas are contaminated with heavy metals, radionuclides, and other toxic elements, often at only a relatively small factor above regulatory action levels. Cleanup of such sites presents major challenges, because currently available soil remediation technologies can be very expensive. In response, the US DOE`s Office of Technology Development, through the Western Environmental Technology Office, is sponsoring research in the area of phytoremediation. Phytoremediation is an emerging technology that uses higher plants to transfer toxic elements and radionuclides from surface soils into aboveground biomass.more » Some plants, termed hyperaccumulators, take up toxic elements in substantial amounts, resulting in concentrations in aboveground biomass over 100 times those observed with conventional plants. After growth, the plant biomass is harvested, and the toxic elements are concentrated and reclaimed or disposed of. As growing, harvesting, and processing plant biomass is relatively inexpensive, phytoremediation can be a low-cost technology for remediation of extensive areas having lightly to moderately contaminated soils. This paper reviews the potential of hyper- and moderate accumulator plants in soil remediation, provides some comparative cost estimates, and outlines ongoing work initiated by the US DOE.« less

  9. Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells

    PubMed Central

    Malhotra, Karan; Subramaniyan, Mayavan; Rawat, Khushboo; Kalamuddin, Md.; Qureshi, M. Irfan; Malhotra, Pawan; Mohmmed, Asif; Cornish, Katrina; Daniell, Henry; Kumar, Shashi

    2017-01-01

    Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (~0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants. PMID:27773616

  10. [MYB-like transcription factor SiMYB42 from foxtail millet (Setaria italica L.) enhances Arabidopsis tolerance to low-nitrogen stress].

    PubMed

    Ding, Qing Qian; Wang, Xiao Ting; Hu, Li Qin; Qi, Xin; Ge, Lin Hao; Xu, Wei Ya; Xu, Zhao Shi; Zhou, Yong Bin; Jia, Guan Qing; Diao, Xian Min; Min, Dong Hong; Ma, You Zhi; Chen, Ming

    2018-04-20

    Myeloblastosis (MYB) transcription factors are one of the largest families of transcription factors in higher plants. They play an important role in plant development, defense response processes, and non-biological stresses, i.e., drought stress. Foxtail millet (Setaria italica L.), originated in China, is resistant to drought and low nutrition stresses and has been regarded as an ideal material for studying abiotic stress resistance in monocotyledon. In this study, we ran a transcription profile analysis of zheng 204 under low-nitrogen conditions and identified a MYB-like transcription factor SiMYB42, which was up-regulated under low-nitrogen stress. Phylogenetic tree analysis showed that SiMYB42 belongs to R2R3-MYB subfamily and has two MYB conserved domains. Expression pattern analysis showed that SiMYB42 was significantly up-regulated under various stress conditions, including low-nitrogen stress, high salt, drought and ABA conditions. The results of subcellular localization, quantitative real-time PCR and transcriptional activation analysis indicated that SiMYB42 protein localizes to the nucleus and cell membrane of plant cells, mainly expressed in the leaf or root of foxtail millet, and has transcription activation activity. Functional analysis showed that there was no significant difference between transgenic SiMYB42 Arabidopsis and wild-type (WT) Arabidopsis under normal conditions; however, under low-nitrogen condition, the root length, surface area and seedling fresh weight in transgenic SiMYB42 Arabidopsis, were significantly higher than their counterparts in WT. These results suggest that SiMYB42 transgenic plants exhibit higher tolerance to low-nitrogen stress. Expression levels of nitrate transporters genes NRT2.1, NRT2.4 and NRT2.5, which are the transcriptional targets of SiMYB42, were higher in transgenic SiMYB42 Arabidopsis plants than those in WT; the promoter regions of NRT2.1, NRT2.4 and NRT2.5 all have MYB binding sites. These results indicate that SiMYB42 might enhance foxtail millet tolerance to low-nitrogen condition through regulating the expression of nitrate transporter genes. This study reveals the possible functions of SiMYB42 in a low-nitrogen stress response pathway, and provides a foundation for further understanding the entire regulation network of foxtail millet in response to low-nitrogen stress.

  11. High-yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: Process development.

    PubMed

    Zhang, Ningning; Gonzalez, Maria; Savary, Brett; Xu, Jianfeng

    2016-03-01

    Low-yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline-O-glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY-2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of "Ser-Pro" dipeptide, or (SP)32 , to study cell growth and protein secretion, culture scale-up, and establishment of perfusion cultures for continuous production. The BY-2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32 -tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY-2 cells cultured in a 5-L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day(-1) , generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Photosynthesis sensitivity to climate change in land surface models

    NASA Astrophysics Data System (ADS)

    Manrique-Sunen, Andrea; Black, Emily; Verhoef, Anne; Balsamo, Gianpaolo

    2016-04-01

    Accurate representation of vegetation processes within land surface models is key to reproducing surface carbon, water and energy fluxes. Photosynthesis determines the amount of CO2 fixated by plants as well as the water lost in transpiration through the stomata. Photosynthesis is calculated in land surface models using empirical equations based on plant physiological research. It is assumed that CO2 assimilation is either CO2 -limited, radiation -limited ; and in some models export-limited (the speed at which the products of photosynthesis are used by the plant) . Increased levels of atmospheric CO2 concentration tend to enhance photosynthetic activity, but the effectiveness of this fertilization effect is regulated by environmental conditions and the limiting factor in the photosynthesis reaction. The photosynthesis schemes at the 'leaf level' used by land surface models JULES and CTESSEL have been evaluated against field photosynthesis observations. Also, the response of photosynthesis to radiation, atmospheric CO2 and temperature has been analysed for each model, as this is key to understanding the vegetation response that climate models using these schemes are able to reproduce. Particular emphasis is put on the limiting factor as conditions vary. It is found that while at present day CO2 concentrations export-limitation is only relevant at low temperatures, as CO2 levels rise it becomes an increasingly important restriction on photosynthesis.

  13. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism1[OPEN

    PubMed Central

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-01-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  14. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves

    PubMed Central

    Vanhercke, Thomas; El Tahchy, Anna; Liu, Qing; Zhou, Xue-Rong; Shrestha, Pushkar; Divi, Uday K; Ral, Jean-Philippe; Mansour, Maged P; Nichols, Peter D; James, Christopher N; Horn, Patrick J; Chapman, Kent D; Beaudoin, Frederic; Ruiz-López, Noemi; Larkin, Philip J; de Feyter, Robert C; Singh, Surinder P; Petrie, James R

    2014-01-01

    High biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co-expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild-type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil-processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications. PMID:24151938

  15. Low-Dissolved-Oxygen Nitrifying Systems Exploit Ammonia-Oxidizing Bacteria with Unusually High Yields▿

    PubMed Central

    Bellucci, Micol; Ofiţeru, Irina D.; Graham, David W.; Head, Ian M.; Curtis, Thomas P.

    2011-01-01

    In wastewater treatment plants, nitrifying systems are usually operated with elevated levels of aeration to avoid nitrification failures. This approach contributes significantly to operational costs and the carbon footprint of nitrifying wastewater treatment processes. In this study, we tested the effect of aeration rate on nitrification by correlating ammonia oxidation rates with the structure of the ammonia-oxidizing bacterial (AOB) community and AOB abundance in four parallel continuous-flow reactors operated for 43 days. Two of the reactors were supplied with a constant airflow rate of 0.1 liter/min, while in the other two units the airflow rate was fixed at 4 liters/min. Complete nitrification was achieved in all configurations, though the dissolved oxygen (DO) concentration was only 0.5 ± 0.3 mg/liter in the low-aeration units. The data suggest that efficient performance in the low-DO units resulted from elevated AOB levels in the reactors and/or putative development of a mixotrophic AOB community. Denaturing gel electrophoresis and cloning of AOB 16S rRNA gene fragments followed by sequencing revealed that the AOB community in the low-DO systems was a subset of the community in the high-DO systems. However, in both configurations the dominant species belonged to the Nitrosomonas oligotropha lineage. Overall, the results demonstrated that complete nitrification can be achieved at low aeration in lab-scale reactors. If these findings could be extended to full-scale plants, it would be possible to minimize the operational costs and greenhouse gas emissions without risk of nitrification failure. PMID:21926211

  16. Method for cold stable biojet fuel

    DOEpatents

    Seames, Wayne S.; Aulich, Ted

    2015-12-08

    Plant or animal oils are processed to produce a fuel that operates at very cold temperatures and is suitable as an aviation turbine fuel, a diesel fuel, a fuel blendstock, or any fuel having a low cloud point, pour point or freeze point. The process is based on the cracking of plant or animal oils or their associated esters, known as biodiesel, to generate lighter chemical compounds that have substantially lower cloud, pour, and/or freeze points than the original oil or biodiesel. Cracked oil is processed using separation steps together with analysis to collect fractions with desired low temperature properties by removing undesirable compounds that do not possess the desired temperature properties.

  17. 78 FR 49831 - Endangered and Threatened Wildlife and Plants; Proposed Designation of Critical Habitat for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Service (NPS) for the Florida leafwing and the pine rockland ecosystem, in general. Sea Level Rise... habitat. In the best case scenario, which assumes low sea level rise, high financial resources, proactive... human population. In the worst case scenario, which assumes high sea level rise, low financial resources...

  18. Numerical Research of Nitrogen Oxides Formation for Justification of Modernization of P-49 Nazarovsky State District Power Plant Boiler on the Low-temperature Swirl Technology of Burning

    NASA Astrophysics Data System (ADS)

    Trinchenko, A. A.; Paramonov, A. P.; Skouditskiy, V. E.; Anoshin, R. G.

    2017-11-01

    Compliance with increasingly stringent normative requirements to the level of pollutants emissions when using organic fuel in the energy sector as a main source of heat, demands constant improvement of the boiler and furnace equipment and the power equipment in general. The requirements of the current legislation in the field of environmental protection prescribe compliance with established emission standards for both new construction and the improvement of energy equipment. The paper presents the results of numerical research of low-temperature swirl burning in P-49 Nazarovsky state district power plant boiler. On the basis of modern approaches of the diffusion and kinetic theory of burning and the analysis physical and chemical processes of a fuel chemically connected energy transition in thermal, generation and transformation of gas pollutants, the technological method of nitrogen oxides decomposition on the surface of carbon particles with the formation of environmentally friendly carbonic acid and molecular nitrogen is considered during the work of low-temperature swirl furnace. With the use of the developed model, methodology and computer program, variant calculations of the combustion process were carried out and a quantitative estimate of the emission level of the nitrogen oxides of the boiler being modernized. The simulation results the and the experimental data obtained during the commissioning and balance tests of the P-49 boiler with a new furnace are confirmed that the organization of swirl combustion has allowed to increase the efficiency of work, to reduce slagging, to significantly reduce nitrogen oxide emissions, to improve ignition and burnout of fuel.

  19. Plant experiments with light-emitting diode module in Svet space greenhouse

    NASA Astrophysics Data System (ADS)

    Ilieva, Iliana; Ivanova, Tania; Naydenov, Yordan; Dandolov, Ivan; Stefanov, Detelin

    2010-10-01

    Light is necessary for photosynthesis and shoot orientation in the space plant growth facilities. Light modules (LM) must provide sufficient photosynthetic photon flux for optimal efficiency of photosynthetic processes and also meet the constraints for power, volume and mass. A new LM for Svet space greenhouse using Cree® XLamp® 7090 XR light-emitting diodes (LEDs) was developed. Monochromic LEDs emitting in the red, green, and blue regions of the spectrum were used. The LED-LM contains 36 LED spots - 30 LED spots with one red, green and blue LED and 6 LED spots with three red LEDs. Digital Multiplex Control Unit controls the LED spots and can set 231 levels of light intensity thus achieving Photosynthetic Photon Flux Density (PPFD) in the range 0-400 μmol m -2 s -1 and different percentages of the red, green and blue light, depending on the experimental objectives. Two one-month experiments with plants - lettuce and radicchio were carried out at 400 μmol m -2 s -1 PPFD (high light - HL) and 220 μmol m -2 s -1 PPFD (low light - LL) and 70% red, 20% green and 10% blue light composition. To evaluate the efficiency of photosynthesis, in vivo modulated chlorophyll fluorescence was measured by Pulse Amplitude Modulation (PAM) fluorometer on leaf discs and the following parameters: effective quantum yield of Photosystem II ( ΦPSII) and non-photochemical quenching (NPQ) were calculated. Both lettuce and radicchio plants grown at LL express higher photochemical activity of Photosystem II (PSII) than HL grown plants, evaluated by ΦPSII. Accelerated rise in NPQ in both LL grown plants was observed, while steady state NPQ values were higher in LL grown lettuce plants and did not differ in LL and HL grown radicchio plants. The extent of photoinhibition process in both plants was evaluated by changes in malonedialdehyde (MDA) concentration, peroxidase (POX) activity and hydrogen peroxide (H 2O 2) content. Accumulation of high levels of MDA and increased POX activity correlating with decreased H 2O 2 content were observed in both HL grown plants. These biochemical indicators revealed higher sensitivity to photodamage in HL grown lettuce and radicchio plants. LL conditions resulted in more effective functioning of PSII than HL when lettuce and radicchio plants were grown at 70% red, 20% green and 10% blue light composition.

  20. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture.

    PubMed

    Kiba, Takatoshi; Krapp, Anne

    2016-04-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  1. Awareness and Perception of Plant-Based Diets for the Treatment and Management of Type 2 Diabetes in a Community Education Clinic: A Pilot Study

    PubMed Central

    Lee, Vincent; McKay, Taylor; Ardern, Chris I.

    2015-01-01

    Objective. To assess awareness, barriers, and promoters of plant-based diet use for management of type 2 diabetes (T2D) for the development of an appropriate educational program. Design. Cross-sectional study of patients and healthcare providers. Setting. Regional Diabetes Education Centre in ON, Canada. Participants. n = 98 patients attending the Diabetes Education Centre and n = 25 healthcare providers. Variables Measures. Patient questionnaires addressed demographics, health history, and eating patterns, as well as current knowledge, confidence levels, barriers to, promoters of, and interests in plant-based diets. Staff questionnaires addressed attitudes and current practice with respect to plant-based diets. Analysis. Mean values, frequency counts, and logistic regression (alpha = 0.05). Results. Few respondents (9%) currently followed a plant-based diet, but 66% indicated willingness to follow one for 3 weeks. Family eating preferences and meal planning skills were common barriers to diet change. 72% of healthcare providers reported knowledge of plant-based diets for diabetes management but low levels of practice. Conclusions and Implications. Patient awareness of the benefits of a plant-based diet for the management of diabetes remains suboptimal and may be influenced by perception of diabetes educators and clinicians. Given the reported willingness to try (but low current use of) plant-based diets, educational interventions targeting patient and provider level knowledge are warranted. PMID:25802755

  2. Study on ammonia slip detection in the harsh combustion environments using diode laser spectroscopy

    NASA Astrophysics Data System (ADS)

    You, Kun; Zhang, Yu-jun; Li, Hong-bin; He, Yin; Gao, Yan-wei; Wang, Li-ming; Liu, Wen-qing

    2016-10-01

    The emissions of NOX from Cement plant or Coal-fired power plant have serious pollution to the environment. In recent years, Selective Catalytic Reduction (SCR) is an effective means of reducing the emissions of NOX by injecting ammonia into the combustion flue gas, which ideally reacts with the NOX to produce harmless components (H2O and N2). The efficiency of SCR is determined by monitoring the ammonia slip of the flue exhaust outlet, excess ammonia injection can cause ammonia slip, which not only destroy the plant, but also increase the operating costs. In addition, ammonia is also pollution gases as NOX. The flue gas at the measurement point is high temperature, vibrate and high particle density processes in Cement plant primarily, such harsh conditions coupled with the highly reactive nature of ammonia, so it is difficult to reliable extractive low level analysis. The paper describes an in-situ Tunable Diode Laser analyzer for measuring ammonia slip in the combustion flue gas after SCR in Cement Plant or Coal-fired power plant. A correlation filtering algorithm is developed to select high-quality spectral absorption signal, which improve the accuracy of concentration inversion of analyzer. The paper also includes field test data on an actual Cement plant all day, and we compare the ammonia slip and NOX emissions of flue gas during actual production process, the results indicate that the measured values of the ammonia slip and NOX emissions present a good correlation and comply with the principle of SCR.

  3. The impact of plant biotechnology on food allergy.

    PubMed

    Herman, Eliot M; Burks, A Wesley

    2011-04-01

    Concerns about food allergy and its societal growth are intertwined with the growing advances in plant biotechnology. The knowledge of plant genes and protein structures provides the key foundation to understanding biochemical processes that produce food allergy. Biotechnology offers the prospect of producing low-allergen or allergen null plants that could mitigate the allergic response. Modified low-IgE binding variants of allergens could be used as a vaccine to build immunotolerance in sensitive individuals. The potential to introduce new allergens into the food supply by biotechnology products is a regulatory concern. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Analysis of Cryogenic Cycle with Process Modeling Tool: Aspen HYSYS

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.; Patel, H. K.

    2015-10-01

    Cryogenic engineering deals with the development and improvement of low temperature techniques, processes and equipment. A process simulator such as Aspen HYSYS, for the design, analysis, and optimization of process plants, has features that accommodate the special requirements and therefore can be used to simulate most cryogenic liquefaction and refrigeration processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Cryogenic processes require special attention in terms of the integration of various components like heat exchangers, Joule-Thompson Valve, Turbo expander and Compressor. Here, Aspen HYSYS, a process modeling tool, is used to understand the behavior of the complete plant. This paper presents the analysis of an air liquefaction plant based on the Linde cryogenic cycle, performed using the Aspen HYSYS process modeling tool. It covers the technique used to find the optimum values for getting the maximum liquefaction of the plant considering different constraints of other parameters. The analysis result so obtained gives clear idea in deciding various parameter values before implementation of the actual plant in the field. It also gives an idea about the productivity and profitability of the given configuration plant which leads to the design of an efficient productive plant.

  5. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants

    PubMed Central

    Xu, Peng; Xiao, En-Rong; Xu, Dan; Zhou, Yin; He, Feng; Liu, Bi-Yun; Zeng, Lei; Wu, Zhen-Bin

    2017-01-01

    Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o), closed-circuit (SMFC-c), aquatic plants with open-circuit (P-SMFC-o) and aquatic plants with closed-circuit (P-SMFC-c). The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the sediments under closed-circuit. The coupled P-SMFC system has shown good potential for the efficient removal of internal nitrogen. PMID:28241072

  6. Internal nitrogen removal from sediments by the hybrid system of microbial fuel cells and submerged aquatic plants.

    PubMed

    Xu, Peng; Xiao, En-Rong; Xu, Dan; Zhou, Yin; He, Feng; Liu, Bi-Yun; Zeng, Lei; Wu, Zhen-Bin

    2017-01-01

    Sediment internal nitrogen release is a significant pollution source in the overlying water of aquatic ecosystems. This study aims to remove internal nitrogen in sediment-water microcosms by coupling sediment microbial fuel cells (SMFCs) with submerged aquatic plants. Twelve tanks including four treatments in triplicates were designed: open-circuit (SMFC-o), closed-circuit (SMFC-c), aquatic plants with open-circuit (P-SMFC-o) and aquatic plants with closed-circuit (P-SMFC-c). The changes in the bio-electrochemical characteristics of the nitrogen levels in overlying water, pore water, sediments, and aquatic plants were documented to explain the migration and transformation pathways of internal nitrogen. The results showed that both electrogenesis and aquatic plants could facilitate the mineralization of organic nitrogen in sediments. In SMFC, electrogenesis promoted the release of ammonium from the pore water, followed by the accumulation of ammonium and nitrate in the overlying water. The increased redox potential of sediments due to electrogenesis also contributed to higher levels of nitrate in overlying water when nitrification in pore water was facilitated and denitrification at the sediment-water interface was inhibited. When the aquatic plants were introduced into the closed-circuit SMFC, the internal ammonium assimilation by aquatic plants was advanced by electrogenesis; nitrification in pore water and denitrification in sediments were also promoted. These processes might result in the maximum decrease of internal nitrogen with low nitrogen levels in the overlying water despite the lower power production. The P-SMFC-c reduced 8.1%, 16.2%, 24.7%, and 25.3% of internal total nitrogen compared to SMFC-o on the 55th, 82th, 136th, and 190th days, respectively. The smaller number of Nitrospira and the larger number of Bacillus and Pseudomonas on the anodes via high throughput sequencing may account for strong mineralization and denitrification in the sediments under closed-circuit. The coupled P-SMFC system has shown good potential for the efficient removal of internal nitrogen.

  7. Identification of Arabidopsis mutants with altered freezing tolerance.

    PubMed

    Perea-Resa, Carlos; Salinas, Julio

    2014-01-01

    Low temperature is an important determinant in the configuration of natural plant communities and defines the range of distribution and growth of important crops. Some plants, including Arabidopsis, have evolved sophisticated adaptive mechanisms to tolerate low and freezing temperatures. Central to this adaptation is the process of cold acclimation. By means of this process, many plants from temperate regions are able to develop or increase their freezing tolerance in response to low, nonfreezing temperatures. The identification and characterization of factors involved in freezing tolerance are crucial to understand the molecular mechanisms underlying the cold acclimation response and have a potential interest to improve crop tolerance to freezing temperatures. Many genes implicated in cold acclimation have been identified in numerous plant species by using molecular approaches followed by reverse genetic analysis. Remarkably, however, direct genetic analyses have not been conveniently exploited in their capacity for identifying genes with pivotal roles in that adaptive response. In this chapter, we describe a protocol for evaluating the freezing tolerance of both non-acclimated and cold-acclimated Arabidopsis plants. This protocol allows the accurate and simple screening of mutant collections for the identification of novel factors involved in freezing tolerance and cold acclimation.

  8. The responses of cucumber plants subjected to different salinity or fertilizer concentrations and reproductive success of Tetranychus urticae mites on these plants.

    PubMed

    Khodayari, Samira; Abedini, Fatemeh; Renault, David

    2018-05-01

    The plant stress hypothesis posits that a herbivore's reproductive success increases when it feeds on stressed plants, while the plant vigor hypothesis predicts that a herbivore preferentially feeds on more vigorous plants. We examined these opposing hypotheses by growing spider mites (Tetranychus urticae) on the leaves of stressed and healthy (vigorous) cucumber plants. Host plants were grown under controlled conditions at low, moderate, and high concentrations of NaCl (to induce salinity stress), at low, moderate, and high fertilizer concentrations (to support growth), and without these additions (control). The effects of these treatments were evaluated by measuring fresh and dry plant biomass, carotenoid and chlorophyll content, antioxidant enzyme activity, and concentrations of PO 4 3- , K + , and Na + in plant tissues. The addition of low concentrations of fertilizer increased dry mass, protein, and carotenoid content relative to controls, suggesting a beneficial effect on plants. The highest NaCl treatment (2560 mg L -1 ) resulted in increased Na + and protein content relative to control plants, as well as reduced PO 4 3- , K + , and chlorophyll levels and reduced catalase and ascorbate peroxidase enzyme activity levels. Analysis of life table data of T. urticae mites raised on leaves from the aforementioned plant groups showed the intrinsic rate of increase (r) for mites was 0.167 day -1 in control specimens, 0.125 day -1 for mites reared on plants treated with a moderate concentration of fertilizer (10 mL L -1 ), and was highest (0.241 day -1 ) on plants grown under moderate salinity conditions (1920 mg L -1 NaCl). Reproductive success of T. urticae did not differ on plants watered with a moderate concentration of NaCl or a high concentration of fertilizer. The moderately-stressed plants formed a favorable environment for the development and reproduction of spider mites, supporting the plant stress hypothesis.

  9. Responses of C4 grasses to atmospheric CO2 enrichment : I. Effect of irradiance.

    PubMed

    Sionit, Nasser; Patterson, David T

    1984-12-01

    The growth and photosynethetic responses to atmospheric CO 2 enrichment of 4 species of C 4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO 2 enrichment would yield proportionally greater growth enhancement in the C 4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 μl 1 -1 CO 2 and 1,000 or 150 μmol m -2 s -1 photosynthetic photon flux density (PPFD). An increase in CO 2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO 2 . Plants grown in CO 2 -enriched atmosphere had lower photosynthetic capacity relative to the low CO 2 grown plants when exposed to lower CO 2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO 2 compensation point for photosynthesis.

  10. Leaves of field-grown mastic trees suffer oxidative stress at the two extremes of their lifespan.

    PubMed

    Juvany, Marta; Müller, Maren; Munné-Bosch, Sergi

    2012-08-01

    Leaf senescence is a complex phenomenon occurring in all plant species, but it is still poorly understood in plants grown in Mediterranean field conditions and well-adapted to harsh climatic conditions. To better understand the physiological processes underlying leaf senescence in mastic trees (Pistacia lentiscus L.), we evaluated leaf growth, water and N content, photosystem II (PSII) photochemistry, lipid peroxidation and levels of photosynthetic pigments, antioxidants, abscisic acid, and salicylic acid and jasmonic acid during the complete leaf lifespan, from early expansion to late senescence in relation to natural climatic conditions in the field. While mature leaves suffered from water and N deficit during late spring and summer, both young (emerging) and old (senescing) leaves were most sensitive to photo-oxidative stress, as indicated by reductions in the F(v)/F(m) ratio and enhanced lipid peroxidation during late autumn and winter. Reductions in the F(v)/F(m) ratio were associated with low α-tocopherol (vitamin E) levels, while very old, senescing leaves additionally showed severe anthocyanin losses. We have concluded that both young (emerging) and old (senescing) leaves suffer oxidative stress in mastic trees, which may be linked in part to suboptimal temperatures during late autumn and winter as well as to low vitamin E levels. © 2012 Institute of Botany, Chinese Academy of Sciences.

  11. The Application of Climate Risk Informed Decision Analysis to the Ioland Water Treatment Plant in Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Kucharski, John; Tkach, Mark; Olszewski, Jennifer; Chaudhry, Rabia; Mendoza, Guillermo

    2016-04-01

    This presentation demonstrates the application of Climate Risk Informed Decision Analysis (CRIDA) at Zambia's principal water treatment facility, The Iolanda Water Treatment Plant. The water treatment plant is prone to unacceptable failures during periods of low hydropower production at the Kafue Gorge Dam Hydroelectric Power Plant. The case study explores approaches of increasing the water treatment plant's ability to deliver acceptable levels of service under the range of current and potential future climate states. The objective of the study is to investigate alternative investments to build system resilience that might have been informed by the CRIDA process, and to evaluate the extra resource requirements by a bilateral donor agency to implement the CRIDA process. The case study begins with an assessment of the water treatment plant's vulnerability to climate change. It does so by following general principals described in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework". By utilizing relatively simple bootstrapping methods a range of possible future climate states is generated while avoiding the use of more complex and costly downscaling methodologies; that are beyond the budget and technical capacity of many teams. The resulting climate vulnerabilities and uncertainty in the climate states that produce them are analyzed as part of a "Level of Concern" analysis. CRIDA principals are then applied to this Level of Concern analysis in order to arrive at a set of actionable water management decisions. The principal goals of water resource management is to transform variable, uncertain hydrology into dependable services (e.g. water supply, flood risk reduction, ecosystem benefits, hydropower production, etc…). Traditional approaches to climate adaptation require the generation of predicted future climate states but do little guide decision makers how this information should impact decision making. In this context it is not surprising that the increased hydrologic variability and uncertainty produced by many climate risk analyses bedevil water resource decision making. The Climate Risk Informed Decision Analysis (CRIDA) approach builds on work found in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework" which provide guidance of vulnerability assessments. It guides practitioners through a "Level of Concern" analysis where climate vulnerabilities are analyzed to produce actionable alternatives and decisions.

  12. Transpiration, and Nitrogen Uptake and Flow in Two Maize (Zea mays L.) Inbred Lines as Affected by Nitrogen Supply

    PubMed Central

    Niu, Junfang; Chen, Fanjun; Mi, Guohua; Li, Chunjian; Zhang, Fusuo

    2007-01-01

    Background and Aims The influence of two nitrogen (N) levels on growth, water relations, and N uptake and flow was investigated in two different inbred lines of maize (N-efficient Zi330 and N-inefficient Chen94-11) to analyse the differences in N uptake and cycling within a plant. Methods Xylem sap from different leaves of the inbred lines cultured in quartz sand was collected by application of pressure to the root system. Plant transpiration was measured on a daily basis by weighing five pots of each of the treatments. Key Results N-efficient Zi330 had a higher relative growth rate and water-use efficiency at both high (4 mm) and low (0·08 mm) N levels. At a high N level, the amount of N taken up was similar for the two inbred lines; the amount of N transported in the xylem and retranslocated in the phloem was slight greater in Chen94-11 than in Zi330. At a low N level, however, the total amount of N taken up, transported in the xylem and retranslocated in the phloem of Zi330 was 2·2, 2·7 and 2·7 times more, respectively, than that of Chen94-11. Independent of inbred line and N level, the amounts of N transported in the xylem and cycled in the phloem were far more than that taken up by roots at the same time. Low N supply shifted NO3−1 reduction towards the roots. The major nitrogenous compound in the xylem sap was NO3−1, when plants grew at the high N level, while amino acid-N was predominant when plants grew at the low N level. Conclusions The N-efficient maize inbred line Zi330 had a higher ability to take up N and cycle N within the plant than N-inefficient Chen94-11 when grown under N-deficiency. PMID:17088295

  13. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture

    PubMed Central

    Kiba, Takatoshi; Krapp, Anne

    2016-01-01

    Nitrogen availability is a major factor determining plant growth and productivity. Plants acquire nitrogen nutrients from the soil through their roots mostly in the form of ammonium and nitrate. Since these nutrients are scarce in natural soils, plants have evolved adaptive responses to cope with the environment. One of the most important responses is the regulation of nitrogen acquisition efficiency. This review provides an update on the molecular determinants of two major drivers of the nitrogen acquisition efficiency: (i) uptake activity (e.g. high-affinity nitrogen transporters) and (ii) root architecture (e.g. low-nitrogen-availability-specific regulators of primary and lateral root growth). Major emphasis is laid on the regulation of these determinants by nitrogen supply at the transcriptional and post-transcriptional levels, which enables plants to optimize nitrogen acquisition efficiency under low nitrogen availability. PMID:27025887

  14. Low Quality Natural Gas Sulfur Removal and Recovery CNG Claus Sulfur Recovery Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klint, V.W.; Dale, P.R.; Stephenson, C.

    1997-10-01

    Increased use of natural gas (methane) in the domestic energy market will force the development of large non-producing gas reserves now considered to be low quality. Large reserves of low quality natural gas (LQNG) contaminated with hydrogen sulfide (H{sub 2}S), carbon dioxide (CO{sub 2}) and nitrogen (N) are available but not suitable for treatment using current conventional gas treating methods due to economic and environmental constraints. A group of three technologies have been integrated to allow for processing of these LQNG reserves; the Controlled Freeze Zone (CFZ) process for hydrocarbon / acid gas separation; the Triple Point Crystallizer (TPC) processmore » for H{sub 2}S / C0{sub 2} separation and the CNG Claus process for recovery of elemental sulfur from H{sub 2}S. The combined CFZ/TPC/CNG Claus group of processes is one program aimed at developing an alternative gas treating technology which is both economically and environmentally suitable for developing these low quality natural gas reserves. The CFZ/TPC/CNG Claus process is capable of treating low quality natural gas containing >10% C0{sub 2} and measurable levels of H{sub 2}S and N{sub 2} to pipeline specifications. The integrated CFZ / CNG Claus Process or the stand-alone CNG Claus Process has a number of attractive features for treating LQNG. The processes are capable of treating raw gas with a variety of trace contaminant components. The processes can also accommodate large changes in raw gas composition and flow rates. The combined processes are capable of achieving virtually undetectable levels of H{sub 2}S and significantly less than 2% CO in the product methane. The separation processes operate at pressure and deliver a high pressure (ca. 100 psia) acid gas (H{sub 2}S) stream for processing in the CNG Claus unit. This allows for substantial reductions in plant vessel size as compared to conventional Claus / Tail gas treating technologies. A close integration of the components of the CNG Claus process also allow for use of the methane/H{sub 2}S separation unit as a Claus tail gas treating unit by recycling the CNG Claus tail gas stream. This allows for virtually 100 percent sulfur recovery efficiency (virtually zero SO{sub 2} emissions) by recycling the sulfur laden tail gas to extinction. The use of the tail gas recycle scheme also deemphasizes the conventional requirement in Claus units to have high unit conversion efficiency and thereby make the operation much less affected by process upsets and feed gas composition changes. The development of these technologies has been ongoing for many years and both the CFZ and the TPC processes have been demonstrated at large pilot plant scales. On the other hand, prior to this project, the CNG Claus process had not been proven at any scale. Therefore, the primary objective of this portion of the program was to design, build and operate a pilot scale CNG Claus unit and demonstrate the required fundamental reaction chemistry and also demonstrate the viability of a reasonably sized working unit.« less

  15. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  16. Application of myostatin in sheep breeding programs: A review

    PubMed Central

    Miar, Younes; Salehi, Abdolreza; Kolbehdari, Davood; Aleyasin, Seyed Ahmad

    2014-01-01

    Plasma membrane H+-ATPase is a major integral membrane protein with a role in various physiological processes including abiotic stress response. To study the effect of NaCl on the expression pattern of a gene encoding the plasma membrane H+-ATPase, an experiment was carried out in a completely random design with three replications. A pair of specific primers was designed based on the sequence of the gene encoding plasma membrane H+-ATPase in Aeluropus littoralis to amplify a 259 bp fragment from the target gene by PCR. A gene encoding actin was used as reference gene to normalize the expression level of the target gene. A pair of specific primers was designed to amplify a 157 bp fragment from the actin gene by PCR. Plants were treated with different concentrations of NaCl, 0, 50, 100, 150, 200, 250, 500 and 1000 mM, for two days. Our results showed that the expression level of the plasma membrane H+-ATPase gene increased dramatically at 500 mM and then decreased with increasing concentrations of NaCl. The results also indicated that the leaves of plants, were treated with high concentrations of NaCl changed morphologically, but those grown under low concentrations of NaCl as well as the control plants did not show morphological changes in their leaves. Our results suggest a relation between morphological changes of treated plants and the expression level of the plasma membrane H+-ATPase gene in Aeluropus littoralis. PMID:27843975

  17. Land-use intensity and host plant simultaneously shape the composition of arbuscular mycorrhizal fungal communities in a Mediterranean drained peatland.

    PubMed

    Ciccolini, Valentina; Ercoli, Laura; Davison, John; Vasar, Martti; Öpik, Maarja; Pellegrino, Elisa

    2016-12-01

    Land-use change is known to be a major threat to biodiversity and ecosystem services in Mediterranean areas. However, the potential for different host plants to modulate the effect of land-use intensification on community composition of arbuscular mycorrhizal fungi (AMF) is still poorly understood. To test the hypothesis that low land-use intensity promotes AMF diversity at different taxonomic scales and to determine whether any response is dependent upon host plant species identity, we characterised AMF communities in the roots of 10 plant species across four land use types of differing intensity in a Mediterranean peatland system. AMF were identified using 454 pyrosequencing. This revealed an overall low level of AMF richness in the peaty soils; lowest AMF richness in the intense cropping system at both virtual taxa and family level; strong modulation by the host plant of the impact of land-use intensification on AMF communities at the virtual taxa level; and a significant effect of land-use intensification on AMF communities at the family level. These findings have implications for understanding ecosystem stability and productivity and should be considered when developing soil-improvement strategies in fragile ecosystems, such as Mediterranean peatlands. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions.

    PubMed

    Srivastava, Sudhakar; Bhainsa, K C

    2016-02-01

    The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Rhizoremediation of diesel-contaminated soil with two rapeseed varieties and petroleum degraders reveals different responses of the plant defense mechanisms.

    PubMed

    Wojtera-Kwiczor, Joanna; Zukowska, Weronika; Graj, Weronika; Małecka, Arleta; Piechalak, Aneta; Ciszewska, Liliana; Chrzanowski, Łukasz; Lisiecki, Piotr; Komorowicz, Izabela; Barałkiewicz, Danuta; Voss, Ingo; Scheibe, Renate; Tomaszewska, Barbara

    2014-01-01

    Plant-assisted bioremediation (rhizoremediation) stands out as a potential tool to inactivate or completely remove xenobiotics from the polluted environment. Therefore, it is of key importance to find an adequate combination of plant species and microorganisms that together enhance the clean-up process. To understand the response of plants upon bioaugmentation, the antioxidative and detoxification system was analyzed in high and low erucic acid rapeseed varieties (HEAR and LEAR, respectively), after 8 weeks of their treatment with petroleum degraders and 6000 mg diesel oil/kg dry soil. The oxidative stress was enhanced in LEAR being exposed to sole diesel oil, in comparison with HEAR. However, when LEAR plants were additionally inoculated with bacteria, suppression of total catalase (CAT) and ascorbate peroxidase (APX) activity were observed. Interestingly, glutathione transferase (GST) activity was found in these plants at a much higher level than in HEAR, which correlated with a more efficient diesel removal performed by LEAR in the polluted soil and upon bioaugmentation. A distinct profile of polycyclic aromatic hydrocarbons (PAH) was detected in leaves of these plants. Neither LEAR nor HEAR experienced any changes in the photosynthetic capacity upon diesel pollution and presence of petroleum degraders, which supports the usefulness of rhizoremediation with rapeseed.

  20. The Determination of Soil-plant Transfer Coefficients of Cesium-137 and Other Elements by γ-Ray Measurement and PIXE Analysis, for use in the Remediation of Fukushima

    NASA Astrophysics Data System (ADS)

    Ishii, K.; Fujita, A.; Toyama, S.; Terakawa, A.; Matsuyama, S.; Arai, H.; Osada, N.; Takyu, S.; Matsuyama, T.; Koshio, S.; Watanabe, K.; Ito, S.; Kasahara, K.

    Edible wild plants growing in the area around the Fukushima Daiichi nuclear power plant remain contaminated. It is important to identify plants with low levels of contamination for the restoration of agriculture in the area. We collected specimens of 10 wild plant species growing in Iitate village which is one of the most highly contaminated areas and also sampled the soil beneath each plant. We measured the specific activity of 137Cs and the concentrations of Na, Mg, Al, Si, P, S, K, Ca, Fe, Zn, Rb and Sr in these samples using a germanium detector and PIXE analysis, respectively. We compared the soil-plant transfer coefficient of 137Cs with those of each element and determined their correlation with 137Cs. It was found that a low Sr transfer coefficient could be used to determine the plants with a low 137Cs transfer coefficient. We suggest that PIXE analysis is a useful analysis technique for agricultural remediation projects in highly contaminated areas around the Fukushima Daiichi nuclear power plant.

  1. Improvement of water treatment pilot plant with Moringa oleifera extract as flocculant agent.

    PubMed

    Beltrán-Heredia, J; Sánchez-Martín, J

    2009-05-01

    Moringa oleifera extract is a high-capacity flocculant agent for turbidity removal in surface water treatment. A complete study of a pilot-plant installation has been carried out. Because of flocculent sedimentability of treated water, a residual turbidity occured in the pilot plant (around 30 NTU), which could not be reduced just by a coagulation-flocculation-sedimentation process. Because of this limitation, the pilot plant (excluded filtration) achieved a turbidity removal up to 70%. A slow sand filter was put in as a complement to installation. A clogging process was characterized, according to Carman-Kozeny's hydraulic hypothesis. Kozeny's k parameter was found to be 4.18. Through fouling stages, this k parameter was found to be up to 6.36. The obtained data are relevant for the design of a real filter in a continuous-feeding pilot plant. Slow sand filtration is highly recommended owing to its low cost, easy-handling and low maintenance, so it is a very good complement to Moringa water treatment in developing countries.

  2. Lignite-plus-Biomass to Synthetic Jet Fuel with CO2 Capture and Storage: Design, Cost, and Greenhouse Gas Emissions Analysis for a Near-Term First-of-a-Kind Demonstration Project and Prospective Future Commercial Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greig, Chris; Larson, Eric; Kreutz, Thomas

    We report on a 30-month design study for a first-of-a-kind (FOAK) demonstration plant that would be built at a site near Meridian, Mississippi, to coprocess lignite coal and woody biomass into jet fuel. The design uses an oxygen-blown TRIG™ gasifier developed by KBR and Southern Company. Fischer-Tropsch conversion of the syngas produces synthetic paraffinic kerosene (SPK) as the primary product, plus naphtha. Other co-products include electricity sold to the grid and CO2 sold for use in enhanced oil recovery (EOR). Previous studies have identified coprocessing of various coals and biomass with CO2 capture as promising options for cost-competitive production ofmore » low net lifecycle greenhouse gas (GHG) emissions synthetic fuels. The effort reported here goes beyond earlier studies in the level of detail in process design and cost estimation with the aim of improving the understanding of the economic prospects for lignite and woody biomass coprocessing systems. Key objectives in the design of the FOAK lignite/biomass-to-jet (LBJ) plant were to achieve net lifecycle GHG emissions for the SPK that are less than for conventional petroleum-derived jet fuel and to make process design and equipment selections such that the plant could be built and operated in the near term, e.g., before 2025. The process design was developed by researchers at Princeton University and the University of Queensland and validated by engineers at the WorleyParsons Group (WP). Commercial vendors provided design and cost estimates for several major plant components. Bare-erected capital costs and operating and maintenance costs were estimated by WP. The primary objective in building and operating the FOAK plant would be to demonstrate the technical viability of the LBJ concept as an essential first step toward launching commercial-scale plants in the longer term. With this in mind, the project team developed a set of principles to help guide the process design: the total plant cost should be less than $2 billion (to limit investment risk); the level of input biomass should be both proportionally significant to reflect biomass/lignite co-gasification and sufficient to achieve GHG emissions goals; process design decisions and vendor/equipment selections should prioritize the likelihood of technical success over minimizing the cost of jet fuel production. The resulting FOAK plant design capacity is 1,551 metric t/d (45.5% moisture) lignite and 556 t/d (43.3% moisture) biomass, for a total input of 295 MWHHV, of which 25% is biomass. The design output is 1,252 actual barrels per day of liquids, of which 80% is SPK (62.3 MWLHV) and 20% is naphtha (13.9 MWLHV). It exports 15 MWe of electricity after satisfying a 38 MWe onsite auxiliary load. Additional products are 1,326 t/d of pressurized pipeline-quality CO2 and 49 t/day of sulfuric acid (93 wt% H2SO4). With thinnings from sustainably-managed southern pine plantations as the biomass, and with captured CO2 stored underground via EOR, the net lifecycle emissions for the SPK product are estimated to be about one-quarter of those for petroleum-derived jet fuel. The bare-erected cost (BEC) estimated by WP for this plant is $588 million (2015$). The authors’ best estimate of total plant cost (TPC) is $1,230 million, arrived at by assuming engineering, procurement and construction management services (20% of BEC), process 5 contingencies (35% of BEC), and project contingencies (35% of the sum of all other costs, i.e., 35% of 1.55xBEC). Not surprisingly, an annual discounted cash flow (DCF) analysis determined that it would be impossible to generate a positive net present value (NPV) over a wide range in key input assumptions. An SPK production cost subsidy of nearly $400/bbl over a 20-year plant life would be required to achieve zero NPV under a baseline set of assumptions (including 3% real weighted average cost of capital and a levelized crude oil price of $80/bbl). Alternatively, a capital grant in excess of the TPC value would also achieve zero NPV. The poor financial results reflect the small scale of the plant, the design principle to prioritize technical success, the levels of contingencies appropriate for the relatively early stage of project development, and the first-of-a-kind nature of the plant. Technology innovations, learning via construction and operating experience, alternative plant configurations, and larger scale should improve economics of future plants. To help understand these prospects, a preliminary analysis of Nth-of-a-kind (NOAK) plants was developed, but with the limitation that plants would use only equipment components that for the most part are already commercial today: consideration of advanced, not-yet-commercial technologies and of R&D-driven improvements in existing technologies were beyond the scope of this analysis. The analysis found that a variety of NOAK plant designs that coprocess lignite and woody biomass to make jet fuel are unlikely to be economically competitive without subsidy even in the presence of a high future carbon tax or equivalent greenhouse gas mitigation policy. This conclusion applies to process configurations and input biomass/lignite ratios that result in net GHG emissions as high as those for petroleum-derived jet fuel and as low as zero. In contrast, encouraging results were found for plants processing only biomass. The economics of these “BECCS” plants (biomass energy with CCS) improve dramatically with the strength of carbon mitigation policies because of their strongly negative net GHG emissions. These findings do not imply that coal/biomass coprocessing strategies for making synfuels with CCS are not economically promising – only that, in the case of lignite, much more than a 25% biomass coprocessing rate would be needed. However, our analysis shows that all such systems are unlikely to be economic in the absence of a strong carbon mitigation policy. Future R&D driven technological innovations could modify this conclusion. Among other R&D priorities, an emphasis on better understanding and reducing plant auxiliary loads is warranted.« less

  3. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less

  4. Regional and global contributions of anthropogenic iodine-129 in monthly deposition samples collected in North East Japan between 2006 and 2015.

    PubMed

    Hasegawa, Hidenao; Kakiuchi, Hideki; Akata, Naofumi; Ohtsuka, Yoshihito; Hisamatsu, Shun'ichi

    2017-05-01

    We measured the monthly atmospheric deposition flux of 129 I at Rokkasho, Aomori, Japan-the location of a commercial spent nuclear fuel reprocessing plant-from 2006 to 2015 to assess the impact of the plant on environmental 129 I levels. The plant is now under final safety assessment by a national authority after test operation using actual spent nuclear fuel. During cutting and chemical processing in test operations from April 2006 to October 2008, 129 I was discharged to the atmosphere and detected in our deposition samples. 129 I deposition fluxes largely followed the discharge pattern of 129 I from the plant to the atmosphere, and most of the deposited 129 I originated from the plant. In and after 2009, 129 I deposition fluxes decreased dramatically to reach the background level; the 129 I deposition fluxes at Rokkasho were almost the same as those at Hirosaki, where an additional sampling point was set up as a background site 85 km from the plant in 2011. The background 129 I deposition fluxes showed seasonal variation-high in winter and low in the other seasons-at both Rokkasho and Hirosaki. The results of a backward trajectory analysis of the air mass at Rokkasho suggested that reprocessing plants in Europe were the origins of the high 129 I flux in winter. The contribution of 129 I released from the Fukushima Dai-ichi Nuclear Power Plant accident to the 129 I deposition flux at Rokkasho in 2011 was small on the basis of the 129 I/ 131 I activity ratio. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Influence of phosphorus application and arbuscular mycorrhizal inoculation on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea plants.

    PubMed

    Taffouo, Victor Désiré; Ngwene, Benard; Akoa, Amougou; Franken, Philipp

    2014-07-01

    The present study was undertaken to evaluate the effects of phosphorus (P) application and arbuscular mycorrhizal (AM) fungi (Funneliformis mosseae) on growth, foliar nitrogen mobilization, and phosphorus partitioning in cowpea (Vigna unguiculata cv. Vita-5) plants. The experiment was conducted in a greenhouse in pots containing a mixture of vermiculite and sterilized quartz sand. Mycorrhizal and non-mycorrhizal cowpea plants were supplied with three levels of soluble P (0.1 (low P), 0.5 (medium P), or 1.0 mM (high P)).Cowpea plants supplied with low P fertilization showed significantly (p < 0.05) higher root colonization than those with medium and high P fertilization at both the vegetative and pod-filling stages. P uptake and growth parameters of cowpea plants were positively influenced by mycorrhizal inoculation only in the medium P fertilization treatment at the vegetative stage. Lack of these effects in the other treatments may be linked to either a very low P supply (in the low P treatment at the vegetative stage) or the availability of optimal levels of freely diffusible P in the substrate towards the pod-filling stage due to accumulation with time. The N concentration in leaves of all cowpea plants were lower at the pod-filling stage than at the vegetative stage, presumably as a result of N mobilization from vegetative organs to the developing pods. This was however not influenced by AM fungal inoculation and may be a consequence of the lack of an improved plant P acquisition by the fungus at the pod-filling stage.

  6. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Kumfer, Benjamin; Gopan, Akshay

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702)more » include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.« less

  7. Comparative proteomic analysis of rice after seed ground simulated radiation and spaceflight explains the radiation effects of space environment

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Shi, Jinming; Liang, Shujian; Lei, Huang; Shenyi, Zhang; Sun, Yeqing

    In previous work, we compared the proteomic profiles of rice plants growing after seed space-flights with ground controls by two-dimensional difference gel electrophoresis (2-D DIGE) and found that the protein expression profiles were changed after seed space environment exposures. Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved. Rice seed is in the process of dormant of plant development, showing high resistance against stresses, so the highly ionizing radiation (HZE) in space is considered as main factor causing biological effects to seeds. To further investigate the radiation effects of space environment, we performed on-ground simulated HZE particle radiation and compared between the proteomes of seed irra-diated plants and seed spaceflight (20th recoverable satellite) plants from the same rice variety. Space ionization shows low-dose but high energy particle effects, for searching the particle effects, ground radiations with the same low-dose (2mGy) but different liner energy transfer (LET) values (13.3KeV/µm-C, 30KeV/µm-C, 31KeV/µm-Ne, 62.2KeV/µm-C, 500Kev/µm-Fe) were performed; using 2-D DIGE coupled with clustering and principle component analysis (PCA) for data process and comparison, we found that the holistic protein expression patterns of plants irradiated by LET-62.2KeV/µm carbon particles were most similar to spaceflight. In addition, although space environment presents a low-dose radiation (0.177 mGy/day on the satellite), the equivalent simulated radiation dose effects should still be evaluated: radiations of LET-62.2KeV/µm carbon particles with different cumulative doses (2mGy, 20mGy, 200mGy, 2000mGy) were further carried out and resulted that the 2mGy radiation still shared most similar proteomic profiles with spaceflight, confirming the low-dose effects of space radiation. Therefore, in the protein expression level, ground simulation method could be utilized to simu-late the space radiation biological effects and such a comparative proteomic work might explain both energy and dose effects of space radiation environment.

  8. Factors affecting recovery from work-related, low back disorders in autoworkers.

    PubMed

    Oleske, Denise M; Neelakantan, Janani; Andersson, Gunnar B; Hinrichs, Bradley G; Lavender, Steven A; Morrissey, Mary J; Zold-Kilbourn, Phyllis; Taylor, Emily

    2004-08-01

    To simultaneously evaluate personal, medical, and job factors that could affect recovery from work-related, low back disorders, specifically focusing on an active working sample. Observational, longitudinal study. Two US automotive plants. Employees (N=352; 289 men, 63 women; mean age +/- standard deviation, 45.1+/-7.5 y) who were active hourly autoworkers, diagnosed with work-related, low back disorder by the plant's medical department. Not applicable. Oswestry Disability Questionnaire for back pain was used to evaluate recovery. Factors associated with better recovery were lower stress levels (P<.001) and exercise or physical activity outside work (P<.001); factors associated with higher disability levels over time were current cigarette smoking (P<.01) and bedrest (P<.001). Personal modifiable factors are major influences in the recovery from work-related, low back disorders, even in active working populations. Interventions aimed at increasing exercise and decreasing stress should also be considered as a part of rehabilitation in employed persons with low levels of disability.

  9. Feasibility of Lettuce Growth at Hypoxic and Sub-Ambient Total Gas Pressures

    NASA Technical Reports Server (NTRS)

    Hoffman, Anne

    1997-01-01

    Lettuce (Lactuca saliva L. cv. 'Waldmann's Green') plants were grown (1) either from seed to 5 days old to study the effect of low atmospheric pressure (70 kPa) on their germination and early growth, or (2) until maturity at 30 days old to determine any long-term growth effects. The data were compared to plants grown in a second matching chamber which was maintained at ambient pressure (101 kPa) that served as a control. In other experiments, plants were grown at ambient pressure until maturity and then subjected to low atmospheric pressure for periods of 24 hours to determine possible effects of intermittent low pressure. The O2 and CO2 partial pressures in the low pressure chamber were adjusted to levels equal to those in the ambient pressure chamber to prevent differences in plant response which would have resulted from differences in the partial pressure of those gasses. The O2 partial pressure in the ambient chamber was maintained at 21 kPa and provision was made for additional CO2 during the fight phase. The germination rate and early seedling growth were insensitive to a low pressure environment. The rate of root elongation of plants grown at 70 kPa and at 101 kPa was also approximately the same. The rate of net carbon assimilation (per unit leaf area) of plants grown at low atmospheric pressure was unaffected at all growth stages even though plants grown at 70 kPa had slightly greater fresh and dry weights. There were consistent differences in assimilate partitioning, as shown by higher root/shoot ratios of plants grown at low pressure. Transpiration rates of plants grown until maturity under either constant or intermittent low pressure were reduced. Dark respiration rates of plants grown until maturity under either constant or intermittent low pressure were approximately 20% higher than the control plants.

  10. Low doses of glyphosate enhance growth, CO2 assimilation, stomatal conductance and transpiration in sugarcane and eucalyptus

    USDA-ARS?s Scientific Manuscript database

    Sublethal doses of herbicides can enhance plant growth and stimulate other process, an effect known as hormesis. The magnitude of hormesis is dependent on the plant species, the herbicide and its dose, plant development stage, and environmental parameters. Glyphosate hormesis is well established, bu...

  11. Effects of low levels of herbicides on prairie species of the Willamette Valley, Oregon

    EPA Science Inventory

    Non-crop plants (native and introduced) growing adjacent to agricultural fields provide essential habitat for wildlife and pollinators, and may be exposed to low levels of non-target pesticide drift during routine weed control activities. This study evaluated the relative sensiti...

  12. Interaction of soil pH and phosphorus efficacy: Long-term effects of P fertilizer and lime applications on wheat, barley, and sugar beet.

    PubMed

    von Tucher, Sabine; Hörndl, Dorothea; Schmidhalter, Urs

    2018-01-01

    Phosphorus (P), a plant macronutrient, must be adequately supplied for crop growth. In Germany, many soils are high in plant-available P; specifically in arable farming, P fertilizer application has been reduced or even omitted in the last decade. Therefore, it is important to understand how long these soils can support sustainable crop production, and what concentrations of soil P are required for it. We analyzed a 36-year long-term field experiment regarding the effects of different P application and liming rates on plant growth and soil P concentrations with a crop rotation of sugar beet, wheat, and barley. Sugar beet reacted to low soil P and low soil pH levels more sensitively than wheat, which was not significantly affected by the long-term omitted P application. All three crop species showed adequate growth at soil P levels lower than the currently recommended levels, if low soil pH was optimized by liming. The increase in efficacy of soil and fertilizer P by reduced P application rates therefore requires the adaptation of the soil pH to a soil type-specific optimal level.

  13. Commercial high-level-waste management: Options and economics. A comparative analysis of the ceramic and glass waste forms

    NASA Astrophysics Data System (ADS)

    McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.

    1983-02-01

    Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.

  14. Approaches to lunar base life support

    NASA Technical Reports Server (NTRS)

    Brown, M. F.; Edeen, M. A.

    1990-01-01

    Various approaches to reliable, low maintenance, low resupply regenerative long-term life support for lunar base application are discussed. The first approach utilizes Space Station Freedom physiochemical systems technology which has closed air and water loops with approximately 99 and 90 percent closure respectively, with minor subsystem changes to the SSF baseline improving the level of water resupply for the water loop. A second approach would be a physiochemical system, including a solid waste processing system and improved air and water loop closure, which would require only food and nitrogen for resupply. A hybrid biological/physiochemical life support system constitutes the third alternative, incorporating some level of food production via plant growth into the life support system. The approaches are described in terms of mass, power, and resupply requirements; and the potential evolution of a small, initial outpost to a large, self-sustaining base is discussed.

  15. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    PubMed

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Responses of photosynthetic O2 evolution to PPFD in the CAM epiphyte Tillandsia usneoides L. (Bromeliaceae).

    PubMed

    Martin, C E; McKee, J M; Schmitt, A K

    1989-09-01

    Past studies of the effects of varying levels of photosynthetic photon flux density (PPFD) on the morphology and physiology of the epiphytic Crassulacean acid metabolism (CAM) plant Tillandsia usneoides L. (Bromeliaceae) have resulted in two important findings: (1) CAM, measured as integrated nocturnal CO2 uptake or as nocturnal increases in tissue acidity, saturates at relatively low PPFD, and (2) this plant does not acclimate to different PPFD levels, these findings require substantiation using photosynthetic responses immediately attributable to different PPFD levels, e.g., O2 evolution, as opposed to the delayed, nocturnal responses (CO2 uptake and acid accumulation). In the present study, instantaneous responses of O2 evolution to PPFD level were measured using plants grown eight weeks at three PPFD (20-45, 200-350, and 750-800 μmol m(-2)s(-1)) in a growth chamber, and using shoots taken from the exposed upper portions (maximum PPFD of 800 μmol m(-2)s(-1)) and shaded lower portions (maximum PPFD of 140 μmol m(-2)s(-1)) of plants grown ten years in a greenhouse. In addition, nocturnal increases in acidity were measured in the growth chamber plants. Regardless of the PPFD levels during growth, O2 evolution rates saturated around 500 μmol m(-2)s(-1). Furthermore, nocturnal increases in tissue acidity saturated at much lower PPFD. Thus, previous results were confirmed: photosynthesis saturated at low PPFD, and this epiphyte does not acclimate to different levels of PPFD.

  17. Effect of volunteers on maize gene flow.

    PubMed

    Palaudelmàs, Montserrat; Peñas, Gisela; Melé, Enric; Serra, Joan; Salvia, Jordi; Pla, Maria; Nadal, Anna; Messeguer, Joaquima

    2009-08-01

    Regulatory approvals for deliberate release of GM maize events into the environment have lead to real situations of coexistence between GM and non-GM, with some fields being cultivated with GM and conventional varieties in successive seasons. Given the common presence of volunteer plants in maize fields in temperate areas, we investigated the real impact of GM volunteers on the yield of 12 non-GM agricultural fields. Volunteer density varied from residual to around 10% of plants in the field and was largely reduced using certain cultural practices. Plant vigour was low, they rarely had cobs and produced pollen that cross-fertilized neighbour plants only at low--but variable--levels. In the worst-case scenario, the estimated content of GMO was 0.16%. The influence of GM volunteers was not enough to reach the 0.9% adventitious GM threshold but it could potentially contribute to adventitious GM levels, especially at high initial densities (i.e. above 1,000 volunteers/ha).

  18. A new non-indigenous Crassostrea species in Southwest Atlantic salt marshes affects mortality of the cordgrass Spartina alterniflora

    NASA Astrophysics Data System (ADS)

    Lomovasky, Betina J.; Alvarez, Graciela; Addino, Mariana; Montemayor, Diana I.; Iribarne, Oscar

    2014-07-01

    Biological invasions in marine and coastal systems may produce new trophic and nontrophic interactions influencing the structure of the invaded community. In the intertidal salt marshes of Samborombón Bay (36°19‧20″S, 56°46‧26″W; mouth of La Plata River; Argentina), there is a new non-indigenous oyster species, Crassostrea sp., which settles on the dominant smooth cordgrass Spartina alterniflora. Here, we analyzed if the oyster affects S. alterniflora. Sampling showed that density of live plant was similar across intertidal levels, but there were higher density of dead plant stems at low intertidal levels. This pattern coincides with higher density and larger shell size of Crassostrea sp. at the low intertidal where oysters are attached to the basal part of the plant stems. An experiment manipulating oysters attached to S. alterniflora stems and oyster mimics shows that Crassostrea sp. can indeed increase mortality of S. alterniflora. The negative effect of bivalves on plant could be because several oysters settle around the Spartina stem, and by growing during the year, strangle the plants increasing their mortality rate. Together, all these evidences strongly suggest that these non-indigenous oysters can control the lower intertidal level of plant distribution in this system.

  19. Delivery and detection of dietary plant-based miRNAs in animal tissues

    USDA-ARS?s Scientific Manuscript database

    It has been proposed that genetic material, namely microRNAs (miRNAs), consumed in plant-based diets can affect animal gene expression. Though deep sequencing reveals the low-level presence of plant miRNAs in animal tissues, many groups have been thus far unable to replicate the finding that a rice ...

  20. Population of North American elk: effects on plant diversity

    Treesearch

    Kelley M. Stewart; R. Terry Bowyer; John G. Kier; Brian L. Dick; Roger W. Ruess

    2009-01-01

    We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural...

  1. Mycorrhizal symbiosis in leeks increases plant growth under low phosphorus and affects the levels of specific flavonoid glycosides

    USDA-ARS?s Scientific Manuscript database

    Introduction- Mycorrhizae symbiosis is a universal phenomenon in nature that promotes plant growth and food quality in most plants, especially, under phosphorus deficiency and water stress. Objective- The objective of this study was to assess the effects of mycorrhizal symbiosis on changes in the le...

  2. Integration and scaling of UV-B radiation effects on plants: from molecular interactions to whole plant responses.

    PubMed

    Suchar, Vasile Alexandru; Robberecht, Ronald

    2016-07-01

    A process based model integrating the effects of UV-B radiation to molecular level processes and their consequences to whole plant growth and development was developed from key parameters in the published literature. Model simulations showed that UV-B radiation induced changes in plant metabolic and/or photosynthesis rates can result in plant growth inhibitions. The costs of effective epidermal UV-B radiation absorptive compounds did not result in any significant changes in plant growth, but any associated metabolic costs effectively reduced the potential plant biomass. The model showed significant interactions between UV-B radiation effects and temperature and any factor leading to inhibition of photosynthetic production or plant growth during the midday, but the effects were not cumulative for all factors. Vegetative growth were significantly delayed in species that do not exhibit reproductive cycles during a growing season, but vegetative growth and reproductive yield in species completing their life cycle in one growing season did not appear to be delayed more than 2-5 days, probably within the natural variability of the life cycles for many species. This is the first model to integrate the effects of increased UV-B radiation through molecular level processes and their consequences to whole plant growth and development.

  3. Effects of Combined Low Glutathione with Mild Oxidative and Low Phosphorus Stress on the Metabolism of Arabidopsis thaliana

    PubMed Central

    Fukushima, Atsushi; Iwasa, Mami; Nakabayashi, Ryo; Kobayashi, Makoto; Nishizawa, Tomoko; Okazaki, Yozo; Saito, Kazuki; Kusano, Miyako

    2017-01-01

    Plants possess highly sensitive mechanisms that monitor environmental stress levels for a dose-dependent fine-tuning of their growth and development. Differences in plant responses to severe and mild abiotic stresses have been recognized. Although many studies have revealed that glutathione can contribute to plant tolerance to various environmental stresses, little is known about the relationship between glutathione and mild abiotic stress, especially the effect of stress-induced altered glutathione levels on the metabolism. Here, we applied a systems biology approach to identify key pathways involved in the gene-to-metabolite networks perturbed by low glutathione content under mild abiotic stress in Arabidopsis thaliana. We used glutathione synthesis mutants (cad2-1 and pad2-1) and plants overexpressing the gene encoding γ-glutamylcysteine synthetase, the first enzyme of the glutathione biosynthetic pathway. The plants were exposed to two mild stress conditions—oxidative stress elicited by methyl viologen and stress induced by the limited availability of phosphate. We observed that the mutants and transgenic plants showed similar shoot growth as that of the wild-type plants under mild abiotic stress. We then selected the synthesis mutants and performed multi-platform metabolomics and microarray experiments to evaluate the possible effects on the overall metabolome and the transcriptome. As a common oxidative stress response, several flavonoids that we assessed showed overaccumulation, whereas the mild phosphate stress resulted in increased levels of specific kaempferol- and quercetin-glycosides. Remarkably, in addition to a significant increased level of sugar, osmolytes, and lipids as mild oxidative stress-responsive metabolites, short-chain aliphatic glucosinolates over-accumulated in the mutants, whereas the level of long-chain aliphatic glucosinolates and specific lipids decreased. Coordinated gene expressions related to glucosinolate and flavonoid biosynthesis also supported the metabolite responses in the pad2-1 mutant. Our results suggest that glutathione synthesis mutants accelerate transcriptional regulatory networks to control the biosynthetic pathways involved in glutathione-independent scavenging metabolites, and that they might reconfigure the metabolic networks in primary and secondary metabolism, including lipids, glucosinolates, and flavonoids. This work provides a basis for the elucidation of the molecular mechanisms involved in the metabolic and transcriptional regulatory networks in response to combined low glutathione content with mild oxidative and nutrient stress in A. thaliana. PMID:28894456

  4. Breeding for Increased Water Use Efficiency in Corn (Maize) Using a Low-altitude Unmanned Aircraft System

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Veeranampalayam-Sivakumar, A. N.; Li, J.; Ge, Y.; Schnable, J. C.; Rodriguez, O.; Liang, Z.; Miao, C.

    2017-12-01

    Low-altitude aerial imagery collected by unmanned aircraft systems (UAS) at centimeter-level spatial resolution provides great potential to collect high throughput plant phenotyping (HTP) data and accelerate plant breeding. This study is focused on UAS-based HTP for breeding increased water use efficiency in corn in eastern Nebraska. The field trail is part of an effort by the Genomes to Fields consortium effort to grow and phenotype many of the same corn (maize) hybrids at approximately 40 locations across the United States and Canada in order to stimulate new research in crop modeling, the development of new plant phenotyping technologies and the identification of genetic loci that control the adaptation of specific corn (maize) lines to specific environments. It included approximately 250 maize hybrids primary generated using recently off patent material from major seed companies. These lines are the closest material to what farmers are growing today which can be legally used for research purposes and genotyped by the public sector. During the growing season, a hexacopter equipped with a multispectral and a RGB cameras was flown and used to image this 1-hectare field trial near Mead, NE. Sensor data from the UAS were correlated directly with grain yield, measured at the end of the growing season, and were also be used to quantify other traits of interest to breeders including flowering date, plant height, leaf orientation, canopy spectral, and stand count. The existing challenges of field data acquisition (to ensure data quality) and development of effective image processing algorithms (such as detecting corn tassels) will be discussed. The success of this study and others like it will speed up the process of phenotypic data collection, and provide more accurate and detailed trait data for plant biologists, plant breeders, and other agricultural scientists. Employing advanced UAS-based machine vision technologies in agricultural applications have the potential to increase the rate of genetic gain in plant breeding applications, as well as guide the optimization of management practices in precision agriculture.

  5. Online, real-time detection of volatile emissions from plant tissue.

    PubMed

    Harren, Frans J M; Cristescu, Simona M

    2013-01-01

    Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants.

  6. Cascading effects of artificial light at night: resource-mediated control of herbivores in a grassland ecosystem

    PubMed Central

    Bennie, Jonathan; Davies, Thomas W.; Cruse, David; Inger, Richard; Gaston, Kevin J.

    2015-01-01

    Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore. PMID:25780243

  7. Online, real-time detection of volatile emissions from plant tissue

    PubMed Central

    Harren, Frans J. M.; Cristescu, Simona M.

    2013-01-01

    Trace gas monitoring plays an important role in many areas of life sciences ranging from agrotechnology, microbiology, molecular biology, physiology, and phytopathology. In plants, many processes can be followed by their low-concentration gas emission, for compounds such as ethylene, nitric oxide, ethanol or other volatile organic compounds (VOCs). For this, numerous gas-sensing devices are currently available based on various methods. Among them are the online trace gas detection methods; these have attracted much interest in recent years. Laser-based infrared spectroscopy and proton transfer reaction mass spectrometry are the two most widely used methods, thanks to their high sensitivity at the single part per billion level and their response time of seconds. This paper starts with a short description of each method and presents performances within a wide variety of biological applications. Using these methods, the dynamics of trace gases for ethylene, nitric oxide and other VOCs released by plants under different conditions are recorded and analysed under natural conditions. In this way many hypotheses can be tested, revealing the role of the key elements in signalling and action mechanisms in plants. PMID:23429357

  8. Low nitrogen stress stimulating the indole-3-acetic acid biosynthesis of Serratia sp. ZM is vital for the survival of the bacterium and its plant growth-promoting characteristic.

    PubMed

    Ouyang, Liming; Pei, Haiyan; Xu, Zhaohui

    2017-04-01

    Serratia sp. ZM is a plant growth-promoting (PGP) bacterial strain isolated from the rhizospheric soil of Populus euphratica in northwestern China. In this study, low nitrogen supply significantly stimulated the production of indole-3-acetic acid (IAA) in Serratia sp.ZM. The inoculation of the bacterium to wheat seedlings improved plant growth compared with the uninoculated group, and the stimulating effect was more prominent under low nitrogen stress. Inactivation of the predicted key gene in the IAA biosynthesis pathway impaired IAA production and significantly hampered mutant growth in poor medium. Furthermore, the IAA-deficient mutant lost the PGP effect under either normal or low nitrogen conditions in plant experiments. This study revealed the significant impact of environmental nitrogen levels on IAA production in the PGP strain and the vital effect of IAA on resistance physiology of both the bacterium and host plant. The characteristics of Serratia sp. ZM also indicated its application potential as a biofertilizer for plants, especially those suffering from poor nitrogen soil.

  9. Plant Chlorophyll Content Imager with Reference Detection Signals

    NASA Technical Reports Server (NTRS)

    Spiering, Bruce A. (Inventor); Carter, Gregory A. (Inventor)

    2000-01-01

    A portable plant chlorophyll imaging system is described which collects light reflected from a target plant and separates the collected light into two different wavelength bands. These wavelength bands, or channels, are described as having center wavelengths of 700 nm and 840 nm. The light collected in these two channels is processed using synchronized video cameras. A controller provided in the system compares the level of light of video images reflected from a target plant with a reference level of light from a source illuminating the plant. The percent of reflection in the two separate wavelength bands from a target plant are compared to provide a ratio video image which indicates a relative level of plant chlorophyll content and physiological stress. Multiple display modes are described for viewing the video images.

  10. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  11. Bioimaging techniques for subcellular localization of plant hemoglobins and measurement of hemoglobin-dependent nitric oxide scavenging in planta.

    PubMed

    Hebelstrup, Kim H; Østergaard-Jensen, Erik; Hill, Robert D

    2008-01-01

    Plant hemoglobins are ubiquitous in all plant families. They are expressed at low levels in specific tissues. Several studies have established that plant hemoglobins are scavengers of nitric oxide (NO) and that varying the endogenous level of hemoglobin in plant cells negatively modulates bioactivity of NO generated under hypoxic conditions or during cellular signaling. Earlier methods for determination of hemoglobin-dependent scavenging in planta were based on measuring activity in whole plants or organs. Plant hemoglobins do not contain specific organelle localization signals; however, earlier reports on plant hemoglobin have demonstrated either cytosolic or nuclear localization, depending on the method or cell type investigated. We have developed two bioimaging techniques: one for visualization of hemoglobin-catalyzed scavenging of NO in specific cells and another for visualization of subcellular localization of green fluorescent protein-tagged plant hemoglobins in transformed Arabidopsis thaliana plants.

  12. Annual waste reduction activities report. Issue 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-03-18

    This report discusses the waste minimization activities for the Pinellas Plant. The Pinellas Plant deals with low-level radioactive wastes, solvents, scrap metals and various other hazardous materials. This program has realized cost savings through recycling and reuse of materials.

  13. Discriminating styles (DS) and pollen-mediated pseudo-self-compatibility (PMPSC) in Nemesia strumosa Benth. : Part 1: Characteristics and inheritance of DS.

    PubMed

    Robacker, C D; Ascher, P D

    1981-09-01

    Nemesia strumosa plants were discovered which had styles capable of discriminating among incompatible pollen tubes from different pollinators, allowing growth of some but not others. All but 3 of 26 families tested had at least some members with discriminating styles (DS). Presence and level of DS was independent of S genotype. Plants with pseudo-self-compatiblity (PSC) levels greater than 10% had the trait, though many plants with strong DS had PSC levels less than 10%. Self pollination of highly DS plants produced mostly DS offspring, but of differing sensitivities. Some progenies from crosses between a family of highly DS plants and unrelated, probably low DS plants segregated half DS and half non-DS, while others consisted of mostly DS or mostly non-DS. The DS phenomenon is probably caused by PSC genes.

  14. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  15. Whether Plant Responses to Microgravity are Adaptive in Full or in Part.

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth

    F1.1 Microgravity is well known to be an unusual factor for plant but plants grow and develop in space flight from seed-to-seed, as it has been perfectly shown in the experiments aboard shut-tle Columbia (STS-87) and ISS. Under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity, in the hardware, high-quality seeds germinate one hundred percent.. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytoki-nesis, and tissue differentiation of vegetative and generative organs are largely normal. The patterns of histogenesis and cell differentiation established for root caps in microgravity lead to the conclusion that the graviperceptive apparatus of the intact embryonic roots has formed but does not function in the absence of a gravitational vector. Normal space orientation of plant organs is provided by autotropism and phototropism. At the same time, under micro-gravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxi-dation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained Available experimental data are discussed in the light of notions on adaptive syndrome in plants. The dynamics of the observable patterns demonstrate that adaptation occurs on the principle of self-regulating systems within the physiological response limits.. However, a delay in synthesis of storage nutrients and the lower level its accumulation in seeds in microgravty, as well as the formation of seeds with anomalous embryos in some cases made it impossible to say on full adaptation of plants to microgravity, because the accomplish-ment of " reproductive imperative" by plants, i. e. high seed production is the major factor of their adaptation to the new conditions. Therefore, future research at the cell and molecular levels are required to evaluate reasonably the adaptive potential of plants for long-time space flight.

  16. Chemically assisted phytoextraction: a review of potential soil amendments for increasing plant uptake of heavy metals.

    PubMed

    Meers, E; Tack, F M G; Van Slycken, S; Ruttens, A; Du Laing, G; Vangronsveld, J; Verloo, M G

    2008-01-01

    The contamination of soils by trace metals has been an unfortunate sideeffect of industrialization. Some of these contaminants can interfere with vulnerable enduses of soil, such as agriculture or nature, already at relatively low levels of contamination. Reversely, conventional civil-technical soil-remediation techniques are too expensive to remediate extended areas of moderately contaminated soil. Phytoextraction has been proposed as a more economic complementary approach to deal with this specific niche of soil contamination. However, phytoextraction has been shown to be a slow-working process due to the low amounts of metals that can be annually removed from the soil under normal agronomic conditions. Therefore, extensive research has been conducted on process optimization by means of chemically improving plant availability and the uptake of heavy metals. A wide range of potential amendments has been proposed in the literature, with considerable attention being spent on aminopolycarboxylic acids such as ethylenediaminetetraacetic acid (EDTA). However, these compounds have received increasing criticism due to their environmental persistence and associated risks for leaching. This review presents an overview of potential soil amendments that can be employed for enhancing metal uptake by phytoextraction crops, with a distinct focus on more degradable alternatives to persistent compounds such as EDTA.

  17. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation periodmore » were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.« less

  18. Phytoremediation of Petroleum Hydrocarbon (PHC) Contaminated Soil by Using Mimosa pudica L. .

    PubMed

    Budhadev, Basumatary; Rubul, Saikia; Sabitry, Bordoloi; Hari Prasad, Sarma

    2014-07-01

    The aim of this study was to evaluate the efficiency of Mimosa pudica L. that could be effective in phytoremediation of PHC-contaminated soil. Experiments were conducted in net house to determine the tolerance of this species to a heavy crude oil contaminated soil under the application of two fertilizer levels and reduction of PHC was monitored for 180 days. Assessment of plant growth, biomass and Total Oil and Grease (TOG) degradation were carried out at an interval of 60 days. In the presence of contaminants, biomass and plant height were reduced up to 27% and 10.4% respectively. Experiments with different percentages of crude oil showed that M. pudica could tolerate crude-oil contamination up to 6.2% (w/w). The estimation of TOG in soil of the tested plants revealed that M. pudica could decrease 31.7% of crude oil contaminants in low fertilizer level (200N, 100P, 100K) and 24.7% in high fertilizer level (240N, 120P, 120K). In case of unplanted pots, the reduction of TOG was 13.7% in low fertilizer level and 11.2% in high fertilizer level. This experiment has identified the suitability of a native candidate plant species for further investigation of their phytoremediation potential.

  19. Low methane flux from a constructed boreal wetland

    NASA Astrophysics Data System (ADS)

    Clark, M. G.; Humphreys, E.; Carey, S. K.

    2016-12-01

    The Sandhill Fen Watershed project in northern Alberta, Canada, is a pilot study in reconstructing a mixed upland and lowland boreal plain ecosystem. The physical construction of the 50 ha area was completed in 2012 and revegetation programs, through planting and seeding, began that same year and continued into 2013. Since then, the vegetation has developed a substantial cover over the reclaimed soil and peat substrates used to cap the engineered topography constructed from mine tailings. To monitor the dynamics of carbon cycling processes in this novel ecosystem, near weekly gas chamber measurements of methane fluxes were carried out over 3 growing seasons. Soil moisture, temperature and ion flux measurements, using Plant Root Simulator probes, were also collected alongside the gas flux plots. In the 3rd season, a transect was established in the lowlands along a moisture gradient to collect continuous reduction-oxidation potential measurements along with these other variables. Overall, methane effluxes remained low relative to what is expected for rewetted organic substrates. However, there is a trend over time towards increasing methane gas emissions that coincides with increasing fluxes of reduced metal ions and decreasing fluxes of sulphate in the fully saturated substrates. The suppressed levels of methane fluxes are possibly due to naturally occurring high levels of sulphate in the donor materials used to cap the ecosystem construction.

  20. Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome.

    PubMed

    Bargsten, Joachim W; Folta, Adam; Mlynárová, Ludmila; Nap, Jan-Peter

    2013-01-01

    As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes). The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding.

  1. Plant growth stage-specific injury and economic injury level for verde plant bug, Creontiades signatus (Hemiptera: Miridae), on cotton: effect of bloom period of infestation.

    PubMed

    Brewer, Michael J; Anderson, Darwin J; Armstrong, J Scott

    2013-10-01

    Verde plant bugs, Creontiades signatus Distant (Hemiptera: Miridae), were released onto caged cotton, Cossypium hirsutum L., for a 1-wk period to characterize the effects of insect density and bloom period of infestation on cotton injury and yield in 2011 and 2012, Corpus Christi, TX. When plants were infested during early bloom (10-11 nodes above first white flower), a linear decline in fruit retention and boll load and a linear increase in boll injury were detected as verde plant bug infestation levels increased from an average of 0.5 to 4 bugs per plant. Lint and seed yield per plant showed a corresponding decline. Fruit retention, boll load, and yield were not affected on plants infested 1 wk later at peak bloom (8-9 nodes above first white flower), even though boll injury increased as infestation levels increased. Second-year testing verified boll injury but not yield loss, when infestations occurred at peak bloom. Incidence of cotton boll rot, known to be associated with verde plant bug feeding, was low to modest (< 1% [2012] to 12% [2011] of bolls with disease symptoms), and drought stress persisted throughout the study. Caging effect was minimal: a 10% fruit retention decline was associated with caging, and the effect was not detectable in the other measurements. Overall, reduced fruit retention and boll load caused by verde plant bug were important contributors to yield decline, damage potential was greatest during the early bloom period of infestation, and a simple linear response best described the yield response-insect density relationship at early bloom. Confirmation that cotton after peak bloom was less prone to verde plant bug injury and an early bloom-specific economic injury level were key findings that can improve integrated pest management decision-making for dryland cotton, at least under low-rainfall growing conditions.

  2. Hg soil pollution around the Flix chlor-alkali plant

    NASA Astrophysics Data System (ADS)

    Esbrí, José Maria; López-Berdoces, Miguel Angel; Martínez-Coronado, Alba; Fernández-Calderon, Sergio; Díez, Sergi; León Higueras, Pablo

    2014-05-01

    Main mercury consumer in industrialized countries is the chlor-alkali industry. In Spain, this industry declares 2.54 tons of mercury emissions to the atmosphere per year, but the losses of mercury in this industrial process seem to be higher than this. In the next 15 years, these industries are going to make a technology change to a free mercury based technology. This study has been applied to the Flix (Tarragona, NE Spain) plant, located very near the Ebro River. Local industrial activity started in the late 18th Century, being the first Spanish industrial precinct in activity. Technology used in this plant is obsolete, and produces important emissions to the atmosphere. Besides, it has also produced an important pollution problem in the Ebro River. The aim of this work is the characterization of mercury soil pollution around the oldest chlor-alkali plant (CAP), actually in process of decommissioning. For this porpoises, we provided data of mercury in soils and in olive oil leaves, in order to assess the extent of this pollution, and the consequences in terms of transferring to local agricultural biota. We present data from two soils geochemistry surveys, one centered in the general area, and a second one centered in an anomalous area identified by the first survey, at the Ebro margins downstream the town area. A total of 126 surface soil samples were taken and analyzed for total mercury by means of a Lumex RA-915+ device with RP- 91C pyrolysis attachment. Soil-plant transfer was studied based on mercury contents in olive leaves, the most ubiquitous plant species in the area; these biological samples were thoroughly clean and freeze-dried before its total mercury analysis in a Lumex RA-915+ device with its RP-91c pyrolysis attachment. Mercury contents in soils reach maximum levels in the vicinity of CAP (495 mg kg-1), much higher than baseline levels found in the area (0.18 mg kg-1, in average). These polluted soils are located near CAP and the riverbanks of Ebro meander, downstream the town area. Mercury seems to be partially available to plants, especially in the CAP surrounding area, where total mercury levels in olive leaves reach maximum values of 1.27 mg kg-1, and average concentration is 0.48 mg kg-1, higher than tolerable level for agronomic crops establish by Kabata-Pendias (2010) in 0.2 mg kg-1. Although correlation coefficients between Hgsoil-Hgplants are low, is possible to characterize plant absorption by logistic curves. Main conclusions of this work are: i) A fraction of mercury vapor emitted by CAP has been deposited on local soils by wet and dry deposition; ii) Mercury in local soils seems to be bioavailable for plants as highlights mercury levels in olive trees; iii) In this work we have identified risks areas with polluted soils.

  3. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination.

    PubMed

    Montiel-Rozas, M M; Madejón, E; Madejón, P

    2016-09-01

    Bioavailability of heavy metals can be modified by different root exudates. Among them, low molecular weight organic acids (LMWOAs) play an important role in this process. Three plant species (Poa annua, Medicago polymorpha and Malva sylvestris), potentially used for phytoremediation, have been assessed for both metal uptake and LMWOAs excretion in contaminated environments with different concentrations of Cd, Cu and Zn. The experiments have been carried out in washed sand and in three contaminated soils where two organic amendments were added (biosolid compost and alperujo compost). The most abundant LMWOAs excreted by all studied plants were oxalic and malic acids, although citric and fumaric acids were also detected. The general tendency was that plants responded to an increase of heavy metal stress releasing higher amounts of LMWOAs. This is an efficient exclusion mechanism reducing the metal uptake and allowing the plant growth at high levels of contamination. In the experiment using wash sand as substrate, the organic acids composition and quantity depended mainly on plant species and metal contamination. M. polymorpha was the species that released the highest concentrations of LMWOAs, both in sand and in soils with no amendment addition, whereas a decrease of these acids was observed with the addition of amendments. Our results established a clear effect of organic matter on the composition and total amount of LMWOAs released. The increase of organic matter and nutrients, through amendments, improved the soil quality reducing phytotoxicity. As a result, organic acids exudates decreased and were solely composed of oxalic acid (except for M. polymorpha). The release of LMWOAs has proved to be an important mechanism against heavy metal stress, unique to each species and modifiable by means of organic amendment addition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Mediterranean dunes on the go: Evidence from a short term study on coastal herbaceous vegetation

    NASA Astrophysics Data System (ADS)

    Prisco, Irene; Stanisci, Angela; Acosta, Alicia T. R.

    2016-12-01

    Detailed monitoring studies on permanent sites are a promising tool for an accurate evaluation of short, medium or long term vegetation dynamics. This work aims to evaluate short-term changes in coastal dune herbaceous plant species and EU Habitats through a multi-temporal analysis using permanent vegetation transects. In particular, (I) we analyze changes in species richness of coastal habitats; (II) we identify changes in plant cover of selected focal plants; and (III) we relate the changes to selected climatic variables and erosion/accretion processes. We selected one of the Italian's peninsula best preserved coastal dune areas (ca. 50 km along the Adriatic sea) with a relatively homogeneous coastal zonation and low anthropic pressure but with different erosion/accretion processes. We explored changes in richness over time using generalized linear models (GLMs). We identified different ecological guilds: focal, ruderal and alien plant species and investigated temporal trends in these guilds' species richness. We also applied GLMs to determine how plant cover of the most important focal species have changed over time. Overall, in this study we observed that the influence of climatic variables was relatively small. However, we found remarkable different trends in response to erosion/accretion processes both at community and at species level. Thus, our results highlight the importance of coastal dynamics in preserving not only coastal vegetation zonation, but also species richness and focal species cover. Moreover, we identified the dune grasslands as the most sensitive habitat for detecting the influence of climatic variables throughout a short term monitoring survey. Information from this study provides useful insights for detecting changes in vegetation, for establishing habitat protection priorities and for improving conservation efforts for these fragile ecosystems.

  5. Foliage Plants for Improving Indoor Air Quality

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1988-01-01

    NASA's research with foliage houseplants during the past 10 years has produced a new concept in indoor air quality improvement. This new and exciting technology is quite simple. Both plant leaves and roots are utilized in removing trace levels of toxic vapors from inside tightly sealed buildings. Low levels of chemicals such as carbon monoxide and formaldehyde can be removed from indoor environments by plant leaves alone, while higher concentrations of numerous toxic chemicals can be removed by filtering indoor air through the plant roots surrounded by activated carbon. The activated carbon absorbs large quantities of the toxic chemicals and retains them until the plant roots and associated microorganisms degrade and assimilate these chemicals.

  6. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    PubMed

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  7. Influence of Species of Vesicular-Arbuscular Mycorrhizal Fungi and Phosphorus Nutrition on Growth, Development, and Mineral Nutrition of Potato (Solanum tuberosum L.).

    PubMed

    McArthur, DAJ.; Knowles, N. R.

    1993-07-01

    Growth, development, and mineral physiology of potato (Solanum tuberosum L.) plants in response to infection by three species of vesicular-arbuscular mycorrhizal (VAM) fungi and different levels of P nutrition were characterized. P deficiency in no-P and low-P (0.5 mM) nonmycorrhizal plants developed between 28 and 84 d after planting. By 84 d after planting, P deficiency decreased plant relative growth rate such that no-P and low-P plants had, respectively, 65 and 45% less dry mass and 76 and 55% less total P than plants grown with high P (2.5 mM). A severe reduction in leaf area was also evident, because P deficiency induced a restriction of lateral bud growth and leaf expansion and, also, decreased the relative plant allocation of dry matter to leaf growth. Root growth was less influenced by P deficiency than either leaf or stem growth. Moreover, P-deficient plants accumulated a higher proportion of total available P than high-P plants, indicating that P stress had enhanced root efficiency of P acquisition. Plant P deficiency did not alter the shoot concentration of N, K, Mg, or Fe; however, the total accumulation of these mineral nutrients in shoots of P-stressed plants was substantially less than that of high-P plants. P uptake by roots was enhanced by each of the VAM symbionts by 56 d after planting and at all levels of abiotic P supply. Species differed in their ability to colonize roots and similarly to produce a plant growth response. In this regard, Glomus intraradices (Schenck and Smith) enhanced plant growth the most, whereas Glomus dimorphicum (Boyetchko and Tewari) was least effective, and Glomus mosseae ([Nicol. and Gerd.] Gerd. and Trappe) produced an intermediate growth response. The partial alleviation of P deficiency in no-P and low-P plants by VAM fungi stimulated uptake of N, K, Mg, Fe, and Zn. VAM fungi enhanced shoot concentrations of P, N, and Mg by 28 d after planting and, through a general improvement of overall plant mineral nutrition, promoted plant growth and development.

  8. Response to low-dose herbicide selection in self-pollinated Avena fatua.

    PubMed

    Busi, Roberto; Girotto, Marcelo; Powles, Stephen B

    2016-03-01

    When applied at the correct plant stage and dose, herbicides are highly toxic to plants. At reduced, low herbicide doses (below the recommended dose) plants can survive and display continuous and quantitative variation in dose-survival responses. Recurrent (directional) selection studies can reveal whether such a phenotypic variation in plant survival response to low herbicide dose is heritable and leads to herbicide resistance. In a common experimental garden study, we have subjected a susceptible population of self-pollinated hexaploid Avena fatua to low-dose recurrent selection with the ACCase-inhibiting herbicide diclofop-methyl for three consecutive generations. Significant differences in response to low-dose diclofop-methyl selection were observed between the selected progenies and parent plants, with a twofold diclofop-methyl resistance and cross-resistance to ALS-inhibiting herbicides. Thus, the capacity of self-pollinated A. fatua to respond to low-dose herbicide selection is marginal, and it is much lower than in cross-pollinated L. rigidum. Lolium rigidum in the same experiment evolved 40-fold diclofop-methyl resistance by progressive enrichment of quantitative resistance-endowing traits. Cross-pollination rate, genetic variation and ploidy levels are identified as possible drivers affecting the contrasting capacity of Avena versus Lolium plants to respond to herbicide selection and the subsequent likelihood of resistance evolution at low herbicide dose usage. © 2015 Society of Chemical Industry.

  9. Looking inside phytoplasma-infected sieve elements: A combined microscopy approach using Arabidopsis thaliana as a model plant.

    PubMed

    Pagliari, Laura; Martini, Marta; Loschi, Alberto; Musetti, Rita

    2016-10-01

    Phytoplasmas are phloem-inhabiting plant pathogens that affect over one thousand plant species, representing a severe threat to agriculture. The absence of an effective curative strategy and the economic importance of many affected crops make a priority of studying how plants respond to phytoplasma infection. Nevertheless, the study of phytoplasmas has been hindered by the extreme difficulty of culturing them in vitro and by impediments to natural host plant surveys such as low phytoplasma titre, long plant life cycle and poor knowledge of natural host-plant biology. Stating correspondence between macroscopic symptoms of phytoplasma infected Arabidopsis thaliana and those observed in natural host plants, over the last decade some authors have started to use this plant as a model for studying phytoplasma-plant interactions. Nevertheless, the morphological and ultrastructural modifications occurring in A. thaliana tissues following phytoplasma infection have never been described in detail. In this work, we adopted a combined-microscopy approach to verify if A. thaliana can be considered a reliable model for the study of phytoplasma-plant interactions at the microscopical level. The consistent presence of phytoplasma in infected phloem allowed detailed study of the infection process and the relationship established by phytoplasmas with different components of the sieve elements. In infected A. thaliana, phytoplasmas induced strong disturbances of host plant development that were mainly due to phloem disorganization and impairment. Light microscopy showed collapse, necrosis and hyperplasia of phloem cells. TEM observations of sieve elements identified two common plant-responses to phytoplasma infection: phloem protein agglutination and callose deposition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Expression, purification, and characterization of the Necator americanus aspartic protease-1 (Na-APR-1 (M74)) antigen, a component of the bivalent human hookworm vaccine.

    PubMed

    Seid, Christopher A; Curti, Elena; Jones, R Mark; Hudspeth, Elissa; Rezende, Wanderson; Pollet, Jeroen; Center, Lori; Versteeg, Leroy; Pritchard, Sonya; Musiychuk, Konstantin; Yusibov, Vidadi; Hotez, Peter J; Bottazzi, Maria Elena

    2015-01-01

    Over 400 million people living in the world's poorest developing nations are infected with hookworms, mostly of the genus Necator americanus. A bivalent human hookworm vaccine composed of the Necator americanus Glutathione S-Transferase-1 (Na-GST-1) and the Necator americanus Aspartic Protease-1 (Na-APR-1 (M74)) is currently under development by the Sabin Vaccine Institute Product Development Partnership (Sabin PDP). Both monovalent vaccines are currently in Phase 1 trials. Both Na-GST-1 and Na-APR-1 antigens are expressed as recombinant proteins. While Na-GST-1 was found to express with high yields in Pichia pastoris, the level of expression of Na-APR-1 in this host was too low to be suitable for a manufacturing process. When the tobacco plant Nicotiana benthamiana was evaluated as an expression system, acceptable levels of solubility, yield, and stability were attained. Observed expression levels of Na-APR-1 (M74) using this system are ∼300 mg/kg. Here we describe the achievements and obstacles encountered during process development as well as characterization and stability of the purified Na-APR-1 (M74) protein and formulated vaccine. The expression, purification and analysis of purified Na-APR-1 (M74) protein obtained from representative 5 kg reproducibility runs performed to qualify the Na-APR-1 (M74) production process is also presented. This process has been successfully transferred to a pilot plant and a 50 kg scale manufacturing campaign under current Good Manufacturing Practice (cGMP) has been performed. The 50 kg run has provided a sufficient amount of protein to support the ongoing hookworm vaccine development program of the Sabin PDP.

  11. Integrative “omic” analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa ‘Korona’

    PubMed Central

    Koehler, Gage; Rohloff, Jens; Wilson, Robert C.; Kopka, Joachim; Erban, Alexander; Winge, Per; Bones, Atle M.; Davik, Jahn; Alsheikh, Muath K.; Randall, Stephen K.

    2015-01-01

    To assess underlying metabolic processes and regulatory mechanisms during cold exposure of strawberry, integrative “omic” approaches were applied to Fragaria × ananassa Duch. ‘Korona.’ Both root and leaf tissues were examined for responses to the cold acclimation processes. Levels of metabolites, proteins, and transcripts in tissues from plants grown at 18°C were compared to those following 1–10 days of cold (2°C) exposure. When leaves and roots were subjected to GC/TOF-MS-based metabolite profiling, about 160 compounds comprising mostly structurally annotated primary and secondary metabolites, were found. Overall, ‘Korona’ showed a modest increase of protective metabolites such as amino acids (aspartic acid, leucine, isoleucine, and valine), pentoses, phosphorylated and non-phosphorylated hexoses, and distinct compounds of the raffinose pathway (galactinol and raffinose). Distinctive responses were observed in roots and leaves. By 2DE proteomics a total of 845 spots were observed in leaves; 4.6% changed significantly in response to cold. Twenty-one proteins were identified, many of which were associated with general metabolism or photosynthesis. Transcript levels in leaves were determined by microarray, where dozens of cold associated transcripts were quantitatively characterized, and levels of several potential key contributors (e.g., the dehydrin COR47 and GADb) to cold tolerance were confirmed by qRT-PCR. Cold responses are placed within the existing knowledge base of low temperature-induced changes in plants, allowing an evaluation of the uniqueness or generality of Fragaria responses in photosynthetic tissues. Overall, the cold response characteristics of ‘Korona’ are consistent with a moderately cold tolerant plant. PMID:26528299

  12. Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry.

    PubMed

    Ito, Jun; Herter, Thomas; Baidoo, Edward E K; Lao, Jeemeng; Vega-Sánchez, Miguel E; Michelle Smith-Moritz, A; Adams, Paul D; Keasling, Jay D; Usadel, Björn; Petzold, Christopher J; Heazlewood, Joshua L

    2014-03-01

    Understanding the intricate metabolic processes involved in plant cell wall biosynthesis is limited by difficulties in performing sensitive quantification of many involved compounds. Hydrophilic interaction liquid chromatography is a useful technique for the analysis of hydrophilic metabolites from complex biological extracts and forms the basis of this method to quantify plant cell wall precursors. A zwitterionic silica-based stationary phase has been used to separate hydrophilic nucleotide sugars involved in cell wall biosynthesis from milligram amounts of leaf tissue. A tandem mass spectrometry operating in selected reaction monitoring mode was used to quantify nucleotide sugars. This method was highly repeatable and quantified 12 nucleotide sugars at low femtomole quantities, with linear responses up to four orders of magnitude to several 100pmol. The method was also successfully applied to the analysis of purified leaf extracts from two model plant species with variations in their cell wall sugar compositions and indicated significant differences in the levels of 6 out of 12 nucleotide sugars. The plant nucleotide sugar extraction procedure was demonstrated to have good recovery rates with minimal matrix effects. The approach results in a significant improvement in sensitivity when applied to plant samples over currently employed techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Low Impact Development in Army Construction

    DTIC Science & Technology

    2012-05-01

    recycling , to reduce outdoor potable water consumption by a minimum of 50 percent over that consumed by conventional means (plant species and plant...Infiltration trenches • Subsurface infiltration beds • Bioretention • Level spreaders • Native revegetation • Pervious pavement with infiltration

  14. Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells.

    PubMed

    Malhotra, Karan; Subramaniyan, Mayavan; Rawat, Khushboo; Kalamuddin, Md; Qureshi, M Irfan; Malhotra, Pawan; Mohmmed, Asif; Cornish, Katrina; Daniell, Henry; Kumar, Shashi

    2016-11-07

    Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (∼0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  15. Measuring bitterbrush seed production on plants with variable crown density...complete counts per plant suggested

    Treesearch

    Donald W. Seegrist; Donald L. Neal; Richard L. Hubbard

    1966-01-01

    A sampling study was made of the number of bitterbrush seeds per trap from plots in northeastern California. The count per trap had a large variation for each plant. This variation was not reduced to an acceptable low level by grouping the seed traps according to their position relative to the plant crown. In the absence of additional information, it is recommended...

  16. Clipping and shading alter NH4+ uptake by plants in grazed and ungrazed Tibetan alpine grasslands

    NASA Astrophysics Data System (ADS)

    Sun, Yue; Schleuss, Per; Li, Qianru; Yang, Baijie; Xu, Xingliang; Kuzyakov, Yakov

    2014-05-01

    The Kobresia pastures are the most common and most important vegetation type on the Tibetan Plateau as it occupies more than 35% the plateau area. These pastures have been remained stable for about one million years, but have been strongly changed by increased grazing in the recent decades which led to serious grassland degradation. Previous studies on the N cycling in alpine grasslands showed that plant growth was limited by low N availability due to low N mineralization caused by low temperature. However, the effect of grazing on N turnover processes and plant N uptake remains unclear. To clarify the grazing effect for a better understanding N mineralization and plant N uptake in these alpine grasslands, we conducted a 15N experiment in grazed and ungraded plots in these alpine grasslands. Because ammonium was a dominant N form, we used 15N-labeled ammonium so that we can also measure gross N mineralization. To explore the effect of root exudates on 15NH4+ uptake by plants and gross N mineralization, three treatments such as clipping, shading and control were used. Initially, all treatments were labeled by 15NH4+, with blank treatments no 15N tracer addition. Plant and soil samples were collected 7, 14 and 28 days after the labelling. 15NH4+ uptake by alpine plants almost did not change after clipping in the grazed plots, but its uptake was lower under the clipping treatment than under the control treatment in the ungrazed plots. 15N recovery in plants under the shading treatment remained the lowest level in grazed and ungrazed plots. Although clipping removed a part of aboveground biomass, subsequent stimulation of plant growth increased N uptake by plants. Likely, moderate grazing removed a part of aboveground biomass, but 15N recovery in plants was still compared to that in the ungrazed plots, indicating moderate grazing stimulate N uptake by plants through compensatory growth. Gross N mineralization under the shading treatment was higher than under the clipping treatment (shading vs clipping: 0.42 vs 0.34 mg N kg-1 h-1) in the grazed plot. In contrast, gross N mineralization was lower for shading treatment than for clipping treatment (shading vs clipping 0.47 vs 0.63 mg N kg-1 h-1) in the ungrazed plot. Gross N mineralization in the ungrazed soil was higher than in the grazed soil, suggesting that grazing greatly reduced the potential to provide available nitrogen for plants and microorganisms. Therefore, we concluded that low photosynthesis caused by shading, clipping and grazing can affect N transformation and therefore affect the format of soil organic matter.

  17. Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions.

    PubMed

    Isaac, M E; Hinsinger, P; Harmand, J M

    2012-09-15

    Considerable amounts of nitrogen (N) and phosphorus (P) fertilizers have been mis-used in agroecosystems, with profound alteration to the biogeochemical cycles of these two major nutrients. To reduce excess fertilizer use, plant-mediated nutrient supply through N(2)-fixation, transfer of fixed N and mobilization of soil P may be important processes for the nutrient economy of low-input tree-based intercropping systems. In this study, we quantified plant performance, P acquisition and belowground N transfer from the N(2)-fixing tree to the cereal crop under varying root contact intensity and P supplies. We cultivated Acacia senegal var senegal in pot-culture containing 90% sand and 10% vermiculite under 3 levels of exponentially supplied P. Acacia plants were then intercropped with durum wheat (Triticum turgidum durum) in the same pots with variable levels of adsorbed P or transplanted and intercropped with durum wheat in rhizoboxes excluding direct root contact on P-poor red Mediterranean soils. In pot-culture, wheat biomass and P content increased in relation to the P gradient. Strong isotopic evidence of belowground N transfer, based on the isotopic signature (δ(15)N) of tree foliage and wheat shoots, was systematically found under high P in pot-culture, with an average N transfer value of 14.0% of wheat total N after 21 days of contact between the two species. In the rhizoboxes, we observed limitations on growth and P uptake of intercropped wheat due to competitive effects on soil resources and minimal evidence of belowground N transfer of N from acacia to wheat. In this intercrop, specifically in pot-culture, facilitation for N transfer from the legume tree to the crop showed to be effective especially when crop N uptake was increased (or stimulated) as occurred under high P conditions and when competition was low. Understanding these processes is important to the nutrient economy and appropriate management of legume-based agroforestry systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Factors contributing to enhanced freezing tolerance in wheat during frost hardening in the light.

    PubMed

    Janda, Tibor; Szalai, Gabriella; Leskó, Kornélia; Yordanova, Rusina; Apostol, Simona; Popova, Losanka Petrova

    2007-06-01

    The interaction between light and temperature during the development of freezing tolerance was studied in winter wheat (Triticum aestivum L. var. Mv Emese). Ten-day-old plants were cold hardened at 5 degrees C for 12 days under normal (250 micromol m(-2)s(-1)) or low light (20 micromol m(-2)s(-1)) conditions. Some of the plants were kept at 20/18 degrees C for 12 days at high light intensity (500 micromol m(-2)s(-1)), which also increased the freezing tolerance of winter wheat. The freezing survival rate, the lipid composition, the antioxidant activity, and the salicylic acid content were investigated during frost hardening. The saturation level of hexadecanoic acid decreased not only in plants hardened at low temperature, but also, to a lesser extent, in plants kept under high light irradiation at normal growth temperature. The greatest induction of the enzymes glutathione reductase (EC 1.6.4.2.) and ascorbate peroxidase (EC 1.11.1.11.) occurred when the cold treatment was carried out in normal light, but high light intensity at normal, non-hardening temperature also increased the activity of these enzymes. The catalase (EC 1.11.1.6.) activity was also higher in plants grown at high light intensity than in the controls. The greatest level of induction in the activity of the guaiacol peroxidase (EC 1.11.1.7.) enzyme occurred under cold conditions with low light. The bound ortho-hydroxy-cinnamic acid increased by up to two orders of magnitude in plants that were cold hardened in normal light. Both high light intensity and low temperature hardening caused an increase in the free and bound salicylic acid content of the leaves. This increase was most pronounced in plants that were cold treated in normal light.

  19. 21 CFR 101.83 - Health claims: plant sterol/stanol esters and risk of coronary heart disease (CHD).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cholesterol levels. These populations also tend to have dietary patterns that are not only low in total fat, especially saturated fat and cholesterol, but are also relatively high in plant foods that contain dietary... met, except § 101.14(a)(4) with respect to the disqualifying level for total fat per 50 grams (g) in...

  20. 21 CFR 101.83 - Health claims: plant sterol/stanol esters and risk of coronary heart disease (CHD).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cholesterol levels. These populations also tend to have dietary patterns that are not only low in total fat, especially saturated fat and cholesterol, but are also relatively high in plant foods that contain dietary... met, except § 101.14(a)(4) with respect to the disqualifying level for total fat per 50 grams (g) in...

  1. 21 CFR 101.83 - Health claims: plant sterol/stanol esters and risk of coronary heart disease (CHD).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cholesterol levels. These populations also tend to have dietary patterns that are not only low in total fat, especially saturated fat and cholesterol, but are also relatively high in plant foods that contain dietary... met, except § 101.14(a)(4) with respect to the disqualifying level for total fat per 50 grams (g) in...

  2. 21 CFR 101.83 - Health claims: plant sterol/stanol esters and risk of coronary heart disease (CHD).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cholesterol levels. These populations also tend to have dietary patterns that are not only low in total fat, especially saturated fat and cholesterol, but are also relatively high in plant foods that contain dietary... met, except § 101.14(a)(4) with respect to the disqualifying level for total fat per 50 grams (g) in...

  3. Potassium starvation limits soybean growth more than the photosynthetic processes across CO2 levels

    USDA-ARS?s Scientific Manuscript database

    Potassium (K) deficiency might alter plant response to rising atmospheric carbon dioxide (CO2) and influence growth, and photosynthetic processes differently. To evaluate the combined effects of K and CO2 on soybean photosynthesis, growth, biomass partitioning, and yields, plants were grown under co...

  4. Trienoic Fatty Acids Are Required to Maintain Chloroplast Function at Low Temperatures1

    PubMed Central

    Routaboul, Jean-Marc; Fischer, Steven F.; Browse, John

    2000-01-01

    The chloroplast membranes of all higher plants contain very high proportions of trienoic fatty acids. To investigate how these lipid structures are important in photosynthesis, we have generated a triple mutant line of Arabidopsis that contains negligible levels of trienoic fatty acids. For mutant plants grown at 22°C, photosynthetic fluorescence parameters were indistinguishable from wild type at 25°C. Lowering the measurement temperature led to a small decrease in photosynthetic quantum yield, ΦII, in the mutant relative to wild-type controls. These and other results indicate that low temperature has only a small effect on photosynthesis in the short term. However, long-term growth of plants at 4°C resulted in decreases in fluorescence parameters, chlorophyll content, and thylakoid membrane content in triple-mutant plants relative to wild type. Comparisons among different mutant lines indicated that these detrimental effects of growth at 4°C are strongly correlated with trienoic fatty acid content with levels of 16:3 + 18:3, approximately one-third of wild type being sufficient to sustain normal photosynthetic function. In total, our results indicate that trienoic fatty acids are important to ensure the correct biogenesis and maintenance of chloroplasts during growth of plants at low temperatures. PMID:11115886

  5. Explorative study of tropical pitcher plants (Nepenthes sp.) types and insects that trapped inside in Sebangau National Park Palangka Raya Central Kalimantan

    NASA Astrophysics Data System (ADS)

    Lestariningsih, Nanik; Setyaningsih, Denik

    2017-01-01

    Pitcher plants (Nepenthes sp.) is a plant with unique shape either of shades of colors, pouch shape and its capability in catching insects. Pitcher plant (Nepenthes sp.) is one of the plants that protected under Law Number. 5 of 1990 about Conservation of Biological Resources and Ecosystem and Government Regulation Number 7/1999 about Preservation of Plants and Animals. Sebangau National Park is one of representative of peat swamp ecosystem and one of some types of pitcher plants (Nepenthes sp.) habitat. This study aimed to determine the types and diversity levels of pitcher plants (Nepenthes sp.) and the trapped insects inside in Sebangau National and to determine the differences of diversity levels of pitcher plants (Nepenthes sp.) and the trapped insects inside in the opened and closed forest in Sebangau National Park. The research type was conducted descriptive qualitative research. The method used survey method with purpossive sampling technique.The result of the study the number of pitcher plants (Nepenthes sp.) obtained in opened forest were three types consist of Nepenthes mirabilis, Nepenthes rafflesiana and Nepenthes gracilis with two types insects trapped inside those were Diptera ordo and Hymenoptera ordo. While the number of pitcher plants (Nepenthes sp.) obtained in closed forest as many as two types consist of Nepenthes ampullaria and Nepenthes rafflesiana with two type insects trapped inside those were Diptera ordo and Hymenoptera ordo. The results of the analysis calculation pitcher plants (Nepenthes sp.) species diversity index in opened and closed forest showed lower category. The diversity in row were 1 and 0,45 with H’ criteria ≤ 1 low diversity. The results of the study of insects trapped inside of pitcher plants (Nepenthes sp.) obtained in opened and closed forest showed low category. The diversity in a row were 0,63 and 0,52 with the criteria of H’ ≤ 1 low diversity.

  6. THE EFFECT OF NITROGEN OVER-ENRICHMENT ON SOME PLANT-SOIL RELATIONSHIPS AND MICROBIAL PROCESSES

    EPA Science Inventory

    Salt marshes of similar geomorphology and hydrology with varying watershed nitrogen loads were examined for differences in plant structure, soil characteristics, and
    denitrification. We observed landward encroachment of the low marsh Spartina alterniflora, and the displacement...

  7. Cultural change and traditional ecological knowledge. An empirical analysis from the Tsimane' in the Bolivian Amazon.

    PubMed

    Reyes-García, Victoria; Paneque-Gálvez, Jaime; Luz, Ana C; Gueze, Maximilien; Macía, Manuel J; Orta-Martínez, Martí; Pino, Joan

    2014-01-01

    Among the different factors associated to change in traditional ecological knowledge, the study of the relations between cultural change and traditional ecological knowledge has received scan and inadequate scholarly attention. Using data from indigenous peoples of an Amazonian society facing increasing exposure to the mainstream Bolivian society, we analyzed the relation between traditional ecological knowledge, proxied with individual plant use knowledge (n=484), and cultural change, proxied with individual- and village-level (n=47) measures of attachment to traditional beliefs and values. We found that both the individual level of detachment to traditional values and the village level of agreement in detachment to traditional values were associated with individual levels of plant use knowledge, irrespective of other proxy measures for cultural change. Because both the individual- and the village-level variables bear statistically significant associations with plant use knowledge, our results suggest that both the individual- and the supra-individual level processes of cultural change are related to the erosion of plant use knowledge. Results from our work highlight the importance of analyzing processes that happen at intermediary social units -the village in our case study- to explain changes in traditional ecological knowledge.

  8. Cultural change and traditional ecological knowledge. An empirical analysis from the Tsimane’ in the Bolivian Amazon

    PubMed Central

    Reyes-García, Victoria; Paneque-Gálvez, Jaime; Luz, Ana C.; Gueze, Maximilien; Macía, Manuel J.; Orta-Martínez, Martí; Pino, Joan

    2016-01-01

    Among the different factors associated to change in traditional ecological knowledge, the study of the relations between cultural change and traditional ecological knowledge has received scan and inadequate scholarly attention. Using data from indigenous peoples of an Amazonian society facing increasing exposure to the mainstream Bolivian society, we analyzed the relation between traditional ecological knowledge, proxied with individual plant use knowledge (n=484), and cultural change, proxied with individual- and village-level (n=47) measures of attachment to traditional beliefs and values. We found that both the individual level of detachment to traditional values and the village level of agreement in detachment to traditional values were associated with individual levels of plant use knowledge, irrespective of other proxy measures for cultural change. Because both the individual- and the village-level variables bear statistically significant associations with plant use knowledge, our results suggest that both the individual- and the supra-individual level processes of cultural change are related to the erosion of plant use knowledge. Results from our work highlight the importance of analyzing processes that happen at intermediary social units -the village in our case study- to explain changes in traditional ecological knowledge. PMID:27642188

  9. Research on the Intensive Material Management System of Biomass Power Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Ruosi; Hao, Tianyi; Li, Yunxiao; Zhang, Fangqing; Ding, Sheng

    2017-05-01

    In view of the universal problem which the material management is loose, and lack of standardization and interactive real-time in the biomass power plant, a system based on the method of intensive management is proposed in this paper to control the whole process of power plant material. By analysing the whole process of power plant material management and applying the Internet of Things, the method can simplify the management process. By making use of the resources to maximize and data mining, material utilization, circulation rate and quality control management can be improved. The system has been applied in Gaotang power plant, which raised the level of materials management and economic effectiveness greatly. It has an important significance for safe, cost-effective and highly efficient operation of the plant.

  10. Aspen phenylpropanoid genes' expression levels correlate with genets' tannin richness and vary both in responses to soil nitrogen and associations with phenolic profiles.

    PubMed

    Decker, Vicki H G; Bandau, Franziska; Gundale, Michael J; Cole, Christopher T; Albrectsen, Benedicte R

    2017-02-01

    Condensed tannin (CT) contents of European aspen (Populus tremula L.) vary among genotypes, and increases in nitrogen (N) availability generally reduce plants' tannin production in favor of growth, through poorly understood mechanisms. We hypothesized that intrinsic tannin production rates may co-vary with gene expression responses to soil N and resource allocation within the phenylpropanoid pathway (PPP). Thus, we examined correlations between soil N levels and both expression patterns of eight PPP genes (measured by quantitative-reverse transcription PCR) and foliar phenolic compounds (measured by liquid chromatography-mass spectrometry) in young aspen genets with intrinsically extreme CT levels. Monitored phenolics included salicinoids, lignins, flavones, flavonols, CT precursors and CTs. The PPP genes were consistently expressed more strongly in high-CT trees. Low N supplements reduced expression of genes throughout the PPP in all genets, while high N doses restored expression of genes at the beginning and end of the pathway. These PPP changes were not reflected in pools of tannin precursors, but varying correlations between gene expression and foliar phenolic pools were detected in young and mature leaves, suggesting that processes linking gene expression and the resulting phenolics vary spatially and temporally. Precursor fluxes suggested that CT-related metabolic rate or sink controls are linked to intrinsic carbon allocation strategies associated with N responses. Overall, we found more negative correlations (indicative of allocation trade-offs) between PPP gene expression and phenolic products following N additions in low-CT plants than in high-CT plants. The tannin-related expression dynamics suggest that, in addition to defense, relative tannin levels may also be indicative of intraspecific variations in the way aspen genets respond to soil fertility. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Disentangling Facilitation Along the Life Cycle: Impacts of Plant-Plant Interactions at Vegetative and Reproductive Stages in a Mediterranean Forb.

    PubMed

    García-Cervigón, Ana I; Iriondo, José M; Linares, Juan C; Olano, José M

    2016-01-01

    Facilitation enables plants to improve their fitness in stressful environments. The overall impact of plant-plant interactions on the population dynamics of protégées is the net result of both positive and negative effects that may act simultaneously along the plant life cycle, and depends on the environmental context. This study evaluates the impact of the nurse plant Juniperus sabina on different stages of the life cycle of the forb Helleborus foetidus. Growth, number of leaves, flowers, carpels, and seeds per flower were compared for 240 individuals collected under nurse canopies and in open areas at two sites with contrasting stress levels. Spatial associations with nurse plants and age structures were also checked. A structural equation model was built to test the effect of facilitation on fecundity, accounting for sequential steps from flowering to seed production. The net impact of nurse plants depended on a combination of positive and negative effects on vegetative and reproductive variables. Although nurse plants caused a decrease in flower production at the low-stress site, their net impact there was neutral. In contrast, at the high-stress site the net outcome of plant-plant interactions was positive due to an increase in effective recruitment, plant density, number of viable carpels per flower, and fruit set under nurse canopies. The naturally lower rates of secondary growth and flower production at the high-stress site were compensated by the net positive impact of nurse plants here. Our results emphasize the need to evaluate entire processes and not only final outcomes when studying plant-plant interactions.

  12. Housing is positively associated with invasive exotic plant species richness in New England, USA.

    PubMed

    Gavier-Pizarro, Gregorio I; Radeloff, Volker C; Stewart, Susan I; Huebner, Cynthia D; Keuler, Nicholas S

    2010-10-01

    Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.

  13. Enhanced Proton Translocating Pyrophosphatase Activity Improves Nitrogen Use Efficiency in Romaine Lettuce1[C][W][OA

    PubMed Central

    Paez-Valencia, Julio; Sanchez-Lares, Jonathan; Marsh, Ellen; Dorneles, Liane T.; Santos, Mirella P.; Sanchez, Diego; Winter, Alexander; Murphy, Sean; Cox, Jennifer; Trzaska, Marcin; Metler, Jason; Kozic, Alex; Facanha, Arnoldo R.; Schachtman, Daniel; Sanchez, Charles A.; Gaxiola, Roberto A.

    2013-01-01

    Plant nitrate (NO3−) acquisition depends on the combined activities of root high- and low-affinity NO3− transporters and the proton gradient generated by the plasma membrane H+-ATPase. These processes are coordinated with photosynthesis and the carbon status of the plant. Here, we present the characterization of romaine lettuce (Lactuca sativa ‘Conquistador’) plants engineered to overexpress an intragenic gain-of-function allele of the type I proton translocating pyrophosphatase (H+-PPase) of Arabidopsis (Arabidopsis thaliana). The proton-pumping and inorganic pyrophosphate hydrolytic activities of these plants are augmented compared with control plants. Immunohistochemical data show a conspicuous increase in H+-PPase protein abundance at the vasculature of the transgenic plants. Transgenic plants displayed an enhanced rhizosphere acidification capacity consistent with the augmented plasma membrane H+-ATPase proton transport values, and ATP hydrolytic capacities evaluated in vitro. These transgenic lines outperform control plants when challenged with NO3− limitations in laboratory, greenhouse, and field scenarios. Furthermore, we report the characterization of a lettuce LsNRT2.1 gene that is constitutive up-regulated in the transgenic plants. Of note, the expression of the LsNRT2.1 gene in control plants is regulated by NO3− and sugars. Enhanced accumulation of 15N-labeled fertilizer by transgenic lettuce compared with control plants was observed in greenhouse experiments. A negative correlation between the level of root soluble sugars and biomass is consistent with the strong root growth that characterizes these transgenic plants. PMID:23307651

  14. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)« less

  15. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Model for the techno-economic analysis of common work of wind power and CCGT power plant to offer constant level of power in the electricity market

    NASA Astrophysics Data System (ADS)

    Tomsic, Z.; Rajsl, I.; Filipovic, M.

    2017-11-01

    Wind power varies over time, mainly under the influence of meteorological fluctuations. The variations occur on all time scales. Understanding these variations and their predictability is of key importance for the integration and optimal utilization of wind in the power system. There are two major attributes of variable generation that notably impact the participation on power exchanges: Variability (the output of variable generation changes and resulting in fluctuations in the plant output on all time scales) and Uncertainty (the magnitude and timing of variable generation output is less predictable, wind power output has low levels of predictability). Because of these variability and uncertainty wind plants cannot participate to electricity market, especially to power exchanges. For this purpose, the paper presents techno-economic analysis of work of wind plants together with combined cycle gas turbine (CCGT) plant as support for offering continues power to electricity market. A model of wind farms and CCGT plant was developed in program PLEXOS based on real hourly input data and all characteristics of CCGT with especial analysis of techno-economic characteristics of different types of starts and stops of the plant. The Model analyzes the followings: costs of different start-stop characteristics (hot, warm, cold start-ups and shutdowns) and part load performance of CCGT. Besides the costs, the technical restrictions were considered such as start-up time depending on outage duration, minimum operation time, and minimum load or peaking capability. For calculation purposes, the following parameters are necessary to know in order to be able to economically evaluate changes in the start-up process: ramp up and down rate, time of start time reduction, fuel mass flow during start, electricity production during start, variable cost of start-up process, cost and charges for life time consumption for each start and start type, remuneration during start up time regarding expected or unexpected starts, the cost and revenues for balancing energy (important when participating in electricity market), and the cost or revenues for CO2-certificates. Main motivation for this analysis is to investigate possibilities to participate on power exchanges by offering continues guarantied power from wind plants by backing-up them with CCGT power plant.

  17. Plant Molecular Farming: Much More than Medicines.

    PubMed

    Tschofen, Marc; Knopp, Dietmar; Hood, Elizabeth; Stöger, Eva

    2016-06-12

    Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.

  18. Plant Molecular Farming: Much More than Medicines

    NASA Astrophysics Data System (ADS)

    Tschofen, Marc; Knopp, Dietmar; Hood, Elizabeth; Stöger, Eva

    2016-06-01

    Plants have emerged as commercially relevant production systems for pharmaceutical and nonpharmaceutical products. Currently, the commercially available nonpharmaceutical products outnumber the medical products of plant molecular farming, reflecting the shorter development times and lower regulatory burden of the former. Nonpharmaceutical products benefit more from the low costs and greater scalability of plant production systems without incurring the high costs associated with downstream processing and purification of pharmaceuticals. In this review, we explore the areas where plant-based manufacturing can make the greatest impact, focusing on commercialized products such as antibodies, enzymes, and growth factors that are used as research-grade or diagnostic reagents, cosmetic ingredients, and biosensors or biocatalysts. An outlook is provided on high-volume, low-margin proteins such as industrial enzymes that can be applied as crude extracts or unprocessed plant tissues in the feed, biofuel, and papermaking industries.

  19. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge

    NASA Astrophysics Data System (ADS)

    Engohang-Ndong, Jean; Uribe, R. M.; Gregory, Roger; Gangoda, Mahinda; Nickelsen, Mike G.; Loar, Philip

    2015-07-01

    Wastewater treatment plants produce large amounts of biosolids that can be utilized for land applications. However, prior to their use, these biosolids must be treated to eliminate risks of infections and to reduce upsetting odors. In this study, microbiological and chemical analyzes were performed before and after treatment of sewage sludge with 3 MeV of an electron beam accelerator in a pilot processing plant. Thus, we determined that dose 4.5 kGy was required to reduce fecal coliform counts to safe levels for land applications of sludge while, 14.5 kGy was necessary to decrease Ascaris ova counts to safe levels. Furthermore, at low doses, electron beam irradiation showed little effect on the concentrations of volatile organic compounds, while some increase were recorded at high doses. The concentration of dimethyl sulfide was reduced by 50-70% at irradiation doses of 25.7 kGy and 30.7 kGy respectively. By contrast, electron beam irradiation increased dimethyl disulfide concentrations. We also showed that electron beam treatment was less energy-consuming with shorter processing times than conventional techniques used to decontaminate sludge. Hence opening new avenues for large urban agglomerations to save money and time when treating biosolids for land application.

  20. Characterization of mutant tobacco mosaic virus coat protein that interferes with virus cell-to-cell movement.

    PubMed

    Bendahmane, Mohammed; Szecsi, Judit; Chen, Iju; Berg, R Howard; Beachy, Roger N

    2002-03-19

    Expression of tobacco mosaic virus (TMV) coat protein (CP) in plants confers resistance to infection by TMV and related tobamoviruses. Certain mutants of the CP (CP(T42W)) provide much greater levels of resistance than wild-type (wt) CP. In the present work, infection induced by RNA transcripts of TMV clones that contain wt CP or mutant CP(T42W) fused to the green fluorescent protein (GFP) (TMV-CP:GFP, TMV-CP(T42W):GFP) and clones harboring TMV movement protein (MP):GFP were followed in nontransgenic and transgenic tobacco BY-2 protoplasts and Nicotiana tabaccum Xanthi-nn plants that express wt CP or CP(T42W). On nontransgenic and wt CP transgenic plants, TMV-CP:GFP produced expanding, highly fluorescent disk-shaped areas. On plants expressing CP(T42W), infection by TMV-CP:GFP or TMV-MP:GFP-CP produced infection sites of smaller size that were characterized by low fluorescence, reflecting reduced levels of virus spread and reduced accumulation of both CP:GFP and MP:GFP. TMV-CP(T42W):GFP failed to produce visible infection sites on nontransgenic plants, yet produced normal infection sites on MP-transgenic plants that produce MP. TMV infection of transgenic BY-CP(T42W) protoplasts resulted in very low levels of MP accumulation, whereas on BY-CP protoplasts (containing wt CP), infection produced higher levels of MP than in nontransgenic BY-2 cells. The results suggest that wt CP has a positive effect on the production of MP, whereas the CP(T42W) has a negative effect on MP accumulation and/or function. This effect results in very high levels of resistance to TMV infection in plants containing CP(T42W). This report shows that the CP of a plant virus regulates production of the MP, and that a mutant CP interferes with MP accumulation and cell-to-cell movement of infection.

  1. Mycotoxins: diffuse and point source contributions of natural contaminants of emerging concern to streams

    USGS Publications Warehouse

    Kolpin, Dana W.; Schenzel, Judith; Meyer, Michael T.; Phillips, Patrick J.; Hubbard, Laura E.; Scott, Tia-Marie; Bucheli, Thomas D.

    2014-01-01

    To determine the prevalence of mycotoxins in streams, 116 water samples from 32 streams and three wastewater treatment plant effluents were collected in 2010 providing the broadest investigation on the spatial and temporal occurrence of mycotoxins in streams conducted in the United States to date. Out of the 33 target mycotoxins measured, nine were detected at least once during this study. The detections of mycotoxins were nearly ubiquitous during this study even though the basin size spanned four orders of magnitude. At least one mycotoxin was detected in 94% of the 116 samples collected. Deoxynivalenol was the most frequently detected mycotoxin (77%), followed by nivalenol (59%), beauvericin (43%), zearalenone (26%), β-zearalenol (20%), 3-acetyl-deoxynivalenol (16%), α-zearalenol (10%), diacetoxyscirpenol (5%), and verrucarin A (1%). In addition, one or more of the three known estrogenic compounds (i.e. zearalenone, α-zearalenol, and β-zearalenol) were detected in 43% of the samples, with maximum concentrations substantially higher than observed in previous research. While concentrations were generally low (i.e. < 50 ng/L) during this study, concentrations exceeding 1000 ng/L were measured during spring snowmelt conditions in agricultural settings and in wastewater treatment plant effluent. Results of this study suggest that both diffuse (e.g. release from infected plants and manure applications from exposed livestock) and point (e.g. wastewater treatment plants and food processing plants) sources are important environmental pathways for mycotoxin transport to streams. The ecotoxicological impacts from the long-term, low-level exposures to mycotoxins alone or in combination with complex chemical mixtures are unknown

  2. Light Moderates the Induction of Phosphoenolpyruvate Carboxylase by NaCl and Abscisic Acid in Mesembryanthemum crystallinum 1

    PubMed Central

    McElwain, Elizabeth F.; Bohnert, Hans J.; Thomas, John C.

    1992-01-01

    In Mesembryanthemum crystallinum, phosphoenolpyruvate carboxylase is synthesized de novo in response to osmotic stress, as part of the switch from C3-photosynthesis to Crassulacean acid metabolism. To better understand the environmental signals involved in this pathway, we have investigated the effects of light on the induced expression of phosphoenolpyruvate carboxylase mRNA and protein in response to stress by 400 millimolar NaCl or 10 micromolar abscisic acid in hydroponically grown plants. When plants were grown in high-intensity fluorescent or incandescent light (850 microeinsteins per square meter per second), NaCl and abscisic acid induced approximately an eightfold accumulation of phosphoenolpyruvate carboxylase mRNA when compared to untreated controls. Levels of phosphoenolpyruvate carboxylase protein were high in these abscisic acid- and NaCl-treated plants, and detectable in the unstressed control. Growth in high-intensity incandescent (red) light resulted in approximately twofold higher levels of phosphoenolpyruvate carboxylase mRNA in the untreated plants when compared to control plants grown in high-intensity fluorescent light. In low light (300 microeinsteins per square meter per second fluorescent), only NaCl induced mRNA levels significantly above the untreated controls. Low light grown abscisic acid- and NaCl-treated plants contained a small amount of phosphoenolpyruvate carboxylase protein, whereas the (untreated) control plants did not contain detectable amounts of phosphoenolpyruvate carboxylase. Environmental stimuli, such as light and osmotic stress, exert a combined effect on gene expression in this facultative halophyte. ImagesFigure 1Figure 2 PMID:16668999

  3. Low temperature conditioning of garlic (Allium sativum L.) “seed” cloves induces alterations in sprouts proteome

    PubMed Central

    Dufoo-Hurtado, Miguel D.; Huerta-Ocampo, José Á.; Barrera-Pacheco, Alberto; Barba de la Rosa, Ana P.; Mercado-Silva, Edmundo M.

    2015-01-01

    Low-temperature conditioning of garlic “seed” cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that “seed” bulbs from “Coreano” variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic “seed” cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic “seed” cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies. PMID:26029231

  4. Low temperature conditioning of garlic (Allium sativum L.) "seed" cloves induces alterations in sprouts proteome.

    PubMed

    Dufoo-Hurtado, Miguel D; Huerta-Ocampo, José Á; Barrera-Pacheco, Alberto; Barba de la Rosa, Ana P; Mercado-Silva, Edmundo M

    2015-01-01

    Low-temperature conditioning of garlic "seed" cloves substitutes the initial climatic requirements of the crop and accelerates the cycle. We have reported that "seed" bulbs from "Coreano" variety conditioned at 5°C for 5 weeks reduces growth and plant weight as well as the crop yields and increases the synthesis of phenolic compounds and anthocyanins. Therefore, this treatment suggests a cold stress. Plant acclimation to stress is associated with deep changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. The aim of this work was to study the changes in the protein profiles of garlic "seed" cloves subjected to conditioning at low-temperature using proteomics approach. Two sets of garlic bulbs were used, one set was stored at room temperature (23°C), and the other was conditioned at low temperature (5°C) for 5 weeks. Total soluble proteins were extracted from sprouts of cloves and separated by two-dimensional gel electrophoresis. Protein spots showing statistically significant changes in abundance were analyzed by LC-ESI-MS/MS and identified by database search analysis using the Mascot search engine. The results revealed that low-temperature conditioning of garlic "seed" cloves causes alterations in the accumulation of proteins involved in different physiological processes such as cellular growth, antioxidative/oxidative state, macromolecules transport, protein folding and transcription regulation process. The metabolic pathways affected include protein biosynthesis and quality control system, photosynthesis, photorespiration, energy production, and carbohydrate and nucleotide metabolism. These processes can work cooperatively to establish a new cellular homeostasis that might be related with the physiological and biochemical changes observed in previous studies.

  5. Low-cost Solar Array Project. Feasibility of the Silane Process for Producing Semiconductor-grade Silicon

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of Union Carbide's silane process for commercial application was established. An integrated process design for an experimental process system development unit and a commercial facility were developed. The corresponding commercial plant economic performance was then estimated.

  6. Diets and habitat analyses of mule deer on the 200 areas of the Hanford Site in southcentral Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uresk, D.W.; Uresk, V.A.

    1980-10-01

    Forty-four food items were identified in the fecal pellets of the mule deer (Odocoileus hemionus hemionus) on three areas of the Hanford Site. Microscopic analysis of plant fragments indicated that bitterbrush was the most common species occurring in the diets of deer from the B-C Cribs area. Russian thistle (Salsola kali) and goldenrod (Solidago sp.) were the most abundant plants found in the fecal pellets collected from B Pond and Gable Mountain Pond habitats, respectively. The similarity in diets among the habitats was low, ranging from 10% to 16%. Preference indices of forage plants among sites were not similar (7%more » to 19%). The B-C Cribs, B Pond and Gable Mountain Pond habitats were characterized for canopy cover and frequency of occurrence of plant species. Twelve species were sampled in the B-C Cribs and B Pond areas; 22 species were identified on the Gable Mountain site. The most commonly occurring plant was cheatgrass (Bromus tectorum) in all three sites. The similarity in frequency and canopy cover of plants was low among sites. Mule deer inhabiting the Hanford site can serve as a pathway for movement of radioactive material from low-level radioactive waste management areas to man. Maximum levels of /sup 137/Cs found in deer pellet groups collected from B Pond and Gable Mountain Pond areas were 100 pCi/g and 128 pCi/g, respectively. Background levels were reported at B-C Cribs area. Maximum /sup 90/Sr values found in deer pellets at B Pond were 107 pCi/g and 184 pCi/g at Gable Mountain Pond.« less

  7. Molecular Cloning and Functional Characterization of the Lycopene ε-Cyclase Gene via Virus-Induced Gene Silencing and Its Expression Pattern in Nicotiana tabacum

    PubMed Central

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-01-01

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses. PMID:25153631

  8. Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum.

    PubMed

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-08-22

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses.

  9. Plant water relations as affected by heavy metal stress: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barcelo, J.; Poschenrieder, C.

    1990-01-01

    Metal toxicity causes multiple direct and indirect effects in plants which concern practically all physiological functions. In this review the effects of excess heavy metals and aluminum on those functions which will alter plant water relations are considered. After a brief comment on the metal effects in cell walls and plasma-lemma, and their consequences for cell expansion growth, the influences of high meal availability on the factors which regulate water entry and water exit in plants are considered. Emphasis is placed on the importance of distinguishing between low water availability in mine and serpentine soils and toxicity effects in plantsmore » which may impair the ability of a plant to regulate water uptake. Examples on water relations of both plants grown on metalliferous soil and hydroponics are presented, and the effects of metal toxicity on root growth, water transport and transpiration are considered. It is concluded that future research has to focus on the mechanisms of metal-induced inhibition of both root elongation and morphogenetic processes within roots. In order to understand the relation between metal tolerance and drought resistance better, further studies into metal tolerance mechanisms at the cell wall, membrane and vacuolar level, as well as into the mechanisms of drought resistance of plants adapted to metalliferous soils are required. 135 refs., 7 figs., 6 tabs.« less

  10. [Evaluation of the mercury accumulating capacity of pepper (Capsicum annuum)].

    PubMed

    Pérez-Vargas, Híver M; Vidal-Durango, Jhon V; Marrugo-Negrete, José L

    2014-01-01

    To assess the mercury accumulating capacity in contaminated soils from the community of Mina Santa Cruz, in the south of the department of Bolívar, Colombia, of the pepper plant (Capsicum annuum), in order to establish the risk to the health of the consuming population. Samples were taken from tissues (roots, stems, and leaves) of pepper plants grown in two soils contaminated with mercury and a control soil during the first five months of growth to determine total mercury through cold vapor atomic absorption spectrometry. Total mercury was determined in the samples of pepper plant fruits consumed in Mina Santa Cruz. The mean concentrations of total mercury in the roots were higher than in stems and leaves. Accumulation in tissues was influenced by mercury levels in soil and the growth time of the plants. Mercury concentrations in fruits of pepper plant were lower than tolerable weekly intake provided by WHO. Percent of translocation of mercury to aerial parts of the plant were low in both control and contaminated soils. Despite low levels of mercury in this food, it is necessary to minimize the consumption of food contaminated with this metal.

  11. Polyethylene process is ready to barge in and be used by Ipako in Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-04-02

    Ipako S.A.'s new 120,000 ton/yr Unipol low-density polyethylene (LDPE) plant will be built on a barge by Ishikawajima-Harima Heavy Industries Co. and towed 14,000 mi to Bahia Blanca, Argent., where the barge will be moored to the shore. Union Carbide Corp. is offering barge-mounted LDPE plants using its Unipol process in 75,000 and 120,000 metric ton/yr sizes. The plants have the same design as land-based plants. The plant being built in Japan measures 300 ft long, 73.8 ft wide, and 175 ft to the top of the flare, and includes a raw materials storage and handling section, an onboard nitrogenmore » plant, a purification system, fresh- and salt-water cooling systems, an enclosed personnel area, laboratory and process control facilities, a power distribution center, and an emergency power-generating plant. With construction in the shipyard, the plant can be completed in less time than would be required on site. When the plant starts operation, probably by the end of 1982, Ipako will become the largest LDPE producer in Argentina. Other companies, including Davy Offshore, have been promoting the idea of offshore plants.« less

  12. High-autonomy control of space resource processing plants

    NASA Technical Reports Server (NTRS)

    Schooley, Larry C.; Zeigler, Bernard P.; Cellier, Francois E.; Wang, Fei-Yue

    1993-01-01

    A highly autonomous intelligent command/control architecture has been developed for planetary surface base industrial process plants and Space Station Freedom experimental facilities. The architecture makes use of a high-level task-oriented mode with supervisory control from one or several remote sites, and integrates advanced network communications concepts and state-of-the-art man/machine interfaces with the most advanced autonomous intelligent control. Attention is given to the full-dynamics model of a Martian oxygen-production plant, event-based/fuzzy-logic process control, and fault management practices.

  13. Effective Processing of the Iron Ores

    NASA Astrophysics Data System (ADS)

    Kuskov, Vadim; Kuskova, Yana; Udovitsky, Vladimir

    2017-11-01

    Effective technology for a complex wasteless processing of the iron ores has been designed and includes three main components (plats): comminution plant, briquette plant, pigment plant. The comminution is done per energy effective technology. Using of briquetting for ores clotting enables the costs cut and brings to a higher level of environmental safety of the process. Briquette formation can be done as a regular pressing, as an extrusion. Developed technology allows to produce high quality competitively products for metallurgy industry and red iron oxide pigments. The whole production line impacts the environment in a minimal manner.

  14. Technology Readiness Assessment of a Large DOE Waste Processing Facility

    DTIC Science & Technology

    2007-09-12

    Waste Generation at Hanford – Waste Treatment and Immobilization Plant ( WTP ) Project • Motivation to Conduct TRA • TRA Approach • Actions to ensure...Hanford’s WTP will be the world’s largest radioactive waste treatment plant to treat Hanford’s underground tank waste Waste Treatment Plant ( WTP ) Major...Mass Maximize Activity WTP Flow Sheet – Key Process Flows Hanford Tank Waste 10 How is the Vitrified Waste Dispositioned? High Level Waste Canisters

  15. Impacts of oil sands process water on fen plants: implications for plant selection in required reclamation projects.

    PubMed

    Pouliot, Rémy; Rochefort, Line; Graf, Martha D

    2012-08-01

    Fen plant growth in peat contaminated with groundwater discharges of oil sands process water (OSPW) was assessed in a greenhouse over two growing seasons. Three treatments (non-diluted OSPW, diluted OSPW and rainwater) were tested on five vascular plants and four mosses. All vascular plants tested can grow in salinity and naphthenic acids levels currently produced by oil sands activity in northwestern Canada. No stress sign was observed after both seasons. Because of plant characteristics, Carex species (C. atherodes and C. utriculata) and Triglochin maritima would be more useful for rapidly restoring vegetation and creating a new peat-accumulating system. Groundwater discharge of OSPW proved detrimental to mosses under dry conditions and ensuring adequate water levels would be crucial in fen creation following oil sands exploitation. Campylium stellatum would be the best choice to grow in contaminated areas and Bryum pseudotriquetrum might be interesting as it has spontaneously regenerated in all treatments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Nutrient allocation strategies of woody plants: an approach from the scaling of nitrogen and phosphorus between twig stems and leaves.

    PubMed

    Yan, Zhengbing; Li, Peng; Chen, Yahan; Han, Wenxuan; Fang, Jingyun

    2016-02-05

    Allocation of limited nutrients, such as nitrogen (N) and phosphorus (P), among plant organs reflects the influences of evolutionary and ecological processes on functional traits of plants, and thus is related to functional groups and environmental conditions. In this study, we tested this hypothesis by exploring the stoichiometric scaling of N and P concentrations between twig stems and leaves of 335 woody species from 12 forest sites across eastern China. Scaling exponents of twig stem N (or P) to leaf N (or P) varied among functional groups. With increasing latitude, these scaling exponents significantly decreased from >1 at low latitude to <1 at high latitude across the study area. These results suggested that, as plant nutrient concentration increased, plants at low latitudes showed a faster increase in twig stem nutrient concentration, whereas plants at high latitudes presented a faster increase in leaf nutrient concentration. Such shifts in nutrient allocation strategy from low to high latitudes may be controlled by temperature. Overall, our findings provide a new approach to explore plant nutrient allocation strategies by analysing the stoichiometric scaling of nutrients among organs, which could broaden our understanding of the interactions between plants and their environments.

  17. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research.

    PubMed

    Sato, Fumihiko; Kumagai, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed.

  18. Microbial production of isoquinoline alkaloids as plant secondary metabolites based on metabolic engineering research

    PubMed Central

    SATO, Fumihiko; KUMAGAI, Hidehiko

    2013-01-01

    Plants produce a variety of secondary metabolites that possess strong physiological activities. Unfortunately, however, their production can suffer from a variety of serious problems, including low levels of productivity and heterogeneous quality, as well as difficulty in raw material supply. In contrast, microorganisms can be used to produce their primary and some of their secondary metabolites in a controlled environment, thus assuring high levels of efficiency and uniform quality. In an attempt to overcome the problems associated with secondary metabolite production in plants, we developed a microbial platform for the production of plant isoquinoline alkaloids involving the unification of the microbial and plant metabolic pathways into a single system. The potential applications of this system have also been discussed. PMID:23666088

  19. Techno-Economic Analysis of Integration of Low-Temperature Geothermal Resources for Coal-Fired Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bearden, Mark D.; Davidson, Casie L.; Horner, Jacob A.

    Presented here are the results of a techno-economic (TEA) study of the potential for coupling low-grade geothermal resources to boost the electrical output from coal-fired power plants. This study includes identification of candidate 500 MW subcritical coal-fired power plants in the continental United States, followed by down-selection and characterization of the North Valmy generating station, a Nevada coal-fired plant. Based on site and plant characteristics, ASPEN Plus models were designed to evaluate options to integrate geothermal resources directly into existing processes at North Valmy. Energy outputs and capital costing are presented for numerous hybrid strategies, including integration with Organic Rankinemore » Cycles (ORCs), which currently represent the primary technology for baseload geothermal power generation.« less

  20. Nitric oxide is a versatile sensor of low oxygen stress in plants

    PubMed Central

    Borisjuk, Ljudmilla

    2008-01-01

    The plant response to low levels of oxygen involves an interplay of transcriptional, translational and post-translational signaling. However, in plants, the sensing mechanism itself remains obscure. The role of nitric oxide (NO) in oxygen sensing and balancing has been extensively explored in our laboratory. We suggest that NO is generated within the mitochondria from nitrite in response to hypoxia, and that this small gaseous molecule can reversibly modify both the respiratory oxygen consumption and the oxygen availability within the seed. We further propose that hemoglobins play a central role in the detoxification of excess NO. PMID:19704575

  1. Experimental identification of Ca isotopic fractionations in higher plants

    NASA Astrophysics Data System (ADS)

    Cobert, Florian; Schmitt, Anne-Désirée; Bourgeade, Pascale; Labolle, François; Badot, Pierre-Marie; Chabaux, François; Stille, Peter

    2011-10-01

    Hydroponic experiments have been performed in order to identify the co-occurring geochemical and biological processes affecting the Ca isotopic compositions within plants. To test the influence of the Ca concentration and pH of the nutritive solution on the Ca isotopic composition of the different plant organs, four experimental conditions were chosen combining two different Ca concentrations (5 and 60 ppm) and two pHs (4 and 6). The study was performed on rapid growing bean plants in order to have a complete growth cycle. Several organs (root, stem, leaf, reproductive) were sampled at two different growth stages (10 days and 6 weeks of culture) and prepared for Ca isotopic measurements. The results allow to identify three Ca isotopic fractionation levels. The first one takes place when Ca enters the lateral roots, during Ca adsorption on cation-exchange binding sites in the apoplasm. The second one takes place when Ca is bound to the polygalacturonic acids (pectins) of the middle lamella of the xylem cell wall. Finally, the last fractionation occurs in the reproductive organs, also caused by cation-exchange processes with pectins. However, the cell wall structures of these organs and/or number of available exchange sites seem to be different to those of the xylem wall. These three physico-chemical fractionation mechanisms allow to enrich the organs in the light 40Ca isotope. The amplitude of the Ca isotopic fractionation within plant organs is highly dependent on the composition of the nutritive solution: low pH (4) and Ca concentrations (5 ppm) have no effect on the biomass increase of the plants but induce smaller fractionation amplitudes compared to those obtained from other experimental conditions. Thus, Ca isotopic signatures of bean plants are controlled by the external nutritive medium. This study highlights the potential of Ca isotopes to be applied in plant physiology (to identify Ca uptake, circulation and storage mechanisms within plants) and in biogeochemistry (to identify Ca recycling, Ca content and pH evolutions in soil solutions through time).

  2. Desert wildfire and severe drought diminish survivorship of the long-lived Joshua Tree (Yucca brevifolia; Agavaceae)

    USGS Publications Warehouse

    DeFalco, L.A.; Esque, T.C.; Scoles-Sciulla, S. J.; Rodgers, J.

    2010-01-01

    Extreme climate events are transforming plant communities in the desert Southwest of the United States. Abundant precipitation in 1998 associated with El Ni??o Southern Oscillation (ENSO) stimulated exceptional alien annual plant production in the Mojave Desert that fueled wildfires in 1999. Exacerbated by protracted drought, 80% of the burned Yucca brevifolia, a long-lived arborescent monocot, and 26% of unburned plants died at Joshua Tree National Park by 2004. Many burned plants < 1 m tall died immediately, and survival of all but the tallest, oldest plants declined to the same low level by 2004. Postfire sprouting prolonged survival, but only at the wetter, high-elevation sites. During succeeding dry years, herbaceous plants were scarce, and individuals of Thomomys bottae (pocket gopher) gnawed the periderm and hollowed stems of Y. brevifolia causing many of them to topple. Thomomys bottae damage reduced plant survivorship at low-elevation, unburned sites and diminished survival of burned plants in all but the driest site, which already had low survival. Accentuated ENSO episodes and more frequent wildfires are expected for the desert Southwest and will likely shift Y. brevifolia population structure toward tall, old adults with fewer opportunities for plant recruitment, thus imperiling the persistence of this unique plant community.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, Wing K.; Pegg, Ian L.; Brandys, Marek

    One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less

  4. Testing the mechanisms of diversity-dependent overyielding in a grass species.

    PubMed

    Atwater, Daniel Z; Callaway, Ragan M

    2015-12-01

    Plant diversity enhances many ecosystem processes, including productivity, but these effects have been studied almost exclusively at the taxonomic scale of species. We explore the effect of intraspecific diversity on the productivity of a widespread and dominant grassland species using accessions collected from populations throughout its range. We found that increasing population/ecotype diversity of Pseudoroegneria spicata increased productivity to a similar degree as that reported for species diversity. However, we did not find evidence that overyielding was related to either resource depletion or to pathogenic soil fungi, two causes of overyielding in species-diverse communities. Instead, larger accessions overyielded at low diversity at the expense of smaller accessions, and small accessions overyielded through complementarity at all levels of diversity. Furthermore, overyielding was stronger for accessions from mesic environments, suggesting that local adaptation might predictably influence how plants respond to increases in diversity. This suggests that mass-based competition or other cryptic accession-specific processes had complex but important effects on overyielding. Our results indicate that the effects of diversity within a species can be substantial but that overyielding by intraspecifically diverse populations may not be through the same processes thought to cause overyielding in species diverse communities.

  5. The impact of application of biocar on peanuts growing

    NASA Astrophysics Data System (ADS)

    Gao, Mengyu; Liu, Xiaohua; Li, Na; Luo, Peiyu; Han, Xiaori; Yang, Jinfeng

    2017-12-01

    The object of this study was to investigate the impact of application biocar on peanuts growing. It was based on a long-term fertilization experiment which researched the effect of applying different amounts of biochar and BBF when continuously cropping peanuts for 5 years. There were five treatments: no fertilizer, low level of biochar (C15), high level of biochar (C50), chemical nitrogen-phosphorus-potassium (NPK) fertilizer and biochar-based fertilization (BBF).We determined peanuts stem and leaf weight, root weight, plant and the relative content of chlorophyll at every growth stages in 2016. The results showed that all fertilization can increase these indexes and in application of NPK improve them the most which close to BBF. The peanuts stem and leaf weight, root weight, plant and the relative content of chlorophyll was higher than the same level carbon treatment (C15) 62.85%, 6.67%, 18.73% and 25.58%, respectively. Expect stem and leaf weight, plant height, root weight and chlorophyll were higher when high level biochar (C50) applied than the low one (C15).

  6. I. Plants

    Treesearch

    Dean Pearson; Steve Sutherland; Jack Butler; Jane Smith; Carolyn Sieg

    2011-01-01

    Exotic plants dramatically impact natural communities and disrupt ecosystem services (Mack and others 2000). Although the bulk of current impacts are caused by relatively few exotic species, many additional exotics that are currently established at low levels are increasing in density and distribution and present substantial imminent threats. Additionally, new exotic...

  7. Initial effect of the Fukushima accident on atmospheric electricity

    NASA Astrophysics Data System (ADS)

    Takeda, M.; Yamauchi, M.; Makino, M.; Owada, T.

    2011-08-01

    Vertical atmospheric DC electric field at ground level, or potential gradient (PG), suddenly dropped by one order of magnitude at Kakioka, 150 km southwest from the Fukushima Dai-ichi nuclear power plant (FNPP) right after the plant released a massive amount of radioactive material southward on 14 March, 2011. The PG stayed at this level for days with very small daily variations. Such a long-lasting near-steady low PG has never been observed at Kakioka. The sudden drop of PG with one-hour time scale is similar to those associated with rain-induced radioactive fallout after nuclear tests and the Chernobyl disaster. A comparison with the PG data with the radiation dose rate data at different places revealed that arrival of the radioactive dust by low-altitude wind caused the PG drop without rain. Furthermore, the PG might have reflected a minor release several hours before this release at the distance of 150 km. It is recommended that all nuclear power plant to have a network of PG observation surrounding the plant.

  8. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race.

    PubMed

    Ramesh, Shunmugiah V; Sahu, Pranav P; Prasad, Manoj; Praveen, Shelly; Pappu, Hanu R

    2017-09-15

    Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.

  9. Endogenous Abscisic Acid Promotes Hypocotyl Growth and Affects Endoreduplication during Dark-Induced Growth in Tomato (Solanum lycopersicum L.)

    PubMed Central

    Humplík, Jan F.; Bergougnoux, Véronique; Jandová, Michaela; Šimura, Jan; Pěnčík, Aleš; Tomanec, Ondřej; Rolčík, Jakub; Novák, Ondřej; Fellner, Martin

    2015-01-01

    Dark-induced growth (skotomorphogenesis) is primarily characterized by rapid elongation of the hypocotyl. We have studied the role of abscisic acid (ABA) during the development of young tomato (Solanum lycopersicum L.) seedlings. We observed that ABA deficiency caused a reduction in hypocotyl growth at the level of cell elongation and that the growth in ABA-deficient plants could be improved by treatment with exogenous ABA, through which the plants show a concentration dependent response. In addition, ABA accumulated in dark-grown tomato seedlings that grew rapidly, whereas seedlings grown under blue light exhibited low growth rates and accumulated less ABA. We demonstrated that ABA promotes DNA endoreduplication by enhancing the expression of the genes encoding inhibitors of cyclin-dependent kinases SlKRP1 and SlKRP3 and by reducing cytokinin levels. These data were supported by the expression analysis of the genes which encode enzymes involved in ABA and CK metabolism. Our results show that ABA is essential for the process of hypocotyl elongation and that appropriate control of the endogenous level of ABA is required in order to drive the growth of etiolated seedlings. PMID:25695830

  10. A Comparison Between Plant Photosystem I and Photosystem II Architecture and Functioning

    PubMed Central

    Caffarri, Stefano; Tibiletti, Tania; Jennings, Robert C.; Santabarbara, Stefano

    2014-01-01

    Oxygenic photosynthesis is indispensable both for the development and maintenance of life on earth by converting light energy into chemical energy and by producing molecular oxygen and consuming carbon dioxide. This latter process has been responsible for reducing the CO2 from its very high levels in the primitive atmosphere to the present low levels and thus reducing global temperatures to levels conducive to the development of life. Photosystem I and photosystem II are the two multi-protein complexes that contain the pigments necessary to harvest photons and use light energy to catalyse the primary photosynthetic endergonic reactions producing high energy compounds. Both photosystems are highly organised membrane supercomplexes composed of a core complex, containing the reaction centre where electron transport is initiated, and of a peripheral antenna system, which is important for light harvesting and photosynthetic activity regulation. If on the one hand both the chemical reactions catalysed by the two photosystems and their detailed structure are different, on the other hand they share many similarities. In this review we discuss and compare various aspects of the organisation, functioning and regulation of plant photosystems by comparing them for similarities and differences as obtained by structural, biochemical and spectroscopic investigations. PMID:24678674

  11. Decommissioning a phosphoric acid production plant: a radiological protection case study.

    PubMed

    Stamatis, V; Seferlis, S; Kamenopoulou, V; Potiriadis, C; Koukouliou, V; Kehagia, K; Dagli, C; Georgiadis, S; Camarinopoulos, L

    2010-12-01

    During a preliminary survey at the area of an abandoned fertilizer plant, increased levels of radioactivity were measured at places, buildings, constructions and materials. The extent of the contamination was determined and the affected areas were characterized as controlled areas. After the quantitative and qualitative determination of the contaminated materials, the decontamination was planned and performed step by step: the contaminated materials were categorized according to their physical characteristics (scrap metals, plastic pipes, scales and residues, building materials, etc) and according to their level of radioactivity. Depending on the material type, different decontamination and disposal options were proposed; the most appropriate technique was chosen taking into account apart from technical issues, the legal framework, radiation protection issues, the opinion of the local authorities involved as well as the owner's wish. After taking away the biggest amount of the contaminated materials, an iterative process consisting of surveys and decontamination actions was performed in order to remove the residual traces of contamination from the area. During the final survey, no residual surface contamination was detected; some sparsely distributed low level contaminated materials deeply immersed into the soil were found and removed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Design and Assessment of an Associate Degree-Level Plant Operations Technical Education Program

    ERIC Educational Resources Information Center

    Selwitz, Jason Lawrence

    2017-01-01

    Research was undertaken to develop and evaluate an associate degree-level technical education program in Plant Operations oriented towards training students in applied science, technology, engineering, and mathematics (STEM) skills and knowledge relevant to a spectrum of processing industries. This work focuses on four aspects of the curriculum…

  13. Secondary Waste Form Development and Optimization—Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  14. [Dynamic monitoring and analysis of occupational hazards in working environment of foundry plant from 1987 to 2010].

    PubMed

    Lu, Yang; Zhang, Min; Chen, Wei-hong; Qi, Cheng

    2013-08-01

    To investigate the characteristics and changing trend of occupational hazards in the working environment of a foundry plant from 1987 to 2010. The foundry plant of a large-scale automobile company in Hubei Province, China was chosen as the study site. The data on occupational hazards in the working environment of the foundry plant in the past years were collected, and additional measurements were performed. The means and geometric means of the concentrations of occupational hazards were calculated. The characteristics and changing trend of occupational hazards from 1987 to 2010 were presented. There were dust, chemical, and physical occupational hazards in the working environment of the foundry plant, with silica dust, noise, and heat stress as the main ones. Dust, mainly silica dust, is found in all aspects of foundry. The mean concentration of silica dust was high (3.2∼8.2 mg/m(3)), exceeding the national occupational exposure limit (1 mg/m(3)). The mean concentrations of silica dust varied across different types of work, with higher levels in cast shakeout and finishing, overhead crane operation, and sand preparation. The mean concentration of respirable dust in the foundry plant was low (0.38 mg/m(3)), not exceeding the national occupational exposure limit (0.7 mg/m(3)). There were high concentrations of grinding wheel dust (10.6 mg/m(3)) and welding fume (5.7 mg/m(3)) in cast shakeout and finishing, exceeding the national occupational exposure limit (8 and 4 mg/m(3)). Coal dust was mainly found in melting as well as cast shakeout and finishing, with higher concentration in the former (4.7 mg/m(3). The main chemical occupational hazard in the environment of the foundry plant was formaldehyde (1.23 mg/m(3)), exceeding the national occupational exposure limit (0.5 mg/m(3)). The concentrations of ammonia, phenol, metal fume, sulfur dioxide, hydrogen sulfide, and phosphine in the foundry plant were low. The mean concentration of polycyclic aromatic hydrocarbons was 0.1405 µg/m(3), with a higher level in pouring. The main physical occupational hazards in the working environment of the foundry plant were noise and heat stress. Noise, mainly steady noise, was distributed in all workshops of the foundry plant, with a mean intensity of 85.1 db (A). Noise levels varied across different types of work, higher in cast shakeout and finishing (89.3 db (A)) and moulding (85.4 db (A)). Heat stress mainly existed in overhead crane operation (35.1°C), pouring (33.3°C), and melting (32.8°C). Dust, chemical, and physical occupational hazards co-existed in the working environment of the foundry plant. High concentration of dust was widely distributed in many workshops and across many types of work, but the dust concentration showed a downward trend. Chemical occupational hazards included ammonia, phenol, hydrogen sulfide, and metal fume, most at low concentrations. High-intensity noise was widely distributed in all working positions of foundry process and mainly from equipment operation, collision between parts, and gas injection. High-intensity heat stress mainly existed in overhead crane operation, pouring, and melting.

  15. Modeling of plant in vitro cultures: overview and estimation of biotechnological processes.

    PubMed

    Maschke, Rüdiger W; Geipel, Katja; Bley, Thomas

    2015-01-01

    Plant cell and tissue cultivations are of growing interest for the production of structurally complex and expensive plant-derived products, especially in pharmaceutical production. Problems with up-scaling, low yields, and high-priced process conditions result in an increased demand for models to provide comprehension, simulation, and optimization of production processes. In the last 25 years, many models have evolved in plant biotechnology; the majority of them are specialized models for a few selected products or nutritional conditions. In this article we review, delineate, and discuss the concepts and characteristics of the most commonly used models. Therefore, the authors focus on models for plant suspension and submerged hairy root cultures. The article includes a short overview of modeling and mathematics and integrated parameters, as well as the application scope for each model. The review is meant to help researchers better understand and utilize the numerous models published for plant cultures, and to select the most suitable model for their purposes. © 2014 Wiley Periodicals, Inc.

  16. Response to competition of bulbous geophyte Allium oleraceum differing in ploidy level.

    PubMed

    Fialová, M; Duchoslav, M

    2014-01-01

    Experimental studies that explore the possible causes of ploidy distributions and niche differentiation are rare. Increased competitive ability may be advantageous for survival in dense vegetation and may strongly affect local and regional abundances of cytotypes and potentially contribute to invasion success. We compared survival, growth and reproduction of plants originating from bulbils of three cytotypes (2n = 4x, 5x, 6x) of Allium oleraceum growing with and without a competitor (Arrhenatherum elatius). There was a strong negative effect of competition but no effect of ploidy or ploidy × competition on survivorship, height and total dry mass of A. oleraceum, i.e. no support for different competitive abilities of the ploidy levels. However, slightly different responses of populations to competition treatments within all cytotypes suggest differentiation within cytotypes. Under competition, plant survivorship was low, surviving plants were small, had low dry mass and produced neither sexual nor asexual propagules. Without competition, plant survivorship was high, and cytotypes differed in three traits after 2 year's growth: dry mass of flowers, number of flowers and ratio of the dry mass of sexual to asexual propagules all decreased with increasing ploidy level. We additionally tested tetra- and pentaploids as to whether plants originating from different types of propagule (bulbils, seeds) differ in survivorship, growth and reproduction when growing with and without a competitor. Plants originating from bulbils had higher survivorship, were more robust, flowered earlier and produced more propagules when compared to plants originating from seeds and grown without competition. Under competition, differences in performance between plants originating from seeds and bulbils mostly disappeared, with higher survivorship only for plants originating from bulbils. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  17. Operation of the solvent-refined-coal pilot plant, Wilsonville, Alabama. Annual technical report, January-December 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, H.E.

    1981-08-01

    The plant was in operation for the equivalent of 247 days, an on-stream factor of 67.7%. Kentucky 9 coals from the Lafayette, Dotiki and Fies mines were processed. During 1980, the operating conditions and equipment were adjusted to evaluate potential process improvements. These experiments produced significant results in the following areas: Operating V103 High Pressure Separator in the hot mode; varying T102 Vacuum Column operating temperature; adding light SRC (LSRC), a product of the third stage of the Critical Solvent Deashing (CSD) unit, to the process solvent; investigating the effects of the chlorine content of the feed coal on corrosionmore » in the process vessels; evaluating the effects of adding sodium carbonate on corrosion rates; operating under conditions of low severity; i.e., low reactor temperature and long residence time; and testing an alternate CSD deashing solvent. A series of simulation runs investigating the design operating conditions for a planned 6000 ton per day SRC-I demonstation plant were also completed. Numerous improvements were made in the CSD processing area, and the components for a hydrotreating unit were installed.« less

  18. Low-Rank Coal Grinding Performance Versus Power Plant Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajive Ganguli; Sukumar Bandopadhyay

    2008-12-31

    The intent of this project was to demonstrate that Alaskan low-rank coal, which is high in volatile content, need not be ground as fine as bituminous coal (typically low in volatile content) for optimum combustion in power plants. The grind or particle size distribution (PSD), which is quantified by percentage of pulverized coal passing 74 microns (200 mesh), affects the pulverizer throughput in power plants. The finer the grind, the lower the throughput. For a power plant to maintain combustion levels, throughput needs to be high. The problem of particle size is compounded for Alaskan coal since it has amore » low Hardgrove grindability index (HGI); that is, it is difficult to grind. If the thesis of this project is demonstrated, then Alaskan coal need not be ground to the industry standard, thereby alleviating somewhat the low HGI issue (and, hopefully, furthering the salability of Alaskan coal). This project studied the relationship between PSD and power plant efficiency, emissions, and mill power consumption for low-rank high-volatile-content Alaskan coal. The emissions studied were CO, CO{sub 2}, NO{sub x}, SO{sub 2}, and Hg (only two tests). The tested PSD range was 42 to 81 percent passing 76 microns. Within the tested range, there was very little correlation between PSD and power plant efficiency, CO, NO{sub x}, and SO{sub 2}. Hg emissions were very low and, therefore, did not allow comparison between grind sizes. Mill power consumption was lower for coarser grinds.« less

  19. Programmed cell death in C. elegans, mammals and plants.

    PubMed

    Lord, Christina E N; Gunawardena, Arunika H L A N

    2012-08-01

    Programmed cell death (PCD) is the regulated removal of cells within an organism and plays a fundamental role in growth and development in nearly all eukaryotes. In animals, the model organism Caenorhabditis elegans (C. elegans) has aided in elucidating many of the pathways involved in the cell death process. Various analogous PCD processes can also be found within mammalian PCD systems, including vertebrate limb development. Plants and animals also appear to share hallmarks of PCD, both on the cellular and molecular level. Cellular events visualized during plant PCD resemble those seen in animals including: nuclear condensation, DNA fragmentation, cytoplasmic condensation, and plasma membrane shrinkage. Recently the molecular mechanisms involved in plant PCD have begun to be elucidated. Although few regulatory proteins have been identified as conserved across all eukaryotes, molecular features such as the participation of caspase-like proteases, Bcl-2-like family members and mitochondrial proteins appear to be conserved between plant and animal systems. Transgenic expression of mammalian and C. elegans pro- and anti-apoptotic genes in plants has been observed to dramatically influence the regulatory pathways of plant PCD. Although these genes often show little to no sequence similarity they can frequently act as functional substitutes for one another, thus suggesting that action may be more important than sequence resemblance. Here we present a summary of these findings, focusing on the similarities, between mammals, C. elegans, and plants. An emphasis will be placed on the mitochondria and its role in the cell death pathway within each organism. Through the comparison of these systems on both a cellular and molecular level we can begin to better understand PCD in plant systems, and perhaps shed light on the pathways, which are controlling the process. This manuscript adds to the field of PCD in plant systems by profiling apoptotic factors, to scale on a protein level, and also by filling in gaps detailing plant apoptotic factors not yet amalgamated within the literature. Copyright © 2012 Elsevier GmbH. All rights reserved.

  20. Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants

    PubMed Central

    Vanlerberghe, Greg C.

    2013-01-01

    Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. This review also examines abiotic and biotic stresses in which AOX respiration has been critically evaluated, and considers the overall role of AOX in growth and stress tolerance. PMID:23531539

  1. Brazilian and Mexican experiences in the study of incipient domestication.

    PubMed

    Lins Neto, Ernani Machado de Freitas; Peroni, Nivaldo; Casas, Alejandro; Parra, Fabiola; Aguirre, Xitlali; Guillén, Susana; Albuquerque, Ulysses Paulino

    2014-04-02

    Studies of domestication enables a better understanding of human cultures, landscape changes according to peoples' purposes, and evolutionary consequences of human actions on biodiversity. This review aimed at discussing concepts, hypotheses, and current trends in studies of domestication of plants, using examples of cases studied in regions of Mesoamerica and Brazil. We analyzed trends of ethnobiological studies contributing to document processes of domestication and to establish criteria for biodiversity conservation based on traditional ecological knowledge. Based on reviewing our own and other authors' studies we analyzed management patterns and evolutionary trends associated to domestication occurring at plant populations and landscape levels. Particularly, we systematized information documenting: ethnobotanical aspects about plant management and artificial selection mechanisms, morphological consequences of plant management, population genetics of wild and managed plant populations, trends of change in reproduction systems of plants associated to management, and other ecological and physiological aspects influenced by management and domestication. Based on the analysis of study cases of 20 native species of herbs, shrubs and trees we identified similar criteria of artificial selection in different cultural contexts of Mexico and Brazil. Similar evolutionary trends were also identified in morphology (selection in favor of gigantism of useful and correlated parts); organoleptic characteristics such as taste, toxicity, color, texture; reproductive biology, mainly breeding system, phenological changes, and population genetics aspects, maintenance or increasing of genetic diversity in managed populations, high gene flow with wild relatives and low structure maintained by artificial selection. Our review is a first attempt to unify research methods for analyzing a high diversity of processes. Further research should emphasize deeper analyses of contrasting and diverse cultural and ecological contexts for a better understanding of evolution under incipient processes of domestication. Higher research effort is particularly required in Brazil, where studies on this topic are scarcer than in Mexico but where diversity of human cultures managing their also high plant resources diversity offer high potential for documenting the diversity of mechanisms of artificial selection and evolutionary trends. Comparisons and evaluations of incipient domestication in the regions studied as well as the Andean area would significantly contribute to understanding origins and diffusion of the experience of managing and domesticating plants.

  2. Effects of Co-Processing Sewage Sludge in the Cement Kiln on PAHs, Heavy Metals Emissions and the Surrounding Environment.

    PubMed

    Lv, Dong; Zhu, Tianle; Liu, Runwei; Li, Xinghua; Zhao, Yuan; Sun, Ye; Wang, Hongmei; Zhang, Fan; Zhao, Qinglin

    2018-04-08

    To understand the effects of co-processing sewage sludge in the cement kiln on non-criterion pollutants emissions and its surrounding environment, the flue gas from a cement kiln stack, ambient air and soil from the background/downwind sites were collected in the cement plant. Polycyclic aromatic hydrocarbons (PAHs) and heavy metals of the samples were analyzed. The results show that PAHs in flue gas mainly exist in the gas phase and the low molecular weight PAHs are the predominant congener. The co-processing sewage sludge results in the increase in PAHs and heavy metals emissions, especially high molecular weight PAHs and low-volatile heavy metals such as Cd and Pb in the particle phase, while it does not change their compositions and distribution patterns significantly. The concentrations and their distributions of the PAHs and heavy metals between the emissions and ambient air have a positive correlation and the co-processing sewage sludge results in the increase of PAHs and heavy metals concentrations in the ambient air. The PAHs concentration level and their distribution in soil are proportional to those in the particle phase of flue gas, and the co-processing sewage sludge can accelerate the accumulation of the PAHs and heavy metals in the surrounding soil, especially high/middle molecular weight PAHs and low-volatile heavy metals.

  3. Medicago truncatula natural resistance-associated macrophage Protein1 is required for iron uptake by rhizobia-infected nodule cells.

    PubMed

    Tejada-Jiménez, Manuel; Castro-Rodríguez, Rosario; Kryvoruchko, Igor; Lucas, M Mercedes; Udvardi, Michael; Imperial, Juan; González-Guerrero, Manuel

    2015-05-01

    Iron is critical for symbiotic nitrogen fixation (SNF) as a key component of multiple ferroproteins involved in this biological process. In the model legume Medicago truncatula, iron is delivered by the vasculature to the infection/maturation zone (zone II) of the nodule, where it is released to the apoplast. From there, plasma membrane iron transporters move it into rhizobia-containing cells, where iron is used as the cofactor of multiple plant and rhizobial proteins (e.g. plant leghemoglobin and bacterial nitrogenase). MtNramp1 (Medtr3g088460) is the M. truncatula Natural Resistance-Associated Macrophage Protein family member, with the highest expression levels in roots and nodules. Immunolocalization studies indicate that MtNramp1 is mainly targeted to the plasma membrane. A loss-of-function nramp1 mutant exhibited reduced growth compared with the wild type under symbiotic conditions, but not when fertilized with mineral nitrogen. Nitrogenase activity was low in the mutant, whereas exogenous iron and expression of wild-type MtNramp1 in mutant nodules increased nitrogen fixation to normal levels. These data are consistent with a model in which MtNramp1 is the main transporter responsible for apoplastic iron uptake by rhizobia-infected cells in zone II. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Genetic structure of coexisting wild and managed agave populations: implications for the evolution of plants under domestication

    PubMed Central

    Figueredo, Carmen Julia; Casas, Alejandro; González-Rodríguez, Antonio; Nassar, Jafet M.; Colunga-GarcíaMarín, Patricia; Rocha-Ramírez, Víctor

    2015-01-01

    Domestication is a continuous evolutionary process guided by humans. This process leads to divergence in characteristics such as behaviour, morphology or genetics, between wild and managed populations. Agaves have been important resources for Mesoamerican peoples since prehistory. Some species are domesticated and others vary in degree of domestication. Agave inaequidens Koch is used in central Mexico to produce mescal, and a management gradient from gathered wild and silvicultural populations, as well as cultivated plantations, has been documented. Significant morphological differences were reported among wild and managed populations, and a high phenotypic variation in cultivated populations composed of plants from different populations. We evaluated levels of genetic diversity and structure associated with management, hypothesizing that high morphological variation would be accompanied by high genetic diversity in populations with high gene flow and low genetic structure among managed and unmanaged populations. Wild, silvicultural and cultivated populations were studied, collecting tissue of 19–30 plants per population. Through 10 nuclear microsatellite loci, we compared population genetic parameters. We analysed partition of variation associated with management categories to estimate gene flow among populations. Agave inaequidens exhibits high levels of genetic diversity (He = 0.707) and moderate genetic structure (FST = 0.112). No differences were found in levels of genetic diversity among wild (He = 0.704), silviculturally managed (He = 0.733) and cultivated (He = 0.698) populations. Bayesian analysis indicated that five genetic clusters best fit the data, with genetic groups corresponding to habitats where populations grow rather than to management. Migration rates ranged from zero between two populations to markedly high among others (M = 0.73–35.25). Natural mechanisms of gene flow and the dynamic management of agave propagules among populations favour gene flow and the maintenance of high levels of variation within all populations. The slight differentiation associated with management indicates that domestication is in an incipient stage. PMID:26433707

  5. Enhanced LAW Glass Correlation - Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Isabelle S.; Matlack, Keith S.; Pegg, Ian L.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.« less

  6. On-site low level radwaste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauss, C.H.; Gardner, D.A.

    1993-12-31

    This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less

  7. A Critical Review of the Concept of Transgenic Plants: Insights into Pharmaceutical Biotechnology and Molecular Farming.

    PubMed

    Abiri, Rambod; Valdiani, Alireza; Maziah, Mahmood; Shaharuddin, Noor Azmi; Sahebi, Mahbod; Yusof, Zetty Norhana Balia; Atabaki, Narges; Talei, Daryush

    2016-01-01

    Using transgenic plants for the production of high-value recombinant proteins for industrial and clinical applications has become a promising alternative to using conventional bioproduction systems, such as bacteria, yeast, and cultured insect and animal cells. This novel system offers several advantages over conventional systems in terms of safety, scale, cost-effectiveness, and the ease of distribution and storage. Currently, plant systems are being utilised as recombinant bio-factories for the expression of various proteins, including potential vaccines and pharmaceuticals, through employing several adaptations of recombinant processes and utilizing the most suitable tools and strategies. The level of protein expression is a critical factor in plant molecular farming, and this level fluctuates according to the plant species and the organs involved. The production of recombinant native and engineered proteins is a complicated procedure that requires an inter- and multi-disciplinary effort involving a wide variety of scientific and technological disciplines, ranging from basic biotechnology, biochemistry, and cell biology to advanced production systems. This review considers important plant resources, affecting factors, and the recombinant-protein expression techniques relevant to the plant molecular farming process.

  8. Particulate generation and control in the PREPP (Process Experimental Pilot Plant) incinerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stermer, D.L.; Gale, L.G.

    1989-03-01

    Particulate emissions in radioactive incineration systems using a wet scrubbing system are generally ultimately controlled by flowing the process offgas stream through a high-efficiency filter, such as a High Efficient Particulate Air (HEPA) filter. Because HEPA filters are capable of reducing particulate emissions over an order of magnitude below regulatory limits, they consequently are vulnerable to high loading rates. This becomes a serious handicap in radioactive systems when filter change-out is required at an unacceptably high rate. The Process Experimental Pilot Plant (PREPP) incineration system is designed for processing retrieved low level mixed hazardous waste. It has a wet offgasmore » treatment system consisting of a Quencher, Venturi Scrubber, Entrainment Eliminator, Mist Eliminator, two stages of HEPA filters, and induced draft fans. During previous tests, it was noted that the offgas filters loaded with particulate at a rate requiring replacement as often as every four hours. During 1988, PREPP conducted a series of tests which included an investigation of the causes of heavy particulate accumulation on the offgas filters in relation to various operating parameters. This was done by measuring the particulate concentrations in the offgas system, primarily as a function of scrub solution salt concentration, waste feed rate, and offgas flow rate. 2 figs., 9 tabs.« less

  9. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector

    PubMed Central

    Werner, Stefan; Breus, Oksana; Symonenko, Yuri; Marillonnet, Sylvestre; Gleba, Yuri

    2011-01-01

    We describe here a unique ethanol-inducible process for expression of recombinant proteins in transgenic plants. The process is based on inducible release of viral RNA replicons from stably integrated DNA proreplicons. A simple treatment with ethanol releases the replicon leading to RNA amplification and high-level protein production. To achieve tight control of replicon activation and spread in the uninduced state, the viral vector has been deconstructed, and its two components, the replicon and the cell-to-cell movement protein, have each been placed separately under the control of an inducible promoter. Transgenic Nicotiana benthamiana plants incorporating this double-inducible system demonstrate negligible background expression, high (over 0.5 × 104-fold) induction multiples, and high absolute levels of protein expression upon induction (up to 4.3 mg/g fresh biomass). The process can be easily scaled up, supports expression of practically important recombinant proteins, and thus can be directly used for industrial manufacturing. PMID:21825158

  10. Arsenic exposure levels in relation to different working departments in a copper mining and smelting plant

    NASA Astrophysics Data System (ADS)

    Sun, Qingshan; Song, Yingli; Liu, Shengnan; Wang, Fei; Zhang, Lin; Xi, Shuhua; Sun, Guifan

    2015-10-01

    The investigation was carried out to evaluate arsenic exposure and the urine metabolite profiles of workers with different working departments, including administration (Group1), copper ore mining (Group2), copper ore grinding (Group3), electrolytic procession (Group4) and copper smelting (Group5) in a Copper mining and processing plant in China. Information about characteristics of each subject was obtained by questionnaire and inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) in urine were determined. The highest urinary levels of iAs, MMA and DMA all were found in the Group 5. Group 4 workers had a higher iAs% and a lower PMI compared to Group 3. The urinary total As (TAs) levels of 54.7% subjects exceeded 50 μg/g Cr, and the highest percentage (93.3%) was found in Group 5, smelters. The results of the present study indicate that workers in copper production plant indeed exposed to As, especially for smelters and workers of electrolytic process.

  11. Application of indoor noise prediction in the real world

    NASA Astrophysics Data System (ADS)

    Lewis, David N.

    2002-11-01

    Predicting indoor noise in industrial workrooms is an important part of the process of designing industrial plants. Predicted levels are used in the design process to determine compliance with occupational-noise regulations, and to estimate levels inside the walls in order to predict community noise radiated from the building. Once predicted levels are known, noise-control strategies can be developed. In this paper an overview of over 20 years of experience is given with the use of various prediction approaches to manage noise in Unilever plants. This work has applied empirical and ray-tracing approaches separately, and in combination, to design various packaging and production plants and other facilities. The advantages of prediction methods in general, and of the various approaches in particular, will be discussed. A case-study application of prediction methods to the optimization of noise-control measures in a food-packaging plant will be presented. Plans to acquire a simplified prediction model for use as a company noise-screening tool will be discussed.

  12. Browns Ferry Nuclear Plant low-level radwaste storage facility ground-water pathway analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, J.M.

    1982-10-01

    The proposed low-level radwaste storage facility (LLRWSF) at Browns Ferry Nuclear Plant is underlain by soils having low hydraulic conductivity and high sorptive capacity which greatly reduce the risks associated with a potential contaminant excursion. A conservative ground-water pathway accident analysis using flow and solute transport modeling techniques indicates that without interdiction the concentrations of the five radionuclides of concern (Sr-90, Cs-137, Cs-134, Co-60, and Mn-54) would be well below 10 CFR Part 20 criteria at downgradient receptors. These receptors include a possible future private water well located near the eastern site boundary and Wheeler Reservoir. Routine ground-water monitoring ismore » not recommended at the LLRWSF except in the unlikely event of an accident.« less

  13. An approach to developing an integrated pyroprocessing simulator

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Jik; Ko, Won Il; Choi, Sung Yeol; Kim, Sung Ki; Kim, In Tae; Lee, Han Soo

    2014-02-01

    Pyroprocessing has been studied for a decade as one of the promising fuel recycling options in Korea. We have built a pyroprocessing integrated inactive demonstration facility (PRIDE) to assess the feasibility of integrated pyroprocessing technology and scale-up issues of the processing equipment. Even though such facility cannot be replaced with a real integrated facility using spent nuclear fuel (SF), many insights can be obtained in terms of the world's largest integrated pyroprocessing operation. In order to complement or overcome such limited test-based research, a pyroprocessing Modelling and simulation study began in 2011. The Korea Atomic Energy Research Institute (KAERI) suggested a Modelling architecture for the development of a multi-purpose pyroprocessing simulator consisting of three-tiered models: unit process, operation, and plant-level-model. The unit process model can be addressed using governing equations or empirical equations as a continuous system (CS). In contrast, the operation model describes the operational behaviors as a discrete event system (DES). The plant-level model is an integrated model of the unit process and an operation model with various analysis modules. An interface with different systems, the incorporation of different codes, a process-centered database design, and a dynamic material flow are discussed as necessary components for building a framework of the plant-level model. As a sample model that contains methods decoding the above engineering issues was thoroughly reviewed, the architecture for building the plant-level-model was verified. By analyzing a process and operation-combined model, we showed that the suggested approach is effective for comprehensively understanding an integrated dynamic material flow. This paper addressed the current status of the pyroprocessing Modelling and simulation activity at KAERI, and also predicted its path forward.

  14. An approach to developing an integrated pyroprocessing simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyo Jik; Ko, Won Il; Choi, Sung Yeol

    Pyroprocessing has been studied for a decade as one of the promising fuel recycling options in Korea. We have built a pyroprocessing integrated inactive demonstration facility (PRIDE) to assess the feasibility of integrated pyroprocessing technology and scale-up issues of the processing equipment. Even though such facility cannot be replaced with a real integrated facility using spent nuclear fuel (SF), many insights can be obtained in terms of the world's largest integrated pyroprocessing operation. In order to complement or overcome such limited test-based research, a pyroprocessing Modelling and simulation study began in 2011. The Korea Atomic Energy Research Institute (KAERI) suggestedmore » a Modelling architecture for the development of a multi-purpose pyroprocessing simulator consisting of three-tiered models: unit process, operation, and plant-level-model. The unit process model can be addressed using governing equations or empirical equations as a continuous system (CS). In contrast, the operation model describes the operational behaviors as a discrete event system (DES). The plant-level model is an integrated model of the unit process and an operation model with various analysis modules. An interface with different systems, the incorporation of different codes, a process-centered database design, and a dynamic material flow are discussed as necessary components for building a framework of the plant-level model. As a sample model that contains methods decoding the above engineering issues was thoroughly reviewed, the architecture for building the plant-level-model was verified. By analyzing a process and operation-combined model, we showed that the suggested approach is effective for comprehensively understanding an integrated dynamic material flow. This paper addressed the current status of the pyroprocessing Modelling and simulation activity at KAERI, and also predicted its path forward.« less

  15. Microbial community structures in foaming and nonfoaming full-scale wastewater treatment plants.

    PubMed

    de los Reyes, Francis L; Rothauszky, Dagmar; Raskin, Lutgarde

    2002-01-01

    A survey of full-scale activated-sludge plants in Illinois revealed that filamentous foaming is a widespread problem in the state, and that the causes and consequences of foaming control strategies are not fully understood. To link microbial community structure to foam occurrence, microbial populations in eight foaming and nine nonfoaming full-scale activated-sludge systems were quantified using oligonucleotide hybridization probes targeting the ribosomal RNA (rRNA) of the mycolata; Gordonia spp.; Gordonia amarae; "Candidatus Microthrix parvicella"; the alpha-, beta-, and gamma-subclasses of the Proteobacteria, and members of the Cytophaga-Flavobacteria. Parallel measurements of microbial population abundance using hybridization of extracted RNA and fluorescence in situ hybridization (FISH) showed that the levels of mycolata, particularly Gordonia spp., were higher in most foaming systems compared with nonfoaming systems. Fluorescence in situ hybridization and microscopy suggested the involvement of "Candidatus Microthrix parvicella" and Skermania piniformis in foam formation in other plants. Finally, high numbers of "Candidatus Microthrix parvicella" were detected by FISH in foam and mixed liquor samples of one plant, whereas the corresponding levels of rRNA were low. This finding implies that inactive "Candidatus Microthrix parvicella" cells (i.e., cells with low rRNA levels) can cause foaming.

  16. Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil.

    PubMed

    Panda, Debabrata; Panda, Dibyajyoti; Padhan, Bandana; Biswas, Meghali

    2018-05-12

    Revegetation with metal tolerant plants for management of fly ash deposits is an important environmental perspective nowadays. Growth performance, photosynthesis, and antioxidant defense of lemongrass (Cymbopogon citratus (D.C.) Stapf.) were evaluated under various combination of fly ash amended with garden soil in order to assess its fly ash tolerance potential. Under low level of fly ash (25%) amended soil, the plant growth parameters such as shoot, root, and total plant biomass as well as metal tolerance index were increased compared to the control plants grown on garden soil, followed by decline under higher concentration of fly ash (50%, 75% and 100%). In addition, leaf photosynthetic rate, stomatal conductance, and photosystem (PS) II activity were not significantly changed under low level of fly ash (25%) amended soil compared to the garden soil but these parameters were significantly decreased further with increase of fly ash concentrations. Furthermore, increase of activities of some antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, and guaiacol peroxidase over control were noticed in lemongrass under all fly ash treatments. Taken together, the study suggests that lemongrass can be used for phytoremediation of fly ash at 25% amended soil.

  17. Linking Soil Moisture Variation and Abundance of Plants to Geomorphic Processes: A Generalized Model for Erosion-Uplifting Landscapes

    NASA Astrophysics Data System (ADS)

    Ding, Junyan; Johnson, Edward A.; Martin, Yvonne E.

    2018-03-01

    The diffusive and advective erosion-created landscapes have similar structure (hillslopes and channels) across different scales regardless of variations in drivers and controls. The relative magnitude of diffusive erosion to advective erosion (D/K ratio) in a landscape development model controls hillslope length, shape, and drainage density, which regulate soil moisture variation, one of the critical resources of plants, through the contributing area (A) and local slope (S) represented by a topographic index (TI). Here we explore the theoretical relation between geomorphic processes, TI, and the abundance and distribution of plants. We derived an analytical model that expresses the TI with D, K, and A. This gives us the relation between soil moisture variation and geomorphic processes. Plant tolerance curves are used to link plant performance to soil moisture. Using the hypothetical tolerance curves of three plants, we show that the abundance and distribution of xeric, mesic, and hydric plants on the landscape are regulated by the D/K ratio. Where diffusive erosion is the major erosion process (large D/K ratio), mesic plants have higher abundance relative to xeric and hydric plants and the landscape has longer and convex-upward hillslope and low channel density. Increasing the dominance of advective erosion increases relative abundance of xeric and hydric plants dominance, and the landscape has short and concave hillslope and high channel density.

  18. Interaction of Water Supply and N in Wheat 1

    PubMed Central

    Morgan, Jack A.

    1984-01-01

    The purpose of this study was to investigate effects of N nutrition and water stress on stomatal behavior and CO2 exchange rate in wheat (Triticum aestivum L. cv Olaf). Wheat plants were grown hydroponically with high (100 milligrams per liter) and low (10 milligrams per liter) N. When plants were 38 days old, a 24-day water stress cycle was begun. A gradual increase in nutrient solution osmotic pressure from 0.03 to 1.95 mega Pascals was achieved by incremental additions of PEG-6,000. Plants in both N treatments adjusted osmotically, although leaf water potential was consistently lower and relative water content greater for low N plants in the first half of the stress cycle. Leaf conductance of high N plants appeared greater than that of low N plants at high water potentials, but showed greater sensitivity to reductions in water potential as indicated by earlier stomatal closure during the stress cycle. The apparent greater stomatal sensitivity of high N plants was associated with a curvilinear relationship between leaf conductance and leaf water potential; low N plants exhibited more of a threshold response. Trends in [CO2]INT throughout the stress cycle indicated nonstomatal effects of water stress on CO2 exchange rate were greater in high N plants. Although estimates of [CO2]INT were generally lower in high N plants, they were relatively insensitive to leaf water potential-induced changes in leaf conductance. In contrast, [CO2]INT of low N plants dropped concomitantly with leaf conductance at low leaf water potentials. Oxygen response of CO2 exchange rate for both treatments was affected less by reductions in water potential than was CO2 exchange rate at 2.5% O2, suggesting that CO2 assimilation capacity of the leaves was affected more by reductions in leaf water potential than were processes related to photorespiration. PMID:16663780

  19. Plant Cell Adaptive Responses to Microgravity

    NASA Astrophysics Data System (ADS)

    Kordyum, Elizabeth; Kozeko, Liudmyla; Talalaev, Alexandr

    Microgravity is an abnormal environmental condition that plays no role in the functioning of biosphere. Nevertheless, the chronic effect of microgravity in space flight as an unfamiliar factor does not prevent the development of adaptive reactions at the cellular level. In real microgravity in space flight under the more or less optimal conditions for plant growing, namely temperature, humidity, CO2, light intensity and directivity in the hardware angiosperm plants perform an “reproductive imperative”, i.e. they flower, fruit and yield viable seeds. It is known that cells of a multicellular organism not only take part on reactions of the organism but also carry out processes that maintain their integrity. In light of these principles, the problem of the identification of biochemical, physiological and structural patterns that can have adaptive significance at the cellular and subcellular level in real and simulated microgravity is considered. Cytological studies of plants developing in real and simulated microgravity made it possible to establish that the processes of mitosis, cytokinesis, and tissue differentiation of vegetative and generative organs are largely normal. At the same time, under microgravity, essential reconstruction in the structural and functional organization of cell organelles and cytoskeleton, as well as changes in cell metabolism and homeostasis have been described. In addition, new interesting data concerning the influence of altered gravity on lipid peroxidation intensity, the level of reactive oxygen species, and antioxidant system activity, just like on the level of gene expression and synthesis of low-molecular and high-molecular heat shock proteins were recently obtained. So, altered gravity caused time-dependent increasing of the HSP70 and HSP90 levels in cells, that may indicate temporary strengthening of their functional loads that is necessary for re-establish a new cellular homeostasis. Relative qPCR results showed that simulated microgravity and temperature elevation have different effects on the small HSP genes belonging to subfamilies with different subcellular localization: cytosol/nucleus - PsHSP17.1-CII and PsHSP18.1-CI, cloroplasts - PsHSP26.2-Cl, endoplasmatic reticulum - PsHSP22.7-ER and mitochondria - PsHSP22.9-M: unlike high temperature, clinorotation does not cause denaturation of cell proteins, that confirms the sHSP chaperone function. Dynamics of investigated gene expression in pea seedlings growing 5 days after seed germination under clinorotation was similar to that in the stationary control. Similar patterns in dynamics of sHSP gene expression in the stationary control and under clinorotation may be one of mechanisms providing plant adaptation to simulated microgravity. It is pointed that plant cell responses in microgravity and under clinorotation vary according to growth phase, physiological state, and taxonomic position of the object. At the same time, the responses have, to some degree, a similar character reflecting the changes in cell organelle functional load. Thus, next certain changes in the structure and function of plant cells may be considered as adaptive: 1) an increase in the unsaturated fatty acid content in the plasmalemma, 2) rearrangements of organelle ultrastructure and an increase in their functional load, 3) an increase in cortical F-actin under destabilization of tubulin microtubules, 4) the level of gene expression and synthesis of heat shock proteins, 5) alterations of the enzyme and antioxidant system activity. The dynamics of these patterns demonstrated that the adaptation occurs on the principle of self-regulating systems in the limits of physiological norm reaction. The very importance of changed expression of genes involved in different cellular processes, especially HSP genes, in cell adaptation to altered gravity is discussed.

  20. NASA Goddards LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager

    NASA Technical Reports Server (NTRS)

    Cook, Bruce D.; Corp, Lawrence A.; Nelson, Ross F.; Middleton, Elizabeth M.; Morton, Douglas C.; McCorkel, Joel T.; Masek, Jeffrey G.; Ranson, Kenneth J.; Ly, Vuong; Montesano, Paul M.

    2013-01-01

    The combination of LiDAR and optical remotely sensed data provides unique information about ecosystem structure and function. Here, we describe the development, validation and application of a new airborne system that integrates commercial off the shelf LiDAR hyperspectral and thermal components in a compact, lightweight and portable system. Goddard's LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager is a unique system that permits simultaneous measurements of vegetation structure, foliar spectra and surface temperatures at very high spatial resolution (approximately 1 m) on a wide range of airborne platforms. The complementary nature of LiDAR, optical and thermal data provide an analytical framework for the development of new algorithms to map plant species composition, plant functional types, biodiversity, biomass and carbon stocks, and plant growth. In addition, G-LiHT data enhance our ability to validate data from existing satellite missions and support NASA Earth Science research. G-LiHT's data processing and distribution system is designed to give scientists open access to both low- and high-level data products (http://gliht.gsfc.nasa.gov), which will stimulate the community development of synergistic data fusion algorithms. G-LiHT has been used to collect more than 6,500 km2 of data for NASA-sponsored studies across a broad range of ecoregions in the USA and Mexico. In this paper, we document G-LiHT design considerations, physical specifications, instrument performance and calibration and acquisition parameters. In addition, we describe the data processing system and higher-level data products that are freely distributed under NASA's Data and Information policy.

  1. Pretreatment of Hanford medium-curie wastes by fractional crystallization.

    PubMed

    Nassif, Laurent; Dumont, George; Alysouri, Hatem; Rousseau, Ronald W

    2008-07-01

    Acceleration of the schedule for decontamination of the Hanford site using bulk vitrification requires implementation of a pretreatment operation. Medium-curie waste must be separated into two fractions: one is to go to a waste treatment and immobilization plant and a second, which is low-activity waste, is to be processed by bulk vitrification. The work described here reports research on using fractional crystallization for that pretreatment. Sodium salts are crystallized by evaporation of water from solutions simulating those removed from single-shell tanks, while leaving cesium in solution. The crystalline products are then recovered and qualified as low-activity waste, which is suitable upon redissolution for processing by bulk vitrification. The experimental program used semibatch operation in which a feed solution was continuously added to maintain a constant level in the crystallizer while evaporating water. The slurry recovered at the end of a run was filtered to recover product crystals, which were then analyzed to determine their composition. The results demonstrated that targets on cesium separation from the solids, fractional recovery of sodium salts, and sulfate content of the recovered salts can be achieved by the process tested.

  2. Plastic and adaptive responses of plant respiration to changes in atmospheric CO(2) concentration.

    PubMed

    Gonzàlez-Meler, Miquel A; Blanc-Betes, Elena; Flower, Charles E; Ward, Joy K; Gomez-Casanovas, Nuria

    2009-12-01

    The concentration of atmospheric CO2 has increased from below 200 microl l(-1) during last glacial maximum in the late Pleistocene to near 280 microl l(-1) at the beginning of the Holocene and has continuously increased since the onset of the industrial revolution. Most responses of plants to increasing atmospheric CO2 levels result in increases in photosynthesis, water use efficiency and biomass. Less known is the role that respiration may play during adaptive responses of plants to changes in atmospheric CO2. Although plant respiration does not increase proportionally with CO2-enhanced photosynthesis or growth rates, a reduction in respiratory costs in plants grown at subambient CO2 can aid in maintaining a positive plant C-balance (i.e. enhancing the photosynthesis-to-respiration ratio). The understanding of plant respiration is further complicated by the presence of the alternative pathway that consumes photosynthate without producing chemical energy [adenosine triphosphate (ATP)] as effectively as respiration through the normal cytochrome pathway. Here, we present the respiratory responses of Arabidopsis thaliana plants selected at Pleistocene (200 microl l(-1)), current Holocene (370 microl l(-1)), and elevated (700 microl l(-1)) concentrations of CO2 and grown at current CO2 levels. We found that respiration rates were lower in Pleistocene-adapted plants when compared with Holocene ones, and that a substantial reduction in respiration was because of reduced activity of the alternative pathway. In a survey of the literature, we found that changes in respiration across plant growth forms and CO2 levels can be explained in part by differences in the respiratory energy demand for maintenance of biomass. This trend was substantiated in the Arabidopsis experiment in which Pleistocene-adapted plants exhibited decreases in respiration without concurrent reductions in tissue N content. Interestingly, N-based respiration rates of plants adapted to elevated CO2 also decreased. As a result, ATP yields per unit of N increased in Pleistocene-adapted plants compared with current CO2 adapted ones. Our results suggest that mitochondrial energy coupling and alternative pathway-mediated responses of respiration to changes in atmospheric CO2 may enhance survival of plants at low CO2 levels to help overcome a low carbon balance. Therefore, increases in the basal activity of the alternative pathway are not necessarily associated to metabolic plant stress in all cases.

  3. Automated Recovery of Three-Dimensional Models of Plant Shoots from Multiple Color Images1[C][W][OPEN

    PubMed Central

    Pound, Michael P.; French, Andrew P.; Murchie, Erik H.; Pridmore, Tony P.

    2014-01-01

    Increased adoption of the systems approach to biological research has focused attention on the use of quantitative models of biological objects. This includes a need for realistic three-dimensional (3D) representations of plant shoots for quantification and modeling. Previous limitations in single-view or multiple-view stereo algorithms have led to a reliance on volumetric methods or expensive hardware to record plant structure. We present a fully automatic approach to image-based 3D plant reconstruction that can be achieved using a single low-cost camera. The reconstructed plants are represented as a series of small planar sections that together model the more complex architecture of the leaf surfaces. The boundary of each leaf patch is refined using the level-set method, optimizing the model based on image information, curvature constraints, and the position of neighboring surfaces. The reconstruction process makes few assumptions about the nature of the plant material being reconstructed and, as such, is applicable to a wide variety of plant species and topologies and can be extended to canopy-scale imaging. We demonstrate the effectiveness of our approach on data sets of wheat (Triticum aestivum) and rice (Oryza sativa) plants as well as a unique virtual data set that allows us to compute quantitative measures of reconstruction accuracy. The output is a 3D mesh structure that is suitable for modeling applications in a format that can be imported in the majority of 3D graphics and software packages. PMID:25332504

  4. Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city

    USGS Publications Warehouse

    Glenn, E.P.; Mckeon, C.; Gerhart, V.; Nagler, P.L.; Jordan, F.; Artiola, J.

    2009-01-01

    Saline waste waters from industrial and water treatment processes are an under-utilized resource in desert urban environments. Management practices to safely use these water sources are still in development. We used a deeprooted native halophyte, Atriplex lentiformis (quailbush), to absorb mildly saline effluent (1800 mg l-1 total dissolved solids, mainly sodium sulfate) from a water treatment plant in the desert community of Twentynine Palms, California. We developed a deficit irrigation strategy to avoid discharging water past the root zone to the aquifer. The plants were irrigated at about one-third the rate of reference evapotranspiration (ETo) calculated from meteorological data over five years and soil moisture levels were monitored to a soil depth of 4.7 m at monthly intervals with a neutron hydroprobe. The deficit irrigation schedule maintained the soil below field capacity throughout the study. Water was presented on a more or less constant schedule, so that the application rates were less than ETo in summer and equal to or slightly greater than ETo in winter, but the plants were able to consume water stored in the profile in winter to support summer ET. Sodium salts gradually increased in the soil profile over the study but sulfate levels remained low, due to formation of gypsum in the calcic soil. The high salt tolerance, deep roots, and drought tolerance of desert halophytes such as A. lentiformis lend these plants to use as deficit-irrigated landscape plants for disposal of effluents in urban setting when protection of the aquifer is important. ?? 2008 Elsevier B.V.

  5. Use of Rhizosphere Metabolomics to Investigate Exudation of Phenolics by Arabidopsis Roots

    NASA Astrophysics Data System (ADS)

    Lee, Yong Jian; Rai, Amit; Reuben, Sheela; Nesati, Victor; Almeida, Reinaldo; Swarup, Sanjay

    2013-04-01

    The rhizosphere is a specialised micro-niche for bacteria that have an active exchange of signals and nutrients with the host plant. Nearly 20% of photosynthates are released as root exudates, which consist of primary metabolites and products of secondary metabolism which are largely phenolic in nature. Previously, using rhizosphere metabolomics, we showed that nearly 50% of organic carbon in the exudates is in the form of phenolic compounds, of which the largest fraction is from the phenylpropanoid synthesis pathway. Using Arabidopsis as a model, we have demonstrated that a biased rhizosphere can be created using plants with varying levels of phenylpropanoids due to mutations in the biosynthetic or regulatory genes. These phenylpropanoids levels are reflected in the exudates, and exudates from lines with regulatory gene mutations, tt8 and ttg, have higher levels of phenylpropanoids, whereas biosynthetic mutant line, tt4, has very low and undetectable levels of phenylpropanoids. The biased rhizosphere of tt8 and ttg lines provides a nutritional advantage to rhizobacteria that can utilize these phenylpropanoids such as quercetin. With such a strategy to increase the competitiveness of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas putida, this system can be applied to improve plant performance. In order to better understand the metabolic basis of the nutritional advantage behind the competitiveness of the favoured P. putida, we elucidated its quercetin utilization pathway. We have recently cloned the gene for quercetin oxidoreductase (QuoA) and expressed it in transgenic Arabidopsis lines to alter the plant phenylpropanoid metabolism, using a gain of function approach. Since phenylpropanoid biosynthesis in plants involve formation of quercetin from naringenin, we envisaged that QuoA expression in plants will provide us with a genetic tool to "reverse" this biosynthetic step. This perturbation led to a decrease in flavonoids and an increase in lignin and anthocyanin metabolites. We describe here the metabolites present in the root exudates using high resolution accurate mass (HRAM) metabolomics approach. Using this approach, biased rhizosphere for another class of PGPR strains can now be created. In this case, lignin- and anthocyanin- utilizing strains will be selectively preferred. We have set up a platform to perform metabolomics of exudates at the root surface. This has allowed us to use the liquid extraction surface analysis (LESA) system using a Thermo Velos Pro Orbitrap-MS to identify differences in exudate profiles along the root system of Arabidopsis. This platform enables direct sampling and measurement from plant roots grown aeroponically. As the metabolites are extracted from root surface and directly injected into the mass spectrometer, there is minimal loss of sample in this process. This method will now allow us to further dissect rhizosphere properties from places such as young root apex, as well as from the more mature base of roots. Taken together, these resources of altered rhizosphere, nutrient utilization pathways in microbes and surface analysis technology will help in extending our understanding of the processes in the plant rhizosphere.

  6. Identification of Sources of Endotoxin Exposure as Input for Effective Exposure Control Strategies.

    PubMed

    van Duuren-Stuurman, Birgit; Gröllers-Mulderij, Mariska; van de Runstraat, Annemieke; Duisterwinkel, Anton; Terwoert, Jeroen; Spaan, Suzanne

    2018-02-13

    Aim of the present study is to investigate the levels of endotoxins on product samples from potatoes, onions, and seeds, representing a relevant part of the agro-food industry in the Netherlands, to gather valuable insights in possibilities for exposure control measures early in the process of industrial processing of these products. Endotoxin levels on 330 products samples from companies representing the potato, onion, and seed (processing) industry (four potato-packaging companies, five potato-processing companies, five onion-packaging companies, and four seed-processing companies) were assessed using the Limulus Amboecyte Lysate (LAL) assay. As variation in growth conditions (type of soil, growth type) and product characteristics (surface roughness, dustiness, size, species) are assumed to influence the level of endotoxin on products, different types, and growth conditions were considered when collecting the samples. Additionally, waste material, rotten products, felt material (used for drying), and process water were collected. A large variation in the endotoxin levels was found on samples of potatoes, onions, and seeds (overall geometric standard deviation 17), in the range between 0.7 EU g-1 to 16400000 EU g-1. The highest geometric mean endotoxin levels were found in plant material (319600 EU g-1), followed by soil material (49100 EU g-1) and the outer side of products (9300 EU g-1), indicating that removal of plant and soil material early in the process would be an effective exposure control strategy. The high levels of endotoxins found in the limited number of samples from rotten onions indicate that these rotten onions should also be removed early in the process. Mean endotoxin levels found in waste material (only available for seed processing) is similar to the level found in soil material, although the range is much larger. On uncleaned seeds, higher endotoxin levels were found than on cleaned seeds, indicating that cleaning processes are important control measures and also that the waste material should be handled with care. Although endotoxin levels in batches of to-be-processed potatoes, onions, and seeds vary quite dramatically, it could be concluded that rotten products, plant material, and waste material contain particularly high endotoxin levels. This information was used to propose control measures to reduce exposure to endotoxins of workers during the production process. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  7. Arabidopsis Transcriptome Analysis Reveals Key Roles of Melatonin in Plant Defense Systems

    PubMed Central

    Weeda, Sarah; Zhang, Na; Zhao, Xiaolei; Ndip, Grace; Guo, Yangdong; Buck, Gregory A.; Fu, Conggui; Ren, Shuxin

    2014-01-01

    Melatonin is a ubiquitous molecule and exists across kingdoms including plant species. Studies on melatonin in plants have mainly focused on its physiological influence on growth and development, and on its biosynthesis. Much less attention has been drawn to its affect on genome-wide gene expression. To comprehensively investigate the role(s) of melatonin at the genomics level, we utilized mRNA-seq technology to analyze Arabidopsis plants subjected to a 16-hour 100 pM (low) and 1 mM (high) melatonin treatment. The expression profiles were analyzed to identify differentially expressed genes. 100 pM melatonin treatment significantly affected the expression of only 81 genes with 51 down-regulated and 30 up-regulated. However, 1 mM melatonin significantly altered 1308 genes with 566 up-regulated and 742 down-regulated. Not all genes altered by low melatonin were affected by high melatonin, indicating different roles of melatonin in regulation of plant growth and development under low and high concentrations. Furthermore, a large number of genes altered by melatonin were involved in plant stress defense. Transcript levels for many stress receptors, kinases, and stress-associated calcium signals were up-regulated. The majority of transcription factors identified were also involved in plant stress defense. Additionally, most identified genes in ABA, ET, SA and JA pathways were up-regulated, while genes pertaining to auxin responses and signaling, peroxidases, and those associated with cell wall synthesis and modifications were mostly down-regulated. Our results indicate critical roles of melatonin in plant defense against various environmental stresses, and provide a framework for functional analysis of genes in melatonin-mediated signaling pathways. PMID:24682084

  8. Can mechanics control pattern formation in plants?

    PubMed

    Dumais, Jacques

    2007-02-01

    Development of the plant body entails many pattern forming events at scales ranging from the cellular level to the whole plant. Recent evidence suggests that mechanical forces play a role in establishing some of these patterns. The development of cellular configurations in glandular trichomes and the rippling of leaf surfaces are discussed in depth to illustrate how intricate patterns can emerge from simple and well-established molecular and cellular processes. The ability of plants to sense and transduce mechanical signals suggests that complex interactions between mechanics and chemistry are possible during plant development. The inclusion of mechanics alongside traditional molecular controls offers a more comprehensive view of developmental processes.

  9. A 10-MWe solar-thermal central-receiver pilot plant: Solar facilities design integration. Plant operating/training manual (RADL-Item 2-36)

    NASA Astrophysics Data System (ADS)

    1982-07-01

    Plant and system level operating instructions are provided for the Barstow Solar Pilot Plant. Individual status instructions are given that identify plant conditions, process controller responsibilities, process conditions and control accuracies, operating envelopes, and operator cautions appropriate to the operating condition. Transition operating instructions identify the sequence of activities to be carried out to accomplish the indicated transition. Most transitions involve the startup or shutdown of an individual flowpath. Background information is provided on collector field operations, and the heliostat groupings and specific commands used in support receiver startup are defined.

  10. Exposure of Arabidopsis thaliana to Hypobaric Environments: Implications for Low-Pressure Bioregenerative Life Support Systems for Human Exploration Missions and Terraforming on Mars

    NASA Astrophysics Data System (ADS)

    Richards, Jeffrey T.; Corey, Kenneth A.; Paul, Anna-Lisa; Ferl, Robert J.; Wheeler, Raymond M.; Schuerger, Andrew C.

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P net) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO2 levels were allowed to drawdown from 0.1 kPa to CO2 compensation points to assess P net rates under different hypobaric conditions. Results showed that P net increased as the pressures decreased from 101 to 10 kPa when CO2 partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO2 was in the nonlimiting range from 0.10 to 0.07 kPa, the P net rates were insensitive to decreasing pressures. Thus, if CO2 concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P net rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.

  11. Exposure of Arabidopsis thaliana to hypobaric environments: implications for low-pressure bioregenerative life support systems for human exploration missions and terraforming on Mars.

    PubMed

    Richards, Jeffrey T; Corey, Kenneth A; Paul, Anna-Lisa; Ferl, Robert J; Wheeler, Raymond M; Schuerger, Andrew C

    2006-12-01

    Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.

  12. The role of reproductive plant traits and biotic interactions in the dynamics of semi-arid plant communities.

    PubMed

    Pueyo, Y; Kéfi, S; Díaz-Sierra, R; Alados, C L; Rietkerk, M

    2010-12-01

    The dynamics of semi-arid plant communities are determined by the interplay between competition and facilitation among plants. The sign and strength of these biotic interactions depend on plant traits. However, the relationships between plant traits and biotic interactions, and the consequences for plant communities are still poorly understood. Our objective here was to investigate, with a modelling approach, the role of plant reproductive traits on biotic interactions, and the consequences for processes such as plant succession and invasion. The dynamics of two plant types were modelled with a spatially-explicit integrodifferential model: (1) a plant with seed dispersal (colonizer of bare soil) and (2) a plant with local vegetative propagation (local competitor). Both plant types were involved in facilitation due to a local positive feedback between vegetation biomass and soil water availability, which promoted establishment and growth. Plants in the system also competed for limited water. The efficiency in water acquisition (dependent on reproductive and growth plant traits) determined which plant type dominated the community at the steady state. Facilitative interactions between plant types also played an important role in the community dynamics, promoting establishment in the driest conditions and recovery from low biomass. Plants with vegetative propagation took advantage of the ability of seed dispersers to establish on bare soil from a low initial biomass. Seed dispersers were good invaders, maintained high biomass at intermediate and high rainfall and showed a high ability in taking profit from the positive feedback originated by plants with vegetative propagation under the driest conditions. However, seed dispersers lost competitiveness with an increasing investment in fecundity. All together, our results showed that reproductive plant traits can affect the balance between facilitative and competitive interactions. Understanding this effect of plant traits on biotic interactions provides insights in processes such as plant succession and shrub encroachment. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Responses of high-elevation herbaceous plant assemblages to low glacial CO₂ concentrations revealed by fossil marmot (Marmota) teeth.

    PubMed

    McLean, Bryan S; Ward, Joy K; Polito, Michael J; Emslie, Steven D

    2014-08-01

    Atmospheric CO2 cycles of the Quaternary likely imposed major constraints on the physiology and growth of C3 plants worldwide. However, the measured record of this remains both geographically and taxonomically sparse. We present the first reconstruction of physiological responses in a late Quaternary high-elevation herbaceous plant community from the Southern Rocky Mountains, USA. We used a novel proxy-fossilized tooth enamel of yellow-bellied marmots (Marmota flaviventris)-which we developed using detailed isotopic analysis of modern individuals. Calculated C isotopic discrimination (Δ) of alpine plants was nearly 2 ‰ lower prior to the Last Glacial Maximum than at present, a response almost identical to that of nonherbaceous taxa from lower elevations. However, initial shifts in Δ aligned most closely with the onset of the late Pleistocene bipolar temperature "seesaw" rather than CO2 increase, indicating unique limitations on glacial-age high-elevation plants may have existed due to both low temperatures and low CO2. Further development of system-specific faunal proxies can help to clarify this and other plant- and ecosystem-level responses to past environmental change.

  14. Inhibiting localized corrosion during storage of dilute SRP wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblath, S.B.; Congdon, J.W.

    1986-01-01

    High-level radioactive waste will be incorporated in borosilicate glass in the Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). As part of this process, large volumes of inorganic salt wastes will be decontaminated for disposal as low-level waste. The principal contaminants, /sup 137/Cs and /sup 90/Sr, are removed by treatment with sodium tetraphenylborate and sodium titanate. The resulting solids will be slurried with a dilute salt solution and stored in existing carbon steel tanks for several years prior to processing and disposal. Initial tests indicated a tendency for localized corrosion of the tanks. An investigation, using nonradioactivemore » simulants for the expected solution compositions, identified inhibitors which would protect the steel. Changes in solution compositions over time, due to radiolytic effects, were also accounted for by the simulants. Six inhibitors were identified which would protect the steel tanks. The effects these inhibitors would have on later processing steps in the DWPF were then evaluated. After this process, only sodium nitrite remained as an inhibitor that was both effective and compatible with the DWPF. The use of this inhibitor has been demonstrated on a real waste slurry.« less

  15. Carbon-Flow-Based Modeling of Ecophysiological Processes and Biomass Dynamics of Submersed Aquatic Plants

    DTIC Science & Technology

    2007-09-01

    simulation modeling approach to describing carbon- flow-based, ecophysiological processes and biomass dynamics of fresh- water submersed aquatic plant...the distribution and abundance of SAV. In aquatic systems a small part of the irradiance can be reflected by the water surface, and further...to the fact that water temperatures in the lake were relatively low compared to air tem- peratures because of the large inflow of groundwater (Titus

  16. Advanced Acid Gas Separation Technology for the Utilization of Low Rank Coals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kloosterman, Jeff

    2012-12-31

    Air Products has developed a potentially ground-breaking technology – Sour Pressure Swing Adsorption (PSA) – to replace the solvent-based acid gas removal (AGR) systems currently employed to separate sulfur containing species, along with CO{sub 2} and other impurities, from gasifier syngas streams. The Sour PSA technology is based on adsorption processes that utilize pressure swing or temperature swing regeneration methods. Sour PSA technology has already been shown with higher rank coals to provide a significant reduction in the cost of CO{sub 2} capture for power generation, which should translate to a reduction in cost of electricity (COE), compared to baselinemore » CO{sub 2} capture plant design. The objective of this project is to test the performance and capability of the adsorbents in handling tar and other impurities using a gaseous mixture generated from the gasification of lower rank, lignite coal. The results of this testing are used to generate a high-level pilot process design, and to prepare a techno-economic assessment evaluating the applicability of the technology to plants utilizing these coals.« less

  17. Impact of Metal Nanoform Colloidal Solution on the Adaptive Potential of Plants

    NASA Astrophysics Data System (ADS)

    Taran, Nataliya; Batsmanova, Ludmila; Kovalenko, Mariia; Okanenko, Alexander

    2016-02-01

    Nanoparticles are a known cause of oxidative stress and so induce antistress action. The latter property was the purpose of our study. The effect of two concentrations (120 and 240 mg/l) of nanoform biogenic metal (Ag, Cu, Fe, Zn, Mn) colloidal solution on antioxidant enzymes, superoxide dismutase and catalase; the level of the factor of the antioxidant state; and the content of thiobarbituric acid reactive substances (TBARSs) of soybean plant in terms of field experience were studied. It was found that the oxidative processes developed a metal nanoparticle pre-sowing seed treatment variant at a concentration of 120 mg/l, as evidenced by the increase in the content of TBARS in photosynthetic tissues by 12 %. Pre-sowing treatment in a double concentration (240 mg/l) resulted in a decrease in oxidative processes (19 %), and pre-sowing treatment combined with vegetative treatment also contributed to the reduction of TBARS (10 %). Increased activity of superoxide dismutase (SOD) was observed in a variant by increasing the content of TBARS; SOD activity was at the control level in two other variants. Catalase activity decreased in all variants. The factor of antioxidant activity was highest (0.3) in a variant with nanoparticle double treatment (pre-sowing and vegetative) at a concentration of 120 mg/l. Thus, the studied nanometal colloidal solution when used in small doses, in a certain time interval, can be considered as a low-level stress factor which according to hormesis principle promoted adaptive response reaction.

  18. Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics

    PubMed Central

    Jaipargas, Erica-Ashley; Barton, Kiah A.; Mathur, Neeta; Mathur, Jaideep

    2015-01-01

    Mitochondria are pleomorphic, double membrane-bound organelles involved in cellular energetics in all eukaryotes. Mitochondria in animal and yeast cells are typically tubular-reticulate structures and several micro-meters long but in green plants they are predominantly observed as 0.2–1.5 μm punctae. While fission and fusion, through the coordinated activity of several conserved proteins, shapes mitochondria, the endoplasmic reticulum (ER) has recently been identified as an additional player in this process in yeast and mammalian cells. The mitochondria-ER relationship in plant cells remains largely uncharacterized. Here, through live-imaging of the entire range of mitochondria pleomorphy we uncover the underlying basis for the predominantly punctate mitochondrial form in plants. We demonstrate that mitochondrial morphology changes in response to light and cytosolic sugar levels in an ER mediated manner. Whereas, large ER polygons and low dynamics under dark conditions favor mitochondrial fusion and elongation, small ER polygons result in increased fission and predominantly small mitochondria. Hypoxia also reduces ER dynamics and increases mitochondrial fusion to produce giant mitochondria. By observing elongated mitochondria in normal plants and fission-impaired Arabidopsis nmt1-2 and drp3a mutants we also establish that thin extensions called matrixules and a beads-on-a-string mitochondrial phenotype are direct consequences of mitochondria-ER interactions. PMID:26442089

  19. Benefits and hazards of dietary carbohydrate.

    PubMed

    Connor, William E; Duell, P Barton; Connor, Sonja L

    2005-11-01

    Since the dawn of civilization, carbohydrate has comprised the largest source of energy in the diet for most populations. The source of the carbohydrate has been from plants in the form of complex carbohydrate high in fiber. Only in affluent cultures has sugar contributed so much of the total energy. When carbohydrate is consumed as a major component of a plant-based diet, a high-carbohydrate, low-fat diet is associated with low plasma levels of total and low-density lipoprotein cholesterol, less coronary heart disease, less diabetes, and less obesity. Very low-carbohydrate (ketogenic) diets may provide short-term solutions but do not lead to a long-term solution for most people.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucash, M.S.; Farnsworth, B.; Winner, W.E.

    This study tests the potential for interactions between root-zone temperature and CO{sub 2} for plants which co-occur in a habitat where root-zone temperature fluctuate throughout the day. Controlled environment studies were conducted to expose desert plants to combinations of low or high root zone temperatures and low or high CO{sub 2}. Artemisia tridentata, Sitanion hystrix, and Stipa thurberiana were chosen for study to represent eastern Oregon plants that differ in their life history strategies. Seeds were planted in pots containing native soils and were grown in environmentally controlled growth chambers for three months. Growth treatments were either ambient (380 ppm)more » or high (580 ppm) CO{sub 2} concentration and high (18{degrees}C) or low (13{degrees} C) root-zone temperature. A. tridentata (a perennial shrub) was relatively unresponsive to treatments. Growth of S. hystrix and S. thurberiana (both C{sub 3} grasses) was stimulated by root-zone warming at both ambient and elevated CO{sub 2} levels. CO{sub 2} stimulated growth occurred for both grass species at low root-zone temperatures but only for S. thurberiana at high root-zone temperatures. Biomass increases from elevated CO{sub 2} were enhanced by root-zone warming indicating treatment interactions. Leaf-level photosynthesis measurements were consistent across species, but could not explain growth responses to treatments. These studies indicate that grasses may be more responsive to environmental change than co-occurring shrubs.« less

  1. Using Phytoremediation to Clean Up Contamination at Military Installations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmer, S.D.; Hinchman, R.R.; Negri, M.C.

    1997-07-01

    During and following World War II, wastes from the production of munitions and other military materials were disposed of using the best available practices acceptable at that time. However, these disposal methods often contaminated soil and groundwater with organic compounds and metals that require cleanup under current regulations. An emerging technology for cleaning contaminated soils and shallow groundwater is phytoremediation, an environmentally friendly, low- cost, and low-tech process. Phytoremediation encompasses all plant- influenced biological, chemical, and physical processes that aid in the uptake, degradation, and metabolism of contaminants by either plants or free-living organisms in the plant`s rhizosphere. A phytoremediationmore » system can be viewed as a biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the soil and below-ground ecosystem for subsequent productive use. Argonne National Laboratory (ANL) has been conducting basic and applied research in phytoremediation since 1990. Initial greenhouse studies evaluated salt-tolerant wetland plants to clean UP and reduce the volume of salty `produced water` from petroleum wells. Results of these studies were used to design a bioreactor for processing produced water that is being demonstrated at a natural gas well in Oklahoma; this system can reduce produced water volume by about 75% in less than eight days, representing substantial savings in waste disposal cost. During 1994, ANL conducted a TNT plant uptake and in situ remediation study in a ridge-and-furrow area used for the disposal of pink water at the Joliet Army Ammunition Plant.« less

  2. Hierarchical Learning of Tree Classifiers for Large-Scale Plant Species Identification.

    PubMed

    Fan, Jianping; Zhou, Ning; Peng, Jinye; Gao, Ling

    2015-11-01

    In this paper, a hierarchical multi-task structural learning algorithm is developed to support large-scale plant species identification, where a visual tree is constructed for organizing large numbers of plant species in a coarse-to-fine fashion and determining the inter-related learning tasks automatically. For a given parent node on the visual tree, it contains a set of sibling coarse-grained categories of plant species or sibling fine-grained plant species, and a multi-task structural learning algorithm is developed to train their inter-related classifiers jointly for enhancing their discrimination power. The inter-level relationship constraint, e.g., a plant image must first be assigned to a parent node (high-level non-leaf node) correctly if it can further be assigned to the most relevant child node (low-level non-leaf node or leaf node) on the visual tree, is formally defined and leveraged to learn more discriminative tree classifiers over the visual tree. Our experimental results have demonstrated the effectiveness of our hierarchical multi-task structural learning algorithm on training more discriminative tree classifiers for large-scale plant species identification.

  3. [The airborne 1,3-butadiene concentrations in rubber and plastic processing plants].

    PubMed

    Yoshida, Toshiaki; Tainaka, Hidetsugu; Matsunaga, Ichiro; Goto, Sumio

    2002-03-01

    Environment pollution by 1,3-butadiene had considerably increased in Japan. The main cause of the pollution is the automotive exhaust gas, and leaks from factories, smoking, and burning of rubber and plastic products are considered to be minor sources. The object of this study was to determine the contamination levels of airborne 1,3-butadiene in factories processing rubber and plastics containing 1,3-butadiene. The concentrations of airborne 1,3-butadiene were measured in 21 plants (10 rubber processing plants and 11 plastics processing plants) in Osaka. 1,3-Butadiene in air was collected for 10 minutes with a charcoal tube and a portable small pump adjusted to a 250 ml/min flow rate. In each plant, indoor air samples at five points and an outdoor air sample at one point outside the plant were collected. The samples were subjected to gas chromatography/mass spectrometry after thermal desorption from the charcoal. The concentrations of airborne 1,3-butadiene in the rubber processing plants and the plastics processing plants were 0.14-2.20 micrograms/m3 (geometric mean: 0.48 microgram/m3) and 0.23-4.51 micrograms/m3 (geometric mean: 0.80 microgram/m3), respectively. In all plants examined, indoor 1,3-butadiene concentrations were higher than the outdoor concentrations around the plants. Therefore, 1,3-butadiene was considered to arise from the processing of rubber or plastics, but the indoor 1,3-butadiene concentrations were much lower than the PEL-TWA (1 ppm = 2.21 mg/m3) of OSHA and the TLV-TWA (2 ppm) of ACGIH. The concentrations in the plants with closed room conditions without ventilation were higher than the concentrations in the other plants. It was suggested that ventilation affected the 1,3-butadiene concentration in the plants.

  4. [Characteristics of dissolved organic carbon release under inundation from typical grass plants in the water-level fluctuation zone of the Three Gorges Reservoir area].

    PubMed

    Tan, Qiu-Xia; Zhu, Boi; Hua, Ke-Ke

    2013-08-01

    The water-level fluctuation zone of the Three Gorges Reservoir (TGR) exposes in spring and summer, then, green plants especially herbaceous plants grow vigorously. In the late of September, water-level fluctuation zone of TGR goes to inundation. Meanwhile, annually accumulated biomass of plant will be submerged for decaying, resulting in organism decomposition and release a large amount of dissolved organic carbon (DOC). This may lead to negative impacts on water environment of TGR. The typical herbaceous plants from water-level fluctuation zone were collected and inundated in the laboratory for dynamic measurements of DOC concentration of overlying water. According to the determination, the DOC release rates and fluxes have been calculated. Results showed that the release process of DOC variation fitted in a parabolic curve. The peak DOC concentrations emerge averagely in the 15th day of inundation, indicating that DOC released quickly with organism decay of herbaceous plant. The release process of DOC could be described by the logarithm equation. There are significant differences between the concentration of DOC (the maximum DOC concentration is 486.88 mg x L(-1) +/- 35.97 mg x L(-1) for Centaurea picris, the minimum is 4.18 mg x L(-1) +/- 1.07 mg x L(-1) for Echinochloacrus galli) and the release amount of DOC (the maximum is 50.54 mg x g(-1) for Centaurea picris, the minimum is 6.51 mg x g(-1) for Polygonum hydropiper) due to different characteristics of plants, especially, the values of C/N of herbaceous plants. The cumulative DOC release quantities during the whole inundation period were significantly correlated with plants' C/N values in linear equations.

  5. An Analysis of Occupational Titles and Competencies Needed in Agricultural Food Products Processing Plants.

    ERIC Educational Resources Information Center

    Smeltz, LeRoy C.

    To identify, rate, and cluster groups of competencies and occupational titles at entry and advance levels for occupations in five food products commodity areas, data were collected by interviews with personnel managers in 25 Pennsylvania food processing plants. Some findings were: (1) There were meaningful competency factor and occupational title…

  6. Differential Mechanisms of Photosynthetic Acclimation to Light and Low Temperature in Arabidopsis and the Extremophile Eutrema salsugineum

    PubMed Central

    Khanal, Nityananda; Bray, Geoffrey E.; Grisnich, Anna; Moffatt, Barbara A.; Gray, Gordon R.

    2017-01-01

    Photosynthetic organisms are able to sense energy imbalances brought about by the overexcitation of photosystem II (PSII) through the redox state of the photosynthetic electron transport chain, estimated as the chlorophyll fluorescence parameter 1-qL, also known as PSII excitation pressure. Plants employ a wide array of photoprotective processes that modulate photosynthesis to correct these energy imbalances. Low temperature and light are well established in their ability to modulate PSII excitation pressure. The acquisition of freezing tolerance requires growth and development a low temperature (cold acclimation) which predisposes the plant to photoinhibition. Thus, photosynthetic acclimation is essential for proper energy balancing during the cold acclimation process. Eutrema salsugineum (Thellungiella salsuginea) is an extremophile, a close relative of Arabidopsis thaliana, but possessing much higher constitutive levels of tolerance to abiotic stress. This comparative study aimed to characterize the photosynthetic properties of Arabidopsis (Columbia accession) and two accessions of Eutrema (Yukon and Shandong) isolated from contrasting geographical locations at cold acclimating and non-acclimating conditions. In addition, three different growth regimes were utilized that varied in temperature, photoperiod and irradiance which resulted in different levels of PSII excitation pressure. This study has shown that these accessions interact differentially to instantaneous (measuring) and long-term (acclimation) changes in PSII excitation pressure with regard to their photosynthetic behaviour. Eutrema accessions contained a higher amount of photosynthetic pigments, showed higher oxidation of P700 and possessed more resilient photoprotective mechanisms than that of Arabidopsis, perhaps through the prevention of PSI acceptor-limitation. Upon comparison of the two Eutrema accessions, Shandong demonstrated the greatest PSII operating efficiency (ΦPSII) and P700 oxidizing capacity, while Yukon showed greater growth plasticity to irradiance. Both of these Eutrema accessions are able to photosynthetically acclimate but do so by different mechanisms. The Shandong accessions demonstrate a stable response, favouring energy partitioning to photochemistry while the Yukon accession shows a more rapid response with partitioning to other (non-photochemical) strategies. PMID:28792470

  7. Status of H-Coal commercial activities. [Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, H.N. Jr.

    1981-01-01

    The H-Coal process is a development of Hydrocarbon Research, Inc. (HRI). It converts coal by catalytic hydrogenation to substitutes for petroleum ranging from a low sulfur fuel oil to an all distillate synthetic crude, the latter representing a potential source of raw material for the petrochemical industry. The process is a related application to HRI's H-Oil process which is used commercially for the desulfurization of residual oils from crude oil refining. A large scale pilot plant was constructed at Catlettsburg, Kentucky that is designed to process 200 to 600 TPD of coal. The paper includes an update on the keymore » activities associated with the Breckinridge Project: Pilot Plant H-Coal at Catlettsburg, Kentucky; commercial design activities in Houston; and permit and EIS activities for the Addison, Kentucky plant site.« less

  8. Systematic review of epidemiological studies on health effects associated with management of solid waste

    PubMed Central

    2009-01-01

    Background Management of solid waste (mainly landfills and incineration) releases a number of toxic substances, most in small quantities and at extremely low levels. Because of the wide range of pollutants, the different pathways of exposure, long-term low-level exposure, and the potential for synergism among the pollutants, concerns remain about potential health effects but there are many uncertainties involved in the assessment. Our aim was to systematically review the available epidemiological literature on the health effects in the vicinity of landfills and incinerators and among workers at waste processing plants to derive usable excess risk estimates for health impact assessment. Methods We examined the published, peer-reviewed literature addressing health effects of waste management between 1983 and 2008. For each paper, we examined the study design and assessed potential biases in the effect estimates. We evaluated the overall evidence and graded the associated uncertainties. Results In most cases the overall evidence was inadequate to establish a relationship between a specific waste process and health effects; the evidence from occupational studies was not sufficient to make an overall assessment. For community studies, at least for some processes, there was limited evidence of a causal relationship and a few studies were selected for a quantitative evaluation. In particular, for populations living within two kilometres of landfills there was limited evidence of congenital anomalies and low birth weight with excess risk of 2 percent and 6 percent, respectively. The excess risk tended to be higher when sites dealing with toxic wastes were considered. For populations living within three kilometres of old incinerators, there was limited evidence of an increased risk of cancer, with an estimated excess risk of 3.5 percent. The confidence in the evaluation and in the estimated excess risk tended to be higher for specific cancer forms such as non-Hodgkin's lymphoma and soft tissue sarcoma than for other cancers. Conclusions The studies we have reviewed suffer from many limitations due to poor exposure assessment, ecological level of analysis, and lack of information on relevant confounders. With a moderate level confidence, however, we have derived some effect estimates that could be used for health impact assessment of old landfill and incineration plants. The uncertainties surrounding these numbers should be considered carefully when health effects are estimated. It is clear that future research into the health risks of waste management needs to overcome current limitations. PMID:20030820

  9. Field establishment of fourwing saltbush in processed oil shale and disturbed native soil as influenced by vesicular-arbuscular mycorrhizae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Call, C.A.; McKell, C.M.

    1984-04-30

    Seedlings of fourwing saltbush (Atriplex canescens (Pursh) Nutt.) were inoculated with indigenous vesicular-arbuscular mycorrhizal (VAM) fungi in a containerized system and transplanted into processed oil shale and disturbed native soil in a semiarid rangeland environment in northwestern Colorado. After two growing seasons in the field, plants inoculated with VAM had greater aboveground biomass, cover, and height than noninoculated plants. Mycorrhizal plants were more effective in the uptake of water and phosphorus. Infection levels of inoculated plants were greatly reduced in processed shale (from 13.0 at outplanting to 3.8 at harvest), but functional VAM associations could be found after two growingmore » seasons. Results indicate that VAM help make processed oil shale a more tractable medium for the establishment of plants representative of later successional stages by allowing these plants to make effective use of the natural resources that are limiting under conditions of high stress. 39 references, 1 figure.« less

  10. Spatial patterns of composition in tidal wetland plant and algal assemblages in Oregon: Implications for wetland vulnerability to sea-level rise

    EPA Science Inventory

    Plants and algae mediate important ecosystem processes in coastal marshes and swamps. These assemblages are structured in part by estuarine environmental gradients such as tidal elevation and salinity. Such gradients are likely to change with sea-level rise (SLR) due to global cl...

  11. Use of Unpalatable Forages by Ruminants: The Influence of Experience with the Biophysical and Social Environment.

    PubMed

    Distel, Roberto A; Villalba, Juan J

    2018-04-14

    Unpalatable forage resources (low nutrient density, potentially toxic metabolites) are widespread and represent a challenge for ruminant nutrition, health, and welfare. Our objective was to synthesize the role of biophysical and social experience on the use of unpalatable forages by ruminants, and highlight derived behavioural solutions for the well-being of soils, plants, and animals. Environmental experiences early in life modulate gene expression and promote learning, which alters morpho-physiological and psychological mechanisms that modify behavioural responses and change food and habitat selection. In this process, ruminants can become better adapted to the habitat where they are reared. Moreover, experiential learning provides flexibility in diet selection, which is critical for changing foraging environments. Learned associations between unpalatable and palatable foods, if ingested in appropriate amounts, sequence, and close temporal association, induce the development of preference for the former type of food. In this way, a more uniform use of resources can be achieved from the landscape level down to the individual plant, with the associated benefits to ecosystem integrity and stability. Ruminants can also learn the medicinal benefits of ingesting foods with toxins (e.g., condensed tannins and saponins with antiparasitic properties). This knowledge on behavioural processes can be translated into behavioural applications that provide low-cost solutions to many challenges that producers face in managing sustainable livestock production systems.

  12. USE OF WEIBULL FUNCTION FOR NON-LINEAR ANALYSIS OF EFFECTS OF LOW LEVELS OF SIMULATED HERBICIDE DRIFT ON PLANTS

    EPA Science Inventory

    We compared two regression models, which are based on the Weibull and probit functions, for the analysis of pesticide toxicity data from laboratory studies on Illinois crop and native plant species. Both mathematical models are continuous, differentiable, strictly positive, and...

  13. Effects of arsenic on nutrient accumulation and distribution in selected ornamental plants

    USDA-ARS?s Scientific Manuscript database

    In Miami, Florida 95% of residential and 33% commercial soils exceed the Florida Department of Environmental Protection goals for cleanup of arsenic contamination. Ornamental plants have not been fully investigated as a mechanism for phytoremediation of low level As contaminated soil. This study eva...

  14. Effects of feeding low fishmeal diets with increasing soybean meal levels on growth, gut histology and plasma biochemistry of sea bass.

    PubMed

    Bonvini, E; Bonaldo, A; Mandrioli, L; Sirri, R; Dondi, F; Bianco, C; Fontanillas, R; Mongile, F; Gatta, P P; Parma, L

    2018-05-01

    The aquaculture industry depends upon the development of sustainable protein sources to replace fishmeal (FM) in aquafeeds and the products derived from soybeans are some of the most studied plant feedstuffs. A key area of investigation for continuing to improve modern aquafeeds includes the evaluation of varying proportions and combinations of plant ingredients to identify mixtures that are more efficiently utilized by the fish. This study investigated the effects of increasing soybean meal (SBM) by replacing a mix of plant ingredients in low FM (20%) diets on growth, blood biochemistry profile and gut histology on European sea bass. Five isonitrogenous and isolipidic experimental diets were formulated: four diets containing increasing SBM levels (0, 10, 20 and 30%; 0SBM, 10SBM, 20SBM and 30SBM, respectively) with a low content of FM (20%) and one control diet (0% SBM; 35% FM). Diets containing SBM brought to comparable performance and protein utilization, while 0SBM had negative impact on feed conversion rate and protein utilization. Blood parameters suggested an optimal nutritional status under all feeding treatments, even though slightly decreased values were reported at increasing dietary SBM. Histology examination did not show any changes indicative of soy-induced enteritis. We can conclude that for European sea bass: (i) different blends of plant protein did not affect feed intake despite the 20% FM dietary level; (ii) the inclusion of SBM maintains optimal growth and feed utilization in low FM diets; (iii) blood biochemistry profile showed a good nutritional status under all feeding regimes; (iv) no evidence of soy-induced enteritis was reported in any group fed low FM diets. For formulation of practical diets in on-growing of European sea bass, SBM up to 30% can be successfully incorporated into feeds containing low FM inclusion.

  15. ALARA at nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, J.W.

    1990-01-01

    Implementation of the As Low As Reasonably Achievable (ALARA) principle at nuclear power plants presents a continuing challenge for health physicists at utility corporate and plant levels, for plant designers, and for regulatory agencies. The relatively large collective doses at some plants are being addressed though a variety of dose reduction techniques. It is planned that this report will include material on historical aspects, management, valuation of dose reduction, quantitative and qualitative aspects of optimization, design, operational considerations, and training. The status of this work is summarized in this report. 30 refs., 1 fig., 6 tabs.

  16. Influence of low air humidity and low root temperature on water uptake, growth and aquaporin expression in rice plants.

    PubMed

    Kuwagata, Tsuneo; Ishikawa-Sakurai, Junko; Hayashi, Hidehiro; Nagasuga, Kiyoshi; Fukushi, Keiko; Ahamed, Arifa; Takasugi, Katsuko; Katsuhara, Maki; Murai-Hatano, Mari

    2012-08-01

    The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.

  17. Ecohydrological controls over water budgets in floodplain meadows

    NASA Astrophysics Data System (ADS)

    Morris, Paul J.; Verhoef, Anne; Macdonald, David M. J.; Gardner, Cate M.; Punalekar, Suvarna M.; Tatarenko, Irina; Gowing, David

    2013-04-01

    Floodplain meadows are important ecosystems, characterised by high plant species richness including rare species. Fine-scale partitioning along soil hydrological gradients allows many species to co-exist. Concerns exist that even modest changes to soil hydrological regime as a result of changes in management or climate may endanger floodplain meadows communities. As such, understanding the interaction between biological and physical controls over floodplain meadow water budgets is important to understanding their likely vulnerability or resilience. Floodplain meadow plant communities are highly heterogeneous, leading to patchy landscapes with distinct vegetation. However, it is unclear whether this patchiness in plant distribution is likely to translate into heterogeneous soil-vegetation-atmosphere transfer (SVAT) rates of water and heat, or whether floodplain meadows can reasonably be treated as internally homogeneous in physical terms despite this patchy vegetation. We used a SVAT model, the Soil-Water-Atmosphere-Plants (SWAP) model by J.C. van Dam and co-workers, to explore the controls over the partitioning of water budgets in floodplain meadows. We conducted our research at Yarnton Mead on the River Thames in Oxfordshire, one of the UK's best remaining examples of a floodplain meadow, and which is still managed and farmed in a low-intensity mixed-use manner. We used soil and plant data from our site to parameterise SWAP; we drove the model using in-situ half-hourly meteorological data. We analysed the model's sensitivity to a range of soil and plant parameters - informed by our measurements - in order to assess the effects of different plant communities on SVAT fluxes. We used a novel method to simulate water-table dynamics at the site; the simulated water tables provide a lower boundary condition for SWAP's hydrological submodel. We adjusted the water-table model's parameters so as to represent areas of the mead with contrasting topography, and so different heights above the river level and different moisture and drainage regimes. The model was most sensitive to changes in the parameters that define the water-table model. Plant above-ground parameters, such as leaf area index and canopy height also had strong influences on simulated fluxes. The model exhibited low sensitivity to plant root parameters; this was particularly true during wet periods when the simulated plant communities were oxygen stressed. Changes in soil texture profile exhibited an intermediate level of control over SVAT fluxes. Our findings indicate that unlike in environments with deep water tables, such as drylands and headwater basins, high-quality water-table data with decimetre or even centimetre accuracy are important to accurate simulation of SVAT fluxes. Future studies that seek to simulate SVAT fluxes in shallow groundwater systems should either use high frequency, high-quality water-table observations as part of the driving data set, or should ensure that water-table dynamics and their interactions with surface processes can be simulated in a robust and physically meaningful manner. The low sensitivity of our model to plant root parameters reflects the proximity of the water table to the ground surface and the fact that the simulated plant community is rarely water-stressed, and again contrasts with findings from existing SVAT model research in environments with deep water tables.

  18. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  19. Monoterpenoid biosynthesis in Saccharomyces cerevisiae.

    PubMed

    Oswald, Marilyne; Fischer, Marc; Dirninger, Nicole; Karst, Francis

    2007-05-01

    Plant monoterpenoids belong to a large family of plant secondary metabolites with valuable applications in cosmetics and medicine. Their usual low levels and difficult purification justify the need for alternative fermentative processes for large-scale production. Geranyl diphosphate is the universal precursor of monoterpenoids. In yeast it occurs exclusively as an intermediate of farnesyl diphosphate synthesis. In the present study we investigated the potential use of Saccharomyces cerevisiae as an alternative engineering tool. The expression of geraniol synthase of Ocimum basilicum in yeast allowed a strong and specific excretion of geraniol to the growth medium, in contrast to mutants defective in farnesyl diphosphate synthase which excreted geraniol and linalool in similar amounts. A further increase of geraniol synthesis was obtained using yeast mutants defective in farnesyl diphosphate synthase. We also showed that geraniol synthase expression affects the general ergosterol pathway, but in a manner dependent on the genetic background of the strain.

  20. Metal-accelerated oxidation in plant cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czuba, M.

    1993-05-01

    Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death aremore » Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.« less

Top