Sample records for processing statistical analysis

  1. Interrupted Time Series Versus Statistical Process Control in Quality Improvement Projects.

    PubMed

    Andersson Hagiwara, Magnus; Andersson Gäre, Boel; Elg, Mattias

    2016-01-01

    To measure the effect of quality improvement interventions, it is appropriate to use analysis methods that measure data over time. Examples of such methods include statistical process control analysis and interrupted time series with segmented regression analysis. This article compares the use of statistical process control analysis and interrupted time series with segmented regression analysis for evaluating the longitudinal effects of quality improvement interventions, using an example study on an evaluation of a computerized decision support system.

  2. Statistical process control methods allow the analysis and improvement of anesthesia care.

    PubMed

    Fasting, Sigurd; Gisvold, Sven E

    2003-10-01

    Quality aspects of the anesthetic process are reflected in the rate of intraoperative adverse events. The purpose of this report is to illustrate how the quality of the anesthesia process can be analyzed using statistical process control methods, and exemplify how this analysis can be used for quality improvement. We prospectively recorded anesthesia-related data from all anesthetics for five years. The data included intraoperative adverse events, which were graded into four levels, according to severity. We selected four adverse events, representing important quality and safety aspects, for statistical process control analysis. These were: inadequate regional anesthesia, difficult emergence from general anesthesia, intubation difficulties and drug errors. We analyzed the underlying process using 'p-charts' for statistical process control. In 65,170 anesthetics we recorded adverse events in 18.3%; mostly of lesser severity. Control charts were used to define statistically the predictable normal variation in problem rate, and then used as a basis for analysis of the selected problems with the following results: Inadequate plexus anesthesia: stable process, but unacceptably high failure rate; Difficult emergence: unstable process, because of quality improvement efforts; Intubation difficulties: stable process, rate acceptable; Medication errors: methodology not suited because of low rate of errors. By applying statistical process control methods to the analysis of adverse events, we have exemplified how this allows us to determine if a process is stable, whether an intervention is required, and if quality improvement efforts have the desired effect.

  3. Statistical principle and methodology in the NISAN system.

    PubMed Central

    Asano, C

    1979-01-01

    The NISAN system is a new interactive statistical analysis program package constructed by an organization of Japanese statisticans. The package is widely available for both statistical situations, confirmatory analysis and exploratory analysis, and is planned to obtain statistical wisdom and to choose optimal process of statistical analysis for senior statisticians. PMID:540594

  4. STATISTICAL ANALYSIS OF SNAP 10A THERMOELECTRIC CONVERTER ELEMENT PROCESS DEVELOPMENT VARIABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitch, S.H.; Morris, J.W.

    1962-12-15

    Statistical analysis, primarily analysis of variance, was applied to evaluate several factors involved in the development of suitable fabrication and processing techniques for the production of lead telluride thermoelectric elements for the SNAP 10A energy conversion system. The analysis methods are described as to their application for determining the effects of various processing steps, estabIishing the value of individual operations, and evaluating the significance of test results. The elimination of unnecessary or detrimental processing steps was accomplished and the number of required tests was substantially reduced by application of these statistical methods to the SNAP 10A production development effort. (auth)

  5. On Conceptual Analysis as the Primary Qualitative Approach to Statistics Education Research in Psychology

    ERIC Educational Resources Information Center

    Petocz, Agnes; Newbery, Glenn

    2010-01-01

    Statistics education in psychology often falls disappointingly short of its goals. The increasing use of qualitative approaches in statistics education research has extended and enriched our understanding of statistical cognition processes, and thus facilitated improvements in statistical education and practices. Yet conceptual analysis, a…

  6. General specifications for the development of a USL NASA PC R and D statistical analysis support package

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Bassari, Jinous; Triantafyllopoulos, Spiros

    1984-01-01

    The University of Southwestern Louisiana (USL) NASA PC R and D statistical analysis support package is designed to be a three-level package to allow statistical analysis for a variety of applications within the USL Data Base Management System (DBMS) contract work. The design addresses usage of the statistical facilities as a library package, as an interactive statistical analysis system, and as a batch processing package.

  7. Preparing systems engineering and computing science students in disciplined methods, quantitative, and advanced statistical techniques to improve process performance

    NASA Astrophysics Data System (ADS)

    McCray, Wilmon Wil L., Jr.

    The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization model and dashboard that demonstrates the use of statistical methods, statistical process control, sensitivity analysis, quantitative and optimization techniques to establish a baseline and predict future customer satisfaction index scores (outcomes). The American Customer Satisfaction Index (ACSI) model and industry benchmarks were used as a framework for the simulation model.

  8. Root Cause Analysis of Quality Defects Using HPLC-MS Fingerprint Knowledgebase for Batch-to-batch Quality Control of Herbal Drugs.

    PubMed

    Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin

    2015-01-01

    The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Applying Statistical Process Control to Clinical Data: An Illustration.

    ERIC Educational Resources Information Center

    Pfadt, Al; And Others

    1992-01-01

    Principles of statistical process control are applied to a clinical setting through the use of control charts to detect changes, as part of treatment planning and clinical decision-making processes. The logic of control chart analysis is derived from principles of statistical inference. Sample charts offer examples of evaluating baselines and…

  10. A Statistical Analysis of the Output Signals of an Acousto-Optic Spectrum Analyzer for CW (Continuous-Wave) Signals

    DTIC Science & Technology

    1988-10-01

    A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.

  11. The Use of Statistical Process Control-Charts for Person-Fit Analysis on Computerized Adaptive Testing. LSAC Research Report Series.

    ERIC Educational Resources Information Center

    Meijer, Rob R.; van Krimpen-Stoop, Edith M. L. A.

    In this study a cumulative-sum (CUSUM) procedure from the theory of Statistical Process Control was modified and applied in the context of person-fit analysis in a computerized adaptive testing (CAT) environment. Six person-fit statistics were proposed using the CUSUM procedure, and three of them could be used to investigate the CAT in online test…

  12. Applied Behavior Analysis and Statistical Process Control?

    ERIC Educational Resources Information Center

    Hopkins, B. L.

    1995-01-01

    Incorporating statistical process control (SPC) methods into applied behavior analysis is discussed. It is claimed that SPC methods would likely reduce applied behavior analysts' intimate contacts with problems and would likely yield poor treatment and research decisions. Cases and data presented by Pfadt and Wheeler (1995) are cited as examples.…

  13. Generalized Majority Logic Criterion to Analyze the Statistical Strength of S-Boxes

    NASA Astrophysics Data System (ADS)

    Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan

    2012-05-01

    The majority logic criterion is applicable in the evaluation process of substitution boxes used in the advanced encryption standard (AES). The performance of modified or advanced substitution boxes is predicted by processing the results of statistical analysis by the majority logic criteria. In this paper, we use the majority logic criteria to analyze some popular and prevailing substitution boxes used in encryption processes. In particular, the majority logic criterion is applied to AES, affine power affine (APA), Gray, Lui J, residue prime, S8 AES, Skipjack, and Xyi substitution boxes. The majority logic criterion is further extended into a generalized majority logic criterion which has a broader spectrum of analyzing the effectiveness of substitution boxes in image encryption applications. The integral components of the statistical analyses used for the generalized majority logic criterion are derived from results of entropy analysis, contrast analysis, correlation analysis, homogeneity analysis, energy analysis, and mean of absolute deviation (MAD) analysis.

  14. A comparison of performance of automatic cloud coverage assessment algorithm for Formosat-2 image using clustering-based and spatial thresholding methods

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2012-11-01

    Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.

  15. TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data.

    PubMed

    Lim, Jae Hyun; Lee, Soo Youn; Kim, Ju Han

    2017-03-01

    High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one another due to their disparate data structures and processing methods. They also lack visualization methods to confirm the integrity of the data and the process. In this paper, we propose an R-based RNA-Seq analysis pipeline called TRAPR, an integrated tool that facilitates the statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, the filtering of low-quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines.

  16. Methods and apparatuses for information analysis on shared and distributed computing systems

    DOEpatents

    Bohn, Shawn J [Richland, WA; Krishnan, Manoj Kumar [Richland, WA; Cowley, Wendy E [Richland, WA; Nieplocha, Jarek [Richland, WA

    2011-02-22

    Apparatuses and computer-implemented methods for analyzing, on shared and distributed computing systems, information comprising one or more documents are disclosed according to some aspects. In one embodiment, information analysis can comprise distributing one or more distinct sets of documents among each of a plurality of processes, wherein each process performs operations on a distinct set of documents substantially in parallel with other processes. Operations by each process can further comprise computing term statistics for terms contained in each distinct set of documents, thereby generating a local set of term statistics for each distinct set of documents. Still further, operations by each process can comprise contributing the local sets of term statistics to a global set of term statistics, and participating in generating a major term set from an assigned portion of a global vocabulary.

  17. An empirical analysis of the distribution of overshoots in a stationary Gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Carter, M. C.; Madison, M. W.

    1973-01-01

    The frequency distribution of overshoots in a stationary Gaussian stochastic process is analyzed. The primary processes involved in this analysis are computer simulation and statistical estimation. Computer simulation is used to simulate stationary Gaussian stochastic processes that have selected autocorrelation functions. An analysis of the simulation results reveals a frequency distribution for overshoots with a functional dependence on the mean and variance of the process. Statistical estimation is then used to estimate the mean and variance of a process. It is shown that for an autocorrelation function, the mean and the variance for the number of overshoots, a frequency distribution for overshoots can be estimated.

  18. Teaching Statistics from the Operating Table: Minimally Invasive and Maximally Educational

    ERIC Educational Resources Information Center

    Nowacki, Amy S.

    2015-01-01

    Statistics courses that focus on data analysis in isolation, discounting the scientific inquiry process, may not motivate students to learn the subject. By involving students in other steps of the inquiry process, such as generating hypotheses and data, students may become more interested and vested in the analysis step. Additionally, such an…

  19. Telecommunication market research processing

    NASA Astrophysics Data System (ADS)

    Dupont, J. F.

    1983-06-01

    The data processing in two telecommunication market investigations is described. One of the studies concerns the office applications of communication and the other the experiences with a videotex terminal. Statistical factorial analysis was performed on a large mass of data. A comparison between utilization intentions and effective utilization is made. Extensive rewriting of statistical analysis computer programs was required.

  20. The Statistical Interpretation of Classical Thermodynamic Heating and Expansion Processes

    ERIC Educational Resources Information Center

    Cartier, Stephen F.

    2011-01-01

    A statistical model has been developed and applied to interpret thermodynamic processes typically presented from the macroscopic, classical perspective. Through this model, students learn and apply the concepts of statistical mechanics, quantum mechanics, and classical thermodynamics in the analysis of the (i) constant volume heating, (ii)…

  1. Analysis of the dependence of extreme rainfalls

    NASA Astrophysics Data System (ADS)

    Padoan, Simone; Ancey, Christophe; Parlange, Marc

    2010-05-01

    The aim of spatial analysis is to quantitatively describe the behavior of environmental phenomena such as precipitation levels, wind speed or daily temperatures. A number of generic approaches to spatial modeling have been developed[1], but these are not necessarily ideal for handling extremal aspects given their focus on mean process levels. The areal modelling of the extremes of a natural process observed at points in space is important in environmental statistics; for example, understanding extremal spatial rainfall is crucial in flood protection. In light of recent concerns over climate change, the use of robust mathematical and statistical methods for such analyses has grown in importance. Multivariate extreme value models and the class of maxstable processes [2] have a similar asymptotic motivation to the univariate Generalized Extreme Value (GEV) distribution , but providing a general approach to modeling extreme processes incorporating temporal or spatial dependence. Statistical methods for max-stable processes and data analyses of practical problems are discussed by [3] and [4]. This work illustrates methods to the statistical modelling of spatial extremes and gives examples of their use by means of a real extremal data analysis of Switzerland precipitation levels. [1] Cressie, N. A. C. (1993). Statistics for Spatial Data. Wiley, New York. [2] de Haan, L and Ferreria A. (2006). Extreme Value Theory An Introduction. Springer, USA. [3] Padoan, S. A., Ribatet, M and Sisson, S. A. (2009). Likelihood-Based Inference for Max-Stable Processes. Journal of the American Statistical Association, Theory & Methods. In press. [4] Davison, A. C. and Gholamrezaee, M. (2009), Geostatistics of extremes. Journal of the Royal Statistical Society, Series B. To appear.

  2. Statistical quality control through overall vibration analysis

    NASA Astrophysics Data System (ADS)

    Carnero, M. a. Carmen; González-Palma, Rafael; Almorza, David; Mayorga, Pedro; López-Escobar, Carlos

    2010-05-01

    The present study introduces the concept of statistical quality control in automotive wheel bearings manufacturing processes. Defects on products under analysis can have a direct influence on passengers' safety and comfort. At present, the use of vibration analysis on machine tools for quality control purposes is not very extensive in manufacturing facilities. Noise and vibration are common quality problems in bearings. These failure modes likely occur under certain operating conditions and do not require high vibration amplitudes but relate to certain vibration frequencies. The vibration frequencies are affected by the type of surface problems (chattering) of ball races that are generated through grinding processes. The purpose of this paper is to identify grinding process variables that affect the quality of bearings by using statistical principles in the field of machine tools. In addition, an evaluation of the quality results of the finished parts under different combinations of process variables is assessed. This paper intends to establish the foundations to predict the quality of the products through the analysis of self-induced vibrations during the contact between the grinding wheel and the parts. To achieve this goal, the overall self-induced vibration readings under different combinations of process variables are analysed using statistical tools. The analysis of data and design of experiments follows a classical approach, considering all potential interactions between variables. The analysis of data is conducted through analysis of variance (ANOVA) for data sets that meet normality and homoscedasticity criteria. This paper utilizes different statistical tools to support the conclusions such as chi squared, Shapiro-Wilks, symmetry, Kurtosis, Cochran, Hartlett, and Hartley and Krushal-Wallis. The analysis presented is the starting point to extend the use of predictive techniques (vibration analysis) for quality control. This paper demonstrates the existence of predictive variables (high-frequency vibration displacements) that are sensible to the processes setup and the quality of the products obtained. Based on the result of this overall vibration analysis, a second paper will analyse self-induced vibration spectrums in order to define limit vibration bands, controllable every cycle or connected to permanent vibration-monitoring systems able to adjust sensible process variables identified by ANOVA, once the vibration readings exceed established quality limits.

  3. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research.

    PubMed

    Tang, Qi-Yi; Zhang, Chuan-Xi

    2013-04-01

    A comprehensive but simple-to-use software package called DPS (Data Processing System) has been developed to execute a range of standard numerical analyses and operations used in experimental design, statistics and data mining. This program runs on standard Windows computers. Many of the functions are specific to entomological and other biological research and are not found in standard statistical software. This paper presents applications of DPS to experimental design, statistical analysis and data mining in entomology. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  4. A Frequency Domain Approach to Pretest Analysis Model Correlation and Model Updating for the Mid-Frequency Range

    DTIC Science & Technology

    2009-02-01

    range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The corresponding...frequency range of modal analysis and the high frequency region of statistical energy analysis , is referred to as the mid-frequency range. The...predictions. The averaging process is consistent with the averaging done in statistical energy analysis for stochastic systems. The FEM will always

  5. Writing to Learn Statistics in an Advanced Placement Statistics Course

    ERIC Educational Resources Information Center

    Northrup, Christian Glenn

    2012-01-01

    This study investigated the use of writing in a statistics classroom to learn if writing provided a rich description of problem-solving processes of students as they solved problems. Through analysis of 329 written samples provided by students, it was determined that writing provided a rich description of problem-solving processes and enabled…

  6. Application of statistical process control and process capability analysis procedures in orbiter processing activities at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Safford, Robert R.; Jackson, Andrew E.; Swart, William W.; Barth, Timothy S.

    1994-01-01

    Successful ground processing at KSC requires that flight hardware and ground support equipment conform to specifications at tens of thousands of checkpoints. Knowledge of conformance is an essential requirement for launch. That knowledge of conformance at every requisite point does not, however, enable identification of past problems with equipment, or potential problem areas. This paper describes how the introduction of Statistical Process Control and Process Capability Analysis identification procedures into existing shuttle processing procedures can enable identification of potential problem areas and candidates for improvements to increase processing performance measures. Results of a case study describing application of the analysis procedures to Thermal Protection System processing are used to illustrate the benefits of the approaches described in the paper.

  7. Compression Algorithm Analysis of In-Situ (S)TEM Video: Towards Automatic Event Detection and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teuton, Jeremy R.; Griswold, Richard L.; Mehdi, Beata L.

    Precise analysis of both (S)TEM images and video are time and labor intensive processes. As an example, determining when crystal growth and shrinkage occurs during the dynamic process of Li dendrite deposition and stripping involves manually scanning through each frame in the video to extract a specific set of frames/images. For large numbers of images, this process can be very time consuming, so a fast and accurate automated method is desirable. Given this need, we developed software that uses analysis of video compression statistics for detecting and characterizing events in large data sets. This software works by converting the datamore » into a series of images which it compresses into an MPEG-2 video using the open source “avconv” utility [1]. The software does not use the video itself, but rather analyzes the video statistics from the first pass of the video encoding that avconv records in the log file. This file contains statistics for each frame of the video including the frame quality, intra-texture and predicted texture bits, forward and backward motion vector resolution, among others. In all, avconv records 15 statistics for each frame. By combining different statistics, we have been able to detect events in various types of data. We have developed an interactive tool for exploring the data and the statistics that aids the analyst in selecting useful statistics for each analysis. Going forward, an algorithm for detecting and possibly describing events automatically can be written based on statistic(s) for each data type.« less

  8. Gaia DR2 documentation Chapter 1: Introduction

    NASA Astrophysics Data System (ADS)

    de Bruijne, J. H. J.; Abreu, A.; Brown, A. G. A.; Castañeda, J.; Cheek, N.; Crowley, C.; De Angeli, F.; Drimmel, R.; Fabricius, C.; Fleitas, J.; Gracia-Abril, G.; Guerra, R.; Hutton, A.; Messineo, R.; Mora, A.; Nienartowicz, K.; Panem, C.; Siddiqui, H.

    2018-04-01

    This chapter of the Gaia DR2 documentation describes the Gaia mission, the Gaia spacecraft, and the organisation of the Gaia Data Processing and Analysis Consortium (DPAC), which is responsible for the processing and analysis of the Gaia data. Furthermore, various properties of the data release are summarised, including statistical properties, object statistics, completeness, selection and filtering criteria, and limitations of the data.

  9. The estimation of the measurement results with using statistical methods

    NASA Astrophysics Data System (ADS)

    Velychko, O.; Gordiyenko, T.

    2015-02-01

    The row of international standards and guides describe various statistical methods that apply for a management, control and improvement of processes with the purpose of realization of analysis of the technical measurement results. The analysis of international standards and guides on statistical methods estimation of the measurement results recommendations for those applications in laboratories is described. For realization of analysis of standards and guides the cause-and-effect Ishikawa diagrams concerting to application of statistical methods for estimation of the measurement results are constructed.

  10. The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis.

    PubMed

    Zheng, Jie; Harris, Marcelline R; Masci, Anna Maria; Lin, Yu; Hero, Alfred; Smith, Barry; He, Yongqun

    2016-09-14

    Statistics play a critical role in biological and clinical research. However, most reports of scientific results in the published literature make it difficult for the reader to reproduce the statistical analyses performed in achieving those results because they provide inadequate documentation of the statistical tests and algorithms applied. The Ontology of Biological and Clinical Statistics (OBCS) is put forward here as a step towards solving this problem. The terms in OBCS including 'data collection', 'data transformation in statistics', 'data visualization', 'statistical data analysis', and 'drawing a conclusion based on data', cover the major types of statistical processes used in basic biological research and clinical outcome studies. OBCS is aligned with the Basic Formal Ontology (BFO) and extends the Ontology of Biomedical Investigations (OBI), an OBO (Open Biological and Biomedical Ontologies) Foundry ontology supported by over 20 research communities. Currently, OBCS comprehends 878 terms, representing 20 BFO classes, 403 OBI classes, 229 OBCS specific classes, and 122 classes imported from ten other OBO ontologies. We discuss two examples illustrating how the ontology is being applied. In the first (biological) use case, we describe how OBCS was applied to represent the high throughput microarray data analysis of immunological transcriptional profiles in human subjects vaccinated with an influenza vaccine. In the second (clinical outcomes) use case, we applied OBCS to represent the processing of electronic health care data to determine the associations between hospital staffing levels and patient mortality. Our case studies were designed to show how OBCS can be used for the consistent representation of statistical analysis pipelines under two different research paradigms. Other ongoing projects using OBCS for statistical data processing are also discussed. The OBCS source code and documentation are available at: https://github.com/obcs/obcs . The Ontology of Biological and Clinical Statistics (OBCS) is a community-based open source ontology in the domain of biological and clinical statistics. OBCS is a timely ontology that represents statistics-related terms and their relations in a rigorous fashion, facilitates standard data analysis and integration, and supports reproducible biological and clinical research.

  11. Analyzing a Mature Software Inspection Process Using Statistical Process Control (SPC)

    NASA Technical Reports Server (NTRS)

    Barnard, Julie; Carleton, Anita; Stamper, Darrell E. (Technical Monitor)

    1999-01-01

    This paper presents a cooperative effort where the Software Engineering Institute and the Space Shuttle Onboard Software Project could experiment applying Statistical Process Control (SPC) analysis to inspection activities. The topics include: 1) SPC Collaboration Overview; 2) SPC Collaboration Approach and Results; and 3) Lessons Learned.

  12. RepExplore: addressing technical replicate variance in proteomics and metabolomics data analysis.

    PubMed

    Glaab, Enrico; Schneider, Reinhard

    2015-07-01

    High-throughput omics datasets often contain technical replicates included to account for technical sources of noise in the measurement process. Although summarizing these replicate measurements by using robust averages may help to reduce the influence of noise on downstream data analysis, the information on the variance across the replicate measurements is lost in the averaging process and therefore typically disregarded in subsequent statistical analyses.We introduce RepExplore, a web-service dedicated to exploit the information captured in the technical replicate variance to provide more reliable and informative differential expression and abundance statistics for omics datasets. The software builds on previously published statistical methods, which have been applied successfully to biomedical omics data but are difficult to use without prior experience in programming or scripting. RepExplore facilitates the analysis by providing a fully automated data processing and interactive ranking tables, whisker plot, heat map and principal component analysis visualizations to interpret omics data and derived statistics. Freely available at http://www.repexplore.tk enrico.glaab@uni.lu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  13. On the implications of the classical ergodic theorems: analysis of developmental processes has to focus on intra-individual variation.

    PubMed

    Molenaar, Peter C M

    2008-01-01

    It is argued that general mathematical-statistical theorems imply that standard statistical analysis techniques of inter-individual variation are invalid to investigate developmental processes. Developmental processes have to be analyzed at the level of individual subjects, using time series data characterizing the patterns of intra-individual variation. It is shown that standard statistical techniques based on the analysis of inter-individual variation appear to be insensitive to the presence of arbitrary large degrees of inter-individual heterogeneity in the population. An important class of nonlinear epigenetic models of neural growth is described which can explain the occurrence of such heterogeneity in brain structures and behavior. Links with models of developmental instability are discussed. A simulation study based on a chaotic growth model illustrates the invalidity of standard analysis of inter-individual variation, whereas time series analysis of intra-individual variation is able to recover the true state of affairs. (c) 2007 Wiley Periodicals, Inc.

  14. An overview of the mathematical and statistical analysis component of RICIS

    NASA Technical Reports Server (NTRS)

    Hallum, Cecil R.

    1987-01-01

    Mathematical and statistical analysis components of RICIS (Research Institute for Computing and Information Systems) can be used in the following problem areas: (1) quantification and measurement of software reliability; (2) assessment of changes in software reliability over time (reliability growth); (3) analysis of software-failure data; and (4) decision logic for whether to continue or stop testing software. Other areas of interest to NASA/JSC where mathematical and statistical analysis can be successfully employed include: math modeling of physical systems, simulation, statistical data reduction, evaluation methods, optimization, algorithm development, and mathematical methods in signal processing.

  15. Experimental and Computational Analysis of Modes in a Partially Constrained Plate

    DTIC Science & Technology

    2004-03-01

    way to quantify a structure. One technique utilizing an energy method is the Statistical Energy Analysis (SEA). The SEA process involves regarding...B.R. Mace. “ Statistical Energy Analysis of Two Edge- Coupled Rectangular Plates: Ensemble Averages,” Journal of Sound and Vibration, 193(4): 793-822

  16. Statistical process control for residential treated wood

    Treesearch

    Patricia K. Lebow; Timothy M. Young; Stan Lebow

    2017-01-01

    This paper is the first stage of a study that attempts to improve the process of manufacturing treated lumber through the use of statistical process control (SPC). Analysis of industrial and auditing agency data sets revealed there are differences between the industry and agency probability density functions (pdf) for normalized retention data. Resampling of batches of...

  17. Analysis of Variance in Statistical Image Processing

    NASA Astrophysics Data System (ADS)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  18. Statistical process control: separating signal from noise in emergency department operations.

    PubMed

    Pimentel, Laura; Barrueto, Fermin

    2015-05-01

    Statistical process control (SPC) is a visually appealing and statistically rigorous methodology very suitable to the analysis of emergency department (ED) operations. We demonstrate that the control chart is the primary tool of SPC; it is constructed by plotting data measuring the key quality indicators of operational processes in rationally ordered subgroups such as units of time. Control limits are calculated using formulas reflecting the variation in the data points from one another and from the mean. SPC allows managers to determine whether operational processes are controlled and predictable. We review why the moving range chart is most appropriate for use in the complex ED milieu, how to apply SPC to ED operations, and how to determine when performance improvement is needed. SPC is an excellent tool for operational analysis and quality improvement for these reasons: 1) control charts make large data sets intuitively coherent by integrating statistical and visual descriptions; 2) SPC provides analysis of process stability and capability rather than simple comparison with a benchmark; 3) SPC allows distinction between special cause variation (signal), indicating an unstable process requiring action, and common cause variation (noise), reflecting a stable process; and 4) SPC keeps the focus of quality improvement on process rather than individual performance. Because data have no meaning apart from their context, and every process generates information that can be used to improve it, we contend that SPC should be seriously considered for driving quality improvement in emergency medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. [Bayesian statistics in medicine -- part II: main applications and inference].

    PubMed

    Montomoli, C; Nichelatti, M

    2008-01-01

    Bayesian statistics is not only used when one is dealing with 2-way tables, but it can be used for inferential purposes. Using the basic concepts presented in the first part, this paper aims to give a simple overview of Bayesian methods by introducing its foundation (Bayes' theorem) and then applying this rule to a very simple practical example; whenever possible, the elementary processes at the basis of analysis are compared to those of frequentist (classical) statistical analysis. The Bayesian reasoning is naturally connected to medical activity, since it appears to be quite similar to a diagnostic process.

  20. Use of statistical study methods for the analysis of the results of the imitation modeling of radiation transfer

    NASA Astrophysics Data System (ADS)

    Alekseenko, M. A.; Gendrina, I. Yu.

    2017-11-01

    Recently, due to the abundance of various types of observational data in the systems of vision through the atmosphere and the need for their processing, the use of various methods of statistical research in the study of such systems as correlation-regression analysis, dynamic series, variance analysis, etc. is actual. We have attempted to apply elements of correlation-regression analysis for the study and subsequent prediction of the patterns of radiation transfer in these systems same as in the construction of radiation models of the atmosphere. In this paper, we present some results of statistical processing of the results of numerical simulation of the characteristics of vision systems through the atmosphere obtained with the help of a special software package.1

  1. Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Park, Steve

    1990-01-01

    A large and diverse number of computational techniques are routinely used to process and analyze remotely sensed data. These techniques include: univariate statistics; multivariate statistics; principal component analysis; pattern recognition and classification; other multivariate techniques; geometric correction; registration and resampling; radiometric correction; enhancement; restoration; Fourier analysis; and filtering. Each of these techniques will be considered, in order.

  2. The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets.

    PubMed

    Carroll, Adam J; Badger, Murray R; Harvey Millar, A

    2010-07-14

    Standardization of analytical approaches and reporting methods via community-wide collaboration can work synergistically with web-tool development to result in rapid community-driven expansion of online data repositories suitable for data mining and meta-analysis. In metabolomics, the inter-laboratory reproducibility of gas-chromatography/mass-spectrometry (GC/MS) makes it an obvious target for such development. While a number of web-tools offer access to datasets and/or tools for raw data processing and statistical analysis, none of these systems are currently set up to act as a public repository by easily accepting, processing and presenting publicly submitted GC/MS metabolomics datasets for public re-analysis. Here, we present MetabolomeExpress, a new File Transfer Protocol (FTP) server and web-tool for the online storage, processing, visualisation and statistical re-analysis of publicly submitted GC/MS metabolomics datasets. Users may search a quality-controlled database of metabolite response statistics from publicly submitted datasets by a number of parameters (eg. metabolite, species, organ/biofluid etc.). Users may also perform meta-analysis comparisons of multiple independent experiments or re-analyse public primary datasets via user-friendly tools for t-test, principal components analysis, hierarchical cluster analysis and correlation analysis. They may interact with chromatograms, mass spectra and peak detection results via an integrated raw data viewer. Researchers who register for a free account may upload (via FTP) their own data to the server for online processing via a novel raw data processing pipeline. MetabolomeExpress https://www.metabolome-express.org provides a new opportunity for the general metabolomics community to transparently present online the raw and processed GC/MS data underlying their metabolomics publications. Transparent sharing of these data will allow researchers to assess data quality and draw their own insights from published metabolomics datasets.

  3. Noise limitations in optical linear algebra processors.

    PubMed

    Batsell, S G; Jong, T L; Walkup, J F; Krile, T F

    1990-05-10

    A general statistical noise model is presented for optical linear algebra processors. A statistical analysis which includes device noise, the multiplication process, and the addition operation is undertaken. We focus on those processes which are architecturally independent. Finally, experimental results which verify the analytical predictions are also presented.

  4. Event coincidence analysis for quantifying statistical interrelationships between event time series. On the role of flood events as triggers of epidemic outbreaks

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Schleussner, C.-F.; Siegmund, J. F.; Donner, R. V.

    2016-05-01

    Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.

  5. Statistical analysis of CCSN/SS7 traffic data from working CCS subnetworks

    NASA Astrophysics Data System (ADS)

    Duffy, Diane E.; McIntosh, Allen A.; Rosenstein, Mark; Willinger, Walter

    1994-04-01

    In this paper, we report on an ongoing statistical analysis of actual CCSN traffic data. The data consist of approximately 170 million signaling messages collected from a variety of different working CCS subnetworks. The key findings from our analysis concern: (1) the characteristics of both the telephone call arrival process and the signaling message arrival process; (2) the tail behavior of the call holding time distribution; and (3) the observed performance of the CCSN with respect to a variety of performance and reliability measurements.

  6. Travelogue--a newcomer encounters statistics and the computer.

    PubMed

    Bruce, Peter

    2011-11-01

    Computer-intensive methods have revolutionized statistics, giving rise to new areas of analysis and expertise in predictive analytics, image processing, pattern recognition, machine learning, genomic analysis, and more. Interest naturally centers on the new capabilities the computer allows the analyst to bring to the table. This article, instead, focuses on the account of how computer-based resampling methods, with their relative simplicity and transparency, enticed one individual, untutored in statistics or mathematics, on a long journey into learning statistics, then teaching it, then starting an education institution.

  7. Local sensitivity analysis for inverse problems solved by singular value decomposition

    USGS Publications Warehouse

    Hill, M.C.; Nolan, B.T.

    2010-01-01

    Local sensitivity analysis provides computationally frugal ways to evaluate models commonly used for resource management, risk assessment, and so on. This includes diagnosing inverse model convergence problems caused by parameter insensitivity and(or) parameter interdependence (correlation), understanding what aspects of the model and data contribute to measures of uncertainty, and identifying new data likely to reduce model uncertainty. Here, we consider sensitivity statistics relevant to models in which the process model parameters are transformed using singular value decomposition (SVD) to create SVD parameters for model calibration. The statistics considered include the PEST identifiability statistic, and combined use of the process-model parameter statistics composite scaled sensitivities and parameter correlation coefficients (CSS and PCC). The statistics are complimentary in that the identifiability statistic integrates the effects of parameter sensitivity and interdependence, while CSS and PCC provide individual measures of sensitivity and interdependence. PCC quantifies correlations between pairs or larger sets of parameters; when a set of parameters is intercorrelated, the absolute value of PCC is close to 1.00 for all pairs in the set. The number of singular vectors to include in the calculation of the identifiability statistic is somewhat subjective and influences the statistic. To demonstrate the statistics, we use the USDA’s Root Zone Water Quality Model to simulate nitrogen fate and transport in the unsaturated zone of the Merced River Basin, CA. There are 16 log-transformed process-model parameters, including water content at field capacity (WFC) and bulk density (BD) for each of five soil layers. Calibration data consisted of 1,670 observations comprising soil moisture, soil water tension, aqueous nitrate and bromide concentrations, soil nitrate concentration, and organic matter content. All 16 of the SVD parameters could be estimated by regression based on the range of singular values. Identifiability statistic results varied based on the number of SVD parameters included. Identifiability statistics calculated for four SVD parameters indicate the same three most important process-model parameters as CSS/PCC (WFC1, WFC2, and BD2), but the order differed. Additionally, the identifiability statistic showed that BD1 was almost as dominant as WFC1. The CSS/PCC analysis showed that this results from its high correlation with WCF1 (-0.94), and not its individual sensitivity. Such distinctions, combined with analysis of how high correlations and(or) sensitivities result from the constructed model, can produce important insights into, for example, the use of sensitivity analysis to design monitoring networks. In conclusion, the statistics considered identified similar important parameters. They differ because (1) with CSS/PCC can be more awkward because sensitivity and interdependence are considered separately and (2) identifiability requires consideration of how many SVD parameters to include. A continuing challenge is to understand how these computationally efficient methods compare with computationally demanding global methods like Markov-Chain Monte Carlo given common nonlinear processes and the often even more nonlinear models.

  8. Polypropylene Production Optimization in Fluidized Bed Catalytic Reactor (FBCR): Statistical Modeling and Pilot Scale Experimental Validation

    PubMed Central

    Khan, Mohammad Jakir Hossain; Hussain, Mohd Azlan; Mujtaba, Iqbal Mohammed

    2014-01-01

    Propylene is one type of plastic that is widely used in our everyday life. This study focuses on the identification and justification of the optimum process parameters for polypropylene production in a novel pilot plant based fluidized bed reactor. This first-of-its-kind statistical modeling with experimental validation for the process parameters of polypropylene production was conducted by applying ANNOVA (Analysis of variance) method to Response Surface Methodology (RSM). Three important process variables i.e., reaction temperature, system pressure and hydrogen percentage were considered as the important input factors for the polypropylene production in the analysis performed. In order to examine the effect of process parameters and their interactions, the ANOVA method was utilized among a range of other statistical diagnostic tools such as the correlation between actual and predicted values, the residuals and predicted response, outlier t plot, 3D response surface and contour analysis plots. The statistical analysis showed that the proposed quadratic model had a good fit with the experimental results. At optimum conditions with temperature of 75°C, system pressure of 25 bar and hydrogen percentage of 2%, the highest polypropylene production obtained is 5.82% per pass. Hence it is concluded that the developed experimental design and proposed model can be successfully employed with over a 95% confidence level for optimum polypropylene production in a fluidized bed catalytic reactor (FBCR). PMID:28788576

  9. Feature-Based Statistical Analysis of Combustion Simulation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J; Krishnamoorthy, V; Liu, S

    2011-11-18

    We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing andmore » reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.« less

  10. An overview of data acquisition, signal coding and data analysis techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1986-01-01

    An overview is given of the data acquisition, signal processing, and data analysis techniques that are currently in use with high power MST/ST (mesosphere stratosphere troposphere/stratosphere troposphere) radars. This review supplements the works of Rastogi (1983) and Farley (1984) presented at previous MAP workshops. A general description is given of data acquisition and signal processing operations and they are characterized on the basis of their disparate time scales. Then signal coding, a brief description of frequently used codes, and their limitations are discussed, and finally, several aspects of statistical data processing such as signal statistics, power spectrum and autocovariance analysis, outlier removal techniques are discussed.

  11. A Bifactor Approach to Model Multifaceted Constructs in Statistical Mediation Analysis

    ERIC Educational Resources Information Center

    Gonzalez, Oscar; MacKinnon, David P.

    2018-01-01

    Statistical mediation analysis allows researchers to identify the most important mediating constructs in the causal process studied. Identifying specific mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to…

  12. Adaptive filtering in biological signal processing.

    PubMed

    Iyer, V K; Ploysongsang, Y; Ramamoorthy, P A

    1990-01-01

    The high dependence of conventional optimal filtering methods on the a priori knowledge of the signal and noise statistics render them ineffective in dealing with signals whose statistics cannot be predetermined accurately. Adaptive filtering methods offer a better alternative, since the a priori knowledge of statistics is less critical, real time processing is possible, and the computations are less expensive for this approach. Adaptive filtering methods compute the filter coefficients "on-line", converging to the optimal values in the least-mean square (LMS) error sense. Adaptive filtering is therefore apt for dealing with the "unknown" statistics situation and has been applied extensively in areas like communication, speech, radar, sonar, seismology, and biological signal processing and analysis for channel equalization, interference and echo canceling, line enhancement, signal detection, system identification, spectral analysis, beamforming, modeling, control, etc. In this review article adaptive filtering in the context of biological signals is reviewed. An intuitive approach to the underlying theory of adaptive filters and its applicability are presented. Applications of the principles in biological signal processing are discussed in a manner that brings out the key ideas involved. Current and potential future directions in adaptive biological signal processing are also discussed.

  13. Automatic cloud coverage assessment of Formosat-2 image

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2011-11-01

    Formosat-2 satellite equips with the high-spatial-resolution (2m ground sampling distance) remote sensing instrument. It has been being operated on the daily-revisiting mission orbit by National Space organization (NSPO) of Taiwan since May 21 2004. NSPO has also serving as one of the ground receiving stations for daily processing the received Formosat- 2 images. The current cloud coverage assessment of Formosat-2 image for NSPO Image Processing System generally consists of two major steps. Firstly, an un-supervised K-means method is used for automatically estimating the cloud statistic of Formosat-2 image. Secondly, manual estimation of cloud coverage from Formosat-2 image is processed by manual examination. Apparently, a more accurate Automatic Cloud Coverage Assessment (ACCA) method certainly increases the efficiency of processing step 2 with a good prediction of cloud statistic. In this paper, mainly based on the research results from Chang et al, Irish, and Gotoh, we propose a modified Formosat-2 ACCA method which considered pre-processing and post-processing analysis. For pre-processing analysis, cloud statistic is determined by using un-supervised K-means classification, Sobel's method, Otsu's method, non-cloudy pixels reexamination, and cross-band filter method. Box-Counting fractal method is considered as a post-processing tool to double check the results of pre-processing analysis for increasing the efficiency of manual examination.

  14. Anima: Modular Workflow System for Comprehensive Image Data Analysis

    PubMed Central

    Rantanen, Ville; Valori, Miko; Hautaniemi, Sampsa

    2014-01-01

    Modern microscopes produce vast amounts of image data, and computational methods are needed to analyze and interpret these data. Furthermore, a single image analysis project may require tens or hundreds of analysis steps starting from data import and pre-processing to segmentation and statistical analysis; and ending with visualization and reporting. To manage such large-scale image data analysis projects, we present here a modular workflow system called Anima. Anima is designed for comprehensive and efficient image data analysis development, and it contains several features that are crucial in high-throughput image data analysis: programing language independence, batch processing, easily customized data processing, interoperability with other software via application programing interfaces, and advanced multivariate statistical analysis. The utility of Anima is shown with two case studies focusing on testing different algorithms developed in different imaging platforms and an automated prediction of alive/dead C. elegans worms by integrating several analysis environments. Anima is a fully open source and available with documentation at www.anduril.org/anima. PMID:25126541

  15. Analysis of Doppler radar windshear data

    NASA Technical Reports Server (NTRS)

    Williams, F.; Mckinney, P.; Ozmen, F.

    1989-01-01

    The objective of this analysis is to process Lincoln Laboratory Doppler radar data obtained during FLOWS testing at Huntsville, Alabama, in the summer of 1986, to characterize windshear events. The processing includes plotting velocity and F-factor profiles, histogram analysis to summarize statistics, and correlation analysis to demonstrate any correlation between different data fields.

  16. Statistical description of non-Gaussian samples in the F2 layer of the ionosphere during heliogeophysical disturbances

    NASA Astrophysics Data System (ADS)

    Sergeenko, N. P.

    2017-11-01

    An adequate statistical method should be developed in order to predict probabilistically the range of ionospheric parameters. This problem is solved in this paper. The time series of the critical frequency of the layer F2- foF2( t) were subjected to statistical processing. For the obtained samples {δ foF2}, statistical distributions and invariants up to the fourth order are calculated. The analysis shows that the distributions differ from the Gaussian law during the disturbances. At levels of sufficiently small probability distributions, there are arbitrarily large deviations from the model of the normal process. Therefore, it is attempted to describe statistical samples {δ foF2} based on the Poisson model. For the studied samples, the exponential characteristic function is selected under the assumption that time series are a superposition of some deterministic and random processes. Using the Fourier transform, the characteristic function is transformed into a nonholomorphic excessive-asymmetric probability-density function. The statistical distributions of the samples {δ foF2} calculated for the disturbed periods are compared with the obtained model distribution function. According to the Kolmogorov's criterion, the probabilities of the coincidence of a posteriori distributions with the theoretical ones are P 0.7-0.9. The conducted analysis makes it possible to draw a conclusion about the applicability of a model based on the Poisson random process for the statistical description and probabilistic variation estimates during heliogeophysical disturbances of the variations {δ foF2}.

  17. Analysis and modeling of wafer-level process variability in 28 nm FD-SOI using split C-V measurements

    NASA Astrophysics Data System (ADS)

    Pradeep, Krishna; Poiroux, Thierry; Scheer, Patrick; Juge, André; Gouget, Gilles; Ghibaudo, Gérard

    2018-07-01

    This work details the analysis of wafer level global process variability in 28 nm FD-SOI using split C-V measurements. The proposed approach initially evaluates the native on wafer process variability using efficient extraction methods on split C-V measurements. The on-wafer threshold voltage (VT) variability is first studied and modeled using a simple analytical model. Then, a statistical model based on the Leti-UTSOI compact model is proposed to describe the total C-V variability in different bias conditions. This statistical model is finally used to study the contribution of each process parameter to the total C-V variability.

  18. Launch commit criteria performance trending analysis, phase 1, revision A. SRM and QA mission services

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An assessment of quantitative methods and measures for measuring launch commit criteria (LCC) performance measurement trends is made. A statistical performance trending analysis pilot study was processed and compared to STS-26 mission data. This study used four selected shuttle measurement types (solid rocket booster, external tank, space shuttle main engine, and range safety switch safe and arm device) from the five missions prior to mission 51-L. After obtaining raw data coordinates, each set of measurements was processed to obtain statistical confidence bounds and mean data profiles for each of the selected measurement types. STS-26 measurements were compared to the statistical data base profiles to verify the statistical capability of assessing occurrences of data trend anomalies and abnormal time-varying operational conditions associated with data amplitude and phase shifts.

  19. An Automated Statistical Process Control Study of Inline Mixing Using Spectrophotometric Detection

    ERIC Educational Resources Information Center

    Dickey, Michael D.; Stewart, Michael D.; Willson, C. Grant

    2006-01-01

    An experiment is described, which is designed for a junior-level chemical engineering "fundamentals of measurements and data analysis" course, where students are introduced to the concept of statistical process control (SPC) through a simple inline mixing experiment. The students learn how to create and analyze control charts in an effort to…

  20. Temporal scaling and spatial statistical analyses of groundwater level fluctuations

    NASA Astrophysics Data System (ADS)

    Sun, H.; Yuan, L., Sr.; Zhang, Y.

    2017-12-01

    Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.

  1. Pain related inflammation analysis using infrared images

    NASA Astrophysics Data System (ADS)

    Bhowmik, Mrinal Kanti; Bardhan, Shawli; Das, Kakali; Bhattacharjee, Debotosh; Nath, Satyabrata

    2016-05-01

    Medical Infrared Thermography (MIT) offers a potential non-invasive, non-contact and radiation free imaging modality for assessment of abnormal inflammation having pain in the human body. The assessment of inflammation mainly depends on the emission of heat from the skin surface. Arthritis is a disease of joint damage that generates inflammation in one or more anatomical joints of the body. Osteoarthritis (OA) is the most frequent appearing form of arthritis, and rheumatoid arthritis (RA) is the most threatening form of them. In this study, the inflammatory analysis has been performed on the infrared images of patients suffering from RA and OA. For the analysis, a dataset of 30 bilateral knee thermograms has been captured from the patient of RA and OA by following a thermogram acquisition standard. The thermograms are pre-processed, and areas of interest are extracted for further processing. The investigation of the spread of inflammation is performed along with the statistical analysis of the pre-processed thermograms. The objectives of the study include: i) Generation of a novel thermogram acquisition standard for inflammatory pain disease ii) Analysis of the spread of the inflammation related to RA and OA using K-means clustering. iii) First and second order statistical analysis of pre-processed thermograms. The conclusion reflects that, in most of the cases, RA oriented inflammation affects bilateral knees whereas inflammation related to OA present in the unilateral knee. Also due to the spread of inflammation in OA, contralateral asymmetries are detected through the statistical analysis.

  2. Statistical process management: An essential element of quality improvement

    NASA Astrophysics Data System (ADS)

    Buckner, M. R.

    Successful quality improvement requires a balanced program involving the three elements that control quality: organization, people and technology. The focus of the SPC/SPM User's Group is to advance the technology component of Total Quality by networking within the Group and by providing an outreach within Westinghouse to foster the appropriate use of statistic techniques to achieve Total Quality. SPM encompasses the disciplines by which a process is measured against its intrinsic design capability, in the face of measurement noise and other obscuring variability. SPM tools facilitate decisions about the process that generated the data. SPM deals typically with manufacturing processes, but with some flexibility of definition and technique it accommodates many administrative processes as well. The techniques of SPM are those of Statistical Process Control, Statistical Quality Control, Measurement Control, and Experimental Design. In addition, techniques such as job and task analysis, and concurrent engineering are important elements of systematic planning and analysis that are needed early in the design process to ensure success. The SPC/SPM User's Group is endeavoring to achieve its objectives by sharing successes that have occurred within the member's own Westinghouse department as well as within other US and foreign industry. In addition, failures are reviewed to establish lessons learned in order to improve future applications. In broader terms, the Group is interested in making SPM the accepted way of doing business within Westinghouse.

  3. Functional Path Analysis as a Multivariate Technique in Developing a Theory of Participation in Adult Education.

    ERIC Educational Resources Information Center

    Martin, James L.

    This paper reports on attempts by the author to construct a theoretical framework of adult education participation using a theory development process and the corresponding multivariate statistical techniques. Two problems are identified: the lack of theoretical framework in studying problems, and the limiting of statistical analysis to univariate…

  4. Detecting subtle hydrochemical anomalies with multivariate statistics: an example from homogeneous groundwaters in the Great Artesian Basin, Australia

    NASA Astrophysics Data System (ADS)

    O'Shea, Bethany; Jankowski, Jerzy

    2006-12-01

    The major ion composition of Great Artesian Basin groundwater in the lower Namoi River valley is relatively homogeneous in chemical composition. Traditional graphical techniques have been combined with multivariate statistical methods to determine whether subtle differences in the chemical composition of these waters can be delineated. Hierarchical cluster analysis and principal components analysis were successful in delineating minor variations within the groundwaters of the study area that were not visually identified in the graphical techniques applied. Hydrochemical interpretation allowed geochemical processes to be identified in each statistically defined water type and illustrated how these groundwaters differ from one another. Three main geochemical processes were identified in the groundwaters: ion exchange, precipitation, and mixing between waters from different sources. Both statistical methods delineated an anomalous sample suspected of being influenced by magmatic CO2 input. The use of statistical methods to complement traditional graphical techniques for waters appearing homogeneous is emphasized for all investigations of this type. Copyright

  5. [Statistical analysis using freely-available "EZR (Easy R)" software].

    PubMed

    Kanda, Yoshinobu

    2015-10-01

    Clinicians must often perform statistical analyses for purposes such evaluating preexisting evidence and designing or executing clinical studies. R is a free software environment for statistical computing. R supports many statistical analysis functions, but does not incorporate a statistical graphical user interface (GUI). The R commander provides an easy-to-use basic-statistics GUI for R. However, the statistical function of the R commander is limited, especially in the field of biostatistics. Therefore, the author added several important statistical functions to the R commander and named it "EZR (Easy R)", which is now being distributed on the following website: http://www.jichi.ac.jp/saitama-sct/. EZR allows the application of statistical functions that are frequently used in clinical studies, such as survival analyses, including competing risk analyses and the use of time-dependent covariates and so on, by point-and-click access. In addition, by saving the script automatically created by EZR, users can learn R script writing, maintain the traceability of the analysis, and assure that the statistical process is overseen by a supervisor.

  6. Performance analysis of different tuning rules for an isothermal CSTR using integrated EPC and SPC

    NASA Astrophysics Data System (ADS)

    Roslan, A. H.; Karim, S. F. Abd; Hamzah, N.

    2018-03-01

    This paper demonstrates the integration of Engineering Process Control (EPC) and Statistical Process Control (SPC) for the control of product concentration of an isothermal CSTR. The objectives of this study are to evaluate the performance of Ziegler-Nichols (Z-N), Direct Synthesis, (DS) and Internal Model Control (IMC) tuning methods and determine the most effective method for this process. The simulation model was obtained from past literature and re-constructed using SIMULINK MATLAB to evaluate the process response. Additionally, the process stability, capability and normality were analyzed using Process Capability Sixpack reports in Minitab. Based on the results, DS displays the best response for having the smallest rise time, settling time, overshoot, undershoot, Integral Time Absolute Error (ITAE) and Integral Square Error (ISE). Also, based on statistical analysis, DS yields as the best tuning method as it exhibits the highest process stability and capability.

  7. Research on the raw data processing method of the hydropower construction project

    NASA Astrophysics Data System (ADS)

    Tian, Zhichao

    2018-01-01

    In this paper, based on the characteristics of the fixed data, this paper compares the various mathematical statistics analysis methods and chooses the improved Grabs criterion to analyze the data, and through the analysis of the data processing, the data processing method is not suitable. It is proved that this method can be applied to the processing of fixed raw data. This paper provides a reference for reasonably determining the effective quota analysis data.

  8. [Monitoring method of extraction process for Schisandrae Chinensis Fructus based on near infrared spectroscopy and multivariate statistical process control].

    PubMed

    Xu, Min; Zhang, Lei; Yue, Hong-Shui; Pang, Hong-Wei; Ye, Zheng-Liang; Ding, Li

    2017-10-01

    To establish an on-line monitoring method for extraction process of Schisandrae Chinensis Fructus, the formula medicinal material of Yiqi Fumai lyophilized injection by combining near infrared spectroscopy with multi-variable data analysis technology. The multivariate statistical process control (MSPC) model was established based on 5 normal batches in production and 2 test batches were monitored by PC scores, DModX and Hotelling T2 control charts. The results showed that MSPC model had a good monitoring ability for the extraction process. The application of the MSPC model to actual production process could effectively achieve on-line monitoring for extraction process of Schisandrae Chinensis Fructus, and can reflect the change of material properties in the production process in real time. This established process monitoring method could provide reference for the application of process analysis technology in the process quality control of traditional Chinese medicine injections. Copyright© by the Chinese Pharmaceutical Association.

  9. Categorical data processing for real estate objects valuation using statistical analysis

    NASA Astrophysics Data System (ADS)

    Parygin, D. S.; Malikov, V. P.; Golubev, A. V.; Sadovnikova, N. P.; Petrova, T. M.; Finogeev, A. G.

    2018-05-01

    Theoretical and practical approaches to the use of statistical methods for studying various properties of infrastructure objects are analyzed in the paper. Methods of forecasting the value of objects are considered. A method for coding categorical variables describing properties of real estate objects is proposed. The analysis of the results of modeling the price of real estate objects using regression analysis and an algorithm based on a comparative approach is carried out.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Daly, Don S.; Willse, Alan R.

    The Automated Microarray Image Analysis (AMIA) Toolbox for MATLAB is a flexible, open-source microarray image analysis tool that allows the user to customize analysis of sets of microarray images. This tool provides several methods of identifying and quantify spot statistics, as well as extensive diagnostic statistics and images to identify poor data quality or processing. The open nature of this software allows researchers to understand the algorithms used to provide intensity estimates and to modify them easily if desired.

  11. MAGMA: analysis of two-channel microarrays made easy.

    PubMed

    Rehrauer, Hubert; Zoller, Stefan; Schlapbach, Ralph

    2007-07-01

    The web application MAGMA provides a simple and intuitive interface to identify differentially expressed genes from two-channel microarray data. While the underlying algorithms are not superior to those of similar web applications, MAGMA is particularly user friendly and can be used without prior training. The user interface guides the novice user through the most typical microarray analysis workflow consisting of data upload, annotation, normalization and statistical analysis. It automatically generates R-scripts that document MAGMA's entire data processing steps, thereby allowing the user to regenerate all results in his local R installation. The implementation of MAGMA follows the model-view-controller design pattern that strictly separates the R-based statistical data processing, the web-representation and the application logic. This modular design makes the application flexible and easily extendible by experts in one of the fields: statistical microarray analysis, web design or software development. State-of-the-art Java Server Faces technology was used to generate the web interface and to perform user input processing. MAGMA's object-oriented modular framework makes it easily extendible and applicable to other fields and demonstrates that modern Java technology is also suitable for rather small and concise academic projects. MAGMA is freely available at www.magma-fgcz.uzh.ch.

  12. DNA Damage and Genetic Instability as Harbingers of Prostate Cancer

    DTIC Science & Technology

    2013-01-01

    incidence of prostate cancer as compared to placebo. Primary analysis of this trial indicated no statistically significant effect of selenium...Identification, isolation, staining, processing, and statistical analysis of slides for ERG and PTEN markers (aim 1) and interpretation of these results...participating in this study being conducted under Investigational New Drug #29829 from the Food and Drug Administration. STANDARD TREATMENT Patients

  13. The Market Responses to the Government Regulation of Chlorinated Solvents: A Policy Analysis

    DTIC Science & Technology

    1988-10-01

    in the process of statistical estimation of model parameters. The results of the estimation process applied to chlorinated solvent markets show the...93 C.5. Marginal Feedstock Cost Series Estimates for Process Share of Total Production .................................. 94 F.I...poliay context for this research. Section III provides analysis necessary to understand the chemicals involved, their production processes and costs, and

  14. A case study: application of statistical process control tool for determining process capability and sigma level.

    PubMed

    Chopra, Vikram; Bairagi, Mukesh; Trivedi, P; Nagar, Mona

    2012-01-01

    Statistical process control is the application of statistical methods to the measurement and analysis of variation process. Various regulatory authorities such as Validation Guidance for Industry (2011), International Conference on Harmonisation ICH Q10 (2009), the Health Canada guidelines (2009), Health Science Authority, Singapore: Guidance for Product Quality Review (2008), and International Organization for Standardization ISO-9000:2005 provide regulatory support for the application of statistical process control for better process control and understanding. In this study risk assessments, normal probability distributions, control charts, and capability charts are employed for selection of critical quality attributes, determination of normal probability distribution, statistical stability, and capability of production processes, respectively. The objective of this study is to determine tablet production process quality in the form of sigma process capability. By interpreting data and graph trends, forecasting of critical quality attributes, sigma process capability, and stability of process were studied. The overall study contributes to an assessment of process at the sigma level with respect to out-of-specification attributes produced. Finally, the study will point to an area where the application of quality improvement and quality risk assessment principles for achievement of six sigma-capable processes is possible. Statistical process control is the most advantageous tool for determination of the quality of any production process. This tool is new for the pharmaceutical tablet production process. In the case of pharmaceutical tablet production processes, the quality control parameters act as quality assessment parameters. Application of risk assessment provides selection of critical quality attributes among quality control parameters. Sequential application of normality distributions, control charts, and capability analyses provides a valid statistical process control study on process. Interpretation of such a study provides information about stability, process variability, changing of trends, and quantification of process ability against defective production. Comparative evaluation of critical quality attributes by Pareto charts provides the least capable and most variable process that is liable for improvement. Statistical process control thus proves to be an important tool for six sigma-capable process development and continuous quality improvement.

  15. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model.

    PubMed

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-08-16

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target.

  16. Quantifying the evolution of flow boiling bubbles by statistical testing and image analysis: toward a general model

    PubMed Central

    Xiao, Qingtai; Xu, Jianxin; Wang, Hua

    2016-01-01

    A new index, the estimate of the error variance, which can be used to quantify the evolution of the flow patterns when multiphase components or tracers are difficultly distinguishable, was proposed. The homogeneity degree of the luminance space distribution behind the viewing windows in the direct contact boiling heat transfer process was explored. With image analysis and a linear statistical model, the F-test of the statistical analysis was used to test whether the light was uniform, and a non-linear method was used to determine the direction and position of a fixed source light. The experimental results showed that the inflection point of the new index was approximately equal to the mixing time. The new index has been popularized and applied to a multiphase macro mixing process by top blowing in a stirred tank. Moreover, a general quantifying model was introduced for demonstrating the relationship between the flow patterns of the bubble swarms and heat transfer. The results can be applied to investigate other mixing processes that are very difficult to recognize the target. PMID:27527065

  17. Incorporating Multi-criteria Optimization and Uncertainty Analysis in the Model-Based Systems Engineering of an Autonomous Surface Craft

    DTIC Science & Technology

    2009-09-01

    SAS Statistical Analysis Software SE Systems Engineering SEP Systems Engineering Process SHP Shaft Horsepower SIGINT Signals Intelligence......management occurs (OSD 2002). The Systems Engineering Process (SEP), displayed in Figure 2, is a comprehensive , iterative and recursive problem

  18. Statistical analysis for validating ACO-KNN algorithm as feature selection in sentiment analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Siti Rohaidah; Yusop, Nurhafizah Moziyana Mohd; Bakar, Azuraliza Abu; Yaakub, Mohd Ridzwan

    2017-10-01

    This research paper aims to propose a hybrid of ant colony optimization (ACO) and k-nearest neighbor (KNN) algorithms as feature selections for selecting and choosing relevant features from customer review datasets. Information gain (IG), genetic algorithm (GA), and rough set attribute reduction (RSAR) were used as baseline algorithms in a performance comparison with the proposed algorithm. This paper will also discuss the significance test, which was used to evaluate the performance differences between the ACO-KNN, IG-GA, and IG-RSAR algorithms. This study evaluated the performance of the ACO-KNN algorithm using precision, recall, and F-score, which were validated using the parametric statistical significance tests. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. In addition, the experimental results have proven that the ACO-KNN can be used as a feature selection technique in sentiment analysis to obtain quality, optimal feature subset that can represent the actual data in customer review data.

  19. Statistical Analysis of the First Passage Path Ensemble of Jump Processes

    NASA Astrophysics Data System (ADS)

    von Kleist, Max; Schütte, Christof; Zhang, Wei

    2018-02-01

    The transition mechanism of jump processes between two different subsets in state space reveals important dynamical information of the processes and therefore has attracted considerable attention in the past years. In this paper, we study the first passage path ensemble of both discrete-time and continuous-time jump processes on a finite state space. The main approach is to divide each first passage path into nonreactive and reactive segments and to study them separately. The analysis can be applied to jump processes which are non-ergodic, as well as continuous-time jump processes where the waiting time distributions are non-exponential. In the particular case that the jump processes are both Markovian and ergodic, our analysis elucidates the relations between the study of the first passage paths and the study of the transition paths in transition path theory. We provide algorithms to numerically compute statistics of the first passage path ensemble. The computational complexity of these algorithms scales with the complexity of solving a linear system, for which efficient methods are available. Several examples demonstrate the wide applicability of the derived results across research areas.

  20. Why Are People Bad at Detecting Randomness? A Statistical Argument

    ERIC Educational Resources Information Center

    Williams, Joseph J.; Griffiths, Thomas L.

    2013-01-01

    Errors in detecting randomness are often explained in terms of biases and misconceptions. We propose and provide evidence for an account that characterizes the contribution of the inherent statistical difficulty of the task. Our account is based on a Bayesian statistical analysis, focusing on the fact that a random process is a special case of…

  1. Power-law statistics of neurophysiological processes analyzed using short signals

    NASA Astrophysics Data System (ADS)

    Pavlova, Olga N.; Runnova, Anastasiya E.; Pavlov, Alexey N.

    2018-04-01

    We discuss the problem of quantifying power-law statistics of complex processes from short signals. Based on the analysis of electroencephalograms (EEG) we compare three interrelated approaches which enable characterization of the power spectral density (PSD) and show that an application of the detrended fluctuation analysis (DFA) or the wavelet-transform modulus maxima (WTMM) method represents a useful way of indirect characterization of the PSD features from short data sets. We conclude that despite DFA- and WTMM-based measures can be obtained from the estimated PSD, these tools outperform the standard spectral analysis when characterization of the analyzed regime should be provided based on a very limited amount of data.

  2. Batch Statistical Process Monitoring Approach to a Cocrystallization Process.

    PubMed

    Sarraguça, Mafalda C; Ribeiro, Paulo R S; Dos Santos, Adenilson O; Lopes, João A

    2015-12-01

    Cocrystals are defined as crystalline structures composed of two or more compounds that are solid at room temperature held together by noncovalent bonds. Their main advantages are the increase of solubility, bioavailability, permeability, stability, and at the same time retaining active pharmaceutical ingredient bioactivity. The cocrystallization between furosemide and nicotinamide by solvent evaporation was monitored on-line using near-infrared spectroscopy (NIRS) as a process analytical technology tool. The near-infrared spectra were analyzed using principal component analysis. Batch statistical process monitoring was used to create control charts to perceive the process trajectory and define control limits. Normal and non-normal operating condition batches were performed and monitored with NIRS. The use of NIRS associated with batch statistical process models allowed the detection of abnormal variations in critical process parameters, like the amount of solvent or amount of initial components present in the cocrystallization. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means

    PubMed Central

    2014-01-01

    In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878

  4. Stochastic Calculus and Differential Equations for Physics and Finance

    NASA Astrophysics Data System (ADS)

    McCauley, Joseph L.

    2013-02-01

    1. Random variables and probability distributions; 2. Martingales, Markov, and nonstationarity; 3. Stochastic calculus; 4. Ito processes and Fokker-Planck equations; 5. Selfsimilar Ito processes; 6. Fractional Brownian motion; 7. Kolmogorov's PDEs and Chapman-Kolmogorov; 8. Non Markov Ito processes; 9. Black-Scholes, martingales, and Feynman-Katz; 10. Stochastic calculus with martingales; 11. Statistical physics and finance, a brief history of both; 12. Introduction to new financial economics; 13. Statistical ensembles and time series analysis; 14. Econometrics; 15. Semimartingales; References; Index.

  5. [A SAS marco program for batch processing of univariate Cox regression analysis for great database].

    PubMed

    Yang, Rendong; Xiong, Jie; Peng, Yangqin; Peng, Xiaoning; Zeng, Xiaomin

    2015-02-01

    To realize batch processing of univariate Cox regression analysis for great database by SAS marco program. We wrote a SAS macro program, which can filter, integrate, and export P values to Excel by SAS9.2. The program was used for screening survival correlated RNA molecules of ovarian cancer. A SAS marco program could finish the batch processing of univariate Cox regression analysis, the selection and export of the results. The SAS macro program has potential applications in reducing the workload of statistical analysis and providing a basis for batch processing of univariate Cox regression analysis.

  6. Statistical analysis of experimental data for mathematical modeling of physical processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Karpushin, P. A.; Popov, Yu B.; Popova, A. I.; Popova, K. Yu; Krasnenko, N. P.; Lavrinenko, A. V.

    2017-11-01

    In this paper, the probabilities of faultless operation of aerologic stations are analyzed, the hypothesis of normality of the empirical data required for using the Kalman filter algorithms is tested, and the spatial correlation functions of distributions of meteorological parameters are determined. The results of a statistical analysis of two-term (0, 12 GMT) radiosonde observations of the temperature and wind velocity components at some preset altitude ranges in the troposphere in 2001-2016 are presented. These data can be used in mathematical modeling of physical processes in the atmosphere.

  7. Study of photon correlation techniques for processing of laser velocimeter signals

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.

    1977-01-01

    The objective was to provide the theory and a system design for a new type of photon counting processor for low level dual scatter laser velocimeter (LV) signals which would be capable of both the first order measurements of mean flow and turbulence intensity and also the second order time statistics: cross correlation auto correlation, and related spectra. A general Poisson process model for low level LV signals and noise which is valid from the photon-resolved regime all the way to the limiting case of nonstationary Gaussian noise was used. Computer simulation algorithms and higher order statistical moment analysis of Poisson processes were derived and applied to the analysis of photon correlation techniques. A system design using a unique dual correlate and subtract frequency discriminator technique is postulated and analyzed. Expectation analysis indicates that the objective measurements are feasible.

  8. Statistical Signal Models and Algorithms for Image Analysis

    DTIC Science & Technology

    1984-10-25

    In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction

  9. Measuring Efficiency of Tunisian Schools in the Presence of Quasi-Fixed Inputs: A Bootstrap Data Envelopment Analysis Approach

    ERIC Educational Resources Information Center

    Essid, Hedi; Ouellette, Pierre; Vigeant, Stephane

    2010-01-01

    The objective of this paper is to measure the efficiency of high schools in Tunisia. We use a statistical data envelopment analysis (DEA)-bootstrap approach with quasi-fixed inputs to estimate the precision of our measure. To do so, we developed a statistical model serving as the foundation of the data generation process (DGP). The DGP is…

  10. Using assemblage data in ecological indicators: A comparison and evaluation of commonly available statistical tools

    USGS Publications Warehouse

    Smith, Joseph M.; Mather, Martha E.

    2012-01-01

    Ecological indicators are science-based tools used to assess how human activities have impacted environmental resources. For monitoring and environmental assessment, existing species assemblage data can be used to make these comparisons through time or across sites. An impediment to using assemblage data, however, is that these data are complex and need to be simplified in an ecologically meaningful way. Because multivariate statistics are mathematical relationships, statistical groupings may not make ecological sense and will not have utility as indicators. Our goal was to define a process to select defensible and ecologically interpretable statistical simplifications of assemblage data in which researchers and managers can have confidence. For this, we chose a suite of statistical methods, compared the groupings that resulted from these analyses, identified convergence among groupings, then we interpreted the groupings using species and ecological guilds. When we tested this approach using a statewide stream fish dataset, not all statistical methods worked equally well. For our dataset, logistic regression (Log), detrended correspondence analysis (DCA), cluster analysis (CL), and non-metric multidimensional scaling (NMDS) provided consistent, simplified output. Specifically, the Log, DCA, CL-1, and NMDS-1 groupings were ≥60% similar to each other, overlapped with the fluvial-specialist ecological guild, and contained a common subset of species. Groupings based on number of species (e.g., Log, DCA, CL and NMDS) outperformed groupings based on abundance [e.g., principal components analysis (PCA) and Poisson regression]. Although the specific methods that worked on our test dataset have generality, here we are advocating a process (e.g., identifying convergent groupings with redundant species composition that are ecologically interpretable) rather than the automatic use of any single statistical tool. We summarize this process in step-by-step guidance for the future use of these commonly available ecological and statistical methods in preparing assemblage data for use in ecological indicators.

  11. A primer on the study of transitory dynamics in ecological series using the scale-dependent correlation analysis.

    PubMed

    Rodríguez-Arias, Miquel Angel; Rodó, Xavier

    2004-03-01

    Here we describe a practical, step-by-step primer to scale-dependent correlation (SDC) analysis. The analysis of transitory processes is an important but often neglected topic in ecological studies because only a few statistical techniques appear to detect temporary features accurately enough. We introduce here the SDC analysis, a statistical and graphical method to study transitory processes at any temporal or spatial scale. SDC analysis, thanks to the combination of conventional procedures and simple well-known statistical techniques, becomes an improved time-domain analogue of wavelet analysis. We use several simple synthetic series to describe the method, a more complex example, full of transitory features, to compare SDC and wavelet analysis, and finally we analyze some selected ecological series to illustrate the methodology. The SDC analysis of time series of copepod abundances in the North Sea indicates that ENSO primarily is the main climatic driver of short-term changes in population dynamics. SDC also uncovers some long-term, unexpected features in the population. Similarly, the SDC analysis of Nicholson's blowflies data locates where the proposed models fail and provides new insights about the mechanism that drives the apparent vanishing of the population cycle during the second half of the series.

  12. Statistics-related and reliability-physics-related failure processes in electronics devices and products

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2014-05-01

    The well known and widely used experimental reliability "passport" of a mass manufactured electronic or a photonic product — the bathtub curve — reflects the combined contribution of the statistics-related and reliability-physics (physics-of-failure)-related processes. When time progresses, the first process results in a decreasing failure rate, while the second process associated with the material aging and degradation leads to an increased failure rate. An attempt has been made in this analysis to assess the level of the reliability physics-related aging process from the available bathtub curve (diagram). It is assumed that the products of interest underwent the burn-in testing and therefore the obtained bathtub curve does not contain the infant mortality portion. It has been also assumed that the two random processes in question are statistically independent, and that the failure rate of the physical process can be obtained by deducting the theoretically assessed statistical failure rate from the bathtub curve ordinates. In the carried out numerical example, the Raleigh distribution for the statistical failure rate was used, for the sake of a relatively simple illustration. The developed methodology can be used in reliability physics evaluations, when there is a need to better understand the roles of the statistics-related and reliability-physics-related irreversible random processes in reliability evaluations. The future work should include investigations on how powerful and flexible methods and approaches of the statistical mechanics can be effectively employed, in addition to reliability physics techniques, to model the operational reliability of electronic and photonic products.

  13. Differentiation of chocolates according to the cocoa's geographical origin using chemometrics.

    PubMed

    Cambrai, Amandine; Marcic, Christophe; Morville, Stéphane; Sae Houer, Pierre; Bindler, Françoise; Marchioni, Eric

    2010-02-10

    The determination of the geographical origin of cocoa used to produce chocolate has been assessed through the analysis of the volatile compounds of chocolate samples. The analysis of the volatile content and their statistical processing by multivariate analyses tended to form independent groups for both Africa and Madagascar, even if some of the chocolate samples analyzed appeared in a mixed zone together with those from America. This analysis also allowed a clear separation between Caribbean chocolates and those from other origins. Height compounds (such as linalool or (E,E)-2,4-decadienal) characteristic of chocolate's different geographical origins were also identified. The method described in this work (hydrodistillation, GC analysis, and statistic treatment) may improve the control of the geographical origin of chocolate during its long production process.

  14. Crop identification technology assessment for remote sensing. (CITARS) Volume 9: Statistical analysis of results

    NASA Technical Reports Server (NTRS)

    Davis, B. J.; Feiveson, A. H.

    1975-01-01

    Results are presented of CITARS data processing in raw form. Tables of descriptive statistics are given along with descriptions and results of inferential analyses. The inferential results are organized by questions which CITARS was designed to answer.

  15. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Hurricane Weather Research and Forecast System ANALYSIS FORECAST MODEL GSI Gridpoint Statistical Weather and Climate Prediction (NCWCP) 5830 University Research Court College Park, MD 20740 Page Author

  16. Implementation of statistical process control for proteomic experiments via LC MS/MS.

    PubMed

    Bereman, Michael S; Johnson, Richard; Bollinger, James; Boss, Yuval; Shulman, Nick; MacLean, Brendan; Hoofnagle, Andrew N; MacCoss, Michael J

    2014-04-01

    Statistical process control (SPC) is a robust set of tools that aids in the visualization, detection, and identification of assignable causes of variation in any process that creates products, services, or information. A tool has been developed termed Statistical Process Control in Proteomics (SProCoP) which implements aspects of SPC (e.g., control charts and Pareto analysis) into the Skyline proteomics software. It monitors five quality control metrics in a shotgun or targeted proteomic workflow. None of these metrics require peptide identification. The source code, written in the R statistical language, runs directly from the Skyline interface, which supports the use of raw data files from several of the mass spectrometry vendors. It provides real time evaluation of the chromatographic performance (e.g., retention time reproducibility, peak asymmetry, and resolution), and mass spectrometric performance (targeted peptide ion intensity and mass measurement accuracy for high resolving power instruments) via control charts. Thresholds are experiment- and instrument-specific and are determined empirically from user-defined quality control standards that enable the separation of random noise and systematic error. Finally, Pareto analysis provides a summary of performance metrics and guides the user to metrics with high variance. The utility of these charts to evaluate proteomic experiments is illustrated in two case studies.

  17. The effect of normalization of Partial Directed Coherence on the statistical assessment of connectivity patterns: a simulation study.

    PubMed

    Toppi, J; Petti, M; Vecchiato, G; Cincotti, F; Salinari, S; Mattia, D; Babiloni, F; Astolfi, L

    2013-01-01

    Partial Directed Coherence (PDC) is a spectral multivariate estimator for effective connectivity, relying on the concept of Granger causality. Even if its original definition derived directly from information theory, two modifies were introduced in order to provide better physiological interpretations of the estimated networks: i) normalization of the estimator according to rows, ii) squared transformation. In the present paper we investigated the effect of PDC normalization on the performances achieved by applying the statistical validation process on investigated connectivity patterns under different conditions of Signal to Noise ratio (SNR) and amount of data available for the analysis. Results of the statistical analysis revealed an effect of PDC normalization only on the percentages of type I and type II errors occurred by using Shuffling procedure for the assessment of connectivity patterns. No effects of the PDC formulation resulted on the performances achieved during the validation process executed instead by means of Asymptotic Statistic approach. Moreover, the percentages of both false positives and false negatives committed by Asymptotic Statistic are always lower than those achieved by Shuffling procedure for each type of normalization.

  18. Statistical power in parallel group point exposure studies with time-to-event outcomes: an empirical comparison of the performance of randomized controlled trials and the inverse probability of treatment weighting (IPTW) approach.

    PubMed

    Austin, Peter C; Schuster, Tibor; Platt, Robert W

    2015-10-15

    Estimating statistical power is an important component of the design of both randomized controlled trials (RCTs) and observational studies. Methods for estimating statistical power in RCTs have been well described and can be implemented simply. In observational studies, statistical methods must be used to remove the effects of confounding that can occur due to non-random treatment assignment. Inverse probability of treatment weighting (IPTW) using the propensity score is an attractive method for estimating the effects of treatment using observational data. However, sample size and power calculations have not been adequately described for these methods. We used an extensive series of Monte Carlo simulations to compare the statistical power of an IPTW analysis of an observational study with time-to-event outcomes with that of an analysis of a similarly-structured RCT. We examined the impact of four factors on the statistical power function: number of observed events, prevalence of treatment, the marginal hazard ratio, and the strength of the treatment-selection process. We found that, on average, an IPTW analysis had lower statistical power compared to an analysis of a similarly-structured RCT. The difference in statistical power increased as the magnitude of the treatment-selection model increased. The statistical power of an IPTW analysis tended to be lower than the statistical power of a similarly-structured RCT.

  19. Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations

    NASA Astrophysics Data System (ADS)

    Kuzemsky, A. L.

    2018-01-01

    We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.

  20. Statistical tables and charts showing geochemical variation in the Mesoproterozoic Big Creek, Apple Creek, and Gunsight formations, Lemhi group, Salmon River Mountains and Lemhi Range, central Idaho

    USGS Publications Warehouse

    Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.

    2002-01-01

    The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.

  1. The Design and Analysis of Transposon-Insertion Sequencing Experiments

    PubMed Central

    Chao, Michael C.; Abel, Sören; Davis, Brigid M.; Waldor, Matthew K.

    2016-01-01

    Preface Transposon-insertion sequencing (TIS) is a powerful approach that can be widely applied to genome-wide definition of loci that are required for growth in diverse conditions. However, experimental design choices and stochastic biological processes can heavily influence the results of TIS experiments and affect downstream statistical analysis. Here, we discuss TIS experimental parameters and how these factors relate to the benefits and limitations of the various statistical frameworks that can be applied to computational analysis of TIS data. PMID:26775926

  2. A risk-based approach to management of leachables utilizing statistical analysis of extractables.

    PubMed

    Stults, Cheryl L M; Mikl, Jaromir; Whelehan, Oliver; Morrical, Bradley; Duffield, William; Nagao, Lee M

    2015-04-01

    To incorporate quality by design concepts into the management of leachables, an emphasis is often put on understanding the extractable profile for the materials of construction for manufacturing disposables, container-closure, or delivery systems. Component manufacturing processes may also impact the extractable profile. An approach was developed to (1) identify critical components that may be sources of leachables, (2) enable an understanding of manufacturing process factors that affect extractable profiles, (3) determine if quantitative models can be developed that predict the effect of those key factors, and (4) evaluate the practical impact of the key factors on the product. A risk evaluation for an inhalation product identified injection molding as a key process. Designed experiments were performed to evaluate the impact of molding process parameters on the extractable profile from an ABS inhaler component. Statistical analysis of the resulting GC chromatographic profiles identified processing factors that were correlated with peak levels in the extractable profiles. The combination of statistically significant molding process parameters was different for different types of extractable compounds. ANOVA models were used to obtain optimal process settings and predict extractable levels for a selected number of compounds. The proposed paradigm may be applied to evaluate the impact of material composition and processing parameters on extractable profiles and utilized to manage product leachables early in the development process and throughout the product lifecycle.

  3. European consumer attitudes on the associated health benefits of neutraceutical-containing processed meats using Co-enzyme Q10 as a sample functional ingredient.

    PubMed

    Tobin, Brian D; O'Sullivan, Maurice G; Hamill, Ruth; Kerry, Joseph P

    2014-06-01

    This study accumulated European consumer attitudes towards processed meats and their use as a functional food. A survey was set up using an online web-application to gather information on consumer perception of processed meats as well as neutraceutical-containing processed meats. 548 responses were obtained and statistical analysis was carried out using a statistical software package. Data was summarized as frequencies for each question and statistical differences analyzed using the Chi-Square statistical test with a significance level of 5% (P<0.05). The majority of consumer attitudes towards processed meat indicate that they are unhealthy products. Most believe that processed meats contain large quantities of harmful chemicals, fat and salt. Consumers were found to be very pro-bioactive compounds in yogurt style products but unsure of their feelings in meat based products, which is likely due to the lack of familiarity to these products. Many of the respondents were willing to consume meat based functional foods but were not willing to pay more for them. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Effects of Heterogeniety on Spatial Pattern Analysis of Wild Pistachio Trees in Zagros Woodlands, Iran

    NASA Astrophysics Data System (ADS)

    Erfanifard, Y.; Rezayan, F.

    2014-10-01

    Vegetation heterogeneity biases second-order summary statistics, e.g., Ripley's K-function, applied for spatial pattern analysis in ecology. Second-order investigation based on Ripley's K-function and related statistics (i.e., L- and pair correlation function g) is widely used in ecology to develop hypothesis on underlying processes by characterizing spatial patterns of vegetation. The aim of this study was to demonstrate effects of underlying heterogeneity of wild pistachio (Pistacia atlantica Desf.) trees on the second-order summary statistics of point pattern analysis in a part of Zagros woodlands, Iran. The spatial distribution of 431 wild pistachio trees was accurately mapped in a 40 ha stand in the Wild Pistachio & Almond Research Site, Fars province, Iran. Three commonly used second-order summary statistics (i.e., K-, L-, and g-functions) were applied to analyse their spatial pattern. The two-sample Kolmogorov-Smirnov goodness-of-fit test showed that the observed pattern significantly followed an inhomogeneous Poisson process null model in the study region. The results also showed that heterogeneous pattern of wild pistachio trees biased the homogeneous form of K-, L-, and g-functions, demonstrating a stronger aggregation of the trees at the scales of 0-50 m than actually existed and an aggregation at scales of 150-200 m, while regularly distributed. Consequently, we showed that heterogeneity of point patterns may bias the results of homogeneous second-order summary statistics and we also suggested applying inhomogeneous summary statistics with related null models for spatial pattern analysis of heterogeneous vegetations.

  5. Integration of modern statistical tools for the analysis of climate extremes into the web-GIS “CLIMATE”

    NASA Astrophysics Data System (ADS)

    Ryazanova, A. A.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The frequency of occurrence and magnitude of precipitation and temperature extreme events show positive trends in several geographical regions. These events must be analyzed and studied in order to better understand their impact on the environment, predict their occurrences, and mitigate their effects. For this purpose, we augmented web-GIS called “CLIMATE” to include a dedicated statistical package developed in the R language. The web-GIS “CLIMATE” is a software platform for cloud storage processing and visualization of distributed archives of spatial datasets. It is based on a combined use of web and GIS technologies with reliable procedures for searching, extracting, processing, and visualizing the spatial data archives. The system provides a set of thematic online tools for the complex analysis of current and future climate changes and their effects on the environment. The package includes new powerful methods of time-dependent statistics of extremes, quantile regression and copula approach for the detailed analysis of various climate extreme events. Specifically, the very promising copula approach allows obtaining the structural connections between the extremes and the various environmental characteristics. The new statistical methods integrated into the web-GIS “CLIMATE” can significantly facilitate and accelerate the complex analysis of climate extremes using only a desktop PC connected to the Internet.

  6. Statistical properties of filtered pseudorandom digital sequences formed from the sum of maximum-length sequences

    NASA Technical Reports Server (NTRS)

    Wallace, G. R.; Weathers, G. D.; Graf, E. R.

    1973-01-01

    The statistics of filtered pseudorandom digital sequences called hybrid-sum sequences, formed from the modulo-two sum of several maximum-length sequences, are analyzed. The results indicate that a relation exists between the statistics of the filtered sequence and the characteristic polynomials of the component maximum length sequences. An analysis procedure is developed for identifying a large group of sequences with good statistical properties for applications requiring the generation of analog pseudorandom noise. By use of the analysis approach, the filtering process is approximated by the convolution of the sequence with a sum of unit step functions. A parameter reflecting the overall statistical properties of filtered pseudorandom sequences is derived. This parameter is called the statistical quality factor. A computer algorithm to calculate the statistical quality factor for the filtered sequences is presented, and the results for two examples of sequence combinations are included. The analysis reveals that the statistics of the signals generated with the hybrid-sum generator are potentially superior to the statistics of signals generated with maximum-length generators. Furthermore, fewer calculations are required to evaluate the statistics of a large group of hybrid-sum generators than are required to evaluate the statistics of the same size group of approximately equivalent maximum-length sequences.

  7. Comparing statistical and process-based flow duration curve models in ungauged basins and changing rain regimes

    NASA Astrophysics Data System (ADS)

    Müller, M. F.; Thompson, S. E.

    2016-02-01

    The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drivers of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by frequent wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are favored over statistical models.

  8. [PASS neurocognitive dysfunction in attention deficit].

    PubMed

    Pérez-Alvarez, F; Timoneda-Gallart, C

    Attention deficit disorder shows both cognitive and behavioral patterns. To determine a particular PASS (planning, attention, successive and simultaneous) pattern in order to early diagnosis and remediation according to PASS theory. 80 patients were selected from the neuropediatric attendance, aged 6 to 12 years old, 55 boys and 25 girls. Inclusion criteria were inattention (80 cases) and inattention with hyperactive symptoms (40 cases) according to the Diagnostic and Statistical Manual (DSM-IV). Exclusion criteria were the criteria of phonologic awareness previously reported, considered useful to diagnose dyslexia. A control group of 300 individuals, aged 5 to 12 years old, was used, criteria above mentioned being controlled. DN:CAS (Das-Naglieri Cognitive Assessment System) battery, translated to native language, was given to assess PASS cognitive processes. Results were analyzed with cluster analysis and t-Student test. Statistical factor analysis of the control group had previously identified the four PASS processes: planning, attention, successive and simultaneous. The dendrogram of the cluster analysis discriminated three categories of attention deficit disorder: 1. The most frequent, with planning deficit; 2. Without planning deficit but with deficit in other processes, and 3. Just only a few cases, without cognitive processing deficit. Cognitive deficiency in terms of means of scores was statistically significant when compared to control group (p = 0.001). According to PASS pattern, planning deficiency is a relevant factor. Neurological planning is not exactly the same than neurological executive function. The behavioral pattern is mainly linked to planning deficiency, but also to other PASS processing deficits and even to no processing deficit.

  9. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, M.

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that the authors' techniques allow more accurate estimation of the global system loading, resulting in fewer object migrations than local methods. The authors' method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive load-balancing methods. Results from a preliminary analysis of another system and from simulation with a synthetic load provide some evidence of more general applicability.

  10. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, Max

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that our techniques allow more accurate estimation of the global system load ing, resulting in fewer object migration than local methods. Our method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive methods.

  11. Chemometrics.

    ERIC Educational Resources Information Center

    Delaney, Michael F.

    1984-01-01

    This literature review on chemometrics (covering December 1981 to December 1983) is organized under these headings: personal supermicrocomputers; education and books; statistics; modeling and parameter estimation; resolution; calibration; signal processing; image analysis; factor analysis; pattern recognition; optimization; artificial…

  12. Site Suitability Analysis for Beekeeping via Analythical Hyrearchy Process, Konya Example

    NASA Astrophysics Data System (ADS)

    Sarı, F.; Ceylan, D. A.

    2017-11-01

    Over the past decade, the importance of the beekeeping activities has been emphasized in the field of biodiversity, ecosystems, agriculture and human health. Thus, efficient management and deciding correct beekeeping activities seems essential to maintain and improve productivity and efficiency. Due to this importance, considering the economic contributions to the rural area, the need for suitability analysis concept has been revealed. At this point, Multi Criteria Decision Analysis (MCDA) and Geographical Information Systems (GIS) integration provides efficient solutions to the complex structure of decision- making process for beekeeping activities. In this study, site suitability analysis via Analytical Hierarchy Process (AHP) was carried out for Konya city in Turkey. Slope, elevation, aspect, distance to water resources, roads and settlements, precipitation and flora criteria are included to determine suitability. The requirements, expectations and limitations of beekeeping activities are specified with the participation of experts and stakeholders. The final suitability map were validated with existing 117 beekeeping locations and Turkish Statistical Institute 2016 beekeeping statistics for Konya province.

  13. Measuring and improving the quality of postoperative epidural analgesia for major abdominal surgery using statistical process control charts.

    PubMed

    Duncan, Fiona; Haigh, Carol

    2013-10-01

    To explore and improve the quality of continuous epidural analgesia for pain relief using Statistical Process Control tools. Measuring the quality of pain management interventions is complex. Intermittent audits do not accurately capture the results of quality improvement initiatives. The failure rate for one intervention, epidural analgesia, is approximately 30% in everyday practice, so it is an important area for improvement. Continuous measurement and analysis are required to understand the multiple factors involved in providing effective pain relief. Process control and quality improvement Routine prospectively acquired data collection started in 2006. Patients were asked about their pain and side effects of treatment. Statistical Process Control methods were applied for continuous data analysis. A multidisciplinary group worked together to identify reasons for variation in the data and instigated ideas for improvement. The key measure for improvement was a reduction in the percentage of patients with an epidural in severe pain. The baseline control charts illustrated the recorded variation in the rate of several processes and outcomes for 293 surgical patients. The mean visual analogue pain score (VNRS) was four. There was no special cause variation when data were stratified by surgeons, clinical area or patients who had experienced pain before surgery. Fifty-seven per cent of patients were hypotensive on the first day after surgery. We were able to demonstrate a significant improvement in the failure rate of epidurals as the project continued with quality improvement interventions. Statistical Process Control is a useful tool for measuring and improving the quality of pain management. The applications of Statistical Process Control methods offer the potential to learn more about the process of change and outcomes in an Acute Pain Service both locally and nationally. We have been able to develop measures for improvement and benchmarking in routine care that has led to the establishment of a national pain registry. © 2013 Blackwell Publishing Ltd.

  14. Trend Analysis Using Microcomputers.

    ERIC Educational Resources Information Center

    Berger, Carl F.

    A trend analysis statistical package and additional programs for the Apple microcomputer are presented. They illustrate strategies of data analysis suitable to the graphics and processing capabilities of the microcomputer. The programs analyze data sets using examples of: (1) analysis of variance with multiple linear regression; (2) exponential…

  15. The neuronal correlates of intranasal trigeminal function – An ALE meta-analysis of human functional brain imaging data

    PubMed Central

    Albrecht, Jessica; Kopietz, Rainer; Frasnelli, Johannes; Wiesmann, Martin; Hummel, Thomas; Lundström, Johan N.

    2009-01-01

    Almost every odor we encounter in daily life has the capacity to produce a trigeminal sensation. Surprisingly, few functional imaging studies exploring human neuronal correlates of intranasal trigeminal function exist, and results are to some degree inconsistent. We utilized activation likelihood estimation (ALE), a quantitative voxel-based meta-analysis tool, to analyze functional imaging data (fMRI/PET) following intranasal trigeminal stimulation with carbon dioxide (CO2), a stimulus known to exclusively activate the trigeminal system. Meta-analysis tools are able to identify activations common across studies, thereby enabling activation mapping with higher certainty. Activation foci of nine studies utilizing trigeminal stimulation were included in the meta-analysis. We found significant ALE scores, thus indicating consistent activation across studies, in the brainstem, ventrolateral posterior thalamic nucleus, anterior cingulate cortex, insula, precentral gyrus, as well as in primary and secondary somatosensory cortices – a network known for the processing of intranasal nociceptive stimuli. Significant ALE values were also observed in the piriform cortex, insula, and the orbitofrontal cortex, areas known to process chemosensory stimuli, and in association cortices. Additionally, the trigeminal ALE statistics were directly compared with ALE statistics originating from olfactory stimulation, demonstrating considerable overlap in activation. In conclusion, the results of this meta-analysis map the human neuronal correlates of intranasal trigeminal stimulation with high statistical certainty and demonstrate that the cortical areas recruited during the processing of intranasal CO2 stimuli include those outside traditional trigeminal areas. Moreover, through illustrations of the considerable overlap between brain areas that process trigeminal and olfactory information; these results demonstrate the interconnectivity of flavor processing. PMID:19913573

  16. A Longitudinal Analysis of the Influence of a Peer Run Warm Line Phone Service on Psychiatric Recovery.

    PubMed

    Dalgin, Rebecca Spirito; Dalgin, M Halim; Metzger, Scott J

    2018-05-01

    This article focuses on the impact of a peer run warm line as part of the psychiatric recovery process. It utilized data including the Recovery Assessment Scale, community integration measures and crisis service usage. Longitudinal statistical analysis was completed on 48 sets of data from 2011, 2012, and 2013. Although no statistically significant differences were observed for the RAS score, community integration data showed increases in visits to primary care doctors, leisure/recreation activities and socialization with others. This study highlights the complexity of psychiatric recovery and that nonclinical peer services like peer run warm lines may be critical to the process.

  17. Statistical analysis plan for the Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART). A randomized controlled trial

    PubMed Central

    Damiani, Lucas Petri; Berwanger, Otavio; Paisani, Denise; Laranjeira, Ligia Nasi; Suzumura, Erica Aranha; Amato, Marcelo Britto Passos; Carvalho, Carlos Roberto Ribeiro; Cavalcanti, Alexandre Biasi

    2017-01-01

    Background The Alveolar Recruitment for Acute Respiratory Distress Syndrome Trial (ART) is an international multicenter randomized pragmatic controlled trial with allocation concealment involving 120 intensive care units in Brazil, Argentina, Colombia, Italy, Poland, Portugal, Malaysia, Spain, and Uruguay. The primary objective of ART is to determine whether maximum stepwise alveolar recruitment associated with PEEP titration, adjusted according to the static compliance of the respiratory system (ART strategy), is able to increase 28-day survival in patients with acute respiratory distress syndrome compared to conventional treatment (ARDSNet strategy). Objective To describe the data management process and statistical analysis plan. Methods The statistical analysis plan was designed by the trial executive committee and reviewed and approved by the trial steering committee. We provide an overview of the trial design with a special focus on describing the primary (28-day survival) and secondary outcomes. We describe our data management process, data monitoring committee, interim analyses, and sample size calculation. We describe our planned statistical analyses for primary and secondary outcomes as well as pre-specified subgroup analyses. We also provide details for presenting results, including mock tables for baseline characteristics, adherence to the protocol and effect on clinical outcomes. Conclusion According to best trial practice, we report our statistical analysis plan and data management plan prior to locking the database and beginning analyses. We anticipate that this document will prevent analysis bias and enhance the utility of the reported results. Trial registration ClinicalTrials.gov number, NCT01374022. PMID:28977255

  18. Modeling fixation locations using spatial point processes.

    PubMed

    Barthelmé, Simon; Trukenbrod, Hans; Engbert, Ralf; Wichmann, Felix

    2013-10-01

    Whenever eye movements are measured, a central part of the analysis has to do with where subjects fixate and why they fixated where they fixated. To a first approximation, a set of fixations can be viewed as a set of points in space; this implies that fixations are spatial data and that the analysis of fixation locations can be beneficially thought of as a spatial statistics problem. We argue that thinking of fixation locations as arising from point processes is a very fruitful framework for eye-movement data, helping turn qualitative questions into quantitative ones. We provide a tutorial introduction to some of the main ideas of the field of spatial statistics, focusing especially on spatial Poisson processes. We show how point processes help relate image properties to fixation locations. In particular we show how point processes naturally express the idea that image features' predictability for fixations may vary from one image to another. We review other methods of analysis used in the literature, show how they relate to point process theory, and argue that thinking in terms of point processes substantially extends the range of analyses that can be performed and clarify their interpretation.

  19. Analysis and assessment on heavy metal sources in the coastal soils developed from alluvial deposits using multivariate statistical methods.

    PubMed

    Li, Jinling; He, Ming; Han, Wei; Gu, Yifan

    2009-05-30

    An investigation on heavy metal sources, i.e., Cu, Zn, Ni, Pb, Cr, and Cd in the coastal soils of Shanghai, China, was conducted using multivariate statistical methods (principal component analysis, clustering analysis, and correlation analysis). All the results of the multivariate analysis showed that: (i) Cu, Ni, Pb, and Cd had anthropogenic sources (e.g., overuse of chemical fertilizers and pesticides, industrial and municipal discharges, animal wastes, sewage irrigation, etc.); (ii) Zn and Cr were associated with parent materials and therefore had natural sources (e.g., the weathering process of parent materials and subsequent pedo-genesis due to the alluvial deposits). The effect of heavy metals in the soils was greatly affected by soil formation, atmospheric deposition, and human activities. These findings provided essential information on the possible sources of heavy metals, which would contribute to the monitoring and assessment process of agricultural soils in worldwide regions.

  20. Identification of the isomers using principal component analysis (PCA) method

    NASA Astrophysics Data System (ADS)

    Kepceoǧlu, Abdullah; Gündoǧdu, Yasemin; Ledingham, Kenneth William David; Kilic, Hamdi Sukur

    2016-03-01

    In this work, we have carried out a detailed statistical analysis for experimental data of mass spectra from xylene isomers. Principle Component Analysis (PCA) was used to identify the isomers which cannot be distinguished using conventional statistical methods for interpretation of their mass spectra. Experiments have been carried out using a linear TOF-MS coupled to a femtosecond laser system as an energy source for the ionisation processes. We have performed experiments and collected data which has been analysed and interpreted using PCA as a multivariate analysis of these spectra. This demonstrates the strength of the method to get an insight for distinguishing the isomers which cannot be identified using conventional mass analysis obtained through dissociative ionisation processes on these molecules. The PCA results dependending on the laser pulse energy and the background pressure in the spectrometers have been presented in this work.

  1. SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools.

    PubMed

    Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi

    2016-01-01

    SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.

  2. Implementation of Statistics Textbook Support with ICT and Portfolio Assessment Approach to Improve Students Teacher Mathematical Connection Skills

    NASA Astrophysics Data System (ADS)

    Hendikawati, P.; Dewi, N. R.

    2017-04-01

    Statistics needed for use in the data analysis process and had a comprehensive implementation in daily life so that students must master the well statistical material. The use of Statistics textbook support with ICT and portfolio assessment approach was expected to help the students to improve mathematical connection skills. The subject of this research was 30 student teachers who take Statistics courses. The results of this research are the use of Statistics textbook support with ICT and portfolio assessment approach can improve students mathematical connection skills.

  3. The Warning System in Disaster Situations: A Selective Analysis.

    DTIC Science & Technology

    DISASTERS, *WARNING SYSTEMS), CIVIL DEFENSE, SOCIAL PSYCHOLOGY, REACTION(PSYCHOLOGY), FACTOR ANALYSIS, CLASSIFICATION, STATISTICAL DATA, TIME ... MANAGEMENT PLANNING AND CONTROL, DAMAGE, CONTROL SYSTEMS, THREAT EVALUATION, DECISION MAKING, DATA PROCESSING, COMMUNICATION SYSTEMS, NUCLEAR EXPLOSIONS

  4. Evaluating the quality of a cell counting measurement process via a dilution series experimental design.

    PubMed

    Sarkar, Sumona; Lund, Steven P; Vyzasatya, Ravi; Vanguri, Padmavathy; Elliott, John T; Plant, Anne L; Lin-Gibson, Sheng

    2017-12-01

    Cell counting measurements are critical in the research, development and manufacturing of cell-based products, yet determining cell quantity with accuracy and precision remains a challenge. Validating and evaluating a cell counting measurement process can be difficult because of the lack of appropriate reference material. Here we describe an experimental design and statistical analysis approach to evaluate the quality of a cell counting measurement process in the absence of appropriate reference materials or reference methods. The experimental design is based on a dilution series study with replicate samples and observations as well as measurement process controls. The statistical analysis evaluates the precision and proportionality of the cell counting measurement process and can be used to compare the quality of two or more counting methods. As an illustration of this approach, cell counting measurement processes (automated and manual methods) were compared for a human mesenchymal stromal cell (hMSC) preparation. For the hMSC preparation investigated, results indicated that the automated method performed better than the manual counting methods in terms of precision and proportionality. By conducting well controlled dilution series experimental designs coupled with appropriate statistical analysis, quantitative indicators of repeatability and proportionality can be calculated to provide an assessment of cell counting measurement quality. This approach does not rely on the use of a reference material or comparison to "gold standard" methods known to have limited assurance of accuracy and precision. The approach presented here may help the selection, optimization, and/or validation of a cell counting measurement process. Published by Elsevier Inc.

  5. Textural Analysis and Substrate Classification in the Nearshore Region of Lake Superior Using High-Resolution Multibeam Bathymetry

    NASA Astrophysics Data System (ADS)

    Dennison, Andrew G.

    Classification of the seafloor substrate can be done with a variety of methods. These methods include Visual (dives, drop cameras); mechanical (cores, grab samples); acoustic (statistical analysis of echosounder returns). Acoustic methods offer a more powerful and efficient means of collecting useful information about the bottom type. Due to the nature of an acoustic survey, larger areas can be sampled, and by combining the collected data with visual and mechanical survey methods provide greater confidence in the classification of a mapped region. During a multibeam sonar survey, both bathymetric and backscatter data is collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on bottom type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, i.e a muddy area from a rocky area, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing of high-resolution multibeam data can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. The development of a new classification method is described here. It is based upon the analysis of textural features in conjunction with ground truth sampling. The processing and classification result of two geologically distinct areas in nearshore regions of Lake Superior; off the Lester River,MN and Amnicon River, WI are presented here, using the Minnesota Supercomputer Institute's Mesabi computing cluster for initial processing. Processed data is then calibrated using ground truth samples to conduct an accuracy assessment of the surveyed areas. From analysis of high-resolution bathymetry data collected at both survey sites is was possible to successfully calculate a series of measures that describe textural information about the lake floor. Further processing suggests that the features calculated capture a significant amount of statistical information about the lake floor terrain as well. Two sources of error, an anomalous heave and refraction error significantly deteriorated the quality of the processed data and resulting validate results. Ground truth samples used to validate the classification methods utilized for both survey sites, however, resulted in accuracy values ranging from 5 -30 percent at the Amnicon River, and between 60-70 percent for the Lester River. The final results suggest that this new processing methodology does adequately capture textural information about the lake floor and does provide an acceptable classification in the absence of significant data quality issues.

  6. Steganalysis based on reducing the differences of image statistical characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Ran; Niu, Shaozhang; Ping, Xijian; Zhang, Tao

    2018-04-01

    Compared with the process of embedding, the image contents make a more significant impact on the differences of image statistical characteristics. This makes the image steganalysis to be a classification problem with bigger withinclass scatter distances and smaller between-class scatter distances. As a result, the steganalysis features will be inseparate caused by the differences of image statistical characteristics. In this paper, a new steganalysis framework which can reduce the differences of image statistical characteristics caused by various content and processing methods is proposed. The given images are segmented to several sub-images according to the texture complexity. Steganalysis features are separately extracted from each subset with the same or close texture complexity to build a classifier. The final steganalysis result is figured out through a weighted fusing process. The theoretical analysis and experimental results can demonstrate the validity of the framework.

  7. Implementation and evaluation of an efficient secure computation system using ‘R’ for healthcare statistics

    PubMed Central

    Chida, Koji; Morohashi, Gembu; Fuji, Hitoshi; Magata, Fumihiko; Fujimura, Akiko; Hamada, Koki; Ikarashi, Dai; Yamamoto, Ryuichi

    2014-01-01

    Background and objective While the secondary use of medical data has gained attention, its adoption has been constrained due to protection of patient privacy. Making medical data secure by de-identification can be problematic, especially when the data concerns rare diseases. We require rigorous security management measures. Materials and methods Using secure computation, an approach from cryptography, our system can compute various statistics over encrypted medical records without decrypting them. An issue of secure computation is that the amount of processing time required is immense. We implemented a system that securely computes healthcare statistics from the statistical computing software ‘R’ by effectively combining secret-sharing-based secure computation with original computation. Results Testing confirmed that our system could correctly complete computation of average and unbiased variance of approximately 50 000 records of dummy insurance claim data in a little over a second. Computation including conditional expressions and/or comparison of values, for example, t test and median, could also be correctly completed in several tens of seconds to a few minutes. Discussion If medical records are simply encrypted, the risk of leaks exists because decryption is usually required during statistical analysis. Our system possesses high-level security because medical records remain in encrypted state even during statistical analysis. Also, our system can securely compute some basic statistics with conditional expressions using ‘R’ that works interactively while secure computation protocols generally require a significant amount of processing time. Conclusions We propose a secure statistical analysis system using ‘R’ for medical data that effectively integrates secret-sharing-based secure computation and original computation. PMID:24763677

  8. Implementation and evaluation of an efficient secure computation system using 'R' for healthcare statistics.

    PubMed

    Chida, Koji; Morohashi, Gembu; Fuji, Hitoshi; Magata, Fumihiko; Fujimura, Akiko; Hamada, Koki; Ikarashi, Dai; Yamamoto, Ryuichi

    2014-10-01

    While the secondary use of medical data has gained attention, its adoption has been constrained due to protection of patient privacy. Making medical data secure by de-identification can be problematic, especially when the data concerns rare diseases. We require rigorous security management measures. Using secure computation, an approach from cryptography, our system can compute various statistics over encrypted medical records without decrypting them. An issue of secure computation is that the amount of processing time required is immense. We implemented a system that securely computes healthcare statistics from the statistical computing software 'R' by effectively combining secret-sharing-based secure computation with original computation. Testing confirmed that our system could correctly complete computation of average and unbiased variance of approximately 50,000 records of dummy insurance claim data in a little over a second. Computation including conditional expressions and/or comparison of values, for example, t test and median, could also be correctly completed in several tens of seconds to a few minutes. If medical records are simply encrypted, the risk of leaks exists because decryption is usually required during statistical analysis. Our system possesses high-level security because medical records remain in encrypted state even during statistical analysis. Also, our system can securely compute some basic statistics with conditional expressions using 'R' that works interactively while secure computation protocols generally require a significant amount of processing time. We propose a secure statistical analysis system using 'R' for medical data that effectively integrates secret-sharing-based secure computation and original computation. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Multivariate fault isolation of batch processes via variable selection in partial least squares discriminant analysis.

    PubMed

    Yan, Zhengbing; Kuang, Te-Hui; Yao, Yuan

    2017-09-01

    In recent years, multivariate statistical monitoring of batch processes has become a popular research topic, wherein multivariate fault isolation is an important step aiming at the identification of the faulty variables contributing most to the detected process abnormality. Although contribution plots have been commonly used in statistical fault isolation, such methods suffer from the smearing effect between correlated variables. In particular, in batch process monitoring, the high autocorrelations and cross-correlations that exist in variable trajectories make the smearing effect unavoidable. To address such a problem, a variable selection-based fault isolation method is proposed in this research, which transforms the fault isolation problem into a variable selection problem in partial least squares discriminant analysis and solves it by calculating a sparse partial least squares model. As different from the traditional methods, the proposed method emphasizes the relative importance of each process variable. Such information may help process engineers in conducting root-cause diagnosis. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Bayesian selection of Markov models for symbol sequences: application to microsaccadic eye movements.

    PubMed

    Bettenbühl, Mario; Rusconi, Marco; Engbert, Ralf; Holschneider, Matthias

    2012-01-01

    Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.

  11. Experimental Investigations of Non-Stationary Properties In Radiometer Receivers Using Measurements of Multiple Calibration References

    NASA Technical Reports Server (NTRS)

    Racette, Paul; Lang, Roger; Zhang, Zhao-Nan; Zacharias, David; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Radiometers must be periodically calibrated because the receiver response fluctuates. Many techniques exist to correct for the time varying response of a radiometer receiver. An analytical technique has been developed that uses generalized least squares regression (LSR) to predict the performance of a wide variety of calibration algorithms. The total measurement uncertainty including the uncertainty of the calibration can be computed using LSR. The uncertainties of the calibration samples used in the regression are based upon treating the receiver fluctuations as non-stationary processes. Signals originating from the different sources of emission are treated as simultaneously existing random processes. Thus, the radiometer output is a series of samples obtained from these random processes. The samples are treated as random variables but because the underlying processes are non-stationary the statistics of the samples are treated as non-stationary. The statistics of the calibration samples depend upon the time for which the samples are to be applied. The statistics of the random variables are equated to the mean statistics of the non-stationary processes over the interval defined by the time of calibration sample and when it is applied. This analysis opens the opportunity for experimental investigation into the underlying properties of receiver non stationarity through the use of multiple calibration references. In this presentation we will discuss the application of LSR to the analysis of various calibration algorithms, requirements for experimental verification of the theory, and preliminary results from analyzing experiment measurements.

  12. Three Strategies for the Critical Use of Statistical Methods in Psychological Research

    ERIC Educational Resources Information Center

    Campitelli, Guillermo; Macbeth, Guillermo; Ospina, Raydonal; Marmolejo-Ramos, Fernando

    2017-01-01

    We present three strategies to replace the null hypothesis statistical significance testing approach in psychological research: (1) visual representation of cognitive processes and predictions, (2) visual representation of data distributions and choice of the appropriate distribution for analysis, and (3) model comparison. The three strategies…

  13. Does daily nurse staffing match ward workload variability? Three hospitals' experiences.

    PubMed

    Gabbay, Uri; Bukchin, Michael

    2009-01-01

    Nurse shortage and rising healthcare resource burdens mean that appropriate workforce use is imperative. This paper aims to evaluate whether daily nursing staffing meets ward workload needs. Nurse attendance and daily nurses' workload capacity in three hospitals were evaluated. Statistical process control was used to evaluate intra-ward nurse workload capacity and day-to-day variations. Statistical process control is a statistics-based method for process monitoring that uses charts with predefined target measure and control limits. Standardization was performed for inter-ward analysis by converting ward-specific crude measures to ward-specific relative measures by dividing observed/expected. Two charts: acceptable and tolerable daily nurse workload intensity, were defined. Appropriate staffing indicators were defined as those exceeding predefined rates within acceptable and tolerable limits (50 percent and 80 percent respectively). A total of 42 percent of the overall days fell within acceptable control limits and 71 percent within tolerable control limits. Appropriate staffing indicators were met in only 33 percent of wards regarding acceptable nurse workload intensity and in only 45 percent of wards regarding tolerable workloads. The study work did not differentiate crude nurse attendance and it did not take into account patient severity since crude bed occupancy was used. Double statistical process control charts and certain staffing indicators were used, which is open to debate. Wards that met appropriate staffing indicators prove the method's feasibility. Wards that did not meet appropriate staffing indicators prove the importance and the need for process evaluations and monitoring. Methods presented for monitoring daily staffing appropriateness are simple to implement either for intra-ward day-to-day variation by using nurse workload capacity statistical process control charts or for inter-ward evaluation using standardized measure of nurse workload intensity. The real challenge will be to develop planning systems and implement corrective interventions such as dynamic and flexible daily staffing, which will face difficulties and barriers. The paper fulfils the need for workforce utilization evaluation. A simple method using available data for daily staffing appropriateness evaluation, which is easy to implement and operate, is presented. The statistical process control method enables intra-ward evaluation, while standardization by converting crude into relative measures enables inter-ward analysis. The staffing indicator definitions enable performance evaluation. This original study uses statistical process control to develop simple standardization methods and applies straightforward statistical tools. This method is not limited to crude measures, rather it uses weighted workload measures such as nursing acuity or weighted nurse level (i.e. grade/band).

  14. A new approach for remediation of As-contaminated soil: ball mill-based technique.

    PubMed

    Shin, Yeon-Jun; Park, Sang-Min; Yoo, Jong-Chan; Jeon, Chil-Sung; Lee, Seung-Woo; Baek, Kitae

    2016-02-01

    In this study, a physical ball mill process instead of chemical extraction using toxic chemical agents was applied to remove arsenic (As) from contaminated soil. A statistical analysis was carried out to establish the optimal conditions for ball mill processing. As a result of the statistical analysis, approximately 70% of As was removed from the soil at the following conditions: 5 min, 1.0 cm, 10 rpm, and 5% of operating time, media size, rotational velocity, and soil loading conditions, respectively. A significant amount of As remained in the grinded fine soil after ball mill processing while more than 90% of soil has the original properties to be reused or recycled. As a result, the ball mill process could remove the metals bound strongly to the surface of soil by the surface grinding, which could be applied as a pretreatment before application of chemical extraction to reduce the load.

  15. Analysis of Antarctic Remote-Site Automatic Weather Station Data for Period January 1979 - February 1980.

    DTIC Science & Technology

    1982-06-01

    usefulness to the Untted States Antarctic mission as managed by the National Science Foundation. Various statistical measures were applied to the reported... statistical procedures that would evolve a general meteorological picture of each of these remote sites. Primary texts used as a basis for...processed by station for monthly, seasonal and annual statistics , as appropriate. The following outlines the evaluations completed for both

  16. Processes and subdivisions in diogenites, a multivariate statistical analysis

    NASA Technical Reports Server (NTRS)

    Harriott, T. A.; Hewins, R. H.

    1984-01-01

    Multivariate statistical techniques used on diogenite orthopyroxene analyses show the relationships that occur within diogenites and the two orthopyroxenite components (class I and II) in the polymict diogenite Garland. Cluster analysis shows that only Peckelsheim is similar to Garland class I (Fe-rich) and the other diogenites resemble Garland class II. The unique diogenite Y 75032 may be related to type I by fractionation. Factor analysis confirms the subdivision and shows that Fe does not correlate with the weakly incompatible elements across the entire pyroxene composition range, indicating that igneous fractionation is not the process controlling total diogenite composition variation. The occurrence of two groups of diogenites is interpreted as the result of sampling or mixing of two main sequences of orthopyroxene cumulates with slightly different compositions.

  17. Validation of contractor HMA testing data in the materials acceptance process - phase II : final report.

    DOT National Transportation Integrated Search

    2016-08-01

    This study conducted an analysis of the SCDOT HMA specification. A Research Steering Committee provided oversight : of the process. The research process included extensive statistical analyses of test data supplied by SCDOT. : A total of 2,789 AC tes...

  18. Stochastic or statistic? Comparing flow duration curve models in ungauged basins and changing climates

    NASA Astrophysics Data System (ADS)

    Müller, M. F.; Thompson, S. E.

    2015-09-01

    The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drives of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by a strong wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are strongly favored over statistical models.

  19. Is There a Critical Distance for Fickian Transport? - a Statistical Approach to Sub-Fickian Transport Modelling in Porous Media

    NASA Astrophysics Data System (ADS)

    Most, S.; Nowak, W.; Bijeljic, B.

    2014-12-01

    Transport processes in porous media are frequently simulated as particle movement. This process can be formulated as a stochastic process of particle position increments. At the pore scale, the geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Recent experimental data suggest that we have not yet reached the end of the need to generalize, because particle increments show statistical dependency beyond linear correlation and over many time steps. The goal of this work is to better understand the validity regions of commonly made assumptions. We are investigating after what transport distances can we observe: A statistical dependence between increments, that can be modelled as an order-k Markov process, boils down to order 1. This would be the Markovian distance for the process, where the validity of yet-unexplored non-Gaussian-but-Markovian random walks would start. A bivariate statistical dependence that simplifies to a multi-Gaussian dependence based on simple linear correlation (validity of correlated PTRW). Complete absence of statistical dependence (validity of classical PTRW/CTRW). The approach is to derive a statistical model for pore-scale transport from a powerful experimental data set via copula analysis. The model is formulated as a non-Gaussian, mutually dependent Markov process of higher order, which allows us to investigate the validity ranges of simpler models.

  20. Spatial Statistics for Tumor Cell Counting and Classification

    NASA Astrophysics Data System (ADS)

    Wirjadi, Oliver; Kim, Yoo-Jin; Breuel, Thomas

    To count and classify cells in histological sections is a standard task in histology. One example is the grading of meningiomas, benign tumors of the meninges, which requires to assess the fraction of proliferating cells in an image. As this process is very time consuming when performed manually, automation is required. To address such problems, we propose a novel application of Markov point process methods in computer vision, leading to algorithms for computing the locations of circular objects in images. In contrast to previous algorithms using such spatial statistics methods in image analysis, the present one is fully trainable. This is achieved by combining point process methods with statistical classifiers. Using simulated data, the method proposed in this paper will be shown to be more accurate and more robust to noise than standard image processing methods. On the publicly available SIMCEP benchmark for cell image analysis algorithms, the cell count performance of the present paper is significantly more accurate than results published elsewhere, especially when cells form dense clusters. Furthermore, the proposed system performs as well as a state-of-the-art algorithm for the computer-aided histological grading of meningiomas when combined with a simple k-nearest neighbor classifier for identifying proliferating cells.

  1. Algorithm for Identifying Erroneous Rain-Gauge Readings

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2005-01-01

    An algorithm analyzes rain-gauge data to identify statistical outliers that could be deemed to be erroneous readings. Heretofore, analyses of this type have been performed in burdensome manual procedures that have involved subjective judgements. Sometimes, the analyses have included computational assistance for detecting values falling outside of arbitrary limits. The analyses have been performed without statistically valid knowledge of the spatial and temporal variations of precipitation within rain events. In contrast, the present algorithm makes it possible to automate such an analysis, makes the analysis objective, takes account of the spatial distribution of rain gauges in conjunction with the statistical nature of spatial variations in rainfall readings, and minimizes the use of arbitrary criteria. The algorithm implements an iterative process that involves nonparametric statistics.

  2. On the Use of Statistics in Design and the Implications for Deterministic Computer Experiments

    NASA Technical Reports Server (NTRS)

    Simpson, Timothy W.; Peplinski, Jesse; Koch, Patrick N.; Allen, Janet K.

    1997-01-01

    Perhaps the most prevalent use of statistics in engineering design is through Taguchi's parameter and robust design -- using orthogonal arrays to compute signal-to-noise ratios in a process of design improvement. In our view, however, there is an equally exciting use of statistics in design that could become just as prevalent: it is the concept of metamodeling whereby statistical models are built to approximate detailed computer analysis codes. Although computers continue to get faster, analysis codes always seem to keep pace so that their computational time remains non-trivial. Through metamodeling, approximations of these codes are built that are orders of magnitude cheaper to run. These metamodels can then be linked to optimization routines for fast analysis, or they can serve as a bridge for integrating analysis codes across different domains. In this paper we first review metamodeling techniques that encompass design of experiments, response surface methodology, Taguchi methods, neural networks, inductive learning, and kriging. We discuss their existing applications in engineering design and then address the dangers of applying traditional statistical techniques to approximate deterministic computer analysis codes. We conclude with recommendations for the appropriate use of metamodeling techniques in given situations and how common pitfalls can be avoided.

  3. Information integration and diagnosis analysis of equipment status and production quality for machining process

    NASA Astrophysics Data System (ADS)

    Zan, Tao; Wang, Min; Hu, Jianzhong

    2010-12-01

    Machining status monitoring technique by multi-sensors can acquire and analyze the machining process information to implement abnormity diagnosis and fault warning. Statistical quality control technique is normally used to distinguish abnormal fluctuations from normal fluctuations through statistical method. In this paper by comparing the advantages and disadvantages of the two methods, the necessity and feasibility of integration and fusion is introduced. Then an approach that integrates multi-sensors status monitoring and statistical process control based on artificial intelligent technique, internet technique and database technique is brought forward. Based on virtual instrument technique the author developed the machining quality assurance system - MoniSysOnline, which has been used to monitoring the grinding machining process. By analyzing the quality data and AE signal information of wheel dressing process the reason of machining quality fluctuation has been obtained. The experiment result indicates that the approach is suitable for the status monitoring and analyzing of machining process.

  4. Applications of the DOE/NASA wind turbine engineering information system

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Spera, D. A.

    1981-01-01

    A statistical analysis of data obtained from the Technology and Engineering Information Systems was made. The systems analyzed consist of the following elements: (1) sensors which measure critical parameters (e.g., wind speed and direction, output power, blade loads and component vibrations); (2) remote multiplexing units (RMUs) on each wind turbine which frequency-modulate, multiplex and transmit sensor outputs; (3) on-site instrumentation to record, process and display the sensor output; and (4) statistical analysis of data. Two examples of the capabilities of these systems are presented. The first illustrates the standardized format for application of statistical analysis to each directly measured parameter. The second shows the use of a model to estimate the variability of the rotor thrust loading, which is a derived parameter.

  5. Wavelet analysis of polarization maps of polycrystalline biological fluids networks

    NASA Astrophysics Data System (ADS)

    Ushenko, Y. A.

    2011-12-01

    The optical model of human joints synovial fluid is proposed. The statistic (statistic moments), correlation (autocorrelation function) and self-similar (Log-Log dependencies of power spectrum) structure of polarization two-dimensional distributions (polarization maps) of synovial fluid has been analyzed. It has been shown that differentiation of polarization maps of joint synovial fluid with different physiological state samples is expected of scale-discriminative analysis. To mark out of small-scale domain structure of synovial fluid polarization maps, the wavelet analysis has been used. The set of parameters, which characterize statistic, correlation and self-similar structure of wavelet coefficients' distributions of different scales of polarization domains for diagnostics and differentiation of polycrystalline network transformation connected with the pathological processes, has been determined.

  6. Statistical analysis of RHIC beam position monitors performance

    NASA Astrophysics Data System (ADS)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  7. SimHap GUI: an intuitive graphical user interface for genetic association analysis.

    PubMed

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-12-25

    Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.

  8. Jllumina - A comprehensive Java-based API for statistical Illumina Infinium HumanMethylation450 and Infinium MethylationEPIC BeadChip data processing.

    PubMed

    Almeida, Diogo; Skov, Ida; Lund, Jesper; Mohammadnejad, Afsaneh; Silva, Artur; Vandin, Fabio; Tan, Qihua; Baumbach, Jan; Röttger, Richard

    2016-10-01

    Measuring differential methylation of the DNA is the nowadays most common approach to linking epigenetic modifications to diseases (called epigenome-wide association studies, EWAS). For its low cost, its efficiency and easy handling, the Illumina HumanMethylation450 BeadChip and its successor, the Infinium MethylationEPIC BeadChip, is the by far most popular techniques for conduction EWAS in large patient cohorts. Despite the popularity of this chip technology, raw data processing and statistical analysis of the array data remains far from trivial and still lacks dedicated software libraries enabling high quality and statistically sound downstream analyses. As of yet, only R-based solutions are freely available for low-level processing of the Illumina chip data. However, the lack of alternative libraries poses a hurdle for the development of new bioinformatic tools, in particular when it comes to web services or applications where run time and memory consumption matter, or EWAS data analysis is an integrative part of a bigger framework or data analysis pipeline. We have therefore developed and implemented Jllumina, an open-source Java library for raw data manipulation of Illumina Infinium HumanMethylation450 and Infinium MethylationEPIC BeadChip data, supporting the developer with Java functions covering reading and preprocessing the raw data, down to statistical assessment, permutation tests, and identification of differentially methylated loci. Jllumina is fully parallelizable and publicly available at http://dimmer.compbio.sdu.dk/download.html.

  9. Jllumina - A comprehensive Java-based API for statistical Illumina Infinium HumanMethylation450 and MethylationEPIC data processing.

    PubMed

    Almeida, Diogo; Skov, Ida; Lund, Jesper; Mohammadnejad, Afsaneh; Silva, Artur; Vandin, Fabio; Tan, Qihua; Baumbach, Jan; Röttger, Richard

    2016-12-18

    Measuring differential methylation of the DNA is the nowadays most common approach to linking epigenetic modifications to diseases (called epigenome-wide association studies, EWAS). For its low cost, its efficiency and easy handling, the Illumina HumanMethylation450 BeadChip and its successor, the Infinium MethylationEPIC BeadChip, is the by far most popular techniques for conduction EWAS in large patient cohorts. Despite the popularity of this chip technology, raw data processing and statistical analysis of the array data remains far from trivial and still lacks dedicated software libraries enabling high quality and statistically sound downstream analyses. As of yet, only R-based solutions are freely available for low-level processing of the Illumina chip data. However, the lack of alternative libraries poses a hurdle for the development of new bioinformatic tools, in particular when it comes to web services or applications where run time and memory consumption matter, or EWAS data analysis is an integrative part of a bigger framework or data analysis pipeline. We have therefore developed and implemented Jllumina, an open-source Java library for raw data manipulation of Illumina Infinium HumanMethylation450 and Infinium MethylationEPIC BeadChip data, supporting the developer with Java functions covering reading and preprocessing the raw data, down to statistical assessment, permutation tests, and identification of differentially methylated loci. Jllumina is fully parallelizable and publicly available at http://dimmer.compbio.sdu.dk/download.html.

  10. Improving Robustness of Hydrologic Ensemble Predictions Through Probabilistic Pre- and Post-Processing in Sequential Data Assimilation

    NASA Astrophysics Data System (ADS)

    Wang, S.; Ancell, B. C.; Huang, G. H.; Baetz, B. W.

    2018-03-01

    Data assimilation using the ensemble Kalman filter (EnKF) has been increasingly recognized as a promising tool for probabilistic hydrologic predictions. However, little effort has been made to conduct the pre- and post-processing of assimilation experiments, posing a significant challenge in achieving the best performance of hydrologic predictions. This paper presents a unified data assimilation framework for improving the robustness of hydrologic ensemble predictions. Statistical pre-processing of assimilation experiments is conducted through the factorial design and analysis to identify the best EnKF settings with maximized performance. After the data assimilation operation, statistical post-processing analysis is also performed through the factorial polynomial chaos expansion to efficiently address uncertainties in hydrologic predictions, as well as to explicitly reveal potential interactions among model parameters and their contributions to the predictive accuracy. In addition, the Gaussian anamorphosis is used to establish a seamless bridge between data assimilation and uncertainty quantification of hydrologic predictions. Both synthetic and real data assimilation experiments are carried out to demonstrate feasibility and applicability of the proposed methodology in the Guadalupe River basin, Texas. Results suggest that statistical pre- and post-processing of data assimilation experiments provide meaningful insights into the dynamic behavior of hydrologic systems and enhance robustness of hydrologic ensemble predictions.

  11. An empirical analysis of the distribution of the duration of overshoots in a stationary gaussian stochastic process

    NASA Technical Reports Server (NTRS)

    Parrish, R. S.; Carter, M. C.

    1974-01-01

    This analysis utilizes computer simulation and statistical estimation. Realizations of stationary gaussian stochastic processes with selected autocorrelation functions are computer simulated. Analysis of the simulated data revealed that the mean and the variance of a process were functionally dependent upon the autocorrelation parameter and crossing level. Using predicted values for the mean and standard deviation, by the method of moments, the distribution parameters was estimated. Thus, given the autocorrelation parameter, crossing level, mean, and standard deviation of a process, the probability of exceeding the crossing level for a particular length of time was calculated.

  12. Integrated Assessment and Improvement of the Quality Assurance System for the Cosworth Casting Process

    NASA Astrophysics Data System (ADS)

    Yousif, Dilon

    The purpose of this study was to improve the Quality Assurance (QA) System at the Nemak Windsor Aluminum Plant (WAP). The project used Six Sigma method based on Define, Measure, Analyze, Improve, and Control (DMAIC). Analysis of in process melt at WAP was based on chemical, thermal, and mechanical testing. The control limits for the W319 Al Alloy were statistically recalculated using the composition measured under stable conditions. The "Chemistry Viewer" software was developed for statistical analysis of alloy composition. This software features the Silicon Equivalency (SiBQ) developed by the IRC. The Melt Sampling Device (MSD) was designed and evaluated at WAP to overcome traditional sampling limitations. The Thermal Analysis "Filters" software was developed for cooling curve analysis of the 3XX Al Alloy(s) using IRC techniques. The impact of low melting point impurities on the start of melting was evaluated using the Universal Metallurgical Simulator and Analyzer (UMSA).

  13. Big-Data RHEED analysis for understanding epitaxial film growth processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in-situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED image, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the dataset are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of RHEED image sequence.more » This approach is illustrated for growth of LaxCa1-xMnO3 films grown on etched (001) SrTiO3 substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the assymetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.« less

  14. GPUs for statistical data analysis in HEP: a performance study of GooFit on GPUs vs. RooFit on CPUs

    NASA Astrophysics Data System (ADS)

    Pompili, Alexis; Di Florio, Adriano; CMS Collaboration

    2016-10-01

    In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the Jψϕ invariant mass in the three-body decay B +→JψϕK +. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerably resulting speed-up, while comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may apply or does not apply because its regularity conditions are not satisfied.

  15. [Effect of vinegar-processed Curcumae Rhizoma on bile metabolism in rats].

    PubMed

    Gu, Wei; Lu, Tu-Lin; Li, Jin-Ci; Wang, Qiao-Han; Pan, Zi-Hao; Ji, De; Li, Lin; Zhang, Ji; Mao, Chun-Qin

    2016-04-01

    To explore the effect of vinegar-processed Curcumae Rhizoma on endogenous metabolites in bile by investigating the endogenous metabolites difference in bile before and after Curcumae Rhizoma was processed with vinegar. Alcohol extracts of crude and vinegar-processed Curcumae Rhizoma, as well as normal saline were prepared respectively, which were then given to the rats by intragastric administration for 0.5 h. Then common bile duct intubation drainage was conducted to collect 12 h bile of the rats. UPLC-TOF-MS analysis of bile samples was applied after 1∶3 acetonitrile protein precipitation; unidimensional statistics were combined with multivariate statistics and PeakView software was compared with network database to identify the potential biomarkers. Vinegar-processed Curcumae Rhizoma extracts had significant effects on metabolites spectrum in bile of the rats. With the boundaries of P<0.05, 13 metabolites with significant differences were found in bile of crude and vinegar-processed Curcumae Rhizoma groups, and 8 of them were identified when considering the network database. T-test unidimensional statistical analysis was applied between administration groups and blank group to obtain 7 metabolites with significant differences and identify them as potential biomarkers. 6 of the potential biomarkers were up-regulated in vinegar-processed group, which were related to the metabolism regulation of phospholipid metabolism, fat metabolism, bile acid metabolism, and N-acylethanolamine hydrolysis reaction balance, indicating the mechanism of vinegar-processed Curcumae Rhizoma on endogenous metabolites in bile of the rats. Copyright© by the Chinese Pharmaceutical Association.

  16. Finding Balance at the Elusive Mean

    ERIC Educational Resources Information Center

    Hudson, Rick A.

    2012-01-01

    Data analysis plays an important role in people's lives. Citizens need to be able to conduct critical analyses of statistical information in the work place, in their personal lives, and when portrayed by the media. However, becoming a conscientious consumer of statistics is a gradual process. The experiences that students have with data in the…

  17. Improved analyses using function datasets and statistical modeling

    Treesearch

    John S. Hogland; Nathaniel M. Anderson

    2014-01-01

    Raster modeling is an integral component of spatial analysis. However, conventional raster modeling techniques can require a substantial amount of processing time and storage space and have limited statistical functionality and machine learning algorithms. To address this issue, we developed a new modeling framework using C# and ArcObjects and integrated that framework...

  18. The Co-Emergence of Aggregate and Modelling Reasoning

    ERIC Educational Resources Information Center

    Aridor, Keren; Ben-Zvi, Dani

    2017-01-01

    This article examines how two processes--reasoning with statistical modelling of a real phenomenon and aggregate reasoning--can co-emerge. We focus in this case study on the emergent reasoning of two fifth graders (aged 10) involved in statistical data analysis, informal inference, and modelling activities using TinkerPlots™. We describe nine…

  19. Evaluation of statistical protocols for quality control of ecosystem carbon dioxide fluxes

    Treesearch

    Jorge F. Perez-Quezada; Nicanor Z. Saliendra; William E. Emmerich; Emilio A. Laca

    2007-01-01

    The process of quality control of micrometeorological and carbon dioxide (CO2) flux data can be subjective and may lack repeatability, which would undermine the results of many studies. Multivariate statistical methods and time series analysis were used together and independently to detect and replace outliers in CO2 flux...

  20. Scaling up to address data science challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendelberger, Joanne R.

    Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less

  1. Scaling up to address data science challenges

    DOE PAGES

    Wendelberger, Joanne R.

    2017-04-27

    Statistics and Data Science provide a variety of perspectives and technical approaches for exploring and understanding Big Data. Partnerships between scientists from different fields such as statistics, machine learning, computer science, and applied mathematics can lead to innovative approaches for addressing problems involving increasingly large amounts of data in a rigorous and effective manner that takes advantage of advances in computing. Here, this article will explore various challenges in Data Science and will highlight statistical approaches that can facilitate analysis of large-scale data including sampling and data reduction methods, techniques for effective analysis and visualization of large-scale simulations, and algorithmsmore » and procedures for efficient processing.« less

  2. Statistical ecology comes of age.

    PubMed

    Gimenez, Olivier; Buckland, Stephen T; Morgan, Byron J T; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-12-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.

  3. Statistical ecology comes of age

    PubMed Central

    Gimenez, Olivier; Buckland, Stephen T.; Morgan, Byron J. T.; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M.; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M.; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-01-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data. PMID:25540151

  4. Characterization and discrimination of raw and vinegar-baked Bupleuri radix based on UHPLC-Q-TOF-MS coupled with multivariate statistical analysis.

    PubMed

    Lei, Tianli; Chen, Shifeng; Wang, Kai; Zhang, Dandan; Dong, Lin; Lv, Chongning; Wang, Jing; Lu, Jincai

    2018-02-01

    Bupleuri Radix is a commonly used herb in clinic, and raw and vinegar-baked Bupleuri Radix are both documented in the Pharmacopoeia of People's Republic of China. According to the theories of traditional Chinese medicine, Bupleuri Radix possesses different therapeutic effects before and after processing. However, the chemical mechanism of this processing is still unknown. In this study, ultra-high-performance liquid chromatography with quadruple time-of-flight mass spectrometry coupled with multivariate statistical analysis including principal component analysis and orthogonal partial least square-discriminant analysis was developed to holistically compare the difference between raw and vinegar-baked Bupleuri Radix for the first time. As a result, 50 peaks in raw and processed Bupleuri Radix were detected, respectively, and a total of 49 peak chemical compounds were identified. Saikosaponin a, saikosaponin d, saikosaponin b 3 , saikosaponin e, saikosaponin c, saikosaponin b 2 , saikosaponin b 1 , 4''-O-acetyl-saikosaponin d, hyperoside and 3',4'-dimethoxy quercetin were explored as potential markers of raw and vinegar-baked Bupleuri Radix. This study has been successfully applied for global analysis of raw and vinegar-processed samples. Furthermore, the underlying hepatoprotective mechanism of Bupleuri Radix was predicted, which was related to the changes of chemical profiling. Copyright © 2017 John Wiley & Sons, Ltd.

  5. A comprehensive analysis of the IMRT dose delivery process using statistical process control (SPC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerard, Karine; Grandhaye, Jean-Pierre; Marchesi, Vincent

    The aim of this study is to introduce tools to improve the security of each IMRT patient treatment by determining action levels for the dose delivery process. To achieve this, the patient-specific quality control results performed with an ionization chamber--and which characterize the dose delivery process--have been retrospectively analyzed using a method borrowed from industry: Statistical process control (SPC). The latter consisted in fulfilling four principal well-structured steps. The authors first quantified the short term variability of ionization chamber measurements regarding the clinical tolerances used in the cancer center ({+-}4% of deviation between the calculated and measured doses) by calculatingmore » a control process capability (C{sub pc}) index. The C{sub pc} index was found superior to 4, which implies that the observed variability of the dose delivery process is not biased by the short term variability of the measurement. Then, the authors demonstrated using a normality test that the quality control results could be approximated by a normal distribution with two parameters (mean and standard deviation). Finally, the authors used two complementary tools--control charts and performance indices--to thoroughly analyze the IMRT dose delivery process. Control charts aim at monitoring the process over time using statistical control limits to distinguish random (natural) variations from significant changes in the process, whereas performance indices aim at quantifying the ability of the process to produce data that are within the clinical tolerances, at a precise moment. The authors retrospectively showed that the analysis of three selected control charts (individual value, moving-range, and EWMA control charts) allowed efficient drift detection of the dose delivery process for prostate and head-and-neck treatments before the quality controls were outside the clinical tolerances. Therefore, when analyzed in real time, during quality controls, they should improve the security of treatments. They also showed that the dose delivery processes in the cancer center were in control for prostate and head-and-neck treatments. In parallel, long term process performance indices (P{sub p}, P{sub pk}, and P{sub pm}) have been analyzed. Their analysis helped defining which actions should be undertaken in order to improve the performance of the process. The prostate dose delivery process has been shown statistically capable (0.08% of the results is expected to be outside the clinical tolerances) contrary to the head-and-neck dose delivery process (5.76% of the results are expected to be outside the clinical tolerances).« less

  6. A comprehensive analysis of the IMRT dose delivery process using statistical process control (SPC).

    PubMed

    Gérard, Karine; Grandhaye, Jean-Pierre; Marchesi, Vincent; Kafrouni, Hanna; Husson, François; Aletti, Pierre

    2009-04-01

    The aim of this study is to introduce tools to improve the security of each IMRT patient treatment by determining action levels for the dose delivery process. To achieve this, the patient-specific quality control results performed with an ionization chamber--and which characterize the dose delivery process--have been retrospectively analyzed using a method borrowed from industry: Statistical process control (SPC). The latter consisted in fulfilling four principal well-structured steps. The authors first quantified the short-term variability of ionization chamber measurements regarding the clinical tolerances used in the cancer center (+/- 4% of deviation between the calculated and measured doses) by calculating a control process capability (C(pc)) index. The C(pc) index was found superior to 4, which implies that the observed variability of the dose delivery process is not biased by the short-term variability of the measurement. Then, the authors demonstrated using a normality test that the quality control results could be approximated by a normal distribution with two parameters (mean and standard deviation). Finally, the authors used two complementary tools--control charts and performance indices--to thoroughly analyze the IMRT dose delivery process. Control charts aim at monitoring the process over time using statistical control limits to distinguish random (natural) variations from significant changes in the process, whereas performance indices aim at quantifying the ability of the process to produce data that are within the clinical tolerances, at a precise moment. The authors retrospectively showed that the analysis of three selected control charts (individual value, moving-range, and EWMA control charts) allowed efficient drift detection of the dose delivery process for prostate and head-and-neck treatments before the quality controls were outside the clinical tolerances. Therefore, when analyzed in real time, during quality controls, they should improve the security of treatments. They also showed that the dose delivery processes in the cancer center were in control for prostate and head-and-neck treatments. In parallel, long-term process performance indices (P(p), P(pk), and P(pm)) have been analyzed. Their analysis helped defining which actions should be undertaken in order to improve the performance of the process. The prostate dose delivery process has been shown statistically capable (0.08% of the results is expected to be outside the clinical tolerances) contrary to the head-and-neck dose delivery process (5.76% of the results are expected to be outside the clinical tolerances).

  7. A PROPOSED CHEMICAL INFORMATION AND DATA SYSTEM. VOLUME I.

    DTIC Science & Technology

    CHEMICAL COMPOUNDS, *DATA PROCESSING, *INFORMATION RETRIEVAL, * CHEMICAL ANALYSIS, INPUT OUTPUT DEVICES, COMPUTER PROGRAMMING, CLASSIFICATION...CONFIGURATIONS, DATA STORAGE SYSTEMS, ATOMS, MOLECULES, PERFORMANCE( ENGINEERING ), MAINTENANCE, SUBJECT INDEXING, MAGNETIC TAPE, AUTOMATIC, MILITARY REQUIREMENTS, TYPEWRITERS, OPTICS, TOPOLOGY, STATISTICAL ANALYSIS, FLOW CHARTING.

  8. Digital image analysis techniques for fiber and soil mixtures.

    DOT National Transportation Integrated Search

    1999-05-01

    The objective of image processing is to visually enhance, quantify, and/or statistically evaluate some aspect of an image not readily apparent in its original form. Processed digital image data can be analyzed in numerous ways. In order to summarize ...

  9. Ultrasound-enhanced bioscouring of greige cotton: regression analysis of process factors

    USDA-ARS?s Scientific Manuscript database

    Ultrasound-enhanced bioscouring process factors for greige cotton fabric are examined using custom experimental design utilizing statistical principles. An equation is presented which predicts bioscouring performance based upon percent reflectance values obtained from UV-Vis measurements of rutheniu...

  10. Statistical interpretation of chromatic indicators in correlation to phytochemical profile of a sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes.

    PubMed

    Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T

    2018-01-15

    The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.

  11. A user-friendly workflow for analysis of Illumina gene expression bead array data available at the arrayanalysis.org portal.

    PubMed

    Eijssen, Lars M T; Goelela, Varshna S; Kelder, Thomas; Adriaens, Michiel E; Evelo, Chris T; Radonjic, Marijana

    2015-06-30

    Illumina whole-genome expression bead arrays are a widely used platform for transcriptomics. Most of the tools available for the analysis of the resulting data are not easily applicable by less experienced users. ArrayAnalysis.org provides researchers with an easy-to-use and comprehensive interface to the functionality of R and Bioconductor packages for microarray data analysis. As a modular open source project, it allows developers to contribute modules that provide support for additional types of data or extend workflows. To enable data analysis of Illumina bead arrays for a broad user community, we have developed a module for ArrayAnalysis.org that provides a free and user-friendly web interface for quality control and pre-processing for these arrays. This module can be used together with existing modules for statistical and pathway analysis to provide a full workflow for Illumina gene expression data analysis. The module accepts data exported from Illumina's GenomeStudio, and provides the user with quality control plots and normalized data. The outputs are directly linked to the existing statistics module of ArrayAnalysis.org, but can also be downloaded for further downstream analysis in third-party tools. The Illumina bead arrays analysis module is available at http://www.arrayanalysis.org . A user guide, a tutorial demonstrating the analysis of an example dataset, and R scripts are available. The module can be used as a starting point for statistical evaluation and pathway analysis provided on the website or to generate processed input data for a broad range of applications in life sciences research.

  12. Texture as a basis for acoustic classification of substrate in the nearshore region

    NASA Astrophysics Data System (ADS)

    Dennison, A.; Wattrus, N. J.

    2016-12-01

    Segmentation and classification of substrate type from two locations in Lake Superior, are predicted using multivariate statistical processing of textural measures derived from shallow-water, high-resolution multibeam bathymetric data. During a multibeam sonar survey, both bathymetric and backscatter data are collected. It is well documented that the statistical characteristic of a sonar backscatter mosaic is dependent on substrate type. While classifying the bottom-type on the basis on backscatter alone can accurately predict and map bottom-type, it lacks the ability to resolve and capture fine textural details, an important factor in many habitat mapping studies. Statistical processing can capture the pertinent details about the bottom-type that are rich in textural information. Further multivariate statistical processing can then isolate characteristic features, and provide the basis for an accurate classification scheme. Preliminary results from an analysis of bathymetric data and ground-truth samples collected from the Amnicon River, Superior, Wisconsin, and the Lester River, Duluth, Minnesota, demonstrate the ability to process and develop a novel classification scheme of the bottom type in two geomorphologically distinct areas.

  13. Analysis of High-Throughput ELISA Microarray Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Amanda M.; Daly, Don S.; Zangar, Richard C.

    Our research group develops analytical methods and software for the high-throughput analysis of quantitative enzyme-linked immunosorbent assay (ELISA) microarrays. ELISA microarrays differ from DNA microarrays in several fundamental aspects and most algorithms for analysis of DNA microarray data are not applicable to ELISA microarrays. In this review, we provide an overview of the steps involved in ELISA microarray data analysis and how the statistically sound algorithms we have developed provide an integrated software suite to address the needs of each data-processing step. The algorithms discussed are available in a set of open-source software tools (http://www.pnl.gov/statistics/ProMAT).

  14. Entropy in statistical energy analysis.

    PubMed

    Le Bot, Alain

    2009-03-01

    In this paper, the second principle of thermodynamics is discussed in the framework of statistical energy analysis (SEA). It is shown that the "vibrational entropy" and the "vibrational temperature" of sub-systems only depend on the vibrational energy and the number of resonant modes. A SEA system can be described as a thermodynamic system slightly out of equilibrium. In steady-state condition, the entropy exchanged with exterior by sources and dissipation exactly balances the production of entropy by irreversible processes at interface between SEA sub-systems.

  15. Analysis of defect structure in silicon. Characterization of samples from UCP ingot 5848-13C

    NASA Technical Reports Server (NTRS)

    Natesh, R.; Guyer, T.; Stringfellow, G. B.

    1982-01-01

    Statistically significant quantitative structural imperfection measurements were made on samples from ubiquitous crystalline process (UCP) Ingot 5848 - 13 C. Important trends were noticed between the measured data, cell efficiency, and diffusion length. Grain boundary substructure appears to have an important effect on the conversion efficiency of solar cells from Semix material. Quantitative microscopy measurements give statistically significant information compared to other microanalytical techniques. A surface preparation technique to obtain proper contrast of structural defects suitable for QTM analysis was perfected.

  16. Risk-based Methodology for Validation of Pharmaceutical Batch Processes.

    PubMed

    Wiles, Frederick

    2013-01-01

    In January 2011, the U.S. Food and Drug Administration published new process validation guidance for pharmaceutical processes. The new guidance debunks the long-held industry notion that three consecutive validation batches or runs are all that are required to demonstrate that a process is operating in a validated state. Instead, the new guidance now emphasizes that the level of monitoring and testing performed during process performance qualification (PPQ) studies must be sufficient to demonstrate statistical confidence both within and between batches. In some cases, three qualification runs may not be enough. Nearly two years after the guidance was first published, little has been written defining a statistical methodology for determining the number of samples and qualification runs required to satisfy Stage 2 requirements of the new guidance. This article proposes using a combination of risk assessment, control charting, and capability statistics to define the monitoring and testing scheme required to show that a pharmaceutical batch process is operating in a validated state. In this methodology, an assessment of process risk is performed through application of a process failure mode, effects, and criticality analysis (PFMECA). The output of PFMECA is used to select appropriate levels of statistical confidence and coverage which, in turn, are used in capability calculations to determine when significant Stage 2 (PPQ) milestones have been met. The achievement of Stage 2 milestones signals the release of batches for commercial distribution and the reduction of monitoring and testing to commercial production levels. Individuals, moving range, and range/sigma charts are used in conjunction with capability statistics to demonstrate that the commercial process is operating in a state of statistical control. The new process validation guidance published by the U.S. Food and Drug Administration in January of 2011 indicates that the number of process validation batches or runs required to demonstrate that a pharmaceutical process is operating in a validated state should be based on sound statistical principles. The old rule of "three consecutive batches and you're done" is no longer sufficient. The guidance, however, does not provide any specific methodology for determining the number of runs required, and little has been published to augment this shortcoming. The paper titled "Risk-based Methodology for Validation of Pharmaceutical Batch Processes" describes a statistically sound methodology for determining when a statistically valid number of validation runs has been acquired based on risk assessment and calculation of process capability.

  17. Meta-analysis using Dirichlet process.

    PubMed

    Muthukumarana, Saman; Tiwari, Ram C

    2016-02-01

    This article develops a Bayesian approach for meta-analysis using the Dirichlet process. The key aspect of the Dirichlet process in meta-analysis is the ability to assess evidence of statistical heterogeneity or variation in the underlying effects across study while relaxing the distributional assumptions. We assume that the study effects are generated from a Dirichlet process. Under a Dirichlet process model, the study effects parameters have support on a discrete space and enable borrowing of information across studies while facilitating clustering among studies. We illustrate the proposed method by applying it to a dataset on the Program for International Student Assessment on 30 countries. Results from the data analysis, simulation studies, and the log pseudo-marginal likelihood model selection procedure indicate that the Dirichlet process model performs better than conventional alternative methods. © The Author(s) 2012.

  18. Performance analysis of Integrated Communication and Control System networks

    NASA Technical Reports Server (NTRS)

    Halevi, Y.; Ray, A.

    1990-01-01

    This paper presents statistical analysis of delays in Integrated Communication and Control System (ICCS) networks that are based on asynchronous time-division multiplexing. The models are obtained in closed form for analyzing control systems with randomly varying delays. The results of this research are applicable to ICCS design for complex dynamical processes like advanced aircraft and spacecraft, autonomous manufacturing plants, and chemical and processing plants.

  19. Mathematical Sciences Division 1992 Programs

    DTIC Science & Technology

    1992-10-01

    statistical theory that underlies modern signal analysis . There is a strong emphasis on stochastic processes and time series , particularly those which...include optimal resource planning and real- time scheduling of stochastic shop-floor processes. Scheduling systems will be developed that can adapt to...make forecasts for the length-of-service time series . Protocol analysis of these sessions will be used to idenify relevant contextual features and to

  20. On Improving the Quality and Interpretation of Environmental Assessments using Statistical Analysis and Geographic Information Systems

    NASA Astrophysics Data System (ADS)

    Karuppiah, R.; Faldi, A.; Laurenzi, I.; Usadi, A.; Venkatesh, A.

    2014-12-01

    An increasing number of studies are focused on assessing the environmental footprint of different products and processes, especially using life cycle assessment (LCA). This work shows how combining statistical methods and Geographic Information Systems (GIS) with environmental analyses can help improve the quality of results and their interpretation. Most environmental assessments in literature yield single numbers that characterize the environmental impact of a process/product - typically global or country averages, often unchanging in time. In this work, we show how statistical analysis and GIS can help address these limitations. For example, we demonstrate a method to separately quantify uncertainty and variability in the result of LCA models using a power generation case study. This is important for rigorous comparisons between the impacts of different processes. Another challenge is lack of data that can affect the rigor of LCAs. We have developed an approach to estimate environmental impacts of incompletely characterized processes using predictive statistical models. This method is applied to estimate unreported coal power plant emissions in several world regions. There is also a general lack of spatio-temporal characterization of the results in environmental analyses. For instance, studies that focus on water usage do not put in context where and when water is withdrawn. Through the use of hydrological modeling combined with GIS, we quantify water stress on a regional and seasonal basis to understand water supply and demand risks for multiple users. Another example where it is important to consider regional dependency of impacts is when characterizing how agricultural land occupation affects biodiversity in a region. We developed a data-driven methodology used in conjuction with GIS to determine if there is a statistically significant difference between the impacts of growing different crops on different species in various biomes of the world.

  1. Eruption patterns of the chilean volcanoes Villarrica, Llaima, and Tupungatito

    NASA Astrophysics Data System (ADS)

    Muñoz, Miguel

    1983-09-01

    The historical eruption records of three Chilean volcanoes have been subjected to many statistical tests, and none have been found to differ significantly from random, or Poissonian, behaviour. The statistical analysis shows rough conformity with the descriptions determined from the eruption rate functions. It is possible that a constant eruption rate describes the activity of Villarrica; Llaima and Tupungatito present complex eruption rate patterns that appear, however, to have no statistical significance. Questions related to loading and extinction processes and to the existence of shallow secondary magma chambers to which magma is supplied from a deeper system are also addressed. The analysis and the computation of the serial correlation coefficients indicate that the three series may be regarded as stationary renewal processes. None of the test statistics indicates rejection of the Poisson hypothesis at a level less than 5%, but the coefficient of variation for the eruption series at Llaima is significantly different from the value expected for a Poisson process. Also, the estimates of the normalized spectrum of the counting process for the three series suggest a departure from the random model, but the deviations are not found to be significant at the 5% level. Kolmogorov-Smirnov and chi-squared test statistics, applied directly to ascertaining to which probability P the random Poisson model fits the data, indicate that there is significant agreement in the case of Villarrica ( P=0.59) and Tupungatito ( P=0.3). Even though the P-value for Llaima is a marginally significant 0.1 (which is equivalent to rejecting the Poisson model at the 90% confidence level), the series suggests that nonrandom features are possibly present in the eruptive activity of this volcano.

  2. A statistical analysis of the daily streamflow hydrograph

    NASA Astrophysics Data System (ADS)

    Kavvas, M. L.; Delleur, J. W.

    1984-03-01

    In this study a periodic statistical analysis of daily streamflow data in Indiana, U.S.A., was performed to gain some new insight into the stochastic structure which describes the daily streamflow process. This analysis was performed by the periodic mean and covariance functions of the daily streamflows, by the time and peak discharge -dependent recession limb of the daily streamflow hydrograph, by the time and discharge exceedance level (DEL) -dependent probability distribution of the hydrograph peak interarrival time, and by the time-dependent probability distribution of the time to peak discharge. Some new statistical estimators were developed and used in this study. In general features, this study has shown that: (a) the persistence properties of daily flows depend on the storage state of the basin at the specified time origin of the flow process; (b) the daily streamflow process is time irreversible; (c) the probability distribution of the daily hydrograph peak interarrival time depends both on the occurrence time of the peak from which the inter-arrival time originates and on the discharge exceedance level; and (d) if the daily streamflow process is modeled as the release from a linear watershed storage, this release should depend on the state of the storage and on the time of the release as the persistence properties and the recession limb decay rates were observed to change with the state of the watershed storage and time. Therefore, a time-varying reservoir system needs to be considered if the daily streamflow process is to be modeled as the release from a linear watershed storage.

  3. Organization and Carrying out the Educational Experiment and Statistical Analysis of Its Results in IHL

    ERIC Educational Resources Information Center

    Sidorov, Oleg V.; Kozub, Lyubov' V.; Goferberg, Alexander V.; Osintseva, Natalya V.

    2018-01-01

    The article discusses the methodological approach to the technology of the educational experiment performance, the ways of the research data processing by means of research methods and methods of mathematical statistics. The article shows the integrated use of some effective approaches to the training of the students majoring in…

  4. A Computer Evolution in Teaching Undergraduate Time Series

    ERIC Educational Resources Information Center

    Hodgess, Erin M.

    2004-01-01

    In teaching undergraduate time series courses, we have used a mixture of various statistical packages. We have finally been able to teach all of the applied concepts within one statistical package; R. This article describes the process that we use to conduct a thorough analysis of a time series. An example with a data set is provided. We compare…

  5. Multivariate Statistical Analysis: a tool for groundwater quality assessment in the hidrogeologic region of the Ring of Cenotes, Yucatan, Mexico.

    NASA Astrophysics Data System (ADS)

    Ye, M.; Pacheco Castro, R. B.; Pacheco Avila, J.; Cabrera Sansores, A.

    2014-12-01

    The karstic aquifer of Yucatan is a vulnerable and complex system. The first fifteen meters of this aquifer have been polluted, due to this the protection of this resource is important because is the only source of potable water of the entire State. Through the assessment of groundwater quality we can gain some knowledge about the main processes governing water chemistry as well as spatial patterns which are important to establish protection zones. In this work multivariate statistical techniques are used to assess the groundwater quality of the supply wells (30 to 40 meters deep) in the hidrogeologic region of the Ring of Cenotes, located in Yucatan, Mexico. Cluster analysis and principal component analysis are applied in groundwater chemistry data of the study area. Results of principal component analysis show that the main sources of variation in the data are due sea water intrusion and the interaction of the water with the carbonate rocks of the system and some pollution processes. The cluster analysis shows that the data can be divided in four clusters. The spatial distribution of the clusters seems to be random, but is consistent with sea water intrusion and pollution with nitrates. The overall results show that multivariate statistical analysis can be successfully applied in the groundwater quality assessment of this karstic aquifer.

  6. Statistical validation and an empirical model of hydrogen production enhancement found by utilizing passive flow disturbance in the steam-reformation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Paul A.; Liao, Chang-hsien

    2007-11-15

    A passive flow disturbance has been proven to enhance the conversion of fuel in a methanol-steam reformer. This study presents a statistical validation of the experiment based on a standard 2{sup k} factorial experiment design and the resulting empirical model of the enhanced hydrogen producing process. A factorial experiment design was used to statistically analyze the effects and interactions of various input factors in the experiment. Three input factors, including the number of flow disturbers, catalyst size, and reactant flow rate were investigated for their effects on the fuel conversion in the steam-reformation process. Based on the experimental results, anmore » empirical model was developed and further evaluated with an uncertainty analysis and interior point data. (author)« less

  7. Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory

    NASA Astrophysics Data System (ADS)

    Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.

    2011-10-01

    The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 yr, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterize the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. This is done in three steps: First, we analyze the historical eruptive series to assess independence and homogeneity of the process. Second, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Third, we analyze the non-homogeneous Poisson process with a generalized Pareto distribution as the intensity function.

  8. TQM (Total Quality Management) SPARC (Special Process Action Review Committees) Handbook

    DTIC Science & Technology

    1989-08-01

    This document describes the techniques used to support and guide the Special Process Action Review Committees for accomplishing their goals for Total Quality Management (TQM). It includes concepts and definitions, checklists, sample formats, and assessment criteria. Keywords: Continuous process improvement; Logistics information; Process analysis; Quality control; Quality assurance; Total Quality Management ; Statistical processes; Management Planning and control; Management training; Management information systems.

  9. Monitoring of bread cooling by statistical analysis of laser speckle patterns

    NASA Astrophysics Data System (ADS)

    Lyubenova, Tanya; Stoykova, Elena; Nacheva, Elena; Ivanov, Branimir; Panchev, Ivan; Sainov, Ventseslav

    2013-03-01

    The phenomenon of laser speckle can be used for detection and visualization of physical or biological activity in various objects (e.g. fruits, seeds, coatings) through statistical description of speckle dynamics. The paper presents the results of non-destructive monitoring of bread cooling by co-occurrence matrix and temporal structure function analysis of speckle patterns which have been recorded continuously within a few days. In total, 72960 and 39680 images were recorded and processed for two similar bread samples respectively. The experiments proved the expected steep decrease of activity related to the processes in the bread samples during the first several hours and revealed its oscillating character within the next few days. Characterization of activity over the bread sample surface was also obtained.

  10. Effect of delayed auditory feedback on stuttering with and without central auditory processing disorders.

    PubMed

    Picoloto, Luana Altran; Cardoso, Ana Cláudia Vieira; Cerqueira, Amanda Venuti; Oliveira, Cristiane Moço Canhetti de

    2017-12-07

    To verify the effect of delayed auditory feedback on speech fluency of individuals who stutter with and without central auditory processing disorders. The participants were twenty individuals with stuttering from 7 to 17 years old and were divided into two groups: Stuttering Group with Auditory Processing Disorders (SGAPD): 10 individuals with central auditory processing disorders, and Stuttering Group (SG): 10 individuals without central auditory processing disorders. Procedures were: fluency assessment with non-altered auditory feedback (NAF) and delayed auditory feedback (DAF), assessment of the stuttering severity and central auditory processing (CAP). Phono Tools software was used to cause a delay of 100 milliseconds in the auditory feedback. The "Wilcoxon Signal Post" test was used in the intragroup analysis and "Mann-Whitney" test in the intergroup analysis. The DAF caused a statistically significant reduction in SG: in the frequency score of stuttering-like disfluencies in the analysis of the Stuttering Severity Instrument, in the amount of blocks and repetitions of monosyllabic words, and in the frequency of stuttering-like disfluencies of duration. Delayed auditory feedback did not cause statistically significant effects on SGAPD fluency, individuals with stuttering with auditory processing disorders. The effect of delayed auditory feedback in speech fluency of individuals who stutter was different in individuals of both groups, because there was an improvement in fluency only in individuals without auditory processing disorder.

  11. Analysis and Evaluation of the LANDSAT-4 MSS and TM Sensors and Ground Data Processing Systems: Early Results

    NASA Technical Reports Server (NTRS)

    Bernstein, R.; Lotspiech, J. B.

    1985-01-01

    The MSS and TM sensor performances were evaluated by studying both the sensors and the characteristics of the data. Information content analysis, image statistics, band-to-band registration, the presence of failed or failing detectors, and sensor resolution are discussed. The TM data were explored from the point of view of adequacy of the ground processing and improvements that could be made to compensate for sensor problems and deficiencies. Radiometric correction processing, compensation for a failed detector, and geometric correction processing are also considered.

  12. SimHap GUI: An intuitive graphical user interface for genetic association analysis

    PubMed Central

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-01-01

    Background Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. Results We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. Conclusion SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis. PMID:19109877

  13. Statistical analysis and digital processing of the Mössbauer spectra

    NASA Astrophysics Data System (ADS)

    Prochazka, Roman; Tucek, Pavel; Tucek, Jiri; Marek, Jaroslav; Mashlan, Miroslav; Pechousek, Jiri

    2010-02-01

    This work is focused on using the statistical methods and development of the filtration procedures for signal processing in Mössbauer spectroscopy. Statistical tools for noise filtering in the measured spectra are used in many scientific areas. The use of a pure statistical approach in accumulated Mössbauer spectra filtration is described. In Mössbauer spectroscopy, the noise can be considered as a Poisson statistical process with a Gaussian distribution for high numbers of observations. This noise is a superposition of the non-resonant photons counting with electronic noise (from γ-ray detection and discrimination units), and the velocity system quality that can be characterized by the velocity nonlinearities. The possibility of a noise-reducing process using a new design of statistical filter procedure is described. This mathematical procedure improves the signal-to-noise ratio and thus makes it easier to determine the hyperfine parameters of the given Mössbauer spectra. The filter procedure is based on a periodogram method that makes it possible to assign the statistically important components in the spectral domain. The significance level for these components is then feedback-controlled using the correlation coefficient test results. The estimation of the theoretical correlation coefficient level which corresponds to the spectrum resolution is performed. Correlation coefficient test is based on comparison of the theoretical and the experimental correlation coefficients given by the Spearman method. The correctness of this solution was analyzed by a series of statistical tests and confirmed by many spectra measured with increasing statistical quality for a given sample (absorber). The effect of this filter procedure depends on the signal-to-noise ratio and the applicability of this method has binding conditions.

  14. Big-data reflection high energy electron diffraction analysis for understanding epitaxial film growth processes.

    PubMed

    Vasudevan, Rama K; Tselev, Alexander; Baddorf, Arthur P; Kalinin, Sergei V

    2014-10-28

    Reflection high energy electron diffraction (RHEED) has by now become a standard tool for in situ monitoring of film growth by pulsed laser deposition and molecular beam epitaxy. Yet despite the widespread adoption and wealth of information in RHEED images, most applications are limited to observing intensity oscillations of the specular spot, and much additional information on growth is discarded. With ease of data acquisition and increased computation speeds, statistical methods to rapidly mine the data set are now feasible. Here, we develop such an approach to the analysis of the fundamental growth processes through multivariate statistical analysis of a RHEED image sequence. This approach is illustrated for growth of La(x)Ca(1-x)MnO(3) films grown on etched (001) SrTiO(3) substrates, but is universal. The multivariate methods including principal component analysis and k-means clustering provide insight into the relevant behaviors, the timing and nature of a disordered to ordered growth change, and highlight statistically significant patterns. Fourier analysis yields the harmonic components of the signal and allows separation of the relevant components and baselines, isolating the asymmetric nature of the step density function and the transmission spots from the imperfect layer-by-layer (LBL) growth. These studies show the promise of big data approaches to obtaining more insight into film properties during and after epitaxial film growth. Furthermore, these studies open the pathway to use forward prediction methods to potentially allow significantly more control over growth process and hence final film quality.

  15. Real-time monitoring of a coffee roasting process with near infrared spectroscopy using multivariate statistical analysis: A feasibility study.

    PubMed

    Catelani, Tiago A; Santos, João Rodrigo; Páscoa, Ricardo N M J; Pezza, Leonardo; Pezza, Helena R; Lopes, João A

    2018-03-01

    This work proposes the use of near infrared (NIR) spectroscopy in diffuse reflectance mode and multivariate statistical process control (MSPC) based on principal component analysis (PCA) for real-time monitoring of the coffee roasting process. The main objective was the development of a MSPC methodology able to early detect disturbances to the roasting process resourcing to real-time acquisition of NIR spectra. A total of fifteen roasting batches were defined according to an experimental design to develop the MSPC models. This methodology was tested on a set of five batches where disturbances of different nature were imposed to simulate real faulty situations. Some of these batches were used to optimize the model while the remaining was used to test the methodology. A modelling strategy based on a time sliding window provided the best results in terms of distinguishing batches with and without disturbances, resourcing to typical MSPC charts: Hotelling's T 2 and squared predicted error statistics. A PCA model encompassing a time window of four minutes with three principal components was able to efficiently detect all disturbances assayed. NIR spectroscopy combined with the MSPC approach proved to be an adequate auxiliary tool for coffee roasters to detect faults in a conventional roasting process in real-time. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Information Technology.

    ERIC Educational Resources Information Center

    Marcum, Deanna; Boss, Richard

    1983-01-01

    Relates office automation to its application in libraries, discussing computer software packages for microcomputers performing tasks involved in word processing, accounting, statistical analysis, electronic filing cabinets, and electronic mail systems. (EJS)

  17. GeneLab

    NASA Technical Reports Server (NTRS)

    Berrios, Daniel C.; Thompson, Terri G.

    2015-01-01

    NASA GeneLab is expected to capture and distribute omics data and experimental and process conditions most relevant to research community in their statistical and theoretical analysis of NASAs omics data.

  18. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle.

    PubMed

    Craven, Galen T; Nitzan, Abraham

    2018-01-28

    Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.

  19. Upside/Downside statistical mechanics of nonequilibrium Brownian motion. I. Distributions, moments, and correlation functions of a free particle

    NASA Astrophysics Data System (ADS)

    Craven, Galen T.; Nitzan, Abraham

    2018-01-01

    Statistical properties of Brownian motion that arise by analyzing, separately, trajectories over which the system energy increases (upside) or decreases (downside) with respect to a threshold energy level are derived. This selective analysis is applied to examine transport properties of a nonequilibrium Brownian process that is coupled to multiple thermal sources characterized by different temperatures. Distributions, moments, and correlation functions of a free particle that occur during upside and downside events are investigated for energy activation and energy relaxation processes and also for positive and negative energy fluctuations from the average energy. The presented results are sufficiently general and can be applied without modification to the standard Brownian motion. This article focuses on the mathematical basis of this selective analysis. In subsequent articles in this series, we apply this general formalism to processes in which heat transfer between thermal reservoirs is mediated by activated rate processes that take place in a system bridging them.

  20. Statistical Process Control for KSC Processing

    NASA Technical Reports Server (NTRS)

    Ford, Roger G.; Delgado, Hector; Tilley, Randy

    1996-01-01

    The 1996 Summer Faculty Fellowship Program and Kennedy Space Center (KSC) served as the basis for a research effort into statistical process control for KSC processing. The effort entailed several tasks and goals. The first was to develop a customized statistical process control (SPC) course for the Safety and Mission Assurance Trends Analysis Group. The actual teaching of this course took place over several weeks. In addition, an Internet version of the same course complete with animation and video excerpts from the course when it was taught at KSC was developed. The application of SPC to shuttle processing took up the rest of the summer research project. This effort entailed the evaluation of SPC use at KSC, both present and potential, due to the change in roles for NASA and the Single Flight Operations Contractor (SFOC). Individual consulting on SPC use was accomplished as well as an evaluation of SPC software for KSC use in the future. A final accomplishment of the orientation of the author to NASA changes, terminology, data format, and new NASA task definitions will allow future consultation when the needs arise.

  1. CISN ShakeAlert Earthquake Early Warning System Monitoring Tools

    NASA Astrophysics Data System (ADS)

    Henson, I. H.; Allen, R. M.; Neuhauser, D. S.

    2015-12-01

    CISN ShakeAlert is a prototype earthquake early warning system being developed and tested by the California Integrated Seismic Network. The system has recently been expanded to support redundant data processing and communications. It now runs on six machines at three locations with ten Apache ActiveMQ message brokers linking together 18 waveform processors, 12 event association processes and 4 Decision Module alert processes. The system ingests waveform data from about 500 stations and generates many thousands of triggers per day, from which a small portion produce earthquake alerts. We have developed interactive web browser system-monitoring tools that display near real time state-of-health and performance information. This includes station availability, trigger statistics, communication and alert latencies. Connections to regional earthquake catalogs provide a rapid assessment of the Decision Module hypocenter accuracy. Historical performance can be evaluated, including statistics for hypocenter and origin time accuracy and alert time latencies for different time periods, magnitude ranges and geographic regions. For the ElarmS event associator, individual earthquake processing histories can be examined, including details of the transmission and processing latencies associated with individual P-wave triggers. Individual station trigger and latency statistics are available. Detailed information about the ElarmS trigger association process for both alerted events and rejected events is also available. The Google Web Toolkit and Map API have been used to develop interactive web pages that link tabular and geographic information. Statistical analysis is provided by the R-Statistics System linked to a PostgreSQL database.

  2. Implementing a Web-Based Decision Support System to Spatially and Statistically Analyze Ecological Conditions of the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Nguyen, A.; Mueller, C.; Brooks, A. N.; Kislik, E. A.; Baney, O. N.; Ramirez, C.; Schmidt, C.; Torres-Perez, J. L.

    2014-12-01

    The Sierra Nevada is experiencing changes in hydrologic regimes, such as decreases in snowmelt and peak runoff, which affect forest health and the availability of water resources. Currently, the USDA Forest Service Region 5 is undergoing Forest Plan revisions to include climate change impacts into mitigation and adaptation strategies. However, there are few processes in place to conduct quantitative assessments of forest conditions in relation to mountain hydrology, while easily and effectively delivering that information to forest managers. To assist the USDA Forest Service, this study is the final phase of a three-term project to create a Decision Support System (DSS) to allow ease of access to historical and forecasted hydrologic, climatic, and terrestrial conditions for the entire Sierra Nevada. This data is featured within three components of the DSS: the Mapping Viewer, Statistical Analysis Portal, and Geospatial Data Gateway. Utilizing ArcGIS Online, the Sierra DSS Mapping Viewer enables users to visually analyze and locate areas of interest. Once the areas of interest are targeted, the Statistical Analysis Portal provides subbasin level statistics for each variable over time by utilizing a recently developed web-based data analysis and visualization tool called Plotly. This tool allows users to generate graphs and conduct statistical analyses for the Sierra Nevada without the need to download the dataset of interest. For more comprehensive analysis, users are also able to download datasets via the Geospatial Data Gateway. The third phase of this project focused on Python-based data processing, the adaptation of the multiple capabilities of ArcGIS Online and Plotly, and the integration of the three Sierra DSS components within a website designed specifically for the USDA Forest Service.

  3. Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging

    PubMed Central

    Lauzon, Carolyn B.; Asman, Andrew J.; Esparza, Michael L.; Burns, Scott S.; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W.; Davis, Nicole; Cutting, Laurie E.; Landman, Bennett A.

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low dimensional manifold reveal qualitative, but clear, QA-study associations and suggest that automated outlier/anomaly detection would be feasible. PMID:23637895

  4. Simultaneous analysis and quality assurance for diffusion tensor imaging.

    PubMed

    Lauzon, Carolyn B; Asman, Andrew J; Esparza, Michael L; Burns, Scott S; Fan, Qiuyun; Gao, Yurui; Anderson, Adam W; Davis, Nicole; Cutting, Laurie E; Landman, Bennett A

    2013-01-01

    Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural mapping of in vivo tissue microarchitecture through voxel-wise mathematical modeling of multiple magnetic resonance imaging (MRI) acquisitions, each differently sensitized to water diffusion. DTI computations are fundamentally estimation processes and are sensitive to noise and artifacts. Despite widespread adoption in the neuroimaging community, maintaining consistent DTI data quality remains challenging given the propensity for patient motion, artifacts associated with fast imaging techniques, and the possibility of hardware changes/failures. Furthermore, the quantity of data acquired per voxel, the non-linear estimation process, and numerous potential use cases complicate traditional visual data inspection approaches. Currently, quality inspection of DTI data has relied on visual inspection and individual processing in DTI analysis software programs (e.g. DTIPrep, DTI-studio). However, recent advances in applied statistical methods have yielded several different metrics to assess noise level, artifact propensity, quality of tensor fit, variance of estimated measures, and bias in estimated measures. To date, these metrics have been largely studied in isolation. Herein, we select complementary metrics for integration into an automatic DTI analysis and quality assurance pipeline. The pipeline completes in 24 hours, stores statistical outputs, and produces a graphical summary quality analysis (QA) report. We assess the utility of this streamlined approach for empirical quality assessment on 608 DTI datasets from pediatric neuroimaging studies. The efficiency and accuracy of quality analysis using the proposed pipeline is compared with quality analysis based on visual inspection. The unified pipeline is found to save a statistically significant amount of time (over 70%) while improving the consistency of QA between a DTI expert and a pool of research associates. Projection of QA metrics to a low dimensional manifold reveal qualitative, but clear, QA-study associations and suggest that automated outlier/anomaly detection would be feasible.

  5. [Statistical process control applied to intensity modulated radiotherapy pretreatment controls with portal dosimetry].

    PubMed

    Villani, N; Gérard, K; Marchesi, V; Huger, S; François, P; Noël, A

    2010-06-01

    The first purpose of this study was to illustrate the contribution of statistical process control for a better security in intensity modulated radiotherapy (IMRT) treatments. This improvement is possible by controlling the dose delivery process, characterized by pretreatment quality control results. So, it is necessary to put under control portal dosimetry measurements (currently, the ionisation chamber measurements were already monitored by statistical process control thanks to statistical process control tools). The second objective was to state whether it is possible to substitute ionisation chamber with portal dosimetry in order to optimize time devoted to pretreatment quality control. At Alexis-Vautrin center, pretreatment quality controls in IMRT for prostate and head and neck treatments were performed for each beam of each patient. These controls were made with an ionisation chamber, which is the reference detector for the absolute dose measurement, and with portal dosimetry for the verification of dose distribution. Statistical process control is a statistical analysis method, coming from industry, used to control and improve the studied process quality. It uses graphic tools as control maps to follow-up process, warning the operator in case of failure, and quantitative tools to evaluate the process toward its ability to respect guidelines: this is the capability study. The study was performed on 450 head and neck beams and on 100 prostate beams. Control charts, showing drifts, both slow and weak, and also both strong and fast, of mean and standard deviation have been established and have shown special cause introduced (manual shift of the leaf gap of the multileaf collimator). Correlation between dose measured at one point, given with the EPID and the ionisation chamber has been evaluated at more than 97% and disagreement cases between the two measurements were identified. The study allowed to demonstrate the feasibility to reduce the time devoted to pretreatment controls, by substituting the ionisation chamber's measurements with those performed with EPID, and also that a statistical process control monitoring of data brought security guarantee. 2010 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  6. Bayesian statistics: estimating plant demographic parameters

    Treesearch

    James S. Clark; Michael Lavine

    2001-01-01

    There are times when external information should be brought tobear on an ecological analysis. experiments are never conducted in a knowledge-free context. The inference we draw from an observation may depend on everything else we know about the process. Bayesian analysis is a method that brings outside evidence into the analysis of experimental and observational data...

  7. Visualization and Image Analysis of Yeast Cells.

    PubMed

    Bagley, Steve

    2016-01-01

    When converting real-life data via visualization to numbers and then onto statistics the whole system needs to be considered so that conversion from the analogue to the digital is accurate and repeatable. Here we describe the points to consider when approaching yeast cell analysis visualization, processing, and analysis of a population by screening techniques.

  8. Statistical analysis of polarization-inhomogeneous Fourier spectra of laser radiation scattered by human skin in the tasks of differentiation of benign and malignant formations

    NASA Astrophysics Data System (ADS)

    Ushenko, Alexander G.; Dubolazov, Alexander V.; Ushenko, Vladimir A.; Novakovskaya, Olga Y.

    2016-07-01

    The optical model of formation of polarization structure of laser radiation scattered by polycrystalline networks of human skin in Fourier plane was elaborated. The results of investigation of the values of statistical (statistical moments of the 1st to 4th order) parameters of polarization-inhomogeneous images of skin surface in Fourier plane were presented. The diagnostic criteria of pathological process in human skin and its severity degree differentiation were determined.

  9. Analyzing Immunoglobulin Repertoires

    PubMed Central

    Chaudhary, Neha; Wesemann, Duane R.

    2018-01-01

    Somatic assembly of T cell receptor and B cell receptor (BCR) genes produces a vast diversity of lymphocyte antigen recognition capacity. The advent of efficient high-throughput sequencing of lymphocyte antigen receptor genes has recently generated unprecedented opportunities for exploration of adaptive immune responses. With these opportunities have come significant challenges in understanding the analysis techniques that most accurately reflect underlying biological phenomena. In this regard, sample preparation and sequence analysis techniques, which have largely been borrowed and adapted from other fields, continue to evolve. Here, we review current methods and challenges of library preparation, sequencing and statistical analysis of lymphocyte receptor repertoire studies. We discuss the general steps in the process of immune repertoire generation including sample preparation, platforms available for sequencing, processing of sequencing data, measurable features of the immune repertoire, and the statistical tools that can be used for analysis and interpretation of the data. Because BCR analysis harbors additional complexities, such as immunoglobulin (Ig) (i.e., antibody) gene somatic hypermutation and class switch recombination, the emphasis of this review is on Ig/BCR sequence analysis. PMID:29593723

  10. Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images

    PubMed Central

    Gutmann, Michael U.; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation. PMID:24533049

  11. Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.

    PubMed

    Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.

  12. SMALL COLOUR VISION VARIATIONS AND THEIR EFFECT IN VISUAL COLORIMETRY,

    DTIC Science & Technology

    COLOR VISION, PERFORMANCE(HUMAN), TEST EQUIPMENT, PERFORMANCE(HUMAN), CORRELATION TECHNIQUES, STATISTICAL PROCESSES, COLORS, ANALYSIS OF VARIANCE, AGING(MATERIALS), COLORIMETRY , BRIGHTNESS, ANOMALIES, PLASTICS, UNITED KINGDOM.

  13. 10 CFR 436.31 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... systems, building load simulation models, statistical regression analysis, or some combination of these..., excluding any cogeneration process for other than a federally owned building or buildings or other federally...

  14. Processing of on-board recorded data for quick analysis of aircraft performance. [rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Michaud, N. H.

    1979-01-01

    A system of independent computer programs for the processing of digitized pulse code modulated (PCM) and frequency modulated (FM) data is described. Information is stored in a set of random files and accessed to produce both statistical and graphical output. The software system is designed primarily to present these reports within a twenty-four hour period for quick analysis of the helicopter's performance.

  15. Statistics Clinic

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James

    2014-01-01

    Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.

  16. Challenges in Biomarker Discovery: Combining Expert Insights with Statistical Analysis of Complex Omics Data

    PubMed Central

    McDermott, Jason E.; Wang, Jing; Mitchell, Hugh; Webb-Robertson, Bobbie-Jo; Hafen, Ryan; Ramey, John; Rodland, Karin D.

    2012-01-01

    Introduction The advent of high throughput technologies capable of comprehensive analysis of genes, transcripts, proteins and other significant biological molecules has provided an unprecedented opportunity for the identification of molecular markers of disease processes. However, it has simultaneously complicated the problem of extracting meaningful molecular signatures of biological processes from these complex datasets. The process of biomarker discovery and characterization provides opportunities for more sophisticated approaches to integrating purely statistical and expert knowledge-based approaches. Areas covered In this review we will present examples of current practices for biomarker discovery from complex omic datasets and the challenges that have been encountered in deriving valid and useful signatures of disease. We will then present a high-level review of data-driven (statistical) and knowledge-based methods applied to biomarker discovery, highlighting some current efforts to combine the two distinct approaches. Expert opinion Effective, reproducible and objective tools for combining data-driven and knowledge-based approaches to identify predictive signatures of disease are key to future success in the biomarker field. We will describe our recommendations for possible approaches to this problem including metrics for the evaluation of biomarkers. PMID:23335946

  17. Challenges in Biomarker Discovery: Combining Expert Insights with Statistical Analysis of Complex Omics Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Jason E.; Wang, Jing; Mitchell, Hugh D.

    2013-01-01

    The advent of high throughput technologies capable of comprehensive analysis of genes, transcripts, proteins and other significant biological molecules has provided an unprecedented opportunity for the identification of molecular markers of disease processes. However, it has simultaneously complicated the problem of extracting meaningful signatures of biological processes from these complex datasets. The process of biomarker discovery and characterization provides opportunities both for purely statistical and expert knowledge-based approaches and would benefit from improved integration of the two. Areas covered In this review we will present examples of current practices for biomarker discovery from complex omic datasets and the challenges thatmore » have been encountered. We will then present a high-level review of data-driven (statistical) and knowledge-based methods applied to biomarker discovery, highlighting some current efforts to combine the two distinct approaches. Expert opinion Effective, reproducible and objective tools for combining data-driven and knowledge-based approaches to biomarker discovery and characterization are key to future success in the biomarker field. We will describe our recommendations of possible approaches to this problem including metrics for the evaluation of biomarkers.« less

  18. DnaSAM: Software to perform neutrality testing for large datasets with complex null models.

    PubMed

    Eckert, Andrew J; Liechty, John D; Tearse, Brandon R; Pande, Barnaly; Neale, David B

    2010-05-01

    Patterns of DNA sequence polymorphisms can be used to understand the processes of demography and adaptation within natural populations. High-throughput generation of DNA sequence data has historically been the bottleneck with respect to data processing and experimental inference. Advances in marker technologies have largely solved this problem. Currently, the limiting step is computational, with most molecular population genetic software allowing a gene-by-gene analysis through a graphical user interface. An easy-to-use analysis program that allows both high-throughput processing of multiple sequence alignments along with the flexibility to simulate data under complex demographic scenarios is currently lacking. We introduce a new program, named DnaSAM, which allows high-throughput estimation of DNA sequence diversity and neutrality statistics from experimental data along with the ability to test those statistics via Monte Carlo coalescent simulations. These simulations are conducted using the ms program, which is able to incorporate several genetic parameters (e.g. recombination) and demographic scenarios (e.g. population bottlenecks). The output is a set of diversity and neutrality statistics with associated probability values under a user-specified null model that are stored in easy to manipulate text file. © 2009 Blackwell Publishing Ltd.

  19. Office for Civil Rights Survey Redesign: A Feasibility Survey. Contractor Report. Statistical Analysis Report.

    ERIC Educational Resources Information Center

    Mansfield, Wendy; Farris, Elizabeth

    This report provides results of a Fast Response Survey System (FRSS) study conducted by the National Center for Education Statistics for the Office for Civil Rights (OCR). The OCR wanted input for their decision-making process on possible modifications to their biennial survey of a national sample of public school districts (PSDs). The survey, the…

  20. Counselor Training in Statistical Analysis via Electronic Processing for Research on Local and Regional Student Data. Final Report.

    ERIC Educational Resources Information Center

    Long, Thomas E.

    In this institute, the participants were trained to use peripheral computer related equipment. They were taught Fortran programming skills so they might write and redimension statistical formulary programs, and they were trained to assemble data so they might access computers via both card and punched-tape input. The objectives of the Institute…

  1. A statistical power analysis of woody carbon flux from forest inventory data

    Treesearch

    James A. Westfall; Christopher W. Woodall; Mark A. Hatfield

    2013-01-01

    At a national scale, the carbon (C) balance of numerous forest ecosystem C pools can be monitored using a stock change approach based on national forest inventory data. Given the potential influence of disturbance events and/or climate change processes, the statistical detection of changes in forest C stocks is paramount to maintaining the net sequestration status of...

  2. Statistical Smoothing Methods and Image Analysis

    DTIC Science & Technology

    1988-12-01

    83 - 111. Rosenfeld, A. and Kak, A.C. (1982). Digital Picture Processing. Academic Press,Qrlando. Serra, J. (1982). Image Analysis and Mat hematical ...hypothesis testing. IEEE Trans. Med. Imaging, MI-6, 313-319. Wicksell, S.D. (1925) The corpuscle problem. A mathematical study of a biometric problem

  3. ICAP - An Interactive Cluster Analysis Procedure for analyzing remotely sensed data

    NASA Technical Reports Server (NTRS)

    Wharton, S. W.; Turner, B. J.

    1981-01-01

    An Interactive Cluster Analysis Procedure (ICAP) was developed to derive classifier training statistics from remotely sensed data. ICAP differs from conventional clustering algorithms by allowing the analyst to optimize the cluster configuration by inspection, rather than by manipulating process parameters. Control of the clustering process alternates between the algorithm, which creates new centroids and forms clusters, and the analyst, who can evaluate and elect to modify the cluster structure. Clusters can be deleted, or lumped together pairwise, or new centroids can be added. A summary of the cluster statistics can be requested to facilitate cluster manipulation. The principal advantage of this approach is that it allows prior information (when available) to be used directly in the analysis, since the analyst interacts with ICAP in a straightforward manner, using basic terms with which he is more likely to be familiar. Results from testing ICAP showed that an informed use of ICAP can improve classification, as compared to an existing cluster analysis procedure.

  4. Text grouping in patent analysis using adaptive K-means clustering algorithm

    NASA Astrophysics Data System (ADS)

    Shanie, Tiara; Suprijadi, Jadi; Zulhanif

    2017-03-01

    Patents are one of the Intellectual Property. Analyzing patent is one requirement in knowing well the development of technology in each country and in the world now. This study uses the patent document coming from the Espacenet server about Green Tea. Patent documents related to the technology in the field of tea is still widespread, so it will be difficult for users to information retrieval (IR). Therefore, it is necessary efforts to categorize documents in a specific group of related terms contained therein. This study uses titles patent text data with the proposed Green Tea in Statistical Text Mining methods consists of two phases: data preparation and data analysis stage. The data preparation phase uses Text Mining methods and data analysis stage is done by statistics. Statistical analysis in this study using a cluster analysis algorithm, the Adaptive K-Means Clustering Algorithm. Results from this study showed that based on the maximum value Silhouette, generate 87 clusters associated fifteen terms therein that can be utilized in the process of information retrieval needs.

  5. Coherent instability in wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Hack, M. J. Philipp

    2017-11-01

    Hairpin vortices are commonly considered one of the major classes of coherent fluid motions in shear layers, even as their significance in the grand scheme of turbulence has remained an openly debated question. The statistical prevalence of the dynamic process that gives rise to the hairpins across different types of flows suggests an origin in a robust common mechanism triggered by conditions widespread in wall-bounded shear layers. This study seeks to shed light on the physical process which drives the generation of hairpin vortices. It is primarily facilitated through an algorithm based on concepts developed in the field of computer vision which allows the topological identification and analysis of coherent flow processes across multiple scales. Application to direct numerical simulations of boundary layers enables the time-resolved sampling and exploration of the hairpin process in natural flow. The analysis yields rich statistical results which lead to a refined characterization of the hairpin process. Linear stability theory offers further insight into the flow physics and especially into the connection between the hairpin and exponential amplification mechanisms. The results also provide a sharpened understanding of the underlying causality of events.

  6. Knowledge and utilization of computer-software for statistics among Nigerian dentists.

    PubMed

    Chukwuneke, F N; Anyanechi, C E; Obiakor, A O; Amobi, O; Onyejiaka, N; Alamba, I

    2013-01-01

    The use of computer soft ware for generation of statistic analysis has transformed health information and data to simplest form in the areas of access, storage, retrieval and analysis in the field of research. This survey therefore was carried out to assess the level of knowledge and utilization of computer software for statistical analysis among dental researchers in eastern Nigeria. Questionnaires on the use of computer software for statistical analysis were randomly distributed to 65 practicing dental surgeons of above 5 years experience in the tertiary academic hospitals in eastern Nigeria. The focus was on: years of clinical experience; research work experience; knowledge and application of computer generated software for data processing and stastistical analysis. Sixty-two (62/65; 95.4%) of these questionnaires were returned anonymously, which were used in our data analysis. Twenty-nine (29/62; 46.8%) respondents fall within those with 5-10 years of clinical experience out of which none has completed the specialist training programme. Practitioners with above 10 years clinical experiences were 33 (33/62; 53.2%) out of which 15 (15/33; 45.5%) are specialists representing 24.2% (15/62) of the total number of respondents. All the 15 specialists are actively involved in research activities and only five (5/15; 33.3%) can utilize software statistical analysis unaided. This study has i dentified poor utilization of computer software for statistic analysis among dental researchers in eastern Nigeria. This is strongly associated with lack of exposure on the use of these software early enough especially during the undergraduate training. This call for introduction of computer training programme in dental curriculum to enable practitioners develops the attitude of using computer software for their research.

  7. MetaboLyzer: A Novel Statistical Workflow for Analyzing Post-Processed LC/MS Metabolomics Data

    PubMed Central

    Mak, Tytus D.; Laiakis, Evagelia C.; Goudarzi, Maryam; Fornace, Albert J.

    2014-01-01

    Metabolomics, the global study of small molecules in a particular system, has in the last few years risen to become a primary –omics platform for the study of metabolic processes. With the ever-increasing pool of quantitative data yielded from metabolomic research, specialized methods and tools with which to analyze and extract meaningful conclusions from these data are becoming more and more crucial. Furthermore, the depth of knowledge and expertise required to undertake a metabolomics oriented study is a daunting obstacle to investigators new to the field. As such, we have created a new statistical analysis workflow, MetaboLyzer, which aims to both simplify analysis for investigators new to metabolomics, as well as provide experienced investigators the flexibility to conduct sophisticated analysis. MetaboLyzer’s workflow is specifically tailored to the unique characteristics and idiosyncrasies of postprocessed liquid chromatography/mass spectrometry (LC/MS) based metabolomic datasets. It utilizes a wide gamut of statistical tests, procedures, and methodologies that belong to classical biostatistics, as well as several novel statistical techniques that we have developed specifically for metabolomics data. Furthermore, MetaboLyzer conducts rapid putative ion identification and putative biologically relevant analysis via incorporation of four major small molecule databases: KEGG, HMDB, Lipid Maps, and BioCyc. MetaboLyzer incorporates these aspects into a comprehensive workflow that outputs easy to understand statistically significant and potentially biologically relevant information in the form of heatmaps, volcano plots, 3D visualization plots, correlation maps, and metabolic pathway hit histograms. For demonstration purposes, a urine metabolomics data set from a previously reported radiobiology study in which samples were collected from mice exposed to gamma radiation was analyzed. MetaboLyzer was able to identify 243 statistically significant ions out of a total of 1942. Numerous putative metabolites and pathways were found to be biologically significant from the putative ion identification workflow. PMID:24266674

  8. 77 FR 13691 - Qualification of Drivers; Exemption Applications; Vision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ..., ocular hypertension, retinal detachment, cataracts and corneal scaring. In most cases, their eye... Application of Multiple Regression Analysis of a Poisson Process,'' Journal of American Statistical...

  9. Sparse approximation of currents for statistics on curves and surfaces.

    PubMed

    Durrleman, Stanley; Pennec, Xavier; Trouvé, Alain; Ayache, Nicholas

    2008-01-01

    Computing, processing, visualizing statistics on shapes like curves or surfaces is a real challenge with many applications ranging from medical image analysis to computational geometry. Modelling such geometrical primitives with currents avoids feature-based approach as well as point-correspondence method. This framework has been proved to be powerful to register brain surfaces or to measure geometrical invariants. However, if the state-of-the-art methods perform efficiently pairwise registrations, new numerical schemes are required to process groupwise statistics due to an increasing complexity when the size of the database is growing. Statistics such as mean and principal modes of a set of shapes often have a heavy and highly redundant representation. We propose therefore to find an adapted basis on which mean and principal modes have a sparse decomposition. Besides the computational improvement, this sparse representation offers a way to visualize and interpret statistics on currents. Experiments show the relevance of the approach on 34 sets of 70 sulcal lines and on 50 sets of 10 meshes of deep brain structures.

  10. One Hundred Ways to be Non-Fickian - A Rigorous Multi-Variate Statistical Analysis of Pore-Scale Transport

    NASA Astrophysics Data System (ADS)

    Most, Sebastian; Nowak, Wolfgang; Bijeljic, Branko

    2015-04-01

    Fickian transport in groundwater flow is the exception rather than the rule. Transport in porous media is frequently simulated via particle methods (i.e. particle tracking random walk (PTRW) or continuous time random walk (CTRW)). These methods formulate transport as a stochastic process of particle position increments. At the pore scale, geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Hence, it is important to get a better understanding of the processes at pore scale. For our analysis we track the positions of 10.000 particles migrating through the pore space over time. The data we use come from micro CT scans of a homogeneous sandstone and encompass about 10 grain sizes. Based on those images we discretize the pore structure and simulate flow at the pore scale based on the Navier-Stokes equation. This flow field realistically describes flow inside the pore space and we do not need to add artificial dispersion during the transport simulation. Next, we use particle tracking random walk and simulate pore-scale transport. Finally, we use the obtained particle trajectories to do a multivariate statistical analysis of the particle motion at the pore scale. Our analysis is based on copulas. Every multivariate joint distribution is a combination of its univariate marginal distributions. The copula represents the dependence structure of those univariate marginals and is therefore useful to observe correlation and non-Gaussian interactions (i.e. non-Fickian transport). The first goal of this analysis is to better understand the validity regions of commonly made assumptions. We are investigating three different transport distances: 1) The distance where the statistical dependence between particle increments can be modelled as an order-one Markov process. This would be the Markovian distance for the process, where the validity of yet-unexplored non-Gaussian-but-Markovian random walks start. 2) The distance where bivariate statistical dependence simplifies to a multi-Gaussian dependence based on simple linear correlation (validity of correlated PTRW/CTRW). 3) The distance of complete statistical independence (validity of classical PTRW/CTRW). The second objective is to reveal characteristic dependencies influencing transport the most. Those dependencies can be very complex. Copulas are highly capable of representing linear dependence as well as non-linear dependence. With that tool we are able to detect persistent characteristics dominating transport even across different scales. The results derived from our experimental data set suggest that there are many more non-Fickian aspects of pore-scale transport than the univariate statistics of longitudinal displacements. Non-Fickianity can also be found in transverse displacements, and in the relations between increments at different time steps. Also, the found dependence is non-linear (i.e. beyond simple correlation) and persists over long distances. Thus, our results strongly support the further refinement of techniques like correlated PTRW or correlated CTRW towards non-linear statistical relations.

  11. SOME CHARACTERISTICS OF THE ORAL CAVITY AND TEETH OF COSMONAUTS ON MISSIONS TO THE INTERNATIONAL SPACE STATION.

    PubMed

    Ilyin, V K; Shumilina, G A; Solovieva, Z O; Nosovsky, A M; Kaminskaya, E V

    Earlier studies were furthered by examination of parodentium anaerobic microbiota and investigation of gingival liquid immunological factors in space flight. Immunoglobulins were measured using the .enzyme immunoassay (EM). The qualitative content of keya parodentium pathogens is determined with state-of-the-art molecular biology technologies such as the polymerase chain reaction. Statistical data processing was performed using the principle component analysis and ensuing standard statistical analysis. Thereupon, recommendations on cosmonaut's oral and dental hygiene during space mission were developed.

  12. Profiling and multivariate statistical analysis of Panax ginseng based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry.

    PubMed

    Wu, Wei; Sun, Le; Zhang, Zhe; Guo, Yingying; Liu, Shuying

    2015-03-25

    An ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF-MS) method was developed for the detection and structural analysis of ginsenosides in white ginseng and related processed products (red ginseng). Original neutral, malonyl, and chemically transformed ginsenosides were identified in white and red ginseng samples. The aglycone types of ginsenosides were determined by MS/MS as PPD (m/z 459), PPT (m/z 475), C-24, -25 hydrated-PPD or PPT (m/z 477 or m/z 493), and Δ20(21)-or Δ20(22)-dehydrated-PPD or PPT (m/z 441 or m/z 457). Following the structural determination, the UHPLC-Q-TOF-MS-based chemical profiling coupled with multivariate statistical analysis method was applied for global analysis of white and processed ginseng samples. The chemical markers present between the processed products red ginseng and white ginseng could be assigned. Process-mediated chemical changes were recognized as the hydrolysis of ginsenosides with large molecular weight, chemical transformations of ginsenosides, changes in malonyl-ginsenosides, and generation of 20-(R)-ginsenoside enantiomers. The relative contents of compounds classified as PPD, PPT, malonyl, and transformed ginsenosides were calculated based on peak areas in ginseng before and after processing. This study provides possibility to monitor multiple components for the quality control and global evaluation of ginseng products during processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Process air quality data

    NASA Technical Reports Server (NTRS)

    Butler, C. M.; Hogge, J. E.

    1978-01-01

    Air quality sampling was conducted. Data for air quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for processing air quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on processing air quality data.

  14. Statistical patterns of visual search for hidden objects

    PubMed Central

    Credidio, Heitor F.; Teixeira, Elisângela N.; Reis, Saulo D. S.; Moreira, André A.; Andrade Jr, José S.

    2012-01-01

    The movement of the eyes has been the subject of intensive research as a way to elucidate inner mechanisms of cognitive processes. A cognitive task that is rather frequent in our daily life is the visual search for hidden objects. Here we investigate through eye-tracking experiments the statistical properties associated with the search of target images embedded in a landscape of distractors. Specifically, our results show that the twofold process of eye movement, composed of sequences of fixations (small steps) intercalated by saccades (longer jumps), displays characteristic statistical signatures. While the saccadic jumps follow a log-normal distribution of distances, which is typical of multiplicative processes, the lengths of the smaller steps in the fixation trajectories are consistent with a power-law distribution. Moreover, the present analysis reveals a clear transition between a directional serial search to an isotropic random movement as the difficulty level of the searching task is increased. PMID:23226829

  15. Data processing, multi-omic pathway mapping, and metabolite activity analysis using XCMS Online

    PubMed Central

    Forsberg, Erica M; Huan, Tao; Rinehart, Duane; Benton, H Paul; Warth, Benedikt; Hilmers, Brian; Siuzdak, Gary

    2018-01-01

    Systems biology is the study of complex living organisms, and as such, analysis on a systems-wide scale involves the collection of information-dense data sets that are representative of an entire phenotype. To uncover dynamic biological mechanisms, bioinformatics tools have become essential to facilitating data interpretation in large-scale analyses. Global metabolomics is one such method for performing systems biology, as metabolites represent the downstream functional products of ongoing biological processes. We have developed XCMS Online, a platform that enables online metabolomics data processing and interpretation. A systems biology workflow recently implemented within XCMS Online enables rapid metabolic pathway mapping using raw metabolomics data for investigating dysregulated metabolic processes. In addition, this platform supports integration of multi-omic (such as genomic and proteomic) data to garner further systems-wide mechanistic insight. Here, we provide an in-depth procedure showing how to effectively navigate and use the systems biology workflow within XCMS Online without a priori knowledge of the platform, including uploading liquid chromatography (LCLC)–mass spectrometry (MS) data from metabolite-extracted biological samples, defining the job parameters to identify features, correcting for retention time deviations, conducting statistical analysis of features between sample classes and performing predictive metabolic pathway analysis. Additional multi-omics data can be uploaded and overlaid with previously identified pathways to enhance systems-wide analysis of the observed dysregulations. We also describe unique visualization tools to assist in elucidation of statistically significant dysregulated metabolic pathways. Parameter input takes 5–10 min, depending on user experience; data processing typically takes 1–3 h, and data analysis takes ~30 min. PMID:29494574

  16. The Statistical Consulting Center for Astronomy (SCCA)

    NASA Technical Reports Server (NTRS)

    Akritas, Michael

    2001-01-01

    The process by which raw astronomical data acquisition is transformed into scientifically meaningful results and interpretation typically involves many statistical steps. Traditional astronomy limits itself to a narrow range of old and familiar statistical methods: means and standard deviations; least-squares methods like chi(sup 2) minimization; and simple nonparametric procedures such as the Kolmogorov-Smirnov tests. These tools are often inadequate for the complex problems and datasets under investigations, and recent years have witnessed an increased usage of maximum-likelihood, survival analysis, multivariate analysis, wavelet and advanced time-series methods. The Statistical Consulting Center for Astronomy (SCCA) assisted astronomers with the use of sophisticated tools, and to match these tools with specific problems. The SCCA operated with two professors of statistics and a professor of astronomy working together. Questions were received by e-mail, and were discussed in detail with the questioner. Summaries of those questions and answers leading to new approaches were posted on the Web (www.state.psu.edu/ mga/SCCA). In addition to serving individual astronomers, the SCCA established a Web site for general use that provides hypertext links to selected on-line public-domain statistical software and services. The StatCodes site (www.astro.psu.edu/statcodes) provides over 200 links in the areas of: Bayesian statistics; censored and truncated data; correlation and regression, density estimation and smoothing, general statistics packages and information; image analysis; interactive Web tools; multivariate analysis; multivariate clustering and classification; nonparametric analysis; software written by astronomers; spatial statistics; statistical distributions; time series analysis; and visualization tools. StatCodes has received a remarkable high and constant hit rate of 250 hits/week (over 10,000/year) since its inception in mid-1997. It is of interest to scientists both within and outside of astronomy. The most popular sections are multivariate techniques, image analysis, and time series analysis. Hundreds of copies of the ASURV, SLOPES and CENS-TAU codes developed by SCCA scientists were also downloaded from the StatCodes site. In addition to formal SCCA duties, SCCA scientists continued a variety of related activities in astrostatistics, including refereeing of statistically oriented papers submitted to the Astrophysical Journal, talks in meetings including Feigelson's talk to science journalists entitled "The reemergence of astrostatistics" at the American Association for the Advancement of Science meeting, and published papers of astrostatistical content.

  17. An overview of meta-analysis for clinicians.

    PubMed

    Lee, Young Ho

    2018-03-01

    The number of medical studies being published is increasing exponentially, and clinicians must routinely process large amounts of new information. Moreover, the results of individual studies are often insufficient to provide confident answers, as their results are not consistently reproducible. A meta-analysis is a statistical method for combining the results of different studies on the same topic and it may resolve conflicts among studies. Meta-analysis is being used increasingly and plays an important role in medical research. This review introduces the basic concepts, steps, advantages, and caveats of meta-analysis, to help clinicians understand it in clinical practice and research. A major advantage of a meta-analysis is that it produces a precise estimate of the effect size, with considerably increased statistical power, which is important when the power of the primary study is limited because of a small sample size. A meta-analysis may yield conclusive results when individual studies are inconclusive. Furthermore, meta-analyses investigate the source of variation and different effects among subgroups. In summary, a meta-analysis is an objective, quantitative method that provides less biased estimates on a specific topic. Understanding how to conduct a meta-analysis aids clinicians in the process of making clinical decisions.

  18. Scripts for TRUMP data analyses. Part II (HLA-related data): statistical analyses specific for hematopoietic stem cell transplantation.

    PubMed

    Kanda, Junya

    2016-01-01

    The Transplant Registry Unified Management Program (TRUMP) made it possible for members of the Japan Society for Hematopoietic Cell Transplantation (JSHCT) to analyze large sets of national registry data on autologous and allogeneic hematopoietic stem cell transplantation. However, as the processes used to collect transplantation information are complex and differed over time, the background of these processes should be understood when using TRUMP data. Previously, information on the HLA locus of patients and donors had been collected using a questionnaire-based free-description method, resulting in some input errors. To correct minor but significant errors and provide accurate HLA matching data, the use of a Stata or EZR/R script offered by the JSHCT is strongly recommended when analyzing HLA data in the TRUMP dataset. The HLA mismatch direction, mismatch counting method, and different impacts of HLA mismatches by stem cell source are other important factors in the analysis of HLA data. Additionally, researchers should understand the statistical analyses specific for hematopoietic stem cell transplantation, such as competing risk, landmark analysis, and time-dependent analysis, to correctly analyze transplant data. The data center of the JSHCT can be contacted if statistical assistance is required.

  19. Spectral Analysis of B Stars: An Application of Bayesian Statistics

    NASA Astrophysics Data System (ADS)

    Mugnes, J.-M.; Robert, C.

    2012-12-01

    To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.

  20. How large a dataset should be in order to estimate scaling exponents and other statistics correctly in studies of solar wind turbulence

    NASA Astrophysics Data System (ADS)

    Rowlands, G.; Kiyani, K. H.; Chapman, S. C.; Watkins, N. W.

    2009-12-01

    Quantitative analysis of solar wind fluctuations are often performed in the context of intermittent turbulence and center around methods to quantify statistical scaling, such as power spectra and structure functions which assume a stationary process. The solar wind exhibits large scale secular changes and so the question arises as to whether the timeseries of the fluctuations is non-stationary. One approach is to seek a local stationarity by parsing the time interval over which statistical analysis is performed. Hence, natural systems such as the solar wind unavoidably provide observations over restricted intervals. Consequently, due to a reduction of sample size leading to poorer estimates, a stationary stochastic process (time series) can yield anomalous time variation in the scaling exponents, suggestive of nonstationarity. The variance in the estimates of scaling exponents computed from an interval of N observations is known for finite variance processes to vary as ~1/N as N becomes large for certain statistical estimators; however, the convergence to this behavior will depend on the details of the process, and may be slow. We study the variation in the scaling of second-order moments of the time-series increments with N for a variety of synthetic and “real world” time series, and we find that in particular for heavy tailed processes, for realizable N, one is far from this ~1/N limiting behavior. We propose a semiempirical estimate for the minimum N needed to make a meaningful estimate of the scaling exponents for model stochastic processes and compare these with some “real world” time series from the solar wind. With fewer datapoints the stationary timeseries becomes indistinguishable from a nonstationary process and we illustrate this with nonstationary synthetic datasets. Reference article: K. H. Kiyani, S. C. Chapman and N. W. Watkins, Phys. Rev. E 79, 036109 (2009).

  1. Neural network approach in multichannel auditory event-related potential analysis.

    PubMed

    Wu, F Y; Slater, J D; Ramsay, R E

    1994-04-01

    Even though there are presently no clearly defined criteria for the assessment of P300 event-related potential (ERP) abnormality, it is strongly indicated through statistical analysis that such criteria exist for classifying control subjects and patients with diseases resulting in neuropsychological impairment such as multiple sclerosis (MS). We have demonstrated the feasibility of artificial neural network (ANN) methods in classifying ERP waveforms measured at a single channel (Cz) from control subjects and MS patients. In this paper, we report the results of multichannel ERP analysis and a modified network analysis methodology to enhance automation of the classification rule extraction process. The proposed methodology significantly reduces the work of statistical analysis. It also helps to standardize the criteria of P300 ERP assessment and facilitate the computer-aided analysis on neuropsychological functions.

  2. The statistical big bang of 1911: ideology, technological innovation and the production of medical statistics.

    PubMed

    Higgs, W

    1996-12-01

    This paper examines the relationship between intellectual debate, technologies for analysing information, and the production of statistics in the General Register Office (GRO) in London in the early twentieth century. It argues that controversy between eugenicists and public health officials respecting the cause and effect of class-specific variations in fertility led to the introduction of questions in the 1911 census on marital fertility. The increasing complexity of the census necessitated a shift from manual to mechanised forms of data processing within the GRO. The subsequent increase in processing power allowed the GRO to make important changes to the medical and demographic statistics it published in the annual Reports of the Registrar General. These included substituting administrative sanitary districts for registration districts as units of analysis, consistently transferring deaths in institutions back to place of residence, and abstracting deaths according to the International List of Causes of Death.

  3. SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliopoulos, AS; Sun, X; Floros, D

    Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well asmore » histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial signal/noise variations. An efficient multi-scale computational mechanism is developed to curtail processing latency. Spatially adaptive filtering may impact subsequent processing tasks such as reconstruction and numerical gradient computations for deformable registration. NIH Grant No. R01-184173.« less

  4. US-VISIT Identity Matching Algorithm Evaluation Program: ADIS Algorithm Evaluation Project Plan Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, C W; Lenderman, J S; Gansemer, J D

    This document is an update to the 'ADIS Algorithm Evaluation Project Plan' specified in the Statement of Work for the US-VISIT Identity Matching Algorithm Evaluation Program, as deliverable II.D.1. The original plan was delivered in August 2010. This document modifies the plan to reflect modified deliverables reflecting delays in obtaining a database refresh. This document describes the revised schedule of the program deliverables. The detailed description of the processes used, the statistical analysis processes and the results of the statistical analysis will be described fully in the program deliverables. The US-VISIT Identity Matching Algorithm Evaluation Program is work performed bymore » Lawrence Livermore National Laboratory (LLNL) under IAA HSHQVT-07-X-00002 P00004 from the Department of Homeland Security (DHS).« less

  5. A neural network model of metaphor understanding with dynamic interaction based on a statistical language analysis: targeting a human-like model.

    PubMed

    Terai, Asuka; Nakagawa, Masanori

    2007-08-01

    The purpose of this paper is to construct a model that represents the human process of understanding metaphors, focusing specifically on similes of the form an "A like B". Generally speaking, human beings are able to generate and understand many sorts of metaphors. This study constructs the model based on a probabilistic knowledge structure for concepts which is computed from a statistical analysis of a large-scale corpus. Consequently, this model is able to cover the many kinds of metaphors that human beings can generate. Moreover, the model implements the dynamic process of metaphor understanding by using a neural network with dynamic interactions. Finally, the validity of the model is confirmed by comparing model simulations with the results from a psychological experiment.

  6. Multivariate statistical process control of a continuous pharmaceutical twin-screw granulation and fluid bed drying process.

    PubMed

    Silva, A F; Sarraguça, M C; Fonteyne, M; Vercruysse, J; De Leersnyder, F; Vanhoorne, V; Bostijn, N; Verstraeten, M; Vervaet, C; Remon, J P; De Beer, T; Lopes, J A

    2017-08-07

    A multivariate statistical process control (MSPC) strategy was developed for the monitoring of the ConsiGma™-25 continuous tablet manufacturing line. Thirty-five logged variables encompassing three major units, being a twin screw high shear granulator, a fluid bed dryer and a product control unit, were used to monitor the process. The MSPC strategy was based on principal component analysis of data acquired under normal operating conditions using a series of four process runs. Runs with imposed disturbances in the dryer air flow and temperature, in the granulator barrel temperature, speed and liquid mass flow and in the powder dosing unit mass flow were utilized to evaluate the model's monitoring performance. The impact of the imposed deviations to the process continuity was also evaluated using Hotelling's T 2 and Q residuals statistics control charts. The influence of the individual process variables was assessed by analyzing contribution plots at specific time points. Results show that the imposed disturbances were all detected in both control charts. Overall, the MSPC strategy was successfully developed and applied. Additionally, deviations not associated with the imposed changes were detected, mainly in the granulator barrel temperature control. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Statistical Approaches to Interpretation of Local, Regional, and National Highway-Runoff and Urban-Stormwater Data

    USGS Publications Warehouse

    Tasker, Gary D.; Granato, Gregory E.

    2000-01-01

    Decision makers need viable methods for the interpretation of local, regional, and national-highway runoff and urban-stormwater data including flows, concentrations and loads of chemical constituents and sediment, potential effects on receiving waters, and the potential effectiveness of various best management practices (BMPs). Valid (useful for intended purposes), current, and technically defensible stormwater-runoff models are needed to interpret data collected in field studies, to support existing highway and urban-runoffplanning processes, to meet National Pollutant Discharge Elimination System (NPDES) requirements, and to provide methods for computation of Total Maximum Daily Loads (TMDLs) systematically and economically. Historically, conceptual, simulation, empirical, and statistical models of varying levels of detail, complexity, and uncertainty have been used to meet various data-quality objectives in the decision-making processes necessary for the planning, design, construction, and maintenance of highways and for other land-use applications. Water-quality simulation models attempt a detailed representation of the physical processes and mechanisms at a given site. Empirical and statistical regional water-quality assessment models provide a more general picture of water quality or changes in water quality over a region. All these modeling techniques share one common aspect-their predictive ability is poor without suitable site-specific data for calibration. To properly apply the correct model, one must understand the classification of variables, the unique characteristics of water-resources data, and the concept of population structure and analysis. Classifying variables being used to analyze data may determine which statistical methods are appropriate for data analysis. An understanding of the characteristics of water-resources data is necessary to evaluate the applicability of different statistical methods, to interpret the results of these techniques, and to use tools and techniques that account for the unique nature of water-resources data sets. Populations of data on stormwater-runoff quantity and quality are often best modeled as logarithmic transformations. Therefore, these factors need to be considered to form valid, current, and technically defensible stormwater-runoff models. Regression analysis is an accepted method for interpretation of water-resources data and for prediction of current or future conditions at sites that fit the input data model. Regression analysis is designed to provide an estimate of the average response of a system as it relates to variation in one or more known variables. To produce valid models, however, regression analysis should include visual analysis of scatterplots, an examination of the regression equation, evaluation of the method design assumptions, and regression diagnostics. A number of statistical techniques are described in the text and in the appendixes to provide information necessary to interpret data by use of appropriate methods. Uncertainty is an important part of any decisionmaking process. In order to deal with uncertainty problems, the analyst needs to know the severity of the statistical uncertainty of the methods used to predict water quality. Statistical models need to be based on information that is meaningful, representative, complete, precise, accurate, and comparable to be deemed valid, up to date, and technically supportable. To assess uncertainty in the analytical tools, the modeling methods, and the underlying data set, all of these components need be documented and communicated in an accessible format within project publications.

  8. Statistical t Analysis for the Solution of Prediction Trash Management in Dusun Tanjung Sari Kec. Ngaglik Kab Sleman, Yogyakarta

    NASA Astrophysics Data System (ADS)

    Salmahaminati; Husnaqilati, Atina; Yahya, Amri

    2017-01-01

    Trash management is one of the society participation to have a good hygiene for each area or nationally. Trash is known as the remainder of regular consumption that should be disposed to do waste processing which will be beneficial and improve the hygiene. The way to do is by sorting plastic which is processed into goods in accordance with the waste. In this study, we will know what are the factors that affect the desire of citizens to process the waste. The factors would have the identity and the state of being of each resident, having known of these factors will be the education about waste management, so it can be compared how the results of the extension by using preliminary data prior to the extension and the final data after extension. The analysis uses multiple logistic regression is the identify factors that influence people’s to desire the waste while the comparison results using t analysis. Data is derived from statistical instrument in the form of a questionnaire.

  9. Wavelet analysis in ecology and epidemiology: impact of statistical tests

    PubMed Central

    Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario

    2014-01-01

    Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the ‘beta-surrogate’ method. PMID:24284892

  10. Wavelet analysis in ecology and epidemiology: impact of statistical tests.

    PubMed

    Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario

    2014-02-06

    Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the 'beta-surrogate' method.

  11. Emergent Readers' Social Interaction Styles and Their Comprehension Processes during Buddy Reading

    ERIC Educational Resources Information Center

    Christ, Tanya; Wang, X. Christine; Chiu, Ming Ming

    2015-01-01

    To examine the relations between emergent readers' social interaction styles and their comprehension processes, we adapted sociocultural and transactional views of learning and reading, and conducted statistical discourse analysis of 1,359 conversation turns transcribed from 14 preschoolers' 40 buddy reading events. Results show that interaction…

  12. Improving Recruiting of the 6th Recruiting Brigade Through Statistical Analysis and Efficiency Measures

    DTIC Science & Technology

    2014-12-01

    example of maximizing or minimizing decision variables within a model. Carol Stoker and Stephen Mehay present a comparative analysis of marketing and advertising strategies...strategy development process; documenting various recruiting, marketing , and advertising initiatives in each nation; and examining efforts to

  13. Statistical strategy for anisotropic adventitia modelling in IVUS.

    PubMed

    Gil, Debora; Hernández, Aura; Rodriguez, Oriol; Mauri, Josepa; Radeva, Petia

    2006-06-01

    Vessel plaque assessment by analysis of intravascular ultrasound sequences is a useful tool for cardiac disease diagnosis and intervention. Manual detection of luminal (inner) and media-adventitia (external) vessel borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as well as, shades, artifacts, and blurred signal response due to ultrasound physical properties trouble automated adventitia segmentation. In order to efficiently approach such a complex problem, we propose blending advanced anisotropic filtering operators and statistical classification techniques into a vessel border modelling strategy. Our systematic statistical analysis shows that the reported adventitia detection achieves an accuracy in the range of interobserver variability regardless of plaque nature, vessel geometry, and incomplete vessel borders.

  14. Biostatistical analysis of quantitative immunofluorescence microscopy images.

    PubMed

    Giles, C; Albrecht, M A; Lam, V; Takechi, R; Mamo, J C

    2016-12-01

    Semiquantitative immunofluorescence microscopy has become a key methodology in biomedical research. Typical statistical workflows are considered in the context of avoiding pseudo-replication and marginalising experimental error. However, immunofluorescence microscopy naturally generates hierarchically structured data that can be leveraged to improve statistical power and enrich biological interpretation. Herein, we describe a robust distribution fitting procedure and compare several statistical tests, outlining their potential advantages/disadvantages in the context of biological interpretation. Further, we describe tractable procedures for power analysis that incorporates the underlying distribution, sample size and number of images captured per sample. The procedures outlined have significant potential for increasing understanding of biological processes and decreasing both ethical and financial burden through experimental optimization. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. Modeling stock price dynamics by continuum percolation system and relevant complex systems analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Wang, Jun

    2012-10-01

    The continuum percolation system is developed to model a random stock price process in this work. Recent empirical research has demonstrated various statistical features of stock price changes, the financial model aiming at understanding price fluctuations needs to define a mechanism for the formation of the price, in an attempt to reproduce and explain this set of empirical facts. The continuum percolation model is usually referred to as a random coverage process or a Boolean model, the local interaction or influence among traders is constructed by the continuum percolation, and a cluster of continuum percolation is applied to define the cluster of traders sharing the same opinion about the market. We investigate and analyze the statistical behaviors of normalized returns of the price model by some analysis methods, including power-law tail distribution analysis, chaotic behavior analysis and Zipf analysis. Moreover, we consider the daily returns of Shanghai Stock Exchange Composite Index from January 1997 to July 2011, and the comparisons of return behaviors between the actual data and the simulation data are exhibited.

  16. Statistical analysis and interpolation of compositional data in materials science.

    PubMed

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-09

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  17. The Effects of Using Exploratory Computerized Environments in Grades 1 to 8 Mathematics: A Meta-Analysis of Research

    ERIC Educational Resources Information Center

    Sokolowski, Andrzej; Li, Yeping; Willson, Victor

    2015-01-01

    Background: The process of problem solving is difficult for students; thus, mathematics educators have made multiple attempts to seek ways of making this process more accessible to learners. The purpose of this study was to examine the effect size statistic of utilizing exploratory computerized environments (ECEs) to support the process of word…

  18. Status of the NASA Robotic Mission Conjunction Assessment Effort

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft

    2007-01-01

    This viewgraph presentation discusses NASA's processes and tools used to mitigate threats to NASA's robotic assets. The topics include: 1) Background; 2) Goddard Stakeholders and Mission Support; 3) ESC and TDRS Mission Descriptions; 4) TDRS Conjunction Assessment Process; 5) ESMO Conjunction Assessment Process; 6) Recent Operations Experiences; 7) Statistics Collected for ESC Regime; and 8) Current and Future Analysis Items.

  19. From fields to objects: A review of geographic boundary analysis

    NASA Astrophysics Data System (ADS)

    Jacquez, G. M.; Maruca, S.; Fortin, M.-J.

    Geographic boundary analysis is a relatively new approach unfamiliar to many spatial analysts. It is best viewed as a technique for defining objects - geographic boundaries - on spatial fields, and for evaluating the statistical significance of characteristics of those boundary objects. This is accomplished using null spatial models representative of the spatial processes expected in the absence of boundary-generating phenomena. Close ties to the object-field dialectic eminently suit boundary analysis to GIS data. The majority of existing spatial methods are field-based in that they describe, estimate, or predict how attributes (variables defining the field) vary through geographic space. Such methods are appropriate for field representations but not object representations. As the object-field paradigm gains currency in geographic information science, appropriate techniques for the statistical analysis of objects are required. The methods reviewed in this paper are a promising foundation. Geographic boundary analysis is clearly a valuable addition to the spatial statistical toolbox. This paper presents the philosophy of, and motivations for geographic boundary analysis. It defines commonly used statistics for quantifying boundaries and their characteristics, as well as simulation procedures for evaluating their significance. We review applications of these techniques, with the objective of making this promising approach accessible to the GIS-spatial analysis community. We also describe the implementation of these methods within geographic boundary analysis software: GEM.

  20. Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Wang, Shizhuo; Xia, Ke; Ke, Youqi

    2018-01-01

    We present first-principles analysis of interfacial disorder effects on spin-dependent tunneling statistics in thin Fe/MgO/Fe magnetic tunnel junctions. We find that interfacial disorder scattering can significantly modulate the tunneling statistics in the minority spin of the parallel configuration (PC) while all other spin channels remain dominated by the Poissonian process. For the minority-spin channel of PC, interfacial disorder scattering favors the formation of resonant tunneling channels by lifting the limitation of symmetry conservation at low concentration, presenting an important sub-Poissonian process in PC, but is destructive to the open channels at high concentration. We find that the important modulation of tunneling statistics is independent of the type of interfacial disorder. A bimodal distribution function of transmission with disorder dependence is introduced and fits very well our first-principles results. The increase of MgO thickness can quickly change the tunneling from a sub-Poissonian to Poissonian dominated process in the minority spin of PC with disorder. Our results provide a sensitive detection method of an ultralow concentration of interfacial defects.

  1. Evaluation of Solid Rocket Motor Component Data Using a Commercially Available Statistical Software Package

    NASA Technical Reports Server (NTRS)

    Stefanski, Philip L.

    2015-01-01

    Commercially available software packages today allow users to quickly perform the routine evaluations of (1) descriptive statistics to numerically and graphically summarize both sample and population data, (2) inferential statistics that draws conclusions about a given population from samples taken of it, (3) probability determinations that can be used to generate estimates of reliability allowables, and finally (4) the setup of designed experiments and analysis of their data to identify significant material and process characteristics for application in both product manufacturing and performance enhancement. This paper presents examples of analysis and experimental design work that has been conducted using Statgraphics®(Registered Trademark) statistical software to obtain useful information with regard to solid rocket motor propellants and internal insulation material. Data were obtained from a number of programs (Shuttle, Constellation, and Space Launch System) and sources that include solid propellant burn rate strands, tensile specimens, sub-scale test motors, full-scale operational motors, rubber insulation specimens, and sub-scale rubber insulation analog samples. Besides facilitating the experimental design process to yield meaningful results, statistical software has demonstrated its ability to quickly perform complex data analyses and yield significant findings that might otherwise have gone unnoticed. One caveat to these successes is that useful results not only derive from the inherent power of the software package, but also from the skill and understanding of the data analyst.

  2. Computer image analysis in obtaining characteristics of images: greenhouse tomatoes in the process of generating learning sets of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Zaborowicz, M.; Przybył, J.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K.

    2014-04-01

    The aim of the project was to make the software which on the basis on image of greenhouse tomato allows for the extraction of its characteristics. Data gathered during the image analysis and processing were used to build learning sets of artificial neural networks. Program enables to process pictures in jpeg format, acquisition of statistical information of the picture and export them to an external file. Produced software is intended to batch analyze collected research material and obtained information saved as a csv file. Program allows for analysis of 33 independent parameters implicitly to describe tested image. The application is dedicated to processing and image analysis of greenhouse tomatoes. The program can be used for analysis of other fruits and vegetables of a spherical shape.

  3. Environmental analysis using integrated GIS and remotely sensed data - Some research needs and priorities

    NASA Technical Reports Server (NTRS)

    Davis, Frank W.; Quattrochi, Dale A.; Ridd, Merrill K.; Lam, Nina S.-N.; Walsh, Stephen J.

    1991-01-01

    This paper discusses some basic scientific issues and research needs in the joint processing of remotely sensed and GIS data for environmental analysis. Two general topics are treated in detail: (1) scale dependence of geographic data and the analysis of multiscale remotely sensed and GIS data, and (2) data transformations and information flow during data processing. The discussion of scale dependence focuses on the theory and applications of spatial autocorrelation, geostatistics, and fractals for characterizing and modeling spatial variation. Data transformations during processing are described within the larger framework of geographical analysis, encompassing sampling, cartography, remote sensing, and GIS. Development of better user interfaces between image processing, GIS, database management, and statistical software is needed to expedite research on these and other impediments to integrated analysis of remotely sensed and GIS data.

  4. Hybrid modeling as a QbD/PAT tool in process development: an industrial E. coli case study.

    PubMed

    von Stosch, Moritz; Hamelink, Jan-Martijn; Oliveira, Rui

    2016-05-01

    Process understanding is emphasized in the process analytical technology initiative and the quality by design paradigm to be essential for manufacturing of biopharmaceutical products with consistent high quality. A typical approach to developing a process understanding is applying a combination of design of experiments with statistical data analysis. Hybrid semi-parametric modeling is investigated as an alternative method to pure statistical data analysis. The hybrid model framework provides flexibility to select model complexity based on available data and knowledge. Here, a parametric dynamic bioreactor model is integrated with a nonparametric artificial neural network that describes biomass and product formation rates as function of varied fed-batch fermentation conditions for high cell density heterologous protein production with E. coli. Our model can accurately describe biomass growth and product formation across variations in induction temperature, pH and feed rates. The model indicates that while product expression rate is a function of early induction phase conditions, it is negatively impacted as productivity increases. This could correspond with physiological changes due to cytoplasmic product accumulation. Due to the dynamic nature of the model, rational process timing decisions can be made and the impact of temporal variations in process parameters on product formation and process performance can be assessed, which is central for process understanding.

  5. Improved processes for meeting the data requirements for implementing the Highway Safety Manual (HSM) and Safety Analyst in Florida.

    DOT National Transportation Integrated Search

    2014-03-01

    Recent research in highway safety has focused on the more advanced and statistically proven techniques of highway : safety analysis. This project focuses on the two most recent safety analysis tools, the Highway Safety Manual (HSM) : and SafetyAnalys...

  6. Opportunities for Applied Behavior Analysis in the Total Quality Movement.

    ERIC Educational Resources Information Center

    Redmon, William K.

    1992-01-01

    This paper identifies critical components of recent organizational quality improvement programs and specifies how applied behavior analysis can contribute to quality technology. Statistical Process Control and Total Quality Management approaches are compared, and behavior analysts are urged to build their research base and market behavior change…

  7. The Use of Modelling for Theory Building in Qualitative Analysis

    ERIC Educational Resources Information Center

    Briggs, Ann R. J.

    2007-01-01

    The purpose of this article is to exemplify and enhance the place of modelling as a qualitative process in educational research. Modelling is widely used in quantitative research as a tool for analysis, theory building and prediction. Statistical data lend themselves to graphical representation of values, interrelationships and operational…

  8. From micro to mainframe. A practical approach to perinatal data processing.

    PubMed

    Yeh, S Y; Lincoln, T

    1985-04-01

    A new, practical approach to perinatal data processing for a large obstetric population is described. This was done with a microcomputer for data entry and a mainframe computer for data reduction. The Screen Oriented Data Access (SODA) program was used to generate the data entry form and to input data into the Apple II Plus computer. Data were stored on diskettes and transmitted through a modern and telephone line to the IBM 370/168 computer. The Statistical Analysis System (SAS) program was used for statistical analyses and report generations. This approach was found to be most practical, flexible, and economical.

  9. Visual analytics in cheminformatics: user-supervised descriptor selection for QSAR methods.

    PubMed

    Martínez, María Jimena; Ponzoni, Ignacio; Díaz, Mónica F; Vazquez, Gustavo E; Soto, Axel J

    2015-01-01

    The design of QSAR/QSPR models is a challenging problem, where the selection of the most relevant descriptors constitutes a key step of the process. Several feature selection methods that address this step are concentrated on statistical associations among descriptors and target properties, whereas the chemical knowledge is left out of the analysis. For this reason, the interpretability and generality of the QSAR/QSPR models obtained by these feature selection methods are drastically affected. Therefore, an approach for integrating domain expert's knowledge in the selection process is needed for increase the confidence in the final set of descriptors. In this paper a software tool, which we named Visual and Interactive DEscriptor ANalysis (VIDEAN), that combines statistical methods with interactive visualizations for choosing a set of descriptors for predicting a target property is proposed. Domain expertise can be added to the feature selection process by means of an interactive visual exploration of data, and aided by statistical tools and metrics based on information theory. Coordinated visual representations are presented for capturing different relationships and interactions among descriptors, target properties and candidate subsets of descriptors. The competencies of the proposed software were assessed through different scenarios. These scenarios reveal how an expert can use this tool to choose one subset of descriptors from a group of candidate subsets or how to modify existing descriptor subsets and even incorporate new descriptors according to his or her own knowledge of the target property. The reported experiences showed the suitability of our software for selecting sets of descriptors with low cardinality, high interpretability, low redundancy and high statistical performance in a visual exploratory way. Therefore, it is possible to conclude that the resulting tool allows the integration of a chemist's expertise in the descriptor selection process with a low cognitive effort in contrast with the alternative of using an ad-hoc manual analysis of the selected descriptors. Graphical abstractVIDEAN allows the visual analysis of candidate subsets of descriptors for QSAR/QSPR. In the two panels on the top, users can interactively explore numerical correlations as well as co-occurrences in the candidate subsets through two interactive graphs.

  10. Cloud-based solution to identify statistically significant MS peaks differentiating sample categories.

    PubMed

    Ji, Jun; Ling, Jeffrey; Jiang, Helen; Wen, Qiaojun; Whitin, John C; Tian, Lu; Cohen, Harvey J; Ling, Xuefeng B

    2013-03-23

    Mass spectrometry (MS) has evolved to become the primary high throughput tool for proteomics based biomarker discovery. Until now, multiple challenges in protein MS data analysis remain: large-scale and complex data set management; MS peak identification, indexing; and high dimensional peak differential analysis with the concurrent statistical tests based false discovery rate (FDR). "Turnkey" solutions are needed for biomarker investigations to rapidly process MS data sets to identify statistically significant peaks for subsequent validation. Here we present an efficient and effective solution, which provides experimental biologists easy access to "cloud" computing capabilities to analyze MS data. The web portal can be accessed at http://transmed.stanford.edu/ssa/. Presented web application supplies large scale MS data online uploading and analysis with a simple user interface. This bioinformatic tool will facilitate the discovery of the potential protein biomarkers using MS.

  11. [Development of Hospital Equipment Maintenance Information System].

    PubMed

    Zhou, Zhixin

    2015-11-01

    Hospital equipment maintenance information system plays an important role in improving medical treatment quality and efficiency. By requirement analysis of hospital equipment maintenance, the system function diagram is drawed. According to analysis of input and output data, tables and reports in connection with equipment maintenance process, relationships between entity and attribute is found out, and E-R diagram is drawed and relational database table is established. Software development should meet actual process requirement of maintenance and have a friendly user interface and flexible operation. The software can analyze failure cause by statistical analysis.

  12. Automated system for the on-line monitoring of powder blending processes using near-infrared spectroscopy. Part I. System development and control.

    PubMed

    Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K

    1996-03-01

    An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity.

  13. A menu-driven software package of Bayesian nonparametric (and parametric) mixed models for regression analysis and density estimation.

    PubMed

    Karabatsos, George

    2017-02-01

    Most of applied statistics involves regression analysis of data. In practice, it is important to specify a regression model that has minimal assumptions which are not violated by data, to ensure that statistical inferences from the model are informative and not misleading. This paper presents a stand-alone and menu-driven software package, Bayesian Regression: Nonparametric and Parametric Models, constructed from MATLAB Compiler. Currently, this package gives the user a choice from 83 Bayesian models for data analysis. They include 47 Bayesian nonparametric (BNP) infinite-mixture regression models; 5 BNP infinite-mixture models for density estimation; and 31 normal random effects models (HLMs), including normal linear models. Each of the 78 regression models handles either a continuous, binary, or ordinal dependent variable, and can handle multi-level (grouped) data. All 83 Bayesian models can handle the analysis of weighted observations (e.g., for meta-analysis), and the analysis of left-censored, right-censored, and/or interval-censored data. Each BNP infinite-mixture model has a mixture distribution assigned one of various BNP prior distributions, including priors defined by either the Dirichlet process, Pitman-Yor process (including the normalized stable process), beta (two-parameter) process, normalized inverse-Gaussian process, geometric weights prior, dependent Dirichlet process, or the dependent infinite-probits prior. The software user can mouse-click to select a Bayesian model and perform data analysis via Markov chain Monte Carlo (MCMC) sampling. After the sampling completes, the software automatically opens text output that reports MCMC-based estimates of the model's posterior distribution and model predictive fit to the data. Additional text and/or graphical output can be generated by mouse-clicking other menu options. This includes output of MCMC convergence analyses, and estimates of the model's posterior predictive distribution, for selected functionals and values of covariates. The software is illustrated through the BNP regression analysis of real data.

  14. A statistical physics viewpoint on the dynamics of the bouncing ball

    NASA Astrophysics Data System (ADS)

    Chastaing, Jean-Yonnel; Géminard, Jean-Christophe; Bertin, Eric

    2016-06-01

    We compute, in a statistical physics perspective, the dynamics of a bouncing ball maintained in a chaotic regime thanks to collisions with a plate experiencing an aperiodic vibration. We analyze in details the energy exchanges between the bead and the vibrating plate, and show that the coupling between the bead and the plate can be modeled in terms of both a dissipative process and an injection mechanism by an energy reservoir. An analysis of the injection statistics in terms of fluctuation relation is also provided.

  15. The U.S. geological survey rass-statpac system for management and statistical reduction of geochemical data

    USGS Publications Warehouse

    VanTrump, G.; Miesch, A.T.

    1977-01-01

    RASS is an acronym for Rock Analysis Storage System and STATPAC, for Statistical Package. The RASS and STATPAC computer programs are integrated into the RASS-STATPAC system for the management and statistical reduction of geochemical data. The system, in its present form, has been in use for more than 9 yr by scores of U.S. Geological Survey geologists, geochemists, and other scientists engaged in a broad range of geologic and geochemical investigations. The principal advantage of the system is the flexibility afforded the user both in data searches and retrievals and in the manner of statistical treatment of data. The statistical programs provide for most types of statistical reduction normally used in geochemistry and petrology, but also contain bridges to other program systems for statistical processing and automatic plotting. ?? 1977.

  16. Optimization method of superpixel analysis for multi-contrast Jones matrix tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa K.; Miura, Masahiro; Yasuno, Yoshiaki

    2017-02-01

    Local statistics are widely utilized for quantification and image processing of OCT. For example, local mean is used to reduce speckle, local variation of polarization state (degree-of-polarization-uniformity (DOPU)) is used to visualize melanin. Conventionally, these statistics are calculated in a rectangle kernel whose size is uniform over the image. However, the fixed size and shape of the kernel result in a tradeoff between image sharpness and statistical accuracy. Superpixel is a cluster of pixels which is generated by grouping image pixels based on the spatial proximity and similarity of signal values. Superpixels have variant size and flexible shapes which preserve the tissue structure. Here we demonstrate a new superpixel method which is tailored for multifunctional Jones matrix OCT (JM-OCT). This new method forms the superpixels by clustering image pixels in a 6-dimensional (6-D) feature space (spatial two dimensions and four dimensions of optical features). All image pixels were clustered based on their spatial proximity and optical feature similarity. The optical features are scattering, OCT-A, birefringence and DOPU. The method is applied to retinal OCT. Generated superpixels preserve the tissue structures such as retinal layers, sclera, vessels, and retinal pigment epithelium. Hence, superpixel can be utilized as a local statistics kernel which would be more suitable than a uniform rectangle kernel. Superpixelized image also can be used for further image processing and analysis. Since it reduces the number of pixels to be analyzed, it reduce the computational cost of such image processing.

  17. Point process statistics in atom probe tomography.

    PubMed

    Philippe, T; Duguay, S; Grancher, G; Blavette, D

    2013-09-01

    We present a review of spatial point processes as statistical models that we have designed for the analysis and treatment of atom probe tomography (APT) data. As a major advantage, these methods do not require sampling. The mean distance to nearest neighbour is an attractive approach to exhibit a non-random atomic distribution. A χ(2) test based on distance distributions to nearest neighbour has been developed to detect deviation from randomness. Best-fit methods based on first nearest neighbour distance (1 NN method) and pair correlation function are presented and compared to assess the chemical composition of tiny clusters. Delaunay tessellation for cluster selection has been also illustrated. These statistical tools have been applied to APT experiments on microelectronics materials. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. [Notes on vital statistics for the study of perinatal health].

    PubMed

    Juárez, Sol Pía

    2014-01-01

    Vital statistics, published by the National Statistics Institute in Spain, are a highly important source for the study of perinatal health nationwide. However, the process of data collection is not well-known and has implications both for the quality and interpretation of the epidemiological results derived from this source. The aim of this study was to present how the information is collected and some of the associated problems. This study is the result of an analysis of the methodological notes from the National Statistics Institute and first-hand information obtained from hospitals, the Central Civil Registry of Madrid, and the Madrid Institute for Statistics. Greater integration between these institutions is required to improve the quality of birth and stillbirth statistics. Copyright © 2014 SESPAS. Published by Elsevier Espana. All rights reserved.

  19. Laser Doppler, velocimeter system for turbine stator cascade studies and analysis of statistical biasing errors

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.

    1977-01-01

    A laser Doppler velocimeter (LDV) built for use in the Lewis Research Center's turbine stator cascade facilities is described. The signal processing and self contained data processing are based on a computing counter. A procedure is given for mode matching the laser to the probe volume. An analysis is presented of biasing errors that were observed in turbulent flow when the mean flow was not normal to the fringes.

  20. 40 CFR 430.03 - Best management practices (BMPs) for spent pulping liquor, soap, and turpentine management, spill...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... triggers investigative or corrective action. Mills determine action levels by a statistical analysis of six... exchanger, recovery furnace or boiler, pipeline, valve, fitting, or other device that contains, processes... gases from the cooking of softwoods by the kraft pulping process. Sometimes referred to as sulfate...

  1. Forest statistics for Northwest Florida, 1987

    Treesearch

    Mark J. Brown

    1987-01-01

    The Forest Inventory and Analysis (Forest Survey) Research Work Unit at the Southeastern Forest Experiment Station recently conducted a review of its data processing procedures. During this process, a computer error was discovered which led to inflated estimates of annual removals, net annual growth, and annual mortality for the 1970-1980 remeasurement period in...

  2. Relationship of Class-Size to Classroom Processes, Teacher Satisfaction and Pupil Affect: A Meta-Analysis.

    ERIC Educational Resources Information Center

    Smith, Mary Lee; Glass, Gene V.

    Using data from previously completed research, the authors of this report attempted to examine the relationship between class size and measures of outcomes such as student attitudes and behavior, classroom processes and learning environment, and teacher satisfaction. The authors report that statistical integration of the existing research…

  3. Swimming Pool Water Treatment Chemicals and/or Processes. Standard No. 22.

    ERIC Educational Resources Information Center

    National Sanitation Foundation, Ann Arbor, MI.

    Chemicals or processes used or intended for use, in the treatment of swimming pool water are covered. Minimum public health limits or acceptability in regard to toxicity, biocidal effectiveness, and chemical behavior and analysis are presented. The appendices give guidelines to the scientific and statistically sound evaluations to determine the…

  4. Geosocial process and its regularities

    NASA Astrophysics Data System (ADS)

    Vikulina, Marina; Vikulin, Alexander; Dolgaya, Anna

    2015-04-01

    Natural disasters and social events (wars, revolutions, genocides, epidemics, fires, etc.) accompany each other throughout human civilization, thus reflecting the close relationship of these phenomena that are seemingly of different nature. In order to study this relationship authors compiled and analyzed the list of the 2,400 natural disasters and social phenomena weighted by their magnitude that occurred during the last XXXVI centuries of our history. Statistical analysis was performed separately for each aggregate (natural disasters and social phenomena), and for particular statistically representative types of events. There was 5 + 5 = 10 types. It is shown that the numbers of events in the list are distributed by logarithmic law: the bigger the event, the less likely it happens. For each type of events and each aggregate the existence of periodicities with periods of 280 ± 60 years was established. Statistical analysis of the time intervals between adjacent events for both aggregates showed good agreement with Weibull-Gnedenko distribution with shape parameter less than 1, which is equivalent to the conclusion about the grouping of events at small time intervals. Modeling of statistics of time intervals with Pareto distribution allowed to identify the emergent property for all events in the aggregate. This result allowed the authors to make conclusion about interaction between natural disasters and social phenomena. The list of events compiled by authors and first identified properties of cyclicity, grouping and interaction process reflected by this list is the basis of modeling essentially unified geosocial process at high enough statistical level. Proof of interaction between "lifeless" Nature and Society is fundamental and provided a new approach to forecasting demographic crises with taking into account both natural disasters and social phenomena.

  5. Silicon solar cell process. Development, fabrication and analysis

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1978-01-01

    Solar cells were fabricated from unconventional silicon sheets, and the performances were characterized with an emphasis on statistical evaluation. A number of solar cell fabrication processes were used and conversion efficiency was measured under AMO condition at 25 C. Silso solar cells using standard processing showed an average efficiency of about 9.6%. Solar cells with back surface field process showed about the same efficiency as the cells from standard process. Solar cells from grain boundary passivation process did not show any improvements in solar cell performance.

  6. Plan delivery quality assurance for CyberKnife: Statistical process control analysis of 350 film-based patient-specific QAs.

    PubMed

    Bellec, J; Delaby, N; Jouyaux, F; Perdrieux, M; Bouvier, J; Sorel, S; Henry, O; Lafond, C

    2017-07-01

    Robotic radiosurgery requires plan delivery quality assurance (DQA) but there has never been a published comprehensive analysis of a patient-specific DQA process in a clinic. We proposed to evaluate 350 consecutive film-based patient-specific DQAs using statistical process control. We evaluated the performance of the process to propose achievable tolerance criteria for DQA validation and we sought to identify suboptimal DQA using control charts. DQAs were performed on a CyberKnife-M6 using Gafchromic-EBT3 films. The signal-to-dose conversion was performed using a multichannel-correction and a scanning protocol that combined measurement and calibration in a single scan. The DQA analysis comprised a gamma-index analysis at 3%/1.5mm and a separate evaluation of spatial and dosimetric accuracy of the plan delivery. Each parameter was plotted on a control chart and control limits were calculated. A capability index (Cpm) was calculated to evaluate the ability of the process to produce results within specifications. The analysis of capability showed that a gamma pass rate of 85% at 3%/1.5mm was highly achievable as acceptance criteria for DQA validation using a film-based protocol (Cpm>1.33). 3.4% of DQA were outside a control limit of 88% for gamma pass-rate. The analysis of the out-of-control DQA helped identify a dosimetric error in our institute for a specific treatment type. We have defined initial tolerance criteria for DQA validations. We have shown that the implementation of a film-based patient-specific DQA protocol with the use of control charts is an effective method to improve patient treatment safety on CyberKnife. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Application of spatial technology in malaria research & control: some new insights.

    PubMed

    Saxena, Rekha; Nagpal, B N; Srivastava, Aruna; Gupta, S K; Dash, A P

    2009-08-01

    Geographical information System (GIS) has emerged as the core of the spatial technology which integrates wide range of dataset available from different sources including Remote Sensing (RS) and Global Positioning System (GPS). Literature published during the decade (1998-2007) has been compiled and grouped into six categories according to the usage of the technology in malaria epidemiology. Different GIS modules like spatial data sources, mapping and geo-processing tools, distance calculation, digital elevation model (DEM), buffer zone and geo-statistical analysis have been investigated in detail, illustrated with examples as per the derived results. These GIS tools have contributed immensely in understanding the epidemiological processes of malaria and examples drawn have shown that GIS is now widely used for research and decision making in malaria control. Statistical data analysis currently is the most consistent and established set of tools to analyze spatial datasets. The desired future development of GIS is in line with the utilization of geo-statistical tools which combined with high quality data has capability to provide new insight into malaria epidemiology and the complexity of its transmission potential in endemic areas.

  8. Statistical sensor fusion analysis of near-IR polarimetric and thermal imagery for the detection of minelike targets

    NASA Astrophysics Data System (ADS)

    Weisenseel, Robert A.; Karl, William C.; Castanon, David A.; DiMarzio, Charles A.

    1999-02-01

    We present an analysis of statistical model based data-level fusion for near-IR polarimetric and thermal data, particularly for the detection of mines and mine-like targets. Typical detection-level data fusion methods, approaches that fuse detections from individual sensors rather than fusing at the level of the raw data, do not account rationally for the relative reliability of different sensors, nor the redundancy often inherent in multiple sensors. Representative examples of such detection-level techniques include logical AND/OR operations on detections from individual sensors and majority vote methods. In this work, we exploit a statistical data model for the detection of mines and mine-like targets to compare and fuse multiple sensor channels. Our purpose is to quantify the amount of knowledge that each polarimetric or thermal channel supplies to the detection process. With this information, we can make reasonable decisions about the usefulness of each channel. We can use this information to improve the detection process, or we can use it to reduce the number of required channels.

  9. Statistical inference for noisy nonlinear ecological dynamic systems.

    PubMed

    Wood, Simon N

    2010-08-26

    Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.

  10. Automated Tracking of Cell Migration with Rapid Data Analysis.

    PubMed

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. Carbohydrate Structure Database: tools for statistical analysis of bacterial, plant and fungal glycomes

    PubMed Central

    Egorova, K.S.; Kondakova, A.N.; Toukach, Ph.V.

    2015-01-01

    Carbohydrates are biological blocks participating in diverse and crucial processes both at cellular and organism levels. They protect individual cells, establish intracellular interactions, take part in the immune reaction and participate in many other processes. Glycosylation is considered as one of the most important modifications of proteins and other biologically active molecules. Still, the data on the enzymatic machinery involved in the carbohydrate synthesis and processing are scattered, and the advance on its study is hindered by the vast bulk of accumulated genetic information not supported by any experimental evidences for functions of proteins that are encoded by these genes. In this article, we present novel instruments for statistical analysis of glycomes in taxa. These tools may be helpful for investigating carbohydrate-related enzymatic activities in various groups of organisms and for comparison of their carbohydrate content. The instruments are developed on the Carbohydrate Structure Database (CSDB) platform and are available freely on the CSDB web-site at http://csdb.glycoscience.ru. Database URL: http://csdb.glycoscience.ru PMID:26337239

  12. Optimization of the p-xylene oxidation process by a multi-objective differential evolution algorithm with adaptive parameters co-derived with the population-based incremental learning algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Zhan; Yan, Xuefeng

    2018-04-01

    Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.

  13. An Analysis Methodology for the Gamma-ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    Morris, Robin D.; Cohen-Tanugi, Johann

    2004-01-01

    The Large Area Telescope (LAT) instrument on the Gamma Ray Large Area Space Telescope (GLAST) has been designed to detect high-energy gamma rays and determine their direction of incidence and energy. We propose a reconstruction algorithm based on recent advances in statistical methodology. This method, alternative to the standard event analysis inherited from high energy collider physics experiments, incorporates more accurately the physical processes occurring in the detector, and makes full use of the statistical information available. It could thus provide a better estimate of the direction and energy of the primary photon.

  14. Statistical analysis plan of the head position in acute ischemic stroke trial pilot (HEADPOST pilot).

    PubMed

    Olavarría, Verónica V; Arima, Hisatomi; Anderson, Craig S; Brunser, Alejandro; Muñoz-Venturelli, Paula; Billot, Laurent; Lavados, Pablo M

    2017-02-01

    Background The HEADPOST Pilot is a proof-of-concept, open, prospective, multicenter, international, cluster randomized, phase IIb controlled trial, with masked outcome assessment. The trial will test if lying flat head position initiated in patients within 12 h of onset of acute ischemic stroke involving the anterior circulation increases cerebral blood flow in the middle cerebral arteries, as measured by transcranial Doppler. The study will also assess the safety and feasibility of patients lying flat for ≥24 h. The trial was conducted in centers in three countries, with ability to perform early transcranial Doppler. A feature of this trial was that patients were randomized to a certain position according to the month of admission to hospital. Objective To outline in detail the predetermined statistical analysis plan for HEADPOST Pilot study. Methods All data collected by participating researchers will be reviewed and formally assessed. Information pertaining to the baseline characteristics of patients, their process of care, and the delivery of treatments will be classified, and for each item, appropriate descriptive statistical analyses are planned with comparisons made between randomized groups. For the outcomes, statistical comparisons to be made between groups are planned and described. Results This statistical analysis plan was developed for the analysis of the results of the HEADPOST Pilot study to be transparent, available, verifiable, and predetermined before data lock. Conclusions We have developed a statistical analysis plan for the HEADPOST Pilot study which is to be followed to avoid analysis bias arising from prior knowledge of the study findings. Trial registration The study is registered under HEADPOST-Pilot, ClinicalTrials.gov Identifier NCT01706094.

  15. Architecture of a spatial data service system for statistical analysis and visualization of regional climate changes

    NASA Astrophysics Data System (ADS)

    Titov, A. G.; Okladnikov, I. G.; Gordov, E. P.

    2017-11-01

    The use of large geospatial datasets in climate change studies requires the development of a set of Spatial Data Infrastructure (SDI) elements, including geoprocessing and cartographical visualization web services. This paper presents the architecture of a geospatial OGC web service system as an integral part of a virtual research environment (VRE) general architecture for statistical processing and visualization of meteorological and climatic data. The architecture is a set of interconnected standalone SDI nodes with corresponding data storage systems. Each node runs a specialized software, such as a geoportal, cartographical web services (WMS/WFS), a metadata catalog, and a MySQL database of technical metadata describing geospatial datasets available for the node. It also contains geospatial data processing services (WPS) based on a modular computing backend realizing statistical processing functionality and, thus, providing analysis of large datasets with the results of visualization and export into files of standard formats (XML, binary, etc.). Some cartographical web services have been developed in a system’s prototype to provide capabilities to work with raster and vector geospatial data based on OGC web services. The distributed architecture presented allows easy addition of new nodes, computing and data storage systems, and provides a solid computational infrastructure for regional climate change studies based on modern Web and GIS technologies.

  16. Statistical Analysis of Adaptive Beam-Forming Methods

    DTIC Science & Technology

    1988-05-01

    minimum amount of computing resources? * What are the tradeoffs being made when a system design selects block averaging over exponential averaging? Will...understood by many signal processing practitioners, however, is how system parameters and the number of sensors effect the distribution of the... system performance improve and if so by how much? b " It is well known that the noise sampled at adjacent sensors is not statistically independent

  17. Compilation and Analysis of 20 and 30 GHz Rain Fade Events at the ACTS NASA Ground Station: Statistics and Model Assessment

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1996-01-01

    The purpose of the propagation studies within the ACTS Project Office is to acquire 20 and 30 GHz rain fade statistics using the ACTS beacon links received at the NGS (NASA Ground Station) in Cleveland. Other than the raw, statistically unprocessed rain fade events that occur in real time, relevant rain fade statistics derived from such events are the cumulative rain fade statistics as well as fade duration statistics (beyond given fade thresholds) over monthly and yearly time intervals. Concurrent with the data logging exercise, monthly maximum rainfall levels recorded at the US Weather Service at Hopkins Airport are appended to the database to facilitate comparison of observed fade statistics with those predicted by the ACTS Rain Attenuation Model. Also, the raw fade data will be in a format, complete with documentation, for use by other investigators who require realistic fade event evolution in time for simulation purposes or further analysis for comparisons with other rain fade prediction models, etc. The raw time series data from the 20 and 30 GHz beacon signals is purged of non relevant data intervals where no rain fading has occurred. All other data intervals which contain rain fade events are archived with the accompanying time stamps. The definition of just what constitutes a rain fade event will be discussed later. The archived data serves two purposes. First, all rain fade event data is recombined into a contiguous data series every month and every year; this will represent an uninterrupted record of the actual (i.e., not statistically processed) temporal evolution of rain fade at 20 and 30 GHz at the location of the NGS. The second purpose of the data in such a format is to enable a statistical analysis of prevailing propagation parameters such as cumulative distributions of attenuation on a monthly and yearly basis as well as fade duration probabilities below given fade thresholds, also on a monthly and yearly basis. In addition, various subsidiary statistics such as attenuation rate probabilities are derived. The purged raw rain fade data as well as the results of the analyzed data will be made available for use by parties in the private sector upon their request. The process which will be followed in this dissemination is outlined in this paper.

  18. Statistical Optics

    NASA Astrophysics Data System (ADS)

    Goodman, Joseph W.

    2000-07-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research

  19. Assessment of the beryllium lymphocyte proliferation test using statistical process control.

    PubMed

    Cher, Daniel J; Deubner, David C; Kelsh, Michael A; Chapman, Pamela S; Ray, Rose M

    2006-10-01

    Despite more than 20 years of surveillance and epidemiologic studies using the beryllium blood lymphocyte proliferation test (BeBLPT) as a measure of beryllium sensitization (BeS) and as an aid for diagnosing subclinical chronic beryllium disease (CBD), improvements in specific understanding of the inhalation toxicology of CBD have been limited. Although epidemiologic data suggest that BeS and CBD risks vary by process/work activity, it has proven difficult to reach specific conclusions regarding the dose-response relationship between workplace beryllium exposure and BeS or subclinical CBD. One possible reason for this uncertainty could be misclassification of BeS resulting from variation in BeBLPT testing performance. The reliability of the BeBLPT, a biological assay that measures beryllium sensitization, is unknown. To assess the performance of four laboratories that conducted this test, we used data from a medical surveillance program that offered testing for beryllium sensitization with the BeBLPT. The study population was workers exposed to beryllium at various facilities over a 10-year period (1992-2001). Workers with abnormal results were offered diagnostic workups for CBD. Our analyses used a standard statistical technique, statistical process control (SPC), to evaluate test reliability. The study design involved a repeated measures analysis of BeBLPT results generated from the company-wide, longitudinal testing. Analytical methods included use of (1) statistical process control charts that examined temporal patterns of variation for the stimulation index, a measure of cell reactivity to beryllium; (2) correlation analysis that compared prior perceptions of BeBLPT instability to the statistical measures of test variation; and (3) assessment of the variation in the proportion of missing test results and how time periods with more missing data influenced SPC findings. During the period of this study, all laboratories displayed variation in test results that were beyond what would be expected due to chance alone. Patterns of test results suggested that variations were systematic. We conclude that laboratories performing the BeBLPT or other similar biological assays of immunological response could benefit from a statistical approach such as SPC to improve quality management.

  20. Feasibility study of using statistical process control to customized quality assurance in proton therapy.

    PubMed

    Rah, Jeong-Eun; Shin, Dongho; Oh, Do Hoon; Kim, Tae Hyun; Kim, Gwe-Ya

    2014-09-01

    To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. The authors established a customized tolerance level of ±2% for D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors' analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.

  1. Clustering, randomness and regularity in cloud fields. I - Theoretical considerations. II - Cumulus cloud fields

    NASA Technical Reports Server (NTRS)

    Weger, R. C.; Lee, J.; Zhu, Tianri; Welch, R. M.

    1992-01-01

    The current controversy existing in reference to the regularity vs. clustering in cloud fields is examined by means of analysis and simulation studies based upon nearest-neighbor cumulative distribution statistics. It is shown that the Poisson representation of random point processes is superior to pseudorandom-number-generated models and that pseudorandom-number-generated models bias the observed nearest-neighbor statistics towards regularity. Interpretation of this nearest-neighbor statistics is discussed for many cases of superpositions of clustering, randomness, and regularity. A detailed analysis is carried out of cumulus cloud field spatial distributions based upon Landsat, AVHRR, and Skylab data, showing that, when both large and small clouds are included in the cloud field distributions, the cloud field always has a strong clustering signal.

  2. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes.

  3. Gene ARMADA: an integrated multi-analysis platform for microarray data implemented in MATLAB.

    PubMed

    Chatziioannou, Aristotelis; Moulos, Panagiotis; Kolisis, Fragiskos N

    2009-10-27

    The microarray data analysis realm is ever growing through the development of various tools, open source and commercial. However there is absence of predefined rational algorithmic analysis workflows or batch standardized processing to incorporate all steps, from raw data import up to the derivation of significantly differentially expressed gene lists. This absence obfuscates the analytical procedure and obstructs the massive comparative processing of genomic microarray datasets. Moreover, the solutions provided, heavily depend on the programming skills of the user, whereas in the case of GUI embedded solutions, they do not provide direct support of various raw image analysis formats or a versatile and simultaneously flexible combination of signal processing methods. We describe here Gene ARMADA (Automated Robust MicroArray Data Analysis), a MATLAB implemented platform with a Graphical User Interface. This suite integrates all steps of microarray data analysis including automated data import, noise correction and filtering, normalization, statistical selection of differentially expressed genes, clustering, classification and annotation. In its current version, Gene ARMADA fully supports 2 coloured cDNA and Affymetrix oligonucleotide arrays, plus custom arrays for which experimental details are given in tabular form (Excel spreadsheet, comma separated values, tab-delimited text formats). It also supports the analysis of already processed results through its versatile import editor. Besides being fully automated, Gene ARMADA incorporates numerous functionalities of the Statistics and Bioinformatics Toolboxes of MATLAB. In addition, it provides numerous visualization and exploration tools plus customizable export data formats for seamless integration by other analysis tools or MATLAB, for further processing. Gene ARMADA requires MATLAB 7.4 (R2007a) or higher and is also distributed as a stand-alone application with MATLAB Component Runtime. Gene ARMADA provides a highly adaptable, integrative, yet flexible tool which can be used for automated quality control, analysis, annotation and visualization of microarray data, constituting a starting point for further data interpretation and integration with numerous other tools.

  4. Obtaining mathematical models for assessing efficiency of dust collectors using integrated system of analysis and data management STATISTICA Design of Experiments

    NASA Astrophysics Data System (ADS)

    Azarov, A. V.; Zhukova, N. S.; Kozlovtseva, E. Yu; Dobrinsky, D. R.

    2018-05-01

    The article considers obtaining mathematical models to assess the efficiency of the dust collectors using an integrated system of analysis and data management STATISTICA Design of Experiments. The procedure for obtaining mathematical models and data processing is considered by the example of laboratory studies on a mounted installation containing a dust collector in counter-swirling flows (CSF) using gypsum dust of various fractions. Planning of experimental studies has been carried out in order to reduce the number of experiments and reduce the cost of experimental research. A second-order non-position plan (Box-Bencken plan) was used, which reduced the number of trials from 81 to 27. The order of statistical data research of Box-Benken plan using standard tools of integrated system for analysis and data management STATISTICA Design of Experiments is considered. Results of statistical data processing with significance estimation of coefficients and adequacy of mathematical models are presented.

  5. Efficient and Flexible Climate Analysis with Python in a Cloud-Based Distributed Computing Framework

    NASA Astrophysics Data System (ADS)

    Gannon, C.

    2017-12-01

    As climate models become progressively more advanced, and spatial resolution further improved through various downscaling projects, climate projections at a local level are increasingly insightful and valuable. However, the raw size of climate datasets presents numerous hurdles for analysts wishing to develop customized climate risk metrics or perform site-specific statistical analysis. Four Twenty Seven, a climate risk consultancy, has implemented a Python-based distributed framework to analyze large climate datasets in the cloud. With the freedom afforded by efficiently processing these datasets, we are able to customize and continually develop new climate risk metrics using the most up-to-date data. Here we outline our process for using Python packages such as XArray and Dask to evaluate netCDF files in a distributed framework, StarCluster to operate in a cluster-computing environment, cloud computing services to access publicly hosted datasets, and how this setup is particularly valuable for generating climate change indicators and performing localized statistical analysis.

  6. Using statistical process control for monitoring the prevalence of hospital-acquired pressure ulcers.

    PubMed

    Kottner, Jan; Halfens, Ruud

    2010-05-01

    Institutionally acquired pressure ulcers are used as outcome indicators to assess the quality of pressure ulcer prevention programs. Determining whether quality improvement projects that aim to decrease the proportions of institutionally acquired pressure ulcers lead to real changes in clinical practice depends on the measurement method and statistical analysis used. To examine whether nosocomial pressure ulcer prevalence rates in hospitals in the Netherlands changed, a secondary data analysis using different statistical approaches was conducted of annual (1998-2008) nationwide nursing-sensitive health problem prevalence studies in the Netherlands. Institutions that participated regularly in all survey years were identified. Risk-adjusted nosocomial pressure ulcers prevalence rates, grade 2 to 4 (European Pressure Ulcer Advisory Panel system) were calculated per year and hospital. Descriptive statistics, chi-square trend tests, and P charts based on statistical process control (SPC) were applied and compared. Six of the 905 healthcare institutions participated in every survey year and 11,444 patients in these six hospitals were identified as being at risk for pressure ulcers. Prevalence rates per year ranged from 0.05 to 0.22. Chi-square trend tests revealed statistically significant downward trends in four hospitals but based on SPC methods, prevalence rates of five hospitals varied by chance only. Results of chi-square trend tests and SPC methods were not comparable, making it impossible to decide which approach is more appropriate. P charts provide more valuable information than single P values and are more helpful for monitoring institutional performance. Empirical evidence about the decrease of nosocomial pressure ulcer prevalence rates in the Netherlands is contradictory and limited.

  7. Data mining and statistical inference in selective laser melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamath, Chandrika

    Selective laser melting (SLM) is an additive manufacturing process that builds a complex three-dimensional part, layer-by-layer, using a laser beam to fuse fine metal powder together. The design freedom afforded by SLM comes associated with complexity. As the physical phenomena occur over a broad range of length and time scales, the computational cost of modeling the process is high. At the same time, the large number of parameters that control the quality of a part make experiments expensive. In this paper, we describe ways in which we can use data mining and statistical inference techniques to intelligently combine simulations andmore » experiments to build parts with desired properties. We start with a brief summary of prior work in finding process parameters for high-density parts. We then expand on this work to show how we can improve the approach by using feature selection techniques to identify important variables, data-driven surrogate models to reduce computational costs, improved sampling techniques to cover the design space adequately, and uncertainty analysis for statistical inference. Here, our results indicate that techniques from data mining and statistics can complement those from physical modeling to provide greater insight into complex processes such as selective laser melting.« less

  8. Data mining and statistical inference in selective laser melting

    DOE PAGES

    Kamath, Chandrika

    2016-01-11

    Selective laser melting (SLM) is an additive manufacturing process that builds a complex three-dimensional part, layer-by-layer, using a laser beam to fuse fine metal powder together. The design freedom afforded by SLM comes associated with complexity. As the physical phenomena occur over a broad range of length and time scales, the computational cost of modeling the process is high. At the same time, the large number of parameters that control the quality of a part make experiments expensive. In this paper, we describe ways in which we can use data mining and statistical inference techniques to intelligently combine simulations andmore » experiments to build parts with desired properties. We start with a brief summary of prior work in finding process parameters for high-density parts. We then expand on this work to show how we can improve the approach by using feature selection techniques to identify important variables, data-driven surrogate models to reduce computational costs, improved sampling techniques to cover the design space adequately, and uncertainty analysis for statistical inference. Here, our results indicate that techniques from data mining and statistics can complement those from physical modeling to provide greater insight into complex processes such as selective laser melting.« less

  9. Finding Groups Using Model-Based Cluster Analysis: Heterogeneous Emotional Self-Regulatory Processes and Heavy Alcohol Use Risk

    ERIC Educational Resources Information Center

    Mun, Eun Young; von Eye, Alexander; Bates, Marsha E.; Vaschillo, Evgeny G.

    2008-01-01

    Model-based cluster analysis is a new clustering procedure to investigate population heterogeneity utilizing finite mixture multivariate normal densities. It is an inferentially based, statistically principled procedure that allows comparison of nonnested models using the Bayesian information criterion to compare multiple models and identify the…

  10. A Review of Classical Methods of Item Analysis.

    ERIC Educational Resources Information Center

    French, Christine L.

    Item analysis is a very important consideration in the test development process. It is a statistical procedure to analyze test items that combines methods used to evaluate the important characteristics of test items, such as difficulty, discrimination, and distractibility of the items in a test. This paper reviews some of the classical methods for…

  11. Conjoint Analysis: A Study of the Effects of Using Person Variables.

    ERIC Educational Resources Information Center

    Fraas, John W.; Newman, Isadore

    Three statistical techniques--conjoint analysis, a multiple linear regression model, and a multiple linear regression model with a surrogate person variable--were used to estimate the relative importance of five university attributes for students in the process of selecting a college. The five attributes include: availability and variety of…

  12. A PERT/CPM of the Computer Assisted Completion of The Ministry September Report. Research Report.

    ERIC Educational Resources Information Center

    Feeney, J. D.

    Using two statistical analysis techniques (the Program Evaluation and Review Technique and the Critical Path Method), this study analyzed procedures for compiling the required yearly report of the Metropolitan Separate School Board (Catholic) of Toronto, Canada. The computer-assisted analysis organized the process of completing the report more…

  13. Increasing Transparency Through a Multiverse Analysis.

    PubMed

    Steegen, Sara; Tuerlinckx, Francis; Gelman, Andrew; Vanpaemel, Wolf

    2016-09-01

    Empirical research inevitably includes constructing a data set by processing raw data into a form ready for statistical analysis. Data processing often involves choices among several reasonable options for excluding, transforming, and coding data. We suggest that instead of performing only one analysis, researchers could perform a multiverse analysis, which involves performing all analyses across the whole set of alternatively processed data sets corresponding to a large set of reasonable scenarios. Using an example focusing on the effect of fertility on religiosity and political attitudes, we show that analyzing a single data set can be misleading and propose a multiverse analysis as an alternative practice. A multiverse analysis offers an idea of how much the conclusions change because of arbitrary choices in data construction and gives pointers as to which choices are most consequential in the fragility of the result. © The Author(s) 2016.

  14. Critical Analysis of Primary Literature in a Master’s-Level Class: Effects on Self-Efficacy and Science-Process Skills

    PubMed Central

    Abdullah, Christopher; Parris, Julian; Lie, Richard; Guzdar, Amy; Tour, Ella

    2015-01-01

    The ability to think analytically and creatively is crucial for success in the modern workforce, particularly for graduate students, who often aim to become physicians or researchers. Analysis of the primary literature provides an excellent opportunity to practice these skills. We describe a course that includes a structured analysis of four research papers from diverse fields of biology and group exercises in proposing experiments that would follow up on these papers. To facilitate a critical approach to primary literature, we included a paper with questionable data interpretation and two papers investigating the same biological question yet reaching opposite conclusions. We report a significant increase in students’ self-efficacy in analyzing data from research papers, evaluating authors’ conclusions, and designing experiments. Using our science-process skills test, we observe a statistically significant increase in students’ ability to propose an experiment that matches the goal of investigation. We also detect gains in interpretation of controls and quantitative analysis of data. No statistically significant changes were observed in questions that tested the skills of interpretation, inference, and evaluation. PMID:26250564

  15. Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation.

    PubMed

    Zhao, Zhihua; Zheng, Zhiqin; Roux, Clément; Delmas, Céline; Marty, Jean-Daniel; Kahn, Myrtil L; Mingotaud, Christophe

    2016-08-22

    Analysis of nanoparticle size through a simple 2D plot is proposed in order to extract the correlation between length and width in a collection or a mixture of anisotropic particles. Compared to the usual statistics on the length associated with a second and independent statistical analysis of the width, this simple plot easily points out the various types of nanoparticles and their (an)isotropy. For each class of nano-objects, the relationship between width and length (i.e., the strong or weak correlations between these two parameters) may suggest information concerning the nucleation/growth processes. It allows one to follow the effect on the shape and size distribution of physical or chemical processes such as simple ripening. Various electron microscopy pictures from the literature or from the authors' own syntheses are used as examples to demonstrate the efficiency and simplicity of the proposed 2D plot combined with a multivariate analysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Automatic Generation of Algorithms for the Statistical Analysis of Planetary Nebulae Images

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd

    2004-01-01

    Analyzing data sets collected in experiments or by observations is a Core scientific activity. Typically, experimentd and observational data are &aught with uncertainty, and the analysis is based on a statistical model of the conjectured underlying processes, The large data volumes collected by modern instruments make computer support indispensible for this. Consequently, scientists spend significant amounts of their time with the development and refinement of the data analysis programs. AutoBayes [GF+02, FS03] is a fully automatic synthesis system for generating statistical data analysis programs. Externally, it looks like a compiler: it takes an abstract problem specification and translates it into executable code. Its input is a concise description of a data analysis problem in the form of a statistical model as shown in Figure 1; its output is optimized and fully documented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Internally, however, it is quite different: AutoBayes derives a customized algorithm implementing the given model using a schema-based process, and then further refines and optimizes the algorithm into code. A schema is a parameterized code template with associated semantic constraints which define and restrict the template s applicability. The schema parameters are instantiated in a problem-specific way during synthesis as AutoBayes checks the constraints against the original model or, recursively, against emerging sub-problems. AutoBayes schema library contains problem decomposition operators (which are justified by theorems in a formal logic in the domain of Bayesian networks) as well as machine learning algorithms (e.g., EM, k-Means) and nu- meric optimization methods (e.g., Nelder-Mead simplex, conjugate gradient). AutoBayes augments this schema-based approach by symbolic computation to derive closed-form solutions whenever possible. This is a major advantage over other statistical data analysis systems which use numerical approximations even in cases where closed-form solutions exist. AutoBayes is implemented in Prolog and comprises approximately 75.000 lines of code. In this paper, we take one typical scientific data analysis problem-analyzing planetary nebulae images taken by the Hubble Space Telescope-and show how AutoBayes can be used to automate the implementation of the necessary anal- ysis programs. We initially follow the analysis described by Knuth and Hajian [KHO2] and use AutoBayes to derive code for the published models. We show the details of the code derivation process, including the symbolic computations and automatic integration of library procedures, and compare the results of the automatically generated and manually implemented code. We then go beyond the original analysis and use AutoBayes to derive code for a simple image segmentation procedure based on a mixture model which can be used to automate a manual preproceesing step. Finally, we combine the original approach with the simple segmentation which yields a more detailed analysis. This also demonstrates that AutoBayes makes it easy to combine different aspects of data analysis.

  17. Statistical mixture design and multivariate analysis of inkjet printed a-WO3/TiO2/WOX electrochromic films.

    PubMed

    Wojcik, Pawel Jerzy; Pereira, Luís; Martins, Rodrigo; Fortunato, Elvira

    2014-01-13

    An efficient mathematical strategy in the field of solution processed electrochromic (EC) films is outlined as a combination of an experimental work, modeling, and information extraction from massive computational data via statistical software. Design of Experiment (DOE) was used for statistical multivariate analysis and prediction of mixtures through a multiple regression model, as well as the optimization of a five-component sol-gel precursor subjected to complex constraints. This approach significantly reduces the number of experiments to be realized, from 162 in the full factorial (L=3) and 72 in the extreme vertices (D=2) approach down to only 30 runs, while still maintaining a high accuracy of the analysis. By carrying out a finite number of experiments, the empirical modeling in this study shows reasonably good prediction ability in terms of the overall EC performance. An optimized ink formulation was employed in a prototype of a passive EC matrix fabricated in order to test and trial this optically active material system together with a solid-state electrolyte for the prospective application in EC displays. Coupling of DOE with chromogenic material formulation shows the potential to maximize the capabilities of these systems and ensures increased productivity in many potential solution-processed electrochemical applications.

  18. Review of the patient positioning reproducibility in head-and-neck radiotherapy using Statistical Process Control.

    PubMed

    Moore, Sarah J; Herst, Patries M; Louwe, Robert J W

    2018-05-01

    A remarkable improvement in patient positioning was observed after the implementation of various process changes aiming to increase the consistency of patient positioning throughout the radiotherapy treatment chain. However, no tool was available to describe these changes over time in a standardised way. This study reports on the feasibility of Statistical Process Control (SPC) to highlight changes in patient positioning accuracy and facilitate correlation of these changes with the underlying process changes. Metrics were designed to quantify the systematic and random patient deformation as input for the SPC charts. These metrics were based on data obtained from multiple local ROI matches for 191 patients who were treated for head-and-neck cancer during the period 2011-2016. SPC highlighted a significant improvement in patient positioning that coincided with multiple intentional process changes. The observed improvements could be described as a combination of a reduction in outliers and a systematic improvement in the patient positioning accuracy of all patients. SPC is able to track changes in the reproducibility of patient positioning in head-and-neck radiation oncology, and distinguish between systematic and random process changes. Identification of process changes underlying these trends requires additional statistical analysis and seems only possible when the changes do not overlap in time. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Different modes of data processing and statistical testing applied to the same set of pharmaco-EEG recordings: effects on the evaluation of a selective and reversible MAO A inhibitor (brofaromine).

    PubMed

    Reimann, I W; Jobert, M; Gleiter, C H; Turri, M; Bieck, P R; Herrmann, W M

    1996-01-01

    The comparison of two different modes of data processing and two different approaches to statistical testing both applied to the same set of EEG recordings was the main objective of this pharmacological study. Brofaromine (CGP 11,305 A), a new selective and reversible monoamine oxidase type A inhibitor was used as an example for investigating a potentially antidepressant drug in clinical development. The two modes of pharmaco-EEG (PEEG) data processing differed mainly in the sampling frequency and definition of spectral parameters. Patterns of significant changes were noted in terms of descriptive data analysis using either a nonparametric Wilcoxon signed-rank test or an ANOVA of transformed data, as suggested by Conover and Iman. These data clearly demonstrate that slight discrepancies in the results may simply arise from differences in data processing and statistical approach applied. In spite of these discrepancies, the pattern of brofaromine-induced PEEG changes was very similar regardless of the mode of data handling used.

  20. Analysis of Statistical Methods and Errors in the Articles Published in the Korean Journal of Pain

    PubMed Central

    Yim, Kyoung Hoon; Han, Kyoung Ah; Park, Soo Young

    2010-01-01

    Background Statistical analysis is essential in regard to obtaining objective reliability for medical research. However, medical researchers do not have enough statistical knowledge to properly analyze their study data. To help understand and potentially alleviate this problem, we have analyzed the statistical methods and errors of articles published in the Korean Journal of Pain (KJP), with the intention to improve the statistical quality of the journal. Methods All the articles, except case reports and editorials, published from 2004 to 2008 in the KJP were reviewed. The types of applied statistical methods and errors in the articles were evaluated. Results One hundred and thirty-nine original articles were reviewed. Inferential statistics and descriptive statistics were used in 119 papers and 20 papers, respectively. Only 20.9% of the papers were free from statistical errors. The most commonly adopted statistical method was the t-test (21.0%) followed by the chi-square test (15.9%). Errors of omission were encountered 101 times in 70 papers. Among the errors of omission, "no statistics used even though statistical methods were required" was the most common (40.6%). The errors of commission were encountered 165 times in 86 papers, among which "parametric inference for nonparametric data" was the most common (33.9%). Conclusions We found various types of statistical errors in the articles published in the KJP. This suggests that meticulous attention should be given not only in the applying statistical procedures but also in the reviewing process to improve the value of the article. PMID:20552071

  1. Development of Statistical Process Control Methodology for an Environmentally Compliant Surface Cleaning Process in a Bonding Laboratory

    NASA Technical Reports Server (NTRS)

    Hutchens, Dale E.; Doan, Patrick A.; Boothe, Richard E.

    1997-01-01

    Bonding labs at both MSFC and the northern Utah production plant prepare bond test specimens which simulate or witness the production of NASA's Reusable Solid Rocket Motor (RSRM). The current process for preparing the bonding surfaces employs 1,1,1-trichloroethane vapor degreasing, which simulates the current RSRM process. Government regulations (e.g., the 1990 Amendments to the Clean Air Act) have mandated a production phase-out of a number of ozone depleting compounds (ODC) including 1,1,1-trichloroethane. In order to comply with these regulations, the RSRM Program is qualifying a spray-in-air (SIA) precision cleaning process using Brulin 1990, an aqueous blend of surfactants. Accordingly, surface preparation prior to bonding process simulation test specimens must reflect the new production cleaning process. The Bonding Lab Statistical Process Control (SPC) program monitors the progress of the lab and its capabilities, as well as certifies the bonding technicians, by periodically preparing D6AC steel tensile adhesion panels with EA-91 3NA epoxy adhesive using a standardized process. SPC methods are then used to ensure the process is statistically in control, thus producing reliable data for bonding studies, and identify any problems which might develop. Since the specimen cleaning process is being changed, new SPC limits must be established. This report summarizes side-by-side testing of D6AC steel tensile adhesion witness panels and tapered double cantilevered beams (TDCBs) using both the current baseline vapor degreasing process and a lab-scale spray-in-air process. A Proceco 26 inches Typhoon dishwasher cleaned both tensile adhesion witness panels and TDCBs in a process which simulates the new production process. The tests were performed six times during 1995, subsequent statistical analysis of the data established new upper control limits (UCL) and lower control limits (LCL). The data also demonstrated that the new process was equivalent to the vapor degreasing process.

  2. Profiling and analysis of multiple constituents in Baizhu Shaoyao San before and after processing by stir-frying using UHPLC/Q-TOF-MS/MS coupled with multivariate statistical analysis.

    PubMed

    Xu, Yangyang; Cai, Hao; Cao, Gang; Duan, Yu; Pei, Ke; Tu, Sicong; Zhou, Jia; Xie, Li; Sun, Dongdong; Zhao, Jiayu; Liu, Jing; Wang, Xiaoqi; Shen, Lin

    2018-04-15

    Baizhu Shaoyao San (BSS) is a famous traditional Chinese medicinal formula widely used for the treatment of painful diarrhea, intestinal inflammation, and diarrhea-predominant irritable bowel syndrome. According to clinical medication, three medicinal herbs (Atractylodis Macrocephalae Rhizoma, Paeoniae Radix Alba, and Citri Reticulatae Pericarpium) included in BSS must be processed using some specific methods of stir-frying. On the basis of the classical theories of traditional Chinese medicine, the therapeutic effects of BSS would be significantly enhanced after processing. Generally, the changes of curative effects mainly result from the variations of inside chemical basis caused by the processing procedure. To find out the corresponding changes of chemical compositions in BSS after processing and to elucidate the material basis of the changed curative effects, an optimized ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry in positive and negative ion modes coupled with multivariate statistical analyses were developed. As a result, a total of 186 compounds were ultimately identified in crude and processed BSS, in which 62 marker compounds with significant differences between crude and processed BSS were found by principal component analysis and t-test. Compared with crude BSS, the contents of 23 compounds were remarkably decreased and the contents of 39 compounds showed notable increase in processed BSS. The transformation mechanisms of some changed compounds were appropriately inferred from the results. Furthermore, compounds with extremely significant differences might strengthen the effects of the whole herbal formula. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Statistics and bioinformatics in nutritional sciences: analysis of complex data in the era of systems biology⋆

    PubMed Central

    Fu, Wenjiang J.; Stromberg, Arnold J.; Viele, Kert; Carroll, Raymond J.; Wu, Guoyao

    2009-01-01

    Over the past two decades, there have been revolutionary developments in life science technologies characterized by high throughput, high efficiency, and rapid computation. Nutritionists now have the advanced methodologies for the analysis of DNA, RNA, protein, low-molecular-weight metabolites, as well as access to bioinformatics databases. Statistics, which can be defined as the process of making scientific inferences from data that contain variability, has historically played an integral role in advancing nutritional sciences. Currently, in the era of systems biology, statistics has become an increasingly important tool to quantitatively analyze information about biological macromolecules. This article describes general terms used in statistical analysis of large, complex experimental data. These terms include experimental design, power analysis, sample size calculation, and experimental errors (type I and II errors) for nutritional studies at population, tissue, cellular, and molecular levels. In addition, we highlighted various sources of experimental variations in studies involving microarray gene expression, real-time polymerase chain reaction, proteomics, and other bioinformatics technologies. Moreover, we provided guidelines for nutritionists and other biomedical scientists to plan and conduct studies and to analyze the complex data. Appropriate statistical analyses are expected to make an important contribution to solving major nutrition-associated problems in humans and animals (including obesity, diabetes, cardiovascular disease, cancer, ageing, and intrauterine fetal retardation). PMID:20233650

  4. Network Meta-Analysis Using R: A Review of Currently Available Automated Packages

    PubMed Central

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA) – a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously – has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA. PMID:25541687

  5. Network meta-analysis using R: a review of currently available automated packages.

    PubMed

    Neupane, Binod; Richer, Danielle; Bonner, Ashley Joel; Kibret, Taddele; Beyene, Joseph

    2014-01-01

    Network meta-analysis (NMA)--a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously--has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i) data input and network plotting, (ii) modeling options, (iii) assumption checking and diagnostic testing, and (iv) inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA.

  6. Inferring Instantaneous, Multivariate and Nonlinear Sensitivities for the Analysis of Feedback Processes in a Dynamical System: Lorenz Model Case Study

    NASA Technical Reports Server (NTRS)

    Aires, Filipe; Rossow, William B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A new approach is presented for the analysis of feedback processes in a nonlinear dynamical system by observing its variations. The new methodology consists of statistical estimates of the sensitivities between all pairs of variables in the system based on a neural network modeling of the dynamical system. The model can then be used to estimate the instantaneous, multivariate and nonlinear sensitivities, which are shown to be essential for the analysis of the feedbacks processes involved in the dynamical system. The method is described and tested on synthetic data from the low-order Lorenz circulation model where the correct sensitivities can be evaluated analytically.

  7. Multivariate analysis techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bendavid, Josh; Fisher, Wade C.; Junk, Thomas R.

    2016-01-01

    The end products of experimental data analysis are designed to be simple and easy to understand: hypothesis tests and measurements of parameters. But, the experimental data themselves are voluminous and complex. Furthermore, in modern collider experiments, many petabytes of data must be processed in search of rare new processes which occur together with much more copious background processes that are of less interest to the task at hand. The systematic uncertainties on the background may be larger than the expected signal in many cases. The statistical power of an analysis and its sensitivity to systematic uncertainty can therefore usually bothmore » be improved by separating signal events from background events with higher efficiency and purity.« less

  8. Automatic Assessment and Reduction of Noise using Edge Pattern Analysis in Non-Linear Image Enhancement

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.

    2004-01-01

    Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.

  9. Applications of satellite image processing to the analysis of Amazonian cultural ecology

    NASA Technical Reports Server (NTRS)

    Behrens, Clifford A.

    1991-01-01

    This paper examines the application of satellite image processing towards identifying and comparing resource exploitation among indigenous Amazonian peoples. The use of statistical and heuristic procedures for developing land cover/land use classifications from Thematic Mapper satellite imagery will be discussed along with actual results from studies of relatively small (100 - 200 people) settlements. Preliminary research indicates that analysis of satellite imagery holds great potential for measuring agricultural intensification, comparing rates of tropical deforestation, and detecting changes in resource utilization patterns over time.

  10. Creation of a virtual cutaneous tissue bank

    NASA Astrophysics Data System (ADS)

    LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.

    2000-04-01

    Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.

  11. Low-cost digital image processing at the University of Oklahoma

    NASA Technical Reports Server (NTRS)

    Harrington, J. A., Jr.

    1981-01-01

    Computer assisted instruction in remote sensing at the University of Oklahoma involves two separate approaches and is dependent upon initial preprocessing of a LANDSAT computer compatible tape using software developed for an IBM 370/158 computer. In-house generated preprocessing algorithms permits students or researchers to select a subset of a LANDSAT scene for subsequent analysis using either general purpose statistical packages or color graphic image processing software developed for Apple II microcomputers. Procedures for preprocessing the data and image analysis using either of the two approaches for low-cost LANDSAT data processing are described.

  12. Students' attitudes towards learning statistics

    NASA Astrophysics Data System (ADS)

    Ghulami, Hassan Rahnaward; Hamid, Mohd Rashid Ab; Zakaria, Roslinazairimah

    2015-05-01

    Positive attitude towards learning is vital in order to master the core content of the subject matters under study. This is unexceptional in learning statistics course especially at the university level. Therefore, this study investigates the students' attitude towards learning statistics. Six variables or constructs have been identified such as affect, cognitive competence, value, difficulty, interest, and effort. The instrument used for the study is questionnaire that was adopted and adapted from the reliable instrument of Survey of Attitudes towards Statistics(SATS©). This study is conducted to engineering undergraduate students in one of the university in the East Coast of Malaysia. The respondents consist of students who were taking the applied statistics course from different faculties. The results are analysed in terms of descriptive analysis and it contributes to the descriptive understanding of students' attitude towards the teaching and learning process of statistics.

  13. Poisson-event-based analysis of cell proliferation.

    PubMed

    Summers, Huw D; Wills, John W; Brown, M Rowan; Rees, Paul

    2015-05-01

    A protocol for the assessment of cell proliferation dynamics is presented. This is based on the measurement of cell division events and their subsequent analysis using Poisson probability statistics. Detailed analysis of proliferation dynamics in heterogeneous populations requires single cell resolution within a time series analysis and so is technically demanding to implement. Here, we show that by focusing on the events during which cells undergo division rather than directly on the cells themselves a simplified image acquisition and analysis protocol can be followed, which maintains single cell resolution and reports on the key metrics of cell proliferation. The technique is demonstrated using a microscope with 1.3 μm spatial resolution to track mitotic events within A549 and BEAS-2B cell lines, over a period of up to 48 h. Automated image processing of the bright field images using standard algorithms within the ImageJ software toolkit yielded 87% accurate recording of the manually identified, temporal, and spatial positions of the mitotic event series. Analysis of the statistics of the interevent times (i.e., times between observed mitoses in a field of view) showed that cell division conformed to a nonhomogeneous Poisson process in which the rate of occurrence of mitotic events, λ exponentially increased over time and provided values of the mean inter mitotic time of 21.1 ± 1.2 hours for the A549 cells and 25.0 ± 1.1 h for the BEAS-2B cells. Comparison of the mitotic event series for the BEAS-2B cell line to that predicted by random Poisson statistics indicated that temporal synchronisation of the cell division process was occurring within 70% of the population and that this could be increased to 85% through serum starvation of the cell culture. © 2015 International Society for Advancement of Cytometry.

  14. [Analysis of variance of repeated data measured by water maze with SPSS].

    PubMed

    Qiu, Hong; Jin, Guo-qin; Jin, Ru-feng; Zhao, Wei-kang

    2007-01-01

    To introduce the method of analyzing repeated data measured by water maze with SPSS 11.0, and offer a reference statistical method to clinical and basic medicine researchers who take the design of repeated measures. Using repeated measures and multivariate analysis of variance (ANOVA) process of the general linear model in SPSS and giving comparison among different groups and different measure time pairwise. Firstly, Mauchly's test of sphericity should be used to judge whether there were relations among the repeatedly measured data. If any (P

  15. Monitoring of an antigen manufacturing process.

    PubMed

    Zavatti, Vanessa; Budman, Hector; Legge, Raymond; Tamer, Melih

    2016-06-01

    Fluorescence spectroscopy in combination with multivariate statistical methods was employed as a tool for monitoring the manufacturing process of pertactin (PRN), one of the virulence factors of Bordetella pertussis utilized in whopping cough vaccines. Fluorophores such as amino acids and co-enzymes were detected throughout the process. The fluorescence data collected at different stages of the fermentation and purification process were treated employing principal component analysis (PCA). Through PCA, it was feasible to identify sources of variability in PRN production. Then, partial least square (PLS) was employed to correlate the fluorescence spectra obtained from pure PRN samples and the final protein content measured by a Kjeldahl test from these samples. In view that a statistically significant correlation was found between fluorescence and PRN levels, this approach could be further used as a method to predict the final protein content.

  16. Quantification and Correlation of Angiogenesis with Macrophages by Histomorphometric Method in Central and Peripheral Giant Cell Granuloma: An Immunohistochemical Analysis.

    PubMed

    Kumar, Varsha Vimal; Krishanappa, Savita Jangal; Prakash, Smitha Gowdra; Channabasaviah, Girish Hemdal; Murgod, Sanjay; Pujari, Ravikumar; Kamat, Mamata Sharad

    2016-03-01

    Angiogenesis is a fundamental process that affects physiologic reactions and pathological processes such as tumour development and metastasis. It is the process of formation of new microvessel from the preexisting vessels. The purpose of this study was to evaluate angiogenesis, macrophage index and correlate the impact of macrophages on angiogenesis in the central and peripheral giant cell granulomas by evaluating immunohistochemically microvessel density, microvessel perimeter and macrophage index. Immunohistochemical analysis was carried on 20 cases of central and peripheral giant cell granulomas each for CD34 and CD68 proteins expression. Inferential statistical analysis was performed using Independent student t-test to assess the microvessel density, microvessel perimeter and macrophage index on continuous scale between Group I and Group II. Level of significance was determined at 5%. Further bivariate analysis using Pearson correlation test was carried out to see the relationship between microvessel density and macrophage index in each group. Microvessel density, micro vessel perimeter and macrophage index was higher in central giant cell granuloma compared to that of peripheral giant cell granuloma. Correlation between microvessel density and macrophage index among these two lesions was statistically insignificant. Angiogenesis as well as the number of macrophages appeared to increase in Central Giant Cell Granuloma in present study. These findings suggest that macrophages may up regulate the angiogenesis in these giant cell granulomas and angiogenesis do have a role in clinical behaviour. However, we could not establish a positive correlation between microvessel density and macrophage index as the values were statistically insignificant. This insignificance may be presumed due to fewer samples taken for study.

  17. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data.

    PubMed

    Davidson, Robert L; Weber, Ralf J M; Liu, Haoyu; Sharma-Oates, Archana; Viant, Mark R

    2016-01-01

    Metabolomics is increasingly recognized as an invaluable tool in the biological, medical and environmental sciences yet lags behind the methodological maturity of other omics fields. To achieve its full potential, including the integration of multiple omics modalities, the accessibility, standardization and reproducibility of computational metabolomics tools must be improved significantly. Here we present our end-to-end mass spectrometry metabolomics workflow in the widely used platform, Galaxy. Named Galaxy-M, our workflow has been developed for both direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LC-MS) metabolomics. The range of tools presented spans from processing of raw data, e.g. peak picking and alignment, through data cleansing, e.g. missing value imputation, to preparation for statistical analysis, e.g. normalization and scaling, and principal components analysis (PCA) with associated statistical evaluation. We demonstrate the ease of using these Galaxy workflows via the analysis of DIMS and LC-MS datasets, and provide PCA scores and associated statistics to help other users to ensure that they can accurately repeat the processing and analysis of these two datasets. Galaxy and data are all provided pre-installed in a virtual machine (VM) that can be downloaded from the GigaDB repository. Additionally, source code, executables and installation instructions are available from GitHub. The Galaxy platform has enabled us to produce an easily accessible and reproducible computational metabolomics workflow. More tools could be added by the community to expand its functionality. We recommend that Galaxy-M workflow files are included within the supplementary information of publications, enabling metabolomics studies to achieve greater reproducibility.

  18. Revisiting photon-statistics effects on multiphoton ionization

    NASA Astrophysics Data System (ADS)

    Mouloudakis, G.; Lambropoulos, P.

    2018-05-01

    We present a detailed analysis of the effects of photon statistics on multiphoton ionization. Through a detailed study of the role of intermediate states, we evaluate the conditions under which the premise of nonresonant processes is valid. The limitations of its validity are manifested in the dependence of the process on the stochastic properties of the radiation and found to be quite sensitive to the intensity. The results are quantified through detailed calculations for coherent, chaotic, and squeezed vacuum radiation. Their significance in the context of recent developments in radiation sources such as the short-wavelength free-electron laser and squeezed vacuum radiation is also discussed.

  19. Quantification of Operational Risk Using A Data Mining

    NASA Technical Reports Server (NTRS)

    Perera, J. Sebastian

    1999-01-01

    What is Data Mining? - Data Mining is the process of finding actionable information hidden in raw data. - Data Mining helps find hidden patterns, trends, and important relationships often buried in a sea of data - Typically, automated software tools based on advanced statistical analysis and data modeling technology can be utilized to automate the data mining process

  20. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance structures. We then use this new algorithm in a genetic algorithm based Expectation-Maximization process that can accurately calculate parameters describing complex clusters in a mixture model routine. Using the accuracy of this GEM algorithm, we assign information scores to cluster calculations in order to best identify the number of mixture components in a multivariate data set. We will showcase how these algorithms can be used to process multivariate data from astronomical observations.

  1. Fault Detection and Diagnosis In Hall-Héroult Cells Based on Individual Anode Current Measurements Using Dynamic Kernel PCA

    NASA Astrophysics Data System (ADS)

    Yao, Yuchen; Bao, Jie; Skyllas-Kazacos, Maria; Welch, Barry J.; Akhmetov, Sergey

    2018-04-01

    Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall-Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.

  2. The statistics of identifying differentially expressed genes in Expresso and TM4: a comparison

    PubMed Central

    Sioson, Allan A; Mane, Shrinivasrao P; Li, Pinghua; Sha, Wei; Heath, Lenwood S; Bohnert, Hans J; Grene, Ruth

    2006-01-01

    Background Analysis of DNA microarray data takes as input spot intensity measurements from scanner software and returns differential expression of genes between two conditions, together with a statistical significance assessment. This process typically consists of two steps: data normalization and identification of differentially expressed genes through statistical analysis. The Expresso microarray experiment management system implements these steps with a two-stage, log-linear ANOVA mixed model technique, tailored to individual experimental designs. The complement of tools in TM4, on the other hand, is based on a number of preset design choices that limit its flexibility. In the TM4 microarray analysis suite, normalization, filter, and analysis methods form an analysis pipeline. TM4 computes integrated intensity values (IIV) from the average intensities and spot pixel counts returned by the scanner software as input to its normalization steps. By contrast, Expresso can use either IIV data or median intensity values (MIV). Here, we compare Expresso and TM4 analysis of two experiments and assess the results against qRT-PCR data. Results The Expresso analysis using MIV data consistently identifies more genes as differentially expressed, when compared to Expresso analysis with IIV data. The typical TM4 normalization and filtering pipeline corrects systematic intensity-specific bias on a per microarray basis. Subsequent statistical analysis with Expresso or a TM4 t-test can effectively identify differentially expressed genes. The best agreement with qRT-PCR data is obtained through the use of Expresso analysis and MIV data. Conclusion The results of this research are of practical value to biologists who analyze microarray data sets. The TM4 normalization and filtering pipeline corrects microarray-specific systematic bias and complements the normalization stage in Expresso analysis. The results of Expresso using MIV data have the best agreement with qRT-PCR results. In one experiment, MIV is a better choice than IIV as input to data normalization and statistical analysis methods, as it yields as greater number of statistically significant differentially expressed genes; TM4 does not support the choice of MIV input data. Overall, the more flexible and extensive statistical models of Expresso achieve more accurate analytical results, when judged by the yardstick of qRT-PCR data, in the context of an experimental design of modest complexity. PMID:16626497

  3. Expert Planning Processes in Writing

    DTIC Science & Technology

    1990-12-17

    For example, here are some target ideas from the immunity text: " protozoa attack red blood cells " agglutin clumps pathogens together * vaccination ...majors may have already understood (e.g., vaccination is an injection of a virus), we conducted a second analysis scoring only for the "hard" concepts...page texts, a clear and an unclear version on each of two topics, autism and statistics. The clear autism and the unclear statistics texts were

  4. Bureau of Labor Statistics Employment Projections: Detailed Analysis of Selected Occupations and Industries. Report to the Honorable Berkley Bedell, United States House of Representatives.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    To compile its projections of future employment levels, the Bureau of Labor Statistics (BLS) combines the following five interlinked models in a six-step process: a labor force model, an econometric model of the U.S. economy, an industry activity model, an industry labor demand model, and an occupational labor demand model. The BLS was asked to…

  5. Avalanche Statistics Identify Intrinsic Stellar Processes near Criticality in KIC 8462852

    NASA Astrophysics Data System (ADS)

    Sheikh, Mohammed A.; Weaver, Richard L.; Dahmen, Karin A.

    2016-12-01

    The star KIC8462852 (Tabby's star) has shown anomalous drops in light flux. We perform a statistical analysis of the more numerous smaller dimming events by using methods found useful for avalanches in ferromagnetism and plastic flow. Scaling exponents for avalanche statistics and temporal profiles of the flux during the dimming events are close to mean field predictions. Scaling collapses suggest that this star may be near a nonequilibrium critical point. The large events are interpreted as avalanches marked by modified dynamics, limited by the system size, and not within the scaling regime.

  6. [The concept "a case in outpatient treatment" in military policlinic activity].

    PubMed

    Vinogradov, S N; Vorob'ev, E G; Shklovskiĭ, B L

    2014-04-01

    Substantiates the necessity of transition of military policlinics to the accounting system and evaluation of their activity on the finished cases of outpatient treatment. Only automating data-statistical processes can solve this problem. On the basis of analysis of the literature data, requirements of the guidance documents and observational results concludes that preliminarily should be done revisal (formalisation) of existing concepts of medical statistics from the position of information environment which in use - electronic databases. In this aspect specified the main features of outpatient treatment case as a unit of medical-statistical record, and formulated its definition.

  7. Hydrochemical evolution and groundwater flow processes in the Galilee and Eromanga basins, Great Artesian Basin, Australia: a multivariate statistical approach.

    PubMed

    Moya, Claudio E; Raiber, Matthias; Taulis, Mauricio; Cox, Malcolm E

    2015-03-01

    The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na-Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na-HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous-Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Diagnosis of abnormal patterns in multivariate microclimate monitoring: a case study of an open-air archaeological site in Pompeii (Italy).

    PubMed

    Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel

    2014-08-01

    Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A Weibull statistics-based lignocellulose saccharification model and a built-in parameter accurately predict lignocellulose hydrolysis performance.

    PubMed

    Wang, Mingyu; Han, Lijuan; Liu, Shasha; Zhao, Xuebing; Yang, Jinghua; Loh, Soh Kheang; Sun, Xiaomin; Zhang, Chenxi; Fang, Xu

    2015-09-01

    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optimizing construction quality management of pavements using mechanistic performance analysis.

    DOT National Transportation Integrated Search

    2004-08-01

    This report presents a statistical-based algorithm that was developed to reconcile the results from several pavement performance models used in the state of practice with systematic process control techniques. These algorithms identify project-specif...

  11. Low-level processing for real-time image analysis

    NASA Technical Reports Server (NTRS)

    Eskenazi, R.; Wilf, J. M.

    1979-01-01

    A system that detects object outlines in television images in real time is described. A high-speed pipeline processor transforms the raw image into an edge map and a microprocessor, which is integrated into the system, clusters the edges, and represents them as chain codes. Image statistics, useful for higher level tasks such as pattern recognition, are computed by the microprocessor. Peak intensity and peak gradient values are extracted within a programmable window and are used for iris and focus control. The algorithms implemented in hardware and the pipeline processor architecture are described. The strategy for partitioning functions in the pipeline was chosen to make the implementation modular. The microprocessor interface allows flexible and adaptive control of the feature extraction process. The software algorithms for clustering edge segments, creating chain codes, and computing image statistics are also discussed. A strategy for real time image analysis that uses this system is given.

  12. Analysis of Convair 990 rejected-takeoff accident with emphasis on decision making, training and procedures

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.

    1987-01-01

    This paper analyzes a NASA Convair 990 (CV-990) accident with emphasis on rejected-takeoff (RTO) decision making, training, procedures, and accident statistics. The NASA Aircraft Accident Investigation Board was somewhat perplexed that an aircraft could be destroyed as a result of blown tires during the takeoff roll. To provide a better understanding of tire failure RTO's, The Board obtained accident reports, Federal Aviation Administration (FAA) studies, and other pertinent information related to the elements of this accident. This material enhanced the analysis process and convinced the Accident Board that high-speed RTO's in transport aircraft should be given more emphasis during pilot training. Pilots should be made aware of various RTO situations and statistics with emphasis on failed-tire RTO's. This background information could enhance the split-second decision-making process that is required prior to initiating an RTO.

  13. Computer Administering of the Psychological Investigations: Set-Relational Representation

    NASA Astrophysics Data System (ADS)

    Yordzhev, Krasimir

    Computer administering of a psychological investigation is the computer representation of the entire procedure of psychological assessments - test construction, test implementation, results evaluation, storage and maintenance of the developed database, its statistical processing, analysis and interpretation. A mathematical description of psychological assessment with the aid of personality tests is discussed in this article. The set theory and the relational algebra are used in this description. A relational model of data, needed to design a computer system for automation of certain psychological assessments is given. Some finite sets and relation on them, which are necessary for creating a personality psychological test, are described. The described model could be used to develop real software for computer administering of any psychological test and there is full automation of the whole process: test construction, test implementation, result evaluation, storage of the developed database, statistical implementation, analysis and interpretation. A software project for computer administering personality psychological tests is suggested.

  14. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    NASA Astrophysics Data System (ADS)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  15. Singular Spectrum Analysis for Astronomical Time Series: Constructing a Parsimonious Hypothesis Test

    NASA Astrophysics Data System (ADS)

    Greco, G.; Kondrashov, D.; Kobayashi, S.; Ghil, M.; Branchesi, M.; Guidorzi, C.; Stratta, G.; Ciszak, M.; Marino, F.; Ortolan, A.

    We present a data-adaptive spectral method - Monte Carlo Singular Spectrum Analysis (MC-SSA) - and its modification to tackle astrophysical problems. Through numerical simulations we show the ability of the MC-SSA in dealing with 1/f β power-law noise affected by photon counting statistics. Such noise process is simulated by a first-order autoregressive, AR(1) process corrupted by intrinsic Poisson noise. In doing so, we statistically estimate a basic stochastic variation of the source and the corresponding fluctuations due to the quantum nature of light. In addition, MC-SSA test retains its effectiveness even when a significant percentage of the signal falls below a certain level of detection, e.g., caused by the instrument sensitivity. The parsimonious approach presented here may be broadly applied, from the search for extrasolar planets to the extraction of low-intensity coherent phenomena probably hidden in high energy transients.

  16. Rapid processing of PET list-mode data for efficient uncertainty estimation and data analysis

    NASA Astrophysics Data System (ADS)

    Markiewicz, P. J.; Thielemans, K.; Schott, J. M.; Atkinson, D.; Arridge, S. R.; Hutton, B. F.; Ourselin, S.

    2016-07-01

    In this technical note we propose a rapid and scalable software solution for the processing of PET list-mode data, which allows the efficient integration of list mode data processing into the workflow of image reconstruction and analysis. All processing is performed on the graphics processing unit (GPU), making use of streamed and concurrent kernel execution together with data transfers between disk and CPU memory as well as CPU and GPU memory. This approach leads to fast generation of multiple bootstrap realisations, and when combined with fast image reconstruction and analysis, it enables assessment of uncertainties of any image statistic and of any component of the image generation process (e.g. random correction, image processing) within reasonable time frames (e.g. within five minutes per realisation). This is of particular value when handling complex chains of image generation and processing. The software outputs the following: (1) estimate of expected random event data for noise reduction; (2) dynamic prompt and random sinograms of span-1 and span-11 and (3) variance estimates based on multiple bootstrap realisations of (1) and (2) assuming reasonable count levels for acceptable accuracy. In addition, the software produces statistics and visualisations for immediate quality control and crude motion detection, such as: (1) count rate curves; (2) centre of mass plots of the radiodistribution for motion detection; (3) video of dynamic projection views for fast visual list-mode skimming and inspection; (4) full normalisation factor sinograms. To demonstrate the software, we present an example of the above processing for fast uncertainty estimation of regional SUVR (standard uptake value ratio) calculation for a single PET scan of 18F-florbetapir using the Siemens Biograph mMR scanner.

  17. Difficult Decisions: A Qualitative Exploration of the Statistical Decision Making Process from the Perspectives of Psychology Students and Academics

    PubMed Central

    Allen, Peter J.; Dorozenko, Kate P.; Roberts, Lynne D.

    2016-01-01

    Quantitative research methods are essential to the development of professional competence in psychology. They are also an area of weakness for many students. In particular, students are known to struggle with the skill of selecting quantitative analytical strategies appropriate for common research questions, hypotheses and data types. To begin understanding this apparent deficit, we presented nine psychology undergraduates (who had all completed at least one quantitative methods course) with brief research vignettes, and asked them to explicate the process they would follow to identify an appropriate statistical technique for each. Thematic analysis revealed that all participants found this task challenging, and even those who had completed several research methods courses struggled to articulate how they would approach the vignettes on more than a very superficial and intuitive level. While some students recognized that there is a systematic decision making process that can be followed, none could describe it clearly or completely. We then presented the same vignettes to 10 psychology academics with particular expertise in conducting research and/or research methods instruction. Predictably, these “experts” were able to describe a far more systematic, comprehensive, flexible, and nuanced approach to statistical decision making, which begins early in the research process, and pays consideration to multiple contextual factors. They were sensitive to the challenges that students experience when making statistical decisions, which they attributed partially to how research methods and statistics are commonly taught. This sensitivity was reflected in their pedagogic practices. When asked to consider the format and features of an aid that could facilitate the statistical decision making process, both groups expressed a preference for an accessible, comprehensive and reputable resource that follows a basic decision tree logic. For the academics in particular, this aid should function as a teaching tool, which engages the user with each choice-point in the decision making process, rather than simply providing an “answer.” Based on these findings, we offer suggestions for tools and strategies that could be deployed in the research methods classroom to facilitate and strengthen students' statistical decision making abilities. PMID:26909064

  18. Difficult Decisions: A Qualitative Exploration of the Statistical Decision Making Process from the Perspectives of Psychology Students and Academics.

    PubMed

    Allen, Peter J; Dorozenko, Kate P; Roberts, Lynne D

    2016-01-01

    Quantitative research methods are essential to the development of professional competence in psychology. They are also an area of weakness for many students. In particular, students are known to struggle with the skill of selecting quantitative analytical strategies appropriate for common research questions, hypotheses and data types. To begin understanding this apparent deficit, we presented nine psychology undergraduates (who had all completed at least one quantitative methods course) with brief research vignettes, and asked them to explicate the process they would follow to identify an appropriate statistical technique for each. Thematic analysis revealed that all participants found this task challenging, and even those who had completed several research methods courses struggled to articulate how they would approach the vignettes on more than a very superficial and intuitive level. While some students recognized that there is a systematic decision making process that can be followed, none could describe it clearly or completely. We then presented the same vignettes to 10 psychology academics with particular expertise in conducting research and/or research methods instruction. Predictably, these "experts" were able to describe a far more systematic, comprehensive, flexible, and nuanced approach to statistical decision making, which begins early in the research process, and pays consideration to multiple contextual factors. They were sensitive to the challenges that students experience when making statistical decisions, which they attributed partially to how research methods and statistics are commonly taught. This sensitivity was reflected in their pedagogic practices. When asked to consider the format and features of an aid that could facilitate the statistical decision making process, both groups expressed a preference for an accessible, comprehensive and reputable resource that follows a basic decision tree logic. For the academics in particular, this aid should function as a teaching tool, which engages the user with each choice-point in the decision making process, rather than simply providing an "answer." Based on these findings, we offer suggestions for tools and strategies that could be deployed in the research methods classroom to facilitate and strengthen students' statistical decision making abilities.

  19. A randomized, placebo-controlled trial of patient education for acute low back pain (PREVENT Trial): statistical analysis plan.

    PubMed

    Traeger, Adrian C; Skinner, Ian W; Hübscher, Markus; Lee, Hopin; Moseley, G Lorimer; Nicholas, Michael K; Henschke, Nicholas; Refshauge, Kathryn M; Blyth, Fiona M; Main, Chris J; Hush, Julia M; Pearce, Garry; Lo, Serigne; McAuley, James H

    Statistical analysis plans increase the transparency of decisions made in the analysis of clinical trial results. The purpose of this paper is to detail the planned analyses for the PREVENT trial, a randomized, placebo-controlled trial of patient education for acute low back pain. We report the pre-specified principles, methods, and procedures to be adhered to in the main analysis of the PREVENT trial data. The primary outcome analysis will be based on Mixed Models for Repeated Measures (MMRM), which can test treatment effects at specific time points, and the assumptions of this analysis are outlined. We also outline the treatment of secondary outcomes and planned sensitivity analyses. We provide decisions regarding the treatment of missing data, handling of descriptive and process measure data, and blinded review procedures. Making public the pre-specified statistical analysis plan for the PREVENT trial minimizes the potential for bias in the analysis of trial data, and in the interpretation and reporting of trial results. ACTRN12612001180808 (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12612001180808). Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  20. The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihn T. Pham; Jeffrey J. Einerson

    2010-06-01

    This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automatedmore » processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.« less

  1. Analysis of Student Activity in Web-Supported Courses as a Tool for Predicting Dropout

    ERIC Educational Resources Information Center

    Cohen, Anat

    2017-01-01

    Persistence in learning processes is perceived as a central value; therefore, dropouts from studies are a prime concern for educators. This study focuses on the quantitative analysis of data accumulated on 362 students in three academic course website log files in the disciplines of mathematics and statistics, in order to examine whether student…

  2. The Role of the Company in Generating Skills. The Learning Effects of Work Organization. Denmark.

    ERIC Educational Resources Information Center

    Kristensen, Peer Hull; Petersen, James Hopner

    The impact of developments in work organizations on the skilling process in Denmark was studied through a macro analysis of available statistical information about the development of workplace training in Denmark and case studies of three Danish firms. The macro analysis focused on the following: Denmark's vocational training system; the Danish…

  3. Analysis paralysis

    Treesearch

    Bill Block

    2012-01-01

    I have been Editor-in-Chief for about 10 months now. Over that period of time, I have processed hundreds of manuscripts and considered hundreds of reviews. In doing so, I have noticed an emphasis on analysis at the expense of a better understanding of the ecological system under study. I mention this not to belittle statistical advances made within various disciplines...

  4. Prerequisites for Systems Analysts: Analytic and Management Demands of a New Approach to Educational Administration.

    ERIC Educational Resources Information Center

    Ammentorp, William

    There is much to be gained by using systems analysis in educational administration. Most administrators, presently relying on classical statistical techniques restricted to problems having few variables, should be trained to use more sophisticated tools such as systems analysis. The systems analyst, interested in the basic processes of a group or…

  5. Statistical analysis and modeling of intermittent transport events in the tokamak scrape-off layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Johan, E-mail: anderson.johan@gmail.com; Halpern, Federico D.; Ricci, Paolo

    The turbulence observed in the scrape-off-layer of a tokamak is often characterized by intermittent events of bursty nature, a feature which raises concerns about the prediction of heat loads on the physical boundaries of the device. It appears thus necessary to delve into the statistical properties of turbulent physical fields such as density, electrostatic potential, and temperature, focusing on the mathematical expression of tails of the probability distribution functions. The method followed here is to generate statistical information from time-traces of the plasma density stemming from Braginskii-type fluid simulations and check this against a first-principles theoretical model. The analysis ofmore » the numerical simulations indicates that the probability distribution function of the intermittent process contains strong exponential tails, as predicted by the analytical theory.« less

  6. Numerical 3D flow simulation of attached cavitation structures at ultrasonic horn tips and statistical evaluation of flow aggressiveness via load collectives

    NASA Astrophysics Data System (ADS)

    Mottyll, S.; Skoda, R.

    2015-12-01

    A compressible inviscid flow solver with barotropic cavitation model is applied to two different ultrasonic horn set-ups and compared to hydrophone, shadowgraphy as well as erosion test data. The statistical analysis of single collapse events in wall-adjacent flow regions allows the determination of the flow aggressiveness via load collectives (cumulative event rate vs collapse pressure), which show an exponential decrease in agreement to studies on hydrodynamic cavitation [1]. A post-processing projection of event rate and collapse pressure on a reference grid reduces the grid dependency significantly. In order to evaluate the erosion-sensitive areas a statistical analysis of transient wall loads is utilised. Predicted erosion sensitive areas as well as temporal pressure and vapour volume evolution are in good agreement to the experimental data.

  7. Geomatic Methods for the Analysis of Data in the Earth Sciences: Lecture Notes in Earth Sciences, Vol. 95

    NASA Astrophysics Data System (ADS)

    Pavlis, Nikolaos K.

    Geomatics is a trendy term that has been used in recent years to describe academic departments that teach and research theories, methods, algorithms, and practices used in processing and analyzing data related to the Earth and other planets. Naming trends aside, geomatics could be considered as the mathematical and statistical “toolbox” that allows Earth scientists to extract information about physically relevant parameters from the available data and accompany such information with some measure of its reliability. This book is an attempt to present the mathematical-statistical methods used in data analysis within various disciplines—geodesy, geophysics, photogrammetry and remote sensing—from a unifying perspective that inverse problem formalism permits. At the same time, it allows us to stretch the relevance of statistical methods in achieving an optimal solution.

  8. On the structure and phase transitions of power-law Poissonian ensembles

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Oshanin, Gleb

    2012-10-01

    Power-law Poissonian ensembles are Poisson processes that are defined on the positive half-line, and that are governed by power-law intensities. Power-law Poissonian ensembles are stochastic objects of fundamental significance; they uniquely display an array of fractal features and they uniquely generate a span of important applications. In this paper we apply three different methods—oligarchic analysis, Lorenzian analysis and heterogeneity analysis—to explore power-law Poissonian ensembles. The amalgamation of these analyses, combined with the topology of power-law Poissonian ensembles, establishes a detailed and multi-faceted picture of the statistical structure and the statistical phase transitions of these elemental ensembles.

  9. Comparative analysis of atmosphere temperature variability for Northern Eurasia based on the Reanalysis and in-situ observed data

    NASA Astrophysics Data System (ADS)

    Shulgina, T.; Genina, E.; Gordov, E.; Nikitchuk, K.

    2009-04-01

    At present numerous data archives which include meteorological observations as well as climate processes modeling data are available for Earth Science specialists. Methods of mathematical statistics are widely used for their processing and analysis. In many cases they represent the only way of quantitative assessment of the meteorological and climatic information. Unified set of analysis methods allows us to compare climatic characteristics calculated on the basis of different datasets with the purpose of performing more detailed analysis of climate dynamics for both regional and global levels. The report presents the results of comparative analysis of atmosphere temperature behavior for the Northern Eurasia territory for the period from 1979 to 2004 based on the NCEP/NCAR Reanalysis, NCEP/DOE Reanalysis AMIP II, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis data and observation data obtained from meteorological stations of the former Soviet Union. Statistical processing of atmosphere temperature data included analysis of time series homogeneity of climate indices approved by WMO, such as "Number of frost days", "Number of summer days", "Number of icing days", "Number of tropical nights", etc. by means of parametric methods of mathematical statistics (Fisher and Student tests). That allowed conducting comprehensive research of spatio-temporal features of the atmosphere temperature. Analysis of the atmosphere temperature dynamics revealed inhomogeneity of the data obtained for large observation intervals. Particularly, analysis performed for the period 1979 - 2004 showed the significant increase of the number of frost and icing days approximately by 1 day for every 2 years and decrease roughly by 1 day for 2 years for the number of summer days. Also it should be mentioned that the growth period mean temperature have increased by 1.5 - 2° C for the time period being considered. The usage of different Reanalysis datasets in conjunction with in-situ observed data allowed comparing of climate indices values calculated on the basis of different datasets that improves the reliability of the results obtained. Partial support of SB RAS Basic Research Program 4.5.2 (Project 2) is acknowledged.

  10. Automatic detection of health changes using statistical process control techniques on measured transfer times of elderly.

    PubMed

    Baldewijns, Greet; Luca, Stijn; Nagels, William; Vanrumste, Bart; Croonenborghs, Tom

    2015-01-01

    It has been shown that gait speed and transfer times are good measures of functional ability in elderly. However, data currently acquired by systems that measure either gait speed or transfer times in the homes of elderly people require manual reviewing by healthcare workers. This reviewing process is time-consuming. To alleviate this burden, this paper proposes the use of statistical process control methods to automatically detect both positive and negative changes in transfer times. Three SPC techniques: tabular CUSUM, standardized CUSUM and EWMA, known for their ability to detect small shifts in the data, are evaluated on simulated transfer times. This analysis shows that EWMA is the best-suited method with a detection accuracy of 82% and an average detection time of 9.64 days.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dietrich, K.N.; Succop, P.A.; Berger, O.G.

    This analysis examined the relationship between lead exposure as registered in whole blood (PbB) and the central auditory processing abilities and cognitive developmental status of the Cincinnati cohort (N = 259) at age 5 years. Although the effects were small, higher prenatal, neonatal, and postnatal PbB levels were associated with poorer central auditory processing abilities on the Filtered Word Subtest of the SCAN (a screening test for auditory processing disorders). Higher postnatal PbB levels were associated with poorer performance on all cognitive developmental subscales of the Kaufman Assessment Battery for Children (K-ABC). However, following adjustment for measures of the homemore » environment and maternal intelligence, few statistically or near statistically significant associations remained. Our findings are discussed in the context of the related issues of confounding and the detection of weak associations in high risk populations.« less

  12. A global goodness-of-fit statistic for Cox regression models.

    PubMed

    Parzen, M; Lipsitz, S R

    1999-06-01

    In this paper, a global goodness-of-fit test statistic for a Cox regression model, which has an approximate chi-squared distribution when the model has been correctly specified, is proposed. Our goodness-of-fit statistic is global and has power to detect if interactions or higher order powers of covariates in the model are needed. The proposed statistic is similar to the Hosmer and Lemeshow (1980, Communications in Statistics A10, 1043-1069) goodness-of-fit statistic for binary data as well as Schoenfeld's (1980, Biometrika 67, 145-153) statistic for the Cox model. The methods are illustrated using data from a Mayo Clinic trial in primary billiary cirrhosis of the liver (Fleming and Harrington, 1991, Counting Processes and Survival Analysis), in which the outcome is the time until liver transplantation or death. The are 17 possible covariates. Two Cox proportional hazards models are fit to the data, and the proposed goodness-of-fit statistic is applied to the fitted models.

  13. Fully Bayesian inference for structural MRI: application to segmentation and statistical analysis of T2-hypointensities.

    PubMed

    Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark

    2013-01-01

    Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.

  14. Quality assessment of raw and processed Arctium lappa L. through multicomponent quantification, chromatographic fingerprint, and related chemometric analysis.

    PubMed

    Qin, Kunming; Wang, Bin; Li, Weidong; Cai, Hao; Chen, Danni; Liu, Xiao; Yin, Fangzhou; Cai, Baochang

    2015-05-01

    In traditional Chinese medicine, raw and processed herbs are used to treat different diseases. Suitable quality assessment methods are crucial for the discrimination between raw and processed herbs. The dried fruit of Arctium lappa L. and their processed products are widely used in traditional Chinese medicine, yet their therapeutic effects are different. In this study, a novel strategy using high-performance liquid chromatography and diode array detection coupled with multivariate statistical analysis to rapidly explore raw and processed Arctium lappa L. was proposed and validated. Four main components in a total of 30 batches of raw and processed Fructus Arctii samples were analyzed, and ten characteristic peaks were identified in the fingerprint common pattern. Furthermore, similarity evaluation, principal component analysis, and hierachical cluster analysis were applied to demonstrate the distinction. The results suggested that the relative amounts of the chemical components of raw and processed Fructus Arctii samples are different. This new method has been successfully applied to detect the raw and processed Fructus Arctii in marketed herbal medicinal products. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Variable system: An alternative approach for the analysis of mediated moderation.

    PubMed

    Kwan, Joyce Lok Yin; Chan, Wai

    2018-06-01

    Mediated moderation (meMO) occurs when the moderation effect of the moderator (W) on the relationship between the independent variable (X) and the dependent variable (Y) is transmitted through a mediator (M). To examine this process empirically, 2 different model specifications (Type I meMO and Type II meMO) have been proposed in the literature. However, both specifications are found to be problematic, either conceptually or statistically. For example, it can be shown that each type of meMO model is statistically equivalent to a particular form of moderated mediation (moME), another process that examines the condition when the indirect effect from X to Y through M varies as a function of W. Consequently, it is difficult for one to differentiate these 2 processes mathematically. This study therefore has 2 objectives. First, we attempt to differentiate moME and meMO by proposing an alternative specification for meMO. Conceptually, this alternative specification is intuitively meaningful and interpretable, and, statistically, it offers meMO a unique representation that is no longer identical to its moME counterpart. Second, using structural equation modeling, we propose an integrated approach for the analysis of meMO as well as for other general types of conditional path models. VS, a computer software program that implements the proposed approach, has been developed to facilitate the analysis of conditional path models for applied researchers. Real examples are considered to illustrate how the proposed approach works in practice and to compare its performance against the traditional methods. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Inverse Statistics and Asset Allocation Efficiency

    NASA Astrophysics Data System (ADS)

    Bolgorian, Meysam

    In this paper using inverse statistics analysis, the effect of investment horizon on the efficiency of portfolio selection is examined. Inverse statistics analysis is a general tool also known as probability distribution of exit time that is used for detecting the distribution of the time in which a stochastic process exits from a zone. This analysis was used in Refs. 1 and 2 for studying the financial returns time series. This distribution provides an optimal investment horizon which determines the most likely horizon for gaining a specific return. Using samples of stocks from Tehran Stock Exchange (TSE) as an emerging market and S&P 500 as a developed market, effect of optimal investment horizon in asset allocation is assessed. It is found that taking into account the optimal investment horizon in TSE leads to more efficiency for large size portfolios while for stocks selected from S&P 500, regardless of portfolio size, this strategy does not only not produce more efficient portfolios, but also longer investment horizons provides more efficiency.

  17. Quantifying the Energy Landscape Statistics in Proteins - a Relaxation Mode Analysis

    NASA Astrophysics Data System (ADS)

    Cai, Zhikun; Zhang, Yang

    Energy landscape, the hypersurface in the configurational space, has been a useful concept in describing complex processes that occur over a very long time scale, such as the multistep slow relaxations of supercooled liquids and folding of polypeptide chains into structured proteins. Despite extensive simulation studies, its experimental characterization still remains a challenge. To address this challenge, we developed a relaxation mode analysis (RMA) for liquids under a framework analogous to the normal mode analysis for solids. Using RMA, important statistics of the activation barriers of the energy landscape becomes accessible from experimentally measurable two-point correlation functions, e.g. using quasi-elastic and inelastic scattering experiments. We observed a prominent coarsening effect of the energy landscape. The results were further confirmed by direct sampling of the energy landscape using a metadynamics-like adaptive autonomous basin climbing computation. We first demonstrate RMA in a supercooled liquid when dynamical cooperativity emerges in the landscape-influenced regime. Then we show this framework reveals encouraging energy landscape statistics when applied to proteins.

  18. Circularly-symmetric complex normal ratio distribution for scalar transmissibility functions. Part III: Application to statistical modal analysis

    NASA Astrophysics Data System (ADS)

    Yan, Wang-Ji; Ren, Wei-Xin

    2018-01-01

    This study applies the theoretical findings of circularly-symmetric complex normal ratio distribution Yan and Ren (2016) [1,2] to transmissibility-based modal analysis from a statistical viewpoint. A probabilistic model of transmissibility function in the vicinity of the resonant frequency is formulated in modal domain, while some insightful comments are offered. It theoretically reveals that the statistics of transmissibility function around the resonant frequency is solely dependent on 'noise-to-signal' ratio and mode shapes. As a sequel to the development of the probabilistic model of transmissibility function in modal domain, this study poses the process of modal identification in the context of Bayesian framework by borrowing a novel paradigm. Implementation issues unique to the proposed approach are resolved by Lagrange multiplier approach. Also, this study explores the possibility of applying Bayesian analysis in distinguishing harmonic components and structural ones. The approaches are verified through simulated data and experimentally testing data. The uncertainty behavior due to variation of different factors is also discussed in detail.

  19. Preliminary Retrospective Analysis of Daily Tomotherapy Output Constancy Checks Using Statistical Process Control.

    PubMed

    Mezzenga, Emilio; D'Errico, Vincenzo; Sarnelli, Anna; Strigari, Lidia; Menghi, Enrico; Marcocci, Francesco; Bianchini, David; Benassi, Marcello

    2016-01-01

    The purpose of this study was to retrospectively evaluate the results from a Helical TomoTherapy Hi-Art treatment system relating to quality controls based on daily static and dynamic output checks using statistical process control methods. Individual value X-charts, exponentially weighted moving average charts, and process capability and acceptability indices were used to monitor the treatment system performance. Daily output values measured from January 2014 to January 2015 were considered. The results obtained showed that, although the process was in control, there was an out-of-control situation in the principal maintenance intervention for the treatment system. In particular, process capability indices showed a decreasing percentage of points in control which was, however, acceptable according to AAPM TG148 guidelines. Our findings underline the importance of restricting the acceptable range of daily output checks and suggest a future line of investigation for a detailed process control of daily output checks for the Helical TomoTherapy Hi-Art treatment system.

  20. Extraction of process zones and low-dimensional attractive subspaces in stochastic fracture mechanics

    PubMed Central

    Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S.P.A.

    2013-01-01

    We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model. PMID:27069423

  1. Application of a quality by design approach to the cell culture process of monoclonal antibody production, resulting in the establishment of a design space.

    PubMed

    Nagashima, Hiroaki; Watari, Akiko; Shinoda, Yasuharu; Okamoto, Hiroshi; Takuma, Shinya

    2013-12-01

    This case study describes the application of Quality by Design elements to the process of culturing Chinese hamster ovary cells in the production of a monoclonal antibody. All steps in the cell culture process and all process parameters in each step were identified by using a cause-and-effect diagram. Prospective risk assessment using failure mode and effects analysis identified the following four potential critical process parameters in the production culture step: initial viable cell density, culture duration, pH, and temperature. These parameters and lot-to-lot variability in raw material were then evaluated by process characterization utilizing a design of experiments approach consisting of a face-centered central composite design integrated with a full factorial design. Process characterization was conducted using a scaled down model that had been qualified by comparison with large-scale production data. Multivariate regression analysis was used to establish statistical prediction models for performance indicators and quality attributes; with these, we constructed contour plots and conducted Monte Carlo simulation to clarify the design space. The statistical analyses, especially for raw materials, identified set point values, which were most robust with respect to the lot-to-lot variability of raw materials while keeping the product quality within the acceptance criteria. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy

    NASA Astrophysics Data System (ADS)

    Mancini, F.; Ceppi, C.; Ritrovato, G.

    2010-09-01

    This study focuses on landslide susceptibility mapping in the Daunia area (Apulian Apennines, Italy) and achieves this by using a multivariate statistical method and data processing in a Geographical Information System (GIS). The Logistic Regression (hereafter LR) method was chosen to produce a susceptibility map over an area of 130 000 ha where small settlements are historically threatened by landslide phenomena. By means of LR analysis, the tendency to landslide occurrences was, therefore, assessed by relating a landslide inventory (dependent variable) to a series of causal factors (independent variables) which were managed in the GIS, while the statistical analyses were performed by means of the SPSS (Statistical Package for the Social Sciences) software. The LR analysis produced a reliable susceptibility map of the investigated area and the probability level of landslide occurrence was ranked in four classes. The overall performance achieved by the LR analysis was assessed by local comparison between the expected susceptibility and an independent dataset extrapolated from the landslide inventory. Of the samples classified as susceptible to landslide occurrences, 85% correspond to areas where landslide phenomena have actually occurred. In addition, the consideration of the regression coefficients provided by the analysis demonstrated that a major role is played by the "land cover" and "lithology" causal factors in determining the occurrence and distribution of landslide phenomena in the Apulian Apennines.

  3. Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: balancing statistical fit and theory.

    PubMed

    Lord, Dominique; Washington, Simon P; Ivan, John N

    2005-01-01

    There has been considerable research conducted over the last 20 years focused on predicting motor vehicle crashes on transportation facilities. The range of statistical models commonly applied includes binomial, Poisson, Poisson-gamma (or negative binomial), zero-inflated Poisson and negative binomial models (ZIP and ZINB), and multinomial probability models. Given the range of possible modeling approaches and the host of assumptions with each modeling approach, making an intelligent choice for modeling motor vehicle crash data is difficult. There is little discussion in the literature comparing different statistical modeling approaches, identifying which statistical models are most appropriate for modeling crash data, and providing a strong justification from basic crash principles. In the recent literature, it has been suggested that the motor vehicle crash process can successfully be modeled by assuming a dual-state data-generating process, which implies that entities (e.g., intersections, road segments, pedestrian crossings, etc.) exist in one of two states-perfectly safe and unsafe. As a result, the ZIP and ZINB are two models that have been applied to account for the preponderance of "excess" zeros frequently observed in crash count data. The objective of this study is to provide defensible guidance on how to appropriate model crash data. We first examine the motor vehicle crash process using theoretical principles and a basic understanding of the crash process. It is shown that the fundamental crash process follows a Bernoulli trial with unequal probability of independent events, also known as Poisson trials. We examine the evolution of statistical models as they apply to the motor vehicle crash process, and indicate how well they statistically approximate the crash process. We also present the theory behind dual-state process count models, and note why they have become popular for modeling crash data. A simulation experiment is then conducted to demonstrate how crash data give rise to "excess" zeros frequently observed in crash data. It is shown that the Poisson and other mixed probabilistic structures are approximations assumed for modeling the motor vehicle crash process. Furthermore, it is demonstrated that under certain (fairly common) circumstances excess zeros are observed-and that these circumstances arise from low exposure and/or inappropriate selection of time/space scales and not an underlying dual state process. In conclusion, carefully selecting the time/space scales for analysis, including an improved set of explanatory variables and/or unobserved heterogeneity effects in count regression models, or applying small-area statistical methods (observations with low exposure) represent the most defensible modeling approaches for datasets with a preponderance of zeros.

  4. ASCS online fault detection and isolation based on an improved MPCA

    NASA Astrophysics Data System (ADS)

    Peng, Jianxin; Liu, Haiou; Hu, Yuhui; Xi, Junqiang; Chen, Huiyan

    2014-09-01

    Multi-way principal component analysis (MPCA) has received considerable attention and been widely used in process monitoring. A traditional MPCA algorithm unfolds multiple batches of historical data into a two-dimensional matrix and cut the matrix along the time axis to form subspaces. However, low efficiency of subspaces and difficult fault isolation are the common disadvantages for the principal component model. This paper presents a new subspace construction method based on kernel density estimation function that can effectively reduce the storage amount of the subspace information. The MPCA model and the knowledge base are built based on the new subspace. Then, fault detection and isolation with the squared prediction error (SPE) statistic and the Hotelling ( T 2) statistic are also realized in process monitoring. When a fault occurs, fault isolation based on the SPE statistic is achieved by residual contribution analysis of different variables. For fault isolation of subspace based on the T 2 statistic, the relationship between the statistic indicator and state variables is constructed, and the constraint conditions are presented to check the validity of fault isolation. Then, to improve the robustness of fault isolation to unexpected disturbances, the statistic method is adopted to set the relation between single subspace and multiple subspaces to increase the corrective rate of fault isolation. Finally fault detection and isolation based on the improved MPCA is used to monitor the automatic shift control system (ASCS) to prove the correctness and effectiveness of the algorithm. The research proposes a new subspace construction method to reduce the required storage capacity and to prove the robustness of the principal component model, and sets the relationship between the state variables and fault detection indicators for fault isolation.

  5. The need for conducting forensic analysis of decommissioned bridges.

    DOT National Transportation Integrated Search

    2014-01-01

    A limiting factor in current bridge management programs is a lack of detailed knowledge of bridge deterioration : mechanisms and processes. The current state of the art is to predict future condition using statistical forecasting : models based upon ...

  6. Image encryption based on a delayed fractional-order chaotic logistic system

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Huang, Xia; Li, Ning; Song, Xiao-Na

    2012-05-01

    A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system. In the process of generating a key stream, the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security. Such a scheme is described in detail with security analyses including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. Experimental results show that the newly proposed image encryption scheme possesses high security.

  7. Rapid analysis of pharmaceutical drugs using LIBS coupled with multivariate analysis.

    PubMed

    Tiwari, P K; Awasthi, S; Kumar, R; Anand, R K; Rai, P K; Rai, A K

    2018-02-01

    Type 2 diabetes drug tablets containing voglibose having dose strengths of 0.2 and 0.3 mg of various brands have been examined, using laser-induced breakdown spectroscopy (LIBS) technique. The statistical methods such as the principal component analysis (PCA) and the partial least square regression analysis (PLSR) have been employed on LIBS spectral data for classifying and developing the calibration models of drug samples. We have developed the ratio-based calibration model applying PLSR in which relative spectral intensity ratios H/C, H/N and O/N are used. Further, the developed model has been employed to predict the relative concentration of element in unknown drug samples. The experiment has been performed in air and argon atmosphere, respectively, and the obtained results have been compared. The present model provides rapid spectroscopic method for drug analysis with high statistical significance for online control and measurement process in a wide variety of pharmaceutical industrial applications.

  8. Noise characteristics of the Skylab S-193 altimeter altitude measurements

    NASA Technical Reports Server (NTRS)

    Hatch, W. E.

    1975-01-01

    The statistical characteristics of the SKYLAB S-193 altimeter altitude noise are considered. These results are reported in a concise format for use and analysis by the scientific community. In most instances the results have been grouped according to satellite pointing so that the effects of pointing on the statistical characteristics can be readily seen. The altimeter measurements and the processing techniques are described. The mathematical descriptions of the computer programs used for these results are included.

  9. Radiation from quantum weakly dynamical horizons in loop quantum gravity.

    PubMed

    Pranzetti, Daniele

    2012-07-06

    We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable.

  10. Classifiers utilized to enhance acoustic based sensors to identify round types of artillery/mortar

    NASA Astrophysics Data System (ADS)

    Grasing, David; Desai, Sachi; Morcos, Amir

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  11. Artillery/mortar type classification based on detected acoustic transients

    NASA Astrophysics Data System (ADS)

    Morcos, Amir; Grasing, David; Desai, Sachi

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  12. Artillery/mortar round type classification to increase system situational awareness

    NASA Astrophysics Data System (ADS)

    Desai, Sachi; Grasing, David; Morcos, Amir; Hohil, Myron

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  13. Using statistical process control to make data-based clinical decisions.

    PubMed

    Pfadt, A; Wheeler, D J

    1995-01-01

    Applied behavior analysis is based on an investigation of variability due to interrelationships among antecedents, behavior, and consequences. This permits testable hypotheses about the causes of behavior as well as for the course of treatment to be evaluated empirically. Such information provides corrective feedback for making data-based clinical decisions. This paper considers how a different approach to the analysis of variability based on the writings of Walter Shewart and W. Edwards Deming in the area of industrial quality control helps to achieve similar objectives. Statistical process control (SPC) was developed to implement a process of continual product improvement while achieving compliance with production standards and other requirements for promoting customer satisfaction. SPC involves the use of simple statistical tools, such as histograms and control charts, as well as problem-solving techniques, such as flow charts, cause-and-effect diagrams, and Pareto charts, to implement Deming's management philosophy. These data-analytic procedures can be incorporated into a human service organization to help to achieve its stated objectives in a manner that leads to continuous improvement in the functioning of the clients who are its customers. Examples are provided to illustrate how SPC procedures can be used to analyze behavioral data. Issues related to the application of these tools for making data-based clinical decisions and for creating an organizational climate that promotes their routine use in applied settings are also considered.

  14. Volcanic hazard assessment for the Canary Islands (Spain) using extreme value theory, and the recent volcanic eruption of El Hierro

    NASA Astrophysics Data System (ADS)

    Sobradelo, R.; Martí, J.; Mendoza-Rosas, A. T.; Gómez, G.

    2012-04-01

    The Canary Islands are an active volcanic region densely populated and visited by several millions of tourists every year. Nearly twenty eruptions have been reported through written chronicles in the last 600 years, suggesting that the probability of a new eruption in the near future is far from zero. This shows the importance of assessing and monitoring the volcanic hazard of the region in order to reduce and manage its potential volcanic risk, and ultimately contribute to the design of appropriate preparedness plans. Hence, the probabilistic analysis of the volcanic eruption time series for the Canary Islands is an essential step for the assessment of volcanic hazard and risk in the area. Such a series describes complex processes involving different types of eruptions over different time scales. Here we propose a statistical method for calculating the probabilities of future eruptions which is most appropriate given the nature of the documented historical eruptive data. We first characterise the eruptions by their magnitudes, and then carry out a preliminary analysis of the data to establish the requirements for the statistical method. Past studies in eruptive time series used conventional statistics and treated the series as an homogeneous process. In this paper, we will use a method that accounts for the time-dependence of the series and includes rare or extreme events, in the form of few data of large eruptions, since these data require special methods of analysis. Hence, we will use a statistical method from extreme value theory. In particular, we will apply a non-homogeneous Poisson process to the historical eruptive data of the Canary Islands to estimate the probability of having at least one volcanic event of a magnitude greater than one in the upcoming years. Shortly after the publication of this method an eruption in the island of El Hierro took place for the first time in historical times, supporting our method and contributing towards the validation of our results.

  15. CRAX. Cassandra Exoskeleton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, D.G.; Eubanks, L.

    1998-03-01

    This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less

  16. Cassandra Exoskeleton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robiinson, David G.

    1999-02-20

    This software assists the engineering designer in characterizing the statistical uncertainty in the performance of complex systems as a result of variations in manufacturing processes, material properties, system geometry or operating environment. The software is composed of a graphical user interface that provides the user with easy access to Cassandra uncertainty analysis routines. Together this interface and the Cassandra routines are referred to as CRAX (CassandRA eXoskeleton). The software is flexible enough, that with minor modification, it is able to interface with large modeling and analysis codes such as heat transfer or finite element analysis software. The current version permitsmore » the user to manually input a performance function, the number of random variables and their associated statistical characteristics: density function, mean, coefficients of variation. Additional uncertainity analysis modules are continuously being added to the Cassandra core.« less

  17. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy.

    PubMed

    Busico, Gianluigi; Cuoco, Emilio; Kazakis, Nerantzis; Colombani, Nicolò; Mastrocicco, Micòl; Tedesco, Dario; Voudouris, Konstantinos

    2018-03-01

    Shallow aquifers are the most accessible reservoirs of potable groundwater; nevertheless, they are also prone to various sources of pollution and it is usually difficult to distinguish between human and natural sources at the watershed scale. The area chosen for this study (the Campania Plain) is characterized by high spatial heterogeneities both in geochemical features and in hydraulic properties. Groundwater mineralization is driven by many processes such as, geothermal activity, weathering of volcanic products and intense human activities. In such a landscape, multivariate statistical analysis has been used to differentiate among the main hydrochemical processes occurring in the area, using three different approaches of factor analysis: (i) major elements, (ii) trace elements, (iii) both major and trace elements. The elaboration of the factor analysis approaches has revealed seven distinct hydrogeochemical processes: i) Salinization (Cl - , Na + ); ii) Carbonate rocks dissolution; iii) Anthropogenic inputs (NO 3 - , SO 4 2- , U, V); iv) Reducing conditions (Fe 2+ , Mn 2+ ); v) Heavy metals contamination (Cr and Ni); vi) Geothermal fluids influence (Li + ); and vii) Volcanic products contribution (As, Rb). Results from this study highlight the need to separately apply factor analysis when a large data set of trace elements is available. In fact, the impact of geothermal fluids in the shallow aquifer was identified from the application of the factor analysis using only trace elements. This study also reveals that the factor analysis of major and trace elements can differentiate between anthropogenic and geogenic sources of pollution in intensively exploited aquifers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Statistical and Spatial Analysis of Bathymetric Data for the St. Clair River, 1971-2007

    USGS Publications Warehouse

    Bennion, David

    2009-01-01

    To address questions concerning ongoing geomorphic processes in the St. Clair River, selected bathymetric datasets spanning 36 years were analyzed. Comparisons of recent high-resolution datasets covering the upper river indicate a highly variable, active environment. Although statistical and spatial comparisons of the datasets show that some changes to the channel size and shape have taken place during the study period, uncertainty associated with various survey methods and interpolation processes limit the statistically certain results. The methods used to spatially compare the datasets are sensitive to small variations in position and depth that are within the range of uncertainty associated with the datasets. Characteristics of the data, such as the density of measured points and the range of values surveyed, can also influence the results of spatial comparison. With due consideration of these limitations, apparently active and ongoing areas of elevation change in the river are mapped and discussed.

  19. Competent statistical programmer: Need of business process outsourcing industry

    PubMed Central

    Khan, Imran

    2014-01-01

    Over the last two decades Business Process Outsourcing (BPO) has evolved as much mature practice. India is looked as preferred destination for pharmaceutical outsourcing over a cost arbitrage. Among the biometrics outsourcing, statistical programming and analysis required very niche skill for service delivery. The demand and supply ratios are imbalance due to high churn out rate and less supply of competent programmer. Industry is moving from task delivery to ownership and accountability. The paradigm shift from an outsourcing to consulting is triggering the need for competent statistical programmer. Programmers should be trained in technical, analytical, problem solving, decision making and soft skill as the expectations from the customer are changing from task delivery to accountability of the project. This paper will highlight the common issue SAS programming service industry is facing and skills the programmers need to develop to cope up with these changes. PMID:24987578

  20. A Management Information System Model for Program Management. Ph.D. Thesis - Oklahoma State Univ.; [Computerized Systems Analysis

    NASA Technical Reports Server (NTRS)

    Shipman, D. L.

    1972-01-01

    The development of a model to simulate the information system of a program management type of organization is reported. The model statistically determines the following parameters: type of messages, destinations, delivery durations, type processing, processing durations, communication channels, outgoing messages, and priorites. The total management information system of the program management organization is considered, including formal and informal information flows and both facilities and equipment. The model is written in General Purpose System Simulation 2 computer programming language for use on the Univac 1108, Executive 8 computer. The model is simulated on a daily basis and collects queue and resource utilization statistics for each decision point. The statistics are then used by management to evaluate proposed resource allocations, to evaluate proposed changes to the system, and to identify potential problem areas. The model employs both empirical and theoretical distributions which are adjusted to simulate the information flow being studied.

  1. Competent statistical programmer: Need of business process outsourcing industry.

    PubMed

    Khan, Imran

    2014-07-01

    Over the last two decades Business Process Outsourcing (BPO) has evolved as much mature practice. India is looked as preferred destination for pharmaceutical outsourcing over a cost arbitrage. Among the biometrics outsourcing, statistical programming and analysis required very niche skill for service delivery. The demand and supply ratios are imbalance due to high churn out rate and less supply of competent programmer. Industry is moving from task delivery to ownership and accountability. The paradigm shift from an outsourcing to consulting is triggering the need for competent statistical programmer. Programmers should be trained in technical, analytical, problem solving, decision making and soft skill as the expectations from the customer are changing from task delivery to accountability of the project. This paper will highlight the common issue SAS programming service industry is facing and skills the programmers need to develop to cope up with these changes.

  2. Lognormal Distribution of Cellular Uptake of Radioactivity: Statistical Analysis of α-Particle Track Autoradiography

    PubMed Central

    Neti, Prasad V.S.V.; Howell, Roger W.

    2010-01-01

    Recently, the distribution of radioactivity among a population of cells labeled with 210Po was shown to be well described by a log-normal (LN) distribution function (J Nucl Med. 2006;47:1049–1058) with the aid of autoradiography. To ascertain the influence of Poisson statistics on the interpretation of the autoradiographic data, the present work reports on a detailed statistical analysis of these earlier data. Methods The measured distributions of α-particle tracks per cell were subjected to statistical tests with Poisson, LN, and Poisson-lognormal (P-LN) models. Results The LN distribution function best describes the distribution of radioactivity among cell populations exposed to 0.52 and 3.8 kBq/mL of 210Po-citrate. When cells were exposed to 67 kBq/mL, the P-LN distribution function gave a better fit; however, the underlying activity distribution remained log-normal. Conclusion The present analysis generally provides further support for the use of LN distributions to describe the cellular uptake of radioactivity. Care should be exercised when analyzing autoradiographic data on activity distributions to ensure that Poisson processes do not distort the underlying LN distribution. PMID:18483086

  3. Influence of Structural Features and Fracture Processes on Surface Roughness: A Case Study from the Krosno Sandstones of the Górka-Mucharz Quarry (Little Beskids, Southern Poland)

    NASA Astrophysics Data System (ADS)

    Pieczara, Łukasz

    2015-09-01

    The paper presents the results of analysis of surface roughness parameters in the Krosno Sandstones of Mucharz, southern Poland. It was aimed at determining whether these parameters are influenced by structural features (mainly the laminar distribution of mineral components and directional distribution of non-isometric grains) and fracture processes. The tests applied in the analysis enabled us to determine and describe the primary statistical parameters used in the quantitative description of surface roughness, as well as specify the usefulness of contact profilometry as a method of visualizing spatial differentiation of fracture processes in rocks. These aims were achieved by selecting a model material (Krosno Sandstones from the Górka-Mucharz Quarry) and an appropriate research methodology. The schedule of laboratory analyses included: identification analyses connected with non-destructive ultrasonic tests, aimed at the preliminary determination of rock anisotropy, strength point load tests (cleaved surfaces were obtained due to destruction of rock samples), microscopic analysis (observation of thin sections in order to determine the mechanism of inducing fracture processes) and a test method of measuring surface roughness (two- and three-dimensional diagrams, topographic and contour maps, and statistical parameters of surface roughness). The highest values of roughness indicators were achieved for surfaces formed under the influence of intragranular fracture processes (cracks propagating directly through grains). This is related to the structural features of the Krosno Sandstones (distribution of lamination and bedding).

  4. Statistical Analysis of Time-Series from Monitoring of Active Volcanic Vents

    NASA Astrophysics Data System (ADS)

    Lachowycz, S.; Cosma, I.; Pyle, D. M.; Mather, T. A.; Rodgers, M.; Varley, N. R.

    2016-12-01

    Despite recent advances in the collection and analysis of time-series from volcano monitoring, and the resulting insights into volcanic processes, challenges remain in forecasting and interpreting activity from near real-time analysis of monitoring data. Statistical methods have potential to characterise the underlying structure and facilitate intercomparison of these time-series, and so inform interpretation of volcanic activity. We explore the utility of multiple statistical techniques that could be widely applicable to monitoring data, including Shannon entropy and detrended fluctuation analysis, by their application to various data streams from volcanic vents during periods of temporally variable activity. Each technique reveals changes through time in the structure of some of the data that were not apparent from conventional analysis. For example, we calculate the Shannon entropy (a measure of the randomness of a signal) of time-series from the recent dome-forming eruptions of Volcán de Colima (Mexico) and Soufrière Hills (Montserrat). The entropy of real-time seismic measurements and the count rate of certain volcano-seismic event types from both volcanoes is found to be temporally variable, with these data generally having higher entropy during periods of lava effusion and/or larger explosions. In some instances, the entropy shifts prior to or coincident with changes in seismic or eruptive activity, some of which were not clearly recognised by real-time monitoring. Comparison with other statistics demonstrates the sensitivity of the entropy to the data distribution, but that it is distinct from conventional statistical measures such as coefficient of variation. We conclude that each analysis technique examined could provide valuable insights for interpretation of diverse monitoring time-series.

  5. Interactive Exploration and Analysis of Large-Scale Simulations Using Topology-Based Data Segmentation.

    PubMed

    Bremer, Peer-Timo; Weber, Gunther; Tierny, Julien; Pascucci, Valerio; Day, Marcus S; Bell, John B

    2011-09-01

    Large-scale simulations are increasingly being used to study complex scientific and engineering phenomena. As a result, advanced visualization and data analysis are also becoming an integral part of the scientific process. Often, a key step in extracting insight from these large simulations involves the definition, extraction, and evaluation of features in the space and time coordinates of the solution. However, in many applications, these features involve a range of parameters and decisions that will affect the quality and direction of the analysis. Examples include particular level sets of a specific scalar field, or local inequalities between derived quantities. A critical step in the analysis is to understand how these arbitrary parameters/decisions impact the statistical properties of the features, since such a characterization will help to evaluate the conclusions of the analysis as a whole. We present a new topological framework that in a single-pass extracts and encodes entire families of possible features definitions as well as their statistical properties. For each time step we construct a hierarchical merge tree a highly compact, yet flexible feature representation. While this data structure is more than two orders of magnitude smaller than the raw simulation data it allows us to extract a set of features for any given parameter selection in a postprocessing step. Furthermore, we augment the trees with additional attributes making it possible to gather a large number of useful global, local, as well as conditional statistic that would otherwise be extremely difficult to compile. We also use this representation to create tracking graphs that describe the temporal evolution of the features over time. Our system provides a linked-view interface to explore the time-evolution of the graph interactively alongside the segmentation, thus making it possible to perform extensive data analysis in a very efficient manner. We demonstrate our framework by extracting and analyzing burning cells from a large-scale turbulent combustion simulation. In particular, we show how the statistical analysis enabled by our techniques provides new insight into the combustion process.

  6. Feasibility study of using statistical process control to customized quality assurance in proton therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rah, Jeong-Eun; Oh, Do Hoon; Shin, Dongho

    Purpose: To evaluate and improve the reliability of proton quality assurance (QA) processes and, to provide an optimal customized tolerance level using the statistical process control (SPC) methodology. Methods: The authors investigated the consistency check of dose per monitor unit (D/MU) and range in proton beams to see whether it was within the tolerance level of the daily QA process. This study analyzed the difference between the measured and calculated ranges along the central axis to improve the patient-specific QA process in proton beams by using process capability indices. Results: The authors established a customized tolerance level of ±2% formore » D/MU and ±0.5 mm for beam range in the daily proton QA process. In the authors’ analysis of the process capability indices, the patient-specific range measurements were capable of a specification limit of ±2% in clinical plans. Conclusions: SPC methodology is a useful tool for customizing the optimal QA tolerance levels and improving the quality of proton machine maintenance, treatment delivery, and ultimately patient safety.« less

  7. Optimizing human activity patterns using global sensitivity analysis.

    PubMed

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  8. Optimizing human activity patterns using global sensitivity analysis

    PubMed Central

    Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2014-01-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080

  9. Implementation of quality by design principles in the development of microsponges as drug delivery carriers: Identification and optimization of critical factors using multivariate statistical analyses and design of experiments studies.

    PubMed

    Simonoska Crcarevska, Maja; Dimitrovska, Aneta; Sibinovska, Nadica; Mladenovska, Kristina; Slavevska Raicki, Renata; Glavas Dodov, Marija

    2015-07-15

    Microsponges drug delivery system (MDDC) was prepared by double emulsion-solvent-diffusion technique using rotor-stator homogenization. Quality by design (QbD) concept was implemented for the development of MDDC with potential to be incorporated into semisolid dosage form (gel). Quality target product profile (QTPP) and critical quality attributes (CQA) were defined and identified, accordingly. Critical material attributes (CMA) and Critical process parameters (CPP) were identified using quality risk management (QRM) tool, failure mode, effects and criticality analysis (FMECA). CMA and CPP were identified based on results obtained from principal component analysis (PCA-X&Y) and partial least squares (PLS) statistical analysis along with literature data, product and process knowledge and understanding. FMECA identified amount of ethylcellulose, chitosan, acetone, dichloromethane, span 80, tween 80 and water ratio in primary/multiple emulsions as CMA and rotation speed and stirrer type used for organic solvent removal as CPP. The relationship between identified CPP and particle size as CQA was described in the design space using design of experiments - one-factor response surface method. Obtained results from statistically designed experiments enabled establishment of mathematical models and equations that were used for detailed characterization of influence of identified CPP upon MDDC particle size and particle size distribution and their subsequent optimization. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Optimizing human activity patterns using global sensitivity analysis

    DOE PAGES

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less

  11. Lognormal-like statistics of a stochastic squeeze process

    NASA Astrophysics Data System (ADS)

    Shapira, Dekel; Cohen, Doron

    2017-10-01

    We analyze the full statistics of a stochastic squeeze process. The model's two parameters are the bare stretching rate w and the angular diffusion coefficient D . We carry out an exact analysis to determine the drift and the diffusion coefficient of log(r ) , where r is the radial coordinate. The results go beyond the heuristic lognormal description that is implied by the central limit theorem. Contrary to the common "quantum Zeno" approximation, the radial diffusion is not simply Dr=(1 /8 ) w2/D but has a nonmonotonic dependence on w /D . Furthermore, the calculation of the radial moments is dominated by the far non-Gaussian tails of the log(r ) distribution.

  12. Statistical process control analysis for patient quality assurance of intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Lee, Rena; Kim, Kyubo; Cho, Samju; Lim, Sangwook; Lee, Suk; Shim, Jang Bo; Huh, Hyun Do; Lee, Sang Hoon; Ahn, Sohyun

    2017-11-01

    This study applied statistical process control to set and verify the quality assurances (QA) tolerance standard for our hospital's characteristics with the criteria standards that are applied to all the treatment sites with this analysis. Gamma test factor of delivery quality assurances (DQA) was based on 3%/3 mm. Head and neck, breast, prostate cases of intensity modulated radiation therapy (IMRT) or volumetric arc radiation therapy (VMAT) were selected for the analysis of the QA treatment sites. The numbers of data used in the analysis were 73 and 68 for head and neck patients. Prostate and breast were 49 and 152 by MapCHECK and ArcCHECK respectively. C p value of head and neck and prostate QA were above 1.0, C pml is 1.53 and 1.71 respectively, which is close to the target value of 100%. C pml value of breast (IMRT) was 1.67, data values are close to the target value of 95%. But value of was 0.90, which means that the data values are widely distributed. C p and C pml of breast VMAT QA were respectively 1.07 and 2.10. This suggests that the VMAT QA has better process capability than the IMRT QA. Consequently, we should pay more attention to planning and QA before treatment for breast Radiotherapy.

  13. A statistical approach to quasi-extinction forecasting.

    PubMed

    Holmes, Elizabeth Eli; Sabo, John L; Viscido, Steven Vincent; Fagan, William Fredric

    2007-12-01

    Forecasting population decline to a certain critical threshold (the quasi-extinction risk) is one of the central objectives of population viability analysis (PVA), and such predictions figure prominently in the decisions of major conservation organizations. In this paper, we argue that accurate forecasting of a population's quasi-extinction risk does not necessarily require knowledge of the underlying biological mechanisms. Because of the stochastic and multiplicative nature of population growth, the ensemble behaviour of population trajectories converges to common statistical forms across a wide variety of stochastic population processes. This paper provides a theoretical basis for this argument. We show that the quasi-extinction surfaces of a variety of complex stochastic population processes (including age-structured, density-dependent and spatially structured populations) can be modelled by a simple stochastic approximation: the stochastic exponential growth process overlaid with Gaussian errors. Using simulated and real data, we show that this model can be estimated with 20-30 years of data and can provide relatively unbiased quasi-extinction risk with confidence intervals considerably smaller than (0,1). This was found to be true even for simulated data derived from some of the noisiest population processes (density-dependent feedback, species interactions and strong age-structure cycling). A key advantage of statistical models is that their parameters and the uncertainty of those parameters can be estimated from time series data using standard statistical methods. In contrast for most species of conservation concern, biologically realistic models must often be specified rather than estimated because of the limited data available for all the various parameters. Biologically realistic models will always have a prominent place in PVA for evaluating specific management options which affect a single segment of a population, a single demographic rate, or different geographic areas. However, for forecasting quasi-extinction risk, statistical models that are based on the convergent statistical properties of population processes offer many advantages over biologically realistic models.

  14. A statistical model investigating the prevalence of tuberculosis in New York City using counting processes with two change-points

    PubMed Central

    ACHCAR, J. A.; MARTINEZ, E. Z.; RUFFINO-NETTO, A.; PAULINO, C. D.; SOARES, P.

    2008-01-01

    SUMMARY We considered a Bayesian analysis for the prevalence of tuberculosis cases in New York City from 1970 to 2000. This counting dataset presented two change-points during this period. We modelled this counting dataset considering non-homogeneous Poisson processes in the presence of the two-change points. A Bayesian analysis for the data is considered using Markov chain Monte Carlo methods. Simulated Gibbs samples for the parameters of interest were obtained using WinBugs software. PMID:18346287

  15. Statistical modeling of storm-level Kp occurrences

    USGS Publications Warehouse

    Remick, K.J.; Love, J.J.

    2006-01-01

    We consider the statistical modeling of the occurrence in time of large Kp magnetic storms as a Poisson process, testing whether or not relatively rare, large Kp events can be considered to arise from a stochastic, sequential, and memoryless process. For a Poisson process, the wait times between successive events occur statistically with an exponential density function. Fitting an exponential function to the durations between successive large Kp events forms the basis of our analysis. Defining these wait times by calculating the differences between times when Kp exceeds a certain value, such as Kp ??? 5, we find the wait-time distribution is not exponential. Because large storms often have several periods with large Kp values, their occurrence in time is not memoryless; short duration wait times are not independent of each other and are often clumped together in time. If we remove same-storm large Kp occurrences, the resulting wait times are very nearly exponentially distributed and the storm arrival process can be characterized as Poisson. Fittings are performed on wait time data for Kp ??? 5, 6, 7, and 8. The mean wait times between storms exceeding such Kp thresholds are 7.12, 16.55, 42.22, and 121.40 days respectively.

  16. Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk.

    PubMed

    Bryan, Rebecca; Nair, Prasanth B; Taylor, Mark

    2009-09-18

    Interpatient variability is often overlooked in orthopaedic computational studies due to the substantial challenges involved in sourcing and generating large numbers of bone models. A statistical model of the whole femur incorporating both geometric and material property variation was developed as a potential solution to this problem. The statistical model was constructed using principal component analysis, applied to 21 individual computer tomography scans. To test the ability of the statistical model to generate realistic, unique, finite element (FE) femur models it was used as a source of 1000 femurs to drive a study on femoral neck fracture risk. The study simulated the impact of an oblique fall to the side, a scenario known to account for a large proportion of hip fractures in the elderly and have a lower fracture load than alternative loading approaches. FE model generation, application of subject specific loading and boundary conditions, FE processing and post processing of the solutions were completed automatically. The generated models were within the bounds of the training data used to create the statistical model with a high mesh quality, able to be used directly by the FE solver without remeshing. The results indicated that 28 of the 1000 femurs were at highest risk of fracture. Closer analysis revealed the percentage of cortical bone in the proximal femur to be a crucial differentiator between the failed and non-failed groups. The likely fracture location was indicated to be intertrochantic. Comparison to previous computational, clinical and experimental work revealed support for these findings.

  17. Design of radar receivers

    NASA Astrophysics Data System (ADS)

    Sokolov, M. A.

    This handbook treats the design and analysis of of pulsed radar receivers, with emphasis on elements (especially IC elements) that implement optimal and suboptimal algorithms. The design methodology is developed from the viewpoint of statistical communications theory. Particular consideration is given to the synthesis of single-channel and multichannel detectors, the design of analog and digital signal-processing devices, and the analysis of IF amplifiers.

  18. The Role of the Company in Generating Skills. The Learning Effects of Work Organization. The Netherlands.

    ERIC Educational Resources Information Center

    Onstenk, Jeroen; Voncken, Eva

    The impact of developments in work organizations on the skilling process in the Netherlands was studied through a macro analysis of available statistical information about the development of education for work in the Netherlands and case studies of three Dutch firms. The macro analysis focused on the following: vocational education in the…

  19. Landsat real-time processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, E.L.

    A novel method for performing real-time acquisition and processing Landsat/EROS data covers all aspects including radiometric and geometric corrections of multispectral scanner or return-beam vidicon inputs, image enhancement, statistical analysis, feature extraction, and classification. Radiometric transformations include bias/gain adjustment, noise suppression, calibration, scan angle compensation, and illumination compensation, including topography and atmospheric effects. Correction or compensation for geometric distortion includes sensor-related distortions, such as centering, skew, size, scan nonlinearity, radial symmetry, and tangential symmetry. Also included are object image-related distortions such as aspect angle (altitude), scale distortion (altitude), terrain relief, and earth curvature. Ephemeral corrections are also applied to compensatemore » for satellite forward movement, earth rotation, altitude variations, satellite vibration, and mirror scan velocity. Image enhancement includes high-pass, low-pass, and Laplacian mask filtering and data restoration for intermittent losses. Resource classification is provided by statistical analysis including histograms, correlational analysis, matrix manipulations, and determination of spectral responses. Feature extraction includes spatial frequency analysis, which is used in parallel discriminant functions in each array processor for rapid determination. The technique uses integrated parallel array processors that decimate the tasks concurrently under supervision of a control processor. The operator-machine interface is optimized for programming ease and graphics image windowing.« less

  20. Applications of Remote Sensing and GIS(Geographic Information System) in Crime Analysis of Gujranwala City.

    NASA Astrophysics Data System (ADS)

    Munawar, Iqra

    2016-07-01

    Crime mapping is a dynamic process. It can be used to assist all stages of the problem solving process. Mapping crime can help police protect citizens more effectively. The decision to utilize a certain type of map or design element may change based on the purpose of a map, the audience or the available data. If the purpose of the crime analysis map is to assist in the identification of a particular problem, selected data may be mapped to identify patterns of activity that have been previously undetected. The main objective of this research was to study the spatial distribution patterns of the four common crimes i.e Narcotics, Arms, Burglary and Robbery in Gujranwala City using spatial statistical techniques to identify the hotspots. Hotspots or location of clusters were identified using Getis-Ord Gi* Statistic. Crime analysis mapping can be used to conduct a comprehensive spatial analysis of the problem. Graphic presentations of such findings provide a powerful medium to communicate conditions, patterns and trends thus creating an avenue for analysts to bring about significant policy changes. Moreover Crime mapping also helps in the reduction of crime rate.

  1. Aftershock identification problem via the nearest-neighbor analysis for marked point processes

    NASA Astrophysics Data System (ADS)

    Gabrielov, A.; Zaliapin, I.; Wong, H.; Keilis-Borok, V.

    2007-12-01

    The centennial observations on the world seismicity have revealed a wide variety of clustering phenomena that unfold in the space-time-energy domain and provide most reliable information about the earthquake dynamics. However, there is neither a unifying theory nor a convenient statistical apparatus that would naturally account for the different types of seismic clustering. In this talk we present a theoretical framework for nearest-neighbor analysis of marked processes and obtain new results on hierarchical approach to studying seismic clustering introduced by Baiesi and Paczuski (2004). Recall that under this approach one defines an asymmetric distance D in space-time-energy domain such that the nearest-neighbor spanning graph with respect to D becomes a time- oriented tree. We demonstrate how this approach can be used to detect earthquake clustering. We apply our analysis to the observed seismicity of California and synthetic catalogs from ETAS model and show that the earthquake clustering part is statistically different from the homogeneous part. This finding may serve as a basis for an objective aftershock identification procedure.

  2. Automatic identification of bacterial types using statistical imaging methods

    NASA Astrophysics Data System (ADS)

    Trattner, Sigal; Greenspan, Hayit; Tepper, Gapi; Abboud, Shimon

    2003-05-01

    The objective of the current study is to develop an automatic tool to identify bacterial types using computer-vision and statistical modeling techniques. Bacteriophage (phage)-typing methods are used to identify and extract representative profiles of bacterial types, such as the Staphylococcus Aureus. Current systems rely on the subjective reading of plaque profiles by human expert. This process is time-consuming and prone to errors, especially as technology is enabling the increase in the number of phages used for typing. The statistical methodology presented in this work, provides for an automated, objective and robust analysis of visual data, along with the ability to cope with increasing data volumes.

  3. An architecture for a brain-image database

    NASA Technical Reports Server (NTRS)

    Herskovits, E. H.

    2000-01-01

    The widespread availability of methods for noninvasive assessment of brain structure has enabled researchers to investigate neuroimaging correlates of normal aging, cerebrovascular disease, and other processes; we designate such studies as image-based clinical trials (IBCTs). We propose an architecture for a brain-image database, which integrates image processing and statistical operators, and thus supports the implementation and analysis of IBCTs. The implementation of this architecture is described and results from the analysis of image and clinical data from two IBCTs are presented. We expect that systems such as this will play a central role in the management and analysis of complex research data sets.

  4. Modelling multiple sources of dissemination bias in meta-analysis.

    PubMed

    Bowden, Jack; Jackson, Dan; Thompson, Simon G

    2010-03-30

    Asymmetry in the funnel plot for a meta-analysis suggests the presence of dissemination bias. This may be caused by publication bias through the decisions of journal editors, by selective reporting of research results by authors or by a combination of both. Typically, study results that are statistically significant or have larger estimated effect sizes are more likely to appear in the published literature, hence giving a biased picture of the evidence-base. Previous statistical approaches for addressing dissemination bias have assumed only a single selection mechanism. Here we consider a more realistic scenario in which multiple dissemination processes, involving both the publishing authors and journals, are operating. In practical applications, the methods can be used to provide sensitivity analyses for the potential effects of multiple dissemination biases operating in meta-analysis.

  5. A generic Transcriptomics Reporting Framework (TRF) for 'omics data processing and analysis.

    PubMed

    Gant, Timothy W; Sauer, Ursula G; Zhang, Shu-Dong; Chorley, Brian N; Hackermüller, Jörg; Perdichizzi, Stefania; Tollefsen, Knut E; van Ravenzwaay, Ben; Yauk, Carole; Tong, Weida; Poole, Alan

    2017-12-01

    A generic Transcriptomics Reporting Framework (TRF) is presented that lists parameters that should be reported in 'omics studies used in a regulatory context. The TRF encompasses the processes from transcriptome profiling from data generation to a processed list of differentially expressed genes (DEGs) ready for interpretation. Included within the TRF is a reference baseline analysis (RBA) that encompasses raw data selection; data normalisation; recognition of outliers; and statistical analysis. The TRF itself does not dictate the methodology for data processing, but deals with what should be reported. Its principles are also applicable to sequencing data and other 'omics. In contrast, the RBA specifies a simple data processing and analysis methodology that is designed to provide a comparison point for other approaches and is exemplified here by a case study. By providing transparency on the steps applied during 'omics data processing and analysis, the TRF will increase confidence processing of 'omics data, and regulatory use. Applicability of the TRF is ensured by its simplicity and generality. The TRF can be applied to all types of regulatory 'omics studies, and it can be executed using different commonly available software tools. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  6. A note about high blood pressure in childhood

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena; Simão, Carla

    2017-06-01

    In medical, behavioral and social sciences it is usual to get a binary outcome. In the present work is collected information where some of the outcomes are binary variables (1='yes'/ 0='no'). In [14] a preliminary study about the caregivers perception of pediatric hypertension was introduced. An experimental questionnaire was designed to be answered by the caregivers of routine pediatric consultation attendees in the Santa Maria's hospital (HSM). The collected data was statistically analyzed, where a descriptive analysis and a predictive model were performed. Significant relations between some socio-demographic variables and the assessed knowledge were obtained. In [14] can be found a statistical data analysis using partial questionnaire's information. The present article completes the statistical approach estimating a model for relevant remaining questions of questionnaire by Generalized Linear Models (GLM). Exploring the binary outcome issue, we intend to extend this approach using Generalized Linear Mixed Models (GLMM), but the process is still ongoing.

  7. Detection of statistical asymmetries in non-stationary sign time series: Analysis of foreign exchange data

    PubMed Central

    Takayasu, Hideki; Takayasu, Misako

    2017-01-01

    We extend the concept of statistical symmetry as the invariance of a probability distribution under transformation to analyze binary sign time series data of price difference from the foreign exchange market. We model segments of the sign time series as Markov sequences and apply a local hypothesis test to evaluate the symmetries of independence and time reversion in different periods of the market. For the test, we derive the probability of a binary Markov process to generate a given set of number of symbol pairs. Using such analysis, we could not only segment the time series according the different behaviors but also characterize the segments in terms of statistical symmetries. As a particular result, we find that the foreign exchange market is essentially time reversible but this symmetry is broken when there is a strong external influence. PMID:28542208

  8. Baseline estimation in flame's spectra by using neural networks and robust statistics

    NASA Astrophysics Data System (ADS)

    Garces, Hugo; Arias, Luis; Rojas, Alejandro

    2014-09-01

    This work presents a baseline estimation method in flame spectra based on artificial intelligence structure as a neural network, combining robust statistics with multivariate analysis to automatically discriminate measured wavelengths belonging to continuous feature for model adaptation, surpassing restriction of measuring target baseline for training. The main contributions of this paper are: to analyze a flame spectra database computing Jolliffe statistics from Principal Components Analysis detecting wavelengths not correlated with most of the measured data corresponding to baseline; to systematically determine the optimal number of neurons in hidden layers based on Akaike's Final Prediction Error; to estimate baseline in full wavelength range sampling measured spectra; and to train an artificial intelligence structure as a Neural Network which allows to generalize the relation between measured and baseline spectra. The main application of our research is to compute total radiation with baseline information, allowing to diagnose combustion process state for optimization in early stages.

  9. Multivariate statistical analysis of a high rate biofilm process treating kraft mill bleach plant effluent.

    PubMed

    Goode, C; LeRoy, J; Allen, D G

    2007-01-01

    This study reports on a multivariate analysis of the moving bed biofilm reactor (MBBR) wastewater treatment system at a Canadian pulp mill. The modelling approach involved a data overview by principal component analysis (PCA) followed by partial least squares (PLS) modelling with the objective of explaining and predicting changes in the BOD output of the reactor. Over two years of data with 87 process measurements were used to build the models. Variables were collected from the MBBR control scheme as well as upstream in the bleach plant and in digestion. To account for process dynamics, a variable lagging approach was used for variables with significant temporal correlations. It was found that wood type pulped at the mill was a significant variable governing reactor performance. Other important variables included flow parameters, faults in the temperature or pH control of the reactor, and some potential indirect indicators of biomass activity (residual nitrogen and pH out). The most predictive model was found to have an RMSEP value of 606 kgBOD/d, representing a 14.5% average error. This was a good fit, given the measurement error of the BOD test. Overall, the statistical approach was effective in describing and predicting MBBR treatment performance.

  10. Linking microbial community structure and microbial processes: An empirical and conceptual overview

    USGS Publications Warehouse

    Bier, R.L.; Bernhardt, Emily S.; Boot, Claudia M.; Graham, Emily B.; Hall, Edward K.; Lennon, Jay T.; Nemergut, Diana R.; Osborne, Brooke B.; Ruiz-Gonzalez, Clara; Schimel, Joshua P.; Waldrop, Mark P.; Wallenstein, Matthew D.

    2015-01-01

    A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009–13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them.

  11. Brownian motion or Lévy walk? Stepping towards an extended statistical mechanics for animal locomotion.

    PubMed

    Gautestad, Arild O

    2012-09-07

    Animals moving under the influence of spatio-temporal scaling and long-term memory generate a kind of space-use pattern that has proved difficult to model within a coherent theoretical framework. An extended kind of statistical mechanics is needed, accounting for both the effects of spatial memory and scale-free space use, and put into a context of ecological conditions. Simulations illustrating the distinction between scale-specific and scale-free locomotion are presented. The results show how observational scale (time lag between relocations of an individual) may critically influence the interpretation of the underlying process. In this respect, a novel protocol is proposed as a method to distinguish between some main movement classes. For example, the 'power law in disguise' paradox-from a composite Brownian motion consisting of a superposition of independent movement processes at different scales-may be resolved by shifting the focus from pattern analysis at one particular temporal resolution towards a more process-oriented approach involving several scales of observation. A more explicit consideration of system complexity within a statistical mechanical framework, supplementing the more traditional mechanistic modelling approach, is advocated.

  12. Archival Legacy Investigations of Circumstellar Environments (ALICE): Statistical assessment of point source detections

    NASA Astrophysics Data System (ADS)

    Choquet, Élodie; Pueyo, Laurent; Soummer, Rémi; Perrin, Marshall D.; Hagan, J. Brendan; Gofas-Salas, Elena; Rajan, Abhijith; Aguilar, Jonathan

    2015-09-01

    The ALICE program, for Archival Legacy Investigation of Circumstellar Environment, is currently conducting a virtual survey of about 400 stars, by re-analyzing the HST-NICMOS coronagraphic archive with advanced post-processing techniques. We present here the strategy that we adopted to identify detections and potential candidates for follow-up observations, and we give a preliminary overview of our detections. We present a statistical analysis conducted to evaluate the confidence level on these detection and the completeness of our candidate search.

  13. The volume-mortality relation for radical cystectomy in England: retrospective analysis of hospital episode statistics

    PubMed Central

    Bottle, Alex; Darzi, Ara W; Athanasiou, Thanos; Vale, Justin A

    2010-01-01

    Objectives To investigate the relation between volume and mortality after adjustment for case mix for radical cystectomy in the English healthcare setting using improved statistical methodology, taking into account the institutional and surgeon volume effects and institutional structural and process of care factors. Design Retrospective analysis of hospital episode statistics using multilevel modelling. Setting English hospitals carrying out radical cystectomy in the seven financial years 2000/1 to 2006/7. Participants Patients with a primary diagnosis of cancer undergoing an inpatient elective cystectomy. Main outcome measure Mortality within 30 days of cystectomy. Results Compared with low volume institutions, medium volume ones had a significantly higher odds of in-hospital and total mortality: odds ratio 1.72 (95% confidence interval 1.00 to 2.98, P=0.05) and 1.82 (1.08 to 3.06, P=0.02). This was only seen in the final model, which included adjustment for structural and processes of care factors. The surgeon volume-mortality relation showed weak evidence of reduced odds of in-hospital mortality (by 35%) for the high volume surgeons, although this did not reach statistical significance at the 5% level. Conclusions The relation between case volume and mortality after radical cystectomy for bladder cancer became evident only after adjustment for structural and process of care factors, including staffing levels of nurses and junior doctors, in addition to case mix. At least for this relatively uncommon procedure, adjusting for these confounders when examining the volume-outcome relation is critical before considering centralisation of care to a few specialist institutions. Outcomes other than mortality, such as functional morbidity and disease recurrence may ultimately influence towards centralising care. PMID:20305302

  14. MethVisual - visualization and exploratory statistical analysis of DNA methylation profiles from bisulfite sequencing.

    PubMed

    Zackay, Arie; Steinhoff, Christine

    2010-12-15

    Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org.

  15. MethVisual - visualization and exploratory statistical analysis of DNA methylation profiles from bisulfite sequencing

    PubMed Central

    2010-01-01

    Background Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. Findings MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. Conclusions The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org. PMID:21159174

  16. Statistical significance estimation of a signal within the GooFit framework on GPUs

    NASA Astrophysics Data System (ADS)

    Cristella, Leonardo; Di Florio, Adriano; Pompili, Alexis

    2017-03-01

    In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the J/ψϕ invariant mass in the three-body decay B+ → J/ψϕK+. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerable resulting speed-up, evident when comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may or may not apply because its regularity conditions are not satisfied.

  17. Performance studies of GooFit on GPUs vs RooFit on CPUs while estimating the statistical significance of a new physical signal

    NASA Astrophysics Data System (ADS)

    Di Florio, Adriano

    2017-10-01

    In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the J/ψϕ invariant mass in the three-body decay B + → J/ψϕK +. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerable resulting speed-up, evident when comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may or may not apply because its regularity conditions are not satisfied.

  18. 77 FR 46096 - Statistical Process Controls for Blood Establishments; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-02

    ...] Statistical Process Controls for Blood Establishments; Public Workshop AGENCY: Food and Drug Administration... workshop entitled: ``Statistical Process Controls for Blood Establishments.'' The purpose of this public workshop is to discuss the implementation of statistical process controls to validate and monitor...

  19. A Homegrown Design for Data Warehousing: A District Customizes Its Own Process for Generating Detailed Information about Students in Real Time

    ERIC Educational Resources Information Center

    Thompson, Terry J.; Gould, Karen J.

    2005-01-01

    In recent years the Metropolitan School District of Wayne Township in Indianapolis has been awash in data. In attempts to improve levels of student achievement, the authors collected all manner of statistical details about students and schools and attempted to perform data analysis as part of the school improvement process. The authors were never…

  20. Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.

    2017-09-01

    The warpage is often encountered which occur during injection moulding process of thin shell part depending the process condition. The statistical design of experiment method which are Integrating Finite Element (FE) Analysis, moldflow analysis and response surface methodology (RSM) are the stage of few ways in minimize the warpage values of x,y and z on thin shell plastic parts that were investigated. A battery cover of a remote controller is one of the thin shell plastic part that produced by using injection moulding process. The optimum process condition parameter were determined as to achieve the minimum warpage from being occur. Packing pressure, Cooling time, Melt temperature and Mould temperature are 4 parameters that considered in this study. A two full factorial experimental design was conducted in Design Expert of RSM analysis as to combine all these parameters study. FE analysis result gain from analysis of variance (ANOVA) method was the one of the important process parameters influenced warpage. By using RSM, a predictive response surface model for warpage data will be shown.

  1. Simulation and statistical analysis for the optimization of nitrogen liquefaction plant with cryogenic Claude cycle using process modeling tool: ASPEN HYSYS

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.

    2017-09-01

    Cryogenic technology is used for liquefaction of many gases and it has several applications in food process engineering. Temperatures below 123 K are considered to be in the field of cryogenics. Extreme low temperatures are a basic need for many industrial processes and have several applications, such as superconductivity of magnets, space, medicine and gas industries. Several methods can be used to obtain the low temperatures required for liquefaction of gases. The process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure, which is below the critical pressure, is the basic liquefaction process. Different cryogenic cycle configurations are designed for getting the liquefied form of gases at different temperatures. Each of the cryogenic cycles like Linde cycle, Claude cycle, Kapitza cycle or modified Claude cycle has its own advantages and disadvantages. The placement of heat exchangers, Joule-Thompson valve and turboexpander decides the configuration of a cryogenic cycle. Each configuration has its own efficiency according to the application. Here, a nitrogen liquefaction plant is used for the analysis purpose. The process modeling tool ASPEN HYSYS can provide a software simulation approach before the actual implementation of the plant in the field. This paper presents the simulation and statistical analysis of the Claude cycle with the process modeling tool ASPEN HYSYS. It covers the technique used to optimize the liquefaction of the plant. The simulation results so obtained can be used as a reference for the design and optimization of the nitrogen liquefaction plant. Efficient liquefaction will give the best performance and productivity to the plant.

  2. Analysis of Wood Structure Connections Using Cylindrical Steel and Carbon Fiber Dowel Pins

    NASA Astrophysics Data System (ADS)

    Vodiannikov, Mikhail A.; Kashevarova, Galina G., Dr.

    2017-06-01

    In this paper, the results of the statistical analysis of corrosion processes and moisture saturation of glued laminated timber structures and their joints in corrosive environment are shown. This paper includes calculation results for dowel connections of wood structures using steel and carbon fiber reinforced plastic cylindrical dowel pins in accordance with applicable regulatory documents by means of finite element analysis in ANSYS software, as well as experimental findings. Dependence diagrams are shown; comparative analysis of the results obtained is conducted.

  3. Inactivation disinfection property of Moringa Oleifera seed extract: optimization and kinetic studies

    NASA Astrophysics Data System (ADS)

    Idris, M. A.; Jami, M. S.; Hammed, A. M.

    2017-05-01

    This paper presents the statistical optimization study of disinfection inactivation parameters of defatted Moringa oleifera seed extract on Pseudomonas aeruginosa bacterial cells. Three level factorial design was used to estimate the optimum range and the kinetics of the inactivation process was also carried. The inactivation process involved comparing different disinfection models of Chicks-Watson, Collins-Selleck and Homs models. The results from analysis of variance (ANOVA) of the statistical optimization process revealed that only contact time was significant. The optimum disinfection range of the seed extract was 125 mg/L, 30 minutes and 120rpm agitation. At the optimum dose, the inactivation kinetics followed the Collin-Selleck model with coefficient of determination (R2) of 0.6320. This study is the first of its kind in determining the inactivation kinetics of pseudomonas aeruginosa using the defatted seed extract.

  4. How weak values emerge in joint measurements on cloned quantum systems.

    PubMed

    Hofmann, Holger F

    2012-07-13

    A statistical analysis of optimal universal cloning shows that it is possible to identify an ideal (but nonpositive) copying process that faithfully maps all properties of the original Hilbert space onto two separate quantum systems, resulting in perfect correlations for all observables. The joint probabilities for noncommuting measurements on separate clones then correspond to the real parts of the complex joint probabilities observed in weak measurements on a single system, where the measurements on the two clones replace the corresponding sequence of weak measurement and postselection. The imaginary parts of weak measurement statics can be obtained by replacing the cloning process with a partial swap operation. A controlled-swap operation combines both processes, making the complete weak measurement statistics accessible as a well-defined contribution to the joint probabilities of fully resolved projective measurements on the two output systems.

  5. Codifference as a practical tool to measure interdependence

    NASA Astrophysics Data System (ADS)

    Wyłomańska, Agnieszka; Chechkin, Aleksei; Gajda, Janusz; Sokolov, Igor M.

    2015-03-01

    Correlation and spectral analysis represent the standard tools to study interdependence in statistical data. However, for the stochastic processes with heavy-tailed distributions such that the variance diverges, these tools are inadequate. The heavy-tailed processes are ubiquitous in nature and finance. We here discuss codifference as a convenient measure to study statistical interdependence, and we aim to give a short introductory review of its properties. By taking different known stochastic processes as generic examples, we present explicit formulas for their codifferences. We show that for the Gaussian processes codifference is equivalent to covariance. For processes with finite variance these two measures behave similarly with time. For the processes with infinite variance the covariance does not exist, however, the codifference is relevant. We demonstrate the practical importance of the codifference by extracting this function from simulated as well as real data taken from turbulent plasma of fusion device and financial market. We conclude that the codifference serves as a convenient practical tool to study interdependence for stochastic processes with both infinite and finite variances as well.

  6. Introduction to bioinformatics.

    PubMed

    Can, Tolga

    2014-01-01

    Bioinformatics is an interdisciplinary field mainly involving molecular biology and genetics, computer science, mathematics, and statistics. Data intensive, large-scale biological problems are addressed from a computational point of view. The most common problems are modeling biological processes at the molecular level and making inferences from collected data. A bioinformatics solution usually involves the following steps: Collect statistics from biological data. Build a computational model. Solve a computational modeling problem. Test and evaluate a computational algorithm. This chapter gives a brief introduction to bioinformatics by first providing an introduction to biological terminology and then discussing some classical bioinformatics problems organized by the types of data sources. Sequence analysis is the analysis of DNA and protein sequences for clues regarding function and includes subproblems such as identification of homologs, multiple sequence alignment, searching sequence patterns, and evolutionary analyses. Protein structures are three-dimensional data and the associated problems are structure prediction (secondary and tertiary), analysis of protein structures for clues regarding function, and structural alignment. Gene expression data is usually represented as matrices and analysis of microarray data mostly involves statistics analysis, classification, and clustering approaches. Biological networks such as gene regulatory networks, metabolic pathways, and protein-protein interaction networks are usually modeled as graphs and graph theoretic approaches are used to solve associated problems such as construction and analysis of large-scale networks.

  7. Reconnection properties in Kelvin-Helmholtz instabilities

    NASA Astrophysics Data System (ADS)

    Vernisse, Y.; Lavraud, B.; Eriksson, S.; Gershman, D. J.; Dorelli, J.; Pollock, C. J.; Giles, B. L.; Aunai, N.; Avanov, L. A.; Burch, J.; Chandler, M. O.; Coffey, V. N.; Dargent, J.; Ergun, R.; Farrugia, C. J.; Genot, V. N.; Graham, D.; Hasegawa, H.; Jacquey, C.; Kacem, I.; Khotyaintsev, Y. V.; Li, W.; Magnes, W.; Marchaudon, A.; Moore, T. E.; Paterson, W. R.; Penou, E.; Phan, T.; Retino, A.; Schwartz, S. J.; Saito, Y.; Sauvaud, J. A.; Schiff, C.; Torbert, R. B.; Wilder, F. D.; Yokota, S.

    2017-12-01

    Kelvin-Helmholtz instabilities are particular laboratories to study strong guide field reconnection processes. In particular, unlike the usual dayside magnetopause, the conditions across the magnetopause in KH vortices are quasi-symmetric, with low differences in beta and magnetic shear angle. We study these properties by means of statistical analysis of the high-resolution data of the Magnetospheric Multiscale mission. Several events of Kelvin-Helmholtz instabilities pas the terminator plane and a long lasting dayside instabilities event where used in order to produce this statistical analysis. Early results present a consistency between the data and the theory. In addition, the results emphasize the importance of the thickness of the magnetopause as a driver of magnetic reconnection in low magnetic shear events.

  8. Object Classification Based on Analysis of Spectral Characteristics of Seismic Signal Envelopes

    NASA Astrophysics Data System (ADS)

    Morozov, Yu. V.; Spektor, A. A.

    2017-11-01

    A method for classifying moving objects having a seismic effect on the ground surface is proposed which is based on statistical analysis of the envelopes of received signals. The values of the components of the amplitude spectrum of the envelopes obtained applying Hilbert and Fourier transforms are used as classification criteria. Examples illustrating the statistical properties of spectra and the operation of the seismic classifier are given for an ensemble of objects of four classes (person, group of people, large animal, vehicle). It is shown that the computational procedures for processing seismic signals are quite simple and can therefore be used in real-time systems with modest requirements for computational resources.

  9. Scout trajectory error propagation computer program

    NASA Technical Reports Server (NTRS)

    Myler, T. R.

    1982-01-01

    Since 1969, flight experience has been used as the basis for predicting Scout orbital accuracy. The data used for calculating the accuracy consists of errors in the trajectory parameters (altitude, velocity, etc.) at stage burnout as observed on Scout flights. Approximately 50 sets of errors are used in Monte Carlo analysis to generate error statistics in the trajectory parameters. A covariance matrix is formed which may be propagated in time. The mechanization of this process resulted in computer program Scout Trajectory Error Propagation (STEP) and is described herein. Computer program STEP may be used in conjunction with the Statistical Orbital Analysis Routine to generate accuracy in the orbit parameters (apogee, perigee, inclination, etc.) based upon flight experience.

  10. Do polymorphisms of 5,10-methylenetetrahydrofolate reductase (MTHFR) gene affect the risk of childhood acute lymphoblastic leukemia?

    PubMed

    Pereira, Tiago Veiga; Rudnicki, Martina; Pereira, Alexandre Costa; Pombo-de-Oliveira, Maria S; Franco, Rendrik França

    2006-01-01

    Meta-analysis has become an important statistical tool in genetic association studies, since it may provide more powerful and precise estimates. However, meta-analytic studies are prone to several potential biases not only because the preferential publication of "positive'' studies but also due to difficulties in obtaining all relevant information during the study selection process. In this letter, we point out major problems in meta-analysis that may lead to biased conclusions, illustrating an empirical example of two recent meta-analyses on the relation between MTHFR polymorphisms and risk of acute lymphoblastic leukemia that, despite the similarity in statistical methods and period of study selection, provided partially conflicting results.

  11. The effects of multiple repairs on Inconel 718 weld mechanical properties

    NASA Technical Reports Server (NTRS)

    Russell, C. K.; Nunes, A. C., Jr.; Moore, D.

    1991-01-01

    Inconel 718 weldments were repaired 3, 6, 9, and 13 times using the gas tungsten arc welding process. The welded panels were machined into mechanical test specimens, postweld heat treated, and nondestructively tested. Tensile properties and high cycle fatigue life were evaluated and the results compared to unrepaired weld properties. Mechanical property data were analyzed using the statistical methods of difference in means for tensile properties and difference in log means and Weibull analysis for high cycle fatigue properties. Statistical analysis performed on the data did not show a significant decrease in tensile or high cycle fatigue properties due to the repeated repairs. Some degradation was observed in all properties, however, it was minimal.

  12. STAMPS: Software Tool for Automated MRI Post-processing on a supercomputer.

    PubMed

    Bigler, Don C; Aksu, Yaman; Miller, David J; Yang, Qing X

    2009-08-01

    This paper describes a Software Tool for Automated MRI Post-processing (STAMP) of multiple types of brain MRIs on a workstation and for parallel processing on a supercomputer (STAMPS). This software tool enables the automation of nonlinear registration for a large image set and for multiple MR image types. The tool uses standard brain MRI post-processing tools (such as SPM, FSL, and HAMMER) for multiple MR image types in a pipeline fashion. It also contains novel MRI post-processing features. The STAMP image outputs can be used to perform brain analysis using Statistical Parametric Mapping (SPM) or single-/multi-image modality brain analysis using Support Vector Machines (SVMs). Since STAMPS is PBS-based, the supercomputer may be a multi-node computer cluster or one of the latest multi-core computers.

  13. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    PubMed

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it was possible to interchange certain descriptors (i.e. molecular weight and melting point) without incurring a loss of model quality. Such synergy suggested that a model constructed from discrete terms in an equation may not be the most appropriate way of representing mechanistic understandings of skin absorption.

  14. Feasibility Study on the Use of On-line Multivariate Statistical Process Control for Safeguards Applications in Natural Uranium Conversion Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladd-Lively, Jennifer L

    2014-01-01

    The objective of this work was to determine the feasibility of using on-line multivariate statistical process control (MSPC) for safeguards applications in natural uranium conversion plants. Multivariate statistical process control is commonly used throughout industry for the detection of faults. For safeguards applications in uranium conversion plants, faults could include the diversion of intermediate products such as uranium dioxide, uranium tetrafluoride, and uranium hexafluoride. This study was limited to a 100 metric ton of uranium (MTU) per year natural uranium conversion plant (NUCP) using the wet solvent extraction method for the purification of uranium ore concentrate. A key component inmore » the multivariate statistical methodology is the Principal Component Analysis (PCA) approach for the analysis of data, development of the base case model, and evaluation of future operations. The PCA approach was implemented through the use of singular value decomposition of the data matrix where the data matrix represents normal operation of the plant. Component mole balances were used to model each of the process units in the NUCP. However, this approach could be applied to any data set. The monitoring framework developed in this research could be used to determine whether or not a diversion of material has occurred at an NUCP as part of an International Atomic Energy Agency (IAEA) safeguards system. This approach can be used to identify the key monitoring locations, as well as locations where monitoring is unimportant. Detection limits at the key monitoring locations can also be established using this technique. Several faulty scenarios were developed to test the monitoring framework after the base case or normal operating conditions of the PCA model were established. In all of the scenarios, the monitoring framework was able to detect the fault. Overall this study was successful at meeting the stated objective.« less

  15. Teacher Education Faculty and Computer Competency.

    ERIC Educational Resources Information Center

    Barger, Robert N.; Armel, Donald

    A project was introduced in the College of Education at Eastern Illinois University to assist faculty, through inservice training, to become more knowledgeable about computer applications and limitations. Practical needs of faculty included word processing, statistical analysis, database manipulation, electronic mail, file transfers, file…

  16. Robust crop and weed segmentation under uncontrolled outdoor illumination

    USDA-ARS?s Scientific Manuscript database

    A new machine vision for weed detection was developed from RGB color model images. Processes included in the algorithm for the detection were excessive green conversion, threshold value computation by statistical analysis, adaptive image segmentation by adjusting the threshold value, median filter, ...

  17. Electromagnetic Induction E-Sensor for Underwater UXO Detection

    DTIC Science & Technology

    2011-12-01

    EMF Electromotive force FET Field Effect Transitor Hz Hertz ms millisecond nV nanoVolt QFS QUASAR Federal...processing. Statistical discrimination techniques based on model analysis, such as the Time-Domain Three Dipole (TD3D) model, can separate UXO-like objects

  18. Scientific computations section monthly report, November 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckner, M.R.

    1993-12-30

    This progress report from the Savannah River Technology Center contains abstracts from papers from the computational modeling, applied statistics, applied physics, experimental thermal hydraulics, and packaging and transportation groups. Specific topics covered include: engineering modeling and process simulation, criticality methods and analysis, plutonium disposition.

  19. Modeling laser velocimeter signals as triply stochastic Poisson processes

    NASA Technical Reports Server (NTRS)

    Mayo, W. T., Jr.

    1976-01-01

    Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

  20. Knowledge Reasoning with Semantic Data for Real-Time Data Processing in Smart Factory

    PubMed Central

    Wang, Shiyong; Li, Di; Liu, Chengliang

    2018-01-01

    The application of high-bandwidth networks and cloud computing in manufacturing systems will be followed by mass data. Industrial data analysis plays important roles in condition monitoring, performance optimization, flexibility, and transparency of the manufacturing system. However, the currently existing architectures are mainly for offline data analysis, not suitable for real-time data processing. In this paper, we first define the smart factory as a cloud-assisted and self-organized manufacturing system in which physical entities such as machines, conveyors, and products organize production through intelligent negotiation and the cloud supervises this self-organized process for fault detection and troubleshooting based on data analysis. Then, we propose a scheme to integrate knowledge reasoning and semantic data where the reasoning engine processes the ontology model with real time semantic data coming from the production process. Based on these ideas, we build a benchmarking system for smart candy packing application that supports direct consumer customization and flexible hybrid production, and the data are collected and processed in real time for fault diagnosis and statistical analysis. PMID:29415444

  1. Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future

    PubMed Central

    Barnes, Stephen; Benton, H. Paul; Casazza, Krista; Cooper, Sara; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H.; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K.; Renfrow, Matthew B.; Tiwari, Hemant K.

    2017-01-01

    Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites, and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. This second part of a comprehensive description of the methods of metabolomics focuses on data analysis, emerging methods in metabolomics and the future of this discipline. PMID:28239968

  2. Parallel processing of genomics data

    NASA Astrophysics Data System (ADS)

    Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario

    2016-10-01

    The availability of high-throughput experimental platforms for the analysis of biological samples, such as mass spectrometry, microarrays and Next Generation Sequencing, have made possible to analyze a whole genome in a single experiment. Such platforms produce an enormous volume of data per single experiment, thus the analysis of this enormous flow of data poses several challenges in term of data storage, preprocessing, and analysis. To face those issues, efficient, possibly parallel, bioinformatics software needs to be used to preprocess and analyze data, for instance to highlight genetic variation associated with complex diseases. In this paper we present a parallel algorithm for the parallel preprocessing and statistical analysis of genomics data, able to face high dimension of data and resulting in good response time. The proposed system is able to find statistically significant biological markers able to discriminate classes of patients that respond to drugs in different ways. Experiments performed on real and synthetic genomic datasets show good speed-up and scalability.

  3. Analysis of the sleep quality of elderly people using biomedical signals.

    PubMed

    Moreno-Alsasua, L; Garcia-Zapirain, B; Mendez-Zorrilla, A

    2015-01-01

    This paper presents a technical solution that analyses sleep signals captured by biomedical sensors to find possible disorders during rest. Specifically, the method evaluates electrooculogram (EOG) signals, skin conductance (GSR), air flow (AS), and body temperature. Next, a quantitative sleep quality analysis determines significant changes in the biological signals, and any similarities between them in a given time period. Filtering techniques such as the Fourier transform method and IIR filters process the signal and identify significant variations. Once these changes have been identified, all significant data is compared and a quantitative and statistical analysis is carried out to determine the level of a person's rest. To evaluate the correlation and significant differences, a statistical analysis has been calculated showing correlation between EOG and AS signals (p=0,005), EOG, and GSR signals (p=0,037) and, finally, the EOG and Body temperature (p=0,04). Doctors could use this information to monitor changes within a patient.

  4. Process-based organization design and hospital efficiency.

    PubMed

    Vera, Antonio; Kuntz, Ludwig

    2007-01-01

    The central idea of process-based organization design is that organizing a firm around core business processes leads to cost reductions and quality improvements. We investigated theoretically and empirically whether the implementation of a process-based organization design is advisable in hospitals. The data came from a database compiled by the Statistical Office of the German federal state of Rheinland-Pfalz and from a written questionnaire, which was sent to the chief executive officers (CEOs) of all 92 hospitals in this federal state. We used data envelopment analysis (DEA) to measure hospital efficiency, and factor analysis and regression analysis to test our hypothesis. Our principal finding is that a high degree of process-based organization has a moderate but significant positive effect on the efficiency of hospitals. The main implication is that hospitals should implement a process-based organization to improve their efficiency. However, to actually achieve positive effects on efficiency, it is of paramount importance to observe some implementation rules, in particular to mobilize physician participation and to create an adequate organizational culture.

  5. Variability in source sediment contributions by applying different statistic test for a Pyrenean catchment.

    PubMed

    Palazón, L; Navas, A

    2017-06-01

    Information on sediment contribution and transport dynamics from the contributing catchments is needed to develop management plans to tackle environmental problems related with effects of fine sediment as reservoir siltation. In this respect, the fingerprinting technique is an indirect technique known to be valuable and effective for sediment source identification in river catchments. Large variability in sediment delivery was found in previous studies in the Barasona catchment (1509 km 2 , Central Spanish Pyrenees). Simulation results with SWAT and fingerprinting approaches identified badlands and agricultural uses as the main contributors to sediment supply in the reservoir. In this study the <63 μm sediment fraction from the surface reservoir sediments (2 cm) are investigated following the fingerprinting procedure to assess how the use of different statistical procedures affects the amounts of source contributions. Three optimum composite fingerprints were selected to discriminate between source contributions based in land uses/land covers from the same dataset by the application of (1) discriminant function analysis; and its combination (as second step) with (2) Kruskal-Wallis H-test and (3) principal components analysis. Source contribution results were different between assessed options with the greatest differences observed for option using #3, including the two step process: principal components analysis and discriminant function analysis. The characteristics of the solutions by the applied mixing model and the conceptual understanding of the catchment showed that the most reliable solution was achieved using #2, the two step process of Kruskal-Wallis H-test and discriminant function analysis. The assessment showed the importance of the statistical procedure used to define the optimum composite fingerprint for sediment fingerprinting applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Compositional differences among Chinese soy sauce types studied by (13)C NMR spectroscopy coupled with multivariate statistical analysis.

    PubMed

    Kamal, Ghulam Mustafa; Wang, Xiaohua; Bin Yuan; Wang, Jie; Sun, Peng; Zhang, Xu; Liu, Maili

    2016-09-01

    Soy sauce a well known seasoning all over the world, especially in Asia, is available in global market in a wide range of types based on its purpose and the processing methods. Its composition varies with respect to the fermentation processes and addition of additives, preservatives and flavor enhancers. A comprehensive (1)H NMR based study regarding the metabonomic variations of soy sauce to differentiate among different types of soy sauce available on the global market has been limited due to the complexity of the mixture. In present study, (13)C NMR spectroscopy coupled with multivariate statistical data analysis like principle component analysis (PCA), and orthogonal partial least square-discriminant analysis (OPLS-DA) was applied to investigate metabonomic variations among different types of soy sauce, namely super light, super dark, red cooking and mushroom soy sauce. The main additives in soy sauce like glutamate, sucrose and glucose were easily distinguished and quantified using (13)C NMR spectroscopy which were otherwise difficult to be assigned and quantified due to serious signal overlaps in (1)H NMR spectra. The significantly higher concentration of sucrose in dark, red cooking and mushroom flavored soy sauce can directly be linked to the addition of caramel in soy sauce. Similarly, significantly higher level of glutamate in super light as compared to super dark and mushroom flavored soy sauce may come from the addition of monosodium glutamate. The study highlights the potentiality of (13)C NMR based metabonomics coupled with multivariate statistical data analysis in differentiating between the types of soy sauce on the basis of level of additives, raw materials and fermentation procedures. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Universal self-similarity of propagating populations

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d -dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common—yet arbitrary—motion pattern; each particle has its own random propagation parameters—emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles’ displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles’ underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  8. Universal self-similarity of propagating populations.

    PubMed

    Eliazar, Iddo; Klafter, Joseph

    2010-07-01

    This paper explores the universal self-similarity of propagating populations. The following general propagation model is considered: particles are randomly emitted from the origin of a d-dimensional Euclidean space and propagate randomly and independently of each other in space; all particles share a statistically common--yet arbitrary--motion pattern; each particle has its own random propagation parameters--emission epoch, motion frequency, and motion amplitude. The universally self-similar statistics of the particles' displacements and first passage times (FPTs) are analyzed: statistics which are invariant with respect to the details of the displacement and FPT measurements and with respect to the particles' underlying motion pattern. Analysis concludes that the universally self-similar statistics are governed by Poisson processes with power-law intensities and by the Fréchet and Weibull extreme-value laws.

  9. Statistical detection of patterns in unidimensional distributions by continuous wavelet transforms

    NASA Astrophysics Data System (ADS)

    Baluev, R. V.

    2018-04-01

    Objective detection of specific patterns in statistical distributions, like groupings or gaps or abrupt transitions between different subsets, is a task with a rich range of applications in astronomy: Milky Way stellar population analysis, investigations of the exoplanets diversity, Solar System minor bodies statistics, extragalactic studies, etc. We adapt the powerful technique of the wavelet transforms to this generalized task, making a strong emphasis on the assessment of the patterns detection significance. Among other things, our method also involves optimal minimum-noise wavelets and minimum-noise reconstruction of the distribution density function. Based on this development, we construct a self-closed algorithmic pipeline aimed to process statistical samples. It is currently applicable to single-dimensional distributions only, but it is flexible enough to undergo further generalizations and development.

  10. Can power-law scaling and neuronal avalanches arise from stochastic dynamics?

    PubMed

    Touboul, Jonathan; Destexhe, Alain

    2010-02-11

    The presence of self-organized criticality in biology is often evidenced by a power-law scaling of event size distributions, which can be measured by linear regression on logarithmic axes. We show here that such a procedure does not necessarily mean that the system exhibits self-organized criticality. We first provide an analysis of multisite local field potential (LFP) recordings of brain activity and show that event size distributions defined as negative LFP peaks can be close to power-law distributions. However, this result is not robust to change in detection threshold, or when tested using more rigorous statistical analyses such as the Kolmogorov-Smirnov test. Similar power-law scaling is observed for surrogate signals, suggesting that power-law scaling may be a generic property of thresholded stochastic processes. We next investigate this problem analytically, and show that, indeed, stochastic processes can produce spurious power-law scaling without the presence of underlying self-organized criticality. However, this power-law is only apparent in logarithmic representations, and does not survive more rigorous analysis such as the Kolmogorov-Smirnov test. The same analysis was also performed on an artificial network known to display self-organized criticality. In this case, both the graphical representations and the rigorous statistical analysis reveal with no ambiguity that the avalanche size is distributed as a power-law. We conclude that logarithmic representations can lead to spurious power-law scaling induced by the stochastic nature of the phenomenon. This apparent power-law scaling does not constitute a proof of self-organized criticality, which should be demonstrated by more stringent statistical tests.

  11. Distinct contributions of attention and working memory to visual statistical learning and ensemble processing.

    PubMed

    Hall, Michelle G; Mattingley, Jason B; Dux, Paul E

    2015-08-01

    The brain exploits redundancies in the environment to efficiently represent the complexity of the visual world. One example of this is ensemble processing, which provides a statistical summary of elements within a set (e.g., mean size). Another is statistical learning, which involves the encoding of stable spatial or temporal relationships between objects. It has been suggested that ensemble processing over arrays of oriented lines disrupts statistical learning of structure within the arrays (Zhao, Ngo, McKendrick, & Turk-Browne, 2011). Here we asked whether ensemble processing and statistical learning are mutually incompatible, or whether this disruption might occur because ensemble processing encourages participants to process the stimulus arrays in a way that impedes statistical learning. In Experiment 1, we replicated Zhao and colleagues' finding that ensemble processing disrupts statistical learning. In Experiments 2 and 3, we found that statistical learning was unimpaired by ensemble processing when task demands necessitated (a) focal attention to individual items within the stimulus arrays and (b) the retention of individual items in working memory. Together, these results are consistent with an account suggesting that ensemble processing and statistical learning can operate over the same stimuli given appropriate stimulus processing demands during exposure to regularities. (c) 2015 APA, all rights reserved).

  12. The Australasian Resuscitation in Sepsis Evaluation (ARISE) trial statistical analysis plan.

    PubMed

    Delaney, Anthony P; Peake, Sandra L; Bellomo, Rinaldo; Cameron, Peter; Holdgate, Anna; Howe, Belinda; Higgins, Alisa; Presneill, Jeffrey; Webb, Steve

    2013-09-01

    The Australasian Resuscitation in Sepsis Evaluation (ARISE) study is an international, multicentre, randomised, controlled trial designed to evaluate the effectiveness of early goal-directed therapy compared with standard care for patients presenting to the emergency department with severe sepsis. In keeping with current practice, and considering aspects of trial design and reporting specific to non-pharmacological interventions, our plan outlines the principles and methods for analysing and reporting the trial results. The document is prepared before completion of recruitment into the ARISE study, without knowledge of the results of the interim analysis conducted by the data safety and monitoring committee and before completion of the two related international studies. Our statistical analysis plan was designed by the ARISE chief investigators, and reviewed and approved by the ARISE steering committee. We reviewed the data collected by the research team as specified in the study protocol and detailed in the study case report form. We describe information related to baseline characteristics, characteristics of delivery of the trial interventions, details of resuscitation, other related therapies and other relevant data with appropriate comparisons between groups. We define the primary, secondary and tertiary outcomes for the study, with description of the planned statistical analyses. We have developed a statistical analysis plan with a trial profile, mock-up tables and figures. We describe a plan for presenting baseline characteristics, microbiological and antibiotic therapy, details of the interventions, processes of care and concomitant therapies and adverse events. We describe the primary, secondary and tertiary outcomes with identification of subgroups to be analysed. We have developed a statistical analysis plan for the ARISE study, available in the public domain, before the completion of recruitment into the study. This will minimise analytical bias and conforms to current best practice in conducting clinical trials.

  13. Acceptance Probability (P a) Analysis for Process Validation Lifecycle Stages.

    PubMed

    Alsmeyer, Daniel; Pazhayattil, Ajay; Chen, Shu; Munaretto, Francesco; Hye, Maksuda; Sanghvi, Pradeep

    2016-04-01

    This paper introduces an innovative statistical approach towards understanding how variation impacts the acceptance criteria of quality attributes. Because of more complex stage-wise acceptance criteria, traditional process capability measures are inadequate for general application in the pharmaceutical industry. The probability of acceptance concept provides a clear measure, derived from specific acceptance criteria for each quality attribute. In line with the 2011 FDA Guidance, this approach systematically evaluates data and scientifically establishes evidence that a process is capable of consistently delivering quality product. The probability of acceptance provides a direct and readily understandable indication of product risk. As with traditional capability indices, the acceptance probability approach assumes that underlying data distributions are normal. The computational solutions for dosage uniformity and dissolution acceptance criteria are readily applicable. For dosage uniformity, the expected AV range may be determined using the s lo and s hi values along with the worst case estimates of the mean. This approach permits a risk-based assessment of future batch performance of the critical quality attributes. The concept is also readily applicable to sterile/non sterile liquid dose products. Quality attributes such as deliverable volume and assay per spray have stage-wise acceptance that can be converted into an acceptance probability. Accepted statistical guidelines indicate processes with C pk > 1.33 as performing well within statistical control and those with C pk < 1.0 as "incapable" (1). A C pk > 1.33 is associated with a centered process that will statistically produce less than 63 defective units per million. This is equivalent to an acceptance probability of >99.99%.

  14. A DMAIC approach for process capability improvement an engine crankshaft manufacturing process

    NASA Astrophysics Data System (ADS)

    Sharma, G. V. S. S.; Rao, P. Srinivasa

    2014-05-01

    The define-measure-analyze-improve-control (DMAIC) approach is a five-strata approach, namely DMAIC. This approach is the scientific approach for reducing the deviations and improving the capability levels of the manufacturing processes. The present work elaborates on DMAIC approach applied in reducing the process variations of the stub-end-hole boring operation of the manufacture of crankshaft. This statistical process control study starts with selection of the critical-to-quality (CTQ) characteristic in the define stratum. The next stratum constitutes the collection of dimensional measurement data of the CTQ characteristic identified. This is followed by the analysis and improvement strata where the various quality control tools like Ishikawa diagram, physical mechanism analysis, failure modes effects analysis and analysis of variance are applied. Finally, the process monitoring charts are deployed at the workplace for regular monitoring and control of the concerned CTQ characteristic. By adopting DMAIC approach, standard deviation is reduced from 0.003 to 0.002. The process potential capability index ( C P) values improved from 1.29 to 2.02 and the process performance capability index ( C PK) values improved from 0.32 to 1.45, respectively.

  15. Endpoint in plasma etch process using new modified w-multivariate charts and windowed regression

    NASA Astrophysics Data System (ADS)

    Zakour, Sihem Ben; Taleb, Hassen

    2017-09-01

    Endpoint detection is very important undertaking on the side of getting a good understanding and figuring out if a plasma etching process is done in the right way, especially if the etched area is very small (0.1%). It truly is a crucial part of supplying repeatable effects in every single wafer. When the film being etched has been completely cleared, the endpoint is reached. To ensure the desired device performance on the produced integrated circuit, the high optical emission spectroscopy (OES) sensor is employed. The huge number of gathered wavelengths (profiles) is then analyzed and pre-processed using a new proposed simple algorithm named Spectra peak selection (SPS) to select the important wavelengths, then we employ wavelet analysis (WA) to enhance the performance of detection by suppressing noise and redundant information. The selected and treated OES wavelengths are then used in modified multivariate control charts (MEWMA and Hotelling) for three statistics (mean, SD and CV) and windowed polynomial regression for mean. The employ of three aforementioned statistics is motivated by controlling mean shift, variance shift and their ratio (CV) if both mean and SD are not stable. The control charts show their performance in detecting endpoint especially W-mean Hotelling chart and the worst result is given by CV statistic. As the best detection of endpoint is given by the W-Hotelling mean statistic, this statistic will be used to construct a windowed wavelet Hotelling polynomial regression. This latter can only identify the window containing endpoint phenomenon.

  16. ADP of multispectral scanner data for land use mapping

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1971-01-01

    The advantages and disadvantages of various remote sensing instrumentation and analysis techniques are reviewed. The use of multispectral scanner data and the automatic data processing techniques are considered. A computer-aided analysis system for remote sensor data is described with emphasis on the image display, statistics processor, wavelength band selection, classification processor, and results display. Advanced techniques in using spectral and temporal data are also considered.

  17. The Role of the Company in Generating Skills. The Learning Effects of Work Organization in the United Kingdom.

    ERIC Educational Resources Information Center

    Walsh, Kenneth; Green, Andy; Steedman, Hilary

    The impact of developments in work organizations on the skilling process in the United Kingdom was studied through a macro analysis of available statistical information about the development of workplace training in the United Kingdom and case studies of three U.K. firms. The macro analysis focused on the following: initial training arrangements;…

  18. A conceptual model for the development process of confirmatory adaptive clinical trials within an emergency research network.

    PubMed

    Mawocha, Samkeliso C; Fetters, Michael D; Legocki, Laurie J; Guetterman, Timothy C; Frederiksen, Shirley; Barsan, William G; Lewis, Roger J; Berry, Donald A; Meurer, William J

    2017-06-01

    Adaptive clinical trials use accumulating data from enrolled subjects to alter trial conduct in pre-specified ways based on quantitative decision rules. In this research, we sought to characterize the perspectives of key stakeholders during the development process of confirmatory-phase adaptive clinical trials within an emergency clinical trials network and to build a model to guide future development of adaptive clinical trials. We used an ethnographic, qualitative approach to evaluate key stakeholders' views about the adaptive clinical trial development process. Stakeholders participated in a series of multidisciplinary meetings during the development of five adaptive clinical trials and completed a Strengths-Weaknesses-Opportunities-Threats questionnaire. In the analysis, we elucidated overarching themes across the stakeholders' responses to develop a conceptual model. Four major overarching themes emerged during the analysis of stakeholders' responses to questioning: the perceived statistical complexity of adaptive clinical trials and the roles of collaboration, communication, and time during the development process. Frequent and open communication and collaboration were viewed by stakeholders as critical during the development process, as were the careful management of time and logistical issues related to the complexity of planning adaptive clinical trials. The Adaptive Design Development Model illustrates how statistical complexity, time, communication, and collaboration are moderating factors in the adaptive design development process. The intensity and iterative nature of this process underscores the need for funding mechanisms for the development of novel trial proposals in academic settings.

  19. Evidence for a Global Sampling Process in Extraction of Summary Statistics of Item Sizes in a Set.

    PubMed

    Tokita, Midori; Ueda, Sachiyo; Ishiguchi, Akira

    2016-01-01

    Several studies have shown that our visual system may construct a "summary statistical representation" over groups of visual objects. Although there is a general understanding that human observers can accurately represent sets of a variety of features, many questions on how summary statistics, such as an average, are computed remain unanswered. This study investigated sampling properties of visual information used by human observers to extract two types of summary statistics of item sets, average and variance. We presented three models of ideal observers to extract the summary statistics: a global sampling model without sampling noise, global sampling model with sampling noise, and limited sampling model. We compared the performance of an ideal observer of each model with that of human observers using statistical efficiency analysis. Results suggest that summary statistics of items in a set may be computed without representing individual items, which makes it possible to discard the limited sampling account. Moreover, the extraction of summary statistics may not necessarily require the representation of individual objects with focused attention when the sets of items are larger than 4.

  20. Statistical Tools And Artificial Intelligence Approaches To Predict Fracture In Bulk Forming Processes

    NASA Astrophysics Data System (ADS)

    Di Lorenzo, R.; Ingarao, G.; Fonti, V.

    2007-05-01

    The crucial task in the prevention of ductile fracture is the availability of a tool for the prediction of such defect occurrence. The technical literature presents a wide investigation on this topic and many contributions have been given by many authors following different approaches. The main class of approaches regards the development of fracture criteria: generally, such criteria are expressed by determining a critical value of a damage function which depends on stress and strain paths: ductile fracture is assumed to occur when such critical value is reached during the analysed process. There is a relevant drawback related to the utilization of ductile fracture criteria; in fact each criterion usually has good performances in the prediction of fracture for particular stress - strain paths, i.e. it works very well for certain processes but may provide no good results for other processes. On the other hand, the approaches based on damage mechanics formulation are very effective from a theoretical point of view but they are very complex and their proper calibration is quite difficult. In this paper, two different approaches are investigated to predict fracture occurrence in cold forming operations. The final aim of the proposed method is the achievement of a tool which has a general reliability i.e. it is able to predict fracture for different forming processes. The proposed approach represents a step forward within a research project focused on the utilization of innovative predictive tools for ductile fracture. The paper presents a comparison between an artificial neural network design procedure and an approach based on statistical tools; both the approaches were aimed to predict fracture occurrence/absence basing on a set of stress and strain paths data. The proposed approach is based on the utilization of experimental data available, for a given material, on fracture occurrence in different processes. More in detail, the approach consists in the analysis of experimental tests in which fracture occurs followed by the numerical simulations of such processes in order to track the stress-strain paths in the workpiece region where fracture is expected. Such data are utilized to build up a proper data set which was utilized both to train an artificial neural network and to perform a statistical analysis aimed to predict fracture occurrence. The developed statistical tool is properly designed and optimized and is able to recognize the fracture occurrence. The reliability and predictive capability of the statistical method were compared with the ones obtained from an artificial neural network developed to predict fracture occurrence. Moreover, the approach is validated also in forming processes characterized by a complex fracture mechanics.

  1. Three Tier Unified Process Model for Requirement Negotiations and Stakeholder Collaborations

    NASA Astrophysics Data System (ADS)

    Niazi, Muhammad Ashraf Khan; Abbas, Muhammad; Shahzad, Muhammad

    2012-11-01

    This research paper is focused towards carrying out a pragmatic qualitative analysis of various models and approaches of requirements negotiations (a sub process of requirements management plan which is an output of scope managementís collect requirements process) and studies stakeholder collaborations methodologies (i.e. from within communication management knowledge area). Experiential analysis encompass two tiers; first tier refers to the weighted scoring model while second tier focuses on development of SWOT matrices on the basis of findings of weighted scoring model for selecting an appropriate requirements negotiation model. Finally the results are simulated with the help of statistical pie charts. On the basis of simulated results of prevalent models and approaches of negotiations, a unified approach for requirements negotiations and stakeholder collaborations is proposed where the collaboration methodologies are embeded into selected requirements negotiation model as internal parameters of the proposed process alongside some external required parameters like MBTI, opportunity analysis etc.

  2. Statistical process control: A feasibility study of the application of time-series measurement in early neurorehabilitation after acquired brain injury.

    PubMed

    Markovic, Gabriela; Schult, Marie-Louise; Bartfai, Aniko; Elg, Mattias

    2017-01-31

    Progress in early cognitive recovery after acquired brain injury is uneven and unpredictable, and thus the evaluation of rehabilitation is complex. The use of time-series measurements is susceptible to statistical change due to process variation. To evaluate the feasibility of using a time-series method, statistical process control, in early cognitive rehabilitation. Participants were 27 patients with acquired brain injury undergoing interdisciplinary rehabilitation of attention within 4 months post-injury. The outcome measure, the Paced Auditory Serial Addition Test, was analysed using statistical process control. Statistical process control identifies if and when change occurs in the process according to 3 patterns: rapid, steady or stationary performers. The statistical process control method was adjusted, in terms of constructing the baseline and the total number of measurement points, in order to measure a process in change. Statistical process control methodology is feasible for use in early cognitive rehabilitation, since it provides information about change in a process, thus enabling adjustment of the individual treatment response. Together with the results indicating discernible subgroups that respond differently to rehabilitation, statistical process control could be a valid tool in clinical decision-making. This study is a starting-point in understanding the rehabilitation process using a real-time-measurements approach.

  3. Design and Analysis of A Multi-Backend Database System for Performance Improvement, Functionality Expansion and Capacity Growth. Part II.

    DTIC Science & Technology

    1981-08-01

    of Transactions ..... . 29 5.5.2 Attached Execution of Transactions ........ ... 29 5.5.3 The Choice of Transaction Execution for Access Control...basic access control mech- anism for statistical security and value-dependent security. In Section 5.5, * we describe the process of execution of ...the process of request execution with access control for in- sert and non-insert requests in MDBS. We recall again (see Chapter 4) that the process

  4. IsoMAP (Isoscape Modeling, Analysis, and Prediction)

    NASA Astrophysics Data System (ADS)

    Miller, C. C.; Bowen, G. J.; Zhang, T.; Zhao, L.; West, J. B.; Liu, Z.; Rapolu, N.

    2009-12-01

    IsoMAP is a TeraGrid-based web portal aimed at building the infrastructure that brings together distributed multi-scale and multi-format geospatial datasets to enable statistical analysis and modeling of environmental isotopes. A typical workflow enabled by the portal includes (1) data source exploration and selection, (2) statistical analysis and model development; (3) predictive simulation of isotope distributions using models developed in (1) and (2); (4) analysis and interpretation of simulated spatial isotope distributions (e.g., comparison with independent observations, pattern analysis). The gridded models and data products created by one user can be shared and reused among users within the portal, enabling collaboration and knowledge transfer. This infrastructure and the research it fosters can lead to fundamental changes in our knowledge of the water cycle and ecological and biogeochemical processes through analysis of network-based isotope data, but it will be important A) that those with whom the data and models are shared can be sure of the origin, quality, inputs, and processing history of these products, and B) the system is agile and intuitive enough to facilitate this sharing (rather than just ‘allow’ it). IsoMAP researchers are therefore building into the portal’s architecture several components meant to increase the amount of metadata about users’ products and to repurpose those metadata to make sharing and discovery more intuitive and robust to both expected, professional users as well as unforeseeable populations from other sectors.

  5. Best practices from WisDOT mega and ARRA projects : statistical analysis and % time vs. % cost metrics.

    DOT National Transportation Integrated Search

    2012-03-01

    This study was undertaken to: 1) apply a benchmarking process to identify best practices within four areas Wisconsin Department of Transportation (WisDOT) construction management and 2) analyze two performance metrics, % Cost vs. % Time, tracked by t...

  6. Development of a Relay Performance Web Tool for the Mars Network

    NASA Technical Reports Server (NTRS)

    Allard, Daniel A.; Edwards, Charles D.

    2009-01-01

    Modern Mars surface missions rely upon orbiting spacecraft to relay communications to and from Earth systems. An important component of this multi-mission relay process is the collection of relay performance statistics supporting strategic trend analysis and tactical anomaly identification and tracking.

  7. Statistical Discourse Analysis: A Method for Modelling Online Discussion Processes

    ERIC Educational Resources Information Center

    Chiu, Ming Ming; Fujita, Nobuko

    2014-01-01

    Online forums (synchronous and asynchronous) offer exciting data opportunities to analyze how people influence one another through their interactions. However, researchers must address several analytic difficulties involving the data (missing values, nested structure [messages within topics], non-sequential messages), outcome variables (discrete…

  8. A statistical shape model of the human second cervical vertebra.

    PubMed

    Clogenson, Marine; Duff, John M; Luethi, Marcel; Levivier, Marc; Meuli, Reto; Baur, Charles; Henein, Simon

    2015-07-01

    Statistical shape and appearance models play an important role in reducing the segmentation processing time of a vertebra and in improving results for 3D model development. Here, we describe the different steps in generating a statistical shape model (SSM) of the second cervical vertebra (C2) and provide the shape model for general use by the scientific community. The main difficulties in its construction are the morphological complexity of the C2 and its variability in the population. The input dataset is composed of manually segmented anonymized patient computerized tomography (CT) scans. The alignment of the different datasets is done with the procrustes alignment on surface models, and then, the registration is cast as a model-fitting problem using a Gaussian process. A principal component analysis (PCA)-based model is generated which includes the variability of the C2. The SSM was generated using 92 CT scans. The resulting SSM was evaluated for specificity, compactness and generalization ability. The SSM of the C2 is freely available to the scientific community in Slicer (an open source software for image analysis and scientific visualization) with a module created to visualize the SSM using Statismo, a framework for statistical shape modeling. The SSM of the vertebra allows the shape variability of the C2 to be represented. Moreover, the SSM will enable semi-automatic segmentation and 3D model generation of the vertebra, which would greatly benefit surgery planning.

  9. Statistical and clustering analysis for disturbances: A case study of voltage dips in wind farms

    DOE PAGES

    Garcia-Sanchez, Tania; Gomez-Lazaro, Emilio; Muljadi, Eduard; ...

    2016-01-28

    This study proposes and evaluates an alternative statistical methodology to analyze a large number of voltage dips. For a given voltage dip, a set of lengths is first identified to characterize the root mean square (rms) voltage evolution along the disturbance, deduced from partial linearized time intervals and trajectories. Principal component analysis and K-means clustering processes are then applied to identify rms-voltage patterns and propose a reduced number of representative rms-voltage profiles from the linearized trajectories. This reduced group of averaged rms-voltage profiles enables the representation of a large amount of disturbances, which offers a visual and graphical representation ofmore » their evolution along the events, aspects that were not previously considered in other contributions. The complete process is evaluated on real voltage dips collected in intense field-measurement campaigns carried out in a wind farm in Spain among different years. The results are included in this paper.« less

  10. Sources of Safety Data and Statistical Strategies for Design and Analysis: Clinical Trials.

    PubMed

    Zink, Richard C; Marchenko, Olga; Sanchez-Kam, Matilde; Ma, Haijun; Jiang, Qi

    2018-03-01

    There has been an increased emphasis on the proactive and comprehensive evaluation of safety endpoints to ensure patient well-being throughout the medical product life cycle. In fact, depending on the severity of the underlying disease, it is important to plan for a comprehensive safety evaluation at the start of any development program. Statisticians should be intimately involved in this process and contribute their expertise to study design, safety data collection, analysis, reporting (including data visualization), and interpretation. In this manuscript, we review the challenges associated with the analysis of safety endpoints and describe the safety data that are available to influence the design and analysis of premarket clinical trials. We share our recommendations for the statistical and graphical methodologies necessary to appropriately analyze, report, and interpret safety outcomes, and we discuss the advantages and disadvantages of safety data obtained from clinical trials compared to other sources. Clinical trials are an important source of safety data that contribute to the totality of safety information available to generate evidence for regulators, sponsors, payers, physicians, and patients. This work is a result of the efforts of the American Statistical Association Biopharmaceutical Section Safety Working Group.

  11. Water quality analysis of the Rapur area, Andhra Pradesh, South India using multivariate techniques

    NASA Astrophysics Data System (ADS)

    Nagaraju, A.; Sreedhar, Y.; Thejaswi, A.; Sayadi, Mohammad Hossein

    2017-10-01

    The groundwater samples from Rapur area were collected from different sites to evaluate the major ion chemistry. The large number of data can lead to difficulties in the integration, interpretation, and representation of the results. Two multivariate statistical methods, hierarchical cluster analysis (HCA) and factor analysis (FA), were applied to evaluate their usefulness to classify and identify geochemical processes controlling groundwater geochemistry. Four statistically significant clusters were obtained from 30 sampling stations. This has resulted two important clusters viz., cluster 1 (pH, Si, CO3, Mg, SO4, Ca, K, HCO3, alkalinity, Na, Na + K, Cl, and hardness) and cluster 2 (EC and TDS) which are released to the study area from different sources. The application of different multivariate statistical techniques, such as principal component analysis (PCA), assists in the interpretation of complex data matrices for a better understanding of water quality of a study area. From PCA, it is clear that the first factor (factor 1), accounted for 36.2% of the total variance, was high positive loading in EC, Mg, Cl, TDS, and hardness. Based on the PCA scores, four significant cluster groups of sampling locations were detected on the basis of similarity of their water quality.

  12. An empirical-statistical model for laser cladding of Ti-6Al-4V powder on Ti-6Al-4V substrate

    NASA Astrophysics Data System (ADS)

    Nabhani, Mohammad; Razavi, Reza Shoja; Barekat, Masoud

    2018-03-01

    In this article, Ti-6Al-4V powder alloy was directly deposited on Ti-6Al-4V substrate using laser cladding process. In this process, some key parameters such as laser power (P), laser scanning rate (V) and powder feeding rate (F) play important roles. Using linear regression analysis, this paper develops the empirical-statistical relation between these key parameters and geometrical characteristics of single clad tracks (i.e. clad height, clad width, penetration depth, wetting angle, and dilution) as a combined parameter (PαVβFγ). The results indicated that the clad width linearly depended on PV-1/3 and powder feeding rate had no effect on it. The dilution controlled by a combined parameter as VF-1/2 and laser power was a dispensable factor. However, laser power was the dominant factor for the clad height, penetration depth, and wetting angle so that they were proportional to PV-1F1/4, PVF-1/8, and P3/4V-1F-1/4, respectively. Based on the results of correlation coefficient (R > 0.9) and analysis of residuals, it was confirmed that these empirical-statistical relations were in good agreement with the measured values of single clad tracks. Finally, these relations led to the design of a processing map that can predict the geometrical characteristics of the single clad tracks based on the key parameters.

  13. A simple method for processing data with least square method

    NASA Astrophysics Data System (ADS)

    Wang, Chunyan; Qi, Liqun; Chen, Yongxiang; Pang, Guangning

    2017-08-01

    The least square method is widely used in data processing and error estimation. The mathematical method has become an essential technique for parameter estimation, data processing, regression analysis and experimental data fitting, and has become a criterion tool for statistical inference. In measurement data analysis, the distribution of complex rules is usually based on the least square principle, i.e., the use of matrix to solve the final estimate and to improve its accuracy. In this paper, a new method is presented for the solution of the method which is based on algebraic computation and is relatively straightforward and easy to understand. The practicability of this method is described by a concrete example.

  14. fMRI paradigm designing and post-processing tools

    PubMed Central

    James, Jija S; Rajesh, PG; Chandran, Anuvitha VS; Kesavadas, Chandrasekharan

    2014-01-01

    In this article, we first review some aspects of functional magnetic resonance imaging (fMRI) paradigm designing for major cognitive functions by using stimulus delivery systems like Cogent, E-Prime, Presentation, etc., along with their technical aspects. We also review the stimulus presentation possibilities (block, event-related) for visual or auditory paradigms and their advantage in both clinical and research setting. The second part mainly focus on various fMRI data post-processing tools such as Statistical Parametric Mapping (SPM) and Brain Voyager, and discuss the particulars of various preprocessing steps involved (realignment, co-registration, normalization, smoothing) in these software and also the statistical analysis principles of General Linear Modeling for final interpretation of a functional activation result. PMID:24851001

  15. BCM: toolkit for Bayesian analysis of Computational Models using samplers.

    PubMed

    Thijssen, Bram; Dijkstra, Tjeerd M H; Heskes, Tom; Wessels, Lodewyk F A

    2016-10-21

    Computational models in biology are characterized by a large degree of uncertainty. This uncertainty can be analyzed with Bayesian statistics, however, the sampling algorithms that are frequently used for calculating Bayesian statistical estimates are computationally demanding, and each algorithm has unique advantages and disadvantages. It is typically unclear, before starting an analysis, which algorithm will perform well on a given computational model. We present BCM, a toolkit for the Bayesian analysis of Computational Models using samplers. It provides efficient, multithreaded implementations of eleven algorithms for sampling from posterior probability distributions and for calculating marginal likelihoods. BCM includes tools to simplify the process of model specification and scripts for visualizing the results. The flexible architecture allows it to be used on diverse types of biological computational models. In an example inference task using a model of the cell cycle based on ordinary differential equations, BCM is significantly more efficient than existing software packages, allowing more challenging inference problems to be solved. BCM represents an efficient one-stop-shop for computational modelers wishing to use sampler-based Bayesian statistics.

  16. Statistical analysis plan for evaluating low- vs. standard-dose alteplase in the ENhanced Control of Hypertension and Thrombolysis strokE stuDy (ENCHANTED).

    PubMed

    Anderson, Craig S; Woodward, Mark; Arima, Hisatomi; Chen, Xiaoying; Lindley, Richard I; Wang, Xia; Chalmers, John

    2015-12-01

    The ENhanced Control of Hypertension And Thrombolysis strokE stuDy trial is a 2 × 2 quasi-factorial active-comparison, prospective, randomized, open, blinded endpoint clinical trial that is evaluating in thrombolysis-eligible acute ischemic stroke patients whether: (1) low-dose (0·6 mg/kg body weight) intravenous alteplase has noninferior efficacy and lower risk of symptomatic intracerebral hemorrhage compared with standard-dose (0·9 mg/kg body weight) intravenous alteplase; and (2) early intensive blood pressure lowering (systolic target 130-140 mmHg) has superior efficacy and lower risk of any intracerebral hemorrhage compared with guideline-recommended blood pressure control (systolic target <180 mmHg). To outline in detail the predetermined statistical analysis plan for the 'alteplase dose arm' of the study. All data collected by participating researchers will be reviewed and formally assessed. Information pertaining to the baseline characteristics of patients, their process of care, and the delivery of treatments will be classified, and for each item, appropriate descriptive statistical analyses are planned with appropriate comparisons made between randomized groups. For the trial outcomes, the most appropriate statistical comparisons to be made between groups are planned and described. A statistical analysis plan was developed for the results of the alteplase dose arm of the study that is transparent, available to the public, verifiable, and predetermined before completion of data collection. We have developed a predetermined statistical analysis plan for the ENhanced Control of Hypertension And Thrombolysis strokE stuDy alteplase dose arm which is to be followed to avoid analysis bias arising from prior knowledge of the study findings. © 2015 The Authors. International Journal of Stroke published by John Wiley & Sons Ltd on behalf of World Stroke Organization.

  17. Preliminary Evaluation of an Aviation Safety Thesaurus' Utility for Enhancing Automated Processing of Incident Reports

    NASA Technical Reports Server (NTRS)

    Barrientos, Francesca; Castle, Joseph; McIntosh, Dawn; Srivastava, Ashok

    2007-01-01

    This document presents a preliminary evaluation the utility of the FAA Safety Analytics Thesaurus (SAT) utility in enhancing automated document processing applications under development at NASA Ames Research Center (ARC). Current development efforts at ARC are described, including overviews of the statistical machine learning techniques that have been investigated. An analysis of opportunities for applying thesaurus knowledge to improving algorithm performance is then presented.

  18. A pedagogical derivation of the matrix element method in particle physics data analysis

    NASA Astrophysics Data System (ADS)

    Sumowidagdo, Suharyo

    2018-03-01

    The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.

  19. Unified risk analysis of fatigue failure in ductile alloy components during all three stages of fatigue crack evolution process.

    PubMed

    Patankar, Ravindra

    2003-10-01

    Statistical fatigue life of a ductile alloy specimen is traditionally divided into three stages, namely, crack nucleation, small crack growth, and large crack growth. Crack nucleation and small crack growth show a wide variation and hence a big spread on cycles versus crack length graph. Relatively, large crack growth shows a lesser variation. Therefore, different models are fitted to the different stages of the fatigue evolution process, thus treating different stages as different phenomena. With these independent models, it is impossible to predict one phenomenon based on the information available about the other phenomenon. Experimentally, it is easier to carry out crack length measurements of large cracks compared to nucleating cracks and small cracks. Thus, it is easier to collect statistical data for large crack growth compared to the painstaking effort it would take to collect statistical data for crack nucleation and small crack growth. This article presents a fracture mechanics-based stochastic model of fatigue crack growth in ductile alloys that are commonly encountered in mechanical structures and machine components. The model has been validated by Ray (1998) for crack propagation by various statistical fatigue data. Based on the model, this article proposes a technique to predict statistical information of fatigue crack nucleation and small crack growth properties that uses the statistical properties of large crack growth under constant amplitude stress excitation. The statistical properties of large crack growth under constant amplitude stress excitation can be obtained via experiments.

  20. Design and analysis of multiple diseases genome-wide association studies without controls.

    PubMed

    Chen, Zhongxue; Huang, Hanwen; Ng, Hon Keung Tony

    2012-11-15

    In genome-wide association studies (GWAS), multiple diseases with shared controls is one of the case-control study designs. If data obtained from these studies are appropriately analyzed, this design can have several advantages such as improving statistical power in detecting associations and reducing the time and cost in the data collection process. In this paper, we propose a study design for GWAS which involves multiple diseases but without controls. We also propose corresponding statistical data analysis strategy for GWAS with multiple diseases but no controls. Through a simulation study, we show that the statistical association test with the proposed study design is more powerful than the test with single disease sharing common controls, and it has comparable power to the overall test based on the whole dataset including the controls. We also apply the proposed method to a real GWAS dataset to illustrate the methodologies and the advantages of the proposed design. Some possible limitations of this study design and testing method and their solutions are also discussed. Our findings indicate that the proposed study design and statistical analysis strategy could be more efficient than the usual case-control GWAS as well as those with shared controls. Copyright © 2012 Elsevier B.V. All rights reserved.

Top