Science.gov

Sample records for processing system development

  1. The message processing and distribution system development

    NASA Astrophysics Data System (ADS)

    Whitten, K. L.

    1981-06-01

    A historical approach is used in presenting the life cycle development of the Navy's message processing and distribution system beginning with the planning phase and ending with the integrated logistic support phase. Several maintenance problems which occurred after the system was accepted for fleet use were examined to determine if they resulted from errors in the acquisition process. The critical decision points of the acquisition process are examined and constructive recommendations are made for avoiding the problems which hindered the successful development of this system.

  2. Teaching Information Systems Development via Process Variants

    ERIC Educational Resources Information Center

    Tan, Wee-Kek; Tan, Chuan-Hoo

    2010-01-01

    Acquiring the knowledge to assemble an integrated Information System (IS) development process that is tailored to the specific needs of a project has become increasingly important. It is therefore necessary for educators to impart to students this crucial skill. However, Situational Method Engineering (SME) is an inherently complex process that…

  3. Digital processing system for developing countries

    NASA Technical Reports Server (NTRS)

    Nanayakkara, C.; Wagner, H.

    1977-01-01

    An effort was undertaken to perform simple digital processing tasks using pre-existing general purpose digital computers. An experimental software package, LIGMALS, was obtained and modified for this purpose. The resulting software permits basic processing tasks to be performed including level slicing, gray mapping and ratio processing. The experience gained in this project indicates a possible direction which may be used by other developing countries to obtain digital processing capabilities.

  4. A Comprehensive Process for Display Systems Development.

    ERIC Educational Resources Information Center

    Simcox, William A.

    A comprehensive development process for display design, focusing on computer-generated cathode ray tube (CRT) displays is presented. A framework is created for breaking the display into its component parts, used to guide the design process. The objective is to design or select the most cost effective graphics solution (hardware and software) to…

  5. System Development by Process Integrated Knowledge Management

    NASA Astrophysics Data System (ADS)

    Stoll, Margareth; Laner, Dietmar

    Due to globalization and ever shorter change cycle's organizations improve increasingly faster their products, services, technologies, IT and organization according to customer requirements, optimize their efficiency, effectiveness and reduce costs. Thus the largest potential is the continually improvement and the management of information, data and knowledge. Long time organizations had developed lot separate and frequently independent IT applications. In the last years they were integrated by interfaces and always more by common databases. In large sized enterprises or in the public administration IT must operate various different applications, which requires a lot of personal and cost. Many organizations improve their IT starting from the lived processes using new technologies, but ask not, how they can use technology to support new processes.

  6. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Basile, Lisa R.; Kelly, Angelita C.

    1987-01-01

    The Spacelab Data Processing Facility (SLDPF) is an integral part of the Space Shuttle data network for missions that involve attached scientific payloads. Expert system prototypes were developed to aid in the performance of the quality assurance function of the Spacelab and/or Attached Shuttle Payloads processed telemetry data. The Spacelab Input Processing System (SIPS) and the Spacelab Output Processing System (SOPS), two expert systems, were developed to determine their feasibility and potential in the quality assurance of processed telemetry data. The capabilities and performance of these systems are discussed.

  7. The Systems Engineering Process for Human Support Technology Development

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is designing and optimizing systems. This paper reviews the systems engineering process and indicates how it can be applied in the development of advanced human support systems. Systems engineering develops the performance requirements, subsystem specifications, and detailed designs needed to construct a desired system. Systems design is difficult, requiring both art and science and balancing human and technical considerations. The essential systems engineering activity is trading off and compromising between competing objectives such as performance and cost, schedule and risk. Systems engineering is not a complete independent process. It usually supports a system development project. This review emphasizes the NASA project management process as described in NASA Procedural Requirement (NPR) 7120.5B. The process is a top down phased approach that includes the most fundamental activities of systems engineering - requirements definition, systems analysis, and design. NPR 7120.5B also requires projects to perform the engineering analyses needed to ensure that the system will operate correctly with regard to reliability, safety, risk, cost, and human factors. We review the system development project process, the standard systems engineering design methodology, and some of the specialized systems analysis techniques. We will discuss how they could apply to advanced human support systems development. The purpose of advanced systems development is not directly to supply human space flight hardware, but rather to provide superior candidate systems that will be selected for implementation by future missions. The most direct application of systems engineering is in guiding the development of prototype and flight experiment hardware. However, anticipatory systems engineering of possible future flight systems would be useful in identifying the most promising development projects.

  8. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes have been developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  9. Spacelab Data Processing Facility (SLDPF) quality assurance expert systems development

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Basile, Lisa; Ames, Troy; Watson, Janice; Dallam, William

    1987-01-01

    Spacelab Data Processing Facility (SLDPF) expert system prototypes were developed to assist in the quality assurance of Spacelab and/or Attached Shuttle Payload (ASP) processed telemetry data. The SLDPF functions include the capturing, quality monitoring, processing, accounting, and forwarding of mission data to various user facilities. Prototypes for the two SLDPF functional elements, the Spacelab Output Processing System and the Spacelab Input Processing Element, are described. The prototypes have produced beneficial results including an increase in analyst productivity, a decrease in the burden of tedious analyses, the consistent evaluation of data, and the providing of concise historical records.

  10. Metal containing material processing on coater/developer system

    NASA Astrophysics Data System (ADS)

    Kawakami, Shinichiro; Mizunoura, Hiroshi; Matsunaga, Koichi; Hontake, Koichi; Nakamura, Hiroshi; Shimura, Satoru; Enomoto, Masashi

    2016-03-01

    Challenges of processing metal containing materials need to be addressed in order apply this technology to Behavior of metal containing materials on coater/developer processing including coating process, developer process and tool metal contamination is studied using CLEAN TRACKTM LITHIUS ProTM Z (Tokyo Electron Limited). Through this work, coating uniformity and coating film defectivity were studied. Metal containing material performance was comparable to conventional materials. Especially, new dispense system (NDS) demonstrated up to 80% reduction in coating defect for metal containing materials. As for processed wafer metal contamination, coated wafer metal contamination achieved less than 1.0E10 atoms/cm2 with 3 materials. After develop metal contamination also achieved less than 1.0E10 atoms/cm2 with 2 materials. Furthermore, through the metal defect study, metal residues and metal contamination were reduced by developer rinse optimization.

  11. Improving process and system for EUV coat-develop track

    NASA Astrophysics Data System (ADS)

    Harumoto, Masahiko; Stokes, Harold; Thouroude, Yan; Miyagi, Tadashi; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya

    2015-03-01

    EUV lithography (EUVL) is well known to be a strong candidate for next generation, single exposure sub-30nm half-pitch lithography.[1] Furthermore, a high-NA EUV exposure tool released two years ago gave a strong impression for finer pattern results. On one hand, it seems that the coat develop track process remains very similar and in many aspects returns to KrF or ArF dry process fundamentals, but in practice the 26-32nm pitch patterning coat-develop track process also has challenges with EUV resist. As access to EUV lithography exposures has become more readily available over the last five (5) years, several challenges and accomplishments in the track process have been reported, such as the improvement of ultra-thin film coating, CD uniformity, defectivity, line width roughness (LWR) and so on.[2-6] The coat-develop track process has evolved along with novel materials and metrology capability improvements. Line width roughness (LWR) and defect control are demonstrated utilizing the SOKUDO DUO coat-develop track system with an ASML NXE:3100 in the IMEC (Leuven, Belgium) clean room environment. Additionally, we will show the latest lithographic results obtained by novel processing approaches in an EUV coat-develop track system.

  12. Supervisory control system development for an indirect liquefaction process

    SciTech Connect

    Prasad, B.V.R.K.

    1986-01-01

    A supervisory process control system for the Biomass Indirect Liquefaction Pilot Plant has been developed. A microcomputer, the IBM 9000 system, was utilized for data acquisition, reduction, and adjustment, process modeling, simulation, and off/on-line optimization. The IBM 9000 is interfaced with the process through a front end data acquisition system. Several supervisory control programs were set up to run concurrently on the IBM 9000. A user interface task controls the execution and resource sharing activities of the multitasking system. A data fitting package was programmed to handle instrument calibration and/or model development. Process flow and composition data are reduced and tabulated by the mass balance program. Mass balance closures are calculated for different loops. Two process coaptation approaches, sequential and non-sequential, for data adjustment, and estimation were investigated. Mathematical models of the pyrolysis and Fischer-Tropsch reactors were developed using linear regression. Theoretical equilibrium studies support the experimental evidence of the dependence of the pyrolysis product gas composition on the feedstock composition, and especially on the hydrogen/oxygen ratio.

  13. Development of video processing based on coal flame detector system

    SciTech Connect

    He Wanqing; Yu Yuefeng; Xu Weiyong; Ma Liqun

    1999-07-01

    The principle and development of a set of pulverized coal combustion flame detection system, which is called intelligent image flame detector device based on digital video processing, is addressed in this paper. The system realizes multi-burner flame detection and processing using a distributive structure of engineering workstation and flame detectors via multi-serial-port communication. The software can deal with multi-tasks in a parallel way based on multi-thread mechanism. Streaming video capture and storage is provided to safe and playback the accidental Audio and Visual Interfaces (AVI) clips. The layer flame detectors can give the flame on/off signal through image processing. Pseudo-color visualization of flame temperature calculated from chromatic CCD signal is integrated into the system. The image flame detector system has been successfully used in thermal power generation units in China.

  14. The Development of Sun-Tracking System Using Image Processing

    PubMed Central

    Lee, Cheng-Dar; Huang, Hong-Cheng; Yeh, Hong-Yih

    2013-01-01

    This article presents the development of an image-based sun position sensor and the algorithm for how to aim at the Sun precisely by using image processing. Four-quadrant light sensors and bar-shadow photo sensors were used to detect the Sun's position in the past years. Nevertheless, neither of them can maintain high accuracy under low irradiation conditions. Using the image-based Sun position sensor with image processing can address this drawback. To verify the performance of the Sun-tracking system including an image-based Sun position sensor and a tracking controller with embedded image processing algorithm, we established a Sun image tracking platform and did the performance testing in the laboratory; the results show that the proposed Sun tracking system had the capability to overcome the problem of unstable tracking in cloudy weather and achieve a tracking accuracy of 0.04°. PMID:23615582

  15. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A processing system capable of producing solar cell junctions by ion implantation followed by pulsed electron beam annealing was developed and constructed. The machine was to be capable of processing 4-inch diameter single-crystal wafers at a rate of 10(7) wafers per year. A microcomputer-controlled pulsed electron beam annealer with a vacuum interlocked wafer transport system was designed, built and demonstrated to produce solar cell junctions on 4-inch wafers with an AMI efficiency of 12%. Experiments showed that a non-mass-analyzed (NMA) ion beam could implant 10 keV phosphorous dopant to form solar cell junctions which were equivalent to mass-analyzed implants. A NMA ion implanter, compatible with the pulsed electron beam annealer and wafer transport system was designed in detail but was not built because of program termination.

  16. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    Bunker, S.

    1981-01-01

    A solar cell junction processing system was developed and fabricated. A pulsed electron beam for the four inch wafers is being assembled and tested, wafers were successfully pulsed, and solar cells fabricated. Assembly of the transport locks is completed. The transport was operated successfully but not with sufficient reproducibility. An experiment test facility to examine potential scaleup problems associated with the proposed ion implanter design was constructed and operated. Cells were implanted and found to have efficiency identical to the normal Spire implant process.

  17. Rapid prototyping in the development of image processing systems

    NASA Astrophysics Data System (ADS)

    von der Fecht, Arno; Kelm, Claus Thomas

    2004-08-01

    This contribution presents a rapid prototyping approach for the real-time demonstration of image processing algorithms. As an example EADS/LFK has developed a basic IR target tracking system implementing this approach. Traditionally in research and industry time-independent simulation of image processing algorithms on a host computer is processed. This method is good for demonstrating the algorithms' capabilities. Rarely done is a time-dependent simulation or even a real-time demonstration on a target platform to prove the real-time capabilities. In 1D signal processing applications time-dependent simulation and real-time demonstration has already been used for quite a while. For time-dependent simulation Simulink from The MathWorks has established as an industry standard. Combined with The MathWorks' Real-Time Workshop the simulation model can be transferred to a real-time target processor. The executable is generated automatically by the Real-Time Workshop directly out of the simulation model. In 2D signal processing applications like image processing The Mathworks' Matlab is commonly used for time-independent simulation. To achieve time-dependent simulation and real-time demonstration capabilities the algorithms can be transferred to Simulink, which in fact runs on top of Matlab. Additionally to increase the performance Simulink models or parts of them can be transferred to Xilinx FPGAs using Xilinx' System Generator. With a single model and the automatic workflow both, a time-dependant simulation and the real-time demonstration, are covered leading to an easy and flexible rapid prototyping approach. EADS/LFK is going to use this approach for a wider spectrum of IR image processing applications like automatic target recognition or image based navigation or imaging laser radar target recognition.

  18. Market development directory for solar industrial process heat systems

    SciTech Connect

    1980-02-01

    The purpose of this directory is to provide a basis for market development activities through a location listing of key trade associations, trade periodicals, and key firms for three target groups. Potential industrial users and potential IPH system designers were identified as the prime targets for market development activities. The bulk of the directory is a listing of these two groups. The third group, solar IPH equipment manufacturers, was included to provide an information source for potential industrial users and potential IPH system designers. Trade associates and their publications are listed for selected four-digit Standard Industrial Code (SIC) industries. Since industries requiring relatively lower temperature process heat probably will comprise most of the near-term market for solar IPH systems, the 80 SIC's included in this chapter have process temperature requirements less than 350/sup 0/F. Some key statistics and a location list of the largest plants (according to number of employees) in each state are included for 15 of the 80 SIC's. Architectural/engineering and consulting firms are listed which are known to have solar experience. Professional associated and periodicals to which information on solar IPH sytstems may be directed also are included. Solar equipment manufacturers and their associations are listed. The listing is based on the SERI Solar Energy Information Data Base (SEIDB).

  19. A Petri Net-Based Software Process Model for Developing Process-Oriented Information Systems

    NASA Astrophysics Data System (ADS)

    Li, Yu; Oberweis, Andreas

    Aiming at increasing flexibility, efficiency, effectiveness, and transparency of information processing and resource deployment in organizations to ensure customer satisfaction and high quality of products and services, process-oriented information systems (POIS) represent a promising realization form of computerized business information systems. Due to the complexity of POIS, explicit and specialized software process models are required to guide POIS development. In this chapter we characterize POIS with an architecture framework and present a Petri net-based software process model tailored for POIS development with consideration of organizational roles. As integrated parts of the software process model, we also introduce XML nets, a variant of high-level Petri nets as basic methodology for business processes modeling, and an XML net-based software toolset providing comprehensive functionalities for POIS development.

  20. Development of Data Processing Software for NBI Spectroscopic Analysis System

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodan; Hu, Chundong; Sheng, Peng; Zhao, Yuanzhe; Wu, Deyun; Cui, Qinglong

    2015-04-01

    A set of data processing software is presented in this paper for processing NBI spectroscopic data. For better and more scientific managment and querying these data, they are managed uniformly by the NBI data server. The data processing software offers the functions of uploading beam spectral original and analytic data to the data server manually and automatically, querying and downloading all the NBI data, as well as dealing with local LZO data. The set software is composed of a server program and a client program. The server software is programmed in C/C++ under a CentOS development environment. The client software is developed under a VC 6.0 platform, which offers convenient operational human interfaces. The network communications between the server and the client are based on TCP. With the help of this set software, the NBI spectroscopic analysis system realizes the unattended automatic operation, and the clear interface also makes it much more convenient to offer beam intensity distribution data and beam power data to operators for operation decision-making. supported by National Natural Science Foundation of China (No. 11075183), the Chinese Academy of Sciences Knowledge Innovation

  1. On the Hilbert-Huang Transform Data Processing System Development

    NASA Technical Reports Server (NTRS)

    Kizhner, Semion; Flatley, Thomas P.; Huang, Norden E.; Cornwell, Evette; Smith, Darell

    2003-01-01

    One of the main heritage tools used in scientific and engineering data spectrum analysis is the Fourier Integral Transform and its high performance digital equivalent - the Fast Fourier Transform (FFT). The Fourier view of nonlinear mechanics that had existed for a long time, and the associated FFT (fairly recent development), carry strong a-priori assumptions about the source data, such as linearity and of being stationary. Natural phenomena measurements are essentially nonlinear and nonstationary. A very recent development at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), known as the Hilbert-Huang Transform (HHT) proposes a novel approach to the solution for the nonlinear class of spectrum analysis problems. Using the Empirical Mode Decomposition (EMD) followed by the Hilbert Transform of the empirical decomposition data (HT), the HHT allows spectrum analysis of nonlinear and nonstationary data by using an engineering a-posteriori data processing, based on the EMD algorithm. This results in a non-constrained decomposition of a source real value data vector into a finite set of Intrinsic Mode Functions (IMF) that can be further analyzed for spectrum interpretation by the classical Hilbert Transform. This paper describes phase one of the development of a new engineering tool, the HHT Data Processing System (HHTDPS). The HHTDPS allows applying the "T to a data vector in a fashion similar to the heritage FFT. It is a generic, low cost, high performance personal computer (PC) based system that implements the HHT computational algorithms in a user friendly, file driven environment. This paper also presents a quantitative analysis for a complex waveform data sample, a summary of technology commercialization efforts and the lessons learned from this new technology development.

  2. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  3. System Engineering Processes at Kennedy Space Center for Development of the SLS and Orion Launch Systems

    NASA Technical Reports Server (NTRS)

    Schafer, Eric J.

    2012-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems developed at the Kennedy Space Center Engineering Directorate follow a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Paper describes this process and gives an example of where the process has been applied.

  4. Development of an instructional expert system for hole drilling processes

    NASA Technical Reports Server (NTRS)

    Al-Mutawa, Souhaila; Srinivas, Vijay; Moon, Young Bai

    1990-01-01

    An expert system which captures the expertise of workshop technicians in the drilling domain was developed. The expert system is aimed at novice technicians who know how to operate the machines but have not acquired the decision making skills that are gained with experience. This paper describes the domain background and the stages of development of the expert system.

  5. Development of an automated ammunition processing system for battlefield use

    SciTech Connect

    Speaks, D.M.; Chesser, J.B.; Lloyd, P.D.; Miller, E.D.; Ray, T.L.; Weil, B.S.

    1995-03-01

    The Future Armored Resupply Vehicle (FARV) will be the companion ammunition resupply vehicle to the Advanced Field Artillery System (AFAS). These systems are currently being investigated by the US Army for future acquisition. The FARV will sustain the AFAS with ammunition and fuel and will significantly increase capabilities over current resupply vehicles. Currently ammunition is transferred to field artillery almost entirely by hand. The level of automation to be included into the FARV is still under consideration. At the request of the US Army`s Project Manager, AFAS/FARV, Oak Ridge National Laboratory (ORNL) identified and evaluated various concepts for the automated upload, processing, storage, and delivery equipment for the FARV. ORNL, working with the sponsor, established basic requirements and assumptions for concept development and the methodology for concept selection. A preliminary concept has been selected, and the associated critical technologies have been identified. ORNL has provided technology demonstrations of many of these critical technologies. A technology demonstrator which incorporates all individual components into a total process demonstration is planned for late FY 1995.

  6. Multi-kilowatt modularized spacecraft power processing system development

    NASA Technical Reports Server (NTRS)

    Andrews, R. E.; Hayden, J. H.; Hedges, R. T.; Rehmann, D. W.

    1975-01-01

    A review of existing information pertaining to spacecraft power processing systems and equipment was accomplished with a view towards applicability to the modularization of multi-kilowatt power processors. Power requirements for future spacecraft were determined from the NASA mission model-shuttle systems payload data study which provided the limits for modular power equipment capabilities. Three power processing systems were compared to evaluation criteria to select the system best suited for modularity. The shunt regulated direct energy transfer system was selected by this analysis for a conceptual design effort which produced equipment specifications, schematics, envelope drawings, and power module configurations.

  7. Review of Exploration Systems Development (ESD) Integrated Hazard Development Process. Appendices; Volume 2

    NASA Technical Reports Server (NTRS)

    Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.

    2015-01-01

    The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g. missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.

  8. Review of Exploration Systems Development (ESD) Integrated Hazard Development Process. Volume 1; Appendices

    NASA Technical Reports Server (NTRS)

    Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.

    2015-01-01

    The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g., missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.

  9. System engineering processes at Kennedy Space Center for development of SLS and Orion Launch Systems

    NASA Astrophysics Data System (ADS)

    Schafer, Eric J.; Henderson, Gena; Stambolian, Damon

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems developed at the Kennedy Space Center Engineering Directorate follow a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Paper describes this process and gives an example of a subsystem where this systems engineering process has been applied.

  10. Tracker: Image-Processing and Object-Tracking System Developed

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Theodore W.

    1999-01-01

    Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in

  11. Process development

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.

    1985-01-01

    An overview is given of seven process development activities which were presented at this session. Pulsed excimer laser processing of photovoltaic cells was presented. A different pulsed excimer laser annealing was described using a 50 w laser. Diffusion barrier research focused on lowering the chemical reactivity of amorphous thin film on silicon. In another effort adherent and conductive films were successfully achieved. Other efforts were aimed at achieving a simultaneous front and back junction. Microwave enhanced plasma deposition experiments were performed. An updated version of the Solar Array Manufacturing Industry Costing Standards (SAMICS) was presented, along with a life cycle cost analysis of high efficiency cells. The last presentation was on the evaluation of the ethyl vinyl acetate encapsulating system.

  12. System Engineering Processes at Kennedy Space Center for Development of SLS and Orion Launch Systems

    NASA Technical Reports Server (NTRS)

    Schafer, Eric; Stambolian, Damon; Henderson, Gena

    2013-01-01

    There are over 40 subsystems being developed for the future SLS and Orion Launch Systems at Kennedy Space Center. These subsystems are developed at the Kennedy Space Center Engineering Directorate. The Engineering Directorate at Kennedy Space Center follows a comprehensive design process which requires several different product deliverables during each phase of each of the subsystems. This Presentation describes this process with examples of where the process has been applied.

  13. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The purpose of this program is to demonstrate the technical readiness of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which met the price goal in 1986 of $.70 or less per watt peak. Program efforts included: preliminary design review, preliminary cell fabrication using the proposed process sequence, verification of sandblasting back cleanup, study of resist parameters, evaluation of pull strength of the proposed metallization, measurement of contact resistance of Electroless Ni contacts, optimization of process parameter, design of the MEPSDU module, identification and testing of insulator tapes, development of a lamination process sequence, identification, discussions, demonstrations and visits with candidate equipment vendors, evaluation of proposals for tabbing and stringing machine.

  14. Developing a Mobile Application "Educational Process Remote Management System" on the Android Operating System

    ERIC Educational Resources Information Center

    Abildinova, Gulmira M.; Alzhanov, Aitugan K.; Ospanova, Nazira N.; Taybaldieva, Zhymatay; Baigojanova, Dametken S.; Pashovkin, Nikita O.

    2016-01-01

    Nowadays, when there is a need to introduce various innovations into the educational process, most efforts are aimed at simplifying the learning process. To that end, electronic textbooks, testing systems and other software is being developed. Most of them are intended to run on personal computers with limited mobility. Smart education is…

  15. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Design work for a photovoltaic module, fabricated using single crystal silicon dendritic web sheet material, resulted in the identification of surface treatment to the module glass superstrate which improved module efficiencies. A final solar module environmental test, a simulated hailstone impact test, was conducted on full size module superstrates to verify that the module's tempered glass superstrate can withstand specified hailstone impacts near the corners and edges of the module. Process sequence design work on the metallization process selective, liquid dopant investigation, dry processing, and antireflective/photoresist application technique tasks, and optimum thickness for Ti/Pd are discussed. A noncontact cleaning method for raw web cleaning was identified and antireflective and photoresist coatings for the dendritic webs were selected. The design of a cell string conveyor, an interconnect feed system, rolling ultrasonic spot bonding heat, and the identification of the optimal commercially available programmable control system are also discussed. An economic analysis to assess cost goals of the process sequence is also given.

  16. Carbon Dioxide Reduction Post-Processing Sub-System Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary; Barton, Katherine

    2012-01-01

    The state-of-the-art Carbon Dioxide (CO2) Reduction Assembly (CRA) on the International Space Station (ISS) facilitates the recovery of oxygen from metabolic CO2. The CRA utilizes the Sabatier process to produce water with methane as a byproduct. The methane is currently vented overboard as a waste product. Because the CRA relies on hydrogen for oxygen recovery, the loss of methane ultimately results in a loss of oxygen. For missions beyond low earth orbit, it will prove essential to maximize oxygen recovery. For this purpose, NASA is exploring an integrated post-processor system to recover hydrogen from CRA methane. The post-processor, called a Plasma Pyrolysis Assembly (PPA) partially pyrolyzes methane to recover hydrogen with acetylene as a byproduct. In-flight operation of post-processor will require a Methane Purification Assembly (MePA) and an Acetylene Separation Assembly (ASepA). Recent efforts have focused on the design, fabrication, and testing of these components. The results and conclusions of these efforts will be discussed as well as future plans.

  17. 78 FR 47012 - Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-02

    ... COMMISSION Developing Software Life Cycle Processes Used in Safety Systems of Nuclear Power Plants AGENCY... Software Life Cycle Processes for Digital Computer Software used in Safety Systems of Nuclear Power Plants..., ``IEEE Standard for Developing a Software Project Life Cycle Process,'' issued 2006, with...

  18. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Restructuring research objectives from a technical readiness demonstration program to an investigation of high risk, high payoff activities associated with producing photovoltaic modules using non-CZ sheet material is reported. Deletion of the module frame in favor of a frameless design, and modification in cell series parallel electrical interconnect configuration are reviewed. A baseline process sequence was identified for the fabrication of modules using the selected dendritic web sheet material, and economic evaluations of the sequence were completed.

  19. Development of GENOA Progressive Failure Parallel Processing Software Systems

    NASA Technical Reports Server (NTRS)

    Abdi, Frank; Minnetyan, Levon

    1999-01-01

    A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.

  20. The development process for the space shuttle primary avionics software system

    NASA Technical Reports Server (NTRS)

    Keller, T. W.

    1987-01-01

    Primary avionics software system; software development approach; user support and problem diagnosis; software releases and configuration; quality/productivity programs; and software development/production facilities are addressed. Also examined are the external evaluations of the IBM process.

  1. The Development of a Digital Processing System for Accurate Range Determinations. [for Teleoperator Maneuvering Systems

    NASA Technical Reports Server (NTRS)

    Pujol, A., Jr.

    1983-01-01

    The development of an accurate close range (from 0.0 meters to 30.0 meters) radar system for Teleoperator Maneuvering Systems (TMS) is discussed. The system under investigation is a digital processor that converts incoming signals from the radar system into their related frequency spectra. Identification will be attempted by correlating spectral characteristics with accurate range determinataions. The system will utilize an analog to digital converter for sampling and converting the signal from the radar system into 16-bit digital words (two bytes) for RAM storage, data manipulations, and computations. To remove unwanted frequency components the data will be retrieved from RAM and digitally filtered using large scale integration (LSI) circuits. Filtering will be performed by a biquadratic routine within the chip which carries out the required filter algorithm. For conversion to a frequency spectrum the filtered data will be processed by a Fast Fourier Transform chip. Analysis and identification of spectral characteristics for accurate range determinations will be made by microcomputer computations.

  2. The development of a coal-fired combustion system for industrial process heating applications

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation's Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  3. Low cost solar array project production process and equipment task. A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Technical readiness for the production of photovoltaic modules using single crystal silicon dendritic web sheet material is demonstrated by: (1) selection, design and implementation of solar cell and photovoltaic module process sequence in a Module Experimental Process System Development Unit; (2) demonstration runs; (3) passing of acceptance and qualification tests; and (4) achievement of a cost effective module.

  4. Preliminary paper - Integrated control process for the development of the mined geologic disposal system

    SciTech Connect

    Daniel, Russell B.; Harbert, Kevin R.; Calloway, David E.

    1997-11-26

    The US Department of Energy (DOE) Order 430.1, Life Cycle Asset Management, begins to focus DOE Programs and Projects on the total system life cycle instead of looking at project execution or operation as individual components. As DOE begins to implement this order, the DOE Management and Operating contractors must develop a process to control not only the contract baseline but also the overall life cycle baseline. This paper presents an integrated process that is currently being developed on the Yucca Mountain Project for DOE. The process integrates the current contract/project baseline management process with the management control process for design and the configuration management change control process.

  5. Lessons Learned From Developing Three Generations of Remote Sensing Science Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt; Fleig, Albert J.

    2005-01-01

    The Biospheric Information Systems Branch at NASA s Goddard Space Flight Center has developed three generations of Science Investigator-led Processing Systems for use with various remote sensing instruments. The first system is used for data from the MODIS instruments flown on NASA s Earth Observing Systems @OS) Terra and Aqua Spacecraft launched in 1999 and 2002 respectively. The second generation is for the Ozone Measuring Instrument flying on the EOS Aura spacecraft launched in 2004. We are now developing a third generation of the system for evaluation science data processing for the Ozone Mapping and Profiler Suite (OMPS) to be flown by the NPOESS Preparatory Project (NPP) in 2006. The initial system was based on large scale proprietary hardware, operating and database systems. The current OMI system and the OMPS system being developed are based on commodity hardware, the LINUX Operating System and on PostgreSQL, an Open Source RDBMS. The new system distributes its data archive across multiple server hosts and processes jobs on multiple processor boxes. We have created several instances of this system, including one for operational processing, one for testing and reprocessing and one for applications development and scientific analysis. Prior to receiving the first data from OMI we applied the system to reprocessing information from the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) instruments flown from 1978 until now. The system was able to process 25 years (108,000 orbits) of data and produce 800,000 files (400 GiB) of level 2 and level 3 products in less than a week. We will describe the lessons we have learned and tradeoffs between system design, hardware, operating systems, operational staffing, user support and operational procedures. During each generational phase, the system has become more generic and reusable. While the system is not currently shrink wrapped we believe it is to the point where it could be readily

  6. Development of Nitrogen Oxide Closed System in the Future Reprocessing Process

    SciTech Connect

    Takaoku, Y.; Hattori, I.; Watanabe, T.; Moriya, N.; Sumida, Y.; Araya, S.; Homma, S.; Suzuki, Y.; Akai, Y.

    2007-07-01

    An aqueous reprocessing for spent fuels generates much wastes mainly including sodium nitrate as secondary waste, which has some kinds of difficulties in disposal. A process with salt-free reagent and complete recycle of nitric acid would resolve the problem, but development for such process is not easy. We propose the treatment system of sodium nitrate waste, which are termed 'Nitrogen Oxide Closed System' (NCS) as mentioned below. The system decomposes nitrate ion, and enables reuse of sodium in sodium nitrate with no generation of sodium nitrate waste. Accordingly, the NCS system allows the use of sodium salt reagents, and generation of excess acid in a reprocessing process. (authors)

  7. The Development of a Generic Framework for the Forensic Analysis of SCADA and Process Control Systems

    NASA Astrophysics Data System (ADS)

    Slay, Jill; Sitnikova, Elena

    There is continuing interest in researching generic security architectures and strategies for managing SCADA and process control systems. Documentation from various countries on IT security does now begin to recommendations for security controls for (federal) information systems which include connected process control systems. Little or no work exists in the public domain which takes a big picture approach to the issue of developing a generic or generalisable approach to SCADA and process control system forensics. The discussion raised in this paper is that before one can develop solutions to the problem of SCADA forensics, a good understanding of the forensic computing process, and the range of technical and procedural issues subsumed with in this process, need to be understood, and also agreed, by governments, industry and academia.

  8. Recent development for the ITS code system: Parallel processing and visualization

    SciTech Connect

    Fan, W.C.; Turner, C.D.; Halbleib, J.A. Sr.; Kensek, R.P.

    1996-03-01

    A brief overview is given for two software developments related to the ITS code system. These developments provide parallel processing and visualization capabilities and thus allow users to perform ITS calculations more efficiently. Timing results and a graphical example are presented to demonstrate these capabilities.

  9. Feature, Event, and Process Screening and Scenario Development for the Yucca Mountain Total System Performance Assessment

    SciTech Connect

    Barnard, R.; Barr, G.; Burch, P.; Freeze, G.; Rechard, R.; Schenker, A.; Swift, P.

    1999-04-05

    Scenario development has two primary purposes in the design and documentation of post-closure performance assessments in a regulatory setting. First, scenario development ensures a sufficiently comprehensive consideration of the possible future states of the system. Second, scenario development identifies the important scenarios that must be considered in quantitative analyses of the total system performance assessment (TSPA). Section 2.0 of this report describes the scenario development process. Steps in the process are described in Section 2.1, and terms introduced in this section are defined in Section 2.2. The electronic database used to document the process is described in Section 3, and Section 4 provides a summary of the current status of the YMP scenario development work. Section 5 contains acknowledgments, and Section 6 contains a list of the references cited.

  10. The open source, object- and process oriented simulation system OpenGeoSys - concepts, development, community

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Li, D.; Beyer, C.; Wang, W.; Bilke, L.; Graupner, B.

    2011-12-01

    Many geoscientific problems, such as underground waste disposal, nuclear waste disposal, CO2 sequestration, geothermal energy, etc., require for prediction of ongoing processes as well as risk and safety assessment a numerical simulation system. The governing processes are thermal heat transfer (T), hydraulic flow in multi-phase systems (H), mechanical deformation (M) and geochemical reactions (C), which interact in a complex way (THMC). The development of suitable simulation systems requires a large amount of effort for code development, verification and applications. OpenGeoSys (OGS) is an open source scientific initiative for the simulation of these THMC processes in porous media. A flexible numerical framework based on the Finite Element Method is provided and applied to the governing process equations. Due to the object- and process-oriented character of the code, functionality enhancement and code coupling with external simulators can be performed reasonably effectively. This structure also allows for a distributed development, with developers at different locations contributing to the common code. The code is platform independent, accessible via internet for development and application, and checked by an automated benchmarking system regularly.

  11. Materials, Processes and Manufacturing in Ares 1 Upper Stage: Integration with Systems Design and Development

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    2008-01-01

    Ares I Crew Launch Vehicle Upper Stage is designed and developed based on sound systems engineering principles. Systems Engineering starts with Concept of Operations and Mission requirements, which in turn determine the launch system architecture and its performance requirements. The Ares I-Upper Stage is designed and developed to meet these requirements. Designers depend on the support from materials, processes and manufacturing during the design, development and verification of subsystems and components. The requirements relative to reliability, safety, operability and availability are also dependent on materials availability, characterization, process maturation and vendor support. This paper discusses the roles and responsibilities of materials and manufacturing engineering during the various phases of Ares IUS development, including design and analysis, hardware development, test and verification. Emphasis is placed how materials, processes and manufacturing support is integrated over the Upper Stage Project, both horizontally and vertically. In addition, the paper describes the approach used to ensure compliance with materials, processes, and manufacturing requirements during the project cycle, with focus on hardware systems design and development.

  12. Progress in the Development of Direct Osmotic Concentration Wastewater Recovery Process for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael

    2005-01-01

    Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.

  13. Functional process descriptions for the program to develop the Nuclear Waste Management System

    SciTech Connect

    Woods, T.W.

    1991-09-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is executing a plan for improvement of the systems implemented to carry out its responsibilities under the Nuclear Waste Policy Act of 1982 (NWPA). As part of the plan, OCRWM is performing a systems engineering analysis of both the physical system, i.e., the Nuclear Waste Management System (NWMS), and the programmatic functions that must be accomplished to bring the physical system into being. The purpose of the program analysis is to provide a systematic identification and definition of all program functions, functional process flows, and function products necessary and sufficient to provide the physical system. The analysis resulting from this approach provides a basis for development of a comprehensive and integrated set of policies, standard practices, and procedures for the effective and efficient execution of the program. Thus, this analysis will form a basis for revising current OCRWM policies and procedures, or developing new ones is necessary. The primary purposes of this report are as follows: (1) summarizes the major functional processes and process flows that have been developed as a part of the program analysis, and (2) provide an introduction and assistance in understanding the detailed analysis information contained in the three volume report titled The Analysis of the Program to Develop the Nuclear Waste Management System (Woods 1991a).

  14. Vulnerable processes of nervous system development: a review of markers and methods.

    PubMed

    Barone, S; Das, K P; Lassiter, T L; White, L D

    2000-01-01

    The susceptibility of the developing nervous system to damage following exposure to environmental contaminants has been well recognized. More recently, from a regulatory perspective, an increased emphasis has been placed on the vulnerability of the developing nervous system to damage following pesticide exposure. The publication of the National Academy of Sciences (NAS) report on Pesticides in the Diets of Infants and Children (1995) and the passage of the Food Quality Protection Act (FQPA) and Safe Drinking Water Act (SDWA) amendments have significantly escalated the scientific debate regarding age-related susceptibility. Key concerns raised in the NAS report include the qualitative and quantitative differences that distinguish the developing nervous system from that of the adult. It was suggested that neurotoxicity testing on adult animals alone may not be predictive of these differences in susceptibility. The age-related susceptibility of the nervous system is compounded by the protracted period of time over which this complex organ system develops. This temporal vulnerability spans the embryonic, fetal, infant, and adolescent periods. Normal development of the nervous system requires the concomitant and coordinated ontogeny of proliferation, migration, differentiation, synaptogenesis, gliogenesis, myelination and apoptosis to occur in a temporally- and regionally-dependent manner. Perturbations of these processes during development can result in long-term irreversible consequences that affect the structure and function of the nervous system and could account for qualitative differences in age-related susceptibility of the developing nervous system as compared to the adult nervous system. A discussion of developmental milestones and the relevance of transient effects on developmental endpoints are presented. Transient effects following developmental perturbations can be missed or dismissed depending on the experimental design or screening strategy employed. This

  15. Development of an efficient automated hyperspectral processing system using embedded computing

    NASA Astrophysics Data System (ADS)

    Brown, Matthew S.; Glaser, Eli; Grassinger, Scott; Slone, Ambrose; Salvador, Mark

    2012-06-01

    Automated hyperspectral image processing enables rapid detection and identification of important military targets from hyperspectral surveillance and reconnaissance images. The majority of this processing is done using ground-based CPUs on hyperspectral data after it has been manually exfiltrated from the mobile sensor platform. However, by utilizing high-performance, on-board processing hardware, the data can be immediately processed, and the exploitation results can be distributed over a low-bandwidth downlink, allowing rapid responses to situations as they unfold. Additionally, transitioning to higher-performance and more-compact processing architectures such as GPUs, DSPs, and FPGAs will allow the size, weight, and power (SWaP) demands of the system to be reduced. This will allow the next generation of hyperspectral imaging and processing systems to be deployed on a much wider range of smaller manned and unmanned vehicles. In this paper, we present results on the development of an automated, near-real-time hyperspectral processing system using a commercially available NVIDIA® Telsa™ GPU. The processing chain utilizes GPU-optimized implementations of well-known atmospheric-correction, anomaly-detection, and target-detection algorithms in order to identify targetmaterial spectra from a hyperspectral image. We demonstrate that the system can return target-detection results for HYDICE data with 308×1280 pixels and 145 bands against 30 target spectra in less than four seconds.

  16. Development of emergent processing loops as a system of systems concept

    NASA Astrophysics Data System (ADS)

    Gainey, James C., Jr.; Blasch, Erik P.

    1999-03-01

    This paper describes an engineering approach toward implementing the current neuroscientific understanding of how the primate brain fuses, or integrates, 'information' in the decision-making process. We describe a System of Systems (SoS) design for improving the overall performance, capabilities, operational robustness, and user confidence in Identification (ID) systems and show how it could be applied to biometrics security. We use the Physio-associative temporal sensor integration algorithm (PATSIA) which is motivated by observed functions and interactions of the thalamus, hippocampus, and cortical structures in the brain. PATSIA utilizes signal theory mathematics to model how the human efficiently perceives and uses information from the environment. The hybrid architecture implements a possible SoS-level description of the Joint Directors of US Laboratories for Fusion Working Group's functional description involving 5 levels of fusion and their associated definitions. This SoS architecture propose dynamic sensor and knowledge-source integration by implementing multiple Emergent Processing Loops for predicting, feature extracting, matching, and Searching both static and dynamic database like MSTAR's PEMS loops. Biologically, this effort demonstrates these objectives by modeling similar processes from the eyes, ears, and somatosensory channels, through the thalamus, and to the cortices as appropriate while using the hippocampus for short-term memory search and storage as necessary. The particular approach demonstrated incorporates commercially available speaker verification and face recognition software and hardware to collect data and extract features to the PATSIA. The PATSIA maximizes the confidence levels for target identification or verification in dynamic situations using a belief filter. The proof of concept described here is easily adaptable and scaleable to other military and nonmilitary sensor fusion applications.

  17. Design and development of a medical big data processing system based on Hadoop.

    PubMed

    Yao, Qin; Tian, Yu; Li, Peng-Fei; Tian, Li-Li; Qian, Yang-Ming; Li, Jing-Song

    2015-03-01

    Secondary use of medical big data is increasingly popular in healthcare services and clinical research. Understanding the logic behind medical big data demonstrates tendencies in hospital information technology and shows great significance for hospital information systems that are designing and expanding services. Big data has four characteristics--Volume, Variety, Velocity and Value (the 4 Vs)--that make traditional systems incapable of processing these data using standalones. Apache Hadoop MapReduce is a promising software framework for developing applications that process vast amounts of data in parallel with large clusters of commodity hardware in a reliable, fault-tolerant manner. With the Hadoop framework and MapReduce application program interface (API), we can more easily develop our own MapReduce applications to run on a Hadoop framework that can scale up from a single node to thousands of machines. This paper investigates a practical case of a Hadoop-based medical big data processing system. We developed this system to intelligently process medical big data and uncover some features of hospital information system user behaviors. This paper studies user behaviors regarding various data produced by different hospital information systems for daily work. In this paper, we also built a five-node Hadoop cluster to execute distributed MapReduce algorithms. Our distributed algorithms show promise in facilitating efficient data processing with medical big data in healthcare services and clinical research compared with single nodes. Additionally, with medical big data analytics, we can design our hospital information systems to be much more intelligent and easier to use by making personalized recommendations.

  18. Design and development of a medical big data processing system based on Hadoop.

    PubMed

    Yao, Qin; Tian, Yu; Li, Peng-Fei; Tian, Li-Li; Qian, Yang-Ming; Li, Jing-Song

    2015-03-01

    Secondary use of medical big data is increasingly popular in healthcare services and clinical research. Understanding the logic behind medical big data demonstrates tendencies in hospital information technology and shows great significance for hospital information systems that are designing and expanding services. Big data has four characteristics--Volume, Variety, Velocity and Value (the 4 Vs)--that make traditional systems incapable of processing these data using standalones. Apache Hadoop MapReduce is a promising software framework for developing applications that process vast amounts of data in parallel with large clusters of commodity hardware in a reliable, fault-tolerant manner. With the Hadoop framework and MapReduce application program interface (API), we can more easily develop our own MapReduce applications to run on a Hadoop framework that can scale up from a single node to thousands of machines. This paper investigates a practical case of a Hadoop-based medical big data processing system. We developed this system to intelligently process medical big data and uncover some features of hospital information system user behaviors. This paper studies user behaviors regarding various data produced by different hospital information systems for daily work. In this paper, we also built a five-node Hadoop cluster to execute distributed MapReduce algorithms. Our distributed algorithms show promise in facilitating efficient data processing with medical big data in healthcare services and clinical research compared with single nodes. Additionally, with medical big data analytics, we can design our hospital information systems to be much more intelligent and easier to use by making personalized recommendations. PMID:25666927

  19. Development of the Data Acquisition and Processing System for a Pulsed 2-Micron Coherent Doppler Lidar System

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2010-01-01

    A general overview of the development of a data acquisition and processing system is presented for a pulsed, 2-micron coherent Doppler Lidar system located in NASA Langley Research Center in Hampton, Virginia, USA. It is a comprehensive system that performs high-speed data acquisition, analysis, and data display both in real time and offline. The first flight missions are scheduled for the summer of 2010 as part of the NASA Genesis and Rapid Intensification Processes (GRIP) campaign for the study of hurricanes. The system as well as the control software is reviewed and its requirements and unique features are discussed.

  20. 77 FR 50724 - Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... COMMISSION Developing Software Life Cycle Processes for Digital Computer Software Used in Safety Systems of... comment draft regulatory guide (DG), DG-1210, ``Developing Software Life Cycle Processes for Digital... practices for developing software life-cycle processes for digital computers used in safety systems...

  1. A Module Experimental Process System Development Unit (MEPSDU). [development of low cost solar arrays

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The technical readiness of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which met the price goal in 1986 of $.70 or less per Watt peak was demonstrated. The proposed process sequence was reviewed and laboratory verification experiments were conducted. The preliminary process includes the following features: semicrystalline silicon (10 cm by 10 cm) as the silicon input material; spray on dopant diffusion source; Al paste BSF formation; spray on AR coating; electroless Ni plate solder dip metallization; laser scribe edges; K & S tabbing and stringing machine; and laminated EVA modules.

  2. Cognitive processes as integrative component for developing expert decision-making systems: a workflow centered framework.

    PubMed

    Jalote-Parmar, Ashis; Badke-Schaub, Petra; Ali, Wajid; Samset, Eigil

    2010-02-01

    The development of expert decision-making systems, which improve task performance and reduce errors within an intra-operative clinical workspace, is critically dependent on two main aspects: (a) Analyzing the clinical requirements and cognitive processes within the workflow and (b) providing an optimal context for accurate situation awareness through effective intra-operative information visualization. This paper presents a workflow centered framework and its theoretical underpinnings to design expert decision-making systems. The framework integrates knowledge of the clinical workflow based on the requirements within the clinical workspace. Furthermore, it builds upon and integrates the theory of situation awareness into system design to improve decision-making. As an application example, this framework has been used to design an intra-operative visualization system (IVS), which provides image guidance to the clinicians to perform minimally invasive procedure. An evaluative study, comparing the traditional ultrasound guided procedure with the new developed IVS, has been conducted with expert intervention radiologists and medical students. The results reveal significant evidence for improved decision-making when using the IVS. Therefore, it can be stated that this study demonstrates the benefits of integrating knowledge of cognitive processes into system development to support clinical decision-making and hence improvement of task performance and prevention of errors.

  3. Development and fabrication of a solar cell junction processing system. Quarterly report No. 2, July 1980

    SciTech Connect

    Siesling, R.

    1980-07-01

    The basic objectives of the program are the following: (1) to design, develop, construct and deliver a junction processing system which will be capable of producing solar cell junctions by means of ion implantation followed by pulsed electron beam annealing; (2) to include in the system a wafer transport mechanism capable of transferring 4-inch-diameter wafers into and out of the vacuum chamber where the ion implantation and pulsed electron beam annealing processes take place; (3) to integrate, test and demonstrate the system prior to its delivery to JPL along with detailed operating and maintenance manuals; and (4) to estimate component lifetimes and costs, as necessary for the contract, for the performance of comprehensive analyses in accordance with the Solar Array Manufacturing Industry Costing Standards (SAMICS). Under this contract the automated junction formation equipment to be developed involves a new system design incorporating a modified, government-owned, JPL-controlled ion implanter into a Spire-developed pulsed electron beam annealer and wafer transport system. When modified, the ion implanter will deliver a 16 mA beam of /sup 31/P/sup +/ ions with a fluence of 2.5 x 10/sup 15/ ions per square centimeter at an energy of 10 keV. The throughput design goal rate for the junction processor is 10/sup 7/ four-inch-diameter wafers per year.

  4. Tritium processing for the European test blanket systems: current status of the design and development strategy

    SciTech Connect

    Ricapito, I.; Calderoni, P.; Poitevin, Y.; Aiello, A.; Utili, M.; Demange, D.

    2015-03-15

    Tritium processing technologies of the two European Test Blanket Systems (TBS), HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed), play an essential role in meeting the main objectives of the TBS experimental campaign in ITER. The compliancy with the ITER interface requirements, in terms of space availability, service fluids, limits on tritium release, constraints on maintenance, is driving the design of the TBS tritium processing systems. Other requirements come from the characteristics of the relevant test blanket module and the scientific programme that has to be developed and implemented. This paper identifies the main requirements for the design of the TBS tritium systems and equipment and, at the same time, provides an updated overview on the current design status, mainly focusing onto the tritium extractor from Pb-16Li and TBS tritium accountancy. Considerations are also given on the possible extrapolation to DEMO breeding blanket. (authors)

  5. Development of image processing LSI "SuperVchip" for real-time vision systems

    NASA Astrophysics Data System (ADS)

    Muramatsu, Shoji; Kobayashi, Yoshiki; Otsuka, Yasuo; Shojima, Hiroshi; Tsutsumi, Takayuki; Imai, Toshihiko; Yamada, Shigeyoshi

    2002-03-01

    A new image processing LSI SuperVchip with high-performance computing power has been developed. The SuperVchip has powerful capability for vision systems as follows: 1. General image processing by 3x3, 5x5, 7x7 kernel for high speed filtering function. 2. 16-parallel gray search engine units for robust template matching. 3. 49 block matching Pes to calculate the summation of the absolution difference in parallel for stereo vision function. 4. A color extraction unit for color object recognition. The SuperVchip also has peripheral function of vision systems, such as video interface, PCI extended interface, RISC engine interface and image memory controller on a chip. Therefore, small and high performance vision systems are realized via SuperVchip. In this paper, the above specific circuits are presented, and an architecture of a vision device equipped with SuperVchip and its performance are also described.

  6. Drug Development Process

    MedlinePlus

    ... Approvals The Drug Development Process The Drug Development Process Share Tweet Linkedin Pin it More sharing options ... public. More Information More in The Drug Development Process Step 1: Discovery and Development Step 2: Preclinical ...

  7. Use of a continuous twin screw granulation and drying system during formulation development and process optimization.

    PubMed

    Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-01-01

    Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating

  8. Use of a continuous twin screw granulation and drying system during formulation development and process optimization.

    PubMed

    Vercruysse, J; Peeters, E; Fonteyne, M; Cappuyns, P; Delaet, U; Van Assche, I; De Beer, T; Remon, J P; Vervaet, C

    2015-01-01

    Since small scale is key for successful introduction of continuous techniques in the pharmaceutical industry to allow its use during formulation development and process optimization, it is essential to determine whether the product quality is similar when small quantities of materials are processed compared to the continuous processing of larger quantities. Therefore, the aim of this study was to investigate whether material processed in a single cell of the six-segmented fluid bed dryer of the ConsiGma™-25 system (a continuous twin screw granulation and drying system introduced by GEA Pharma Systems, Collette™, Wommelgem, Belgium) is predictive of granule and tablet quality during full-scale manufacturing when all drying cells are filled. Furthermore, the performance of the ConsiGma™-1 system (a mobile laboratory unit) was evaluated and compared to the ConsiGma™-25 system. A premix of two active ingredients, powdered cellulose, maize starch, pregelatinized starch and sodium starch glycolate was granulated with distilled water. After drying and milling (1000 μm, 800 rpm), granules were blended with magnesium stearate and compressed using a Modul™ P tablet press (tablet weight: 430 mg, main compression force: 12 kN). Single cell experiments using the ConsiGma™-25 system and ConsiGma™-1 system were performed in triplicate. Additionally, a 1h continuous run using the ConsiGma™-25 system was executed. Process outcomes (torque, barrel wall temperature, product temperature during drying) and granule (residual moisture content, particle size distribution, bulk and tapped density, hausner ratio, friability) as well as tablet (hardness, friability, disintegration time and dissolution) quality attributes were evaluated. By performing a 1h continuous run, it was detected that a stabilization period was needed for torque and barrel wall temperature due to initial layering of the screws and the screw chamber walls with material. Consequently, slightly deviating

  9. Microarthroscopy System With Image Processing Technology Developed for Minimally Invasive Surgery

    NASA Technical Reports Server (NTRS)

    Steele, Gynelle C.

    2001-01-01

    In a joint effort, NASA, Micro Medical Devices, and the Cleveland Clinic have developed a microarthroscopy system with digital image processing. This system consists of a disposable endoscope the size of a needle that is aimed at expanding the use of minimally invasive surgery on the knee, ankle, and other small joints. This device not only allows surgeons to make smaller incisions (by improving the clarity and brightness of images), but it gives them a better view of the injured area to make more accurate diagnoses. Because of its small size, the endoscope helps reduce physical trauma and speeds patient recovery. The faster recovery rate also makes the system cost effective for patients. The digital image processing software used with the device was originally developed by the NASA Glenn Research Center to conduct computer simulations of satellite positioning in space. It was later modified to reflect lessons learned in enhancing photographic images in support of the Center's microgravity program. Glenn's Photovoltaic Branch and Graphics and Visualization Lab (G-VIS) computer programmers and software developers enhanced and speed up graphic imaging for this application. Mary Vickerman at Glenn developed algorithms that enabled Micro Medical Devices to eliminate interference and improve the images.

  10. Development of a requirements management system for technical decision - making processes in the geological disposal project

    SciTech Connect

    Hiroyoshi Ueda; Katsuhiko Ishiguro; Kazumi Kitayama; Kiyoshi Oyamada; Shoko Sato

    2007-07-01

    NUMO (Nuclear Waste Management Organization of Japan) has a responsibility for implementing geological disposal of vitrified HLW (High-Level radioactive Waste) in the Japanese nuclear waste management programme. Its staged siting procedure was initiated in 2002 by an open call for volunteer sites. Careful management strategy and methodology for the technical decision-making at every milestone are required to prepare for the volunteer site application and the site investigation stages after that. The formal Requirement Management System (RMS) is planned to support the computerized implementation of the specific management methodology, termed the NUMO Structured Approach (NSA). This planned RMS will help for comprehensive management of the decision-making processes in the geological disposal project, change management towards the anticipated project deviations, efficient project driving such as well programmed R and D etc. and structured record-keeping regarding the past decisions, which leads to soundness of the project in terms of the long-term continuity. The system should have handling/management functions for the database including the decisions/requirements in the project in consideration, their associated information and the structures composed of them in every decision-making process. The information relating to the premises, boundary conditions and time plan of the project should also be prepared in the system. Effective user interface and efficient operation on the in-house network are necessary. As a living system for the long-term formal use, flexibility to updating is indispensable. In advance of the formal system development, two-year activity to develop the preliminary RMS was already started. The purpose of this preliminary system is to template the decision/requirement structure, prototype the decision making management and thus show the feasibility of the innovative RMS. The paper describes the current status of the development, focusing on the

  11. Development of the lateral line canal system through a bone remodeling process in zebrafish.

    PubMed

    Wada, Hironori; Iwasaki, Miki; Kawakami, Koichi

    2014-08-01

    The lateral line system of teleost fish is composed of mechanosensory receptors (neuromasts), comprising superficial receptors and others embedded in canals running under the skin. Canal diameter and size of the canal neuromasts are correlated with increasing body size, thus providing a very simple system to investigate mechanisms underlying the coordination between organ growth and body size. Here, we examine the development of the trunk lateral line canal system in zebrafish. We demonstrated that trunk canals originate from scales through a bone remodeling process, which we suggest is essential for the normal growth of canals and canal neuromasts. Moreover, we found that lateral line cells are required for the formation of canals, suggesting the existence of mutual interactions between the sensory system and surrounding connective tissues.

  12. Dealing with the Archetypes Development Process for a Regional EHR System

    PubMed Central

    Santos, M.R.; Bax, M.P.; Kalra, D.

    2012-01-01

    Objectives This paper aims to present the archetype modelling process used for the Health Department of Minas Gerais State, Brazil (SES/MG), to support building its regional EHR system, and the lessons learned during this process. Methods This study was undertaken within the Minas Gerais project. The EHR system architecture was built assuming the reference model from the ISO 13606 norm. The whole archetype development process took about ten months, coordinated by a clinical team co-ordinated by three health professionals and one systems analyst from the SES/MG. They were supported by around 30 health professionals from the internal SES/MG areas, and 5 systems analysts from the PRODEMGE. Based on a bottom-up approach, the project team used technical interviews and brainstorming sessions to conduct the modelling process. Results The main steps of the archetype modelling process were identified and described, and 20 archetypes were created. Lessons learned: –The set of principles established during the selection of PCS elements helped the clinical team to keep the focus in their objectives;–The initial focus on the archetype structural organization aspects was important;–The data elements identified were subjected to a rigorous analysis aimed at determining the most suitable clinical domain;–Levelling the concepts to accommodate them within the hierarchical levels in the reference model was definitely no easy task, and the use of a mind mapping tool facilitated the modelling process;–Part of the difficulty experienced by the clinical team was related to a view focused on the original forms previously used;–The use of worksheets facilitated the modelling process by health professionals;–It was important to have a health professional that knew about the domain tables and health classifications from the Brazilian Federal Government as member in the clinical team. Conclusion The archetypes (referencing terminology, domain tables and term lists) provided a

  13. Intelligent process development of foam molding for the Thermal Protection System (TPS) of the space shuttle external tank

    NASA Technical Reports Server (NTRS)

    Bharwani, S. S.; Walls, J. T.; Jackson, M. E.

    1987-01-01

    A knowledge based system to assist process engineers in evaluating the processability and moldability of poly-isocyanurate (PIR) formulations for the thermal protection system of the Space Shuttle external tank (ET) is discussed. The Reaction Injection Molding- Process Development Advisor (RIM-PDA) is a coupled system which takes advantage of both symbolic and numeric processing techniques. This system will aid the process engineer in identifying a startup set of mold schedules and in refining the mold schedules to remedy specific process problems diagnosed by the system.

  14. The Development of Two Science Investigator-led Processing Systems (SIPS) for NASA's Earth Observation System (EOS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2004-01-01

    In 2001, NASA Goddard Space Flight Center's Laboratory for Terrestrial Physics started the construction of a science Investigator-led Processing System (SIPS) for processing data from the Ozone Monitoring Instrument (OMI) which will launch on the Aura platform in mid 2004. The Ozone Monitoring Instrument (OMI) is a contribution of the Netherlands Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI) to the Earth Observing System (EOS) Aura mission. It will continue the Total Ozone Monitoring System (TOMS) record for total ozone and other atmospheric parameters related to ozone chemistry and climate. OMI measurements will be highly synergistic with the other instruments on the EOS Aura platform. The LTP previously developed the Moderate Resolution Imaging Spectrometer (MODIS) Data Processing System (MODAPS), which has been in full operations since the launches of the Terra and Aqua spacecrafts in December, 1999 and May, 2002 respectively. During that time, it has continually evolved to better support the needs of the MODIS team. We now run multiple instances of the system managing faster than real time reprocessings of the data as well as continuing forward processing. The new OMI Data Processing System (OMIDAPS) was adapted from the MODAPS. It will ingest raw data from the satellite ground station and process it to produce calibrated, geolocated higher level data products. These data products will be transmitted to the Goddard Distributed Active Archive Center (GDAAC) instance of the Earth Observing System (EOS) Data and Information System (EOSDIS) for long term archive and distribution to the public. The OMIDAPS will also provide data distribution to the OMI Science Team for quality assessment, algorithm improvement, calibration, etc. We have taken advantage of lessons learned from the MODIS experience and software already developed for MODIS. We made some changes in the hardware system organization, database and

  15. Development of an image processing system in splendid squid quality classification

    NASA Astrophysics Data System (ADS)

    Masunee, Niyada; Chaiprapat, Supapan; Waiyagan, Kriangkrai

    2013-07-01

    Agricultural products typically exhibit high variance in quality characteristics. To assure customer satisfaction and control manufacturing productivity, quality classification is necessary to screen off defective items and to grade the products. This article presents an application of image processing techniques on squid grading and defect discrimination. A preliminary study indicated that surface color was an efficient determinant to justify quality of splendid squids. In this study, a computer vision system (CVS) was developed to examine the characteristics of splendid squids. Using image processing techniques, squids could be classified into three different quality grades as in accordance with an industry standard. The developed system first sifted through squid images to reject ones with black marks. Qualified squids were graded on a proportion of white, pink, and red regions appearing on their bodies by using fuzzy logic. The system was evaluated on 100 images of squids at different quality levels. It was found that accuracy obtained by the proposed technique was 95% compared with sensory evaluation of an expert.

  16. Design and development of an in-line sputtering system and process development of thin film multilayer neutron supermirrors.

    PubMed

    Biswas, A; Sampathkumar, R; Kumar, Ajaya; Bhattacharyya, D; Sahoo, N K; Lagoo, K D; Veerapur, R D; Padmanabhan, M; Puri, R K; Bhattacharya, Debarati; Singh, Surendra; Basu, S

    2014-12-01

    Neutron supermirrors and supermirror polarizers are thin film multilayer based devices which are used for reflecting and polarizing neutrons in various neutron based experiments. In the present communication, the in-house development of a 9 m long in-line dc sputtering system has been described which is suitable for deposition of neutron supermirrors on large size (1500 mm × 150 mm) substrates and in large numbers. The optimisation process of deposition of Co and Ti thin film, Co/Ti periodic multilayers, and a-periodic supermirrors have also been described. The system has been used to deposit thin film multilayer supermirror polarizers which show high reflectivity up to a reasonably large critical wavevector transfer of ∼0.06 Å(-1) (corresponding to m = 2.5, i.e., 2.5 times critical wavevector transfer of natural Ni). The computer code for designing these supermirrors has also been developed in-house. PMID:25554268

  17. Design and development of an in-line sputtering system and process development of thin film multilayer neutron supermirrors

    SciTech Connect

    Biswas, A.; Sampathkumar, R.; Kumar, Ajaya; Bhattacharyya, D.; Sahoo, N. K.; Lagoo, K. D.; Veerapur, R. D.; Padmanabhan, M.; Puri, R. K.; Bhattacharya, Debarati; Singh, Surendra; Basu, S.

    2014-12-15

    Neutron supermirrors and supermirror polarizers are thin film multilayer based devices which are used for reflecting and polarizing neutrons in various neutron based experiments. In the present communication, the in-house development of a 9 m long in-line dc sputtering system has been described which is suitable for deposition of neutron supermirrors on large size (1500 mm × 150 mm) substrates and in large numbers. The optimisation process of deposition of Co and Ti thin film, Co/Ti periodic multilayers, and a-periodic supermirrors have also been described. The system has been used to deposit thin film multilayer supermirror polarizers which show high reflectivity up to a reasonably large critical wavevector transfer of ∼0.06 Å{sup −1} (corresponding to m = 2.5, i.e., 2.5 times critical wavevector transfer of natural Ni). The computer code for designing these supermirrors has also been developed in-house.

  18. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support research and development for an Experimental Process System Development Unit for producing semiconductor-grade silicon using the slane-to-silicon process are reported. The design activity was completed. About 95% of purchased equipment was received. The draft of the operations manual was about 50% complete and the design of the free-space system continued. The system using silicon power transfer, melting, and shotting on a psuedocontinuous basis was demonstrated.

  19. The development of a zeolite system for upgrade of the Process Waste Treatment Plant

    SciTech Connect

    Robinson, S.M.; Kent, T.E.; Arnold, W.D.; Parrott, J.R. Jr.

    1993-10-01

    Studies have been undertaken to design an efficient zeolite ion exchange system for use at the ORNL Process Waste Treatment Plant to remove cesium and strontium to meet discharge limits. This report focuses on two areas: (1) design of column hardware and pretreatment steps needed to eliminate column plugging and channeling and (2) development of equilibrium models for the wastewater system. Results indicate that zeolite columns do not plug as quickly when the wastewater equalization is performed in the new Bethel Valley Storage Tanks instead of the former equalization basin where suspended solids concentration is high. A down-flow column with spent zeolite was used successfully as a prefilter to prevent plugging of the zeolite columns being used to remove strontium and cesium. Equilibrium studies indicate that a Langmuir isotherm models binary zeolite equilibrium data while the modified Dubinin-Polyani model predicts multicomponent data.

  20. Development of Three-Layer Simulation Model for Freezing Process of Food Solution Systems

    NASA Astrophysics Data System (ADS)

    Kaminishi, Koji; Araki, Tetsuya; Shirakashi, Ryo; Ueno, Shigeaki; Sagara, Yasuyuki

    A numerical model has been developed for simulating freezing phenomena of food solution systems. The cell model was simplified to apply to food solution systems, incorporating with the existence of 3 parts such as unfrozen, frozen and moving boundary layers. Moreover, the moving rate of freezing front model was also introduced and calculated by using the variable space network method proposed by Murray and Landis (1957). To demonstrate the validity of the model, it was applied to the freezing processes of coffee solutions. Since the model required the phase diagram of the material to be frozen, the initial freezing temperatures of 1-55 % coffee solutions were measured by the DSC method. The effective thermal conductivity for coffee solutions was determined as a function of temperature and solute concentration by using the Maxwell - Eucken model. One-dimensional freezing process of 10 % coffee solution was simulated based on its phase diagram and thermo-physical properties. The results were good agreement with the experimental data and then showed that the model could accurately describe the change in the location of the freezing front and the distributions of temperature as well as ice fraction during a freezing process.

  1. Image retrieval and processing system version 2.0 development work

    NASA Technical Reports Server (NTRS)

    Slavney, Susan H.; Guinness, Edward A.

    1991-01-01

    The Image Retrieval and Processing System (IRPS) is a software package developed at Washington University and used by the NASA Regional Planetary Image Facilities (RPIF's). The IRPS combines data base management and image processing components to allow the user to examine catalogs of image data, locate the data of interest, and perform radiometric and geometric calibration of the data in preparation for analysis. Version 1.0 of IRPS was completed in Aug. 1989 and was installed at several IRPS's. Other RPIF's use remote logins via NASA Science Internet to access IRPS at Washington University. Work was begun on designing and population a catalog of Magellan image products that will be part of IRPS Version 2.0, planned for release by the end of calendar year 1991. With this catalog, a user will be able to search by orbit and by location for Magellan Basic Image Data Records (BIDR's), Mosaicked Image Data Records (MIDR's), and Altimetry-Radiometry Composite Data Records (ARCDR's). The catalog will include the Magellan CD-ROM volume, director, and file name for each data product. The image processing component of IRPS is based on the Planetary Image Cartography Software (PICS) developed by the U.S. Geological Survey, Flagstaff, Arizona. To augment PICS capabilities, a set of image processing programs were developed that are compatible with PICS-format images. This software includes general-purpose functions that PICS does not have, analysis and utility programs for specific data sets, and programs from other sources that were modified to work with PICS images. Some of the software will be integrated into the Version 2.0 release of IRPS. A table is presented that lists the programs with a brief functional description of each.

  2. Investigation of coat-develop track system for placement error of contact hole shrink process

    NASA Astrophysics Data System (ADS)

    Harumoto, Masahiko; Stokes, Harold; Tanaka, Yuji; Kaneyama, Koji; Pieczulewski, Charles; Asai, Masaya; Servin, Isabelle; Argoud, Maxime; Gharbi, Ahmed; Lapeyre, Celine; Tiron, Raluca; Monget, Cedric

    2016-04-01

    Directed Self-Assembly (DSA) is a well-known candidate for next generation sub-15nm half-pitch lithography. [1-2] DSA processes on 300mm wafers have been demonstrated for several years, and have given a strong impression due to finer pattern results. [3-4] On t he other hand, specific issues with DSA processes have begun to be clear as a result of these recent challenges. [5-6] Pattern placement error, which means the pattern shift after DSA fabrication, is recognized as one of these typical issues. Coat-Develop Track systems contribute to the DSA pattern fabrication and also influence the DSA pattern performance.[4] In this study, the placement error was investigated using a simple contact-hole pattern and subsequent contact-hole shrink process implemented on the SOKUDO DUO track. Thus, we will show the placement error of contact-hole shrink using a DSA process and discuss the difference between DSA and other shrink methods.

  3. Automated process planning system

    NASA Technical Reports Server (NTRS)

    Mann, W.

    1978-01-01

    Program helps process engineers set up manufacturing plans for machined parts. System allows one to develop and store library of similar parts characteristics, as related to particular facility. Information is then used in interactive system to help develop manufacturing plans that meet required standards.

  4. Development and validation of a notational system to study the offensive process in football.

    PubMed

    Sarmento, Hugo; Anguera, Teresa; Campaniço, Jorge; Leitão, José

    2010-01-01

    The most striking change within football development is the application of science to its problems and in particular the use of increasingly sophisticated technology that, supported by scientific data, allows us to establish a "code of reading" the reality of the game. Therefore, this study describes the process of the development and validation of an ad hoc system of categorization, which allows the different methods of offensive game in football and the interaction to be analyzed. Therefore, through an exploratory phase of the study, we identified 10 vertebrate criteria and the respective behaviors observed for each of these criteria. We heard a panel of five experts with the purpose of a content validation. The resulting instrument is characterized by a combination of field formats and systems of categories. The reliability of the instrument was calculated by the intraobserver agreement, and values above 0.95 for all criteria were achieved. Two FC Barcelona games were coded and analyzed, which allowed the detection of various T-patterns. The results show that the instrument serves the purpose for which it was developed and can provide important information for the understanding of game interaction in football.

  5. System design development for microwave and millimeter-wave materials processing

    NASA Astrophysics Data System (ADS)

    Feher, Lambert; Thumm, Manfred

    2002-06-01

    The most notable effect in processing dielectrics with micro- and millimeter-waves is volumetric heating of these materials, offering the opportunity of very high heating rates for the samples. In comparison to conventional heating where the heat transfer is diffusive and depends on the thermal conductivity of the material, the microwave field penetrates the sample and acts as an instantaneous heat source at each point of the sample. By this unique property, microwave heating at 2.45 GHz and 915 MHz ISM (Industrial, Medical, Scientific) frequencies is established as an important industrial technology since more than 50 years ago. Successful application of microwaves in industries has been reported e.g. by food processing systems, domestic ovens, rubber industry, vacuum drying etc. The present paper shows some outlines of microwave system development at Forschungszentrum Karlsruhe, IHM by transferring properties from the higher frequency regime (millimeter-waves) to lower frequency applications. Anyway, the need for using higher frequencies like 24 GHz (ISM frequency) for industrial applications has to be carefully verified with respect to special physical/engineering advantages or to limits the standard microwave technology meets for the specific problem.

  6. The Naval Enlisted Professional Development Information System (NEPDIS): Front End Analysis (FEA) Process. Technical Report 159.

    ERIC Educational Resources Information Center

    Aagard, James A.; Ansbro, Thomas M.

    The Naval Enlisted Professional Development Information System (NEPDIS) was designed to function as a fully computerized information assembly and analysis system to support labor force, personnel, and training management. The NEPDIS comprises separate training development, instructional, training record and evaluation, career development, and…

  7. BIOGAS Process development

    SciTech Connect

    Ghosh, S.; Mensinger, M.C.; Sajjad, A.; Henry, M.P.

    1984-01-01

    The overall objective of the program is to demonstrate and commercialize the IGT two-phase BIOGAS Process for optimized methane production from, and simultaneous stabilization of, municipal solid waste (MSW). The specific objective of the current program is to conduct a laboratory-scale investigation of simple, cost-effective feed pretreatment techniques and selected digestion reactor designs to optimize methane production from MSW-sludge blends, and to select the best pretreatment and digestion conditions for testing during the subsequent program for process development unit (PDU) operation. A significant portion of the program efforts to date has been directed at evaluating and/or developing feeding, mixing and discharging systems for handling high concentration, large particle size RDF slurries for anaerobic digestion processes. The performance of such processes depends significantly on the operational success of these subsystems. The results of the subsystem testing have been implemented in the design and operation of the 10-L, 20-L, and 125-L digesters. These results will also be utilized to design the CSTR and the upflow digesters of a large two-phase system. Data collected during the initial phase of this research showed in general that methane production from RDF decreased as the loading rate was increased. Thermophilic digestion did not appear to be significantly better than mesophlic digestion. 9 figures, 3 tables.

  8. Image Processing System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Mallinckrodt Institute of Radiology (MIR) is using a digital image processing system which employs NASA-developed technology. MIR's computer system is the largest radiology system in the world. It is used in diagnostic imaging. Blood vessels are injected with x-ray dye, and the images which are produced indicate whether arteries are hardened or blocked. A computer program developed by Jet Propulsion Laboratory known as Mini-VICAR/IBIS was supplied to MIR by COSMIC. The program provides the basis for developing the computer imaging routines for data processing, contrast enhancement and picture display.

  9. The Impact of the Bologna Process on the Development of the Greek Quality Assurance System

    ERIC Educational Resources Information Center

    Asderaki, Foteini

    2009-01-01

    Greece, an EU-member state since 1981, lagged behind other European countries in the development of a national quality assurance system. This article charts the route to the establishment of a quality assurance system in Greece. While national evaluation and accreditation systems were established in most European countries during the mid-1980s and…

  10. Tank Waste Remediation System tank waste pretreatment and vitrification process development testing requirements assessment

    SciTech Connect

    Howden, G.F.

    1994-10-24

    A multi-faceted study was initiated in November 1993 to provide assurance that needed testing capabilities, facilities, and support infrastructure (sampling systems, casks, transportation systems, permits, etc.) would be available when needed for process and equipment development to support pretreatment and vitrification facility design and construction schedules. This first major report provides a snapshot of the known testing needs for pretreatment, low-level waste (LLW) and high-level waste (HLW) vitrification, and documents the results of a series of preliminary studies and workshops to define the issues needing resolution by cold or hot testing. Identified in this report are more than 140 Hanford Site tank waste pretreatment and LLW/HLW vitrification technology issues that can only be resolved by testing. The report also broadly characterizes the level of testing needed to resolve each issue. A second report will provide a strategy(ies) for ensuring timely test capability. Later reports will assess the capabilities of existing facilities to support needed testing and will recommend siting of the tests together with needed facility and infrastructure upgrades or additions.

  11. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization

    SciTech Connect

    Wright, David L.

    2004-12-01

    Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, and Visualization Methods with Applications to Site Characterization EMSP Project 86992 Progress Report as of 9/2004.

  12. Development and implementation of the verification process for the shuttle avionics system

    NASA Technical Reports Server (NTRS)

    Smith, H. E.; Fouts, W. B.; Mesmer, J.

    1985-01-01

    The background of the shuttle avionics system design and the unique drivers associated with the redundant digital multiplexed data processing system are examined. With flight software pervading to the lowest elements of the flight critical subsystems, it was necessary to identify a unique and orderly approach of verifying the system as flight ready for STS-1. The approach and implementation plan is discussed, and both technical problems and management issues are dealt with.

  13. Considerations in developing geographic informations systems based on low-cost digital image processing

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.; Dobson, M. W.

    1981-01-01

    The potential of digital image processing systems costing $20,000 or less for geographic information systems is assessed with the emphasis on the volume of data to be handled, the commercial hardware systems available, and the basic software for: (1) data entry, conversion and digitization; (2) georeferencing and geometric correction; (3) data structuring; (4) editing and updating; (5) analysis and retrieval; (6) output drivers; and (7) data management. Costs must also be considered as tangible and intangible factors.

  14. Expert System Development in the Classroom: Processes and Outcomes. Technical Report 91-1.

    ERIC Educational Resources Information Center

    Wideman, Herbert H.; Owston, Ronald D.

    This study examined cognitive processes and outcomes associated with student knowledge base development. Sixty-nine students from two grade 8 classes were randomly assigned to one of three groups: a knowledge base development (KBD) group, a problem-solving software group, and a control group. Those in the KBD group received relevant instruction…

  15. Flat-plate solar-array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.

  16. Flat-plate solar-array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) are reported. About 95% of purchased equipment is received and will be reshipped to the West Coast location. The Data Collection System is completed. In the area of melting/consolidation, to the system using silicon powder transfer, melting and shotting on a pseudocontinuous basis is demonstrated. It is proposed to continue the very promising fluid bed work.

  17. Development of laser cladding system with process monitoring by x-ray imaging

    NASA Astrophysics Data System (ADS)

    Terada, Takaya; Yamada, Tomonori; Nishimura, Akihiko

    2014-02-01

    We have been developing a new laser cladding system to repair the damages of parts in aging plants. It consists of some devices which are a laser torch, composite-type optical fiber, QCW fiber laser and etc. All devices are installed in a mobile rack, so we can carry it to plants, laboratories or anywhere we want to use. We should irradiate the work with the best accuracy of laser beam and filler wire in laser cladding. A composite-type optical fiberscope is useful. This fiberscope was composed of a center fiber for beam delivery surrounded by 20000 fibers for visible image delivery. Thus it always keeps target on center of gun-sight. We succeeded to make a line laser cladding on an inside wall of 1-inch tube by our system. Before this success, we solved two serious problems which are the contamination of optics and the deformation of droplet. Observing laser cladding process by X-ray imaging with Spring-8 synchrotron radiation, we found that the molten pool depth was formed to be under a hundred micrometers for 10 milliseconds. A Quasi-CW fiber laser with 1 kW was employed for a heat source to generate the shallow molten pool. The X-ray shadowgraph clarified that a molten droplet was formed at the edge of a wire up to a millimeter size. It grew up if the wire didn't contact with the tube wall in initial state. Here we succeeded to measure the thermo-electromotive force voltage between a wire and a tube metal to confirm whether both came in contact. We propose to apply the laser cladding technology to the maintenance of aging industrial plants and nuclear facilities.

  18. 6-D, A Process Framework for the Design and Development of Web-based Systems.

    ERIC Educational Resources Information Center

    Christian, Phillip

    2001-01-01

    Explores how the 6-D framework can form the core of a comprehensive systemic strategy and help provide a supporting structure for more robust design and development while allowing organizations to support whatever methods and models best suit their purpose. 6-D stands for the phases of Web design and development: Discovery, Definition, Design,…

  19. WEAVE core processing system

    NASA Astrophysics Data System (ADS)

    Walton, Nicholas A.; Irwin, Mike; Lewis, James R.; Gonzalez-Solares, Eduardo; Dalton, Gavin; Trager, Scott; Aguerri, J. Alfonso L.; Allende Prieto, Carlos; Benn, Chris R.; Abrams, Don Carlos; Picó, Sergio; Middleton, Kevin; Lodi, Marcello; Bonifacio, Piercarlo

    2014-07-01

    WEAVE is an approved massive wide field multi-object optical spectrograph (MOS) currently entering its build phase, destined for use on the 4.2-m William Herschel Telescope (WHT). It will be commissioned and begin survey operations in 2017. This paper describes the core processing system (CPS) system being developed to process the bulk data flow from WEAVE. We describe the processes and techniques to be used in producing the scientifically validated 'Level 1' data products from the WEAVE data. CPS outputs will include calibrated one-d spectra and initial estimates of basic parameters such as radial velocities (for stars) and redshifts (for galaxies).

  20. Development of a prototype multi-processing interactive software invocation system

    NASA Technical Reports Server (NTRS)

    Berman, W. J.

    1983-01-01

    The Interactive Software Invocation System (NASA-ISIS) was first transported to the M68000 microcomputer, and then rewritten in the programming language Path Pascal. Path Pascal is a significantly enhanced derivative of Pascal, allowing concurrent algorithms to be expressed using the simple and elegant concept of Path Expressions. The primary results of this contract was to verify the viability of Path Pascal as a system's development language. The NASA-ISIS implementation using Path Pascal is a prototype of a large, interactive system in Path Pascal. As such, it is an excellent demonstration of the feasibility of using Path Pascal to write even more extensive systems. It is hoped that future efforts will build upon this research and, ultimately, that a full Path Pascal/ISIS Operating System (PPIOS) might be developed.

  1. MicroRNAs (MiRs) Precisely Regulate Immune System Development and Function in Immunosenescence Process.

    PubMed

    Aalaei-Andabili, Seyed Hossein; Rezaei, Nima

    2016-01-01

    Human aging is a complex process with pivotal changes in gene expression of biological pathways. Immune system dysfunction has been recognized as one of the most important abnormalities induced by senescent names immunosenescence. Emerging evidences suggest miR role in immunosenescence. We aimed to systemically review all relevant reports to clearly state miR effects on immunosenescence process. Sensitive electronic searches carried out. Quality assessment has been performed. Since majority of the included studies were laboratory works, and therefore heterogen, we discussed miR effects on immunological aging process nonstatically. Forty-six articles were found in the initial search. After exclusion of 34 articles, 12 studies enrolled to the final stage. We found that miRs have crucial roles in exact function of immune system. MiRs are involved in the regulation of the aging process in the immune system components and target certain genes, promoting or inhibiting immune system reaction to invasion. Also, miRs control life span of the immune system members by regulation of the genes involved in the apoptosis. Interestingly, we found that immunosenescence is controllable by proper manipulation of the various miRs expression. DNA methylation and histone acetylation have been discovered as novel strategies, altering NF-κB binding ability to the miR promoter sites. Effect of miRs on impairment of immune system function due to the aging is emerging. Although it has been accepted that miRs have determinant roles in the regulation of the immunosenescence; however, most of the reports are concluded from animal/laboratory works, suggesting the necessity of more investigations in human.

  2. MicroRNAs (MiRs) Precisely Regulate Immune System Development and Function in Immunosenescence Process.

    PubMed

    Aalaei-Andabili, Seyed Hossein; Rezaei, Nima

    2016-01-01

    Human aging is a complex process with pivotal changes in gene expression of biological pathways. Immune system dysfunction has been recognized as one of the most important abnormalities induced by senescent names immunosenescence. Emerging evidences suggest miR role in immunosenescence. We aimed to systemically review all relevant reports to clearly state miR effects on immunosenescence process. Sensitive electronic searches carried out. Quality assessment has been performed. Since majority of the included studies were laboratory works, and therefore heterogen, we discussed miR effects on immunological aging process nonstatically. Forty-six articles were found in the initial search. After exclusion of 34 articles, 12 studies enrolled to the final stage. We found that miRs have crucial roles in exact function of immune system. MiRs are involved in the regulation of the aging process in the immune system components and target certain genes, promoting or inhibiting immune system reaction to invasion. Also, miRs control life span of the immune system members by regulation of the genes involved in the apoptosis. Interestingly, we found that immunosenescence is controllable by proper manipulation of the various miRs expression. DNA methylation and histone acetylation have been discovered as novel strategies, altering NF-κB binding ability to the miR promoter sites. Effect of miRs on impairment of immune system function due to the aging is emerging. Although it has been accepted that miRs have determinant roles in the regulation of the immunosenescence; however, most of the reports are concluded from animal/laboratory works, suggesting the necessity of more investigations in human. PMID:26327579

  3. Development of a microblood-typing system using assembly-free process based on virtual environment

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Kang, Hyun-Wook; Kim, Yonggoo; Lee, Gyoo-Whung; Lim, Geunbae; Cho, Dong-Woo

    2005-02-01

    ABO typing is the first test done on blood that is to be used for transfusion. A person must receive ABO-matched blood, as ABO incompatibility is the major cause of fatal transfusion reactions. Until now, this blood typing has been done manually, and there is therefore a need for an automated typing machine that uses a very small volume of blood. In this paper, we present a new micro blood-typing system with a fully 3-dimentional geometry, which was realized using micro-stereolithography. This system was fabricated with a novel integration process based on a virtual environment and blood typing experiments using this system were successfully performed.

  4. Development of a System for Thermoelectric Heat Recovery from Stationary Industrial Processes

    NASA Astrophysics Data System (ADS)

    Ebling, D. G.; Krumm, A.; Pfeiffelmann, B.; Gottschald, J.; Bruchmann, J.; Benim, A. C.; Adam, M.; Labs, R.; Herbertz, R. R.; Stunz, A.

    2016-07-01

    The hot forming process of steel requires temperatures of up to 1300°C. Usually, the invested energy is lost to the environment by the subsequent cooling of the forged parts to room temperature. Thermoelectric systems are able to recover this wasted heat by converting the heat into electrical energy and feeding it into the power grid. The proposed thermoelectric system covers an absorption surface of half a square meter, and it is equipped with 50 Bismuth-Telluride based thermoelectric generators, five cold plates, and five inverters. Measurements were performed under production conditions of the industrial environment of the forging process. The heat distribution and temperature profiles are measured and modeled based on the prevailing production conditions and geometric boundary conditions. Under quasi-stationary conditions, the thermoelectric system absorbs a heat radiation of 14.8 kW and feeds electrical power of 388 W into the power grid. The discussed model predicts the measured values with slight deviations.

  5. EUV processing investigation on state of the art coater/developer system

    NASA Astrophysics Data System (ADS)

    Shite, H.; Bradon, N.; Shimoaoki, T.; Kobayashi, S.; Nafus, K.; Kosugi, H.; Foubert, P.; Hermans, J.; Hendrickx, E.; Goethals, M.; Gronheid, R.; Jehoul, C.

    2011-04-01

    In order to further understand the processing sensitivities of the EUV resist process, TEL and imec have continued their collaborative efforts. For this work, TEL has delivered and installed the state of the art, CLEAN TRACK™ LITHIUS Pro™ -EUV coater/developer to the newly expanded imec 300mm cleanroom in Leuven, Belgium. The exposures detailed in this investigation were performed off-line to the ASML EUV Alpha Demo Tool (ADT) as well as on the inline ADT cluster with CLEAN TRACK™ ACT™ 12 coater/developer. As EUV feature sizes are reduced, is it apparent that there is a need for more precise processing control, as can be demonstrated in the LITHIUS Pro™ -EUV. In previous work from this collaboration1, initial investigations from the ACT™ 12 work showed reasonable results; however, certainly hardware and processing improvements are necessary for manufacturing quality processing performance. This work continues the investigation into CDU and defectivity performance, as well as improvements to the process with novel techniques such as advanced defect reduction (ADR), pattern collapse mitigation with FIRM™Extreme and resolution improvement with tetrabutylammoniumhydroxide (TBAH).

  6. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and

  7. Development of Energy Models for Production Systems and Processes to Inform Environmentally Benign Decision-Making

    NASA Astrophysics Data System (ADS)

    Diaz-Elsayed, Nancy

    Between 2008 and 2035 global energy demand is expected to grow by 53%. While most industry-level analyses of manufacturing in the United States (U.S.) have traditionally focused on high energy consumers such as the petroleum, chemical, paper, primary metal, and food sectors, the remaining sectors account for the majority of establishments in the U.S. Specifically, of the establishments participating in the Energy Information Administration's Manufacturing Energy Consumption Survey in 2006, the non-energy intensive" sectors still consumed 4*109 GJ of energy, i.e., one-quarter of the energy consumed by the manufacturing sectors, which is enough to power 98 million homes for a year. The increasing use of renewable energy sources and the introduction of energy-efficient technologies in manufacturing operations support the advancement towards a cleaner future, but having a good understanding of how the systems and processes function can reduce the environmental burden even further. To facilitate this, methods are developed to model the energy of manufacturing across three hierarchical levels: production equipment, factory operations, and industry; these methods are used to accurately assess the current state and provide effective recommendations to further reduce energy consumption. First, the energy consumption of production equipment is characterized to provide machine operators and product designers with viable methods to estimate the environmental impact of the manufacturing phase of a product. The energy model of production equipment is tested and found to have an average accuracy of 97% for a product requiring machining with a variable material removal rate profile. However, changing the use of production equipment alone will not result in an optimal solution since machines are part of a larger system. Which machines to use, how to schedule production runs while accounting for idle time, the design of the factory layout to facilitate production, and even the

  8. Low cost solar array project: Experimental process system development unit for producing semiconductor-grade silicon using silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design, fabrication, and installation of an experimental process system development unit (EPSDU) were analyzed. Supporting research and development were performed to provide an information data base usable for the EPSDU and for technological design and economical analysis for potential scale-up of the process. Iterative economic analyses were conducted for the estimated product cost for the production of semiconductor grade silicon in a facility capable of producing 1000-MT/Yr.

  9. Interactions between glia, the immune system and pain processes during early development.

    PubMed

    Barr, Gordon A; Hunter, Deirtra A

    2014-12-01

    Pain is a serious problem for infants and children and treatment options are limited. Moreover, infants born prematurely or hospitalized for illness likely have concurrent infection that activates the immune system. It is now recognized that the immune system in general and glia in particular influence neurotransmission and that the neural bases of pain are intimately connected to immune function. We know that injuries that induce pain activate immune function and suppressing the immune system alleviates pain. Despite this advance in our understanding, virtually nothing is known of the role that the immune system plays in pain processing in infants and children, even though pain is a serious clinical issue in pediatric medicine. This brief review summarizes the existing data on immune-neural interactions in infants, providing evidence for the immaturity of these interactions.

  10. Flat-plate solar array project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The process technology for the manufacture of semiconductor-grade silicon in a large commercial plant by 1986, at a price less than $14 per kilogram of silicon based on 1975 dollars is discussed. The engineering design, installation, checkout, and operation of an Experimental Process System Development unit was discussed. Quality control of scaling-up the process and an economic analysis of product and production costs are discussed.

  11. Powder towpreg process development

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1991-01-01

    The process for dry powder impregnation of carbon fiber tows being developed at LaRC overcomes many of the difficulties associated with melt, solution, and slurry prepregging. In the process, fluidized powder is deposited on spread tow bundles and fused to the fibers by radiant heating. Impregnated tows have been produced for preform, weaving, and composite materials applications. Design and operating data correlations were developed for scale up of the process to commercial operation. Bench scale single tow experiments at tow speeds up to 50 cm/sec have demonstrated that the process can be controlled to produce weavable towpreg. Samples were woven and molded into preform material of good quality.

  12. The Award for the Development of Ion Exchange Systems for Food Processing

    NASA Astrophysics Data System (ADS)

    Yao, Eiya

    In the food industry, ion exchange resins have been used not only for water treatment, but also for the purification of foodstuff itself. Here I will introduce some topics in the development and improvement of ion exchange systems for food proccssing that I have worked on.

  13. Development of a new flux map processing code for moveable detector system in PWR

    SciTech Connect

    Li, W.; Lu, H.; Li, J.; Dang, Z.; Zhang, X.

    2013-07-01

    This paper presents an introduction to the development of the flux map processing code MAPLE developed by China Nuclear Power Technology Research Institute (CNPPJ), China Guangdong Nuclear Power Group (CGN). The method to get the three-dimensional 'measured' power distribution according to measurement signal has also been described. Three methods, namely, Weight Coefficient Method (WCM), Polynomial Expand Method (PEM) and Thin Plane Spline (TPS) method, have been applied to fit the deviation between measured and predicted results for two-dimensional radial plane. The measured flux map data of the LINGAO nuclear power plant (NPP) is processed using MAPLE as a test case to compare the effectiveness of the three methods, combined with a 3D neutronics code COCO. Assembly power distribution results show that MAPLE results are reasonable and satisfied. More verification and validation of the MAPLE code will be carried out in future. (authors)

  14. Advanced multilateration theory, software development, and data processing: The MICRODOT system

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Gallagher, J. F.; Vonroos, O. H.

    1976-01-01

    The process of geometric parameter estimation to accuracies of one centimeter, i.e., multilateration, is defined and applications are listed. A brief functional explanation of the theory is presented. Next, various multilateration systems are described in order of increasing system complexity. Expected systems accuracy is discussed from a general point of view and a summary of the errors is listed. An outline of the design of a software processing system for multilateration, called MICRODOT, is presented next. The links of this software, which can be used for multilateration data simulations or operational data reduction, are examined on an individual basis. Functional flow diagrams are presented to aid in understanding the software capability. MICRODOT capability is described with respect to vehicle configurations, interstation coordinate reduction, geophysical parameter estimation, and orbit determination. Numerical results obtained from MICRODOT via data simulations are displayed both for hypothetical and real world vehicle/station configurations such as used in the GEOS-3 Project. These simulations show the inherent power of the multilateration procedure.

  15. Development and Evaluation of a Diagnostic Documentation Support System using Knowledge Processing

    NASA Astrophysics Data System (ADS)

    Makino, Kyoko; Hayakawa, Rumi; Terai, Koichi; Fukatsu, Hiroshi

    In this paper, we will introduce a system which supports creating diagnostic reports. Diagnostic reports are documents by doctors of radiology describing the existence and nonexistence of abnormalities from the inspection images, such as CT and MRI, and summarize a patient's state and disease. Our system indicates insufficiencies in these reports created by younger doctors, by using knowledge processing based on a medical knowledge dictionary. These indications are not only clerical errors, but the system also analyzes the purpose of the inspection and determines whether a comparison with a former inspection is required, or whether there is any shortage in description. We verified our system by using actual data of 2,233 report pairs, a pair comprised of a report written by a younger doctor and a check result of the report by an experienced doctor. The results of the verification showed that the rules of string analysis for detecting clerical errors and sentence wordiness obtained a recall of over 90% and a precision of over 75%. Moreover, the rules based on a medical knowledge dictionary for detecting the lack of required comparison with a former inspection and the shortage in description for the inspection purpose obtained a recall of over 70%. From these results, we confirmed that our system contributes to the quality improvement of diagnostic reports. We expect that our system can comprehensively support diagnostic documentations by cooperating with the interface which refers to inspection images or past reports.

  16. Facilitating the Specification Capture and Transformation Process in the Development of Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Filho, Aluzio Haendehen; Caminada, Numo; Haeusler, Edward Hermann; vonStaa, Arndt

    2004-01-01

    To support the development of flexible and reusable MAS, we have built a framework designated MAS-CF. MAS-CF is a component framework that implements a layered architecture based on contextual composition. Interaction rules, controlled by architecture mechanisms, ensure very low coupling, making possible the sharing of distributed services in a transparent, dynamic and independent way. These properties propitiate large-scale reuse, since organizational abstractions can be reused and propagated to all instances created from a framework. The objective is to reduce complexity and development time of multi-agent systems through the reuse of generic organizational abstractions.

  17. Advanced development of a pressurized ash agglomerating fluidized-bed coal gasification system: Topical report, Process analysis, FY 1983

    SciTech Connect

    1987-07-31

    KRW Energy Systems, Inc., is engaged in the continuing development of a pressurized, fluidized-bed gasification process at its Waltz Mill Site in Madison, Pennsylvania. The overall objective of the program is to demonstrate the viability of the KRW process for the environmentally-acceptable production of low- and medium-Btu fuel gas from a variety of fossilized carbonaceous feedstocks and industrial fuels. This report presents process analysis of the 24 ton-per-day Process Development Unit (PDU) operations and is a continuation of the process analysis work performed in 1980 and 1981. Included is work performed on PDU process data; gasification; char-ash separation; ash agglomeration; fines carryover, recycle, and consumption; deposit formation; materials; and environmental, health, and safety issues. 63 figs., 43 tabs.

  18. Development of an advanced spacecraft water and waste materials processing system

    NASA Technical Reports Server (NTRS)

    Murray, R. W.; Schelkopf, J. D.; Middleton, R. L.

    1975-01-01

    An Integrated Waste Management-Water System (WM-WS) which uses radioisotopes for thermal energy is described and results of its trial in a 4-man, 180 day simulated space mission are presented. It collects urine, feces, trash, and wash water in zero gravity, processes the wastes to a common evaporator, distills and catalytically purifies the water, and separates and incinerates the solid residues using little oxygen and no chemical additives or expendable filters. Technical details on all subsystems are given along with performance specifications. Data on recovered water and heat loss obtained in test trials are presented. The closed loop incinerator and other projects underway to increase system efficiency and capacity are discussed.

  19. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    SciTech Connect

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright; Richard D. Boardman

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25-1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  20. Biomass Torrefaction Process Review and Moving Bed Torrefaction System Model Development

    SciTech Connect

    Jaya Shakar Tumuluru; Shahab Sokhansanj; Christopher T. Wright

    2010-08-01

    Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300°C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200–230ºC and 270–280ºC. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, producing a final product that will have a lower mass but a higher heating value. An important aspect of research is to establish a degree of torrefaction where gains in heating value offset the loss of mass. There is a lack of literature on torrefaction reactor designs and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed for different capacities, designing the heat loads and gas flow rates, and developing an interactive excel sheet where the user can define design specifications. In this report, 25–1000 kg/hr are used in equations for the design of the torrefier, examples of calculations, and specifications for the torrefier.

  1. Development of a prototype spatial information processing system for hydrologic research

    NASA Technical Reports Server (NTRS)

    Sircar, Jayanta K.

    1991-01-01

    Significant advances have been made in the last decade in the areas of Geographic Information Systems (GIS) and spatial analysis technology, both in hardware and software. Science user requirements are so problem specific that currently no single system can satisfy all of the needs. The work presented here forms part of a conceptual framework for an all-encompassing science-user workstation system. While definition and development of the system as a whole will take several years, it is intended that small scale projects such as the current work will address some of the more short term needs. Such projects can provide a quick mechanism to integrate tools into the workstation environment forming a larger, more complete hydrologic analysis platform. Described here are two components that are very important to the practical use of remote sensing and digital map data in hydrology. Described here is a graph-theoretic technique to rasterize elevation contour maps. Also described is a system to manipulate synthetic aperture radar (SAR) data files and extract soil moisture data.

  2. Development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements

    NASA Technical Reports Server (NTRS)

    Rey, Charles A.

    1991-01-01

    The development of high temperature containerless processing equipment and the design and evaluation of associated systems required for microgravity materials processing and property measurements are discussed. Efforts were directed towards the following task areas: design and development of a High Temperature Acoustic Levitator (HAL) for containerless processing and property measurements at high temperatures; testing of the HAL module to establish this technology for use as a positioning device for microgravity uses; construction and evaluation of a brassboard hot wall Acoustic Levitation Furnace; construction and evaluation of a noncontact temperature measurement (NCTM) system based on AGEMA thermal imaging camera; construction of a prototype Division of Amplitude Polarimetric Pyrometer for NCTM of levitated specimens; evaluation of and recommendations for techniques to control contamination in containerless materials processing chambers; and evaluation of techniques for heating specimens to high temperatures for containerless materials experimentation.

  3. Improving the development of event-driven control systems in the batch processing industry. A case study.

    PubMed

    Sanchez, A; Rotstein, G; Alsop, N; Bromberg, J P; Gollain, C; Sorensen, S; Macchietto, S; Jakeman, C

    2002-07-01

    This paper presents the results of an academia-industry collaborative project whose main objective was to test novel techniques for the development of event-driven control systems in the batch processing (e.g., pharmaceutical, fine chemicals, food) industries. Proposed techniques build upon industrial standards and focus on (i) formal synthesis of phase control logic and its automatic translation into procedural code, and (ii) verification of the complete discrete-event control system via dynamic simulation. In order to test the techniques in an engineering environment, a complete discrete-event control system was produced for a benchmark batch process plant based on a standard development method employed by one of the industrial partners. The control system includes functional process specification, control architecture, distributed control system (DCS) proprietary programming code for procedural control at equipment, unit, and process cell levels, and human-machine interfaces: A technical assessment of the development method and the obtained control system was then carried out. Improvements were suggested using the proposed techniques in the specification, code generation and, verification steps. The project assessed the impact of these techniques from both an engineering and economic point of view. Results suggest that the introduction of computer aided engineering (CAE) practices based on the benchmarked techniques and a structured approach could effect a 75% reduction of errors produced in the development process. This translates into estimated overall savings of 7% for green-field projects. Figures were compared with other partners' experience. It is expected that the work load on a given project will shift, increasing the load on process engineers during the specification stage and decreasing the load on the software engineers during the code writing. PMID:12160348

  4. Processing requirements of secure C3/I and battle management systems - Development of Gemini trusted multiple microcomputer base

    NASA Astrophysics Data System (ADS)

    Tao, T. F.; Schell, R. R.

    The present investigation is concerned with the potential applications of trusted computer system technologies in space. It is suggested that the rapidly expanding roles of new space defense missions will require space-borne command, control, communication, intelligence, and battle management (C2/I-BM) systems. The trusted computer system technology can be extended to develop new computer architectures which are able to support the broader requirements of C3/I-BM processing. The Gemini Trusted Multiple Microcomputer Base product is being developed to meet the demanding requirements and to support simultaneously the multiple capabilities. Attention is given to recent important events of trusted computer system developments, and to the Gemini system architecture.

  5. Volcanic alert system (VAS) developed during the 2011-2014 El Hierro (Canary Islands) volcanic process

    NASA Astrophysics Data System (ADS)

    García, Alicia; Berrocoso, Manuel; Marrero, José M.; Fernández-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Ortiz, Ramón

    2014-06-01

    The 2011 volcanic unrest at El Hierro Island illustrated the need for a Volcanic Alert System (VAS) specifically designed for the management of volcanic crises developing after long repose periods. The VAS comprises the monitoring network, the software tools for analysis of the monitoring parameters, the Volcanic Activity Level (VAL) management, and the assessment of hazard. The VAS presented here focuses on phenomena related to moderate eruptions, and on potentially destructive volcano-tectonic earthquakes and landslides. We introduce a set of new data analysis tools, aimed to detect data trend changes, as well as spurious signals related to instrumental failure. When data-trend changes and/or malfunctions are detected, a watchdog is triggered, issuing a watch-out warning (WOW) to the Monitoring Scientific Team (MST). The changes in data patterns are then translated by the MST into a VAL that is easy to use and understand by scientists, technicians, and decision-makers. Although the VAS was designed specifically for the unrest episodes at El Hierro, the methodologies may prove useful at other volcanic systems.

  6. An overview of the Software Development Process for the NASA Langley Atmospheric Data Center Archive Next Generation system

    NASA Astrophysics Data System (ADS)

    Piatko, P.; Perez, J.; Kinney, J. B.

    2013-12-01

    The Atmospheric Science Data Center (ASDC) at NASA Langley Research Center is responsible for the archive and distribution of Earth science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. The ASDC has developed and implemented the Archive Next Generation (ANGe) system, a state-of-the-art data ingest, archival, and distribution system to serve the atmospheric sciences data provider and user communities. The ANGe project follows a software development process that covers the full life-cycle of the system, from initial requirements to deployment to production to long-term maintenance of the software. The project uses several tools to support the different stages of the process, such as Subversion for source code control, JIRA for change management, Confluence for documentation and collaboration, and Bamboo for continuous integration. Based on our experience with developing ANGe and other projects at the ASDC, we also provide support for local science projects by setting up Subversion repositories and tools such as Trac, and providing training and support on their use. An overview of the software development process and the tools used to support it will be presented.

  7. The process of development of a prioritization tool for a clinical decision support build within a computerized provider order entry system: Experiences from St Luke's Health System.

    PubMed

    Wolf, Matthew; Miller, Suzanne; DeJong, Doug; House, John A; Dirks, Carl; Beasley, Brent

    2016-09-01

    To establish a process for the development of a prioritization tool for a clinical decision support build within a computerized provider order entry system and concurrently to prioritize alerts for Saint Luke's Health System. The process of prioritizing clinical decision support alerts included (a) consensus sessions to establish a prioritization process and identify clinical decision support alerts through a modified Delphi process and (b) a clinical decision support survey to validate the results. All members of our health system's physician quality organization, Saint Luke's Care as well as clinicians, administrators, and pharmacy staff throughout Saint Luke's Health System, were invited to participate in this confidential survey. The consensus sessions yielded a prioritization process through alert contextualization and associated Likert-type scales. Utilizing this process, the clinical decision support survey polled the opinions of 850 clinicians with a 64.7 percent response rate. Three of the top rated alerts were approved for the pre-implementation build at Saint Luke's Health System: Acute Myocardial Infarction Core Measure Sets, Deep Vein Thrombosis Prophylaxis within 4 h, and Criteria for Sepsis. This study establishes a process for developing a prioritization tool for a clinical decision support build within a computerized provider order entry system that may be applicable to similar institutions. PMID:25814483

  8. Low cost solar array project production process and equipment task: A Module Experimental Process System Development Unit (MEPSDU)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Several major modifications were made to the design presented at the PDR. The frame was deleted in favor of a "frameless" design which will provide a substantially improved cell packing factor. Potential shaded cell damage resulting from operation into a short circuit can be eliminated by a change in the cell series/parallel electrical interconnect configuration. The baseline process sequence defined for the MEPSON was refined and equipment design and specification work was completed. SAMICS cost analysis work accelerated, format A's were prepared and computer simulations completed. Design work on the automated cell interconnect station was focused on bond technique selection experiments.

  9. Development and verification of signal processing system of avalanche photo diode for the active shields onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Ohno, M.; Kawano, T.; Edahiro, I.; Shirakawa, H.; Ohashi, N.; Okada, C.; Habata, S.; Katsuta, J.; Tanaka, Y.; Takahashi, H.; Mizuno, T.; Fukazawa, Y.; Murakami, H.; Kobayashi, S.; Miyake, K.; Ono, K.; Kato, Y.; Furuta, Y.; Murota, Y.; Okuda, K.; Wada, Y.; Nakazawa, K.; Mimura, T.; Kataoka, J.; Ichinohe, Y.; Uchida, Y.; Katsuragawa, M.; Yoneda, H.; Sato, G.; Sato, R.; Kawaharada, M.; Harayama, A.; Odaka, H.; Hayashi, K.; Ohta, M.; Watanabe, S.; Kokubun, M.; Takahashi, T.; Takeda, S.; Kinoshita, M.; Yamaoka, K.; Tajima, H.; Yatsu, Y.; Uchiyama, H.; Saito, S.; Yuasa, T.; Makishima, K.

    2016-09-01

    The hard X-ray Imager and Soft Gamma-ray Detector onboard ASTRO-H demonstrate high sensitivity to hard X-ray (5-80 keV) and soft gamma-rays (60-600 keV), respectively. To reduce the background, both instruments are actively shielded by large, thick Bismuth Germanate scintillators. We have developed the signal processing system of the avalanche photodiode in the BGO active shields and have demonstrated its effectiveness after assembly in the flight model of the HXI/SGD sensor and after integration into the satellite. The energy threshold achieved is about 150 keV and anti-coincidence efficiency for cosmic-ray events is almost 100%. Installed in the BGO active shield, the developed signal processing system successfully reduces the room background level of the main detector.

  10. Develop Recovery Systems for Separations of Salts from Process Streams for use in Advanced Life Support System

    NASA Technical Reports Server (NTRS)

    Colon, Guillermo

    1998-01-01

    The main objectives of this project were the development of a four-compartment electrolytic cell using high selective membranes to remove nitrate from crop residue leachate and convert it to nitric acid, and the development of an six compartment electrodialysis cell to remove selectively sodium from urine wastes. The recovery of both plant inedible biomass and human wastes nutrients to sustain a biomass production system are important aspects in the development of a controlled ecological life support system (CELSS) to provide the basic human needs required for life support during long term space missions. A four-compartment electrolytic cell has been proposed to remove selectively nitrate from crop residue and to convert it to nitric acid, which is actually used in the NASA-KSC Controlled Ecological Life Support System to control the pH of the aerobic bioreactors and biomass production chamber. Human activities in a closed system require large amount of air, water and minerals to sustain life and also generate wastes. Before using human wastes as nutrients, these must be treated to reduce organic content and to remove some minerals which have adverse effects on plant growth. Of all the minerals present in human urine, sodium chloride (NACl) is the only one that can not be used as nutrient for most plants. Human activities also requires sodium chloride as part of the diet. Therefore, technology to remove and recover sodium chloride from wastes is highly desirable. A six-compartment electrodialysis cell using high selective membranes has been proposed to remove and recover NaCl from human urine.

  11. Silicon Web Process Development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Hopkins, R. H.; Mchugh, J. P.; Hill, F. E.; Heimlich, M. E.; Driggers, J. M.

    1978-01-01

    Progress in the development of techniques to grow silicon web at 25 wq cm/min output rate is reported. Feasibility of web growth with simultaneous melt replenishment is discussed. Other factors covered include: (1) tests of aftertrimmers to improve web width; (2) evaluation of growth lid designs to raise speed and output rate; (3) tests of melt replenishment hardware; and (4) investigation of directed gas flow systems to control unwanted oxide deposition in the system and to improve convective cooling of the web. Compatibility with sufficient solar cell performance is emphasized.

  12. Development Status of a CVD System to Deposit Tungsten onto UO2 Powder via the WCI6 Process

    NASA Technical Reports Server (NTRS)

    Mireles, O. R.; Kimberlin, A.; Broadway, J.; Hickman, R.

    2014-01-01

    Nuclear Thermal Propulsion (NTP) is under development for deep space exploration. NTP's high specific impulse (> 850 second) enables a large range of destinations, shorter trip durations, and improved reliability. W-60vol%UO2 CERMET fuel development efforts emphasize fabrication, performance testing and process optimization to meet service life requirements. Fuel elements must be able to survive operation in excess of 2850 K, exposure to flowing hydrogen (H2), vibration, acoustic, and radiation conditions. CTE mismatch between W and UO2 result in high thermal stresses and lead to mechanical failure as a result UO2 reduction by hot hydrogen (H2) [1]. Improved powder metallurgy fabrication process control and mitigated fuel loss can be attained by coating UO2 starting powders within a layer of high density tungsten [2]. This paper discusses the advances of a fluidized bed chemical vapor deposition (CVD) system that utilizes the H2-WCl6 reduction process.

  13. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research.

    PubMed

    Tang, Qi-Yi; Zhang, Chuan-Xi

    2013-04-01

    A comprehensive but simple-to-use software package called DPS (Data Processing System) has been developed to execute a range of standard numerical analyses and operations used in experimental design, statistics and data mining. This program runs on standard Windows computers. Many of the functions are specific to entomological and other biological research and are not found in standard statistical software. This paper presents applications of DPS to experimental design, statistical analysis and data mining in entomology.

  14. Evaluating and Understanding Parameterized Convective Processes and Their Role in the Development of Mesoscale Precipitation Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, J. Michael; Kain, John S.

    1996-01-01

    Research efforts focused on numerical simulations of two convective systems with the Penn State/NCAR mesoscale model. The first of these systems was tropical cyclone Irma, which occurred in 1987 in Australia's Gulf of Carpentaria during the AMEX field program. Comparison simulations of this system were done with two different convective parameterization schemes (CPS's), the Kain-Fritsch (KF) and the Betts-Miller (BM) schemes. The second system was the June 10-11, 1985 squall line simulation, which occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. Simulations of this system using the KF scheme were examined in detail.

  15. Evaluating and Understanding Parameterized Convective Processes and Their Role in the Development of Mesoscale Precipitation Systems

    NASA Technical Reports Server (NTRS)

    Fritsch, J. Michael (Principal Investigator); Kain, John S.

    1995-01-01

    Research efforts during the first year focused on numerical simulations of two convective systems with the Penn State/NCAR mesoscale model. The first of these systems was tropical cyclone Irma, which occurred in 1987 in Australia's Gulf of Carpentaria during the AMEX field program. Comparison simulations of this system were done with two different convective parameterization schemes (CPS's), the Kain-Fritsch (1993 - KF) and the Betts-Miller (Betts 1986- BM) schemes. The second system was the June 10-11 1985 squall line simulation, which occurred over the Kansas-Oklahoma region during the PRE-STORM experiment. Simulations of this system using the KF scheme were examined in detail.

  16. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  17. Clementine Sensor Processing System

    NASA Technical Reports Server (NTRS)

    Feldstein, A. A.

    1993-01-01

    The design of the DSPSE Satellite Controller (DSC) is baselined as a single-string satellite controller. The DSC performs two main functions: health and maintenance of the spacecraft; and image capture, storage, and playback. The DSC contains two processors: a radiation-hardened Mil-Std-1750, and a commercial R3000. The Mil-Std-1750 processor performs all housekeeping operations, while the R3000 is mainly used to perform the image processing functions associated with the navigation functions, as well as performing various experiments. The DSC also contains a data handling unit (DHU) used to interface to various spacecraft imaging sensors and to capture, compress, and store selected images onto the solid-state data recorder. The development of the DSC evolved from several key requirements; the DSPSE satellite was to do the following: (1) have a radiation-hardened spacecraft control system and be immune to single-event upsets (SEU's); (2) use an R3000-based processor to run the star tracker software that was developed by SDIO (due to schedule and cost constraints, there was no time to port the software to a radiation-hardened processor); and (3) fly a commercial processor to verify its suitability for use in a space environment. In order to enhance the DSC reliability, the system was designed with multiple processing paths. These multiple processing paths provide for greater tolerance to various component failures. The DSC was designed so that all housekeeping processing functions are performed by either the Mil-Std-1750 processor or the R3000 processor. The image capture and storage is performed either by the DHU or the R3000 processor.

  18. Processing science and materials development

    NASA Astrophysics Data System (ADS)

    Gegel, Harold L.

    1988-08-01

    The development of advanced technologies for the fabrication of close-tolerance parts, in conjunction with the development of advanced materials, plays a key role in the design and manufacturing of affordable aerospace systems. New process and product-design concepts must be evolved in parallel with the development of advanced materials for future systems in order to exploit the achievements being made in materials science and to tailor specific properties while simultaneously producing controlled geometrical shapes. A scientific description of production equipment and, in general, physical objects, media, fields, and interface and material-related phenomena requires theoretical models which are capable of predicting the response of the fabricating system to the initial inputs. The design of a product and the corresponding manufacturing process generally requires both deterministic models and expert systems which utilize designer intuition and logic in finding acceptable solutions. Reviewed here are some of the recent developments in process modeling as related primarily to metalworking systems and how they aid in the understanding of the role of computer and human expertise in modern computer-aided engineering (CAE).

  19. Development of a strategy for energy efficiency improvement in a Kraft process based on systems interactions analysis

    NASA Astrophysics Data System (ADS)

    Mateos-Espejel, Enrique

    The objective of this thesis is to develop, validate, and apply a unified methodology for the energy efficiency improvement of a Kraft process that addresses globally the interactions of the various process systems that affect its energy performance. An implementation strategy is the final result. An operating Kraft pulping mill situated in Eastern Canada with a production of 700 adt/d of high-grade bleached pulp was the case study. The Pulp and Paper industry is Canada's premier industry. It is characterized by large thermal energy and water consumption. Rising energy costs and more stringent environmental regulations have led the industry to refocus its efforts toward identifying ways to improve energy and water conservation. Energy and water aspects are usually analyzed independently, but in reality they are strongly interconnected. Therefore, there is a need for an integrated methodology, which considers energy and water aspects, as well as the optimal utilization and production of the utilities. The methodology consists of four successive stages. The first stage is the base case definition. The development of a focused, reliable and representative model of an operating process is a prerequisite to the optimization and fine tuning of its energy performance. A four-pronged procedure has been developed: data gathering, master diagram, utilities systems analysis, and simulation. The computer simulation has been focused on the energy and water systems. The second stage corresponds to the benchmarking analysis. The benchmarking of the base case has the objectives of identifying the process inefficiencies and to establish guidelines for the development of effective enhancement measures. The studied process is evaluated by a comparison of its efficiency to the current practice of the industry and by the application of new energy and exergy content indicators. The minimum energy and water requirements of the process are also determined in this step. The third stage is

  20. Scaled Vitrification System III (SVS III) Process Development and Laboratory Tests at the West Valley Demonstration Project

    SciTech Connect

    V. Jain; S. M. Barnes; B. G. Bindi; R. A. Palmer

    2000-04-30

    At the West Valley Demonstration Project (WVDP),the Vitrification Facility (VF)is designed to convert the high-level radioactive waste (HLW)stored on the site to a stable glass for disposal at a Department of Energy (DOE)-specified federal repository. The Scaled Vitrification System III (SVS-III)verification tests were conducted between February 1995 and August 1995 as a supplemental means to support the vitrification process flowsheet, but at only one seventh the scale.During these tests,the process flowsheet was refined and optimized. The SVS-III test series was conducted with a focus on confirming the applicability of the Redox Forecasting Model, which was based on the Index of Feed Oxidation (IFO)developed during the Functional and Checkout Testing of Systems (FACTS)and SVS-I tests. Additional goals were to investigate the prototypical feed preparation cycle and test the new target glass composition. Included in this report are the basis and current designs of the major components of the Scale Vitrification System and the results of the SVS-III tests.The major subsystems described are the feed preparation and delivery, melter, and off-gas treatment systems. In addition,the correlation between the melter's operation and its various parameters;which included feed rate,cold cap coverage,oxygen reduction (redox)state of the glass,melter power,plenum temperature,and airlift analysis;were developed.

  1. Development of a Fully Automated Guided Wave System for In-Process Cure Monitoring of CFRP Composite Laminates

    NASA Technical Reports Server (NTRS)

    Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.; Yaun, Fuh-Gwo

    2016-01-01

    A guided wave-based in-process cure monitoring technique for carbon fiber reinforced polymer (CFRP) composites was investigated at NASA Langley Research Center. A key cure transition point (vitrification) was identified and the degree of cure was monitored using metrics such as amplitude and time of arrival (TOA) of guided waves. Using an automated system preliminarily developed in this work, high-temperature piezoelectric transducers were utilized to interrogate a twenty-four ply unidirectional composite panel fabricated from Hexcel (Registered Trademark) IM7/8552 prepreg during cure. It was shown that the amplitude of the guided wave increased sharply around vitrification and the TOA curve possessed an inverse relationship with degree of cure. The work is a first step in demonstrating the feasibility of transitioning the technique to perform in-process cure monitoring in an autoclave, defect detection during cure, and ultimately a closed-loop process control to maximize composite part quality and consistency.

  2. High-throughput downstream process development for cell-based products using aqueous two-phase systems.

    PubMed

    Zimmermann, Sarah; Gretzinger, Sarah; Schwab, Marie-Luise; Scheeder, Christian; Zimmermann, Philipp K; Oelmeier, Stefan A; Gottwald, Eric; Bogsnes, Are; Hansson, Mattias; Staby, Arne; Hubbuch, Jürgen

    2016-09-16

    As the clinical development of cell-based therapeutics has evolved immensely within the past years, downstream processing strategies become more relevant than ever. Aqueous two-phase systems (ATPS) enable the label-free, scalable, and cost-effective separation of cells, making them a promising tool for downstream processing of cell-based therapeutics. Here, we report the development of an automated robotic screening that enables high-throughput cell partitioning analysis in ATPS. We demonstrate that this setup enables fast and systematic investigation of factors influencing cell partitioning. Moreover, we examined and optimized separation conditions for the differentiable promyelocytic cell line HL-60 and used a counter-current distribution-model to investigate optimal separation conditions for a multi-stage purification process. Finally, we show that the separation of CD11b-positive and CD11b-negative HL-60 cells is possible after partial DMSO-mediated differentiation towards the granulocytic lineage. The modeling data indicate that complete peak separation is possible with 30 transfers, and >93% of CD11b-positive HL-60 cells can be recovered with >99% purity. The here described screening platform facilitates faster, cheaper, and more directed downstream process development for cell-based therapeutics and presents a powerful tool for translational research. PMID:27567679

  3. Review on Biomass Torrefaction Process and Product Properties and Design of Moving Bed Torrefaction System Model Development

    SciTech Connect

    Jaya Shankar Tumuluru; Christopher T. Wright; Shahab Sokhansanj

    2011-08-01

    A Review on Torrefaction Process and Design of Moving Bed Torrefaction System for Biomass Processing Jaya Shankar Tumuluru1, Shahab Sokhansanj2 and Christopher T. Wright1 Idaho National Laboratory Biofuels and Renewable Energy Technologies Department Idaho Falls, Idaho 83415 Oak Ridge National Laboratory Bioenergy Resource and Engineering Systems Group Oak Ridge, TN 37831 Abstract Torrefaction is currently developing as an important preprocessing step to improve the quality of biomass in terms of physical properties, and proximate and ultimate composition. Torrefaction is a slow heating of biomass in an inert or reduced environment to a maximum temperature of 300 C. Torrefaction can also be defined as a group of products resulting from the partially controlled and isothermal pyrolysis of biomass occurring in a temperature range of 200-230 C and 270-280 C. Thus, the process can also be called a mild pyrolysis as it occurs at the lower temperature range of the pyrolysis process. At the end of the torrefaction process, a solid uniform product with lower moisture content and higher energy content than raw biomass is produced. Most of the smoke-producing compounds and other volatiles are removed during torrefaction, which produces a final product that will have a lower mass but a higher heating value. There is a lack of literature on the design aspects of torrefaction reactor and a design sheet for estimating the dimensions of the torrefier based on capacity. This study includes (a) conducting a detailed review on the torrefaction of biomass in terms of understanding the process, product properties, off-gas compositions, and methods used, and (b) to design a moving bed torrefier, taking into account the basic fundamental heat and mass transfer calculations. Specific objectives include calculating the dimensions like diameter and height of the moving packed bed torrefier for different capacities ranging from 25-1000 kg/hr, designing the heat loads and gas flow rates, and

  4. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hill, F. E.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1980-01-01

    A barrier crucible design which consistently maintains melt stability over long periods of time was successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours. The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and operated successfully for 3.5 hours demonstrating the feasibility of semi-automated dendritic web growth. The sensitivity of the cost of sheet, to variations in capital equipment cost and recycling dendrites was calculated and it was shown that these factors have relatively little impact on sheet cost. Dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies.

  5. Development of Neural Systems for Processing Social Exclusion from Childhood to Adolescence

    ERIC Educational Resources Information Center

    Bolling, Danielle Z.; Pitskel, Naomi B.; Deen, Ben; Crowley, Michael J.; Mayes, Linda C.; Pelphrey, Kevin A.

    2011-01-01

    Adolescence is a period of development in which peer relationships become especially important. A computer-based game (Cyberball) has been used to explore the effects of social exclusion in adolescents and adults. The current functional magnetic resonance imaging (fMRI) study used Cyberball to extend prior work to the cross-sectional study of…

  6. Medical image processing system

    NASA Astrophysics Data System (ADS)

    Wang, Dezong; Wang, Jinxiang

    1994-12-01

    In this paper a medical image processing system is described. That system is named NAI200 Medical Image Processing System and has been appraised by Chinese Government. Principles and cases provided here. Many kinds of pictures are used in modern medical diagnoses, for example B-supersonic, X-ray, CT and MRI. Some times the pictures are not good enough for diagnoses. The noises interfere with real situation on these pictures. That means the image processing is needed. A medical image processing system is described in this paper. That system is named NAI200 Medical Image Processing System and has been appraised by Chinese Government. There are four functions in that system. The first part is image processing. More than thirty four programs are involved. The second part is calculating. The areas or volumes of single or multitissues are calculated. Three dimensional reconstruction is the third part. The stereo images of organs or tumors are reconstructed with cross-sections. The last part is image storage. All pictures can be transformed to digital images, then be stored in hard disk or soft disk. In this paper not only all functions of that system are introduced, also the basic principles of these functions are explained in detail. This system has been applied in hospitals. The images of hundreds of cases have been processed. We describe the functions combining real cases. Here we only introduce a few examples.

  7. Spitzer Telemetry Processing System

    NASA Technical Reports Server (NTRS)

    Stanboli, Alice; Martinez, Elmain M.; McAuley, James M.

    2013-01-01

    The Spitzer Telemetry Processing System (SirtfTlmProc) was designed to address objectives of JPL's Multi-mission Image Processing Lab (MIPL) in processing spacecraft telemetry and distributing the resulting data to the science community. To minimize costs and maximize operability, the software design focused on automated error recovery, performance, and information management. The system processes telemetry from the Spitzer spacecraft and delivers Level 0 products to the Spitzer Science Center. SirtfTlmProc is a unique system with automated error notification and recovery, with a real-time continuous service that can go quiescent after periods of inactivity. The software can process 2 GB of telemetry and deliver Level 0 science products to the end user in four hours. It provides analysis tools so the operator can manage the system and troubleshoot problems. It automates telemetry processing in order to reduce staffing costs.

  8. Volcanic Alert System (VAS) developed during the (2011-2013) El Hierro (Canary Islands) volcanic process

    NASA Astrophysics Data System (ADS)

    Ortiz, Ramon; Berrocoso, Manuel; Marrero, Jose Manuel; Fernandez-Ros, Alberto; Prates, Gonçalo; De la Cruz-Reyna, Servando; Garcia, Alicia

    2014-05-01

    In volcanic areas with long repose periods (as El Hierro), recently installed monitoring networks offer no instrumental record of past eruptions nor experience in handling a volcanic crisis. Both conditions, uncertainty and inexperience, contribute to make the communication of hazard more difficult. In fact, in the initial phases of the unrest at El Hierro, the perception of volcanic risk was somewhat distorted, as even relatively low volcanic hazards caused a high political impact. The need of a Volcanic Alert System became then evident. In general, the Volcanic Alert System is comprised of the monitoring network, the software tools for the analysis of the observables, the management of the Volcanic Activity Level, and the assessment of the threat. The Volcanic Alert System presented here places special emphasis on phenomena associated to moderate eruptions, as well as on volcano-tectonic earthquakes and landslides, which in some cases, as in El Hierro, may be more destructive than an eruption itself. As part of the Volcanic Alert System, we introduce here the Volcanic Activity Level which continuously applies a routine analysis of monitoring data (particularly seismic and deformation data) to detect data trend changes or monitoring network failures. The data trend changes are quantified according to the Failure Forecast Method (FFM). When data changes and/or malfunctions are detected, by an automated watchdog, warnings are automatically issued to the Monitoring Scientific Team. Changes in the data patterns are then translated by the Monitoring Scientific Team into a simple Volcanic Activity Level, that is easy to use and understand by the scientists and technicians in charge for the technical management of the unrest. The main feature of the Volcanic Activity Level is its objectivity, as it does not depend on expert opinions, which are left to the Scientific Committee, and its capabilities for early detection of precursors. As a consequence of the El Hierro

  9. Development of Conceptual Design Support Tool Founded on Formalization of Conceptual Design Process for Regenerative Life Support Systems

    NASA Astrophysics Data System (ADS)

    Miyajima, Hiroyuki; Yuhara, Naohiro

    Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.

  10. Development of Automatic Live Linux Rebuilding System with Flexibility in Science and Engineering Education and Applying to Information Processing Education

    NASA Astrophysics Data System (ADS)

    Sonoda, Jun; Yamaki, Kota

    We develop an automatic Live Linux rebuilding system for science and engineering education, such as information processing education, numerical analysis and so on. Our system is enable to easily and automatically rebuild a customized Live Linux from a ISO image of Ubuntu, which is one of the Linux distribution. Also, it is easily possible to install/uninstall packages and to enable/disable init daemons. When we rebuild a Live Linux CD using our system, we show number of the operations is 8, and the rebuilding time is about 33 minutes on CD version and about 50 minutes on DVD version. Moreover, we have applied the rebuilded Live Linux CD in a class of information processing education in our college. As the results of a questionnaires survey from our 43 students who used the Live Linux CD, we obtain that the our Live Linux is useful for about 80 percents of students. From these results, we conclude that our system is able to easily and automatically rebuild a useful Live Linux in short time.

  11. Development & Optimization of Materials and Processes for a Cost Effective Photoelectrochemical Hydrogen Production System. Final report

    SciTech Connect

    McFarland, Eric W

    2011-01-17

    The overall project objective was to apply high throughput experimentation and combinatorial methods together with novel syntheses to discover and optimize efficient, practical, and economically sustainable materials for photoelectrochemical production of bulk hydrogen from water. Automated electrochemical synthesis and photoelectrochemical screening systems were designed and constructed and used to study a variety of new photoelectrocatalytic materials. We evaluated photocatalytic performance in the dark and under illumination with or without applied bias in a high-throughput manner and did detailed evaluation on many materials. Significant attention was given to -Fe2O3 based semiconductor materials and thin films with different dopants were synthesized by co-electrodeposition techniques. Approximately 30 dopants including Al, Zn, Cu, Ni, Co, Cr, Mo, Ti, Pt, etc. were investigated. Hematite thin films doped with Al, Ti, Pt, Cr, and Mo exhibited significant improvements in efficiency for photoelectrochemical water splitting compared with undoped hematite. In several cases we collaborated with theorists who used density functional theory to help explain performance trends and suggest new materials. The best materials were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visual spectroscopy (UV-Vis), X-ray photoelectron spectroscopy (XPS). The photoelectrocatalytic performance of the thin films was evaluated and their incident photon

  12. Fabrication process development of SiC/superalloy composite sheet for exhaust system components

    NASA Technical Reports Server (NTRS)

    Cornie, J. A.; Cook, C. S.; Anderson, C. A.

    1976-01-01

    A chemical compatibility study was conducted between SiC filament and the following P/M matrix alloys: Waspaloy, Hastelloy-X, NiCrAlY, Ha-188, S-57, FeCrAlY, and Incoloy 800. None of the couples demonstrated sufficient chemical compatibility to withstand the minimum HIP consolidation temperatures (996 C) or intended application temperature of the composite (982 C). However, Waspaloy, Haynes 188, and Hastelloy-X were the least reactive with SiC of the candidate alloys. Chemical vapor deposited tungsten was shown to be an effective diffusion barrier between the superalloy matrix and SiC filament providing a defect-free coating of sufficient thickness. However, the coating breaks down when the tungsten is converted into intermetallic compounds by interdiffusion with matrix constituents. Waspaloy was demonstrated to be the most effective matrix alloy candidate in contact with the CVD tungsten barrier because of its relatively low growth rate constant of the intermediate compound and the lack of formation of Kirkendall voids at the matrix-barrier interface. Fabrication methods were developed for producing panels of uniaxial and angle ply composites utilizing CVD tungsten coated filament.

  13. Software Engineering Processes Used to Develop the NIF Integrated Computer Control System

    SciTech Connect

    Ludwigsen, A P; Carey, R W; Demaret, R D; Lagin, L J; Reddi, U P; Van Arsdall, P J

    2007-10-03

    We have developed a new target platform to study Laser Plasma Interaction in ignition-relevant condition at the Omega laser facility (LLE/Rochester)[1]. By shooting an interaction beam along the axis of a gas-filled hohlraum heated by up to 17 kJ of heater beam energy, we were able to create a millimeter-scale underdense uniform plasma at electron temperatures above 3 keV. Extensive Thomson scattering measurements allowed us to benchmark our hydrodynamic simulations performed with HYDRA [1]. As a result of this effort, we can use with much confidence these simulations as input parameters for our LPI simulation code pF3d [2]. In this paper, we show that by using accurate hydrodynamic profiles and full three-dimensional simulations including a realistic modeling of the laser intensity pattern generated by various smoothing options, fluid LPI theory reproduces the SBS thresholds and absolute reflectivity values and the absence of measurable SRS. This good agreement was made possible by the recent increase in computing power routinely available for such simulations.

  14. Industrial process surveillance system

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  15. Industrial Process Surveillance System

    DOEpatents

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  16. Industrial process surveillance system

    DOEpatents

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  17. Research and Development in the Computer and Information Sciences. Volume 2, Processing, Storage, and Output Requirements in Information Processing Systems: A Selective Literature Review.

    ERIC Educational Resources Information Center

    Stevens, Mary Elizabeth

    Areas of concern with respect to processing, storage, and output requirements of a generalized information processing system are considered. Special emphasis is placed on multiple-access systems. Problems of system management and control are discussed, including hierarchies of storage levels. Facsimile, digital, and mass random access storage…

  18. Problem Solving for Volatilizing Situation in Nursing: Developing Thinking Process Supporting System using NursingNAVI® Contents.

    PubMed

    Tsuru, Satoko; Wako, Fumiko; Omori, Miho; Sudo, Kumiko

    2015-01-01

    We have identified three foci of the nursing observation and nursing action respectively. Using these frameworks, we have developed the structured knowledge model for a number of diseases and medical interventions. We developed this structure based NursingNAVI® contents collaborated with some quality centered hospitals. Authors analysed the nursing care documentations of post-gastrectomy patients in light of the standardized nursing care plan in the "NursingNAVI®" developed by ourselves and revealed the "failure to observe" and "failure to document", which leaded to the volatility of the patients' data, conditions and some situation. This phenomenon should have been avoided if nurses had employed a standardized nursing care plan. So, we developed thinking process support system for planning, delivering, recording and evaluating in daily nursing using NursingNAVI® contents. A hospital decided to use NursingNAVI® contents in HIS. It was suggested that the system has availability for nursing OJT and time reduction of planning and recording without volatilizing situation.

  19. Process evaluation distributed system

    NASA Technical Reports Server (NTRS)

    Moffatt, Christopher L. (Inventor)

    2006-01-01

    The distributed system includes a database server, an administration module, a process evaluation module, and a data display module. The administration module is in communication with the database server for providing observation criteria information to the database server. The process evaluation module is in communication with the database server for obtaining the observation criteria information from the database server and collecting process data based on the observation criteria information. The process evaluation module utilizes a personal digital assistant (PDA). A data display module in communication with the database server, including a website for viewing collected process data in a desired metrics form, the data display module also for providing desired editing and modification of the collected process data. The connectivity established by the database server to the administration module, the process evaluation module, and the data display module, minimizes the requirement for manual input of the collected process data.

  20. Development of Fast Measurement System of Neutron Emission Profile Using a Digital Signal Processing Technique in JT-60U

    SciTech Connect

    Ishikawa, M.; Shinohara, K.; Itoga, T.; Okuji, T.; Nakhostin, M.; Baba, M.; Nishitani, T.

    2008-03-12

    Neutron emission profiles are routinely measured in JT-60U Tokamak. Stinbene neuron detectors (SNDs), which combine a Stilbene organic crystal scintillation detector (Stilbene detector) with an analog neutron-gamma pulse shape discrimination (PSD) circuit, have been used to measure neutron flux efficiently. Although the SND has many advantages as a neutron detector, the maximum count rate is limited up to {approx}1x 10{sup 5} counts/s due to the dead time of the analog PSD circuit. To overcome this issue, a digital signal processing (DSP) system using a Flash-ADC has been developed. In this system, anode signals from the photomultiplier of the Stilbene detector are fed to the Flash ADC and digitized. Then, the PSD between neutrons and gamma-rays are performed using software. The photomultiplier tube is also modified to suppress and correct gain fluctuation of the photomultiplier. The DSP system has been installed in the center channel of the vertical neutron collimator system in JT-60U and applied to measurements of neutron flux in JT-60U experiments. Neutron flux are successfully measured with count rate up to {approx}1x 10{sup 6} counts/s without the effect of pile up of detected pulses. The performance of the DSP system as a neutron detector is demonstrated.

  1. Low cost solar aray project: Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This phase consists of the engineering design, fabrication, assembly, operation, economic analysis, and process support R&D for an Experimental Process System Development Unit (EPSDU). The mechanical bid package was issued and the bid responses are under evaluation. Similarly, the electrical bid package was issued, however, responses are not yet due. The majority of all equipment is on order or has been received at the EPSDU site. The pyrolysis/consolidation process design package was issued. Preparation of process and instrumentation diagram for the free-space reactor was started. In the area of melting/consolidation, Kayex successfully melted chunk silicon and have produced silicon shot. The free-space reactor powder was successfully transported pneumatically from a storage bin to the auger feeder twenty-five feet up and was melted. The fluid-bed PDU has successfully operated at silane feed concentrations up to 21%. The writing of the operating manual has started. Overall, the design phase is nearing completion.

  2. Laser material processing system

    DOEpatents

    Dantus, Marcos

    2015-04-28

    A laser material processing system and method are provided. A further aspect of the present invention employs a laser for micromachining. In another aspect of the present invention, the system uses a hollow waveguide. In another aspect of the present invention, a laser beam pulse is given broad bandwidth for workpiece modification.

  3. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect

    Cerio, Frank

    2013-09-14

    was analyzed and improvements implemented to the Veeco PVD-AlN prototype system to establish a specification and baseline PVD-AlN films on sapphire and in parallel the evaluation of PVD AlN on silicon substrates began. In Phase II of the project a Beta tool based on a scaled-up process module capable of depositing uniform films on batches of 4”or 6” diameter substrates in a production worthy operation was developed and qualified. In Phase III, the means to increase the throughput of the PVD-AlN system was evaluated and focused primarily on minimizing the impact of the substrate heating and cooling times that dominated the overall cycle time.

  4. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Skutch, M. E.; Driggers, J. M.; Hopkins, R. H.

    1981-01-01

    The silicon web process takes advantage of natural crystallographic stabilizing forces to grow long, thin single crystal ribbons directly from liquid silicon. The ribbon, or web, is formed by the solidification of a liquid film supported by surface tension between two silicon filaments, called dendrites, which border the edges of the growing strip. The ribbon can be propagated indefinitely by replenishing the liquid silicon as it is transformed to crystal. The dendritic web process has several advantages for achieving low cost, high efficiency solar cells. These advantages are discussed.

  5. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics.

    PubMed

    Riveros, Raul E; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3+/-2.5nmrms to 5.7+/-0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  6. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics

    SciTech Connect

    Riveros, Raul E.; Yamaguchi, Hitomi; Mitsuishi, Ikuyuki; Takagi, Utako; Ezoe, Yuichiro; Kato, Fumiki; Sugiyama, Susumu; Yamasaki, Noriko; Mitsuda, Kazuhisa

    2010-06-20

    X-ray astronomy research is often limited by the size, weight, complexity, and cost of functioning x-ray optics. Micropore optics promises an economical alternative to traditional (e.g., glass or foil) x-ray optics; however, many manufacturing difficulties prevent micropore optics from being a viable solution. Ezoe et al. introduced microelectromechanical systems (MEMS) micropore optics having curvilinear micropores in 2008. Made by either deep reactive ion etching or x-ray lithography, electroforming, and molding (LIGA), MEMS micropore optics suffer from high micropore sidewall roughness (10-30nmrms) which, by current standards, cannot be improved. In this research, a new alternating magnetic-field-assisted finishing process was developed using a mixture of ferrofluid and microscale abrasive slurry. A machine was built, and a set of working process parameters including alternating frequency, abrasive size, and polishing time was selected. A polishing experiment on a LIGA-fabricated MEMS micropore optic was performed, and a change in micropore sidewall roughness of 9.3{+-}2.5nmrms to 5.7{+-}0.7nmrms was measured. An improvement in x-ray reflectance was also seen. This research shows the feasibility and confirms the effects of this new polishing process on MEMS micropore optics.

  7. Automated system for the on-line monitoring of powder blending processes using near-infrared spectroscopy. Part I. System development and control.

    PubMed

    Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K

    1996-03-01

    An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity. PMID:8738184

  8. Silicon web process development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Blais, P. D.; Davis, J. R., Jr.

    1977-01-01

    Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. The two main thermal models for the dendritic growth process were completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, was refined to give greater precision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, was completed. Dendritic web samples were fabricated into solar cells using a standard configuration and a standard process for a N(+) -P-P(+) configuration. The detailed engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities.

  9. Development of metallization process

    NASA Astrophysics Data System (ADS)

    Garcia, A., III

    1983-04-01

    Solar cells were produced using a Mo/Sn/TiH screen printed paste with a lead/borosilicate frit that are electrically comparable to control silver cells. The process is currently unsuccessful because the soldering of interconnects to these cells has proved difficult. Future work will investigate using CO instead of H2 as the reducing gas and putting an ITO coating on the cell prior to metallization.

  10. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  11. SIRU development. Volume 1: System development

    NASA Technical Reports Server (NTRS)

    Gilmore, J. P.; Cooper, R. J.

    1973-01-01

    A complete description of the development and initial evaluation of the Strapdown Inertial Reference Unit (SIRU) system is reported. System development documents the system mechanization with the analytic formulation for fault detection and isolation processing structure; the hardware redundancy design and the individual modularity features; the computational structure and facilities; and the initial subsystem evaluation results.

  12. Application of high-throughput mini-bioreactor system for systematic scale-down modeling, process characterization, and control strategy development.

    PubMed

    Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2015-01-01

    High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization.

  13. Technology development life cycle processes.

    SciTech Connect

    Beck, David Franklin

    2013-05-01

    This report and set of appendices are a collection of memoranda originally drafted in 2009 for the purpose of providing motivation and the necessary background material to support the definition and integration of engineering and management processes related to technology development. At the time there was interest and support to move from Capability Maturity Model Integration (CMMI) Level One (ad hoc processes) to Level Three. As presented herein, the material begins with a survey of open literature perspectives on technology development life cycles, including published data on %E2%80%9Cwhat went wrong.%E2%80%9D The main thrust of the material presents a rational expose%CC%81 of a structured technology development life cycle that uses the scientific method as a framework, with further rigor added from adapting relevant portions of the systems engineering process. The material concludes with a discussion on the use of multiple measures to assess technology maturity, including consideration of the viewpoint of potential users.

  14. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  15. The development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1992--March 1992

    SciTech Connect

    Not Available

    1992-07-16

    PETC has implemented a number of advanced combustion research projects that will lead to the establishment of a broad, commercially acceptable engineering data base for the advancement of coal as the fuel of choice for boilers, furnaces, and process heaters. Vortec Corporation`s Coal-Fired Combustion System for Industrial Process Heating Applications has been selected for Phase III development under contract DE-AC22-91PC91161. This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting, recycling, and refining processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase HI research effort is being focused on the development of a process heater system to be used for producing glass frits and wool fiber from boiler and incinerator ashes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. The economic evaluation of commercial scale CMS processes has begun. In order to accurately estimate the cost of the primary process vessels, preliminary designs for 25, 50, and 100 ton/day systems have been started under Task 1. This data will serve as input data for life cycle cost analysis performed as part of techno-economic evaluations. The economic evaluations of commercial CMS systems will be an integral part of the commercialization plan.

  16. Developing a model system for studying the ozone processing of atmospheric aerosols by following changes in surface properties

    NASA Astrophysics Data System (ADS)

    Gonzalez-Labrada, Erick

    Atmospheric aerosols have a significant organic composition as determined by field measurement studies. This organic material is released to the atmosphere from both natural and anthropogenic sources, such as wind bursting of the ocean surface, car exhausts, and meat cooking, among others. An inverted micelle model has been proposed in order to explain the high concentration of organic compounds in aerosol particles. The model describes an organic film coating the air-liquid interface of an aqueous aerosol core. Chemical processing of this organic film by atmospheric oxidants (such as OH radicals, O3, and NO3) through heterogeneous and multiphase reactions can activate the aerosol to participate in atmospheric chemistry. After reaction, the particle has an increased role in the absorption and scattering of incoming solar radiation and cloud formation. Another consequence of this oxidation is the decrease of the atmospheric budget of gas-phase trace species, as well as the formation of volatile products. Several studies have proposed that the ozonolysis of organic films in aerosols takes place mainly at the surface. Therefore, the objective of this research was to develop a suitable model system for following the reaction through quantitative changes of a property inherent to the surface. Several attempts were made to examine the ozonolysis of organic monolayers at either solid or liquid surfaces. The studied monolayers contained unsaturated organic compounds as the only component or as part of a binary mixture with saturated compounds. The study of the ozone processing of monolayers deposited on solid substrates revealed information about changes in the hydrophobic character of the surface that occurred because of the reaction. On the other hand, the processing of a monolayer spread on a pendant drop allowed a real-time monitoring of surface pressure changes. This permitted a kinetic study of the reaction that yielded parameters related exclusively to processes

  17. Intelligent Work Process Engineering System

    NASA Technical Reports Server (NTRS)

    Williams, Kent E.

    2003-01-01

    Optimizing performance on work activities and processes requires metrics of performance for management to monitor and analyze in order to support further improvements in efficiency, effectiveness, safety, reliability and cost. Information systems are therefore required to assist management in making timely, informed decisions regarding these work processes and activities. Currently information systems regarding Space Shuttle maintenance and servicing do not exist to make such timely decisions. The work to be presented details a system which incorporates various automated and intelligent processes and analysis tools to capture organize and analyze work process related data, to make the necessary decisions to meet KSC organizational goals. The advantages and disadvantages of design alternatives to the development of such a system will be discussed including technologies, which would need to bedesigned, prototyped and evaluated.

  18. Annotation methods to develop and evaluate an expert system based on natural language processing in electronic medical records.

    PubMed

    Gicquel, Quentin; Tvardik, Nastassia; Bouvry, Côme; Kergourlay, Ivan; Bittar, André; Segond, Frédérique; Darmoni, Stefan; Metzger, Marie-Hélène

    2015-01-01

    The objective of the SYNODOS collaborative project was to develop a generic IT solution, combining a medical terminology server, a semantic analyser and a knowledge base. The goal of the project was to generate meaningful epidemiological data for various medical domains from the textual content of French medical records. In the context of this project, we built a care pathway oriented conceptual model and corresponding annotation method to develop and evaluate an expert system's knowledge base. The annotation method is based on a semi-automatic process, using a software application (MedIndex). This application exchanges with a cross-lingual multi-termino-ontology portal. The annotator selects the most appropriate medical code proposed for the medical concept in question by the multi-termino-ontology portal and temporally labels the medical concept according to the course of the medical event. This choice of conceptual model and annotation method aims to create a generic database of facts for the secondary use of electronic health records data.

  19. Processes and process development in Japan

    NASA Technical Reports Server (NTRS)

    Noda, T.

    1986-01-01

    The commercialization of solar power generation necessitates the development of low cost manufacturing method of silicon suitable for solar cells. The manufacturing methods of semiconductor grade silicon (SEG-Si) and the development of solar grade silicon (SOG-Si) in foreign countries was investigated. It was concluded that the most efficient method of developing such materials was the hydrogen reduction process of trichlorosilane (TCS), using a fluidized bed reactor. The low cost reduction of polysilicon requires cost reductions of raw materials, energy, labor, and capital. These conditions were carefully reviewed. The overall conclusion was that a development program should be based on the TCS-FBR process and that the experimental program should be conducted in test facilities capable of producing 10 tons of silicon granules per year.

  20. Liga developer apparatus system

    DOEpatents

    Boehme, Dale R.; Bankert, Michelle A.; Christenson, Todd R.

    2003-01-01

    A system to fabricate precise, high aspect ratio polymeric molds by photolithograpic process is described. The molds for producing micro-scale parts from engineering materials by the LIGA process. The invention is a developer system for developing a PMMA photoresist having exposed patterns comprising features having both very small sizes, and very high aspect ratios. The developer system of the present invention comprises a developer tank, an intermediate rinse tank and a final rinse tank, each tank having a source of high frequency sonic agitation, temperature control, and continuous filtration. It has been found that by moving a patterned wafer, through a specific sequence of developer/rinse solutions, where an intermediate rinse solution completes development of those portions of the exposed resist left undeveloped after the development solution, by agitating the solutions with a source of high frequency sonic vibration, and by adjusting and closely controlling the temperatures and continuously filtering and recirculating these solutions, it is possible to maintain the kinetic dissolution of the exposed PMMA polymer as the rate limiting step.

  1. Integrated water system simulation by considering hydrological and biogeochemical processes: model development, with parameter sensitivity and autocalibration

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Shao, Q. X.; Ye, A. Z.; Xing, H. T.; Xia, J.

    2016-02-01

    Integrated water system modeling is a feasible approach to understanding severe water crises in the world and promoting the implementation of integrated river basin management. In this study, a classic hydrological model (the time variant gain model: TVGM) was extended to an integrated water system model by coupling multiple water-related processes in hydrology, biogeochemistry, water quality, and ecology, and considering the interference of human activities. A parameter analysis tool, which included sensitivity analysis, autocalibration and model performance evaluation, was developed to improve modeling efficiency. To demonstrate the model performances, the Shaying River catchment, which is the largest highly regulated and heavily polluted tributary of the Huai River basin in China, was selected as the case study area. The model performances were evaluated on the key water-related components including runoff, water quality, diffuse pollution load (or nonpoint sources) and crop yield. Results showed that our proposed model simulated most components reasonably well. The simulated daily runoff at most regulated and less-regulated stations matched well with the observations. The average correlation coefficient and Nash-Sutcliffe efficiency were 0.85 and 0.70, respectively. Both the simulated low and high flows at most stations were improved when the dam regulation was considered. The daily ammonium-nitrogen (NH4-N) concentration was also well captured with the average correlation coefficient of 0.67. Furthermore, the diffuse source load of NH4-N and the corn yield were reasonably simulated at the administrative region scale. This integrated water system model is expected to improve the simulation performances with extension to more model functionalities, and to provide a scientific basis for the implementation in integrated river basin managements.

  2. Zebrafish Prion Protein PrP2 Controls Collective Migration Process during Lateral Line Sensory System Development

    PubMed Central

    Huc-Brandt, Sylvaine; Hieu, Nelson; Imberdis, Thibaut; Cubedo, Nicolas; Silhol, Michelle; Leighton, Patricia L. A.; Domaschke, Thomas; Allison, W. Ted; Perrier, Véronique; Rossel, Mireille

    2014-01-01

    Prion protein is involved in severe neurodegenerative disorders but its physiological role is still in debate due to an absence of major developmental defects in knockout mice. Previous reports in zebrafish indicate that the two prion genes, PrP1 and PrP2, are both involved in several steps of embryonic development thus providing a unique route to discover prion protein function. Here we investigate the role of PrP2 during development of a mechano-sensory system, the posterior lateral line, using morpholino knockdown and PrP2 targeted inactivation. We confirm the efficiency of the translation blocking morpholino at the protein level. Development of the posterior lateral line is altered in PrP2 morphants, including nerve axonal outgrowth and primordium migration defects. Reduced neuromast deposition was observed in PrP2 morphants as well as in PrP2−/− mutants. Rosette formation defects were observed in PrP2 morphants, strongly suggesting an abnormal primordium organization and reflecting loss of cell cohesion during migration of the primordium. In addition, the adherens junction proteins, E-cadherin and ß-catenin, were mis-localized after reduction of PrP2 expression and thus contribute to the primordium disorganization. Consequently, hair cell differentiation and number were affected and this resulted in reduced functional neuromasts. At later developmental stages, myelination of the posterior lateral line nerve was altered. Altogether, our study reports an essential role of PrP2 in collective migration process of the primordium and in neuromast formation, further implicating a role for prion protein in cell adhesion. PMID:25436888

  3. Network command processing system overview

    NASA Technical Reports Server (NTRS)

    Nam, Yon-Woo; Murphy, Lisa D.

    1993-01-01

    The Network Command Processing System (NCPS) developed for the National Aeronautics and Space Administration (NASA) Ground Network (GN) stations is a spacecraft command system utilizing a MULTIBUS I/68030 microprocessor. This system was developed and implemented at ground stations worldwide to provide a Project Operations Control Center (POCC) with command capability for support of spacecraft operations such as the LANDSAT, Shuttle, Tracking and Data Relay Satellite, and Nimbus-7. The NCPS consolidates multiple modulation schemes for supporting various manned/unmanned orbital platforms. The NCPS interacts with the POCC and a local operator to process configuration requests, generate modulated uplink sequences, and inform users of the ground command link status. This paper presents the system functional description, hardware description, and the software design.

  4. Electrostatic containerless processing system

    NASA Astrophysics Data System (ADS)

    Rulison, Aaron J.; Watkins, John L.; Zambrano, Brian

    1997-07-01

    We introduce a materials science tool for investigating refractory solids and melts: the electrostatic containerless processing system (ESCAPES). ESCAPES maintains refractory specimens of materials in a pristine state by levitating and heating them in a vacuum chamber, thereby avoiding the contaminating influences of container walls and ambient gases. ESCAPES is designed for the investigation of thermophysical properties, phase equilibria, metastable phase formation, undercooling and nucleation, time-temperature-transformation diagrams, and other aspects of materials processing. ESCAPES incorporates several design improvements over prior electrostatic levitation technology. It has an informative and responsive computer control system. It has separate light sources for heating and charging, which prevents runaway discharging. Both the heating and charging light sources are narrow band, which allows the use of optical pyrometry and other diagnostics at all times throughout processing. Heat is provided to the levitated specimens by a 50 W Nd:YAG laser operating at 1.064 μm. A deuterium arc lamp charges the specimen through photoelectric emission. ESCAPES can heat metals, ceramics, and semiconductors to temperatures exceeding 2300 K; specimens range in size from 1 to 3 mm diam. This article describes the design, capabilities, and applications of ESCAPES, focusing on improvements over prior electrostatic levitation technology.

  5. Developing the JPL Engineering Processes

    NASA Technical Reports Server (NTRS)

    Linick, Dave; Briggs, Clark

    2004-01-01

    This paper briefly recounts the recent history of process reengineering at the NASA Jet Propulsion Laboratory, with a focus on the engineering processes. The JPL process structure is described and the process development activities of the past several years outlined. The main focus of the paper is on the current process structure, the emphasis on the flight project life cycle, the governance approach that lead to Flight Project Practices, and the remaining effort to capture process knowledge at the detail level of the work group.

  6. Improving Ground Penetrating Radar Imaging in High Loss Environments by Coordinated System Development, Data Processing, Numerical Modeling, & Visualization ...

    SciTech Connect

    Powers, Michael H.

    2003-06-01

    The Department of Energy has identified the location and characterization of subsurface contaminants and the characterization of the subsurface as a priority need. Many DOE facilities are in need of subsurface imaging in the vadose and saturated zones. This includes (1) the detection and characterization of metal and concrete structures, (2) the characterization of waste pits (for both contents and integrity) and (3) mapping the complex geological/hydrological framework of the vadose and saturated zones. The DOE has identified ground penetrating radar (GPR) as a method that can non-invasively map transportation pathways and vadose zone heterogeneity. An advanced GPR system and advanced subsurface modeling, processing, imaging, and inversion techniques can be directly applied to several DOE science needs in more than one focus area and at many sites. Needs for enhanced subsurface imaging have been identified at Hanford, INEEL, SRS, ORNL, LLNL, SNL, LANL, and many other sites. In fact, needs for better subsurface imaging probably exist at all DOE sites. However, GPR performance is often inadequate due to increased attenuation and dispersion when soil conductivities are high. Our objective is to extend the limits of performance of GPR by improvements to both hardware and numerical computation. The key features include (1) greater dynamic range through real time digitizing, receiver gain improvements, and high output pulser, (2) modified, fully characterized antennas with sensors to allow dynamic determination of the changing radiated waveform, (3) modified deconvolution and depth migration algorithms exploiting the new antenna output information, (4) development of automatic full waveform inversion made possible by the known radiated pulse shape.

  7. A Prototyping Environment for Research on Human-Machine Interfaces in Process Control: Use of Microsoft WPF for Microworld and Distributed Control System Development

    SciTech Connect

    Roger Lew; Ronald L. Boring; Thomas A. Ulrich

    2014-08-01

    Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, but the set of tools for developing and designing HMIs is still in its infancy. Here we propose that Microsoft Windows Presentation Foundation (WPF) is well suited for many roles in the research and development of HMIs for process control.

  8. Development of Educational Support System for Learning Image Processing Enabling Client-Side Programming Aided by Java Servlet Technology

    NASA Astrophysics Data System (ADS)

    Furukawa, Tatsuya; Aoki, Noriyuki; Ohchi, Masashi; Nakao, Masaki

    The image proccessing has become a useful and important technology in various reserch and development fields. According to such demands for engineering problems, we have designed and implemented the educational support system for that using a Java Applet technology. However in the conventional system, it required the tedious procedure for the end user to code his own programs. Therefore, in this study, we have improved the defect in the previous system by using a Java Servlet technology. The new system will make it possible for novice user to experience a practical digital image proccessing and an advanced programming with ease. We will describe the architecture of the proposed system function, that has been introduced to facilitate the client-side programming.

  9. WRAP process area development control work plan

    SciTech Connect

    Leist, K.L., Fluor Daniel Hanford

    1997-02-27

    This work plan defines the manner in which the Waste Receiving and Processing Facility, Module I Process Area will be maintained under development control status. This status permits resolution of identified design discrepancies, control system changes, as-building of equipment, and perform modifications to increase process operability and maintainability as parallel efforts. This work plan maintains configuration control as these efforts are undertaken. This task will end with system testing and reissue of field verified design drawings.

  10. Mars Aqueous Processing System

    NASA Technical Reports Server (NTRS)

    Berggren, Mark; Wilson, Cherie; Carrera, Stacy; Rose, Heather; Muscatello, Anthony; Kilgore, James; Zubrin, Robert

    2012-01-01

    The goal of the Mars Aqueous Processing System (MAPS) is to establish a flexible process that generates multiple products that are useful for human habitation. Selectively extracting useful components into an aqueous solution, and then sequentially recovering individual constituents, can obtain a suite of refined or semi-refined products. Similarities in the bulk composition (although not necessarily of the mineralogy) of Martian and Lunar soils potentially make MAPS widely applicable. Similar process steps can be conducted on both Mars and Lunar soils while tailoring the reaction extents and recoveries to the specifics of each location. The MAPS closed-loop process selectively extracts, and then recovers, constituents from soils using acids and bases. The emphasis on Mars involves the production of useful materials such as iron, silica, alumina, magnesia, and concrete with recovery of oxygen as a byproduct. On the Moon, similar chemistry is applied with emphasis on oxygen production. This innovation has been demonstrated to produce high-grade materials, such as metallic iron, aluminum oxide, magnesium oxide, and calcium oxide, from lunar and Martian soil simulants. Most of the target products exhibited purities of 80 to 90 percent or more, allowing direct use for many potential applications. Up to one-fourth of the feed soil mass was converted to metal, metal oxide, and oxygen products. The soil residue contained elevated silica content, allowing for potential additional refining and extraction for recovery of materials needed for photovoltaic, semiconductor, and glass applications. A high-grade iron oxide concentrate derived from lunar soil simulant was used to produce a metallic iron component using a novel, combined hydrogen reduction/metal sintering technique. The part was subsequently machined and found to be structurally sound. The behavior of the lunar-simulant-derived iron product was very similar to that produced using the same methods on a Michigan iron

  11. Developing a Self-Report-Based Sequential Analysis Method for Educational Technology Systems: A Process-Based Usability Evaluation

    ERIC Educational Resources Information Center

    Lin, Yi-Chun; Hsieh, Ya-Hui; Hou, Huei-Tse

    2015-01-01

    The development of a usability evaluation method for educational systems or applications, called the self-report-based sequential analysis, is described herein. The method aims to extend the current practice by proposing self-report-based sequential analysis as a new usability method, which integrates the advantages of self-report in survey…

  12. Development and Testing of an Experimental Polysensory Instructional System for Teaching Electric Arc Welding Processes. Report No. 24. Final Report.

    ERIC Educational Resources Information Center

    Sergeant, Harold A.

    The population of the study consisted of 15 high school industrial arts students, 10 freshman and sophomore college students, and 10 adults. A polysensory, self-pacing instructional system was developed which included (1) pretests and post tests, (2) a general instruction book, (3) equipment to practice arc welding, (4) programed instruction…

  13. A Quality Improvement Customer Service Process and CSS [Customer Service System]. Burlington County College Employee Development Series, Volumes I & II.

    ERIC Educational Resources Information Center

    Burlington County Coll., Pemberton, NJ.

    Prepared for use by staff in development workshops at Burlington County College (BCC), in New Jersey, this handbook offers college-wide guidelines for improving the quality of service provided to internal and external customers, and reviews key elements of BCC's Customer Service System (CSS), a computerized method of recording and following-up on…

  14. Development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January 1993--March 1993

    SciTech Connect

    Not Available

    1993-04-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater concepts to be developed are based on advanced glass melting and ore smelting furnaces developed and patented by Vortec Corporation. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential marketability. During the current reporting period, a majority of the effort was spent performing the initial industrial proof-of-concept test and installing and integrating the Wet Electrostatic Precipitator (WESP). The other system modifications are well underway with the designs of the modifications to the batch/coal feed system being completed. A Purchase Order has been issued to a material conveying equipment vendor for the purchase of the batch/coal feeding equipment. The delivery and installation of the material conveying equipment is expected to occur in July and early August. The commercialization planning is continuing with the completion of a draft Business Plan. This plan is currently undergoing internal review, and will be submitted to Dawnbreaker, a DOE contracted small business consulting firm, for review.

  15. Austempered ductile iron process development

    NASA Astrophysics Data System (ADS)

    Gupta, C. D.; Keough, J. R.; Pramstaller, D. M.

    1986-11-01

    Pressure from imports and material substitution has severly affected demand for domestic iron industry products. It is estimated that the potential market for Austempered Ductile Iron (ADI) is as large as the market for carburized and/or through hardened forgings. The primary interest in ADI is generated by the economics of process. Improved machinability and reduced processing costs as well as interesting physical properties has created an enormous interest in all metalworking industries towards ADI. The development of gas-fired austempering processes and resoluton of technical and economic uncertainities concerning the process will help improve the outlook for iron founderies.

  16. A multi-level systems approach for the development of tools, equipment and work processes for the construction industry.

    PubMed

    Vedder, Joachim; Carey, Eilís

    2005-07-01

    Ergonomics is a key issue in the construction industry. Many work tasks and associated equipment and tools are not designed with ergonomics principles in mind. Often, in the development of power tools for construction, any attention to ergonomics is restricted to the human-machine interface and handle design. The need for ergonomics intervention in the development process originates from considerations of safety, health, physical work load, and productivity. It is argued that in each of these respects, the construction industry has lower standards than other industries and therefore has a need and opportunity for improvement. A multi-level ergonomics approach is proposed addressing these issues. The approach defines five levels of ergonomics intervention, from designing individual tools for safety, to designing wider aspects of construction and work flow for optimal productivity. This holistic approach is illustrated using case study examples of the development of power tools and work methods.

  17. Lunar materials processing system integration

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    1992-01-01

    The theme of this paper is that governmental resources will not permit the simultaneous development of all viable lunar materials processing (LMP) candidates. Choices will inevitably be made, based on the results of system integration trade studies comparing candidates to each other for high-leverage applications. It is in the best long-term interest of the LMP community to lead the selection process itself, quickly and practically. The paper is in five parts. The first part explains what systems integration means and why the specialized field of LMP needs this activity now. The second part defines the integration context for LMP -- by outlining potential lunar base functions, their interrelationships and constraints. The third part establishes perspective for prioritizing the development of LMP methods, by estimating realistic scope, scale, and timing of lunar operations. The fourth part describes the use of one type of analytical tool for gaining understanding of system interactions: the input/output model. A simple example solved with linear algebra is used to illustrate. The fifth and closing part identifies specific steps needed to refine the current ability to study lunar base system integration. Research specialists have a crucial role to play now in providing the data upon which this refinement process must be based.

  18. A Decision Tool that Combines Discrete Event Software Process Models with System Dynamics Pieces for Software Development Cost Estimation and Analysis

    NASA Technical Reports Server (NTRS)

    Mizell, Carolyn Barrett; Malone, Linda

    2007-01-01

    The development process for a large software development project is very complex and dependent on many variables that are dynamic and interrelated. Factors such as size, productivity and defect injection rates will have substantial impact on the project in terms of cost and schedule. These factors can be affected by the intricacies of the process itself as well as human behavior because the process is very labor intensive. The complex nature of the development process can be investigated with software development process models that utilize discrete event simulation to analyze the effects of process changes. The organizational environment and its effects on the workforce can be analyzed with system dynamics that utilizes continuous simulation. Each has unique strengths and the benefits of both types can be exploited by combining a system dynamics model and a discrete event process model. This paper will demonstrate how the two types of models can be combined to investigate the impacts of human resource interactions on productivity and ultimately on cost and schedule.

  19. Course Development: Industrial or Social Process.

    ERIC Educational Resources Information Center

    Kaufman, David

    The development of course materials at the Open Learning Institute, British Columbia, Canada, is examined from two perspectives: as an industrial process and as a social process. The public institute provides distance education through paced home-study courses. The course team model used at the Institute is a system approach. Course development…

  20. Development of a treatment system for molasses wastewater: the effects of cation inhibition on the anaerobic degradation process.

    PubMed

    Onodera, Takashi; Sase, Shinya; Choeisai, Pairaya; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Yamaguchi, Takashi; Ebie, Yoshitaka; Xu, Kaiqin; Tomioka, Noriko; Mizuochi, Motoyuki; Syutsubo, Kazuaki

    2013-03-01

    This study evaluated the process performance of a novel treatment system consisting of an acidification reactor, an upflow staged sludge bed (USSB) reactor, an upflow anaerobic sludge blanket reactor, and an aerobic trickling filter for the treatment of a high-strength molasses wastewater with a chemical oxygen demand (COD) of up to 120,000mg/L. The USSB operating at 35°C was capable of achieving an organic loading rate of 11kgCOD/m(3) day with a methane recovery of 62.4% at an influent COD of 120,000mg/L. The final effluent COD was 4520mg/L. The system was effective with regard to nitrification and sulfur removal. Fifty percent inhibition of the bacterial activity of the retained sludge by the cations was determined at 8gK/L for sucrose degradation, 16gK/L for sulfate reduction, and 12gK/L or 9gNa/L for acetoclastic methane production. Cation inhibition of anaerobic degradation reduced the process performance of the USSB.

  1. Software Model Of Software-Development Process

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Synott, Debra J.; Levary, Reuven R.

    1990-01-01

    Collection of computer programs constitutes software tool for simulation of medium- to large-scale software-development projects. Necessary to include easily identifiable and more-readily quantifiable characteristics like costs, times, and numbers of errors. Mathematical model incorporating these and other factors of dynamics of software-development process implemented in the Software Life Cycle Simulator (SLICS) computer program. Simulates dynamics of software-development process. In combination with input and output expert software systems and knowledge-based management software system, develops information for use in managing large software-development project. Intended to aid managers in planning, managing, and controlling software-development processes by reducing uncertainties in budgets, required personnel, and schedules.

  2. Developing a dynamic framework to examine the interplay between environmental stress, stakeholder participation processes and hydrological systems

    NASA Astrophysics Data System (ADS)

    Carr, G.; Blöschl, G.; Loucks, D. P.

    2014-09-01

    Stakeholder participation is increasingly discussed as essential for sustainable water resource management. Yet detailed understanding of the factors driving its use, the processes by which it is employed, and the outcomes or achievements it can realise remains highly limited, and often contested. This understanding is essential to enable water policy to be shaped for efficient and effective water management. This research proposes and applies a dynamic framework that can explore in which circumstances environmental stress events, such as floods, droughts or pollution, drive changes in water governance towards a more participatory approach, and how this shapes the processes by which participation or stakeholder engagement takes place, and the subsequent water management outcomes that emerge. The framework is able to assess the extent to which environmental events in combination with favourable contextual factors (e.g. institutional support for participatory activities) lead to good participatory processes (e.g. well facilitated and representative) that then lead to good outcomes (e.g. improved ecological conditions). Through applying the framework to case studies from the literature it becomes clear that environmental stress events can stimulate participatory governance changes, when existing institutional conditions promote participatory approaches. The work also suggests that intermediary outcomes, which may be tangible (such as reaching an agreement) or non-tangible (such as developing shared knowledge and understanding among participants, or creating trust), may provide a crucial link between processes and resource management outcomes. If this relationship can be more strongly confirmed, the presence or absence of intermediary outcomes may even be used as a valuable proxy to predict future resource management outcomes.

  3. Central waste processing system

    NASA Technical Reports Server (NTRS)

    Kester, F. L.

    1973-01-01

    A new concept for processing spacecraft type wastes has been evaluated. The feasibility of reacting various waste materials with steam at temperatures of 538 - 760 C in both a continuous and batch reactor with residence times from 3 to 60 seconds has been established. Essentially complete gasification is achieved. Product gases are primarily hydrogen, carbon dioxide, methane, and carbon monoxide. Water soluble synthetic wastes are readily processed in a continuous tubular reactor at concentrations up to 20 weight percent. The batch reactor is able to process wet and dry wastes at steam to waste weight ratios from 2 to 20. Feces, urine, and synthetic wastes have been successfully processed in the batch reactor.

  4. Development of a coal-fired combustion system for industrial process heating applications. Quarterly technical progress report, January--March 1994

    SciTech Connect

    Not Available

    1994-04-30

    This advanced combustion system research program is for the development of innovative coal-fired process heaters which can be used for high temperature melting, smelting and waste vitrification processes. The process heater systems to be developed have multiple use applications; however, the Phase III research effort is being focused on the development of a process heater system to be used for producing value added vitrified glass products from boiler/incinerator ashes and industrial wastes. The primary objective of the Phase III project is to develop and integrate all the system components, from fuel through total system, controls, and then test the complete system in order to evaluate its potential marketability. The past quarter began with a two-day test performed in January to determine the cause of pulsations in the batch feed system observed during pilot-scale testing of surrogate TSCA incinerator ash performed in December of 1993. Two different batch feedstocks were used during this test: flyash and cullet. The cause of the pulsations was traced to a worn part in the feeder located at the bottom of the batch feed tank. The problem was corrected by replacing the wom part with the corresponding part on the existing coal feed tank. A new feeder for the existing coal tank, which had previously been ordered as part of the new coal handling system, was procured and installed. The data from the pilot-scale tests performed on surrogate TSCA incinerator ash during December of 1993 was collected and analyzed. All of the glass produced during the test passed both the Toxicity characteristics Leach Procedure (TCLP) and the Product Consistency Test (PCT) by approximately two orders of magnitude.

  5. From Process Models to Decision Making: The Use of Data Mining Techniques for Developing Effect Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Conrads, P. A.; Roehl, E. A.

    2010-12-01

    Natural-resource managers face the difficult problem of controlling the interactions between hydrologic and man-made systems in ways that preserve resources while optimally meeting the needs of disparate stakeholders. Finding success depends on obtaining and employing detailed scientific knowledge about the cause-effect relations that govern the physics of these hydrologic systems. This knowledge is most credible when derived from large field-based datasets that encompass the wide range of variability in the parameters of interest. The means of converting data into knowledge of the hydrologic system often involves developing computer models that predict the consequences of alternative management practices to guide resource managers towards the best path forward. Complex hydrologic systems are typically modeled using computer programs that implement traditional, generalized, physical equations, which are calibrated to match the field data as closely as possible. This type of model commonly is limited in terms of demonstrable predictive accuracy, development time, and cost. The science of data mining presents a powerful complement to physics-based models. Data mining is a relatively new science that assists in converting large databases into knowledge and is uniquely able to leverage the real-time, multivariate data now being collected for hydrologic systems. In side-by-side comparisons with state-of-the-art physics-based hydrologic models, the authors have found data-mining solutions have been substantially more accurate, less time consuming to develop, and embeddable into spreadsheets and sophisticated decision support systems (DSS), making them easy to use by regulators and stakeholders. Three data-mining applications will be presented that demonstrate how data-mining techniques can be applied to existing environmental databases to address regional concerns of long-term consequences. In each case, data were transformed into information, and ultimately, into

  6. Software Development to Assist in the Processing and Analysis of Data Obtained Using Fiber Bragg Grating Interrogation Systems

    NASA Technical Reports Server (NTRS)

    Hicks, Rebecca

    2010-01-01

    capable of processing massive amounts of data in both real-time and post-flight settings, and to produce software segments that can be integrated to assist in the task as well. The selected software must be able to: (1) process massive amounts of data (up to 4GB) at a speed useful in a real-time settings (small fractions of a second); (2) process data in post-flight settings to allow test reproduction or further data analysis, inclusive; (3) produce, or make easier to produce, three-dimensional plots/graphs to make the data accessible to flight test engineers; and (4) be customized to allow users to use their own processing formulas or functions and display the data in formats they prefer. Several software programs were evaluated to determine their utility in completing the research objectives. These programs include: OriginLab, Graphis, 3D Grapher, Visualization Sciences Group (VSG) Avizo Wind, Interactive Analysis and Display System (IADS), SigmaPlot, and MATLAB.

  7. Can a Machine Develop a Career? A Statement about the Processes of Exploration and Commitment in Career Development. Information System for Vocational Decisions. Project Report 16a.

    ERIC Educational Resources Information Center

    Tiedeman, David V.

    Through a description of an imitation career, the author introduces the complexities involved in programming a man-machine system which facilitates individualized career development. The interaction of man and machine is programmed, in the imitation career, because the individual descriptions of events in career chronologies, vitae and…

  8. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.

    2016-01-01

    This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)–solvent under polythermal and polybaric conditions; C60–C70–solvent, individual fullerene–solvent(1)–solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60–C70–liquid phase(1)–liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.

  9. Phase equilibria in fullerene-containing systems as a basis for development of manufacture and application processes for nanocarbon materials

    NASA Astrophysics Data System (ADS)

    Semenov, K. N.; Charykov, N. A.; Postnov, V. N.; Sharoyko, V. V.; Murin, I. V.

    2016-01-01

    This review is the first attempt to integrate the available data on all types of phase equilibria (solubility, extraction and sorption) in systems containing light fullerenes (C60 and C70). In the case of solubility diagrams, the following types of phase equilibria are considered: individual fullerene (C60 or C70)-solvent under polythermal and polybaric conditions; C60-C70-solvent, individual fullerene-solvent(1)-solvent(2), as well as multicomponent systems comprising a single fullerene or an industrial mixture of fullerenes and vegetable oils, animal fats or essential oils under polythermal conditions. All published experimental data on the extraction equilibria in C60-C70-liquid phase(1)-liquid phase(2) systems are described systematically and the sorption characteristics of various materials towards light fullerenes are estimated. The possibility of application of these experimental data for development of pre-chromatographic and chromatographic methods for separation of fullerene mixtures and application of fullerenes as nanomodifiers are described. The bibliography includes 87 references.

  10. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  11. Development of a user-friendly system for image processing of electron microscopy by integrating a web browser and PIONE with Eos.

    PubMed

    Tsukamoto, Takafumi; Yasunaga, Takuo

    2014-11-01

    Eos (Extensible object-oriented system) is one of the powerful applications for image processing of electron micrographs. In usual cases, Eos works with only character user interfaces (CUI) under the operating systems (OS) such as OS-X or Linux, not user-friendly. Thus, users of Eos need to be expert at image processing of electron micrographs, and have a little knowledge of computer science, as well. However, all the persons who require Eos does not an expert for CUI. Thus we extended Eos to a web system independent of OS with graphical user interfaces (GUI) by integrating web browser.Advantage to use web browser is not only to extend Eos with GUI, but also extend Eos to work under distributed computational environment. Using Ajax (Asynchronous JavaScript and XML) technology, we implemented more comfortable user-interface on web browser. Eos has more than 400 commands related to image processing for electron microscopy, and the usage of each command is different from each other. Since the beginning of development, Eos has managed their user-interface by using the interface definition file of "OptionControlFile" written in CSV (Comma-Separated Value) format, i.e., Each command has "OptionControlFile", which notes information for interface and its usage generation. Developed GUI system called "Zephyr" (Zone for Easy Processing of HYpermedia Resources) also accessed "OptionControlFIle" and produced a web user-interface automatically, because its mechanism is mature and convenient,The basic actions of client side system was implemented properly and can supply auto-generation of web-form, which has functions of execution, image preview, file-uploading to a web server. Thus the system can execute Eos commands with unique options for each commands, and process image analysis. There remain problems of image file format for visualization and workspace for analysis: The image file format information is useful to check whether the input/output file is correct and we also

  12. Computer-aided software development process design

    NASA Technical Reports Server (NTRS)

    Lin, Chi Y.; Levary, Reuven R.

    1989-01-01

    The authors describe an intelligent tool designed to aid managers of software development projects in planning, managing, and controlling the development process of medium- to large-scale software projects. Its purpose is to reduce uncertainties in the budget, personnel, and schedule planning of software development projects. It is based on dynamic model for the software development and maintenance life-cycle process. This dynamic process is composed of a number of time-varying, interacting developmental phases, each characterized by its intended functions and requirements. System dynamics is used as a modeling methodology. The resulting Software LIfe-Cycle Simulator (SLICS) and the hybrid expert simulation system of which it is a subsystem are described.

  13. Gravimelt Process development. Final report

    SciTech Connect

    Not Available

    1983-06-01

    This final report contains the results of a bench-scale program to continue the development of the TRW proprietary Gravimelt Process for chemically cleaning coal. This project consisted of two major efforts, a laboratory study aimed at identifying parameters which would influence the operation of a bench unit for desulfurization and demineralization of coal and the design, construction and operation of two types of continuous plug-flow type bench-scale fused caustic leachers. This present bench scale project has demonstrated modes for the continuous operation of fused caustic leaching of coal at coal throughputs of 1 to 5 pounds per hour. The remaining process unit operations of leach solutions regeneration and coal washing and filtration should be tested at bench scale together with fused caustic leaching of coal to demonstrate the complete Gravimelt Process. 22 figures, 11 tables.

  14. Software Development Standard Processes (SDSP)

    NASA Technical Reports Server (NTRS)

    Lavin, Milton L.; Wang, James J.; Morillo, Ronald; Mayer, John T.; Jamshidian, Barzia; Shimizu, Kenneth J.; Wilkinson, Belinda M.; Hihn, Jairus M.; Borgen, Rosana B.; Meyer, Kenneth N.; Crean, Kathleen A.; Rinker, George C.; Smith, Thomas P.; Lum, Karen T.; Hanna, Robert A.; Erickson, Daniel E.; Gamble, Edward B., Jr.; Morgan, Scott C.; Kelsay, Michael G.; Newport, Brian J.; Lewicki, Scott A.; Stipanuk, Jeane G.; Cooper, Tonja M.; Meshkat, Leila

    2011-01-01

    A JPL-created set of standard processes is to be used throughout the lifecycle of software development. These SDSPs cover a range of activities, from management and engineering activities, to assurance and support activities. These processes must be applied to software tasks per a prescribed set of procedures. JPL s Software Quality Improvement Project is currently working at the behest of the JPL Software Process Owner to ensure that all applicable software tasks follow these procedures. The SDSPs are captured as a set of 22 standards in JPL s software process domain. They were developed in-house at JPL by a number of Subject Matter Experts (SMEs) residing primarily within the Engineering and Science Directorate, but also from the Business Operations Directorate and Safety and Mission Success Directorate. These practices include not only currently performed best practices, but also JPL-desired future practices in key thrust areas like software architecting and software reuse analysis. Additionally, these SDSPs conform to many standards and requirements to which JPL projects are beholden.

  15. Autism and the development of face processing

    PubMed Central

    Golarai, Golijeh; Grill-Spector, Kalanit; Reiss, Allan L.

    2007-01-01

    Autism is a pervasive developmental condition, characterized by impairments in non-verbal communication, social relationships and stereotypical patterns of behavior. A large body of evidence suggests that several aspects of face processing are impaired in autism, including anomalies in gaze processing, memory for facial identity and recognition of facial expressions of emotion. In search of neural markers of anomalous face processing in autism, much interest has focused on a network of brain regions that are implicated in social cognition and face processing. In this review, we will focus on three such regions, namely the STS for its role in processing gaze and facial movements, the FFA in face detection and identification and the amygdala in processing facial expressions of emotion. Much evidence suggests that a better understanding of the normal development of these specialized regions is essential for discovering the neural bases of face processing anomalies in autism. Thus, we will also examine the available literature on the normal development of face processing. Key unknowns in this research area are the neuro-developmental processes, the role of experience and the interactions among components of the face processing system in shaping each of the specialized regions for processing faces during normal development and in autism. PMID:18176635

  16. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-11-01

    This report discusses test campaign GCT4 of the Kellogg Brown & Root, Inc. (KBR) transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT4. GCT4 was planned as a 250-hour test run to continue characterization of the transport reactor using a blend of several Powder River Basin (PRB) coals and Bucyrus limestone from Ohio. The primary test objectives were: Operational Stability--Characterize reactor loop and PCD operations with short-term tests by varying coal-feed rate, air/coal ratio, riser velocity, solids-circulation rate, system pressure, and air distribution. Secondary objectives included the following: Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. Effects of Reactor Conditions on Synthesis Gas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids-circulation rate, and reactor temperature on CO/CO{sub 2} ratio, synthesis gas Lower Heating Value (LHV), carbon conversion, and cold and hot gas efficiencies. Research Triangle Institute (RTI) Direct Sulfur Recovery Process (DSRP) Testing--Provide syngas in support of the DSRP commissioning. Loop Seal Operations--Optimize loop seal operations and investigate increases to previously achieved maximum solids-circulation rate.

  17. Digital TV processing system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Two digital video data compression systems directly applicable to the Space Shuttle TV Communication System were described: (1) For the uplink, a low rate monochrome data compressor is used. The compression is achieved by using a motion detection technique in the Hadamard domain. To transform the variable source rate into a fixed rate, an adaptive rate buffer is provided. (2) For the downlink, a color data compressor is considered. The compression is achieved first by intra-color transformation of the original signal vector, into a vector which has lower information entropy. Then two-dimensional data compression techniques are applied to the Hadamard transformed components of this last vector. Mathematical models and data reliability analyses were also provided for the above video data compression techniques transmitted over a channel encoded Gaussian channel. It was shown that substantial gains can be achieved by the combination of video source and channel coding.

  18. Precision Pointing System Development

    SciTech Connect

    BUGOS, ROBERT M.

    2003-03-01

    The development of precision pointing systems has been underway in Sandia's Electronic Systems Center for over thirty years. Important areas of emphasis are synthetic aperture radars and optical reconnaissance systems. Most applications are in the aerospace arena, with host vehicles including rockets, satellites, and manned and unmanned aircraft. Systems have been used on defense-related missions throughout the world. Presently in development are pointing systems with accuracy goals in the nanoradian regime. Future activity will include efforts to dramatically reduce system size and weight through measures such as the incorporation of advanced materials and MEMS inertial sensors.

  19. Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction.

    PubMed

    Gomes, Lúcio de Moura; Duarte, José Leandro da Silva; Pereira, Nathalia Marcelino; Martínez-Huitle, Carlos A; Tonholo, Josealdo; Zanta, Carmen Lúcia de Paiva E Silva

    2014-01-01

    The coconut processing industry generates a significant amount of liquid waste. New technologies targeting the treatment of industrial effluents have emerged, including advanced oxidation processes, the Fenton reaction, and electrochemical processes, which produce strong oxidizing species to remove organic matter. In this study we combined the Fenton reaction and electrochemical process to treat wastewater generated by the coconut industry. We prepared a synthetic wastewater consisting of a mixture of coconut milk and water and assessed how the Fenton reagents' concentration, the cathode material, the current density, and the implementation of associated technologies affect its treatment. Electrochemical treatment followed by the Fenton reaction diminished turbidity and chemical oxygen demand (COD) by 85 and 95%, respectively. The Fenton reaction followed by the electrochemical process reduced turbidity and COD by 93 and 85%, respectively. Therefore, a combination of the Fenton and electrochemical technologies can effectively treat the effluent from the coconut processing industry. PMID:24901620

  20. Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction.

    PubMed

    Gomes, Lúcio de Moura; Duarte, José Leandro da Silva; Pereira, Nathalia Marcelino; Martínez-Huitle, Carlos A; Tonholo, Josealdo; Zanta, Carmen Lúcia de Paiva E Silva

    2014-01-01

    The coconut processing industry generates a significant amount of liquid waste. New technologies targeting the treatment of industrial effluents have emerged, including advanced oxidation processes, the Fenton reaction, and electrochemical processes, which produce strong oxidizing species to remove organic matter. In this study we combined the Fenton reaction and electrochemical process to treat wastewater generated by the coconut industry. We prepared a synthetic wastewater consisting of a mixture of coconut milk and water and assessed how the Fenton reagents' concentration, the cathode material, the current density, and the implementation of associated technologies affect its treatment. Electrochemical treatment followed by the Fenton reaction diminished turbidity and chemical oxygen demand (COD) by 85 and 95%, respectively. The Fenton reaction followed by the electrochemical process reduced turbidity and COD by 93 and 85%, respectively. Therefore, a combination of the Fenton and electrochemical technologies can effectively treat the effluent from the coconut processing industry.

  1. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1987-11-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  2. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Gillespie, B.L.

    1988-02-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. DE-AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1-Test Plan; Task 2-Optimization of Mild Gasification Process; Task 3-Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4-Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  3. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Derting, T.M.

    1988-07-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  4. Development of mild gasification process

    SciTech Connect

    Chu, C.I.C.; Williams, S.W.

    1989-01-01

    Under a previous contract with Morgantown Energy Technology Center (METC), Department of Energy (DOE) Contract No. AC21-84MC21108, UCC Research Corporation (UCCRC) built and tested a 1500 lb/day Mild Gasification Process Development Unit (MGU). The MGU, as tested under the previous contract, is shown in Figure 1. Testing completed under the previous contract showed that good quality hydrocarbon liquids and good quality char can be produced in the MGU. However, the MGU is not optimized. The primary objectives of the current project are to optimize the MGU and determine the suitability of char for several commercial applications. The program consists of four tasks; Task 1 -- Test Plan; Task 2 -- Optimization of Mild Gasification Process; Task 3 -- Evaluation of Char and Char/Coal Blends as a Boiler/Blast Furnace Fuel; and Task 4 -- Analysis of Data and Preparation of Final Report. Task 1 has been completed while work continued on Task 2.

  5. Process gas solidification system

    DOEpatents

    Fort, William G. S.; Lee, Jr., William W.

    1978-01-01

    It has been the practice to (a) withdraw hot, liquid UF.sub.6 from various systems, (b) direct the UF.sub.6 into storage cylinders, and (c) transport the filled cylinders to another area where the UF.sub.6 is permitted to solidify by natural cooling. However, some hazard attends the movement of cylinders containing liquid UF.sub.6, which is dense, toxic, and corrosive. As illustrated in terms of one of its applications, the invention is directed to withdrawing hot liquid UF.sub.6 from a system including (a) a compressor for increasing the pressure and temperature of a stream of gaseous UF.sub.6 to above its triple point and (b) a condenser for liquefying the compressed gas. A network containing block valves and at least first and second portable storage cylinders is connected between the outlet of the condenser and the suction inlet of the compressor. After an increment of liquid UF.sub.6 from the condenser has been admitted to the first cylinder, the cylinder is connected to the suction of the compressor to flash off UF.sub.6 from the cylinder, thus gradually solidifying UF.sub.6 therein. While the first cylinder is being cooled in this manner, an increment of liquid UF.sub.6 from the condenser is transferred into the second cylinder. UF.sub.6 then is flashed from the second cylinder while another increment of liquid UF.sub.6 is being fed to the first. The operations are repeated until both cylinders are filled with solid UF.sub.6, after which they can be moved safely. As compared with the previous technique, this procedure is safer, faster, and more economical. The method also provides the additional advantage of removing volatile impurities from the UF.sub.6 while it is being cooled.

  6. Developing Software Requirements for a Knowledge Management System That Coordinates Training Programs with Business Processes and Policies in Large Organizations

    ERIC Educational Resources Information Center

    Kiper, J. Richard

    2013-01-01

    For large organizations, updating instructional programs presents a challenge to keep abreast of constantly changing business processes and policies. Each time a process or policy changes, significant resources are required to locate and modify the training materials that convey the new content. Moreover, without the ability to track learning…

  7. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    SciTech Connect

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion concepts were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.

  8. Design of penicillin fermentation process simulation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiaoyu; Yuan, Zhonghu; Qi, Xiaoxuan; Zhang, Wenqi

    2011-10-01

    Real-time monitoring for batch process attracts increasing attention. It can ensure safety and provide products with consistent quality. The design of simulation system of batch process fault diagnosis is of great significance. In this paper, penicillin fermentation, a typical non-linear, dynamic, multi-stage batch production process, is taken as the research object. A visual human-machine interactive simulation software system based on Windows operation system is developed. The simulation system can provide an effective platform for the research of batch process fault diagnosis.

  9. Process Development for Nanostructured Photovoltaics

    SciTech Connect

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  10. Development of a coal-fired combustion system for industrial process heating applications. Phase 3 final report, November 1992--December 1994

    SciTech Connect

    1995-09-26

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product.

  11. Development of a coal-fired combustion system for industrial processing heating applications: Appendix A. Phase 3 final report, November 1992--December 1994

    SciTech Connect

    1995-09-26

    A three phase research and development program has resulted in the development and commercialization of a Cyclone Melting System (CMS{trademark}), capable of being fueled by pulverized coal, natural gas, and other solid, gaseous, or liquid fuels, for the vitrification of industrial wastes. The Phase 3 research effort focused on the development of a process heater system to be used for producing value added glass products from the vitrification of boiler/incinerator ashes and industrial wastes. The primary objective of the Phase 3 project was to develop and integrate all the system components, from fuel through total system controls, and then test the complete system in order to evaluate its potential for successful commercialization. The demonstration test consisted of one test run with a duration of 105 hours, approximately one-half (46 hours) performed with coal as the primary fuel source (70% to 100%), the other half with natural gas. Approximately 50 hours of melting operation were performed vitrifying approximately 50,000 lbs of coal-fired utility boiler flyash/dolomite mixture, producing a fully-reacted vitrified product. Appendix A contains 89 figures containing the data from the demonstration tests undertaken under Phase 3.

  12. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect

    Ludtka, Gail Mackiewicz-; Chourey, Aashish

    2010-08-01

    As the original magnet designer and manufacturer of ORNL s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL s Materials Processing Group s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  13. Cascade Distillation System Development

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Sargushingh, Miriam; Shull, Sarah

    2014-01-01

    NASA's Advanced Exploration Systems (AES) Life Support System (LSS) Project is chartered with de-veloping advanced life support systems that will ena-ble NASA human exploration beyond low Earth orbit (LEO). The goal of AES is to increase the affordabil-ity of long-duration life support missions, and to re-duce the risk associated with integrating and infusing new enabling technologies required to ensure mission success. Because of the robust nature of distillation systems, the AES LSS Project is pursuing develop-ment of the Cascade Distillation Subsystem (CDS) as part of its technology portfolio. Currently, the system is being developed into a flight forward Generation 2.0 design.

  14. Development of a continuous roll-to-roll processing system for mass production of plastic optical film

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Yuan; Tsai, Meng-Hsun

    2015-12-01

    This paper reports a highly effective method for the mass production of large-area plastic optical films with a microlens array pattern based on a continuous roll-to-roll film extrusion and roller embossing process. In this study, a thin steel mold with a micro-circular hole array pattern is fabricated by photolithography and a wet chemical etching process. The thin steel mold was then wrapped onto a metal cylinder to form an embossing roller mold. During the roll-to-roll process operation, a thermoplastic raw material (polycarbonate grains) was put into the barrel of the plastic extruder with a flat T-die. Then, the molten polymer film was extruded and immediately pressed against the surface of the embossing roller mold. Under the proper processing conditions, the molten polymer will just partially fill the micro-circular holes of the mold and due to surface tension form a convex lens surface. A continuous plastic optical film with a microlens array pattern was obtained. Experiments are carried out to investigate the effect of plastic microlens formation on the roll-to-roll process. Finally, the geometrical and optical properties of the fabricated plastic optical film were measured and proved satisfactory. This technique shows great potential for the mass production of large-area plastic optical films with a microlens array pattern.

  15. TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN

    SciTech Connect

    RAYMOND RE

    2011-12-27

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is

  16. The Process of Systemic Change

    ERIC Educational Resources Information Center

    Duffy, Francis M.; Reigeluth, Charles M.; Solomon, Monica; Caine, Geoffrey; Carr-Chellman, Alison A.; Almeida, Luis; Frick, Theodore; Thompson, Kenneth; Koh, Joyce; Ryan, Christopher D.; DeMars, Shane

    2006-01-01

    This paper presents several brief papers about the process of systemic change. These are: (1) Step-Up-To-Excellence: A Protocol for Navigating Whole-System Change in School Districts by Francis M. Duffy; (2) The Guidance System for Transforming Education by Charles M. Reigeluth; (3) The Schlechty Center For Leadership In School Reform by Monica…

  17. The Beady Eye of the Professional Development Appraisal System: A Foucauldian Cross-Case Analysis of the Teacher Evaluation Process

    ERIC Educational Resources Information Center

    Torres, Dalia

    2012-01-01

    The purpose of this deconstructive case study was to conduct a Foucauldian power/knowledge analysis constructed from the perceptions of three teachers at an intermediate school in South Texas regarding the role of the teacher evaluation process and its influence on instructional practices. Using Foucault's (1977a) work on power/knowledge, of…

  18. Development of a portable hyperspectral imaging system for monitoring the efficacy of sanitation procedures in food processing facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cleaning and sanitation in food processing facilities is a critical step in reducing the risk of transfer of pathogenic organisms to food consumed by the public. Current methods to check the effectiveness of sanitation procedures rely on visual observation and sub-sampling tests such as ATP biolumin...

  19. Development of data processing, interpretation and analysis system for the remote sensing of trace atmospheric gas species

    NASA Technical Reports Server (NTRS)

    Casas, Joseph C.; Saylor, Mary S.; Kindle, Earl C.

    1987-01-01

    The major emphasis is on the advancement of remote sensing technology. In particular, the gas filter correlation radiometer (GFCR) technique was applied to the measurement of trace gas species, such as carbon monoxide (CO), from airborne and Earth orbiting platforms. Through a series of low altitude aircraft flights, high altitude aircraft flights, and orbiting space platform flights, data were collected and analyzed, culminating in the first global map of carbon monoxide concentration in the middle troposphere and stratosphere. The four major areas of this remote sensing program, known as the Measurement of Air Pollution from Satellites (MAPS) experiment, are: (1) data acquisition, (2) data processing, analysis, and interpretation algorithms, (3) data display techniques, and (4) information processing.

  20. System Leaders Using Assessment for Learning as Both the Change and the Change Process: Developing Theory from Practice

    ERIC Educational Resources Information Center

    Davies, Anne; Busick, Kathy; Herbst, Sandra; Sherman, Ann

    2014-01-01

    Many schools and school systems have been deliberately working towards full implementation of Assessment for Learning for more than a decade, yet success has been elusive. Using a leader's implementation of Assessment for Learning in one school as an illustration, this article examines eight positional leaders' experiences as they…

  1. Thermal processing systems for TRU mixed waste

    SciTech Connect

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-01-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

  2. Thermal processing systems for TRU mixed waste

    SciTech Connect

    Eddy, T.L.; Raivo, B.D.; Anderson, G.L.

    1992-08-01

    This paper presents preliminary ex situ thermal processing system concepts and related processing considerations for remediation of transuranic (TRU)-contaminated wastes (TRUW) buried at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Anticipated waste stream components and problems are considered. Thermal processing conditions required to obtain a high-integrity, low-leachability glass/ceramic final waste form are considered. Five practical thermal process system designs are compared. Thermal processing of mixed waste and soils with essentially no presorting and using incineration followed by high temperature melting is recommended. Applied research and development necessary for demonstration is also recommended.

  3. Development of a cryo-SEM system enabling direct observation of the cross sections of an emulsion adhesive in a moist state during the drying process.

    PubMed

    Ito, Yoshiko; Ranner, Robert; Mimietz-Oeckler, Saskia; Nishino, Yuri; Miyazawa, Atsuo

    2015-12-01

    In order to analyse the internal structures of multi-component fluid materials such as emulsions (including the inter-particle spacing) by cryo-electron microscopy, it is necessary to observe their smooth cross-sectional surfaces over wide areas. We have developed a system that involves the following steps: preservation of the structure of an emulsion adhesive using freeze fixation in its normal (moist) state and during the drying process after being coated, preparation of cross sections of the internal structure using a cryo-ultramicrotome and then transferral of the cross sections into a cryo-scanning electron microscope for observation via a cryo-transfer system. This system allows the direct observation of the cross sections of emulsions and of several fluid materials.

  4. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2009-01-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

  5. TOUGH2Biot - A simulator for coupled thermal-hydrodynamic-mechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development

    NASA Astrophysics Data System (ADS)

    Lei, Hongwu; Xu, Tianfu; Jin, Guangrong

    2015-04-01

    Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.

  6. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  7. Hybrid systems process mixed wastes

    SciTech Connect

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  8. Remote systems development

    NASA Technical Reports Server (NTRS)

    Olsen, R.; Schaefer, O.; Hussey, J.

    1992-01-01

    Potential space missions of the nineties and the next century require that we look at the broad category of remote systems as an important means to achieve cost-effective operations, exploration and colonization objectives. This paper addresses such missions, which can use remote systems technology as the basis for identifying required capabilities which must be provided. The relationship of the space-based tasks to similar tasks required for terrestrial applications is discussed. The development status of the required technology is assessed and major issues which must be addressed to meet future requirements are identified. This includes the proper mix of humans and machines, from pure teleoperation to full autonomy; the degree of worksite compatibility for a robotic system; and the required design parameters, such as degrees-of-freedom. Methods for resolution are discussed including analysis, graphical simulation and the use of laboratory test beds. Grumman experience in the application of these techniques to a variety of design issues are presented utilizing the Telerobotics Development Laboratory which includes a 17-DOF robot system, a variety of sensing elements, Deneb/IRIS graphics workstations and control stations. The use of task/worksite mockups, remote system development test beds and graphical analysis are discussed with examples of typical results such as estimates of task times, task feasibility and resulting recommendations for design changes. The relationship of this experience and lessons-learned to future development of remote systems is also discussed.

  9. Software Development to Assist in the Processing and Analysis of Data Obtained Using Fiber Bragg Grating Interrogation Systems

    NASA Technical Reports Server (NTRS)

    Hicks, Rebecca

    2009-01-01

    A fiber Bragg grating is a portion of a core of a fiber optic strand that has been treated to affect the way light travels through the strand. Light within a certain narrow range of wavelengths will be reflected along the fiber by the grating, while light outside that range will pass through the grating mostly undisturbed. Since the range of wavelengths that can penetrate the grating depends on the grating itself as well as temperature and mechanical strain, fiber Bragg gratings can be used as temperature and strain sensors. This capability, along with the light-weight nature of the fiber optic strands in which the gratings reside, make fiber optic sensors an ideal candidate for flight testing and monitoring in which temperature and wing strain are factors. The purpose of this project is to research the availability of software capable of processing massive amounts of data in both real-time and post-flight settings, and to produce software segments that can be integrated to assist in the task as well.

  10. Development of a Versatile Laser Ultrasonic System and Application to On-Line Measurement for Process Control of Wall Thickness and Eccentrictiy of Steel Seamless Mechanical Tubing

    SciTech Connect

    Kisner, R.A.; Kercel, S.W.; Damiano, B.; Bingham, P.R.; Gee, T.F.; Tucker, R.W.; Moore, M.R.; Hileman, M.; Emery, M.; Lenarduzzi, R.; Hardy, J.E.; Weaver, K.; Crutcher, R.; Kolarik, R.V., II; Vandervaart, R.H.

    2002-04-24

    Researchers at the Timken Company conceived a project to develop an on-line instrument for wall thickness measurement of steel seamless mechanical tubing based on laser ultrasonic technology. The instrument, which has been installed and tested at a piercing mill, provides data on tube eccentricity and concentricity. Such measurements permit fine-tuning of manufacturing processes to eliminate excess material in the tube wall and therefore provide a more precisely dimensioned product for their customers. The resulting process energy savings are substantial, as is lowered environmental burden. The expected savings are $85.8 million per year in seamless mechanical tube piercing alone. Applied across the industry, this measurement has a potential of reducing energy consumption by 6 x 10{sup 12} BTU per year, greenhouse gas emissions by 0.3 million metric tons carbon equivalent per year, and toxic waste by 0.255 million pounds per year. The principal technical contributors to the project were the Timken Company, Industrial Materials Institute (IMI, a contractor to Timken), and Oak Ridge National Laboratory (ORNL). Timken provided mill access as well as process and metallurgical understanding. Timken researchers had previously developed fundamental ultrasonic analysis methods on which this project is based. IMI developed and fabricated the laser ultrasonic generation and receiver systems. ORNL developed Bayesian and wavelet based real-time signal processing, spread-spectrum wireless communication, and explored feature extraction and pattern recognition methods. The resulting instrument has successfully measured production tubes at one of Timken's piercing mills. This report concentrates on ORNL's contribution through the CRADA mechanism. The three components of ORNL's contribution were met with mixed success. The real-time signal-processing task accomplished its goal of improvement in detecting time of flight information with a minimum of false data. The signal processing

  11. Low-Cost Solar Array Project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process. Quarterly progress report, October-December 1980

    SciTech Connect

    Not Available

    1980-01-01

    Progress is reported on the engineering design, fabrication, assembly, operation, economic analysis, and process support R and D for an Experimental Process System Development Unit (EPSDU) for producing semiconductor-grade silicon using the silane-to-silicon process. Most of the process related equipment has been ordered and is being fabricated. Equipment and building foundations have been completed at the EPSDU site, and all the steel was erected for the gantry. The switch gear/control building and the melter building will be completed during the next quarter. The data collection system design is progressing. Various computer programs are being written which will be used to convert electrical, pneumatic and other raw signals into engineering values. The free-space reactor development work was completed with a final 12-hour run in which the free-space reactor PDU ran flawlessly. Also, the quality control method development task was completed. Slim rods were grown from seed silicon rods for subsequent float zone operation and impurity characterization. An excellent quality epitaxial film was deposited on a silicon wafer. Both undoped ad doped films were deposited and the resistivity of the films have been measured. (WHK)

  12. Chemiluminescence development after initiation of Maillard reaction in aqueous solutions of glycine and glucose: nonlinearity of the process and cooperative properties of the reaction system

    NASA Astrophysics Data System (ADS)

    Voeikov, Vladimir L.; Naletov, Vladimir I.

    1998-06-01

    Nonenzymatic glycation of free or peptide bound amino acids (Maillard reaction, MR) plays an important role in aging, diabetic complications and atherosclerosis. MR taking place at high temperatures is accompanied by chemiluminescence (CL). Here kinetics of CL development in MR proceeding in model systems at room temperature has been analyzed for the first time. Brief heating of glycine and D-glucose solutions to t greater than 93 degrees Celsius results in their browning and appearance of fluorescencent properties. Developed In solutions rapidly cooled down to 20 degrees Celsius a wave of CL. It reached maximum intensity around 40 min after the reaction mixture heating and cooling it down. CL intensity elevation was accompanied by certain decoloration of the solution. Appearance of light absorbing substances and development of CL depended critically upon the temperature of preincubation (greater than or equal to 93 degrees Celsius), initial pH (greater than or equal to 11,2), sample volume (greater than or equal to 0.5 ml) and reagents concentrations. Dependence of total counts accumulation on a system volume over the critical volume was non-monotonous. After reaching maximum values CL began to decline, though only small part of glucose and glycin had been consumed. Brief heating of such solutions to the critical temperature resulted in emergence of a new CL wave. This procedure could be repeated in one and the same reaction system for several times. Whole CL kinetic curve best fitted to lognormal distribution. Macrokinetic properties of the process are characteristic of chain reactions with delayed branching. Results imply also, that self-organization occurs in this system, and that the course of the process strongly depends upon boundary conditions and periodic interference in its course.

  13. Advanced System for Process Engineering

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  14. A Study to Develop an Industrial-Scale, Computer-Controlled High Magnetic Field Processing (HMFP) System to Assist in Commercializing the Novel, Enabling HMFP Manufacturing Technology

    SciTech Connect

    Lutdka, G. M.; Chourey, A.

    2010-05-12

    As the original magnet designer and manufacturer of ORNL’s 9T, 5-inch ID bore magnet, American Magnetics Inc. (AMI) has collaborated with ORNL’s Materials Processing Group’s and this partnership has been instrumental in the development of our unique thermo-magnetic facilities and expertise. Consequently, AMI and ORNL have realized that the commercial implementation of the High Magnetic Field Processing (HMFP) technology will require the evolution of robust, automated superconducting (SC) magnet systems that will be cost-effective and easy to operate in an industrial environment. The goal of this project and CRADA is to significantly expedite the timeline for implementing this revolutionary and pervasive cross-cutting technology for future US produced industrial components. The successful completion of this project is anticipated to significantly assist in the timely commercialization and licensing of our HMFP intellectual property for a broad spectrum of industries; and to open up a new market for AMI. One notable outcome of this project is that the ThermoMagnetic Processing Technology WON a prestigious 2009 R&D 100 Awards. This award acknowledges and recognizes our TMP Technology as one of the top 100 innovative US technologies in 2009. By successfully establishing the design requirements for a commercial scale magnetic processing system, this project effort has accomplished a key first step in facilitating the building and demonstration of a superconducting magnetic processing coil, enabling the transition of the High Magnetic Field Processing Technology beyond a laboratory novelty into a commercially viable and industrially scalable Manufacturing Technology.

  15. Heatpipe power system development

    SciTech Connect

    Houts, M.G.; Poston, D.I.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to develop a design approach that could enable the development of near-term, low-cost, space fission-power systems. Sixteen desired attributes were identified for such systems and detailed analyses were performed to verify that they are feasible. Preliminary design work was performed on one concept, the Heatpipe Power system (HPS). As a direct result of this project, funding was obtained from the National Aeronautics and Space Administration to build and test an HPS module. The module tests went well, and they now have funding to build a bimodal module.

  16. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    SciTech Connect

    Chudnovsky, Yaroslav; Kozlov, Aleksandr

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  17. Solar-Cell-Junction Processing System

    NASA Technical Reports Server (NTRS)

    Bunker, S. N.; Armini, A. J.

    1986-01-01

    System under development reduces equipment costs. Processing system will produce solar-cell junctions on 4 in. (10.2 cm) round silicon wafers at rate of 10 to seventh power per year. System includes non-mass-analyzed ion implanter, microcomputer-controlled, pulsed-electron-beam annealer, and wafertransport system with vacuum interlock. These features eliminate large, expensive magnet and plates, circuitry, and power source otherwise needed for scanning.

  18. POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect

    Unknown

    2002-05-01

    This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam

  19. Oil well fluid processing system

    SciTech Connect

    Cobb, J.R.

    1988-10-25

    This patent describes an oil well fluid processing system, comprising: a skid having a first skid section and a second skid section separable from the first skid section; means for connecting one end of the first skid section to one end of the second skid section; a cylindrical fluid processing apparatus pivotally mounted at a lower end thereof on the first skid section for pivoting movement between a raised position wherein the fluid processing apparatus extends vertically from the first skid section and a lowered position wherein the fluid processing apparatus overlays the second skid section at such times that the two sections of the skid are connected together; and means mounted on the second skid section and connectable to the fluid processing apparatus for moving the fluid processing apparatus between the raised and lowered positions at such times that the two sections of the skid are connected together.

  20. Parallel processing spacecraft communication system

    NASA Technical Reports Server (NTRS)

    Bolotin, Gary S. (Inventor); Donaldson, James A. (Inventor); Luong, Huy H. (Inventor); Wood, Steven H. (Inventor)

    1998-01-01

    An uplink controlling assembly speeds data processing using a special parallel codeblock technique. A correct start sequence initiates processing of a frame. Two possible start sequences can be used; and the one which is used determines whether data polarity is inverted or non-inverted. Processing continues until uncorrectable errors are found. The frame ends by intentionally sending a block with an uncorrectable error. Each of the codeblocks in the frame has a channel ID. Each channel ID can be separately processed in parallel. This obviates the problem of waiting for error correction processing. If that channel number is zero, however, it indicates that the frame of data represents a critical command only. That data is handled in a special way, independent of the software. Otherwise, the processed data further handled using special double buffering techniques to avoid problems from overrun. When overrun does occur, the system takes action to lose only the oldest data.

  1. Near real time data processing system

    NASA Astrophysics Data System (ADS)

    Mousessian, Ardvas; Vuu, Christina

    2008-08-01

    Raytheon recently developed and implemented a Near Real Time (NRT) data processing subsystem for Earth Observing System (EOS) Microwave Limb Sounder (MLS3) instrument on NASA Aura spacecraft. The NRT can be viewed as a customized Science Information Processing System (SIPS) where the measurements and information provided by the instrument are expeditiously processed, packaged, and delivered. The purpose of the MLS NRT is to process Level 0 data up through Level 2, and distribute standard data products to the customer within 3-5 hours of the first set of data arrival.

  2. Series Bosch System Development

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Evans, Christopher; Mansell, Matt; Swickrath, Michael

    2012-01-01

    State-of-the-art (SOA) carbon dioxide (CO2) reduction technology for the International Space Station produces methane as a byproduct. This methane is subsequently vented overboard. The associated loss of hydrogen ultimately reduces the mass of oxygen that can be recovered from CO2 in a closed-loop life support system. As an alternative to SOA CO2 reduction technology, NASA is exploring a Series-Bosch system capable of reducing CO2 with hydrogen to form water and solid carbon. This results in 100% theoretical recovery of oxygen from metabolic CO2. In the past, Bosch-based technology did not trade favorably against SOA technology due to a high power demand, low reaction efficiencies, concerns with carbon containment, and large resupply requirements necessary to replace expended catalyst cartridges. An alternative approach to Bosch technology, labeled "Series-Bosch," employs a new system design with optimized multi-stage reactors and a membrane-based separation and recycle capability. Multi-physics modeling of the first stage reactor, along with chemical process modeling of the integrated system, has resulted in a design with potential to trade significantly better than previous Bosch technology. The modeling process and resulting system architecture selection are discussed.

  3. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  4. Negotiating a Systems Development Method

    NASA Astrophysics Data System (ADS)

    Karlsson, Fredrik; Hedström, Karin

    Systems development methods (or methods) are often applied in tailored version to fit the actual situation. Method tailoring is in most the existing literature viewed as either (a) a highly rational process with the method engineer as the driver where the project members are passive information providers or (b) an unstructured process where the systems developer makes individual choices, a selection process without any driver. The purpose of this chapter is to illustrate that important design decisions during method tailoring are made by project members through negotiation. The study has been carried out using the perspective of actor-network theory. Our narratives depict method tailoring as more complex than (a) and (b) show the driver role rotates between the project members, and design decisions are based on influences from several project members. However, these design decisions are not consensus decisions.

  5. Architecture for Survivable System Processing (ASSP)

    NASA Astrophysics Data System (ADS)

    Wood, Richard J.

    1991-11-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  6. XCPU2 process management system

    SciTech Connect

    Ionkov, Latchesar; Van Hensbergen, Eric

    2009-01-01

    Xcpu2 is a new process management system that allows the users to specify custom file system for a running job. Most cluster management systems enforce single software distribution running on all nodes. Xcpu2 allows programs running on the cluster to work in environment identical to the user's desktop, using the same versions of the libraries and tools the user installed locally, and accessing the configuration file in the same places they are located on the desktop. Xcpu2 builds on our earlier work with the Xcpu system. Like Xcpu, Xcpu2's process management interface is represented as a set of files exported by a 9P file server. It supports heterogeneous clusters and multiple head nodes. Unlike Xcpu, it uses pull instead of push model. In this paper we describe the Xcpu2 clustering model, its operation and how the per-job filesystem configuration can be used to solve some of the common problems when running a cluster.

  7. Advanced PPA Reactor and Process Development

    NASA Technical Reports Server (NTRS)

    Wheeler, Raymond; Aske, James; Abney, Morgan B.; Miller, Lee A.; Greenwood, Zachary

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA s Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development work.

  8. Parallel processing and expert systems

    NASA Technical Reports Server (NTRS)

    Lau, Sonie; Yan, Jerry C.

    1991-01-01

    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 1990s cannot enjoy an increased level of autonomy without the efficient implementation of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real-time demands are met for larger systems. Speedup via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial laboratories in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems is surveyed. The survey discusses multiprocessors for expert systems, parallel languages for symbolic computations, and mapping expert systems to multiprocessors. Results to date indicate that the parallelism achieved for these systems is small. The main reasons are (1) the body of knowledge applicable in any given situation and the amount of computation executed by each rule firing are small, (2) dividing the problem solving process into relatively independent partitions is difficult, and (3) implementation decisions that enable expert systems to be incrementally refined hamper compile-time optimization. In order to obtain greater speedups, data parallelism and application parallelism must be exploited.

  9. Process Accountability in Curriculum Development.

    ERIC Educational Resources Information Center

    Gooler, Dennis D.; Grotelueschen, Arden

    This paper urges the curriculum developer to assume the accountability for his decisions necessitated by the actual ways our society functions. The curriculum developer is encouraged to recognize that he is a salesman with a commodity (the curriculum). He is urged to realize that if he cannot market the package to the customers (the various…

  10. Internal insulation system development

    NASA Technical Reports Server (NTRS)

    Gille, J. P.

    1973-01-01

    The development of an internal insulation system for cryogenic liquids is described. The insulation system is based on a gas layer concept in which capillary or surface tension effects are used to maintain a stable gas layer within a cellular core structure between the tank wall and the contained cryogen. In this work, a 1.8 meter diameter tank was insulated and tested with liquid hydrogen. Ability to withstand cycling of the aluminum tank wall to 450 K was a design and test condition.

  11. VLSI mixed signal processing system

    NASA Technical Reports Server (NTRS)

    Alvarez, A.; Premkumar, A. B.

    1993-01-01

    An economical and efficient VLSI implementation of a mixed signal processing system (MSP) is presented in this paper. The MSP concept is investigated and the functional blocks of the proposed MSP are described. The requirements of each of the blocks are discussed in detail. A sample application using active acoustic cancellation technique is described to demonstrate the power of the MSP approach.

  12. The ISO/IEC 9126-1 as a Supporting Means for the System Development Process of a Patient Information Web Service.

    PubMed

    Hörbst, Alexander; Fink, Kerstin; Goebel, Georg

    2005-01-01

    The development of patient information systems faces the mayor problems of increasing and more complex content as well as the introduction of new techniques of system implementation. An integrated development demands for a method to deal with both aspects. The ISO/IEC 9126-1 offers a framework where both views can be integrated to a general view of the system and can be used as a basis for further development. This article wants to introduce the ISO/IEC 9126-1 as a supporting means for the development of patient information systems considering the example of a web service for a patient information system.

  13. Development of the auditory system

    PubMed Central

    Litovsky, Ruth

    2015-01-01

    Auditory development involves changes in the peripheral and central nervous system along the auditory pathways, and these occur naturally, and in response to stimulation. Human development occurs along a trajectory that can last decades, and is studied using behavioral psychophysics, as well as physiologic measurements with neural imaging. The auditory system constructs a perceptual space that takes information from objects and groups, segregates sounds, and provides meaning and access to communication tools such as language. Auditory signals are processed in a series of analysis stages, from peripheral to central. Coding of information has been studied for features of sound, including frequency, intensity, loudness, and location, in quiet and in the presence of maskers. In the latter case, the ability of the auditory system to perform an analysis of the scene becomes highly relevant. While some basic abilities are well developed at birth, there is a clear prolonged maturation of auditory development well into the teenage years. Maturation involves auditory pathways. However, non-auditory changes (attention, memory, cognition) play an important role in auditory development. The ability of the auditory system to adapt in response to novel stimuli is a key feature of development throughout the nervous system, known as neural plasticity. PMID:25726262

  14. Skylab materials processing facility experiment developer's report

    NASA Technical Reports Server (NTRS)

    Parks, P. G.

    1975-01-01

    The development of the Skylab M512 Materials Processing Facility is traced from the design of a portable, self-contained electron beam welding system for terrestrial applications to the highly complex experiment system ultimately developed for three Skylab missions. The M512 experiment facility was designed to support six in-space experiments intended to explore the advantages of manufacturing materials in the near-zero-gravity environment of Earth orbit. Detailed descriptions of the M512 facility and related experiment hardware are provided, with discussions of hardware verification and man-machine interfaces included. An analysis of the operation of the facility and experiments during the three Skylab missions is presented, including discussions of the hardware performance, anomalies, and data returned to earth.

  15. A plasma process monitor/control system

    SciTech Connect

    Stevenson, J.O.; Ward, P.P.; Smith, M.L.; Markle, R.J.

    1997-08-01

    Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.

  16. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    Recent studies have resulted in the development of a novel agglomeration process for upgrading ultrafine coal. This process, which is known as selective hydrophobic coagulation (SHC), is based on the new finding that hydrophobic coal particles can be selectively coagulated in the presence of dispersed mineral matter. The driving force for the coagulation is believed to be due to the structural arrangement of water molecules near the coal surface. In most cases, simple pH control is all that is required to (1) induce the coagulation of the coal particles and (2) effectively disperse the particles of mineral matter. During the past quarter, several important aspects of the SHC process were examined. Direct measurements of the surface forces which control the selective coagulation process were conducted using a Mark 4 surface force apparatus. These preliminary measurements have provided irrefutable evidence for the existence of the hydrophobic force. Key expressions have been presented for a population balance model describing the hydrophobic coagulation process. In order to validate this model, experimental measurements of the size distributions of coal coagulation have been initiated. The liberation characteristics of samples obtained from the Elkhorn No. 3 and Pittsburgh No. 8 coal seams were determined using a SEM-IPS image processing system. Mixing studies were carried out to determine the effects of mixer-impeller configurations on the coagula size distributions. Bench-scale continuous testing has also been initiated during the past quarter using a rotating drum screen and sedimentation tank. 25 figs., 8 tabs.

  17. Restructure Staff Development for Systemic Change

    ERIC Educational Resources Information Center

    Kelly, Thomas F.

    2012-01-01

    This paper presents a systems approach based on the work of W. Edwards Deming to system wide, high impact staff development. Deming has pointed out the significance of structure in systems. By restructuring the process of staff development we can bring about cost effective improvement of the whole system. We can improve student achievement while…

  18. Development of a comprehensive weld process model

    SciTech Connect

    Radhakrishnan, B.; Zacharia, T.; Paul, A.

    1997-05-01

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC`s expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three-dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above.

  19. Development of biotechnology control systems.

    PubMed

    Romeu, F J

    1995-03-01

    Advances in genetic engineering have generated great interest in biotechnology systems. Modern fermentation processes have a more scientific basis and can be optimized more quickly by utilizing instrumentation and control technology that permits increasing yield and product quality. The automation technology, to a large extent, can determine the degree of success of growing microorganisms. The automation system in modern biotechnology facilities includes a number of leading technologies such as sensors, indicators, data acquisition, distributed control, programmable control, communications, data base management, on-line data analysis techniques and application software. Modern computer systems have made fermentation processes easier and more accurate by performing tasks such as on-line analysis, statistical process control and supervisory control, while microprocessor-based distributed process controllers perform direct digital control, batch and sequencing control. This paper addresses technical issues related to the development of instrumentation and control systems that integrate these technologies through methodologies that permit the timely generation of the documentation and drawings that specify the control system for procurement, installation, commissioning, validation and operation.

  20. Advanced System for Process Engineering

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  1. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  2. Intelligent systems for induction hardening processes

    SciTech Connect

    Kelley, J.B.; Adkins, D.R.; Robino, C.V.

    1994-12-31

    Induction hardening is widely used to provide enhanced strength, wear resistance, and toughness in components made from medium and high carbon steels. Current limitations of the process include the lack of closed-loop process control, previously unidentified process and material variations which cause continual adjustment of the process parameters, coil and process development by trial and error, and an instability to monitor coil condition. Improvement of the induction hardening process is limited by an inadequate understanding of process fundamentals and material/process interactions. A multidisciplinary team from Sandia National Laboratories and Delphi Saginaw Steering Systems is investigating the induction hardening process under a Cooperative Research and Development Agreement (CRADA). The application of intelligent control algorithms has led to the development of a closed-loop process controller for the combination of one material, one geometry, single frequency, single shot, process that controls to {plus_minus} 0.1mm. This controller will be demonstrated on the production floor this year. Our approach and the opportunities for expanding the usefulness of this technology will be described.

  3. Comparison of digital dental X-ray systems with self-developing film and manual processing for endodontic file length determination.

    PubMed

    Eikenberg, S; Vandre, R

    2000-02-01

    Human skulls were sectioned into 15 sextants. Teeth were then removed and 45 canals were instrumented to their apical foramina. Endodontic files were glued in place at random distances from the apical foramina. Image geometry was maintained by a custom mounting jig. Images were captured with self-developing film, manually processed D-speed film, and a digital radiographic system (Dexis). Digital images were read on a conventional color monitor (cathode ray tube) and a laptop screen (active-matrix liquid crystal display). Fifteen dentists measured the distance from the file tip to the apical foramen of the tooth. Results showed that the measurement error was significantly less for the digital images than for the film-based images. It is likely that these statistical differences may not be of great clinical significance because the digital images could be measured in increments < 0.25 mm. PMID:11194373

  4. Development of the Selective Hydrophobic Coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-01-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy (Contracts AC22-86PC91221 and AC22-90PC90174). The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (1) induce the coagulation of coal particles and (2) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. During the quarter, the Anutech Mark IV surface force apparatus was used to generate surface force-distance data for the mica/dodecylamine hydrochloride system (Task 2.1.1). Work to characterize the hydrophobicity of this system and the mica/DDOA[sup [minus

  5. Optimizing and developing a continuous separation system for the wet process separation of aluminum and polyethylene in aseptic composite packaging waste.

    PubMed

    Yan, Dahai; Peng, Zheng; Liu, Yuqiang; Li, Li; Huang, Qifei; Xie, Minghui; Wang, Qi

    2015-01-01

    The consumption of milk in China is increasing as living standards rapidly improve, and huge amounts of aseptic composite milk packaging waste are being generated. Aseptic composite packaging is composed of paper, polyethylene, and aluminum. It is difficult to separate the polyethylene and aluminum, so most of the waste is currently sent to landfill or incinerated with other municipal solid waste, meaning that enormous amounts of resources are wasted. A wet process technique for separating the aluminum and polyethylene from the composite materials after the paper had been removed from the original packaging waste was studied. The separation efficiency achieved using different separation reagents was compared, different separation mechanisms were explored, and the impacts of a range of parameters, such as the reagent concentration, temperature, and liquid-solid ratio, on the separation time and aluminum loss ratio were studied. Methanoic acid was found to be the optimal separation reagent, and the suitable conditions were a reagent concentration of 2-4 mol/L, a temperature of 60-80°C, and a liquid-solid ratio of 30 L/kg. These conditions allowed aluminum and polyethylene to be separated in less than 30 min, with an aluminum loss ratio of less than 3%. A mass balance was produced for the aluminum-polyethylene separation system, and control technique was developed to keep the ion concentrations in the reaction system stable. This allowed a continuous industrial-scale process for separating aluminum and polyethylene to be developed, and a demonstration facility with a capacity of 50t/d was built. The demonstration facility gave polyethylene and aluminum recovery rates of more than 98% and more than 72%, respectively. Separating 1t of aluminum-polyethylene composite packaging material gave a profit of 1769 Yuan, meaning that an effective method for recycling aseptic composite packaging waste was achieved.

  6. Atmospheric and Oceanographic Information Processing System (AOIPS) system description

    NASA Technical Reports Server (NTRS)

    Bracken, P. A.; Dalton, J. T.; Billingsley, J. B.; Quann, J. J.

    1977-01-01

    The development of hardware and software for an interactive, minicomputer based processing and display system for atmospheric and oceanographic information extraction and image data analysis is described. The major applications of the system are discussed as well as enhancements planned for the future.

  7. Development of lysozyme-combined antibacterial system to reduce sulfur dioxide and to stabilize Italian Riesling ice wine during aging process

    PubMed Central

    Chen, Kai; Han, Shun-yu; Zhang, Bo; Li, Min; Sheng, Wen-jun

    2015-01-01

    For the purpose of SO2 reduction and stabilizing ice wine, a new antibacterial technique was developed and verified in order to reduce the content of sulfur dioxide (SO2) and simultaneously maintain protein stability during ice wine aging process. Hazardous bacterial strain (lactic acid bacteria, LAB) and protein stability of Italian Riesling ice wine were evaluated in terms of different amounts of lysozyme, SO2, polyphenols, and wine pH by single-factor experiments. Subsequently, a quadratic rotation-orthogonal composite design with four variables was conducted to establish the multiple linear regression model that demonstrated the influence of different treatments on synthesis score between LAB inhibition and protein stability of ice wine. The results showed that, synthesis score can be influenced by lysozyme and SO2 concentrations on an extremely significant level (P < 0.01). Furthermore, the lysozyme-combined antibacterial system, which is specially designed for ice wine aging, was optimized step by step by response surface methodology and ridge analysis. As a result, the optimal proportion should be control in ice wine as follows: 179.31 mg L−1 lysozyme, 177.14 mg L−1 SO2, 0.60 g L−1 polyphenols, and 4.01 ice wine pH. Based on this system, the normalized synthesis score between LAB inhibition and protein stability can reach the highest point 0.920. Finally, by the experiments of verification and comparison, it was indicated that lysozyme-combined antibacterial system, which was a practical and prospective method to reduce SO2 concentration and effectively prevent contamination from hazardous LAB, can be used to stabilize ice wine during aging process. PMID:26405531

  8. Developing an Expert System for Nursing Practice

    PubMed Central

    Ozbolt, Judy G.; Schultz, Samuel; Swain, Mary Ann P.; Abraham, Ivo L.; Farchaus-Stein, Karen

    1984-01-01

    The American Nurses' Association has set eight Standards of Nursing Practice related to the nursing process. Computer-aided information systems intended to facilitate the nursing process must be designed to promote adherence to these professional standards. For each of the eight standards, the paper tells how a hypothetical expert system could help nurses to meet the standard. A prototype of such an expert system is being developed. The paper describes issues in conceptualizing clinical decision-making and developing decision strategies for the prototype system. The process of developing the prototype system is described.

  9. Condensation Processes in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Norman, D. I.; Moore, J. N.

    2005-12-01

    We model condensation processes in geothermal systems to understand how this process changes fluid chemistry. We assume two processes operate in geothermal systems: 1) condensation of a vapor phase derived by boiling an aqueous geothermal fluid into a cool near surface water and 2) condensation of a magmatic vapor by a deep circulating meteoric thermal fluid. It is assumed that the condensation process has two stages. Initially the condensing fluid is under saturated in gaseous species. Condensation of the vapor phase continues until the pressure on the fluid equals the sum of the partial pressures of water and the dissolved gaseous species. At that time bubbles flux through the condensing fluid. In time the fluid and fluxing gas phase come to equilibrium. Calculation shows that during the second stage of the condensation process the liquid phase becomes enriched in more soluble gaseous species like CO2 and H2S, and depleted in less soluble species like CH4 and N2. Stage 2 condensation processes can therefore be monitored by ratios of more and less condensable species like CO2/N2. Condensation of vapor released by boiling geothermal fluids results in liquids with high concentrations of H2S and CO2 like is seen in geothermal system steam-heated waters. Condensation of a magmatic vapor into circulating meteoric water has been proposed, but not well demonstrated. We compare to our models the Cerro Prieto, Mexico gas analysis data set collected over twelve years time by USGS personnel. It was assumed for modeling that the Cerro Prieto geothermal fluids are circulating meteoritic fluids with N2/Ar ratios about 40 to which is added a magmatic vapor with N2/Ar ratio = 400. The Cerro Prieto analyses show a strong correlation between N2/Ar and CO2/N2 as predicted by calculation. Two dimensional image plots of well N2/Ar + CO2/N2 show a bull's-eye pattern on the geothermal field. Image plots of analyses collected over a year or less time show N2/Ar and CO2/N2 hot spots

  10. Parallel processing and expert systems

    NASA Technical Reports Server (NTRS)

    Yan, Jerry C.; Lau, Sonie

    1991-01-01

    Whether it be monitoring the thermal subsystem of Space Station Freedom, or controlling the navigation of the autonomous rover on Mars, NASA missions in the 90's cannot enjoy an increased level of autonomy without the efficient use of expert systems. Merely increasing the computational speed of uniprocessors may not be able to guarantee that real time demands are met for large expert systems. Speed-up via parallel processing must be pursued alongside the optimization of sequential implementations. Prototypes of parallel expert systems have been built at universities and industrial labs in the U.S. and Japan. The state-of-the-art research in progress related to parallel execution of expert systems was surveyed. The survey is divided into three major sections: (1) multiprocessors for parallel expert systems; (2) parallel languages for symbolic computations; and (3) measurements of parallelism of expert system. Results to date indicate that the parallelism achieved for these systems is small. In order to obtain greater speed-ups, data parallelism and application parallelism must be exploited.

  11. ASI-Volcanic Risk System (SRV): a pilot project to develop EO data processing modules and products for volcanic activity monitoring, first results.

    NASA Astrophysics Data System (ADS)

    Silvestri, M.; Musacchio, M.; Buongiorno, M. F.; Dini, L.

    2009-04-01

    The Project called Sistema Rischio Vulcanico (SRV) is funded by the Italian Space Agency (ASI) in the frame of the National Space Plan 2003-2005 under the Earth Observations section for natural risks management. The SRV Project is coordinated by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) which is responsible at national level for the volcanic monitoring. The project philosophy is to implement, by incremental versions, specific modules which allow to process, store and visualize through Web GIS tools geophysical parameters suitable for volcanic risk management. The ASI-SRV is devoted to the development of an integrated system based on Earth Observation (EO) data to respond to specific needs of the Italian Civil Protection Department (DPC) and improve the monitoring of Italian active volcanoes during all the risk phases (Pre Crisis, Crisis and Post Crisis). The ASI-SRV system provides support to risk managers during the different volcanic activity phases and its results are addressed to the Italian Civil Protection Department (DPC). SRV provides the capability to manage the import many different EO data into the system, it maintains a repository where the acquired data have to be stored and generates selected volcanic products. The processing modules for EO Optical sensors data are based on procedures jointly developed by INGV and University of Modena. This procedures allow to estimate a number of parameters such as: surface thermal proprieties, gas, aerosol and ash emissions and to characterize the volcanic products in terms of composition and geometry. For the analysis of the surface thermal characteristics, the available algorithms allow to extract information during the prevention phase and during the Warning and Crisis phase. In the prevention phase the thermal analysis is directed to the identification of temperature variation on volcanic structure which may indicate a change in the volcanic activity state. At the moment the only sensor that

  12. Managing the Software Development Process

    NASA Technical Reports Server (NTRS)

    Lubelczky, Jeffrey T.; Parra, Amy

    1999-01-01

    The goal of any software development project is to produce a product that is delivered on time, within the allocated budget, and with the capabilities expected by the customer and unfortunately, this goal is rarely achieved. However, a properly managed project in a mature software engineering environment can consistently achieve this goal. In this paper we provide an introduction to three project success factors, a properly managed project, a competent project manager, and a mature software engineering environment. We will also present an overview of the benefits of a mature software engineering environment based on 24 years of data from the Software Engineering Lab, and suggest some first steps that an organization can take to begin benefiting from this environment. The depth and breadth of software engineering exceeds this paper, various references are cited with a goal of raising awareness and encouraging further investigation into software engineering and project management practices.

  13. NDMAS System and Process Description

    SciTech Connect

    Larry Hull

    2012-10-01

    Experimental data generated by the Very High Temperature Reactor Program need to be more available to users in the form of data tables on Web pages that can be downloaded to Excel or in delimited text formats that can be used directly for input to analysis and simulation codes, statistical packages, and graphics software. One solution that can provide current and future researchers with direct access to the data they need, while complying with records management requirements, is the Nuclear Data Management and Analysis System (NDMAS). This report describes the NDMAS system and its components, defines roles and responsibilities, describes the functions the system performs, describes the internal processes the NDMAS team uses to carry out the mission, and describes the hardware and software used to meet Very High Temperature Reactor Program needs.

  14. Chemical production processes and systems

    SciTech Connect

    Holladay, Johnathan E; Muzatko, Danielle S; White, James F; Zacher, Alan H

    2015-04-21

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  15. Chemical production processes and systems

    SciTech Connect

    Holladay, Johnathan E.; Muzatko, Danielle S.; White, James F.; Zacher, Alan H.

    2014-06-17

    Hydrogenolysis systems are provided that can include a reactor housing an Ru-comprising hydrogenolysis catalyst and wherein the contents of the reactor is maintained at a neutral or acidic pH. Reactant reservoirs within the system can include a polyhydric alcohol compound and a base, wherein a weight ratio of the base to the compound is less than 0.05. Systems also include the product reservoir comprising a hydrogenolyzed polyhydric alcohol compound and salts of organic acids, and wherein the moles of base are substantially equivalent to the moles of salts or organic acids. Processes are provided that can include an Ru-comprising catalyst within a mixture having a neutral or acidic pH. A weight ratio of the base to the compound can be between 0.01 and 0.05 during exposing.

  16. Dissection of Bacterial Wilt on Medicago truncatula Revealed Two Type III Secretion System Effectors Acting on Root Infection Process and Disease Development[C][W][OA

    PubMed Central

    Turner, Marie; Jauneau, Alain; Genin, Stéphane; Tavella, Marie-José; Vailleau, Fabienne; Gentzbittel, Laurent; Jardinaud, Marie-Françoise

    2009-01-01

    Ralstonia solanacearum is the causal agent of the devastating bacterial wilt disease, which colonizes susceptible Medicago truncatula via the intact root tip. Infection involves four steps: appearance of root tip symptoms, root tip cortical cell invasion, vessel colonization, and foliar wilting. We examined this pathosystem by in vitro inoculation of intact roots of susceptible or resistant M. truncatula with the pathogenic strain GMI1000. The infection process was type III secretion system dependent and required two type III effectors, Gala7 and AvrA, which were shown to be involved at different stages of infection. Both effectors were involved in development of root tip symptoms, and Gala7 was the main determinant for bacterial invasion of cortical cells. Vessel invasion depended on the host genetic background and was never observed in the resistant line. The invasion of the root tip vasculature in the susceptible line caused foliar wilting. The avrA mutant showed reduced aggressiveness in all steps of the infection process, suggesting a global role in R. solanacearum pathogenicity. The roles of these two effectors in subsequent stages were studied using an assay that bypassed the penetration step; with this assay, the avrA mutant showed no effect compared with the GMI1000 strain, indicating that AvrA is important in early stages of infection. However, later disease symptoms were reduced in the gala7 mutant, indicating a key role in later stages of infection. PMID:19493968

  17. Power Systems Development Facility

    SciTech Connect

    2003-07-01

    This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

  18. Development of novel microencapsulation processes

    NASA Astrophysics Data System (ADS)

    Yin, Weisi

    of polymer solution suspended in water or from a spray. Hollow PS particles were obtained by swelling PS latex with solvent, freezing in liquid nitrogen, and drying in vacuum. It is shown that the particle morphology is due to phase separation in the polymer emulsion droplets upon freezing in liquid nitrogen, and that morphological changes are driven largely by lowering interfacial free energy. The dried hollow particles were resuspended in a dispersing media and exposed to a plasticizer, which imparts mobility to polymer chains, to close the surface opening and form microcapsules surrounding an aqueous core. The interfacial free energy difference between the hydrophobic inside and hydrophilic outside surfaces is the major driving force for closing the hole on the surface. A controlled release biodegradable vehicle for drug was made by encapsulating procaine hydrochloride, a water-soluble drug, into the core of poly(DL-lactide) (PLA) microcapsules, which were made by the freeze-drying and subsequent closing process. The encapsulation efficiency is affected by the hollow particle morphology, amount of closing agent, exposure time, surfactant, and method of dispersing the hollow particles in water. Controlled release of procaine hydrochloride from the microcapsules into phosphate buffer was observed. The use of benign solvents dimethyl carbonate in spray/freeze-drying and CO2 for closing would eliminate concerns of residual harmful solvent in the product. The ease of separation of CO2 from the drug solution may also enable recycling of the drug solution to increase the overall encapsulation efficiency using these novel hollow particles.

  19. Development of a Sample Processing System (SPS) for the in situ search of organic compounds on Mars : application to the Mars Organic Molecule Analyzer (MOMA) experiment

    NASA Astrophysics Data System (ADS)

    Buch, A.; Sternberg, R.; Garnier, C.; Fressinet, C.; Szopa, C.; El Bekri, J.; Coll, P.; Rodier, C.; Raulin, F.; Goesmann, F.

    2008-09-01

    The search for past or present life signs is one of the primary goals of the future Mars exploratory missions. With this aim the Mars Organic Molecule Analyzer (MOMA) module of the ExoMars 2013 next coming European space mission is designed to the in situ analysis, in the Martian soil, of organic molecules of exobiological interest such as amino acids, carboxylic acids, nucleobases or polycyclic aromatic hydrocarbons (PAHs). In the frame of the MOMA experiment we have been developing a Sample Processing System (SPS) compatible with gas chromatography (GC) analysis. The main goal of SPS is to allow the extraction and the gas chromatography separation of the refractory organic compounds from a solid matrix at trace level within space compatible operating conditions. The SPS is a mini-reactor, containing the solid sample (~500mg), able to increase (or decrease) the internal temperature from 20 to 500 °C within 13 sec. The extraction step is therefore performed by using thermodesorption, the best yield of extraction being obtained at 300°C for 10 to 20 min. It has to be noticed that the temperature could be increased up to 500°C without a significant lost of efficiency if the heating run time is kept below 3 min. After the thermodesorption the chemical derivatization of the extracted compounds is performed directly on the soil with a mixture of MTBSTFA and DMF [buch et al.]. By decreasing the polarity of the target molecules, this step allows their volatilization at a temperature below 250°C without any chemical degradation. Once derivatized, the targeted volatile molecules are transferred through a heated transfer line in the gas chromatograph coupled with a mass spectrometer for the detection. The SPS is a "one step/one pot" sample preparation system which should allow the MOMA experiment to detect the refractory molecules absorbed in the Martian soil at a detection limit below the ppb level. A. Buch, R. Sternberg, C. Szopa, C. Freissinet, C. Garnier, J. El Bekri

  20. Advanced Dewatering Systems Development

    SciTech Connect

    R.H. Yoon; G.H. Luttrell

    2008-07-31

    A new fine coal dewatering technology has been developed and tested in the present work. The work was funded by the Solid Fuels and Feedstocks Grand Challenge PRDA. The objective of this program was to 'develop innovative technical approaches to ensure a continued supply of environmentally sound solid fuels for existing and future combustion systems with minimal incremental fuel cost.' Specifically, this solicitation is aimed at developing technologies that can (i) improve the efficiency or economics of the recovery of carbon when beneficiating fine coal from both current production and existing coal slurry impoundments and (ii) assist in the greater utilization of coal fines by improving the handling characteristics of fine coal via dewatering and/or reconstitution. The results of the test work conducted during Phase I of the current project demonstrated that the new dewatering technologies can substantially reduce the moisture from fine coal, while the test work conducted during Phase II successfully demonstrated the commercial viability of this technology. It is believed that availability of such efficient and affordable dewatering technology is essential to meeting the DOE's objectives.

  1. FLIPS: Friendly Lisp Image Processing System

    NASA Astrophysics Data System (ADS)

    Gee, Shirley J.

    1991-08-01

    The Friendly Lisp Image Processing System (FLIPS) is the interface to Advanced Target Detection (ATD), a multi-resolutional image analysis system developed by Hughes in conjunction with the Hughes Research Laboratories. Both menu- and graphics-driven, FLIPS enhances system usability by supporting the interactive nature of research and development. Although much progress has been made, fully automated image understanding technology that is both robust and reliable is not a reality. In situations where highly accurate results are required, skilled human analysts must still verify the findings of these systems. Furthermore, the systems often require processing times several orders of magnitude greater than that needed by veteran personnel to analyze the same image. The purpose of FLIPS is to facilitate the ability of an image analyst to take statistical measurements on digital imagery in a timely fashion, a capability critical in research environments where a large percentage of time is expended in algorithm development. In many cases, this entails minor modifications or code tinkering. Without a well-developed man-machine interface, throughput is unduly constricted. FLIPS provides mechanisms which support rapid prototyping for ATD. This paper examines the ATD/FLIPS system. The philosophy of ATD in addressing image understanding problems is described, and the capabilities of FLIPS are discussed, along with a description of the interaction between ATD and FLIPS. Finally, an overview of current plans for the system is outlined.

  2. Deficiency tracking system, conceptual business process requirements

    SciTech Connect

    Hermanson, M.L.

    1997-04-18

    The purpose of this document is to describe the conceptual business process requirements of a single, site-wide, consolidated, automated, deficiency management tracking, trending, and reporting system. This description will be used as the basis for the determination of the automated system acquisition strategy including the further definition of specific requirements, a ''make or buy'' determination and the development of specific software design details.

  3. Development of the selective hydrophobic coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-01-01

    A novel technique for selectively coagulating and separating coal from dispersed mineral matter has been developed at Virginia Tech. The process, Selective Hydrophobic Coagulation (SHC), has been studied since 1986 under the sponsorship of the US Department of Energy. The SHC process differs from oil agglomeration, shear or polymer flocculation, and electrolytic coagulation processes in that it does not require reagents or additives to induce the formation of coagula. In most cases, simple pH control is all that is required to (i) induce the coagulation of coal particles and (ii) effectively disperse particles of mineral matter. If the coal is oxidized, a small dosage of reagents can be used to enhance the process. The technical work program was initiated on July 1, 1992. Force-distance curves were generated for DDOA Br-coated mica surfaces in water and used to calculate hydrophobicity constants and decay lengths for this system; and a new device for the measurement of water contact angles, similar to the Wilhelmy plate balance, has been built 225 kg samples of Pittsburgh No. 8 and Elkhom No. 3 seam coals were obtained; a static mixer test facility for the study of coagula growth was set up and was undergoing shakedown tests at the end of the quarter; a bench-scale lamella thickener was being constructed; and preliminary coagula/ mineral separation tests were being conducted in a bench-scale continuous drum filter.

  4. A systems process of reinforcement.

    PubMed

    Sudakov, K V

    1997-01-01

    Functional systems theory was used to consider the process of reinforcement of the actions on the body of reinforcing factors, i.e., the results of behavior satisfying the body's original needs. The systems process of reinforcement includes reverse afferentation entering the CNS from receptors acted upon by various parameters of the desired results, and mechanisms for comparing reverse afferentation with the apparatus which accepts the results of the action and the corresponding emotional component. A tight interaction between reinforcement and the dominant motivation is generated on the basis of the hologram principle. Reinforcement forms an apparatus for predicting a desired result, i.e. a result-of-action acceptor. Reinforcement procedures significant changes in the activities of individual neurons in the various brain structures involved in dominant motivation, transforming their spike activity for a burst pattern to regular discharges; there are also molecular changes in neuron properties. After preliminary reinforcement, the corresponding motivation induces the ribosomal system of neurons to start synthesizing special effector molecules, which organize molecular engrams of the acceptor of the action's result. Sensory mechanisms of reinforcement are considered, with particular reference to the information role of emotions.

  5. Performance Monitoring of Distributed Data Processing Systems

    NASA Technical Reports Server (NTRS)

    Ojha, Anand K.

    2000-01-01

    Test and checkout systems are essential components in ensuring safety and reliability of aircraft and related systems for space missions. A variety of systems, developed over several years, are in use at the NASA/KSC. Many of these systems are configured as distributed data processing systems with the functionality spread over several multiprocessor nodes interconnected through networks. To be cost-effective, a system should take the least amount of resource and perform a given testing task in the least amount of time. There are two aspects of performance evaluation: monitoring and benchmarking. While monitoring is valuable to system administrators in operating and maintaining, benchmarking is important in designing and upgrading computer-based systems. These two aspects of performance evaluation are the foci of this project. This paper first discusses various issues related to software, hardware, and hybrid performance monitoring as applicable to distributed systems, and specifically to the TCMS (Test Control and Monitoring System). Next, a comparison of several probing instructions are made to show that the hybrid monitoring technique developed by the NIST (National Institutes for Standards and Technology) is the least intrusive and takes only one-fourth of the time taken by software monitoring probes. In the rest of the paper, issues related to benchmarking a distributed system have been discussed and finally a prescription for developing a micro-benchmark for the TCMS has been provided.

  6. [The experimental development of the concept of O. S. Adrianov on the correlation of functional and neurochemical processes: regulatory peptides in mediator system dysfunction].

    PubMed

    Popova, N S; Dovedova, E L; Kachalova, L M; Gershteĭn, L M

    2000-01-01

    The article is devoted to commemoration of full member of Russian Academy of Medical Sciences, Oleg Andreevich Adrianov, who would have celebrated his 75-th anniversary in 1998. O. S. Adrianov, author of numerous works on physiology and morphology of central nervous system, in the recent years of his was studying the problem of the processes relationship at macro and micro levels of brain organization. Further to the concept created by O.S. Adrianov, data on action of two peptides: delta-sleep and tafcine, on behavior, neurophysiological and neurochemical processes have been consolidated. Experimental data were obtained for rabbits, cats, and dogs, both intact and in the state of pathology (psychomotoric excitement, bradykinesia, penicillin epilepsy). Impact of peptides on convergation processes is discussed: peptide of delta-sleep depresses reactions of brain structures to photo- and phono-stimulation, and activates the serotoninergic system in general; tafcine enforces the convergation processes and activates the dopaminergic system.

  7. A fuzzy classifier system for process control

    NASA Technical Reports Server (NTRS)

    Karr, C. L.; Phillips, J. C.

    1994-01-01

    A fuzzy classifier system that discovers rules for controlling a mathematical model of a pH titration system was developed by researchers at the U.S. Bureau of Mines (USBM). Fuzzy classifier systems successfully combine the strengths of learning classifier systems and fuzzy logic controllers. Learning classifier systems resemble familiar production rule-based systems, but they represent their IF-THEN rules by strings of characters rather than in the traditional linguistic terms. Fuzzy logic is a tool that allows for the incorporation of abstract concepts into rule based-systems, thereby allowing the rules to resemble the familiar 'rules-of-thumb' commonly used by humans when solving difficult process control and reasoning problems. Like learning classifier systems, fuzzy classifier systems employ a genetic algorithm to explore and sample new rules for manipulating the problem environment. Like fuzzy logic controllers, fuzzy classifier systems encapsulate knowledge in the form of production rules. The results presented in this paper demonstrate the ability of fuzzy classifier systems to generate a fuzzy logic-based process control system.

  8. [Development of the affect system].

    PubMed

    Moser, U; Von Zeppelin, I

    1996-01-01

    The authors show that the development of the affect system commences with affects of an exclusively communicative nature. These regulate the relationship between subject and object. On a different plane they also provide information on the feeling of self deriving from the interaction. Affect is seen throughout as a special kind of information. One section of the article is given over to intensity regulation and early affect defenses. The development of cognitive processes leads to the integration of affect systems and cognitive structures. In the pre-conceptual concretistic phase, fantasies change the object relation in such a way as to make unpleasant affects disappear. Only at a later stage do fantasies acquire the capacity to deal with affects. Ultimately, the affect system is grounded on an invariant relationship feeling. On a variety of different levels it displays the features typical of situation theory and the theory of the representational world, thus making it possible to entertain complex object relations. In this process the various planes of the affect system are retained and practised. Finally, the authors discuss the consequences of their remarks for the understanding of psychic disturbances and the therapies brought to bear on them. PMID:8584745

  9. [The systems process of reinforcement].

    PubMed

    Sudakov, K V

    1996-01-01

    The process of reinforcement is considered in the context of the general theory of functional systems as an important part of behavioural act organization closely interacting with the dominant motivation. It is shown that reinforcement substantially changes the activities of separate neurons in different brain structures involved in dominant motivation. After a preliminary reinforcement under the influence of corresponding motivation the ribosomal apparatus of neurons begins to synthesize special molecular engrams of the action acceptor. The sensory mechanisms of reinforcement and, especially, the role of emotions are considered in details in the paper.

  10. Power Systems Development Facility

    SciTech Connect

    Southern Company Services

    2004-04-30

    This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

  11. Spacelab output processing system architectural study

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Two different system architectures are presented. The two architectures are derived from two different data flows within the Spacelab Output Processing System. The major differences between these system architectures are in the position of the decommutation function (the first architecture performs decommutation in the latter half of the system and the second architecture performs that function in the front end of the system). In order to be examined, the system was divided into five stand-alone subsystems; Work Assembler, Mass Storage System, Output Processor, Peripheral Pool, and Resource Monitor. The work load of each subsystem was estimated independent of the specific devices to be used. The candidate devices were surveyed from a wide sampling of off-the-shelf devices. Analytical expressions were developed to quantify the projected workload in conjunction with typical devices which would adequately handle the subsystem tasks. All of the study efforts were then directed toward preparing performance and cost curves for each architecture subsystem.

  12. Hybrid Sulfur Thermochemical Process Development Annual Report

    SciTech Connect

    Summers, William A.; Buckner, Melvin R.

    2005-07-21

    The Hybrid Sulfur (HyS) Thermochemical Process is a means of producing hydrogen via water-splitting through a combination of chemical reactions and electrochemistry. Energy is supplied to the system as high temperature heat (approximately 900 C) and electricity. Advanced nuclear reactors (Generation IV) or central solar receivers can be the source of the primary energy. Large-scale hydrogen production based on this process could be a major contributor to meeting the needs of a hydrogen economy. This project's objectives include optimization of the HyS process design, analysis of technical issues and concerns, creation of a development plan, and laboratory-scale proof-of-concept testing. The key component of the HyS Process is the SO2-depolarized electrolyzer (SDE). Studies were performed that showed that an electrolyzer operating in the range of 500-600 mV per cell can lead to an overall HyS cycle efficiency in excess of 50%, which is superior to all other currently proposed thermochemical cycles. Economic analysis indicated hydrogen production costs of approximately $1.60 per kilogram for a mature nuclear hydrogen production plant. However, in order to meet commercialization goals, the electrolyzer should be capable of operating at high current density, have a long operating lifetime , and have an acceptable capital cost. The use of proton-exchange-membrane (PEM) technology, which leverages work for the development of PEM fuel cells, was selected as the most promising route to meeting these goals. The major accomplishments of this project were the design and construction of a suitable electrolyzer test facility and the proof-of-concept testing of a PEM-based SDE.

  13. Development of the LICADO coal cleaning process

    SciTech Connect

    Not Available

    1990-07-31

    Development of the liquid carbon dioxide process for the cleaning of coal was performed in batch, variable volume (semi-continuous), and continuous tests. Continuous operation at feed rates up to 4.5 kg/hr (10-lb/hr) was achieved with the Continuous System. Coals tested included Upper Freeport, Pittsburgh, Illinois No. 6, and Middle Kittanning seams. Results showed that the ash and pyrite rejections agreed closely with washability data for each coal at the particle size tested (-200 mesh). A 0.91 metric ton (1-ton) per hour Proof-of-Concept Plant was conceptually designed. A 181 metric ton (200 ton) per hour and a 45 metric ton (50 ton) per hour plant were sized sufficiently to estimate costs for economic analyses. The processing costs for the 181 metric ton (200 ton) per hour and 45 metric ton (50 ton) per hour were estimated to be $18.96 per metric ton ($17.20 per ton) and $11.47 per metric ton ($10.40 per ton), respectively for these size plants. The costs for the 45 metric ton per hour plant are lower because it is assumed to be a fines recovery plant which does not require a grinding circuit of complex waste handling system.

  14. Processing system for an enhanced vision system

    NASA Astrophysics Data System (ADS)

    Yelton, Dennis J.; Bernier, Ken L.; Sanders-Reed, John N.

    2004-08-01

    Enhanced Vision Systems (EVS) combines imagery from multiple sensors, possibly running at different frame rates and pixel counts, on to a display. In the case of a Helmet Mounted Display (HMD), the user line of sight is continuously changing with the result that the sensor pixels rendered on the display are changing in real time. In an EVS, the various sensors provide overlapping fields of view which requires stitching imagery together to provide a seamless mosaic to the user. Further, different modality sensors may be present requiring the fusion of imagery from the sensors. All of this takes place in a dynamic flight environment where the aircraft (with fixed mounted sensors) is changing position and orientation while the users are independently changing their lines of sight. In order to provide well registered, seamless imagery, very low throughput latencies are required, while dealing with huge volumes of data. This provides both algorithmic and processing challenges which must be overcome to provide a suitable system. This paper discusses system architecture, efficient stitching and fusing algorithms, and hardware implementation issues.

  15. Features, Events, and Processes: system Level

    SciTech Connect

    D. McGregor

    2004-10-15

    The purpose of this analysis report is to evaluate and document the inclusion or exclusion of the system-level features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment for the license application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for screening decisions. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.113 (d, e, and f) (DIRS 156605). The system-level FEPs addressed in this report typically are overarching in nature, rather than being focused on a particular process or subsystem. As a result, they are best dealt with at the system level rather than addressed within supporting process-level or subsystem-level analyses and models reports. The system-level FEPs also tend to be directly addressed by regulations, guidance documents, or assumptions listed in the regulations; or are addressed in background information used in development of the regulations. For included FEPs, this analysis summarizes the implementation of the FEP in the TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from the TSPA-LA (i.e., why the FEP is excluded). The initial version of this report (Revision 00) was developed to support the total system performance assessment for site recommendation (TSPA-SR). This revision addresses the license application (LA) FEP List (DIRS 170760).

  16. Vision Systems Illuminate Industrial Processes

    NASA Technical Reports Server (NTRS)

    2013-01-01

    When NASA designs a spacecraft to undertake a new mission, innovation does not stop after the design phase. In many cases, these spacecraft are firsts of their kind, requiring not only remarkable imagination and expertise in their conception but new technologies and methods for their manufacture. In the realm of manufacturing, NASA has from necessity worked on the cutting-edge, seeking new techniques and materials for creating unprecedented structures, as well as capabilities for reducing the cost and increasing the efficiency of existing manufacturing technologies. From friction stir welding enhancements (Spinoff 2009) to thermoset composites (Spinoff 2011), NASA s innovations in manufacturing have often transferred to the public in ways that enable the expansion of the Nation s industrial productivity. NASA has long pursued ways of improving upon and ensuring quality results from manufacturing processes ranging from arc welding to thermal coating applications. But many of these processes generate blinding light (hence the need for special eyewear during welding) that obscures the process while it is happening, making it difficult to monitor and evaluate. In the 1980s, NASA partnered with a company to develop technology to address this issue. Today, that collaboration has spawned multiple commercial products that not only support effective manufacturing for private industry but also may support NASA in the use of an exciting, rapidly growing field of manufacturing ideal for long-duration space missions.

  17. Development Process for Science Operation Software

    NASA Astrophysics Data System (ADS)

    Ballester, Pascal

    2015-12-01

    Scientific software development at ESO involves defined processes for the main phases of project inception, monitoring of development performed by instrument consortia, application maintenance, and application support. We discuss the lessons learnt and evolution of the process for the next generation of tools and observing facilities.

  18. Development of the Concise Data Processing Assessment

    ERIC Educational Resources Information Center

    Day, James; Bonn, Doug

    2011-01-01

    The Concise Data Processing Assessment (CDPA) was developed to probe student abilities related to the nature of measurement and uncertainty and to handling data. The diagnostic is a ten question, multiple-choice test that can be used as both a pre-test and post-test. A key component of the development process was interviews with students, which…

  19. ASRM test report: Autoclave cure process development

    NASA Technical Reports Server (NTRS)

    Nachbar, D. L.; Mitchell, Suzanne

    1992-01-01

    ASRM insulated segments will be autoclave cured following insulation pre-form installation and strip wind operations. Following competitive bidding, Aerojet ASRM Division (AAD) Purchase Order 100142 was awarded to American Fuel Cell and Coated Fabrics Company, Inc. (Amfuel), Magnolia, AR, for subcontracted insulation autoclave cure process development. Autoclave cure process development test requirements were included in Task 3 of TM05514, Manufacturing Process Development Specification for Integrated Insulation Characterization and Stripwind Process Development. The test objective was to establish autoclave cure process parameters for ASRM insulated segments. Six tasks were completed to: (1) evaluate cure parameters that control acceptable vulcanization of ASRM Kevlar-filled EPDM insulation material; (2) identify first and second order impact parameters on the autoclave cure process; and (3) evaluate insulation material flow-out characteristics to support pre-form configuration design.

  20. EUV mask process specifics and development challenges

    NASA Astrophysics Data System (ADS)

    Nesladek, Pavel

    2014-07-01

    EUV lithography is currently the favorite and most promising candidate among the next generation lithography (NGL) technologies. Decade ago the NGL was supposed to be used for 45 nm technology node. Due to introduction of immersion 193nm lithography, double/triple patterning and further techniques, the 193 nm lithography capabilities was greatly improved, so it is expected to be used successfully depending on business decision of the end user down to 10 nm logic. Subsequent technology node will require EUV or DSA alternative technology. Manufacturing and especially process development for EUV technology requires significant number of unique processes, in several cases performed at dedicated tools. Currently several of these tools as e.g. EUV AIMS or actinic reflectometer are not available on site yet. The process development is done using external services /tools with impact on the single unit process development timeline and the uncertainty of the process performance estimation, therefore compromises in process development, caused by assumption about similarities between optical and EUV mask made in experiment planning and omitting of tests are further reasons for challenges to unit process development. Increased defect risk and uncertainty in process qualification are just two examples, which can impact mask quality / process development. The aim of this paper is to identify critical aspects of the EUV mask manufacturing with respect to defects on the mask with focus on mask cleaning and defect repair and discuss the impact of the EUV specific requirements on the experiments needed.

  1. Ground data systems resource allocation process

    NASA Technical Reports Server (NTRS)

    Berner, Carol A.; Durham, Ralph; Reilly, Norman B.

    1989-01-01

    The Ground Data Systems Resource Allocation Process at the Jet Propulsion Laboratory provides medium- and long-range planning for the use of Deep Space Network and Mission Control and Computing Center resources in support of NASA's deep space missions and Earth-based science. Resources consist of radio antenna complexes and associated data processing and control computer networks. A semi-automated system was developed that allows operations personnel to interactively generate, edit, and revise allocation plans spanning periods of up to ten years (as opposed to only two or three weeks under the manual system) based on the relative merit of mission events. It also enhances scientific data return. A software system known as the Resource Allocation and Planning Helper (RALPH) merges the conventional methods of operations research, rule-based knowledge engineering, and advanced data base structures. RALPH employs a generic, highly modular architecture capable of solving a wide variety of scheduling and resource sequencing problems. The rule-based RALPH system has saved significant labor in resource allocation. Its successful use affirms the importance of establishing and applying event priorities based on scientific merit, and the benefit of continuity in planning provided by knowledge-based engineering. The RALPH system exhibits a strong potential for minimizing development cycles of resource and payload planning systems throughout NASA and the private sector.

  2. Developing Effective TV Systems.

    ERIC Educational Resources Information Center

    Rankins, Ron P.

    This case study of the planning and organization of an on-campus educational television system, designed as both an instructional and a service oriented resource, includes descriptions of the goals of the system, the equipment purchased, and problems encountered. It was found that a versatile and relatively sophisticated system could be…

  3. Color Image Processing and Object Tracking System

    NASA Technical Reports Server (NTRS)

    Klimek, Robert B.; Wright, Ted W.; Sielken, Robert S.

    1996-01-01

    This report describes a personal computer based system for automatic and semiautomatic tracking of objects on film or video tape, developed to meet the needs of the Microgravity Combustion and Fluids Science Research Programs at the NASA Lewis Research Center. The system consists of individual hardware components working under computer control to achieve a high degree of automation. The most important hardware components include 16-mm and 35-mm film transports, a high resolution digital camera mounted on a x-y-z micro-positioning stage, an S-VHS tapedeck, an Hi8 tapedeck, video laserdisk, and a framegrabber. All of the image input devices are remotely controlled by a computer. Software was developed to integrate the overall operation of the system including device frame incrementation, grabbing of image frames, image processing of the object's neighborhood, locating the position of the object being tracked, and storing the coordinates in a file. This process is performed repeatedly until the last frame is reached. Several different tracking methods are supported. To illustrate the process, two representative applications of the system are described. These applications represent typical uses of the system and include tracking the propagation of a flame front and tracking the movement of a liquid-gas interface with extremely poor visibility.

  4. Ultrasound process tomography system for hydrocyclones

    PubMed

    Schlaberg; Podd; Hoyle

    2000-03-01

    The implementation of a laboratory-based ultrasound tomography system to an industrial process application is not straightforward. In the present work, a tomography system with 16 transducers has been applied to an industrial 50 mm hydrocyclone to visualize its air-core size and position. Hydrocyclones are used to separate fine particles from a slurry. The efficiency of the separation process depends on the size of the air core within the cyclone. If the core is too large due to spigot wear, there will be a detrimental effect on the slurry throughput. Conversely, if the throughput is increased to an extent where the air core becomes unstable or disappears, the particle separation will no longer take place, and the processed batches may become contaminated. Ultrasound tomography presents a very good tool with which to visualize the size, position and movement of the air core and monitor its behaviour under varying input parameters. Ultimately, it could be used within this application both to control the input flow rate depending on the air core size and to detect spigot wear. This paper describes the development of an ultrasonic tomography system applied to an instrumented hydrocyclone. Time-of-flight data are captured by a dedicated acquisition system that pre-processes the information using a DSP and transfers the results to a PC via a fast serial link. The hardware of the tomography system is described, and cursory results are presented in the form of reconstructed images of the air core within the hydrocyclone.

  5. Robot development for nuclear material processing

    SciTech Connect

    Pedrotti, L.R.; Armantrout, G.A.; Allen, D.C.; Sievers, R.H. Sr.

    1991-07-01

    The Department of Energy is seeking to modernize its special nuclear material (SNM) production facilities and concurrently reduce radiation exposures and process and incidental radioactive waste generated. As part of this program, Lawrence Livermore National Laboratory (LLNL) lead team is developing and adapting generic and specific applications of commercial robotic technologies to SNM pyrochemical processing and other operations. A working gantry robot within a sealed processing glove box and a telerobot control test bed are manifestations of this effort. This paper describes the development challenges and progress in adapting processing, robotic, and nuclear safety technologies to the application. 3 figs.

  6. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    The aim of this project is to develop an economical method for producing low-sulfur and low-ash coals using the selective hydrophobic coagulation (SHC) process. This work has been divided into three tasks: (1) project planning and sample acquisition; (2) studies of the fundamental mechanism(s) of the selective coagulation process and the parameters that affect the process of separating coal from both the ash-forming minerals and pyritic sulfur; and (3) bench-scale process development test work to establish the best possible method(s) of separating the hydrophobic and coagula from the dispersed mineral matter.

  7. Next generation enhanced vision system processing

    NASA Astrophysics Data System (ADS)

    Bernhardt, M.; Cowell, C.; Riley, T.

    2008-04-01

    The use of multiple, high sensitivity sensors can be usefully exploited within military airborne enhanced vision systems (EVS) to provide enhanced situational awareness. To realise such benefits, the imagery from the discrete sensors must be accurately combined and enhanced prior to image presentation to the aircrew. Furthermore, great care must be taken to not introduce artefacts or false information through the image processing routines. This paper outlines developments made to a specific system that uses three collocated low light level cameras. As well as seamlessly merging the individual images, sophisticated processing techniques are used to enhance image quality as well as to remove optical and sensor artefacts such as vignetting and CCD charge smear. The techniques have been designed and tested to be robust across a wide range of scenarios and lighting conditions, and the results presented here highlight the increased performance of the new algorithms over standard EVS image processing techniques.

  8. Development of a Comprehensive Weld Process Model

    SciTech Connect

    Radhakrishnan, B.; Zacharia, T.

    1997-05-01

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC's expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three- dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above. The following technical tasks have been accomplished as part of the CRADA. 1. The LMES welding code has been ported to the Intel Paragon parallel computer at ORNL

  9. High-throughput process development: I. Process chromatography.

    PubMed

    Rathore, Anurag S; Bhambure, Rahul

    2014-01-01

    Chromatographic separation serves as "a workhorse" for downstream process development and plays a key role in removal of product-related, host cell-related, and process-related impurities. Complex and poorly characterized raw materials and feed material, low feed concentration, product instability, and poor mechanistic understanding of the processes are some of the critical challenges that are faced during development of a chromatographic step. Traditional process development is performed as trial-and-error-based evaluation and often leads to a suboptimal process. High-throughput process development (HTPD) platform involves an integration of miniaturization, automation, and parallelization and provides a systematic approach for time- and resource-efficient chromatography process development. Creation of such platforms requires integration of mechanistic knowledge of the process with various statistical tools for data analysis. The relevance of such a platform is high in view of the constraints with respect to time and resources that the biopharma industry faces today. This protocol describes the steps involved in performing HTPD of process chromatography step. It described operation of a commercially available device (PreDictor™ plates from GE Healthcare). This device is available in 96-well format with 2 or 6 μL well size. We also discuss the challenges that one faces when performing such experiments as well as possible solutions to alleviate them. Besides describing the operation of the device, the protocol also presents an approach for statistical analysis of the data that is gathered from such a platform. A case study involving use of the protocol for examining ion-exchange chromatography of granulocyte colony-stimulating factor (GCSF), a therapeutic product, is briefly discussed. This is intended to demonstrate the usefulness of this protocol in generating data that is representative of the data obtained at the traditional lab scale. The agreement in the

  10. Aviation System Analysis Capability Executive Assistant Development

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Anderson, Kevin; Book, Paul

    1999-01-01

    In this technical document, we describe the development of the Aviation System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC) and Beta version. We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models in the ASAC system, and describe the design process and the results of the ASAC EA POC and Beta system development. We also describe the evaluation process and results for applicable COTS software. The document has seven chapters, a bibliography, and two appendices.

  11. A versatile scalable PET processing system

    SciTech Connect

    H. Dong, A. Weisenberger, J. McKisson, Xi Wenze, C. Cuevas, J. Wilson, L. Zukerman

    2011-06-01

    Positron Emission Tomography (PET) historically has major clinical and preclinical applications in cancerous oncology, neurology, and cardiovascular diseases. Recently, in a new direction, an application specific PET system is being developed at Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with Duke University, University of Maryland at Baltimore (UMAB), and West Virginia University (WVU) targeted for plant eco-physiology research. The new plant imaging PET system is versatile and scalable such that it could adapt to several plant imaging needs - imaging many important plant organs including leaves, roots, and stems. The mechanical arrangement of the detectors is designed to accommodate the unpredictable and random distribution in space of the plant organs without requiring the plant be disturbed. Prototyping such a system requires a new data acquisition system (DAQ) and data processing system which are adaptable to the requirements of these unique and versatile detectors.

  12. The IUE Final Archive Processing System

    NASA Astrophysics Data System (ADS)

    Imhoff, C. L.; Dunn, N.; Fireman, G. F.; Levay, K. L.; Meylan, T.; Nichols, J.; Michalitsianos, A.

    1993-12-01

    The IUE Project has begun the task of reprocessing all IUE data using significantly enhanced reduction algorithms and calibrations. In order to perform this task in a timely, reliable manner, we have developed the IUE Final Archive Processing System. The system runs on a DECstation 5000, using Fortran software embedded in portable MIDAS. The processing queue is driven by a commercial relational database. The database interface allows the system to access the enhanced IUE database, which is resident on a second DECstation 5000 (see poster by Levay et al.). The system runs automatically, with little operator intervention. Built-in quality assurance software detects virtually all input or processing problems. In addition, a fraction of the images, including all those with quality assurance warnings, are screened by the staff. The screening system, known as the Post-Production Verification (PPV) system, uses a widget-based graphics user interface written in IDL. It allows one to display and inspect the MIDAS and FITS files, review the FITS headers and other text files, and record the results in the IUE database. Images which have passed quality assurance are then delivered to NASA's National Space Science Data Center, which makes the data available to the astronomical community. This work has been supported under NASA contract NAS5-31230 to Computer Sciences Corp.

  13. SCHOOL CONSTRUCTION SYSTEMS DEVELOPMENT PROJECT.

    ERIC Educational Resources Information Center

    BOICE, JOHN,; AND OTHERS

    ONE-HUNDRED MANUFACTURERS EXPRESSED INTEREST IN BIDDING FOR A SYSTEM ON SCHOOL CONSTRUCTION CALLED SCSD OR SCHOOL CONSTRUCTION SYSTEMS DEVELOPMENT TO THE FIRST CALIFORNIA COMMISSION ON SCHOOL CONSTRUCTION SYSTEMS. TWENTY-TWO BUILDINGS COMPRISED THE PROJECT. THE OBJECTIVE WAS TO DEVELOP AN INTEGRATED SYSTEM OF STANDARD SCHOOL BUILDING COMPONENTS…

  14. Development of a School Leadership Evaluation System

    ERIC Educational Resources Information Center

    Orlando, Nik

    2014-01-01

    This action research study examined the effectiveness of the process implemented by Partnerships to Uplift Communities (PUC) Schools Charter Management Organization to develop their school leader evaluation system in collaboration with current PUC school leaders. The development of the leadership evaluation system included the collective voices of…

  15. Process and control systems for composites manufacturing

    NASA Technical Reports Server (NTRS)

    Tsiang, T. H.; Wanamaker, John L.

    1992-01-01

    A precise control of composite material processing would not only improve part quality, but it would also directly reduce the overall manufacturing cost. The development and incorporation of sensors will help to generate real-time information for material processing relationships and equipment characteristics. In the present work, the thermocouple, pressure transducer, and dielectrometer technologies were investigated. The monitoring sensors were integrated with the computerized control system in three non-autoclave fabrication techniques: hot-press, self contained tool (self heating and pressurizing), and pressure vessel). The sensors were implemented in the parts and tools.

  16. Career Development: A Systems Approach.

    ERIC Educational Resources Information Center

    Slavenski, Lynn

    1987-01-01

    The author describes a comprehensive career development system implemented by Coca-Cola USA. The system's objectives are (1) to promote from within, (2) to develop talent for the future, (3) to make managers responsible for development efforts, and (4) to make individuals ultimately responsible for their development. (CH)

  17. Exploration Medical System Technical Development

    NASA Technical Reports Server (NTRS)

    McGuire, K.; Middour, C.; Cerro, J.; Burba, T.; Hanson, A.; Reilly, J.; Mindock, J.

    2017-01-01

    The Exploration Medical Capability (ExMC) Element systems engineering goals include defining the technical system needed to implement exploration medical capabilities for Mars. This past year, scenarios captured in the medical system concept of operations laid the foundation for systems engineering technical development work. The systems engineering team analyzed scenario content to identify interactions between the medical system, crewmembers, the exploration vehicle, and the ground system. This enabled the definition of functions the medical system must provide and interfaces to crewmembers and other systems. These analyses additionally lead to the development of a conceptual medical system architecture. The work supports the ExMC community-wide understanding of the functional exploration needs to be met by the medical system, the subsequent development of medical system requirements, and the system verification and validation approach utilizing terrestrial analogs and precursor exploration missions.

  18. Autonomous Operations System: Development and Application

    NASA Technical Reports Server (NTRS)

    Toro Medina, Jaime A.; Wilkins, Kim N.; Walker, Mark; Stahl, Gerald M.

    2016-01-01

    Autonomous control systems provides the ability of self-governance beyond the conventional control system. As the complexity of mechanical and electrical systems increases, there develops a natural drive for developing robust control systems to manage complicated operations. By closing the bridge between conventional automated systems to knowledge based self-awareness systems, nominal control of operations can evolve into relying on safe critical mitigation processes to support any off-nominal behavior. Current research and development efforts lead by the Autonomous Propellant Loading (APL) group at NASA Kennedy Space Center aims to improve cryogenic propellant transfer operations by developing an automated control and health monitoring system. As an integrated systems, the center aims to produce an Autonomous Operations System (AOS) capable of integrating health management operations with automated control to produce a fully autonomous system.

  19. EUV extendibility via dry development rinse process

    NASA Astrophysics Data System (ADS)

    Sayan, Safak; Zheng, Tao; De Simone, Danilo; Vandenberghe, Geert

    2016-03-01

    Conventional photoresist processing involves resist coating, exposure, post-exposure bake, development, rinse and spin drying of a wafer. DDRP mitigates pattern collapse by applying a special polymer material (DDRM) which replaces the exposed/developed part of the photoresist material before wafer is spin dried. As noted above, the main mechanism of pattern collapse is the capillary forces governed by surface tension of rinse water and its asymmetrical recession from both sides of the lines during the drying step of the develop process. DDRP essentially eliminates these failure mechanisms by replacing remaining rinse water with DDRM and providing a structural framework that support resist lines from both sides during spin dry process. Dry development rinse process (DDRP) eliminates the root causes responsible for pattern collapse of photoresist line structures. Since these collapse mechanisms are mitigated, without the need for changes in the photoresist itself, achievable resolution of the state-of-the-art EUV photoresists can further be improved.

  20. Development of a Versatile Laser-Ultrasonic System and Application to the Online Measurement for Process Control of Wall Thickness and Eccentricity of Seamless Tubes

    SciTech Connect

    Robert V. Kolarik II

    2002-10-23

    A system for the online, non-contact measurement of wall thickness in steel seamless mechanical tubing has been developed and demonstrated at a tubing production line at the Timken Company in Canton, Ohio. The system utilizes laser-generation of ultrasound and laser-detection of time of flight with interferometry, laser-doppler velocimetry and pyrometry, all with fiber coupling. Accuracy (<1% error) and precision (1.5%) are at targeted levels. Cost and energy savings have exceeded estimates. The system has shown good reliability in measuring over 200,000 tubes in its first six months of deployment.

  1. Process for Selecting System Level Assessments for Human System Technologies

    NASA Technical Reports Server (NTRS)

    Watts, James; Park, John

    2006-01-01

    The integration of many life support systems necessary to construct a stable habitat is difficult. The correct identification of the appropriate technologies and corresponding interfaces is an exhaustive process. Once technologies are selected secondary issues such as mechanical and electrical interfaces must be addressed. The required analytical and testing work must be approached in a piecewise fashion to achieve timely results. A repeatable process has been developed to identify and prioritize system level assessments and testing needs. This Assessment Selection Process has been defined to assess cross cutting integration issues on topics at the system or component levels. Assessments are used to identify risks, encourage future actions to mitigate risks, or spur further studies.

  2. Genesis Eco Systems, Inc. soil washing process

    SciTech Connect

    Cena, R.J.

    1994-10-11

    The Genesis soil washing system is an integrated system of modular design allowing for maximum material handling capabilities, with optimized use of space for site mobility. The Surfactant Activated Bio-enhanced Remediation Equipment-Generation 1 (SABRE-1, Patent Applied For) modification was developed specifically for removing petroleum byproducts from contaminated soils. Scientifically formulated surfactants, introduced by high pressure spray nozzles, displace the contaminant from the surface of the soil particles into the process solution. Once the contaminant is dispersed into the liquid fraction of the process, it is either mechanically removed, chemically oxidized, or biologically oxidized. The contaminated process water is pumped through the Genesis Biosep (Patent Applied For) filtration system where the fines portion is flocculated, and the contaminant-rich liquid portion is combined with an activated mixture of nutrients and carefully selected bacteria to decompose the hydrocarbon fraction. The treated soil and dewatered fines are transferred to a bermed stockpile where bioremediation continues during drying. The process water is reclaimed, filtered, and recycled within the system.

  3. Curriculum Development System for Navy Technical Training.

    ERIC Educational Resources Information Center

    Butler, Lucius

    Documentation for the U.S. Navy's curriculum development system is brought together in this paper, beginning with a description of the Naval Technical Training System. This description includes the Navy Training Plan (NTP) process, which is the current mechanism for introducing new courses; the organization and administration of the system; the…

  4. Precision grinding process development for brittle materials

    SciTech Connect

    Blaedel, K L; Davis, P J; Piscotty, M A

    1999-04-01

    High performance, brittle materials are the materials of choice for many of today's engineering applications. This paper describes three separate precision grinding processes developed at Lawrence Liver-more National Laboratory to machine precision ceramic components. Included in the discussion of the precision processes is a variety of grinding wheel dressing, truing and profiling techniques.

  5. Process Consultation: Its Role in Organization Development.

    ERIC Educational Resources Information Center

    Schein, Edgar H.

    This volume focuses on the process by which the consultant builds readiness for organizational development (OD) programs, actually conducts training, and works with the key individuals of an organization as part of an OD program. Part I describes in some detail the human processes in organizations--communication, functional roles of group members,…

  6. Advanced alarm systems: Display and processing issues

    SciTech Connect

    O`Hara, J.M.; Wachtel, J.; Perensky, J.

    1995-05-01

    This paper describes a research program sponsored by the US Nuclear Regulatory Commission to address the human factors engineering (HFE) deficiencies associated with nuclear power plant alarm systems. The overall objective of the study is to develop HFE review guidance for alarm systems. In support of this objective, human performance issues needing additional research were identified. Among the important issues were alarm processing strategies and alarm display techniques. This paper will discuss these issues and briefly describe our current research plan to address them.

  7. Intelligent systems for KSC ground processing

    NASA Technical Reports Server (NTRS)

    Heard, Astrid E.

    1992-01-01

    The ground processing and launch of Shuttle vehicles and their payloads is the primary task of Kennedy Space Center. It is a process which is largely manual and contains little inherent automation. Business is conducted today much as it was during previous NASA programs such as Apollo. In light of new programs and decreasing budgets, NASA must find more cost effective ways in which to do business while retaining the quality and safety of activities. Advanced technologies including artificial intelligence could cut manpower and processing time. This paper is an overview of the research and development in Al technology at KSC with descriptions of the systems which have been implemented, as well as a few under development which are promising additions to ground processing software. Projects discussed cover many facets of ground processing activities, including computer sustaining engineering, subsystem monitor and diagnosis tools and launch team assistants. The deployed Al applications have proven an effectiveness which has helped to demonstrate the benefits of utilizing intelligent software in the ground processing task.

  8. System Design as a Three-Phase Dual-Loop (TPDL) Process: Types of Knowledge-Applied Sources of Feedback, and Student Development as Independent Learners

    ERIC Educational Resources Information Center

    Barak, Moshe

    2010-01-01

    This study aimed at exploring how high school students deal with designing an information system, for example, for a small business or a medical clinic, the extent to which students develop as independent learners while working on their projects, and the factors that help or hinder fostering students' design skills. The three-phase dual-loop…

  9. Process-Based Quality (PBQ) Tools Development

    SciTech Connect

    Cummins, J.L.

    2001-12-03

    The objective of this effort is to benchmark the development of process-based quality tools for application in CAD (computer-aided design) model-based applications. The processes of interest are design, manufacturing, and quality process applications. A study was commissioned addressing the impact, current technologies, and known problem areas in application of 3D MCAD (3-dimensional mechanical computer-aided design) models and model integrity on downstream manufacturing and quality processes. The downstream manufacturing and product quality processes are profoundly influenced and dependent on model quality and modeling process integrity. The goal is to illustrate and expedite the modeling and downstream model-based technologies for available or conceptual methods and tools to achieve maximum economic advantage and advance process-based quality concepts.

  10. ASRM process development in aqueous cleaning

    NASA Astrophysics Data System (ADS)

    Swisher, Bill

    1992-12-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  11. ASRM process development in aqueous cleaning

    NASA Technical Reports Server (NTRS)

    Swisher, Bill

    1992-01-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  12. Compact Microscope Imaging System Developed

    NASA Technical Reports Server (NTRS)

    McDowell, Mark

    2001-01-01

    The Compact Microscope Imaging System (CMIS) is a diagnostic tool with intelligent controls for use in space, industrial, medical, and security applications. The CMIS can be used in situ with a minimum amount of user intervention. This system, which was developed at the NASA Glenn Research Center, can scan, find areas of interest, focus, and acquire images automatically. Large numbers of multiple cell experiments require microscopy for in situ observations; this is only feasible with compact microscope systems. CMIS is a miniature machine vision system that combines intelligent image processing with remote control capabilities. The software also has a user-friendly interface that can be used independently of the hardware for post-experiment analysis. CMIS has potential commercial uses in the automated online inspection of precision parts, medical imaging, security industry (examination of currency in automated teller machines and fingerprint identification in secure entry locks), environmental industry (automated examination of soil/water samples), biomedical field (automated blood/cell analysis), and microscopy community. CMIS will improve research in several ways: It will expand the capabilities of MSD experiments utilizing microscope technology. It may be used in lunar and Martian experiments (Rover Robot). Because of its reduced size, it will enable experiments that were not feasible previously. It may be incorporated into existing shuttle orbiter and space station experiments, including glove-box-sized experiments as well as ground-based experiments.

  13. Information Processing Theory and Conceptual Development.

    ERIC Educational Resources Information Center

    Schroder, H. M.

    An educational program based upon information processing theory has been developed at Southern Illinois University. The integrating theme was the development of conceptual ability for coping with social and personal problems. It utilized student information search and concept formation as foundations for discussion and judgment and was organized…

  14. Cognitive Process of Development in Children

    ERIC Educational Resources Information Center

    Boddington, Eulalee N.

    2009-01-01

    In this article we explored the theories of Arnold Gesell, Erik Erickson and Jean Piaget about how human beings development. In this component we will analyze the cognitive processes of how children perceive and develop, in particular children from a cross-cultural background. How learning takes place, and how the influences of culture, and…

  15. Preform Characterization in VARTM Process Model Development

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  16. Arcjet system integration development

    NASA Technical Reports Server (NTRS)

    Zafran, Sidney

    1994-01-01

    Compatibility between an arcjet propulsion system and a communications satellite was verified by testing a Government-furnished, 1.4 kW hydrazine arcjet system with the FLTSATCOM qualification model satellite in a 9.1-meter (30-foot) diameter thermal-vacuum test chamber. Background pressure was maintained at 10(exp -5) torr during arcjet operation by cryopumping the thruster exhaust with an array of 5 K liquid helium cooled panels. Power for the arcjet system was obtained from the FLTSATCOM battery simulator. Spacecraft telemetry was monitored during each thruster firing period. No changes in telemetry data attributable to arcjet operation were detected in any of the tests. Electromagnetic compatibility data obtained included radiated emission measurements, conducted emission measurements, and cable coupling measurements. Significant noise was observed at lower frequencies. Above 500 MHz, radiated emissions were generally within limits, indicating that communication links at S-band and higher frequencies will not be affected. Other test data taken with a diagnostic array of calorimeters, radiometers, witness plates, and a residual gas analyzer evidenced compatible operation, and added to the data base for arcjet system integration. Two test series were conducted. The first series only included the arcjet and diagnostic array operating at approximately 0.1 torr background pressure. The second series added the qualification model spacecraft, a solar panel, and the helium cryopanels. Tests were conducted at 0.1 torr and 10(exp-5) torr. The arcjet thruster was canted 20 degrees relative to the solar panel axis, typical of the configuration used for stationkeeping thrusters on geosynchronous communications satellites.

  17. Lisp and portability: The Process Modeling System

    SciTech Connect

    Egdorf, H.W.

    1992-09-01

    A primary mission of the Technology Modeling and Assessment group (A-7) of the Analysis Division of Los Alamos National Laboratory is to support the Department of Energy in performing analysis of both existing and future facilities that comprise the Nuclear Weapons Complex. Many of the questions to be addressed in relation to this mission involve an examination of the flow of material through a processing facility and the transformations of the material as it moves through the facility by the use of a discrete-event simulation tool. In support of these analysis tasks, a simulation tool kit has been developed that allows examination of issues related to the movement and transformation of material as it moves through a processing facility. This tool kit, The Process Modeling System, is currently the primary modeling tool used for examination of current and future DOE facilities. The flexibility of the system has led to its use in performing similar analysis on a number of nonDOE facilities under Technology Transfer initiatives. The Process Modeling System is written in Common Lisp. The purpose of this paper is to describe the structure of the modeling tool kit and discuss the advantages of Common Lisp as its implementation language.

  18. Lisp and portability: The Process Modeling System

    SciTech Connect

    Egdorf, H.W.

    1992-01-01

    A primary mission of the Technology Modeling and Assessment group (A-7) of the Analysis Division of Los Alamos National Laboratory is to support the Department of Energy in performing analysis of both existing and future facilities that comprise the Nuclear Weapons Complex. Many of the questions to be addressed in relation to this mission involve an examination of the flow of material through a processing facility and the transformations of the material as it moves through the facility by the use of a discrete-event simulation tool. In support of these analysis tasks, a simulation tool kit has been developed that allows examination of issues related to the movement and transformation of material as it moves through a processing facility. This tool kit, The Process Modeling System, is currently the primary modeling tool used for examination of current and future DOE facilities. The flexibility of the system has led to its use in performing similar analysis on a number of nonDOE facilities under Technology Transfer initiatives. The Process Modeling System is written in Common Lisp. The purpose of this paper is to describe the structure of the modeling tool kit and discuss the advantages of Common Lisp as its implementation language.

  19. DEMONSTRATION BULLETIN: ZENOGEM™ WASTEWATER TREATMENT PROCESS - ZENON ENVIRONMENTAL SYSTEMS

    EPA Science Inventory

    Zenon Environmental Systems (Zenon) has developed the ZenoGem™ process to remove organic compounds from wastewater by integrating biological treatment and membrane-based ultrafiltration. This innovative system combines biological treatment to remove biodegradable organic compou...

  20. Social network supported process recommender system.

    PubMed

    Ye, Yanming; Yin, Jianwei; Xu, Yueshen

    2014-01-01

    Process recommendation technologies have gained more and more attention in the field of intelligent business process modeling to assist the process modeling. However, most of the existing technologies only use the process structure analysis and do not take the social features of processes into account, while the process modeling is complex and comprehensive in most situations. This paper studies the feasibility of social network research technologies on process recommendation and builds a social network system of processes based on the features similarities. Then, three process matching degree measurements are presented and the system implementation is discussed subsequently. Finally, experimental evaluations and future works are introduced.

  1. NASA System Engineering Design Process

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2011-01-01

    This slide presentation reviews NASA's use of systems engineering for the complete life cycle of a project. Systems engineering is a methodical, disciplined approach for the design, realization, technical management, operations, and retirement of a system. Each phase of a NASA project is terminated with a Key decision point (KDP), which is supported by major reviews.

  2. The application of intelligent process control to space based systems

    NASA Technical Reports Server (NTRS)

    Wakefield, G. Steve

    1990-01-01

    The application of Artificial Intelligence to electronic and process control can help attain the autonomy and safety requirements of manned space systems. An overview of documented applications within various industries is presented. The development process is discussed along with associated issues for implementing an intelligence process control system.

  3. Developing Software For A Flight-Control System

    NASA Technical Reports Server (NTRS)

    Murray, Jonathan

    1992-01-01

    Improved process for development of flight-control software devised by integrating conventional software-development process with conventional control-system-analysis process. Reduces costs of development, eliminates need for reengineering, and almost eliminates production errors. Concept applicable to design of other control systems and of complicated hardware-and-software systems in general.

  4. Geodyn systems development

    NASA Technical Reports Server (NTRS)

    Putney, B. H.

    1984-01-01

    The purpose of the GEODYN Orbit Determination and Parameter Estimation, the SOLVE and ERODYN Programs is to recover geodetic and geophysical parameters from satellite and other data in a state-of-the-art manner. Continued solutions for gravity field, pole positions, Earth rotation, GM, and baselines were made as part of the Crustal Dynamics Project. Some tidal parameters were recovered as well. The eight digit station identification number was incorporated in the software and new techniques for constraining monthly station parameters to each other are being developed. This is allowing the analysts even more flexibility in the shaping of solutions from monthly sets of normal equations and right-hand sides.

  5. Technical developments of OTEC Systems

    SciTech Connect

    Trenka, A.R.; Thomas, A.; Vega, L.

    1988-01-01

    The US Department of Energy's (DOE) Ocean Energy Technology Program seeks to develop the technology of converting the ocean's vast energy resource into usable forms to the point where industry can assess its potential, commercial utility. The current focus in the program is on the utilization of open-cycle OTEC to produce electricity. The open-cycle OTEC process is one of the few alternative energy options which provides the potential for baseload-carrying capability. This paper provides a very brief overview of the program activities and focuses on results recently obtained from the program's experimental facility designed to allow testing of OC-OTEC subsystems under actual operating conditions utilizing seawater. The facility, referred to as the Seacoast Test Facility (STF), is currently composed of a Heat and Mass Transfer Scoping Test Apparatus (HMTSTA) being supplied by up to 1600 gallons per minute of warm seawater and 1000 gallons per minute of cold seawater. Researchers have obtained experimental data on the performance of evaporators and surface condensers. Also, information on mist elimination and deaeration processes have been obtained. Plans call for modification to the HMTSTA to accommodate the addition of direct-contact condensers. Summary results will be discussed addressing recent studies, by Argonne National Laboratory (ANL), of corrosion and biofouling of aluminum alloy surface condensers. Also discussed is the production of desalinated seawater using an open-cycle OTEC process. Finally to be discussed will be recent developments in OTEC turbines and an assessment of seawater supply systems required for OTEC. A brief overview of the program's future plans also will be presented. 4 refs., 11 figs., 2 tabs.

  6. Spin stream develop process for ZEP resist

    NASA Astrophysics Data System (ADS)

    Shin, Jaecheon; Ha, Tae-Joong; Choi, Bo-Kyung; Han, Oscar

    2004-08-01

    ZEP is a field-proven stable E-Beam resist for photo-mask manufacturing. The spin-spray develop method has been widely used for ZEP resist processing. Recently, we have successfully adopted the spin-stream develop process for ZEP resist by using modified TEL MARK-8 wafer process track. This paper presents a comparison result of CD uniformity between the conventional spin-spray method and new spin-stream method on 6-inch production halftone phase shift masks. In this process, we apply low temperature(18 deg. C) develop solution in room temperature ambient. The spin-stream process with low temperature solution is found to be a suitable recipe for high-end phase shift mask manufacturing with under 10 nm CD uniformity (3sigma) in 120mm X 120mm area. Moreover, the modified MARK-8 track can provide both of a FEP and a ZEP process module in one unit, and this advantage reduces the cost of ownership for a high-end mask manufacturing facility.

  7. Development of an automated platform for the verification, testing, processing and benchmarking of Evaluated Nuclear Data at the NEA Data Bank. Status of the NDEC system

    NASA Astrophysics Data System (ADS)

    Michel-Sendis, F.; Díez, C. J.; Cabellos, O.

    2016-03-01

    Modern nuclear data Quality Assurance (QA) is, in practice, a multistage process that aims at establishing a thorough assessment of the validity of the physical information contained in an evaluated nuclear data file as compared to our best knowledge of available experimental data and theoretical models. It should systematically address the performance of the evaluated file against available pertinent integral experiments, with proper and prior verification that the information encoded in the evaluation is accurately processed and reconstructed for the application conditions. The aim of the NDEC (Nuclear Data Evaluation Cycle) platform currently being developed by the Data Bank is to provide a correct and automated handling of these diverse QA steps in order to facilitate the expert human assessment of evaluated nuclear data files, both by the evaluators and by the end users of nuclear data.

  8. Volcanic processes in the Solar System

    USGS Publications Warehouse

    Carr, M.H.

    1987-01-01

    This article stresses that terrestrial volcanism represents only part of the range of volcanism in the solar system. Earth processes of volcanicity are dominated by plate tectonics, which does not seem to operate on other planets, except possibly on Venus. Lunar volcanicity is dominated by lava effusion at enormous rates. Mars is similar, with the addition to huge shield volcanoes developed over fixed hotspots. Io, the moon closest to Jupiter, is the most active body in the Solar System and, for example, much sulphur and silicates are emitted. The eruptions of Io are generated by heating caused by tides induced by Jupiter. Europa nearby seems to emit water from fractures and Ganymede is similar. The satellites of Saturn and Uranus are also marked by volcanic craters, but they are of very low temperature melts, possibly of ammonia and water. The volcanism of the solar system is generally more exotic, the greater the distance from Earth. -A.Scarth

  9. Development of superplastic steel processing. Final report

    SciTech Connect

    Goldberg, A.

    1995-04-01

    Objective was to provide basis for producing, processing, and forming UHCS (ultrahigh carbon steel) on a commercial scale. Business plans were developed for potential commercialization. Effort was directed at improving the combination of flow stress and forming rates in UHCS alloys in order to make near net shape superplastic forming competitive; the result was the development of a series of UHCS alloys and processing, the selection of which depends on the specific requirements of the commercial application. Useful ancillary properties of these materials include: improved mechanical properties, wear resistance, and oxidation resistance at elevated temperatures.

  10. Development of modified FT (MFT) process

    SciTech Connect

    Jinglai Zhou; Zhixin Zhang; Wenjie Shen

    1995-12-31

    Two-Stage Modified FT (MFT) process has been developed for producing high-octane gasoline from coal-based syngas. The main R&D are focused on the development of catalysts and technologies process. Duration tests were finished in the single-tube reactor, pilot plant (100T/Y), and industrial demonstration plant (2000T/Y). A series of satisfactory results has been obtained in terms of operating reliability of equipments, performance of catalysts, purification of coal - based syngas, optimum operating conditions, properties of gasoline and economics etc. Further scaling - up commercial plant is being considered.

  11. Library Information-Processing System

    NASA Technical Reports Server (NTRS)

    1985-01-01

    System works with Library of Congress MARC II format. System composed of subsystems that provide wide range of library informationprocessing capabilities. Format is American National Standards Institute (ANSI) format for machine-readable bibliographic data. Adaptable to any medium-to-large library.

  12. The Development of Face Processing in Autism

    ERIC Educational Resources Information Center

    Sasson, Noah J.

    2006-01-01

    Both behavioral and neuroimaging evidence indicate that individuals with autism demonstrate marked abnormalities in the processing of faces. These abnormalities are often explained as either the result of an innate impairment to specialized neural systems or as a secondary consequence of reduced levels of social interest. A review of the…

  13. ESS Cryogenic System Process Design

    NASA Astrophysics Data System (ADS)

    Arnold, P.; Hees, W.; Jurns, J.; Su, X. T.; Wang, X. L.; Weisend, J. G., II

    2015-12-01

    The European Spallation Source (ESS) is a neutron-scattering facility funded and supported in collaboration with 17 European countries in Lund, Sweden. Cryogenic cooling at ESS is vital particularly for the linear accelerator, the hydrogen target moderators, a test stand for cryomodules, the neutron instruments and their sample environments. The paper will focus on specific process design criteria, design decisions and their motivations for the helium cryoplants and auxiliary equipment. Key issues for all plants and their process concepts are energy efficiency, reliability, smooth turn-down behaviour and flexibility. The accelerator cryoplant (ACCP) and the target moderator cryoplant (TMCP) in particular need to be prepared for a range of refrigeration capacities due to the intrinsic uncertainties regarding heat load definitions. Furthermore the paper addresses questions regarding process arrangement, 2 K cooling methodology, LN2 precooling, helium storage, helium purification and heat recovery.

  14. Human development: biological and genetic processes.

    PubMed

    Gottesman, Irving I; Hanson, Daniel R

    2005-01-01

    Adaptation is a central organizing principle throughout biology, whether we are studying species, populations, or individuals. Adaptation in biological systems occurs in response to molar and molecular environments. Thus, we would predict that genetic systems and nervous systems would be dynamic (cybernetic) in contrast to previous conceptualizations with genes and brains fixed in form and function. Questions of nature versus nurture are meaningless, and we must turn to epigenetics--the way in which biology and experience work together to enhance adaptation throughout thick and thin. Defining endophenotypes--road markers that bring us closer to the biological origins of the developmental journey--facilitates our understanding of adaptive or maladaptive processes. For human behavioral disorders such as schizophrenia and autism, the inherent plasticity of the nervous system requires a systems approach to incorporate all of the myriad epigenetic factors that can influence such outcomes. PMID:15709936

  15. Development of a short-term irradiance prediction system using post-processing tools on WRF-ARW meteorological forecasts in Spain

    NASA Astrophysics Data System (ADS)

    Rincón, A.; Jorba, O.; Baldasano, J. M.

    2010-09-01

    The increased contribution of solar energy in power generation sources requires an accurate estimation of surface solar irradiance conditioned by geographical, temporal and meteorological conditions. The knowledge of the variability of these factors is essential to estimate the expected energy production and therefore help stabilizing the electricity grid and increase the reliability of available solar energy. The use of numerical meteorological models in combination with statistical post-processing tools may have the potential to satisfy the requirements for short-term forecasting of solar irradiance for up to several days ahead and its application in solar devices. In this contribution, we present an assessment of a short-term irradiance prediction system based on the WRF-ARW mesoscale meteorological model (Skamarock et al., 2005) and several post-processing tools in order to improve the overall skills of the system in an annual simulation of the year 2004 in Spain. The WRF-ARW model is applied with 4 km x 4 km horizontal resolution and 38 vertical layers over the Iberian Peninsula. The hourly model irradiance is evaluated against more than 90 surface stations. The stations are used to assess the temporal and spatial fluctuations and trends of the system evaluating three different post-processes: Model Output Statistics technique (MOS; Glahn and Lowry, 1972), Recursive statistical method (REC; Boi, 2004) and Kalman Filter Predictor (KFP, Bozic, 1994; Roeger et al., 2003). A first evaluation of the system without post-processing tools shows an overestimation of the surface irradiance, due to the lack of atmospheric absorbers attenuation different than clouds not included in the meteorological model. This produces an annual BIAS of 16 W m-2 h-1, annual RMSE of 106 W m-2 h-1 and annual NMAE of 42%. The largest errors are observed in spring and summer, reaching RMSE of 350 W m-2 h-1. Results using Kalman Filter Predictor show a reduction of 8% of RMSE, 83% of BIAS

  16. Development of the Low-Pressure Hydride/Dehydride Process

    SciTech Connect

    Rueben L. Gutierrez

    2001-04-01

    The low-pressure hydride/dehydride process was developed from the need to recover thin-film coatings of plutonium metal from the inner walls of an isotope separation chamber located at Los Alamos and to improve the safety operation of a hydride recovery process using hydrogen at a pressure of 0.7 atm at Rocky Flats. This process is now the heart of the Advanced Recovery and Integrated Extraction System (ARIES) project.

  17. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    The overall objective of this project is to develop an economical method of producing low-ash and low-sulfur coals using the selective coagulation process. The work is subdivided into three tasks: (1) Project Planning, (2) Establish the fundamental mechanism of the selective coagulation process and determine the parameters that affect the process of separating coal from both the ash-forming minerals and pyritic sulfur, and (3) Conduct bench-scale process development testwork to establish the best possible method of separating the coagula from the dispersed mineral matter. The effect of pH on the energy of particle/bubble detachment has been measured with a single point surface force apparatus (Task 2.1); bench-scale coagulation experiments, coupled with contact angle and zeta potential measurements, are being used to determine hydrophobic interaction parameters for a Pittsburgh No. 8 coal sample (Task 2.2); and a population balance model of the hydrophobic coagulation process is under development (Task 2.3). A sample of Pittsburgh No. 8 coal has been received and is currently being characterized (Tasks 3.1 3.2), and the mixer required for Task 3.3 was designed and constructed. 4 refs., 7 figs.

  18. Integrating system safety into the basic systems engineering process

    NASA Technical Reports Server (NTRS)

    Griswold, J. W.

    1971-01-01

    The basic elements of a systems engineering process are given along with a detailed description of what the safety system requires from the systems engineering process. Also discussed is the safety that the system provides to other subfunctions of systems engineering.

  19. L2 Chinese: Grammatical Development and Processing

    ERIC Educational Resources Information Center

    Mai, Ziyin

    2016-01-01

    Two recent books (Jiang, 2014, "Advances in Chinese as a second language"; Wang, 2013, "Grammatical development of Chinese among non-native speakers") provide new resources for exploring the role of processing in acquiring Chinese as a second language (L2). This review article summarizes, assesses and compares some of the…

  20. Lexical Morphology: Structure, Process, and Development

    ERIC Educational Resources Information Center

    Jarmulowicz, Linda; Taran, Valentina L.

    2013-01-01

    Recent work has demonstrated the importance of derivational morphology to later language development and has led to a consensus that derivation is a lexical process. In this review, derivational morphology is discussed in terms of lexical representation models from both linguistic and psycholinguistic perspectives. Input characteristics, including…

  1. Developing Qualitative Research Questions: A Reflective Process

    ERIC Educational Resources Information Center

    Agee, Jane

    2009-01-01

    The reflective and interrogative processes required for developing effective qualitative research questions can give shape and direction to a study in ways that are often underestimated. Good research questions do not necessarily produce good research, but poorly conceived or constructed questions will likely create problems that affect all…

  2. Developing the E-Scape Software System

    ERIC Educational Resources Information Center

    Derrick, Karim

    2012-01-01

    Most innovations have contextual pre-cursors that prompt new ways of thinking and in their turn help to give form to the new reality. This was the case with the e-scape software development process. The origins of the system existed in software components and ideas that we had developed through previous projects, but the ultimate direction we took…

  3. System and method for deriving a process-based specification

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael Gerard (Inventor); Rash, James Larry (Inventor); Rouff, Christopher A. (Inventor)

    2009-01-01

    A system and method for deriving a process-based specification for a system is disclosed. The process-based specification is mathematically inferred from a trace-based specification. The trace-based specification is derived from a non-empty set of traces or natural language scenarios. The process-based specification is mathematically equivalent to the trace-based specification. Code is generated, if applicable, from the process-based specification. A process, or phases of a process, using the features disclosed can be reversed and repeated to allow for an interactive development and modification of legacy systems. The process is applicable to any class of system, including, but not limited to, biological and physical systems, electrical and electro-mechanical systems in addition to software, hardware and hybrid hardware-software systems.

  4. Expert systems development and application

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.

    1985-01-01

    Current research in the application of expert systems to problems in the flight research environment is discussed. In what is anticipated to be a broad research area, a real time expert system flight status monitor has been identified as the initial project. This real time expert system flight status monitor is described in terms of concept, application, development, and schedule.

  5. Process development for scum to biodiesel conversion.

    PubMed

    Bi, Chong-hao; Min, Min; Nie, Yong; Xie, Qing-long; Lu, Qian; Deng, Xiang-yuan; Anderson, Erik; Li, Dong; Chen, Paul; Ruan, Roger

    2015-06-01

    A novel process was developed for converting scum, a waste material from wastewater treatment facilities, to biodiesel. Scum is an oily waste that was skimmed from the surface of primary and secondary settling tanks in wastewater treatment plants. Currently scum is treated either by anaerobic digestion or landfilling which raised several environmental issues. The newly developed process used a six-step method to convert scum to biodiesel, a higher value product. A combination of acid washing and acid catalyzed esterification was developed to remove soap and impurities while converting free fatty acids to methyl esters. A glycerol washing was used to facilitate the separation of biodiesel and glycerin after base catalyzed transesterification. As a result, 70% of dried and filtered scum was converted to biodiesel which is equivalent to about 134,000 gallon biodiesel per year for the Saint Paul waste water treatment plant in Minnesota.

  6. Process development for scum to biodiesel conversion.

    PubMed

    Bi, Chong-hao; Min, Min; Nie, Yong; Xie, Qing-long; Lu, Qian; Deng, Xiang-yuan; Anderson, Erik; Li, Dong; Chen, Paul; Ruan, Roger

    2015-06-01

    A novel process was developed for converting scum, a waste material from wastewater treatment facilities, to biodiesel. Scum is an oily waste that was skimmed from the surface of primary and secondary settling tanks in wastewater treatment plants. Currently scum is treated either by anaerobic digestion or landfilling which raised several environmental issues. The newly developed process used a six-step method to convert scum to biodiesel, a higher value product. A combination of acid washing and acid catalyzed esterification was developed to remove soap and impurities while converting free fatty acids to methyl esters. A glycerol washing was used to facilitate the separation of biodiesel and glycerin after base catalyzed transesterification. As a result, 70% of dried and filtered scum was converted to biodiesel which is equivalent to about 134,000 gallon biodiesel per year for the Saint Paul waste water treatment plant in Minnesota. PMID:25770465

  7. Development of enhanced sulfur rejection processes

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T.; Richardson, P.E.

    1996-03-01

    Research at Virginia Tech led to the development of two complementary concepts for improving the removal of inorganic sulfur from many eastern U.S. coals. These concepts are referred to as Electrochemically Enhanced Sulfur Rejection (EESR) and Polymer Enhanced Sulfur Rejection (PESR) processes. The EESR process uses electrochemical techniques to suppress the formation of hydrophobic oxidation products believed to be responsible for the floatability of coal pyrite. The PESR process uses polymeric reagents that react with pyrite and convert floatable middlings, i.e., composite particles composed of pyrite with coal inclusions, into hydrophilic particles. These new pyritic-sulfur rejection processes do not require significant modifications to existing coal preparation facilities, thereby enhancing their adoptability by the coal industry. It is believed that these processes can be used simultaneously to maximize the rejection of both well-liberated pyrite and composite coal-pyrite particles. The project was initiated on October 1, 1992 and all technical work has been completed. This report is based on the research carried out under Tasks 2-7 described in the project proposal. These tasks include Characterization, Electrochemical Studies, In Situ Monitoring of Reagent Adsorption on Pyrite, Bench Scale Testing of the EESR Process, Bench Scale Testing of the PESR Process, and Modeling and Simulation.

  8. Emergent Systems Energy Laws for Predicting Myosin Ensemble Processivity

    PubMed Central

    Egan, Paul; Moore, Jeffrey; Schunn, Christian; Cagan, Jonathan; LeDuc, Philip

    2015-01-01

    In complex systems with stochastic components, systems laws often emerge that describe higher level behavior regardless of lower level component configurations. In this paper, emergent laws for describing mechanochemical systems are investigated for processive myosin-actin motility systems. On the basis of prior experimental evidence that longer processive lifetimes are enabled by larger myosin ensembles, it is hypothesized that emergent scaling laws could coincide with myosin-actin contact probability or system energy consumption. Because processivity is difficult to predict analytically and measure experimentally, agent-based computational techniques are developed to simulate processive myosin ensembles and produce novel processive lifetime measurements. It is demonstrated that only systems energy relationships hold regardless of isoform configurations or ensemble size, and a unified expression for predicting processive lifetime is revealed. The finding of such laws provides insight for how patterns emerge in stochastic mechanochemical systems, while also informing understanding and engineering of complex biological systems. PMID:25885169

  9. TECHNOLOGY DEVELOPMENT ON THE DUPIC SAFEGUARDS SYSTEM

    SciTech Connect

    H. KIM; H. CHA; ET AL

    2001-02-01

    A safeguards system has been developed since 1993 in the course of supporting a fuel cycle process to fabricate CANDU fuel with spent PWR fuel (known as Direct Use of PWR spent fuel In CANDU, DUPIC). The major safeguards technology involved here was to design and fabricate a neutron coincidence counting system for process accountability, and also an unattended continuous monitoring system in association with independent verification by the IAEA. This combined technology was to produce information of nuclear material content and to maintain knowledge of the continuity of nuclear material flow. In addition to hardware development, diagnosis software is being developed to assist data acquisition, data review, and data evaluation based on a neural network system on the IAEA C/S system.

  10. A high cell density transient transfection system for therapeutic protein expression based on a CHO GS-knockout cell line: process development and product quality assessment.

    PubMed

    Rajendra, Yashas; Hougland, Maria D; Alam, Riazul; Morehead, Teresa A; Barnard, Gavin C

    2015-05-01

    Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the volumetric productivity of TGE has improved significantly over the past decade, most methods involve extensive cell line engineering and plasmid vector optimization in addition to long fed batch cultures lasting up to 21 days. Our colleagues have recently reported the development of a CHO K1SV GS-KO host cell line. By creating a bi-allelic glutamine synthetase knock out of the original CHOK1SV host cell line, they were able to improve the efficiency of generating high producing stable CHO lines for drug product manufacturing. We developed a TGE method using the same CHO K1SV GS-KO host cell line without any further cell line engineering. We also refrained from performing plasmid vector engineering. Our objective was to setup a TGE process to mimic protein quality attributes obtained from stable CHO cell line. Polyethyleneimine (PEI)-mediated transfections were performed at high cell density (4 × 10(6) cells/mL) followed by immediate growth arrest at 32 °C for 7 days. Optimizing DNA and PEI concentrations proved to be important. Interestingly, found the direct transfection method (where DNA and PEI were added sequentially) to be superior to the more common indirect method (where DNA and PEI are first pre-complexed). Moreover, the addition of a single feed solution and a polar solvent (N,N dimethylacetamide) significantly increased product titers. The scalability of process from 2 mL to 2 L was demonstrated using multiple proteins and multiple expression volumes. Using this simple, short, 7-day TGE process, we were able to successfully produce 54 unique proteins in a fraction of the time that would have been required to produce the respective stable CHO cell lines. The list of 54 unique proteins includes mAbs, bispecific antibodies, and Fc-fusion proteins. Antibody titers of up to 350 mg/L were achieved with the simple 7-day process. Titers

  11. Onboard Image Processing System for Hyperspectral Sensor.

    PubMed

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-09-25

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS's performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost.

  12. Onboard Image Processing System for Hyperspectral Sensor

    PubMed Central

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS’s performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281

  13. Onboard Image Processing System for Hyperspectral Sensor.

    PubMed

    Hihara, Hiroki; Moritani, Kotaro; Inoue, Masao; Hoshi, Yoshihiro; Iwasaki, Akira; Takada, Jun; Inada, Hitomi; Suzuki, Makoto; Seki, Taeko; Ichikawa, Satoshi; Tanii, Jun

    2015-01-01

    Onboard image processing systems for a hyperspectral sensor have been developed in order to maximize image data transmission efficiency for large volume and high speed data downlink capacity. Since more than 100 channels are required for hyperspectral sensors on Earth observation satellites, fast and small-footprint lossless image compression capability is essential for reducing the size and weight of a sensor system. A fast lossless image compression algorithm has been developed, and is implemented in the onboard correction circuitry of sensitivity and linearity of Complementary Metal Oxide Semiconductor (CMOS) sensors in order to maximize the compression ratio. The employed image compression method is based on Fast, Efficient, Lossless Image compression System (FELICS), which is a hierarchical predictive coding method with resolution scaling. To improve FELICS's performance of image decorrelation and entropy coding, we apply a two-dimensional interpolation prediction and adaptive Golomb-Rice coding. It supports progressive decompression using resolution scaling while still maintaining superior performance measured as speed and complexity. Coding efficiency and compression speed enlarge the effective capacity of signal transmission channels, which lead to reducing onboard hardware by multiplexing sensor signals into a reduced number of compression circuits. The circuitry is embedded into the data formatter of the sensor system without adding size, weight, power consumption, and fabrication cost. PMID:26404281

  14. Reasoning with case histories of process knowledge for efficient process development

    NASA Technical Reports Server (NTRS)

    Bharwani, Seraj S.; Walls, Joe T.; Jackson, Michael E.

    1988-01-01

    The significance of compiling case histories of empirical process knowledge and the role of such histories in improving the efficiency of manufacturing process development is discussed in this paper. Methods of representing important investigations as cases and using the information from such cases to eliminate redundancy of empirical investigations in analogous process development situations are also discussed. A system is proposed that uses such methods to capture the problem-solving framework of the application domain. A conceptual design of the system is presented and discussed.

  15. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-05-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ɛ-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ɛ-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  16. Pilot testing and development of a full-scale Carrousel{reg_sign} activated sludge system for treating potato processing wastewaters

    SciTech Connect

    Menon, R.; Grames, L.M.

    1996-11-01

    Pilot Carrousel testing was conducted for about three months on wastewaters generated at a major potato processing facility in 1993. The testing focused toward removal of BOD, NH{sub 3} and NO{sub 3}, and Total-P. After five-six weeks that it took for the system to reach steady state operation, the pilot plant was able to treat the wastewaters quite well. Effluent BOD{sub 5} and TKN values were less than 8 and 4 mg/L, respectively, during the second half of testing. Total-P in the effluent was less than 10 mg/L, although this step was not optimized. Based on the pilot testing, a full-scale Carrousel activated sludge plant was designed and commissioned in 1994. This plant is currently treating all the wastewaters from the facility and performing contaminant removals at a very high level.

  17. Process development of thin strip steel casting

    SciTech Connect

    Sussman, R.C.; Williams, R.S.

    1990-12-01

    An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

  18. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1991-01-01

    The overall objective of this project is to develop an economical method of producing low-ash and low-sulfur coals using the selective coagulation process. Work is subdivided into three tasks: (1) project planning; (2) studies of the fundamental mechanism of the selective coagulation process and the parameters that affect the process of separating coal from both the ash-forming minerals and pyritic sulfur; and (3) bench-scale process development testwork to establish the best possible methods of separating the coagula from the dispersed mineral matter. During the second quarter, the effects of surface hydrophobicity, pH and KCI concentrations on the interaction energies of attachment and detachment have been evaluated; hydrophobic interaction parameters were determined for oxidized and unoxidized; Elkhorn No. 3 seam coal samples and then compared with calculations based on the extended DLVO theory; and work continued on the population balance model of the hydrophobic coagulation process. A sample of Elkhorn No. 3 seam coal was obtained and is currently being characterized; a particle size monitor has been received; and work has begun on enhancing the separation of coagula (Task 3.4). 14 figs.

  19. Exothermic furnace module development. [space processing

    NASA Technical Reports Server (NTRS)

    Darnell, R. R.; Poorman, R. M.

    1982-01-01

    An exothermic furnace module was developed to rapidly heat and cool a 0.820-in. (2.1 cm) diameter by 2.75-in. (7.0 cm) long TZM molybdenum alloy crucible. The crucible contains copper, oxygen, and carbon for processing in a low-g environment. Peak temperatures of 1270 C were obtainable 3.5 min after start of ignition, and cooling below 950 C some 4.5 min later. These time-temperature relationships were conditioned for a foam-copper experiment, Space Processing Applications Rocket experiment 77-9, in a sounding rocket having a low-g period of 5 min.

  20. Information Processing in Living Systems

    NASA Astrophysics Data System (ADS)

    Tkačik, Gašper; Bialek, William

    2016-03-01

    Life depends as much on the flow of information as on the flow of energy. Here we review the many efforts to make this intuition precise. Starting with the building blocks of information theory, we explore examples where it has been possible to measure, directly, the flow of information in biological networks, or more generally where information-theoretic ideas have been used to guide the analysis of experiments. Systems of interest range from single molecules (the sequence diversity in families of proteins) to groups of organisms (the distribution of velocities in flocks of birds), and all scales in between. Many of these analyses are motivated by the idea that biological systems may have evolved to optimize the gathering and representation of information, and we review the experimental evidence for this optimization, again across a wide range of scales.

  1. Decision process for effective system reuse

    NASA Technical Reports Server (NTRS)

    Mirchandani, Chandru

    1995-01-01

    The speed of growth in high technology differs for software, hardware and firmware. Hardware innovations come in leaps, as opposed to the gradual improvements in software and firmware technologies. This inhibits the full utilization of the hardware advances and reduces the cost benefit ratio of high technology ventures. The Microelectronics Systems Branch has committed its resources to use the look ahead technique whereby the technology is researched in its use, current development track and its future capabilities. This knowledge is used to meet the requirements of the space program not only in the nineties but also through 2005. This paper illustrates Analytical Hierarchy Process techniques used effectively and very successfully to support projects reusing systems with predicted enhancements.

  2. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  3. Development of the T+M coupled flow–geomechanical simulator to describe fracture propagation and coupled flow–thermal–geomechanical processes in tight/shale gas systems

    SciTech Connect

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  4. Compact Process Development at Babcock & Wilcox

    SciTech Connect

    Eric Shaber; Jeffrey Phillips

    2012-03-01

    Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of compaction trials have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel at packing fractions exceeding 46% by volume. Results from these trials are included. The scale-up effort is nearing completion with the process installed and operable using nuclear fuel materials. Final process testing is in progress to certify the process for manufacture of qualification test fuel compacts in 2012.

  5. SOFC system with integrated catalytic fuel processing

    NASA Astrophysics Data System (ADS)

    Finnerty, Caine; Tompsett, Geoff. A.; Kendall, Kevin; Ormerod, R. Mark

    In recent years, there has been much interest in the development of solid oxide fuel cell technology operating directly on hydrocarbon fuels. The development of a catalytic fuel processing system, which is integrated with the solid oxide fuel cell (SOFC) power source is outlined here. The catalytic device utilises a novel three-way catalytic system consisting of an in situ pre-reformer catalyst, the fuel cell anode catalyst and a platinum-based combustion catalyst. The three individual catalytic stages have been tested in a model catalytic microreactor. Both temperature-programmed and isothermal reaction techniques have been applied. Results from these experiments were used to design the demonstration SOFC unit. The apparatus used for catalytic characterisation can also perform in situ electrochemical measurements as described in previous papers [C.M. Finnerty, R.H. Cunningham, K. Kendall, R.M. Ormerod, Chem. Commun. (1998) 915-916; C.M. Finnerty, N.J. Coe, R.H. Cunningham, R.M. Ormerod, Catal. Today 46 (1998) 137-145]. This enabled the performance of the SOFC to be determined at a range of temperatures and reaction conditions, with current output of 290 mA cm -2 at 0.5 V, being recorded. Methane and butane have been evaluated as fuels. Thus, optimisation of the in situ partial oxidation pre-reforming catalyst was essential, with catalysts producing high H 2/CO ratios at reaction temperatures between 873 K and 1173 K being chosen. These included Ru and Ni/Mo-based catalysts. Hydrocarbon fuels were directly injected into the catalytic SOFC system. Microreactor measurements revealed the reaction mechanisms as the fuel was transported through the three-catalyst device. The demonstration system showed that the fuel processing could be successfully integrated with the SOFC stack.

  6. ENGINEERED BARRIER SYSTEM FEATURES, EVENTS, AND PROCESSES

    SciTech Connect

    na

    2005-05-30

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the total system performance assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the volcanic ash exposure scenario, and the development of dose factors for calculating inhalation dose during volcanic eruption. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1 - 1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the Biosphere Model Report in Figure 1-1, contain detailed descriptions of the model input parameters, their development and the relationship between the parameters and specific features, events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the volcanic ash exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and from the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; and BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1 - 1). The objective of this analysis was to develop the BDCFs for the

  7. Development of Bio-GAS systems

    NASA Technical Reports Server (NTRS)

    Takayanagi, M.; Kitamura, S.; Nemoto, H.; Kimura, T.; Zaiki, Y.; Kitakohji, T.; Fujita, S.; Kameda, M.; Noda, M.; Kawasaki, Y.

    1988-01-01

    Four experiment systems which have fundamental significance in the field of biotechnology are developed for the Get Away Special (GAS). Unique considerations were necessary to develop the systems which carry out biotechnological experiments under GAS's restricted conditions: delicate thermal control, fluid handling and protection from contamination. All experimental processes are controlled by internal sequencers and results of the experiments are recorded as images and numerical data within the systems. The systems are standardized in order to enable repeated use with a variety of experiments by replacement of the experiment modules and modification of experiment sequencing programs.

  8. Development of a one-dimensional electro-thermophysical model of the snow sea-ice system: Arctic climate processes and microwave remote sensing applications

    NASA Astrophysics Data System (ADS)

    Hanesiak, John Michael

    Snow covered sea ice plays a crucial role in the earth's climate. This includes polar biology, local, regional and world weather and ocean circulations as well as indigenous people's way of life. Recent research has indicated significant climate change in the polar regions, especially the Canadian arctic. Polar climate processes are also among the most poorly misrepresented within global circulation models (GCMs). The goal of this thesis is to improve our understanding and capability to simulate arctic climate processes in a predictive sense. An electro-thermophysical relationship exists between the thermophysical characteristics (climate variables and processes) and electrical properties (dielectrics) that control microwave remote sensing of snow-covered first- year sea ice (FYI). This work explicitly links microwave dielectrics and a thermodynamic model of snow and sea ice by addressing four key issues. These includes: (1)ensure the existing one-dimensional sea ice models treat the surface energy balance (SEB) and snow/ice thermodynamics in the appropriate time scales we see occurring in field experiments, (2)ensure the snow/ice thermodynamics are not compromised by differences in environmental and spatial representation within components of the SEB, (3)ensure the snow layer is properly handled in the modeling environment, and (4)how we can make use of satellite microwave remote sensing data within the model environment. Results suggest that diurnal processes are critical and need to be accounted for in modeling snow-covered FYI, similar to time scales acting in microwave remote sensing signatures. Output from the coupled snow sea-ice model provides the required input to microwave dielectric models of snow and sea ice to predict microwave penetration depths within the snow and sea ice (an Electro-Thermophysical model of the Snow Sea Ice System (ETSSIS)). Results suggest ETSSIS can accurately simulate microwave penetration depths in the cold dry snow season and

  9. Idaho Chemical Processing Plant Site Development Plan

    SciTech Connect

    Ferguson, F.G.

    1994-02-01

    The Idaho Chemical Processing Plant (ICPP) mission is to receive and store spent nuclear fuels and radioactive wastes for disposition for Department of Energy (DOE) in a cost-effective manner that protects the safety of Idaho National Engineering Laboratory (INEL) employees, the public, and the environment by: Developing advanced technologies to process spent nuclear fuel for permanent offsite disposition and to achieve waste minimization. Receiving and storing Navy and other DOE assigned spent nuclear fuels. Managing all wastes in compliance with applicable laws and regulations. Identifying and conducting site remediation consistent with facility transition activities. Seeking out and implementing private sector technology transfer and cooperative development agreements. Prior to April 1992, the ICPP mission included fuel reprocessing. With the recent phaseout of fuel reprocessing, some parts of the ICPP mission have changed. Others have remained the same or increased in scope.

  10. Electrochemical decontamination system for actinide processing gloveboxes

    SciTech Connect

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  11. Development of the selective coagulation process

    SciTech Connect

    Yoon, R.H.; Luttrell, G.H.

    1992-07-01

    The selective hydrophobic coagulation (SHC) process is based on the recent finding that hydrophobic particles can be selectively coagulated without using traditional agglomerating agents or flocculants. The driving force for the coagulation is the attractive energy between hydrophobic surfaces, an interaction that has been overlooked in classical colloid chemistry. In most cases, selective separations can be achieved using simple pH control to disperse the mineral matter, followed by recovery of the coal coagula using techniques that take advantage of the size enlargement. In the present work, studies have been carried out to further investigate the fundamental mechanisms of the SHC process and the parameters that affect the process of separating coal from the ash-forming minerals and pyritic sulfur. Studies have included direct force measurements of the attractive interaction between model hydrophobic surfaces, in-situ measurements of the size distributions of coagula formed under a variety of operating conditions, and development of a population balance model to describe the coagulation process. An extended DLVO colloid stability model which includes a hydrophobic interaction energy term has also been developed to explain the findings obtained from the experimental studies. In addition to the fundamental studies, bench-scale process development test work has been performed to establish the best possible method of separating the coagula from dispersed mineral matter. Two types of separators, i.e., a sedimentation tank and a rotating drum screen, were examined in this study. The sedimentation tank proved to be the more efficient unit, achieving ash reductions as high as 60% in a single pass while recovering more than 90% of the combustible material. This device, which minimizes turbulence and coagula breakage, was used in subsequent test work to optimize design and operating parameters.

  12. RDD-100 and the systems engineering process

    NASA Technical Reports Server (NTRS)

    Averill, Robert D.

    1994-01-01

    An effective systems engineering approach applied through the project life cycle can help Langley produce a better product. This paper demonstrates how an enhanced systems engineering process for in-house flight projects assures that each system will achieve its goals with quality performance and within planned budgets and schedules. This paper also describes how the systems engineering process can be used in combination with available software tools.

  13. From a Process to a System.

    ERIC Educational Resources Information Center

    Chevalier, Roger

    1994-01-01

    Explains how to create an organizational system that will result in good performance. Topics discussed include process versus system; two views of a system, i.e., mechanistic and organic; and components of a system, including performance guides, measurement of results, feedback, and training. (LRW)

  14. A multiarchitecture parallel-processing development environment

    NASA Technical Reports Server (NTRS)

    Townsend, Scott; Blech, Richard; Cole, Gary

    1993-01-01

    A description is given of the hardware and software of a multiprocessor test bed - the second generation Hypercluster system. The Hypercluster architecture consists of a standard hypercube distributed-memory topology, with multiprocessor shared-memory nodes. By using standard, off-the-shelf hardware, the system can be upgraded to use rapidly improving computer technology. The Hypercluster's multiarchitecture nature makes it suitable for researching parallel algorithms in computational field simulation applications (e.g., computational fluid dynamics). The dedicated test-bed environment of the Hypercluster and its custom-built software allows experiments with various parallel-processing concepts such as message passing algorithms, debugging tools, and computational 'steering'. Such research would be difficult, if not impossible, to achieve on shared, commercial systems.

  15. Transport processes in biological systems: Tumoral cells and human brain

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  16. Information Processing Capacity of Dynamical Systems

    PubMed Central

    Dambre, Joni; Verstraeten, David; Schrauwen, Benjamin; Massar, Serge

    2012-01-01

    Many dynamical systems, both natural and artificial, are stimulated by time dependent external signals, somehow processing the information contained therein. We demonstrate how to quantify the different modes in which information can be processed by such systems and combine them to define the computational capacity of a dynamical system. This is bounded by the number of linearly independent state variables of the dynamical system, equaling it if the system obeys the fading memory condition. It can be interpreted as the total number of linearly independent functions of its stimuli the system can compute. Our theory combines concepts from machine learning (reservoir computing), system modeling, stochastic processes, and functional analysis. We illustrate our theory by numerical simulations for the logistic map, a recurrent neural network, and a two-dimensional reaction diffusion system, uncovering universal trade-offs between the non-linearity of the computation and the system's short-term memory. PMID:22816038

  17. Process for Managing and Customizing HPC Operating Systems

    SciTech Connect

    Brown, David ML

    2014-04-02

    A process for maintaining a custom HPC operating system was developed at the Environmental Molecular Sciences Laboratory (EMSL) over the past ten years. This process is generic and flexible to manage continuous change as well as keep systems updated while managing communication through well defined pieces of software.

  18. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  19. Landsat 7 Science Data Processing: A System's Overview

    NASA Technical Reports Server (NTRS)

    Schweiss, Robert; Daniels, Nate; Derrick, Debora

    2000-01-01

    The Landsat Science Data Processing System, developed by NASA for the Landsat 7 Project provides science data handling infrastructure used at the EROS Data Center Landsat 7 Data Handling Facility of the USGS Department of Interior. This paper presents an overview the designs, architectures, and details of the various systems used in the processing of the Landsat 7 Science Data.

  20. Parallel reactor systems for bioprocess development.

    PubMed

    Weuster-Botz, Dirk

    2005-01-01

    Controlled parallel bioreactor systems allow fed-batch operation at early stages of process development. The characteristics of shaken bioreactors operated in parallel (shake flask, microtiter plate), sparged bioreactors (small-scale bubble column) and stirred bioreactors (stirred-tank, stirred column) are briefly summarized. Parallel fed-batch operation is achieved with an intermittent feeding and pH-control system for up to 16 bioreactors operated in parallel on a scale of 100 ml. Examples of the scale-up and scale-down of pH-controlled microbial fed-batch processes demonstrate that controlled parallel reactor systems can result in more effective bioprocess development. Future developments are also outlined, including units of 48 parallel stirred-tank reactors with individual pH- and pO2-controls and automation as well as liquid handling system, operated on a scale of ml.

  1. Research on machine vision system of monitoring injection molding processing

    NASA Astrophysics Data System (ADS)

    Bai, Fan; Zheng, Huifeng; Wang, Yuebing; Wang, Cheng; Liao, Si'an

    2016-01-01

    With the wide development of injection molding process, the embedded monitoring system based on machine vision has been developed to automatically monitoring abnormality of injection molding processing. First, the construction of hardware system and embedded software system were designed. Then camera calibration was carried on to establish the accurate model of the camera to correct distortion. Next the segmentation algorithm was applied to extract the monitored objects of the injection molding process system. The realization procedure of system included the initialization, process monitoring and product detail detection. Finally the experiment results were analyzed including the detection rate of kinds of the abnormality. The system could realize the multi-zone monitoring and product detail detection of injection molding process with high accuracy and good stability.

  2. Development of Waste Reduction System of Wastewater Treatment Process Using a Moss: Production of Useful Materials from Remainder of a Moss

    NASA Astrophysics Data System (ADS)

    Fumihisa, Kobayashi

    Landfill leachate pollution presents a serious environmental problem. It would be valuable to develop a sustainable method, one that is inexpensive and requires little energy, to eliminate the pollution and dispose of the waste. In a previous study, we reported the results of a leachate treatment for landfills in which we relied on the moss, Scopelophia cataractae, to support a sustainable method of waste reduction. In this study, for the development of a waste reduction system of landfill leachate treatment, we attempted to produce zinc as useful metal and ethanol as fuel from the remainder of moss after wastewater treatment. Steam explosions, which were used as physicochemical pretreatments to expose the raw material to saturated steam under high pressure and temperature, were used to pretreat the moss. By electrolysis, zinc recovered, and the maximum zinc recovery after wastewater treatment was 0.504 at 2.0 MPa steam pressure (211 °C) and 5 min steaming time. After that time, by simultaneous saccharification and fermentation using a Meicelase and Saccharomyces cerevisiae AM12, 0.42 g dm-3 of the maximum ethanol concentration was produced from 10 g dm-3 of exploded moss at 2.5 MPa steam pressure (223 °C) and 1 min steaming time.

  3. High-power ultrasonic processing: Recent developments and prospective advances

    NASA Astrophysics Data System (ADS)

    Gallego-Juarez, Juan A.

    2010-01-01

    Although the application of ultrasonic energy to produce or to enhance a wide variety of processes have been explored since about the middle of the 20th century, only a reduced number of ultrasonic processes have been established at industrial level. However, during the last ten years the interest in ultrasonic processing has revived particularly in industrial sectors where the ultrasonic technology may represent a clean and efficient tool to improve classical existing processes or an innovation alternative for the development of new processes. Such seems to be the case of relevant sectors such as food industry, environment, pharmaceuticals and chemicals manufacture, machinery, mining, etc where power ultrasound is becoming an emerging technology for process development. The possible major problem in the application of high-intensity ultrasound on industrial processing is the design and development of efficient power ultrasonic systems (generators and reactors) capable of large scale successful operation specifically adapted to each individual process. In the area of ultrasonic processing in fluid media and more specifically in gases, the development of the steppedplate transducers and other power ge with extensive radiating surface has strongly contributed to the implementation at semi-industrial and industrial stage of several commercial applications, in sectors such as food and beverage industry (defoaming, drying, extraction, etc), environment (air cleaning, sludge filtration, etc...), machinery and process for manufacturing (textile washing, paint manufacture, etc). The development of different cavitational reactors for liquid treatment in continuous flow is helping to introduce into industry the wide potential of the area of sonochemistry. Processes such as water and effluent treatment, crystallization, soil remediation, etc have been already implemented at semi-industrial and/or industrial stage. Other single advances in sectors like mining or energy have

  4. A Reverse Osmosis System for an Advanced Separation Process Laboratory.

    ERIC Educational Resources Information Center

    Slater, C. S.; Paccione, J. D.

    1987-01-01

    Focuses on the development of a pilot unit for use in an advanced separations process laboratory in an effort to develop experiments on such processes as reverse osmosis, ultrafiltration, adsorption, and chromatography. Discusses reverse osmosis principles, the experimental system design, and some experimental studies. (TW)

  5. Developing the Manufacturing Process for Hylene MP Curing Agent

    SciTech Connect

    Eastwood, Eric

    2009-02-16

    This report details efforts to scale-up and re-establish the manufacturing process for the curing agent known as Hylene MP. First, small scale reactions were completed with varying conditions to determine key drivers for yielding high quality product. Once the optimum conditions were determined on the small scale, the scaled-up process conditions were determined. New equipment was incorporated into the manufacturing process to create a closed production system and improve chemical exposure controls and improve worker safety. A safe, efficient manufacturing process was developed to manufacture high quality Hylene MP in large quantities.

  6. Integration mockup and process material management system

    NASA Technical Reports Server (NTRS)

    Verble, Adas James, Jr.

    1992-01-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  7. Integration mockup and process material management system

    NASA Astrophysics Data System (ADS)

    Verble, Adas James, Jr.

    1992-02-01

    Work to define and develop a full scale Space Station Freedom (SSF) mockup with the flexibility to evolve into future designs, to validate techniques for maintenance and logistics and verify human task allocations and support trade studies is described. This work began in early 1985 and ended in August, 1991. The mockups are presently being used at MSFC in Building 4755 as a technology and design testbed, as well as for public display. Micro Craft also began work on the Process Material Management System (PMMS) under this contract. The PMMS simulator was a sealed enclosure for testing to identify liquids, gaseous, particulate samples, and specimen including, urine, waste water, condensate, hazardous gases, surrogate gasses, liquids, and solids. The SSF would require many trade studies to validate techniques for maintenance and logistics and verify system task allocations; it was necessary to develop a full scale mockup which would be representative of current SSF design with the ease of changing those designs as the SSF design evolved and changed. The tasks defined for Micro Craft were to provide the personnel, services, tools, and materials for the SSF mockup which would consist of four modules, nodes, interior components, and part task mockups of MSFC responsible engineering systems. This included the Engineering Control and Life Support Systems (ECLSS) testbed. For the initial study, the mockups were low fidelity, soft mockups of graphics art bottle, and other low cost materials, which evolved into higher fidelity mockups as the R&D design evolved, by modifying or rebuilding, an important cost saving factor in the design process. We designed, fabricated, and maintained the full size mockup shells and support stands. The shells consisted of cylinders, end cones, rings, longerons, docking ports, crew airlocks, and windows. The ECLSS required a heavier cylinder to support the ECLSS systems test program. Details of this activity will be covered. Support stands were

  8. Dynamics Explorer Science Data Processing System

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Freeman, C. H.; Hoffman, R. A.

    1981-01-01

    The Dynamics Explorer project has acquired the ground data processing system from the Atmosphere Explorer project to provide a central computer facility for the data processing, data management and data analysis activities of the investigators. Access to this system is via remote terminals at the investigators' facilities, which provide ready access to the data sets derived from groups of instruments on both spacecraft. The original system has been upgraded with both new hardware and enhanced software systems. These new systems include color and grey scale graphics terminals, an augmentation computer, micrographics facility, a versatile data base with a directory and data management system, and graphics display software packages.

  9. Developing a Carbon Observing System

    NASA Astrophysics Data System (ADS)

    Moore, B., III

    2015-12-01

    There is a clear need to better understand and predict future climate change, so that science can more confidently inform climate policy, including adaptation planning and future mitigation strategies. Understanding carbon cycle feedbacks, and the relationship between emissions (fossil and land use) and the resulting atmospheric carbon dioxide (CO2) and methane (CH4) concentrations in a changing climate has been recognized as an important goal by the IPCC. The existing surface greenhouse gas observing networks provide accurate and precise measurements of background values, but they are not configured to target the extended, complex and dynamic regions of the carbon budget. Space Agencies around the globe are committed to CO2 and CH4 observations: GOSAT-1/2, OCO-2/3, MERLin, TanSat, and CarbonSat. In addition to these Low Earth Orbit (LEO) missions, a new mission in Geostationary Orbit (GEO), geoCARB, which would provide mapping-like measurements of carbon dioxide, methane, and carbon monoxide concentrations over major land areas, has been recently proposed to the NASA Venture Program. These pioneering missions do not provide the spatial/temporal coverage to answer the key carbon-climate questions at process relevant scales nor do they address the distribution and quantification of anthropogenic sources at urban scales. They do demonstrate, however, that a well-planned future system of system integrating space-based LEO and GEO missions with extensive in situ observations could provide the accuracy, spatial resolution, and coverage needed to address critical open issues in the carbon-climate system. Dr. Diana Wickland devoted enormous energy in developing a comprehensive apprioach to understand the global carbon cycle; she understood well that an integrated, coordinated, international approach is needed. This shines through in her recent contribution in co-chairing the team that produced the "CEOS Strategy for Carbon Observations from Space." A NASA-funded community

  10. Development of a new reporter gene system--dsRed/xanthine phosphoribosyltransferase-xanthine for molecular imaging of processes behind the intact blood-brain barrier.

    PubMed

    Doubrovin, Mikhail; Ponomarev, Vladimir; Serganova, Inna; Soghomonian, Suren; Myagawa, Tadashi; Beresten, Tatiana; Ageyeva, Lyudmila; Sadelain, Michel; Koutcher, Jason; Blasberg, Ronald G; Tjuvajev, Juri G Gelovani

    2003-04-01

    We report the development of a novel dual-modality fusion reporter gene system consisting of Escherichia coli xanthine phosphoribosyltransferase (XPRT) for nuclear imaging with radiolabeled xanthine and Discosoma red fluorescent protein for optical fluorescent imaging applications. The dsRed/XPRT fusion gene was successfully created and stably transduced into RG2 glioma cells, and both reporters were shown to be functional. The level of dsRed fluorescence directly correlated with XPRT enzymatic activity as measured by ribophosphorylation of [14C]-xanthine was in vitro (Ki = 0.124 +/- 0.008 vs. 0.00031 +/- 0.00005 mL/min/g in parental cell line), and [*]-xanthine octanol/water partition coefficient was 0.20 at pH = 7.4 (logP = -0.69), meeting requirements for the blood-brain barrier (BBB) penetrating tracer. In the in vivo experiment, the concentration of [14C]-xanthine in the normal brain varied from 0.20 to 0.16 + 0.05% dose/g under 0.87 + 0.24% dose/g plasma radiotracer concentration. The accumulation in vivo in the transfected flank tumor was to 2.4 +/- 0.3% dose/g, compared to 0.78 +/- 0.02% dose/g and 0.64 +/- 0.05% dose/g in the control flank tumors and intact muscle, respectively. [14C]-Xanthine appeared to be capable of specific accumulation in the transfected infiltrative brain tumor (RG2-dsRed/XPRT), which corresponded to the 585 nm fluorescent signal obtained from the adjacent cryosections. The images of endogenous gene expression with the "sensory system" have to be normalized for the transfection efficiency based on the "beacon system" image data. Such an approach requires two different "reporter genes" and two different "reporter substrates." Therefore, the novel dsRed/XPRT fusion gene can be used as a multimodality reporter system in the biological applications requiring two independent reporter genes, including the cells located behind the BBB.

  11. Development of a stereofluoroscopy system

    NASA Technical Reports Server (NTRS)

    Rivers, D. B.

    1979-01-01

    A technique of 3-D video imaging, was developed for use on manned missions for observation and control of remote manipulators. An improved medical diagnostic fluoroscope with a stereo, real-time output was also developed. An explanation of how this system works, and recommendations for future work in this area are presented.

  12. TADS: Technical Assistance Development System.

    ERIC Educational Resources Information Center

    Epting, Rosemary, Ed.

    Described is the Technical Assistance Development System (TADS), a component of the Frank Porter Graham Child Development Center of the University of North Carolina at Chapel Hill which offers support services to preschool demonstration centers for handicapped children in the First Chance Network. Discussed are the four types of services offered:…

  13. Development of Vocational Training Systems.

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium). Directorate-General for Education, Training, and Youth.

    The EUROTECNET program was implemented to develop and improve vocational training policies and systems to meet the challenges of change in the economic and social situation through the development of innovative responses and actions. Each Member State of the European Community was asked to identify one issue of strategic and critical importance to…

  14. NASA Human System Risk Assessment Process

    NASA Technical Reports Server (NTRS)

    Francisco, D.; Romero, E.

    2016-01-01

    NASA utilizes an evidence based system to perform risk assessments for the human system for spaceflight missions. The center of this process is the multi-disciplinary Human System Risk Board (HSRB). The HSRB is chartered from the Chief Health and Medical Officer (OCHMO) at NASA Headquarters. The HSRB reviews all human system risks via an established comprehensive risk and configuration management plan based on a project management approach. The HSRB facilitates the integration of human research (terrestrial and spaceflight), medical operations, occupational surveillance, systems engineering and many other disciplines in a comprehensive review of human system risks. The HSRB considers all factors that influence human risk. These factors include pre-mission considerations such as screening criteria, training, age, sex, and physiological condition. In mission factors such as available countermeasures, mission duration and location and post mission factors such as time to return to baseline (reconditioning), post mission health screening, and available treatments. All of the factors influence the total risk assessment for each human risk. The HSRB performed a comprehensive review of all potential inflight medical conditions and events and over the course of several reviews consolidated the number of human system risks to 30, where the greatest emphasis is placed for investing program dollars for risk mitigation. The HSRB considers all available evidence from human research and, medical operations and occupational surveillance in assessing the risks for appropriate mitigation and future work. All applicable DRMs (low earth orbit for 6 and 12 months, deep space for 30 days and 1 year, a lunar mission for 1 year, and a planetary mission for 3 years) are considered as human system risks are modified by the hazards associated with space flight such as microgravity, exposure to radiation, distance from the earth, isolation and a closed environment. Each risk has a summary

  15. Multiple memory systems, development and conditioning.

    PubMed

    Stanton, M E

    2000-06-01

    A century of behavioral and neurobiological research suggests that Pavlovian conditioning involves three component memory systems: sensorimotor, affective and cognitive. In classical eyeblink conditioning, there is evidence that these three memory systems involve, respectively, the cerebellum, amygdala and hippocampus. This article reviews developmental research on eyeblink conditioning in rodents that is beginning to characterize ontogenetic dissociations and interactions among these memory systems. This research shows that the functional development of the affective system (conditioned fear response) precedes that of the sensorimotor system (conditioned eyeblink reflex). Modulation of these two systems by cognitive processes also seems to emerge at different points in ontogeny. Implications for cognitive development and research on multiple memory systems are discussed.

  16. Software control and system configuration management - A process that works

    NASA Technical Reports Server (NTRS)

    Petersen, K. L.; Flores, C., Jr.

    1983-01-01

    A comprehensive software control and system configuration management process for flight-crucial digital control systems of advanced aircraft has been developed and refined to insure efficient flight system development and safe flight operations. Because of the highly complex interactions among the hardware, software, and system elements of state-of-the-art digital flight control system designs, a systems-wide approach to configuration control and management has been used. Specific procedures are implemented to govern discrepancy reporting and reconciliation, software and hardware change control, systems verification and validation testing, and formal documentation requirements. An active and knowledgeable configuration control board reviews and approves all flight system configuration modifications and revalidation tests. This flexible process has proved effective during the development and flight testing of several research aircraft and remotely piloted research vehicles with digital flight control systems that ranged from relatively simple to highly complex, integrated mechanizations.

  17. Tubeless evaporation process development: Final report

    SciTech Connect

    Not Available

    1987-12-01

    A tubeless evaporation process which has the potential to combine the advantage of both evaporation and freezing processes, without their disadvantages is being developed. The TEP is capable of concentrating process solutions of such things as sugar, caustic soda, salt, sodium sulfate, black liquor from the pulp and paper industry, cooling tower blowdown, ''spent'' pickling liquor (sulfuric acid) from the steel industry, and nitric acid with potential energy savings of half to three-quarters of the energy required by conventional evaporators, with about half of the capital and maintenance cost. It has similar potential for the production of fresh water from seawater. The process uses working fluids (WF's) at their freezing point to effect direct contact heat exchange. The purpose of this project was to find additional and lower cost WF's in the laboratory, to obtain sizing information for the major equipment for an economic evaluation and a pilot plant design in a bench scale plant, and to perform the economic evaluation, and the pilot plant design and cost estimate. 6 refs., 37 figs., 7 tabs.

  18. The Embodied Embedded Character of System 1 Processing

    PubMed Central

    Bellini-Leite, Samuel de Castro

    2013-01-01

    In the last thirty years, a relatively large group of cognitive scientists have begun characterising the mind in terms of two distinct, relatively autonomous systems. To account for paradoxes in empirical results of studies mainly on reasoning, Dual Process Theories were developed. Such Dual Process Theories generally agree that System 1 is rapid, automatic, parallel, and heuristic-based and System 2 is slow, capacity-demanding, sequential, and related to consciousness. While System 2 can still be decently understood from a traditional cognitivist approach, I will argue that it is essential for System 1 processing to be comprehended in an Embodied Embedded approach to Cognition. PMID:23678245

  19. System analysis: Developing tools for the future

    SciTech Connect

    De Jong, K.; clever, J.; Draper, J.V.; Davies, B.; Lonks, A.

    1996-02-01

    This report introduces and evaluates system analysis tools that were developed, or are under development, for the Robotics Technology Development Program (RTDP). Additionally, it discusses system analysis work completed using these tools aimed at completing a system analysis of the retrieval of waste from underground storage tanks on the Hanford Reservation near Richland, Washington. The tools developed and evaluated include a mixture of commercially available tools adapted to RTDP requirements, and some tools developed in house. The tools that are included in this report include: a Process Diagramming Tool, a Cost Modeling Tool, an Amortization Modeling Tool, a graphical simulation linked to the Cost Modeling Tool, a decision assistance tool, and a system thinking tool. Additionally, the importance of performance testing to the RTDP and the results of such testing executed is discussed. Further, the results of the Tank Waste Retrieval (TWR) System Diagram, the TWR Operations Cost Model, and the TWR Amortization Model are presented, and the implication of the results are discussed. Finally, the RTDP system analysis tools are assessed and some recommendations are made regarding continuing development of the tools and process.

  20. Process development for cladding APT tungsten targets

    SciTech Connect

    Horner, M H; Barber, R; Dalder, E

    2000-11-27

    This report describes development of processes for cladding APT Target tungsten components with a thin layer (0.127-mm) of Alloy 718, Alloy 600 or 316L stainless steel alloy. The application requires that the cladding be thermally bonded to the tungsten in order to transfer heat generated in the tungsten volume to a surrounding coolant. High temperature diffusion bonding using the hot isostatic processing (HIP) technique was selected as the method for creating a metallurgical bond between pure tungsten tubes and rods and the cladding materials. Bonding studies using a uniaxially loaded vacuum hot press were conducted in preliminary experiments to determine acceptable time-temperature conditions for diffusion bonding. The results were successfully applied in cladding tungsten rods and tubes with these alloys. Temperatures 800-810 C were suitable for cladding tungsten with Alloy 600 and 316L stainless steel alloy, whereas tungsten was clad with Alloy 718 at 1020 C.

  1. AHTR Refueling Systems and Process Description

    SciTech Connect

    Varma, V.K.; Holcomb, D.E.; Bradley, E.C.; Zaharia, N.M.; Cooper, E.J.

    2012-07-15

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt–cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy’s Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published [1], and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the

  2. AHTR Refueling Systems and Process Description

    SciTech Connect

    Varma, Venugopal Koikal; Holcomb, David Eugene; Bradley, Eric Craig; Zaharia, Nathaniel M; Cooper, Eliott J

    2012-07-01

    The Advanced High-Temperature Reactor (AHTR) is a design concept for a central station-type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently undergoing development by Oak Ridge National Laboratory for the US. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR is approaching a preconceptual level of maturity. An initial integrated layout of its major systems, structures, and components (SSCs), and an initial, high-level sequence of operations necessary for constructing and operating the plant is nearing completion. An overview of the current status of the AHTR concept has been recently published and a report providing a more detailed overview of the AHTR structures and mechanical systems is currently in preparation. This report documents the refueling components and processes envisioned at this early development phase. The report is limited to the refueling aspects of the AHTR and does not include overall reactor or power plant design information. The report, however, does include a description of the materials envisioned for the various components and the instrumentation necessary to control the refueling process. The report begins with an overview of the refueling strategy. Next a mechanical description of the AHTR fuel assemblies and core is provided. The reactor vessel upper assemblies are then described. Following this the refueling path structures and the refueling mechanisms and components are described. The sequence of operations necessary to fuel and defuel the reactor is then discussed. The report concludes with a discussion of the levels of

  3. Process control system using polarizing interferometer

    DOEpatents

    Schultz, Thomas J.; Kotidis, Petros A.; Woodroffe, Jaime A.; Rostler, Peter S.

    1994-01-01

    A system for non-destructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading.

  4. Process control system using polarizing interferometer

    DOEpatents

    Schultz, T.J.; Kotidis, P.A.; Woodroffe, J.A.; Rostler, P.S.

    1994-02-15

    A system for nondestructively measuring an object and controlling industrial processes in response to the measurement is disclosed in which an impulse laser generates a plurality of sound waves over timed increments in an object. A polarizing interferometer is used to measure surface movement of the object caused by the sound waves and sensed by phase shifts in the signal beam. A photon multiplier senses the phase shift and develops an electrical signal. A signal conditioning arrangement modifies the electrical signals to generate an average signal correlated to the sound waves which in turn is correlated to a physical or metallurgical property of the object, such as temperature, which property may then be used to control the process. External, random vibrations of the workpiece are utilized to develop discernible signals which can be sensed in the interferometer by only one photon multiplier. In addition the interferometer includes an arrangement for optimizing its sensitivity so that movement attributed to various waves can be detected in opaque objects. The interferometer also includes a mechanism for sensing objects with rough surfaces which produce speckle light patterns. Finally the interferometer per se, with the addition of a second photon multiplier is capable of accurately recording beam length distance differences with only one reading. 38 figures.

  5. An interfaces approach to TES ground data system processing design with the Science Investigator-led Processing System (SIPS)

    NASA Technical Reports Server (NTRS)

    Kurian, R.; Grifin, A.

    2002-01-01

    Developing production-quality software to process the large volumes of scientific data is the responsibility of the TES Ground Data System, which is being developed at the Jet Propulsion Laboratory together with support contractor Raytheon/ITSS. The large data volume and processing requirements of the TES pose significant challenges to the design.

  6. Model for Process Description: From Picture to Information System

    NASA Technical Reports Server (NTRS)

    Zak, A.

    1996-01-01

    A new model for the development of proces information systems is proposed. It is robust and inexpensive, capable of providing timely, neccessary information to the user by integrating Products, Instructions, Examples, Tools, and Process.

  7. Hydrothermal liquefaction of biomass: Developments from batch to continuous process

    SciTech Connect

    Elliott, Douglas C.; Biller, Patrick; Ross, Andrew; Schmidt, Andrew J.; Jones, Susanne B.

    2015-02-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their processing are discussed. Engineered systems for HTL are described however they are of limited size and do not yet approach a demonstration scale of operation. With the results available process models have been developed and mass and energy balances determined. From these models process costs have been calculated and provide some optimism as to the commercial likelihood of the technology.

  8. Hydrothermal liquefaction of biomass: developments from batch to continuous process.

    PubMed

    Elliott, Douglas C; Biller, Patrick; Ross, Andrew B; Schmidt, Andrew J; Jones, Susanne B

    2015-02-01

    This review describes the recent results in hydrothermal liquefaction (HTL) of biomass in continuous-flow processing systems. Although much has been published about batch reactor tests of biomass HTL, there is only limited information yet available on continuous-flow tests, which can provide a more reasonable basis for process design and scale-up for commercialization. High-moisture biomass feedstocks are the most likely to be used in HTL. These materials are described and results of their processing are discussed. Engineered systems for HTL are described; however, they are of limited size and do not yet approach a demonstration scale of operation. With the results available, process models have been developed, and mass and energy balances determined. From these models, process costs have been calculated and provide some optimism as to the commercial likelihood of the technology.

  9. Development of an Ontology-Directed Signal Processing Toolbox

    SciTech Connect

    Stephen W. Lang

    2011-05-27

    This project was focused on the development of tools for the automatic configuration of signal processing systems. The goal is to develop tools that will be useful in a variety of Government and commercial areas and useable by people who are not signal processing experts. In order to get the most benefit from signal processing techniques, deep technical expertise is often required in order to select appropriate algorithms, combine them into a processing chain, and tune algorithm parameters for best performance on a specific problem. Therefore a significant benefit would result from the assembly of a toolbox of processing algorithms that has been selected for their effectiveness in a group of related problem areas, along with the means to allow people who are not signal processing experts to reliably select, combine, and tune these algorithms to solve specific problems. Defining a vocabulary for problem domain experts that is sufficiently expressive to drive the configuration of signal processing functions will allow the expertise of signal processing experts to be captured in rules for automated configuration. In order to test the feasibility of this approach, we addressed a lightning classification problem, which was proposed by DOE as a surrogate for problems encountered in nuclear nonproliferation data processing. We coded a toolbox of low-level signal processing algorithms for extracting features of RF waveforms, and demonstrated a prototype tool for screening data. We showed examples of using the tool for expediting the generation of ground-truth metadata, for training a signal recognizer, and for searching for signals with particular characteristics. The public benefits of this approach, if successful, will accrue to Government and commercial activities that face the same general problem - the development of sensor systems for complex environments. It will enable problem domain experts (e.g. analysts) to construct signal and image processing chains without

  10. Processing and characterization of honeycomb composite systems

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Jahan Emir

    Honeycomb composite structures are widely used in the aerospace and sporting goods industries because of the superior performance and weight saving advantages they offer over traditional metal structures. However, in order to maximize the mechanical and chemical properties of honeycomb composites, the structures must be specially designed to take advantage of their inherent anisotropic, viscoelastic and heterogeneous qualities. In the open literature little work has been done to understand these relationships. Most research efforts have been focused towards studying and modeling the effects of environmental exposure, impact damage and energy absorption. The objectives of this work was to use a systemic engineering approach to explore the fundamental material relationships of honeycomb composites with an emphasis towards the industrial manufacturing, design and performance characteristics of these materials. To reach this goal, a methodology was created to develop model honeycomb systems that were characteristically similar to their commercial counterparts. From the model systems, some of the important chemical and mechanical properties that controlled the behavior of honeycomb core were identified. With the knowledge gained from the model system, studies were carried out to correlate the compressive properties of honeycomb rings to honeycomb core. This type of correlation gives paper, resin, and adhesive manufactures the ability to develop new honeycomb materials without requiring specific honeycomb manufacturers to divulge their trade secrets. After characterizing the honeycomb core, efforts were made to understand the manufacturing and in-service responses of honeycomb materials. Using three Design of Experiments, investigations were performed to measure the mechanisms of composite structures to propagate damage and water over a fourteen month service period. Collectively, this research represents a fundamental starting point for understanding the processing

  11. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  12. [The learning and motor development transfer process].

    PubMed

    Cecchini Estrada, José Antonio; Fernández Losa, Jorge Luis; Pallasá Manteca, Miguel; Cecchini Applegatte, Christian

    2012-05-01

    The aim of this study is to analyze the transference process in motor skill learning. For this purpose, 320 boys and girls, with ages ranging from 3 to 12 years (M= 7.61; SD= 2.61), took part in nine object movement reception drills in which the following variables were cross-examined: the presence-absence of displacement (static or in motion), the corporal segments utilized (hands or arms), the movement direction (right or left), and the moving object (volleyball or tennis ball). The results indicate that what is being transferred is the common factor among them, the ocular-kinesthetic regulating system, which is constructed according to a generalized motor program and a predictive strategy of continuous control. The way that individuals group by levels of skill that represent the developmental levels of the aforementioned regulating system can also be observed. Lastly, the results are discussed, and strategies to improve the learning process in sports and physical education are provided.

  13. Gene expression profile of brain regions reflecting aberrations in nervous system development targeting the process of neurite extension of rat offspring exposed developmentally to glycidol.

    PubMed

    Akane, Hirotoshi; Saito, Fumiyo; Shiraki, Ayako; Imatanaka, Nobuya; Akahori, Yumi; Itahashi, Megu; Wang, Liyun; Shibutani, Makoto

    2014-12-01

    We previously found that exposure to glycidol at 1000 ppm in drinking water caused axonopathy in maternal rats and aberrations in late-stage hippocampal neurogenesis, targeting the process of neurite extension in offspring. To identify the profile of developmental neurotoxicity of glycidol, pregnant Sprague-Dawley rats were given drinking water containing glycidol from gestational day 6 until weaning on day 21 after delivery, and offspring at 0, 300 and 1000 ppm were subjected to region-specific global gene expression profiling. Four brain regions were selected to represent both cerebral and cerebellar tissues, i.e., the cingulate cortex, corpus callosum, hippocampal dentate gyrus and cerebellar vermis. Downregulated genes in the dentate gyrus were related to axonogenesis (Nfasc), myelination (Mal, Mrf and Ugt8), and cell proliferation (Aurkb and Ndc80) at ≥ 300 ppm, and upregulated genes were related to neural development (Frzb and Fzd6) at 1000 ppm. Upregulation was observed for genes related to myelination (Kl, Igf2 and Igfbp2) in the corpus callosum and axonogenesis and neuritogenesis (Efnb3, Tnc and Cd44) in the cingulate cortex, whereas downregulation was observed for genes related to synaptic transmission (Thbs2 and Ccl2) in the cerebellar vermis; all of these changes were mostly observed at 1000 ppm. Altered gene expression of Cntn3, which functions on neurite outgrowth-promotion, was observed in all four brain regions at 1000 ppm. Gene expression profiles suggest that developmental exposure to glycidol affected plasticity of neuronal networks in the broad brain areas, and dentate gyrus neurogenesis may be the sensitive target of this type of toxicity.

  14. Development of the CROW{trademark} process

    SciTech Connect

    Johnson, L.A. Jr.

    1994-05-01

    The Contained Recovery of Oily Waste (CROW{trademark}) technology has been successfully tested in the laboratory and presently is being implemented at field sites contaminated with wood treating wastes and byproducts of town gas production. These field demonstrations will utilize only hot-water displacement without any chemical additives because the use of chemicals to enhance the hot-water flushing process has only been tested on a preliminary basis. Preliminary testing has shown that low concentrations of chemicals could reduce the contaminant content by an additional 10 to 20 wt %. Western Research Institute (WRI) research, plus research at Carnegie Mellon University, on surfactant enhancement of solubility of polynuclear aromatic hydrocarbons in water and water-soil systems indicate the potential of chemical enhancement of the CROW process. Chemicals that have been tested and that were used in these tests are totally biodegradable. The objective of this task was to obtain sufficient baseline data to show the effectiveness and environmentally safe use of chemicals, primarily surfactants, to enhance the CROW process. To meet this objective, 14 one-dimensional displacement tests were conducted. Eleven tests were conducted on a material from a former manufactured gas plant (MGP) site and four tests were conducted with a contaminated soil from a former wood treatment facility. The tests investigated the effect of three chemical concentrations (0, 0.5, and 1.0 vol %) at three temperatures (ambient, the projected optimum temperature, and one 40{degree}F [22{degree}C] below the optimum temperature).

  15. Systems Biology Approaches to New Vaccine Development

    PubMed Central

    Oberg, Ann L.; Kennedy, Richard B.; Li, Peter; Ovsyannikova, Inna G.; Poland, Gregory A.

    2011-01-01

    Summary The current “isolate, inactivate, inject” vaccine development strategy has served the field of vaccinology well, and such empirical vaccine candidate development has even led to the eradication of smallpox. However, such an approach suffers from limitations, and as an empirical approach, does not fully utilize our knowledge of immunology and genetics. A more complete understanding of the biological processes culminating in disease resistance is needed. The advent of high-dimensional assay technology and “systems biology” along with a vaccinomics approach [1;2] is spawning a new era in the science of vaccine development. Here we review recent developments in systems biology and strategies for applying this approach and its resulting data to expand our knowledge base and drive directed development of new vaccines. We also provide applied examples and point out new directions for the field in order to illustrate the power of systems biology. PMID:21570272

  16. Application of Laser Ablation Processing in Electric Power System Industries

    NASA Astrophysics Data System (ADS)

    Konagai, Chikara; Sano, Yuji; Nittoh, Koichi; Kuwako, Akira

    The present status of laser ablation processing applied in electric power system industries is reviewed. High average power LD-pumped Nd:YAG lasers with Q-switch have been developed and currently introduced into various applications. Optical fiber based laser beam delivery systems for Q-switched pulse laser are also being developed these years. Based on such laser and beam delivery technology, laser ablation processes are gradually introduced in maintenance of nuclear power plant, thermal power plant and electrical power distribution system. Cost effectiveness, robustness and reliability of the process is highly required for wide utilization in these fields.

  17. Automotive Stirling engine systems development

    NASA Technical Reports Server (NTRS)

    Richey, A. E.

    1984-01-01

    The objective of the Automotive Stirling Engine (ASE) program is to develop a Stirling engine for automotive use that provides a 30 percent improvement in fuel economy relative to a comparable internal-combustion engine while meeting emissions goals. This paper traces the engine systems' development efforts focusing on: (1) a summary of engine system performance for all Mod I engines; (2) the development, program conducted for the upgraded Mod I; and (3) vehicle systems work conducted to enhance vehicle fuel economy. Problems encountered during the upgraded Mod I test program are discussed. The importance of the EPA driving cycle cold-start penalty and the measures taken to minimize that penalty with the Mod II are also addressed.

  18. A Generic Modeling Process to Support Functional Fault Model Development

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Hemminger, Joseph A.; Oostdyk, Rebecca; Bis, Rachael A.

    2016-01-01

    Functional fault models (FFMs) are qualitative representations of a system's failure space that are used to provide a diagnostic of the modeled system. An FFM simulates the failure effect propagation paths within a system between failure modes and observation points. These models contain a significant amount of information about the system including the design, operation and off nominal behavior. The development and verification of the models can be costly in both time and resources. In addition, models depicting similar components can be distinct, both in appearance and function, when created individually, because there are numerous ways of representing the failure space within each component. Generic application of FFMs has the advantages of software code reuse: reduction of time and resources in both development and verification, and a standard set of component models from which future system models can be generated with common appearance and diagnostic performance. This paper outlines the motivation to develop a generic modeling process for FFMs at the component level and the effort to implement that process through modeling conventions and a software tool. The implementation of this generic modeling process within a fault isolation demonstration for NASA's Advanced Ground System Maintenance (AGSM) Integrated Health Management (IHM) project is presented and the impact discussed.

  19. High Consequence System Surety process description

    SciTech Connect

    Randall, G.T.

    1995-09-01

    This report documents work-in-progress accomplished prior to programmatic changes that negated bringing this effort to conclusion as originally intended. The High Consequence System Surety (HCS{sup 2}) project pulls together a multi-disciplinary team to integrate the elements of surety safety, security, control, reliability and quality--into a new, encompassing process. The benefit of using this process is enhanced surety in the design of a high consequence system through an up-front, designed-in approach. This report describes the integrated, high consequence surety process and includes a hypothetical example to illustrate the process.

  20. Towards Flexible Exascale Stream Processing System Simulation

    SciTech Connect

    Li, Cheng-Hong; Nair, Ravi; Ohba, Noboyuki; Shvadron, Uzi; Zaks, Ayal; Schenfeld, Eugen

    2012-01-01

    Stream processing is an important emerging computational model for performing complex operations on and across multi-source, high-volume, unpredictable dataflows. We present Flow, a platform for parallel and distributed stream processing system simulation that provides a flexible modeling environment for analyzing stream processing applications. The Flow stream processing system simulator is a high-performance, scalable simulator that automatically parallelizes chunks of the model space and incurs near-zero synchronization overhead for acyclic stream application graphs. We show promising parallel and distributed event rates exceeding 149 million events per second on a cluster with 512 processor cores.

  1. Handbook on COMTAL's Image Processing System

    NASA Technical Reports Server (NTRS)

    Faulcon, N. D.

    1983-01-01

    An image processing system is the combination of an image processor with other control and display devices plus the necessary software needed to produce an interactive capability to analyze and enhance image data. Such an image processing system installed at NASA Langley Research Center, Instrument Research Division, Acoustics and Vibration Instrumentation Section (AVIS) is described. Although much of the information contained herein can be found in the other references, it is hoped that this single handbook will give the user better access, in concise form, to pertinent information and usage of the image processing system.

  2. Headgear system development for the dismounted soldier

    NASA Astrophysics Data System (ADS)

    Ferrin, Frank J.

    1996-06-01

    Headgear systems for the dismounted soldier are being developed that will provide an extensive set of new capabilites on the battlefield. These systems provide dramatically enhanced audio and visual information flow to and from the soldier. Integrated/modular headgear components include a miniature helmet mounted high resolution display, an advanced intensified night sensor, a head orientation sensor, advanced signal processing electronics, a helmet mounted radio antenna, in addition to new ballistic protection and helmet suspension and communication components.

  3. Field Artillery Ammunition Processing System (FAAPS) concept evaluation study

    SciTech Connect

    Kring, C.T.; Babcock, S.M.; Watkin, D.C.; Oliver, R.P.

    1992-06-01

    The Field Artillery Ammunition Processing System (FAAPS) is an initiative to introduce a palletized load system (PLS) that is transportable with an automated ammunition processing and storage system for use on the battlefield. System proponents have targeted a 20% increase in the ammunition processing rate over the current operation while simultaneously reducing the total number of assigned field artillery battalion personnel by 30. The overall objective of the FAAPS Project is the development and demonstration of an improved process to accomplish these goals. The initial phase of the FAAPS Project and the subject of this study is the FAAPS concept evaluation. The concept evaluation consists of (1) identifying assumptions and requirements, (2) documenting the process flow, (3) identifying and evaluating technologies available to accomplish the necessary ammunition processing and storage operations, and (4) presenting alternative concepts with associated costs, processing rates, and manpower requirements for accomplishing the operation. This study provides insight into the achievability of the desired objectives.

  4. Appendix C: Rapid development approaches for system engineering and design

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Conventional system architectures, development processes, and tool environments often produce systems which exceed cost expectations and are obsolete before they are fielded. This paper explores some of the reasons for this and provides recommendations for how we can do better. These recommendations are based on DoD and NASA system developments and on our exploration and development of system/software engineering tools.

  5. Process modeling for the Integrated Nonthermal Treatment System (INTS) study

    SciTech Connect

    Brown, B.W.

    1997-04-01

    This report describes the process modeling done in support of the Integrated Nonthermal Treatment System (INTS) study. This study was performed to supplement the Integrated Thermal Treatment System (ITTS) study and comprises five conceptual treatment systems that treat DOE contract-handled mixed low-level wastes (MLLW) at temperatures of less than 350{degrees}F. ASPEN PLUS, a chemical process simulator, was used to model the systems. Nonthermal treatment systems were developed as part of the INTS study and include sufficient processing steps to treat the entire inventory of MLLW. The final result of the modeling is a process flowsheet with a detailed mass and energy balance. In contrast to the ITTS study, which modeled only the main treatment system, the INTS study modeled each of the various processing steps with ASPEN PLUS, release 9.1-1. Trace constituents, such as radionuclides and minor pollutant species, were not included in the calculations.

  6. Development of a material processing plant for lunar soil

    NASA Technical Reports Server (NTRS)

    Goettsch, Ulix; Ousterhout, Karl

    1992-01-01

    Currently there is considerable interest in developing in-situ materials processing plants for both the Moon and Mars. Two of the most important aspects of developing such a materials processing plant is the overall system design and the integration of the different technologies into a reliable, lightweight, and cost-effective unit. The concept of an autonomous materials processing plant that is capable of producing useful substances from lunar regolith was developed. In order for such a materials processing plant to be considered as a viable option, it must be totally self-contained, able to operate autonomously, cost effective, light weight, and fault tolerant. In order to assess the impact of different technologies on the overall systems design and integration, a one-half scale model was constructed that is capable of scooping up (or digging) lunar soil, transferring the soil to a solar furnace, heating the soil in the furnace to liberate the gasses, and transferring the spent soil to a 'tile' processing center. All aspects of the control system are handled by a 386 class PC via D/A, A/D, and DSP (Digital Signal Processor) control cards.

  7. Processes in karst systems, physics, chemistry, and geology

    SciTech Connect

    Dreybrodt, W.

    1988-01-01

    Dreybrodt deals quantitatively with many of the chemical and hydrological processes involved in the formation of karst systems. The book is divided into 3 major parts. The first part develops the basic chemical and fluid-flow principles needed in modeling karst systems. The second part investigates the experimental kinetics of calcite dissolution and precipitation and applies the resulting kinetic laws to the modeling of these processes in systems both open and closed to carbon dioxide. The last part of the book includes a qualitative examination of karst systems, quantitative modeling of the development of karst features, and an examination and modeling of the growth of spelotherms in caves.

  8. Development and implementation of an automatic integration system for fibre optic sensors in the braiding process with the objective of online-monitoring of composite structures

    NASA Astrophysics Data System (ADS)

    Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin

    2014-04-01

    Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic

  9. [Development of Hospital Equipment Maintenance Information System].

    PubMed

    Zhou, Zhixin

    2015-11-01

    Hospital equipment maintenance information system plays an important role in improving medical treatment quality and efficiency. By requirement analysis of hospital equipment maintenance, the system function diagram is drawed. According to analysis of input and output data, tables and reports in connection with equipment maintenance process, relationships between entity and attribute is found out, and E-R diagram is drawed and relational database table is established. Software development should meet actual process requirement of maintenance and have a friendly user interface and flexible operation. The software can analyze failure cause by statistical analysis.

  10. [Development of Hospital Equipment Maintenance Information System].

    PubMed

    Zhou, Zhixin

    2015-11-01

    Hospital equipment maintenance information system plays an important role in improving medical treatment quality and efficiency. By requirement analysis of hospital equipment maintenance, the system function diagram is drawed. According to analysis of input and output data, tables and reports in connection with equipment maintenance process, relationships between entity and attribute is found out, and E-R diagram is drawed and relational database table is established. Software development should meet actual process requirement of maintenance and have a friendly user interface and flexible operation. The software can analyze failure cause by statistical analysis. PMID:27066680

  11. Digital processing of side-scan sonar data with the Woods Hole image processing system software

    USGS Publications Warehouse

    Paskevich, Valerie F.

    1992-01-01

    Since 1985, the Branch of Atlantic Marine Geology has been involved in collecting, processing and digitally mosaicking high and low-resolution side-scan sonar data. Recent development of a UNIX-based image-processing software system includes a series of task specific programs for processing side-scan sonar data. This report describes the steps required to process the collected data and to produce an image that has equal along- and across-track resol

  12. Silicon web process development. Annual report

    SciTech Connect

    Duncan, C.S.; Seidensticker, R.G.; McHugh, J.P.; Hill, F.E.; Skutch, M.E.; Driggers, J.M.; Hopkins, R.H.

    1980-06-30

    During this reporting period significant milestones have been met. A new barrier crucible design which consistently maintains melt stability over long periods of time has been successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours (a one day growth cycle). The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and, during the preparation of this report, operated successfully for 3 1/2 hours demonstrating the feasibility of semi-automated dendritic web growth. The web throughput task has resulted in a demonstration of wider good quality web as well as a demonstration of higher throughput rates. The accomplishments during the report period are described in detail. The economic analysis of the dendritic web process was updated. The sensitivity of the cost of sheet to variations in capital equipment cost and recycling dendrites was calculated; and it was shown that these factors have relatively little impact on sheet cost. An important finding was that dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies.

  13. Evaluation Criteria for Solid Waste Processing Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, J. A.; Alazraki, M. P.

    2001-01-01

    A preliminary list of criteria is proposed for evaluation of solid waste processing technologies for research and technology development (R&TD) in the Advanced Life Support (ALS) Program. Completion of the proposed list by current and prospective ALS technology developers, with regard to specific missions of interest, may enable identification of appropriate technologies (or lack thereof) and guide future development efforts for the ALS Program solid waste processing area. An attempt is made to include criteria that capture information about the technology of interest as well as its system-wide impacts. Some of the criteria in the list are mission-independent, while the majority are mission-specific. In order for technology developers to respond to mission-specific criteria, critical information must be available on the quantity, composition and state of the waste stream, the wast processing requirements, as well as top-level mission scenario information (e.g. safety, resource recovery, planetary protection issues, and ESM equivalencies). The technology readiness level (TRL) determines the degree to which a technology developer is able to accurately report on the list of criteria. Thus, a criteria-specific minimum TRL for mandatory reporting has been identified for each criterion in the list. Although this list has been developed to define criteria that are needed to direct funding of solid waste processing technologies, this list processes significant overlap in criteria required for technology selection for inclusion in specific tests or missions. Additionally, this approach to technology evaluation may be adapted to other ALS subsystems.

  14. Parallel asynchronous systems and image processing algorithms

    NASA Technical Reports Server (NTRS)

    Coon, D. D.; Perera, A. G. U.

    1989-01-01

    A new hardware approach to implementation of image processing algorithms is described. The approach is based on silicon devices which would permit an independent analog processing channel to be dedicated to evey pixel. A laminar architecture consisting of a stack of planar arrays of the device would form a two-dimensional array processor with a 2-D array of inputs located directly behind a focal plane detector array. A 2-D image data stream would propagate in neuronlike asynchronous pulse coded form through the laminar processor. Such systems would integrate image acquisition and image processing. Acquisition and processing would be performed concurrently as in natural vision systems. The research is aimed at implementation of algorithms, such as the intensity dependent summation algorithm and pyramid processing structures, which are motivated by the operation of natural vision systems. Implementation of natural vision algorithms would benefit from the use of neuronlike information coding and the laminar, 2-D parallel, vision system type architecture. Besides providing a neural network framework for implementation of natural vision algorithms, a 2-D parallel approach could eliminate the serial bottleneck of conventional processing systems. Conversion to serial format would occur only after raw intensity data has been substantially processed. An interesting challenge arises from the fact that the mathematical formulation of natural vision algorithms does not specify the means of implementation, so that hardware implementation poses intriguing questions involving vision science.

  15. Information Processing in Decision-Making Systems

    PubMed Central

    van der Meer, Matthijs; Kurth-Nelson, Zeb; Redish, A. David

    2015-01-01

    Decisions result from an interaction between multiple functional systems acting in parallel to process information in very different ways, each with strengths and weaknesses. In this review, the authors address three action-selection components of decision-making: The Pavlovian system releases an action from a limited repertoire of potential actions, such as approaching learned stimuli. Like the Pavlovian system, the habit system is computationally fast but, unlike the Pavlovian system permits arbitrary stimulus-action pairings. These associations are a “forward” mechanism; when a situation is recognized, the action is released. In contrast, the deliberative system is flexible but takes time to process. The deliberative system uses knowledge of the causal structure of the world to search into the future, planning actions to maximize expected rewards. Deliberation depends on the ability to imagine future possibilities, including novel situations, and it allows decisions to be taken without having previously experienced the options. Various anatomical structures have been identified that carry out the information processing of each of these systems: hippocampus constitutes a map of the world that can be used for searching/imagining the future; dorsal striatal neurons represent situation-action associations; and ventral striatum maintains value representations for all three systems. Each system presents vulnerabilities to pathologies that can manifest as psychiatric disorders. Understanding these systems and their relation to neuroanatomy opens up a deeper way to treat the structural problems underlying various disorders. PMID:22492194

  16. Development of a dynamic thermal model process

    SciTech Connect

    Smith, F. R.

    1996-04-01

    A dynamic electrical-thermal modeling simulation technique was developed to allow up-front design of thermal and electronic packaging with a high degree of accuracy and confidence. We are developing a hybrid multichip module output driver which controls with power MOSFET driver circuits. These MOSFET circuits will dissipate from 13 to 26 watts per driver in a physical package less than two square inches. The power dissipation plus an operating temperature range of -55{degrees} C to 100{degrees} C makes an accurate thermal package design critical. The project goal was to develop a simulation process to dynamically model the electrical/thermal characteristics of the power MOSFETS using the SABER analog simulator and the ABAQUS finite element simulator. SABER would simulate the electrical characteristics of the multi-chip module design while co-simulation is being done with ABAQUS simulating the solid model thermal characteristics of the MOSFET package. The dynamic parameters, MOSFET power and chip temperature, would be actively passed between simulators to effect a coupled simulator modelling technique. The project required a development of a SABER late for the analog ASIC controller circuit, a dynamic electrical/thermal template for the IRF150 and IRF9130 power MOSFETs, a solid model of the multi-chip module package, FORTRAN code to handle I/Q between and HP755 workstation and SABER, and I/O between CRAY J90 computer and ABAQUS. The simulation model was certified by measured electrical characteristics of the circuits and real time thermal imaging of the output multichip module.

  17. Interactive data-processing system for metallurgy

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1978-01-01

    Equipment indicates that system can rapidly and accurately process metallurgical and materials-processing data for wide range of applications. Advantages include increase in contract between areas on image, ability to analyze images via operator-written programs, and space available for storing images.

  18. Developing processing techniques for Skylab data

    NASA Technical Reports Server (NTRS)

    Nalepka, R. F. (Principal Investigator); Malila, W. A.; Morgenstern, J. P.

    1975-01-01

    The author has identified the following significant results. The effects of misregistration and the scan-line-straightening algorithm on multispectral data were found to be: (1) there is greatly increased misregistration in scan-line-straightening data over conic data; (2) scanner caused misregistration between any pairs of channels may not be corrected for in scan-line-straightened data; and (3) this data will have few pure field center pixels than will conic data. A program SIMSIG was developed implementing the signature simulation model. Data processing stages of the experiment were carried out, and an analysis was made of the effects of spatial misregistration on field center classification accuracy. Fifteen signatures originally used for classifying the data were analyzed, showing the following breakdown: corn (4 signatures), trees (2), brush (1), grasses, weeds, etc. (5), bare soil (1), soybeans (1), and alfalfa (1).

  19. Development of the SOFIA Image Processing Tool

    NASA Technical Reports Server (NTRS)

    Adams, Alexander N.

    2011-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a Boeing 747SP carrying a 2.5 meter infrared telescope capable of operating between at altitudes of between twelve and fourteen kilometers, which is above more than 99 percent of the water vapor in the atmosphere. The ability to make observations above most water vapor coupled with the ability to make observations from anywhere, anytime, make SOFIA one of the world s premiere infrared observatories. SOFIA uses three visible light CCD imagers to assist in pointing the telescope. The data from these imagers is stored in archive files as is housekeeping data, which contains information such as boresight and area of interest locations. A tool that could both extract and process data from the archive files was developed.

  20. Socioeconomic Status, Family Processes, and Individual Development

    PubMed Central

    Conger, Rand D.; Conger, Katherine J.; Martin, Monica J.

    2010-01-01

    Research during the past decade shows that social class or socioeconomic status (SES) is related to satisfaction and stability in romantic unions, the quality of parent-child relationships, and a range of developmental outcomes for adults and children. This review focuses on evidence regarding potential mechanisms proposed to account for these associations. Research findings reported during the past decade demonstrate support for an interactionist model of the relationship between SES and family life, which incorporates assumptions from both the social causation and social selection perspectives. The review concludes with recommendations for future research on SES, family processes and individual development in terms of important theoretical and methodological issues yet to be addressed. PMID:20676350

  1. Control systems development, research and development

    NASA Astrophysics Data System (ADS)

    Bailey, L. R.

    1986-07-01

    This report describes design and implementation of several computerized control systems. These implementations include: an ultrasonic weld tester, an automated vacuum oven, a differential pressure gaging system, a die casting control system, a lathe crash prevention and monitoring system, an electric eddy current weld scanner, a bar code scanner, a gage controller, and thermocouple tester.

  2. Developing hypertension guidelines: an evolving process.

    PubMed

    Kotchen, Theodore A

    2014-06-01

    Hypertension guidelines provide up-to-date information and recommendations for hypertension management to healthcare providers, and they facilitate translation of new knowledge into clinical practice. Guidelines represent consensus statements by expert panels, and the process of guideline development has inherent vulnerabilities. Between 1977 and 2003, under the direction of the National Institutes of Health (NIH), the Joint National Committee on Detection, Evaluation, and Treatment of High Blood Pressure (JNC) issued 7 reports. The evolution of the JNC recommendations reflects the acquisition of observational and clinical trial data and the availability of newer antihypertensive drugs. Despite 5 years in preparation, NIH did not release a JNC 8 report and recently made the decision to withdraw from issuing guidelines. The responsibility for issuing hypertension-related guidelines was transferred to the American Heart Association (AHA) and the American College of Cardiology. Without the endorsement of the NIH or the AHA, JNC 8 committee members recently published their guideline report. Notably, there have been discrepancies of JNC recommendations over time as well as discrepancies with recommendations of other professional organizations. The Institute of Medicine recently recommended criteria for "trustworthy" guidelines. Criticisms of the guideline process, and of the guidelines themselves, should not obscure their likely contribution to improved hypertension control and to decreases of mortality rates of stroke and cardiovascular disease over the past several decades. Nevertheless, translation of guidelines into clinical practice remains a challenge. PMID:24572703

  3. Automated Data Processing (ADP) research and development

    SciTech Connect

    Dowla, F.U.; Kohlhepp, V.N.; Leach, R.R. Jr.

    1995-07-01

    Monitoring a comprehensive test ban treaty (CTBT) will require screening tens of thousands of seismic events each year. Reliable automated data analysis will be essential in keeping up with the continuous stream of events that a global monitoring network will detect. We are developing automated event location and identification algorithms by looking at the gaps and weaknesses in conventional ADP systems and by taking advantage of modem computational paradigms. Our research focus is on three areas: developing robust algorithms for signal feature extraction, integrating the analysis of critical measurements, and exploiting joint estimation techniques such as using data from acoustic, hydroacoustic, and seismic sensors. We identify several important problems for research and development; e.g., event location with approximate velocity models and event identification in the presence of outliers. We are employing both linear and nonlinear methods and advanced signal transform techniques to solve these event monitoring problems. Our goal is to increase event-interpretation throughput by employing the power and efficiency of modem computational techniques, and to improve the reliability of automated analysis by reducing the rates of false alarms and missed detections.

  4. Efficient audio signal processing for embedded systems

    NASA Astrophysics Data System (ADS)

    Chiu, Leung Kin

    As mobile platforms continue to pack on more computational power, electronics manufacturers start to differentiate their products by enhancing the audio features. However, consumers also demand smaller devices that could operate for longer time, hence imposing design constraints. In this research, we investigate two design strategies that would allow us to efficiently process audio signals on embedded systems such as mobile phones and portable electronics. In the first strategy, we exploit properties of the human auditory system to process audio signals. We designed a sound enhancement algorithm to make piezoelectric loudspeakers sound ”richer" and "fuller." Piezoelectric speakers have a small form factor but exhibit poor response in the low-frequency region. In the algorithm, we combine psychoacoustic bass extension and dynamic range compression to improve the perceived bass coming out from the tiny speakers. We also developed an audio energy reduction algorithm for loudspeaker power management. The perceptually transparent algorithm extends the battery life of mobile devices and prevents thermal damage in speakers. This method is similar to audio compression algorithms, which encode audio signals in such a ways that the compression artifacts are not easily perceivable. Instead of reducing the storage space, however, we suppress the audio contents that are below the hearing threshold, therefore reducing the signal energy. In the second strategy, we use low-power analog circuits to process the signal before digitizing it. We designed an analog front-end for sound detection and implemented it on a field programmable analog array (FPAA). The system is an example of an analog-to-information converter. The sound classifier front-end can be used in a wide range of applications because programmable floating-gate transistors are employed to store classifier weights. Moreover, we incorporated a feature selection algorithm to simplify the analog front-end. A machine

  5. Pilot users in agile development processes: motivational factors.

    PubMed

    Johannessen, Liv Karen; Gammon, Deede

    2010-01-01

    Despite a wealth of research on user participation, few studies offer insights into how to involve multi-organizational users in agile development methods. This paper is a case study of user involvement in developing a system for electronic laboratory requisitions using agile methodologies in a multi-organizational context. Building on an interpretive approach, we illuminate questions such as: How does collaboration between users and developers evolve and how might it be improved? What key motivational aspects are at play when users volunteer and continue contributing in the face of considerable added burdens? The study highlights how agile methods in themselves appear to facilitate mutually motivating collaboration between user groups and developers. Lessons learned for leveraging the advantages of agile development processes include acknowledging the substantial and ongoing contributions of users and their roles as co-designers of the system. PMID:20543366

  6. Pilot users in agile development processes: motivational factors.

    PubMed

    Johannessen, Liv Karen; Gammon, Deede

    2010-01-01

    Despite a wealth of research on user participation, few studies offer insights into how to involve multi-organizational users in agile development methods. This paper is a case study of user involvement in developing a system for electronic laboratory requisitions using agile methodologies in a multi-organizational context. Building on an interpretive approach, we illuminate questions such as: How does collaboration between users and developers evolve and how might it be improved? What key motivational aspects are at play when users volunteer and continue contributing in the face of considerable added burdens? The study highlights how agile methods in themselves appear to facilitate mutually motivating collaboration between user groups and developers. Lessons learned for leveraging the advantages of agile development processes include acknowledging the substantial and ongoing contributions of users and their roles as co-designers of the system.

  7. Selected Systems Engineering Process Deficiencies and Their Consequences

    NASA Technical Reports Server (NTRS)

    Thomas, Lawrence Dale

    2006-01-01

    The systems engineering process is well established and well understood. While this statement could be argued in the light of the many systems engineering guidelines and that have been developed, comparative review of these respective descriptions reveal that they differ primarily in the number of discrete steps or other nuances, and are at their core essentially common. Likewise, the systems engineering textbooks differ primarily in the context for application of systems engineering or in the utilization of evolved tools and techniques, not in the basic method. Thus, failures in systems engineering cannot credibly be attributed to implementation of the wrong systems engineering process among alternatives. However, numerous systems failures can be attributed to deficient implementation of the systems engineering process. What may clearly be perceived as a system engineering deficiency in retrospect can appear to be a well considered system engineering efficiency in real time - an efficiency taken to reduce cost or meet a schedule, or more often both. Typically these efficiencies are grounded on apparently solid rationale, such as reuse of heritage hardware or software. Over time, unintended consequences of a systems engineering process deficiency may begin to be realized, and unfortunately often the consequence is system failure. This paper describes several actual cases of system failures that resulted from deficiencies in their systems engineering process implementation, including the Ariane 5 and the Hubble Space Telescope.

  8. Subsea systems developed in Norway

    SciTech Connect

    Cranfield, J.

    1983-05-01

    Work is now underway offshore Norway on an extended development of subsea systems for use on marginal fields in deep water remote from existing surface facilities. Initially, shallow-water trials are being conducted. If these are successful, a full-scale system will be built at Norway's Underwater Technology Center near Bergen. Here, a water depth of over 300 ft. is available within easy reach of the shore. A long-term endurance trial will be run, partly to gain operating experience, and partly to test the reliability of the hardline multiplex remote-control system. Under trial will be the system's hydraulics, sensors and actuators, and the subsea hydraulic and electric control bundle and its connectors.

  9. Technology Transfer and the Product Development Process

    SciTech Connect

    Mock, John E.

    1989-03-21

    It is my pleasure this morning to address a topic that is much talked about in passing but rarely examined from a first person point of view. That topic is Technology Transfer. Over the next 30 minutes I'd like to approach Technology Transfer within the context of the Product Development Process looking at it from the perspectives of the federal government researcher and the industry manufacturer/user. Fist let us recognize that we are living in an ''Information Age'', where global economic and military competition is determined as much by technology as it is by natural resource assets. It is estimated that technical/scientific information is presently growing at a rate of l3 percent per year; this is expected to increase to 30 percent per year by the turn of the century. In fact, something like 90 percent of all scientific knowledge has been generated in the last 30 years; this pool will double again in the next 10-15 years (Exhibit 1). Of all the scientists and engineers throughout history, 90% live and work in the present time. Successfully managing this technical information/knowledge--i.e., transforming the results of R&D to practical applications--will be an important measure of national strength. A little over a dozen years ago, the United States with only 5 percent of the world's population was generating approximately 75 percent of the world's technology. The US. share is now 50 percent and may decline to 30 percent by the turn of the century. This decline won't be because of downturn in U.S. technological advances but because the other 95 percent of the world's population will be increasing its contribution. Economic and military strength then, will be determined by how quickly and successfully companies, industries, and nations can apply new technological information to practical applications--i.e., how they manage technology transfer within the context of the product development process. Much discussion and pronouncements are ongoing in public forums

  10. Evaluation of coal feed systems being developed by the Energy Research and Development administration

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Luckow, W. K.; Mattson, L.; Otth, D.; Tsou, P.

    1977-01-01

    Development criteria and recommendations for coal feed system selections that include supporting data are presented. Considered are the areas of coal feed coasts, coal feed system reliability, and the interaction of the feed system with the conversion process.

  11. The Development and Implementation of an Administrative Database, Telecommunications System, and Training Program to Improve K-12 Magnet/Choice Program Administrative Processes.

    ERIC Educational Resources Information Center

    Black, Mary C.

    In the past, the communication and paperwork structure between K-12 magnet/choice programs and the district-wide program administration was not efficient. In particular, the student application, selection, and notification processes were time-consuming, and did not enable school-based personnel to communicate effectively with district…

  12. An Introduction to the Special Issue on Advances in Process and Dynamic System Analysis of Social Interaction and the Development of Antisocial Behavior

    ERIC Educational Resources Information Center

    Dishion, Thomas J.; Snyder, James

    2004-01-01

    A thorough understanding of how social relationships contribute to child and adolescent trajectories for antisocial behavior may be facilitated by: (a) ascertaining multiple relationship processes (e.g., warmth and reciprocity, coercion and deviancy training); (b) focusing on multiple relationships (e.g., with parents, peers, siblings, and…

  13. Development of a variable frequency microwave processing system for post-curing of thermoset polymer matrix composite materials. Final report, 1 September 1994-28 February 1995

    SciTech Connect

    Johnson, A.

    1995-02-28

    Using a Variable frequency Microwave Furnace (VFMF) technology, Lambda Technologies has demonstrated the ability to tune to the optimum incident frequency for best coupling into a given material structure (e.g., polymer matrix composite, PMC), and then by sweeping around that incident center frequency, producing uniform energy distribution throughout the cavity and sample volume. Hence, the advantages of microwave energy---enhanced reaction rates, reduced process time, and heat generation at the molecular level---are now obtainable with controlled and uniform results compatible for commercial scale-up. The processing via VFMF is 8 - 10 times faster than conventional processing methods. The advantages of VFMF technology over single frequency microwave technology in achieving the uniform electromagnetic energy distribution required for rapid and reliable processing of advanced polymer composites are systematically demonstrated in the Phase I (Both Glass and Carbon fiber reinforced PMC were investigated). In addition, a numerical modeling program implemented during Phase I provided a foundation for the ability to predict field distribution and temperature profiles in various geometries (plate, disk and cylinder) and materials (glass and graphite fiber reinforced PMCs) when being heated with variable frequency microwave energy.

  14. Portable EDITOR (PEDITOR): A portable image processing system. [satellite images

    NASA Technical Reports Server (NTRS)

    Angelici, G.; Slye, R.; Ozga, M.; Ritter, P.

    1986-01-01

    The PEDITOR image processing system was created to be readily transferable from one type of computer system to another. While nearly identical in function and operation to its predecessor, EDITOR, PEDITOR employs additional techniques which greatly enhance its portability. These cover system structure and processing. In order to confirm the portability of the software system, two different types of computer systems running greatly differing operating systems were used as target machines. A DEC-20 computer running the TOPS-20 operating system and using a Pascal Compiler was utilized for initial code development. The remaining programmers used a Motorola Corporation 68000-based Forward Technology FT-3000 supermicrocomputer running the UNIX-based XENIX operating system and using the Silicon Valley Software Pascal compiler and the XENIX C compiler for their initial code development.

  15. Evaluation and Development of a Prototype Electrokinetic Sonic Amplitude (ESA) System for On-Line Measurement of Charge in Papermaking Process Streams

    SciTech Connect

    Tucker, Brian J.; Good, Morris S.

    2005-08-12

    The papermaking industry uses an abundance of chemicals to control the process of papermaking. These chemicals are used to control everything from paper strength to brightness. Due to the natural variability of products used in papermaking, the chemistry of the process is heavily monitored. Cationic (charge) demand is one of the most important parameters in process control of papermaking. High variations in cationic demand result in off-spec final product or paper breaks resulting in wasted production and downtime. Both of these results are costly for papermakers due to high energy consumption and loss of revenue. Currently, cationic demand is measured off-line in a laboratory setting with a heavily diluted specimen taking up to hours for results. The industry need is for an on-line, real-time measurement of cationic demand at higher consistencies to provide control feedback for the addition of cationic demand at higher consistencies to provide control feedback for the addition of cationic polymers for finely-tuned control of the paper process. Electrokinetic sonic amplitude (ESA) is a method for measuring particle charge and size, which has been employed in the semiconductor industry for several years. While this technology is generally geared for smaller particles (micron size) instead of paper fibers (millimeter size), this project researched the idea of using ESA to measure cationic demand in a real-time setting at high pulp consistencies. Within the scope and schedule of this project, the feasibility of the ESA technology for use in an on-line instrument was inconclusive. Further engineering is required to generate a sufficient ESA signal from the paper pulp to obtain reliable and consistent measurements. Future research in this area will help to further tailor the technology for application to paper streams. The ESA technology continues to remain a viable option for on-line charge demand measurements in the papermaking process and future research should

  16. Mobile munitions assessment system development

    SciTech Connect

    Rowe, L.C.; Watts, K.D.; Jorgensen, C.L.

    1996-05-01

    The United States has been involved in the development, testing, storage and disposal of chemical weapons since World War I. As a result, there are numerous sites which contain the presence of chemical warfare materiel. This materiel is in the form of buried surplus munitions, munitions that did not detonate during testing and other forms. These items pose a significant human health and environmental hazard and must be disposed of properly. The US Army was tasked by the Department of Defense with the remediation of all non-stockpile chemical warfare materiel. To help comply with this tasking, the Army Project Manager for Nonstockpile Chemical Materiel is sponsoring the development of a Mobile Munitions Assessment System (MMAS). The system is being developed by the Idaho National Engineering Laboratory and Dugway Proving Ground. The purpose of the system is to inspect suspect munitions and containers, identify the fill, evaluate the fuzing and firing train and analyze samples from the surrounding area to determine if chemical warfare materiel is present. The information gained from the application of the MMAS and other systems is intended to be used to establish the best method to handle and dispose of a given munition and its contents.

  17. Open environment for image processing and software development

    NASA Astrophysics Data System (ADS)

    Rasure, John R.; Young, Mark

    1992-04-01

    The main goal of the Khoros software project is to create and provide an integrated software development environment for information processing and data visualization. The Khoros software system is now being used as a foundation to improve productivity and promote software reuse in a wide variety of application domain. A powerful feature of the Khoros system is the high-level, abstract visual language that can be employed to significantly boost the productivity of the researcher. Central to the Khoros system is the need for a consistent yet flexible user interface development system that provides cohesiveness to the vast number of programs that make up the Khoros system. Automated tools assist in maintenance as well as development of programs. The software structure that embodies this system provides for extensibility and portability, and allows for easy tailoring to target specific application domains and processing environments. First, an overview of the Khoros software environment is given. Then this paper presents the abstract applications programmer interface, API, the data services that are provided in Khoros to support it, and the Khoros visualization and image file format. The authors contend that Khoros is an excellent environment for the exploration and implementation of imaging standards.

  18. Portable brine evaporator unit, process, and system

    DOEpatents

    Hart, Paul John; Miller, Bruce G.; Wincek, Ronald T.; Decker, Glenn E.; Johnson, David K.

    2009-04-07

    The present invention discloses a comprehensive, efficient, and cost effective portable evaporator unit, method, and system for the treatment of brine. The evaporator unit, method, and system require a pretreatment process that removes heavy metals, crude oil, and other contaminates in preparation for the evaporator unit. The pretreatment and the evaporator unit, method, and system process metals and brine at the site where they are generated (the well site). Thus, saving significant money to producers who can avoid present and future increases in transportation costs.

  19. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar system designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  20. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.