Science.gov

Sample records for processing transportation storage

  1. Hydrogeologic Processes Impacting Storage, Fate, and Transport of Chloride from Road Salt in Urban Riparian Aquifers.

    PubMed

    Ledford, Sarah H; Lautz, Laura K; Stella, John C

    2016-05-17

    Detrimental effects of road salt runoff on urban streams are compounded by its facilitated routing via storm drains, ditches, and flood channels. Elevated in-stream salinity may also result from seasonal storage and discharge of chloride in groundwater, and previous work has hypothesized that groundwater discharge to streams may have the effect of diluting stream chloride concentrations in winter and enriching them in summer. However, the hydrogeological processes controlling these patterns have not been thoroughly investigated. Our research focuses on an urban stream and floodplain system in Syracuse, NY, to understand how groundwater and surface water exchange impacts chloride storage, fate, and transport. We created a 3D groundwater flow and solute transport model of the floodplain, calibrated to the distributions of floodplain hydraulic heads and groundwater fluxes to the stream throughout the reach. We used a sensitivity analysis to calibrate and evaluate the influence of model parameters, and compared model outputs to field observations. The main source mechanism of chloride to the floodplain aquifer was high-concentration, overbank flood events in winter that directly recharged groundwater. The modeled residence time and storage capacity of the aquifer indicate that restoration projects designed to promote floodplain reconnection and the frequency of overbank flooding in winter have the potential to temporarily store chloride in groundwater, buffer surface water concentrations, and reduce stream concentrations following periods of road salting.

  2. Hydrogeologic Processes Impacting Storage, Fate, and Transport of Chloride from Road Salt in Urban Riparian Aquifers.

    PubMed

    Ledford, Sarah H; Lautz, Laura K; Stella, John C

    2016-05-17

    Detrimental effects of road salt runoff on urban streams are compounded by its facilitated routing via storm drains, ditches, and flood channels. Elevated in-stream salinity may also result from seasonal storage and discharge of chloride in groundwater, and previous work has hypothesized that groundwater discharge to streams may have the effect of diluting stream chloride concentrations in winter and enriching them in summer. However, the hydrogeological processes controlling these patterns have not been thoroughly investigated. Our research focuses on an urban stream and floodplain system in Syracuse, NY, to understand how groundwater and surface water exchange impacts chloride storage, fate, and transport. We created a 3D groundwater flow and solute transport model of the floodplain, calibrated to the distributions of floodplain hydraulic heads and groundwater fluxes to the stream throughout the reach. We used a sensitivity analysis to calibrate and evaluate the influence of model parameters, and compared model outputs to field observations. The main source mechanism of chloride to the floodplain aquifer was high-concentration, overbank flood events in winter that directly recharged groundwater. The modeled residence time and storage capacity of the aquifer indicate that restoration projects designed to promote floodplain reconnection and the frequency of overbank flooding in winter have the potential to temporarily store chloride in groundwater, buffer surface water concentrations, and reduce stream concentrations following periods of road salting. PMID:27077530

  3. A case study of electrostatic accidents in the process of oil-gas storage and transportation

    NASA Astrophysics Data System (ADS)

    Hu, Yuqin; Wang, Diansheng; Liu, Jinyu; Gao, Jianshen

    2013-03-01

    Ninety nine electrostatic accidents were reviewed, based on information collected from published literature. All the accidents over the last 30 years occurred during the process of oil-gas storage and transportation. Statistical analysis of these accidents was performed based on the type of complex conditions where accidents occurred, type of tanks and contents, and type of accidents. It is shown that about 85% of the accidents occurred in tank farms, gas stations or petroleum refineries, and 96% of the accidents included fire or explosion. The fishbone diagram was used to summarize the effects and the causes of the effects. The results show that three major reasons were responsible for accidents, including improper operation during loading and unloading oil, poor grounding and static electricity on human bodies, which accounted for 29%, 24% and 13% of the accidents, respectively. Safety actions are suggested to help operating engineers to handle similar situations in the future.

  4. StorAge Selection Functions: a tool for characterizing dispersion processes and catchment-scale solute transport

    NASA Astrophysics Data System (ADS)

    Botter, Gianluca; Benettin, Paolo; Rinaldo, Andrea

    2015-04-01

    Advection-dispersion equations have been extensively used to model flow and transport processes through heterogeneous media like hillslopes and groundwater systems. Therein, the spreading of solute plumes and the shape of the breakthrough curve is known to be controlled by the macrodispersion coefficient, which embeds the underlying heterogeneity of velocities and flowpaths. On a nearly parallel track, the use of travel time distributions (TTDs) has become increasingly widespread in catchment hydrology, to establish a formal linkage between input and output chemographs through suitable transfer functions. Recent theoretical advances and real-world applications have shown that the structure of travel time distributions in time variable flow systems like watersheds is strongly related to the time variability of the water storage and input/output fluxes. The dynamical structure of TTDs has been proved to be effectively parametrized through suitable StorAge Selection (SAS) functions, that express in a spatially integrated fashion how the set of ages available within a control volume are selected and removed by the output fluxes. In this contribution, we analyze the relationship between Advection-Dispersion Models and StorAge Selection Functions, with examples for one-dimensional transport in a finite domain with constant convection and dispersion coefficient. Our results show that when the dispersion is high (say, Pe < 10), the distribution of ages leaving the system through the control plane is similar to the distribution of ages available within the storage, thereby leading to uniform SAS functions (random sampling). Implications for the interpretation and the prediction of the chemical response of rivers are discussed through the application of the SAS functions to model solute circulation in highly monitored watersheds belonging to diverse regions of the world. We suggest that the use of Storage Selection functions in different fields of hydrology may bring

  5. Multi-scale interactions affecting transport, storage, and processing of solutes and sediments in stream corridors (Invited)

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.; Packman, A. I.

    2010-12-01

    Surface water and groundwater flow interact with the channel geomorphology and sediments in ways that determine how material is transported, stored, and transformed in stream corridors. Solute and sediment transport affect important ecological processes such as carbon and nutrient dynamics and stream metabolism, processes that are fundamental to stream health and function. Many individual mechanisms of transport and storage of solute and sediment have been studied, including surface water exchange between the main channel and side pools, hyporheic flow through shallow and deep subsurface flow paths, and sediment transport during both baseflow and floods. A significant challenge arises from non-linear and scale-dependent transport resulting from natural, fractal fluvial topography and associated broad, multi-scale hydrologic interactions. Connections between processes and linkages across scales are not well understood, imposing significant limitations on system predictability. The whole-stream tracer experimental approach is popular because of the spatial averaging of heterogeneous processes; however the tracer results, implemented alone and analyzed using typical models, cannot usually predict transport beyond the very specific conditions of the experiment. Furthermore, the results of whole stream tracer experiments tend to be biased due to unavoidable limitations associated with sampling frequency, measurement sensitivity, and experiment duration. We recommend that whole-stream tracer additions be augmented with hydraulic and topographic measurements and also with additional tracer measurements made directly in storage zones. We present examples of measurements that encompass interactions across spatial and temporal scales and models that are transferable to a wide range of flow and geomorphic conditions. These results show how the competitive effects between the different forces driving hyporheic flow, operating at different spatial scales, creates a situation

  6. Interim UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect

    Maheras, Steven J.; Ross, Steven B.

    2011-03-30

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a draft list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during very long term storage (VLTS). The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of SSCs and degradation mechanisms developed by the UFD Storage Task (Stockman et al. 2010)

  7. UFD Storage and Transportation - Transportation Working Group Report

    SciTech Connect

    Maheras, Steven J.; Ross, Steven B.

    2011-08-01

    The Used Fuel Disposition (UFD) Transportation Task commenced in October 2010. As its first task, Pacific Northwest National Laboratory (PNNL) compiled a list of structures, systems, and components (SSCs) of transportation systems and their possible degradation mechanisms during extended storage. The list of SSCs and the associated degradation mechanisms [known as features, events, and processes (FEPs)] were based on the list of used nuclear fuel (UNF) storage system SSCs and degradation mechanisms developed by the UFD Storage Task (Hanson et al. 2011). Other sources of information surveyed to develop the list of SSCs and their degradation mechanisms included references such as Evaluation of the Technical Basis for Extended Dry Storage and Transportation of Used Nuclear Fuel (NWTRB 2010), Transportation, Aging and Disposal Canister System Performance Specification, Revision 1 (OCRWM 2008), Data Needs for Long-Term Storage of LWR Fuel (EPRI 1998), Technical Bases for Extended Dry Storage of Spent Nuclear Fuel (EPRI 2002), Used Fuel and High-Level Radioactive Waste Extended Storage Collaboration Program (EPRI 2010a), Industry Spent Fuel Storage Handbook (EPRI 2010b), and Transportation of Commercial Spent Nuclear Fuel, Issues Resolution (EPRI 2010c). SSCs include items such as the fuel, cladding, fuel baskets, neutron poisons, metal canisters, etc. Potential degradation mechanisms (FEPs) included mechanical, thermal, radiation and chemical stressors, such as fuel fragmentation, embrittlement of cladding by hydrogen, oxidation of cladding, metal fatigue, corrosion, etc. These degradation mechanisms are discussed in Section 2 of this report. The degradation mechanisms have been evaluated to determine if they would be influenced by extended storage or high burnup, the need for additional data, and their importance to transportation. These categories were used to identify the most significant transportation degradation mechanisms. As expected, for the most part, the

  8. Numerical simulation of seasonal heat storage in a contaminated shallow aquifer - Temperature influence on flow, transport and reaction processes

    NASA Astrophysics Data System (ADS)

    Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian

    2015-04-01

    The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is

  9. Process-based reactive transport model to quantify arsenic mobility during aquifer storage and recovery of potable water.

    PubMed

    Wallis, Ilka; Prommer, Henning; Pichler, Thomas; Post, Vincent; Norton, Stuart B; Annable, Michael D; Simmons, Craig T

    2011-08-15

    Aquifer storage and recovery (ASR) is an aquifer recharge technique in which water is injected in an aquifer during periods of surplus and withdrawn from the same well during periods of deficit. It is a critical component of the long-term water supply plan in various regions, including Florida, USA. Here, the viability of ASR as a safe and cost-effective water resource is currently being tested at a number of sites due to elevated arsenic concentrations detected during groundwater recovery. In this study, we developed a process-based reactive transport model of the coupled physical and geochemical mechanisms controlling the fate of arsenic during ASR. We analyzed multicycle hydrochemical data from a well-documented affected southwest Floridan site and evaluated a conceptual/numerical model in which (i) arsenic is initially released during pyrite oxidation triggered by the injection of oxygenated water (ii) then largely complexes to neo-formed hydrous ferric oxides before (iii) being remobilized during recovery as a result of both dissolution of hydrous ferric oxides and displacement from sorption sites by competing anions.

  10. Thermal energy storage and transport

    NASA Technical Reports Server (NTRS)

    Hausz, W.

    1980-01-01

    The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.

  11. Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms, and Sequestration Partitioning

    SciTech Connect

    Johnson, J W; Nitao, J J; Knauss, K G

    2004-07-26

    The ultimate fate of CO{sub 2} injected into saline aquifers for environmental isolation is governed by three interdependent yet conceptually distinct processes: CO{sub 2} migration as a buoyant immiscible fluid phase, direct chemical interaction of this rising plume with ambient saline waters, and its indirect chemical interaction with aquifer and cap-rock minerals through the aqueous wetting phase. Each process is directly linked to a corresponding trapping mechanism: immiscible plume migration to hydrodynamic trapping, plume-water interaction to solubility trapping, and plume-mineral interaction to mineral trapping. In this study, reactive transport modeling of CO{sub 2} storage in a shale-capped sandstone aquifer at Sleipner has elucidated and established key parametric dependencies of these fundamental processes, the associated trapping mechanisms, and sequestration partitioning among them during consecutive 10-year prograde (active-injection) and retrograde (post-injection) regimes. Intra-aquifer permeability structure controls the path of immiscible CO{sub 2} migration, thereby establishing the spatial framework of plume-aquifer interaction and the potential effectiveness of solubility and mineral trapping. Inter-bedded thin shales--which occur at Sleipner--retard vertical and promote lateral plume migration, thereby significantly expanding this framework and enhancing this potential. Actual efficacy of these trapping mechanisms is determined by compositional characteristics of the aquifer and cap rock: the degree of solubility trapping decreases with increasing formation-water salinity, while that of mineral trapping is proportional to the bulk concentration of carbonate-forming elements--principally Fe, Mg, Ca, Na, and Al. In the near-field environment of Sleipner-like settings, 80-85% by mass of injected CO{sub 2} remains and migrates as an immiscible fluid phase, 15-20% dissolves into formation waters, and less than 1% precipitates as carbonate minerals

  12. Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers

    SciTech Connect

    Wu, Yu-Shu; Chen, Zizhong; Kazemi, Hossein; Yin, Xiaolong; Pruess, Karsten; Oldenburg, Curt; Winterfeld, Philip; Zhang, Ronglei

    2014-09-30

    This report is the final scientific one for the award DE- FE0000988 entitled “Simulation of Coupled Processes of Flow, Transport, and Storage of CO2 in Saline Aquifers.” The work has been divided into six tasks. In task, “Development of a Three-Phase Non-Isothermal CO2 Flow Module,” we developed a fluid property module for brine-CO2 mixtures designed to handle all possible phase combinations of aqueous phase, sub-critical liquid and gaseous CO2, supercritical CO2, and solid salt. The thermodynamic and thermophysical properties of brine-CO2 mixtures (density, viscosity, and specific enthalpy of fluid phases; partitioning of mass components among the different phases) use the same correlations as an earlier fluid property module that does not distinguish between gaseous and liquid CO2-rich phases. We verified the fluid property module using two leakage scenarios, one that involves CO2 migration up a blind fault and subsequent accumulation in a secondary “parasitic” reservoir at shallower depth, and another investigating leakage of CO2 from a deep storage reservoir along a vertical fault zone. In task, “Development of a Rock Mechanical Module,” we developed a massively parallel reservoir simulator for modeling THM processes in porous media brine aquifers. We derived, from the fundamental equations describing deformation of porous elastic media, a momentum conservation equation relating mean stress, pressure, and temperature, and incorporated it alongside the mass and energy conservation equations from the TOUGH2 formulation, the starting point for the simulator. In addition, rock properties, namely permeability and porosity, are functions of effective stress and other variables that are obtained from the literature. We verified the simulator formulation and numerical implementation using analytical solutions and example problems from the literature. For

  13. Fuel removal, transport, and storage

    SciTech Connect

    Reno, H.W.

    1986-01-01

    The March 1979 accident at Unit 2 of the Three Mile Island Nuclear Power Station (TMI-2) which damaged the core of the reactor resulted in numerous scientific and technical challenges. Some of those challenges involve removing the core debris from the reactor, packaging it into canisters, loading canisters into a rail cask, and transporting the debris to the Idaho National Engineering Laboratory (INEL) for storage, examination, and preparation for final disposal. This paper highlights how some challenges were resolved, including lessons learned and benefits derived therefrom. Key to some success at TMI was designing, testing, fabricating, and licensing two rail casks, which each provide double containment of the damaged fuel. 10 refs., 12 figs.

  14. Hydrogen transport and storage in engineered microspheres

    SciTech Connect

    Rambach, G.; Hendricks, C.

    1996-10-01

    This project is a collaboration between Lawrence Livermore National Laboratory (LLNL) and W.J. Schafer Associates (WJSA). The authors plan to experimentally verify the performance characteristics of engineered glass microspheres that are relevant to the storage and transport of hydrogen for energy applications. They will identify the specific advantages of hydrogen transport by microspheres, analyze the infrastructure implications and requirements, and experimentally measure their performance characteristics in realistic, bulk storage situations.

  15. Thermal storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Gordon, L. H.

    1979-01-01

    The state-of-the-art of thermal storage subsystems for the intermediate and high temperature (100 C to 600 C) solar industrial process heat generation is presented. Primary emphasis is focused on buffering and diurnal storage as well as total energy transport. In addition, advanced thermal storage concepts which appear promising for future solar industrial process heat applications are discussed.

  16. PETRO-SAFE '91 conference papers: Volume 3 (Drilling and production environment and safety), Volume 4 (Transportation and storage environment and safety) and Volume 5 (Processing and refining environment and safety)

    SciTech Connect

    Not Available

    1991-01-01

    This conference provided a forum for the oil, gas, and petrochemical industries to discuss state of the art knowledge in those fields. The following topics were addressed: drilling and production environment and safety; transportation and storage environment and safety; and processing and refining environment and safety. Separate papers are processed for inclusion in the appropriate data bases.

  17. PETRO-SAFE '92 conference papers: Volume 7 (Processing and Refining 2), Volume 8 (Transportation and storage), Volume 9 (Spill control, disposal and remedial treatment 1) and Volume 10 (Spill control, disposal and remedial treatment 2)

    SciTech Connect

    Not Available

    1992-01-01

    This conference presents papers on a wide range of petroleum and petrochemical industry issues which pertain to waste disposal, waste processing, and safety issues. It presents specific papers on waste reduction and processing;fire prevention and suppression of oil and gas fires in storage and processing facilities; safety engineering and monitoring and plants and facilities;transportation and storage issues as they relate to safety and leak detection; and oil spill remediation and disposal. Spill topics include sorption techniques, bioremediation, dispersions, and air stripping. The remediation papers include both on and offshore sites and approach the topic from both safety and environmental aspects.

  18. 10 CFR 34.35 - Labeling, storage, and transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... accompanied with appropriate shipping papers in accordance with regulations set out in 10 CFR part 71. (c... 10 Energy 1 2011-01-01 2011-01-01 false Labeling, storage, and transportation. 34.35 Section 34.35... REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.35 Labeling, storage, and transportation....

  19. 10 CFR 34.35 - Labeling, storage, and transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... accompanied with appropriate shipping papers in accordance with regulations set out in 10 CFR part 71. (c... 10 Energy 1 2010-01-01 2010-01-01 false Labeling, storage, and transportation. 34.35 Section 34.35... REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.35 Labeling, storage, and transportation....

  20. 10 CFR 34.35 - Labeling, storage, and transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... accompanied with appropriate shipping papers in accordance with regulations set out in 10 CFR part 71. (c... 10 Energy 1 2012-01-01 2012-01-01 false Labeling, storage, and transportation. 34.35 Section 34.35... REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.35 Labeling, storage, and transportation....

  1. 10 CFR 34.35 - Labeling, storage, and transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... accompanied with appropriate shipping papers in accordance with regulations set out in 10 CFR part 71. (c... 10 Energy 1 2014-01-01 2014-01-01 false Labeling, storage, and transportation. 34.35 Section 34.35... REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.35 Labeling, storage, and transportation....

  2. 10 CFR 34.35 - Labeling, storage, and transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... accompanied with appropriate shipping papers in accordance with regulations set out in 10 CFR part 71. (c... 10 Energy 1 2013-01-01 2013-01-01 false Labeling, storage, and transportation. 34.35 Section 34.35... REQUIREMENTS FOR INDUSTRIAL RADIOGRAPHIC OPERATIONS Equipment § 34.35 Labeling, storage, and transportation....

  3. 76 FR 47577 - Enstor Grama Ridge Storage and Transportation, L.L.C.; Enstor Katy Storage and Transportation, L...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Enstor Grama Ridge Storage and Transportation, L.L.C.; Enstor Katy Storage and Transportation, L.P.; Notice of Filing Take notice that on July 29, 2011, the applicants listed above submitted a revised baseline filing...

  4. Effect of Processing and Storage on RBC function in vivo

    PubMed Central

    Doctor, Allan; Spinella, Phil

    2012-01-01

    Red Blood Cell (RBC) transfusion is indicated to improve oxygen delivery to tissue, and for no other purpose. We have come to appreciate that donor RBCs are fundamentally altered during processing and storage, in a fashion that both impairs oxygen transport efficacy and introduces additional risk by perturbing both immune and coagulation systems. The protean biophysical and physiologic changes in RBC function arising from storage are termed the ‘storage lesion’; many have been understood for some time; for example, we know that the oxygen affinity of stored blood rises during the storage period1 and that intracellular allosteric regulators, notably 2,3-bisphosphoglyceric acid (DPG) and ATP, are depleted during storage. Our appreciation of other storage lesion features has emerged with improved understanding of coagulation, immune and vascular signaling systems. Herein we review key features of the ‘storage lesion’. Additionally, we call particular attention to the newly appreciated role of RBCs in regulating linkage between regional blood flow and regional O2 consumption by regulating the bioavailability of key vasoactive mediators in plasma, as well as discuss how processing and storage disturbs this key signaling function and impairs transfusion efficacy. PMID:22818545

  5. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.; Conklin, M.H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single-storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (> 90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (t(s) ratio > 5.0) and when the dominance of

  6. Crew Transportation Technical Management Processes

    NASA Technical Reports Server (NTRS)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  7. STP-ECRTS - THERMAL AND GAS ANALYSES FOR SLUDGE TRANSPORT AND STORAGE CONTAINER (STSC) STORAGE AT T PLANT

    SciTech Connect

    CROWE RD; APTHORPE R; LEE SJ; PLYS MG

    2010-04-29

    The Sludge Treatment Project (STP) is responsible for the disposition of sludge contained in the six engineered containers and Settler tank within the 105-K West (KW) Basin. The STP is retrieving and transferring sludge from the Settler tank into engineered container SCS-CON-230. Then, the STP will retrieve and transfer sludge from the six engineered containers in the KW Basin directly into a Sludge Transport and Storage Containers (STSC) contained in a Sludge Transport System (STS) cask. The STSC/STS cask will be transported to T Plant for interim storage of the STSC. The STS cask will be loaded with an empty STSC and returned to the KW Basin for loading of additional sludge for transportation and interim storage at T Plant. CH2MHILL Plateau Remediation Company (CHPRC) contracted with Fauske & Associates, LLC (FAI) to perform thermal and gas generation analyses for interim storage of STP sludge in the Sludge Transport and Storage Container (STSCs) at T Plant. The sludge types considered are settler sludge and sludge originating from the floor of the KW Basin and stored in containers 210 and 220, which are bounding compositions. The conditions specified by CHPRC for analysis are provided in Section 5. The FAI report (FAI/10-83, Thermal and Gas Analyses for a Sludge Transport and Storage Container (STSC) at T Plant) (refer to Attachment 1) documents the analyses. The process considered was passive, interim storage of sludge in various cells at T Plant. The FATE{trademark} code is used for the calculation. The results are shown in terms of the peak sludge temperature and hydrogen concentrations in the STSC and the T Plant cell. In particular, the concerns addressed were the thermal stability of the sludge and the potential for flammable gas mixtures. This work was performed with preliminary design information and a preliminary software configuration.

  8. Transport and Storage. Industry Training Monograph No. 9.

    ERIC Educational Resources Information Center

    Dumbrell, Tom

    Australia's transport and storage industry is a large, diverse sector covering all forms of transport operation, including road, rail, air, and sea, and related services: stevedoring, port operations, customs agencies, and travel agencies. Employment in this industry has not grown as quickly over the last decade as employment in general. Under…

  9. Processing anaerobic sludge for extended storage as anaerobic digester inoculum.

    PubMed

    Li, Jiajia; Zicari, Steven M; Cui, Zongjun; Zhang, Ruihong

    2014-08-01

    Thermophilic anaerobic sludge was processed to reduce the volume and moisture content in order to reduce costs for storing and transporting the sludge as microbial inoculum for anaerobic digester startup. The moisture content of the sludge was reduced from 98.7% to 82.0% via centrifugation and further to 71.5% via vacuum evaporation. The processed sludge was stored for 2 and 4 months and compared with the fresh sludge for the biogas and methane production using food waste and non-fat dry milk as substrates. It was found that fresh unprocessed sludge had the highest methane yield and the yields of both unprocessed and processed sludges decreased during storage by 1-34%, however processed sludges seemed to regain some activity after 4 months of storage as compared to samples stored for only 2 months. Maximum methane production rates obtained from modified Gompertz model application also increased between the 2-month and 4-month processed samples.

  10. Automation in a material processing/storage facility

    SciTech Connect

    Peterson, K.; Gordon, J.

    1997-05-01

    The Savannah River Site (SRS) is currently developing a new facility, the Actinide Packaging and Storage Facility (APSF), to process and store legacy materials from the United States nuclear stockpile. A variety of materials, with a variety of properties, packaging and handling/storage requirements, will be processed and stored at the facility. Since these materials are hazardous and radioactive, automation will be used to minimize worker exposure. Other benefits derived from automation of the facility include increased throughput capacity and enhanced security. The diversity of materials and packaging geometries to be handled poses challenges to the automation of facility processes. In addition, the nature of the materials to be processed underscores the need for safety, reliability and serviceability. The application of automation in this facility must, therefore, be accomplished in a rational and disciplined manner to satisfy the strict operational requirements of the facility. Among the functions to be automated are the transport of containers between process and storage areas via an Automatic Guided Vehicle (AGV), and various processes in the Shipping Package Unpackaging (SPU) area, the Accountability Measurements (AM) area, the Special Isotope Storage (SIS) vault and the Special Nuclear Materials (SNM) vault. Other areas of the facility are also being automated, but are outside the scope of this paper.

  11. Transport and storage of radioactive materials 1995. PVP-Volume 307

    SciTech Connect

    Carlson, R.W.; Hafner, R.S.; Lake, W.H.

    1995-11-01

    The design of packaging for the transport of radioactive materials is a constantly evolving activity due primarily to new materials, new design approaches, and a better understanding of the regulations. As a consequence, the Operations, Applications and Components Committee organizes several sessions at the annual ASME PVP Division Conference to provide a forum for the discussion of the most recent trends in the transport and storage of radioactive materials. This publication is composed of technical papers that have been prepared for presentation at the 1995 Joint ASME/JSME Pressure Vessels and Piping Conference (July 23--27, Honolulu, Hawaii) during the sessions addressing the transport and storage of radioactive materials. The papers included were prepared to address engineering or regulatory issues associated with the transport or storage of radioactive materials. However, the subject matter can also have applications to solutions for problems in other areas. Individual paper have been processed separately for inclusion in the appropriate data bases.

  12. Biomimetic materials for protein storage and transport

    DOEpatents

    Firestone, Millicent A.; Laible, Philip D.

    2012-05-01

    The invention provides a method for the insertion of protein in storage vehicles and the recovery of the proteins from the vehicles, the method comprising supplying isolated protein; mixing the isolated protein with a fluid so as to form a mixture, the fluid comprising saturated phospholipids, lipopolymers, and a surfactant; cycling the mixture between a first temperature and a second temperature; maintaining the mixture as a solid for an indefinite period of time; diluting the mixture in detergent buffer so as to disrupt the composition of the mixture, and diluting to disrupt the fluid in its low viscosity state for removal of the guest molecules by, for example, dialysis, filtering or chromatography dialyzing/filtering the emulsified solid.

  13. LPG land transportation and storage safety. Final report

    SciTech Connect

    Martinsen, W.E.; Cavin, W.D.

    1981-09-01

    This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 to 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

  14. LPG land transportation and storage safety. Final report

    SciTech Connect

    Martinsen, W.E.; Cavin, W.D.

    1981-09-01

    This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 through 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

  15. 21 CFR 864.3250 - Specimen transport and storage container.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Specimen transport and storage container. 864.3250 Section 864.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  16. 21 CFR 864.3250 - Specimen transport and storage container.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Specimen transport and storage container. 864.3250 Section 864.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  17. 21 CFR 864.3250 - Specimen transport and storage container.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Specimen transport and storage container. 864.3250 Section 864.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Pathology Instrumentation and Accessories §...

  18. 21 CFR 864.3250 - Specimen transport and storage container.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 864.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... container, which may be empty or prefilled, is a device intended to contain biological specimens, body waste, or body exudate during storage and transport in order that the matter contained therein can...

  19. 21 CFR 864.3250 - Specimen transport and storage container.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 864.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... container, which may be empty or prefilled, is a device intended to contain biological specimens, body waste, or body exudate during storage and transport in order that the matter contained therein can...

  20. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  1. Sperm transport and storage in the agile antechinus (Antechinus agilis).

    PubMed

    Shimmin, G A; Jones, M; Taggart, D A; Temple-Smith, P D

    1999-06-01

    This study was an examination of the timing of ejaculation and the dynamics of sperm transport in the female reproductive tract of the agile Antechinus (Antechinus agilis) and the relationship of these parameters to single and multiple matings. Mating in this species is characteristically long compared with that of other mammals, lasting for up to 8-12 h during which time the pair remain locked together. After the first hour of mating, only approximately 40% of males had ejaculated, but by the third hour all males had ejaculated. The total number of spermatozoa extracted from the female tract remained at approximately 30 x 10(3) spermatozoa per side over the next 9 h of copulation. After completion of male/female access (12 h), approximately 56% of spermatozoa extracted were located in the lower isthmic region of the oviduct where specialized sperm storage crypts are located. The number of spermatozoa extracted from the female reproductive tract did not decline over the next 3 days, but there was a change in the distribution of spermatozoa with an increase in the proportion of extracted spermatozoa stored in the lower isthmus (approximately 76%). However, 7 to 14 days after mating, only approximately 30% of the stored spermatozoa ( approximately 9.4 x 10(3) spermatozoa per side) were still present in the isthmus. When females were mated with a second male on a consecutive day, the sperm numbers extracted from the tract were about twice that deposited during single mating, with sperm transport to the lower isthmus occurring over a similar time frame. Although the occurrence of extended copulations in the wild has not yet been confirmed, these laboratory results suggest that similar periods of copulation are likely, since completion of the ejaculation process requires at least 3 h. The extended copulation in A. agilis reduces the possibility of an early second mating, which might interfere with the normal transport and crypt colonization of spermatozoa through

  2. SQA of finite element method (FEM) codes used for analyses of pit storage/transport packages

    SciTech Connect

    Russel, E.

    1997-11-01

    This report contains viewgraphs on the software quality assurance of finite element method codes used for analyses of pit storage and transport projects. This methodology utilizes the ISO 9000-3: Guideline for application of 9001 to the development, supply, and maintenance of software, for establishing well-defined software engineering processes to consistently maintain high quality management approaches.

  3. 75 FR 45608 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ..., processing, and disposal of civilian and defense spent nuclear fuel and nuclear waste. The Co-chairs of the... the way in which it is storing used nuclear fuel and high level waste while one or more final disposal... Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY:...

  4. Influence of geologic layering on heat transport and storage in an aquifer thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Bridger, D. W.; Allen, D. M.

    2013-09-01

    A modeling study was carried out to evaluate the influence of aquifer heterogeneity, as represented by geologic layering, on heat transport and storage in an aquifer thermal energy storage (ATES) system in Agassiz, British Columbia, Canada. Two 3D heat transport models were developed and calibrated using the flow and heat transport code FEFLOW including: a "non-layered" model domain with homogeneous hydraulic and thermal properties; and, a "layered" model domain with variable hydraulic and thermal properties assigned to discrete geological units to represent aquifer heterogeneity. The base model (non-layered) shows limited sensitivity for the ranges of all thermal and hydraulic properties expected at the site; the model is most sensitive to vertical anisotropy and hydraulic gradient. Simulated and observed temperatures within the wells reflect a combination of screen placement and layering, with inconsistencies largely explained by the lateral continuity of high permeability layers represented in the model. Simulation of heat injection, storage and recovery show preferential transport along high permeability layers, resulting in longitudinal plume distortion, and overall higher short-term storage efficiencies.

  5. Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and Waste Treatment, Storage and Disposal Activities

    SciTech Connect

    Jardine, L J; Borisov, G B

    2004-07-21

    A fifth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held February 16-18, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 46 Russian attendees from 14 different Russian organizations and six non-Russian attendees, four from the US and two from France. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C.

  6. Nitric oxide transport and storage in the cardiovascular system.

    PubMed

    Muller, Bernard; Kleschyov, Andrei L; Alencar, Jacicarlos L; Vanin, Anatoly; Stoclet, Jean-Claude

    2002-05-01

    Despite short halflife in biological fluids, nitric oxide (NO) can produce remote or long lasting effect in the cardiovascular system. Long distance transport or local storage of NO might explain these effects. In blood, recent findings suggest that in addition to being a major consumption pathway, interaction of NO with hemoglobin may permit O(2)-governed transport of NO (as S-nitrosohemoglobin) to tissues in which NO may be released together with O(2), via transnitrosation of a transport protein. In blood vessels, two different putative NO stores have been characterized. The first is the photosensitive store, formed from endothelium-derived NO. The mechanism of NO release from this store in the body (in absence of light) and its physiological relevance are unknown. The second store is generated in conditions of high tissue NO levels, as a consequence of the inducible NO synthase activity or in various stress conditions. This NO store involves formation of protein-bound dinitrosyl iron complexes or S-nitrosated proteins, or both. Low molecular weight thiols can displace NO from these stores and probably transfer it to target membrane protein(s) such as K(+) channels, via transnitrosation reactions. These stores may be involved in defence mechanisms against inflammation or stress. Thus, NO transport and storage mechanisms may be implicated in a variety of NO effects. The mechanisms of their formation and of NO release and their physiologic and pathophysiologic relevance deserve further investigations.

  7. Hydrogen Research for Spaceport and Space-Based Applications: Hydrogen Production, Storage, and Transport. Part 3

    NASA Technical Reports Server (NTRS)

    Anderson, Tim; Balaban, Canan

    2008-01-01

    The activities presented are a broad based approach to advancing key hydrogen related technologies in areas such as fuel cells, hydrogen production, and distributed sensors for hydrogen-leak detection, laser instrumentation for hydrogen-leak detection, and cryogenic transport and storage. Presented are the results from research projects, education and outreach activities, system and trade studies. The work will aid in advancing the state-of-the-art for several critical technologies related to the implementation of a hydrogen infrastructure. Activities conducted are relevant to a number of propulsion and power systems for terrestrial, aeronautics and aerospace applications. Hydrogen storage and in-space hydrogen transport research focused on developing and verifying design concepts for efficient, safe, lightweight liquid hydrogen cryogenic storage systems. Research into hydrogen production had a specific goal of further advancing proton conducting membrane technology in the laboratory at a larger scale. System and process trade studies evaluated the proton conducting membrane technology, specifically, scale-up issues.

  8. Transport processes in space plasmas

    SciTech Connect

    Birn, J.; Elphic, R.C.; Feldman, W.C.

    1997-08-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project represents a comprehensive research effort to study plasma and field transport processes relevant for solar-terrestrial interaction, involving the solar wind and imbedded magnetic field and plasma structures, the bow shock of the Earth`s magnetosphere and associated waves, the Earth`s magnetopause with imbedded flux rope structures and their connection with the Earth, plasma flow in the Earth`s magnetotail, and ionospheric beam/wave interactions. The focus of the work was on the interaction between plasma and magnetic and electric fields in the regions where different plasma populations exist adjacent to or superposed on each other. These are the regions of particularly dynamic plasma behavior, important for plasma and energy transport and rapid energy releases. The research addressed questions about how this interaction takes place, what waves, instabilities, and particle/field interactions are involved, how the penetration of plasma and energy through characteristic boundaries takes place, and how the characteristic properties of the plasmas and fields of the different populations influence each other on different spatial and temporal scales. These topics were investigated through combining efforts in the analysis of plasma and field data obtained through space missions with theory and computer simulations of the plasma behavior.

  9. Study on Tetradecane Nanoemulsion for Thermal Energy Transportation and Storage

    NASA Astrophysics Data System (ADS)

    Fumoto, Koji; Kawaji, Masahiro; Kawanami, Tsuyoshi

    Phase change emulsion (PCE) is a novel fluid used for heat storage and transfer. It has the following characteristics: higher apparent specific heat and higher heat transfer ability in the phase-change temperature range as compared to the conventional single-phase heat transfer fluids. In particular, oil-in-water (O/W) emulsions are latent heat storage materials that have low melting points, thus offering attractive opportunities for heat transfer enhancement and thermal energy transportation and storage. In this paper, milky white oil-in-water emulsions have been formed using water, Tween 80, Span 80, and tetradecane by low-energy emulsification methods (e.g., the phase inversion temperature (PIT) method). The relations between the component ratios of the emulsions and both the particle diameters and the stability of the resulting emulsions have been determined by dynamic light scattering (DLS) and vibration viscometry. The results show that the apparent viscosity of the nanoemulsion is lower than that of an emulsion, which was prepared with the same mixing ratio of surfactant and concentration of phase change material. Moreover, the surfactant concentration is found to contribute to the stability of the phase change nanoemulsion. Results indicate that the phase change nanoemulsion is a promising material for thermal storage applications.

  10. Rotary kilns - transport phenomena and transport processes

    SciTech Connect

    Boateng, A.

    2008-01-15

    Rotary kilns and rotating industrial drying ovens are used for a wide variety of applications including processing raw minerals and feedstocks as well as heat-treating hazardous wastes. They are particularly critical in the manufacture of Portland cement. Their design and operation is critical to their efficient usage, which if done incorrectly can result in improperly treated materials and excessive, high fuel costs. This book treats all engineering aspects of rotary kilns, including thermal and fluid principles involved in their operation, as well as how to properly design an engineering process that uses rotary kilns. Chapter 1: The Rotary Kiln Evolution and Phenomenon Chapter 2: Basic Description of Rotary Kiln Operation Chapter 3: Freeboard Aerodynamic Phenomena Chapter 4: Granular Flows in Rotary Kilns Chapter 5: Mixing and Segregation Chapter 6: Combustion and Flame - includes section on types of fuels used in rotary kilns, coal types, ranking and analysis, petroleum coke combustion, scrap tire combustion, pulverized fuel (coal/coke) firing in kilns, pulverized fuel delivery and firing systems. Chapter 7: Freeboard Heat Transfer Chapter 8: Heat Transfer Processes in the Rotary Kiln Bed Chapter 9: Mass and Energy Balance Chapter 10: Rotary Kiln Minerals Process Applications.

  11. Carbonless Transportation and Energy Storage in Future Energy Systems

    NASA Astrophysics Data System (ADS)

    Berry, G. D.; Lamont, A. D.

    2001-01-01

    Electricity is the highest quality energy carrier, increasingly dominant throughout the world's energy infrastructure. Ultimately electricity use can expand to efficiently meet virtually all stationary energy applications, eliminating stationary end-use carbon emissions. This approach is unlikely to work in transportation, however, due to the high cost and low energy density of electricity storage. Chemical energy carriers, such as hydrogen, can more effectively serve transportation fuel and energy storage applications, offering much higher energy density at lower cost. Electrolytic hydrogen, extracted from steam with renewable energy, stored as a high pressure gas or cryogenic liquid, and reconverted to electricity in fuel cells and or used to power hydrogen vehicles, will reduce emissions from both transportation and electric generation. Renewable resources and modular electrolytic technology also permit decentralized hydrogen production, circumventing distribution issues and barriers to market entry. In contrast, sequestration-based fossil-fueled systems must achieve economies of scale by relying on centralized production and hierarchical transmission and distribution of electricity, hydrogen fuel, and carbon (dioxide).

  12. NUHOWS - Storage and Transportation of Irradiated Reactor Components in Large Packages - 13439

    SciTech Connect

    Rae, Glen A.

    2013-07-01

    Most irradiated reactor components (hardware such as Control Rod Blades, Fuel Channels, Poison Curtains, etc.) generated at reactors previously required significant processing for size reduction due to the available transportation casks not being physically capable of containing unprocessed material. As of July 1, 2008, disposal for this typical waste class (B and C) became inaccessible (for the major part of the nation) due to the Barnwell, SC disposal facility being closed to all but its three compact states (CT, NJ and SC). Currently in the United States, most facilities are storing their irradiated hardware on-site in the spent fuel pools. Until recently with the opening of the Waste Control Specialists' Texas disposal facility, utilities faced the challenges of spent fuel pool space and capacity management. However, even with WCS's disposal availability, the site currently has annual Curie limitations for disposal, which will continue to promote interim on-site storage until such time as disposal is available. In response, Transnuclear Inc., (TN) an AREVA company, proceeded with designing a new large Radioactive Waste Container (RWC) that can be used to package irradiated hardware without the need for significant processing. The design features of the RWC allows for intermittent loadings of the hardware for better packaging efficiency, higher packaging density, space savings and reduced cost. This RWC is also compatible with TN's on-site modular vault storage system. Once completely loaded, the RWC can be transported to an on-site storage facility, an off-site storage facility and/or an available disposal facility. To accommodate the transportation, TN has designed a large transportation cask, the MP197HB. As the original design was for transporting fuel, it contains the necessary shielding to allow for the transport of unprocessed irradiated reactor components, while significantly reducing the amount of irradiated hardware shipments required with the use of

  13. Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a watershed

    NASA Astrophysics Data System (ADS)

    Harman, Ciaran J.

    2015-01-01

    Transport processes and pathways through many hydrodynamic systems vary over time, often driven by variations in total water storage. This paper develops a very general approach to modeling unsteady transport through an arbitrary control volume (such as a watershed) that accounts for temporal variability in the underlying transport dynamics. Controls on the selection of discharge from stored water are encapsulated in probability distributions ΩQ>(ST,t>) of age-ranked storage ST (the volume of water in storage ranked from youngest to oldest). This framework is applied to a long-term record of rainfall and streamflow chloride in a small, humid watershed at Plynlimon, UK. While a time-invariant gamma distribution for ΩQ produced a good fit to data, the fit was significantly improved when the distribution was allowed to vary with catchment storage. However, the variation was inverse to that of a "well-mixed" system where storage has a pure dilution effect. Discharge at high storage was predicted to contain a larger fraction of recent event water than at low storage. The effective volume of storage involved in transport was 3411 mm at mean catchment wetness, but declined by 71 mm per 1 mm of additional catchment storage, while the fraction of event water in discharge increased by 1.4%. This "inverse storage effect" is sufficient to reproduce the observed long-memory 1/f fractal spectral structure of stream chloride. Metrics quantifying the strength and direction of storage effects are proposed as useful signatures, and point toward a unified framework for observing and modeling coupled watershed flow and transport.

  14. Improvement of operational safety of dual-purpose transport packaging set for naval SNF in storage

    SciTech Connect

    Guskov, Vladimir; Korotkov, Gennady; Barnes, Ella; Snipes, Randy

    2007-07-01

    Available in abstract form only. Full text of publication follows: In recent ten years a new technology of management of irradiated nuclear fuel (SNF) at the final stage of fuel cycle has been intensely developing on a basis of a new type of casks used for interim storage of SNF and subsequent transportation therein to the place of processing, further storage or final disposal. This technology stems from the concept of a protective cask which provides preservation of its content (SNF) and fulfillment of all other safety requirements for storage and transportation of SNF. Radiation protection against emissions and non-distribution of activity outside the cask is ensured by physical barriers, i.e. all-metal or composite body, shells, inner cavities for irradiated fuel assemblies (SFA), lids with sealing systems. Residual heat release of SFA is discharged to the environment by natural way: through emission and convection of surrounding air. By now more than 100 dual purpose packaging sets TUK-108/1 are in operation in the mode of interim storage and transportation of SNF from decommissioned nuclear powered submarines (NPS). In accordance with certificate, spent fuel is stored in TUK-108/1 on the premises of plants involved in NPS dismantlement for 2 years, whereupon it is transported for processing to PO Mayak. At one Far Eastern plant Zvezda involved in NPS dismantlement there arose a complicated situation due to necessity to extend period of storage of SNF in TUK- 108/1. To ensure safety over a longer period of storage of SNF in TUK-108/1 it is essential to modify conditions of storage by removing of residual water and filling the inner cavity of the cask with an inert gas. Within implementation of the international 1.1- 2 project Development of drying technology for the cask TUK-108/1 intended for naval SNF under the Program, there has been developed the technology of preparation of the cask for long-term storage of SNF in TUK-108/1, the design of a mobile TUK-108

  15. 78 FR 40199 - Draft Spent Fuel Storage and Transportation Interim Staff Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-03

    ... COMMISSION Draft Spent Fuel Storage and Transportation Interim Staff Guidance AGENCY: Nuclear Regulatory... Regulatory Commission (NRC) requests public comment on Draft Spent Fuel Storage and Transportation Interim... Integrity for Continued Storage of High Burnup Fuel Beyond 20 Years.'' The draft SFST-ISG provides...

  16. Nanoionics: ion transport and electrochemical storage in confined systems.

    PubMed

    Maier, J

    2005-11-01

    The past two decades have shown that the exploration of properties on the nanoscale can lead to substantially new insights regarding fundamental issues, but also to novel technological perspectives. Simultaneously it became so fashionable to decorate activities with the prefix 'nano' that it has become devalued through overuse. Regardless of fashion and prejudice, this article shows that the crystallizing field of 'nanoionics' bears the conceptual and technological potential that justifies comparison with the well-acknowledged area of nanoelectronics. Demonstrating this potential implies both emphasizing the indispensability of electrochemical devices that rely on ion transport and complement the world of electronics, and working out the drastic impact of interfaces and size effects on mass transfer, transport and storage. The benefits for technology are expected to lie essentially in the field of room-temperature devices, and in particular in artificial self-sustaining structures to which both nanoelectronics and nanoionics might contribute synergistically. PMID:16379070

  17. R D for the storage, transport, and handling of coal-based fuels

    SciTech Connect

    Not Available

    1990-01-01

    The product of several advanced physical coal cleaning processes is a dry, ultrafine coal (DUC), in the order of 10 microns mean mass diameter. Environmentally safe systems must be provided for the storage, transport, and handling of this fuel. The objective of the project is the development of total logistics systems for DUC, including experimental verification of key features. The systems to be developed will provide for safe, economic, and environmentally protective storage and delivery of DUC for residential, commercial, and industrial uses. Work this quarter entailed: obtaining all of the test coals including 10 lbs of Illinois No. 6 cleaned by the LICADO process. Installation of the test system for the Residential Storage Tank including piping and the components required to recycle the ultrafine coal. Completion of the design of the scale model test of the Industrial/Commercial Storage System. Piping and supports for the porous fluidization plates in the floor of the tanks have been completed. Preliminary results with the Illinois No. 6 coal cleaned by the Bechtel heptane/asphalt process indicate that this material is cohesive and difficult to fluidize. Studies of dune formation have been made with the Illinois No. 6 coal. These data provide information on the minimum velocity which will transport the particles. 11 refs., 18 figs.

  18. Identification of plant vacuolar transporters mediating phosphate storage

    PubMed Central

    Liu, Tzu-Yin; Huang, Teng-Kuei; Yang, Shu-Yi; Hong, Yu-Ting; Huang, Sheng-Min; Wang, Fu-Nien; Chiang, Su-Fen; Tsai, Shang-Yueh; Lu, Wen-Chien; Chiou, Tzyy-Jen

    2016-01-01

    Plant vacuoles serve as the primary intracellular compartments for inorganic phosphate (Pi) storage. Passage of Pi across vacuolar membranes plays a critical role in buffering the cytoplasmic Pi level against fluctuations of external Pi and metabolic activities. Here we demonstrate that the SPX-MFS proteins, designated as PHOSPHATE TRANSPORTER 5 family (PHT5), also named Vacuolar Phosphate Transporter (VPT), function as vacuolar Pi transporters. Based on 31P-magnetic resonance spectroscopy analysis, Arabidopsis pht5;1 loss-of-function mutants accumulate less Pi and exhibit a lower vacuolar-to-cytoplasmic Pi ratio than controls. Conversely, overexpression of PHT5 leads to massive Pi sequestration into vacuoles and altered regulation of Pi starvation-responsive genes. Furthermore, we show that heterologous expression of the rice homologue OsSPX-MFS1 mediates Pi influx to yeast vacuoles. Our findings show that a group of Pi transporters in vacuolar membranes regulate cytoplasmic Pi homeostasis and are required for fitness and plant growth. PMID:27029856

  19. Specific transport and storage solutions : waste management facing current and future stakes of the nuclear fuel cycle

    SciTech Connect

    Choho, T.; Blachet, L.; Deniau, H.; Gagner, L.; Gendreau, F.; Presta, A.

    2007-07-01

    With major projects ongoing or being planned, and also with the daily management of radioactive waste from nuclear facilities, the role of transport and/or storage packaging has been often overlooked. Indeed, the packaging development process and transport solutions implemented are a key part of the waste management challenge : protection of people and of the environment. During over four decades, the AREVA Group has developed a complete and coherent system for the transport of waste produced by nuclear industries. The transport solutions integrate the factors to consider, as industrial transportation needs, various waste forms, associated hazards and current regulations. Thus, TN International has designed, licensed and manufactured a large number of different transport, storage and dual purpose cask models for residues and all kinds of radioactive wastes. The present paper proposes to illustrate how a company acting both as a cask designer and a carrier is key to the waste management issue and how it can support the waste management policy of nuclear waste producers through their operational choices. We will focus on the TN International technical solutions implemented to guarantee safe and secure transportation and storage solutions. We will describe different aspects of the cask design process, insisting on how it enables to fulfil both customer needs and regulation requirements. We will also mention the associated services developed by the AREVA Business Unit Logistics (TN International, TRANSNUCLEAR, MAINCO, and LMC) in order to manage transportation of liquid and solid waste towards interim or final storage sites. (authors)

  20. 49 CFR 173.447 - Storage incident to transportation-general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Storage incident to transportation-general requirements. 173.447 Section 173.447 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SHIPPERS-GENERAL REQUIREMENTS...

  1. Transport and Storage Properties of CST Slurries for the Savannah River Site

    SciTech Connect

    Taylor, P.A.; Hewitt, J.D.; Hylton, T.D.; Kent, T.E.

    1999-04-01

    The Oak Ridge National Laboratory (ORNL) is performing tests to address issues related to the handling and storage of crystalline silicotitanate (CST) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) recycle treatment program. The DWPF recycle treatment program and the SRS Salt Disposition Alternatives program share many common concerns related to CST slurry transport. Therefore, the DWPF recycle treatment program scope was modified to better address the salt disposition concerns. These tests evaluated the physical and chemical compatibility of CST with the operating environments that could be experienced during treatment of the SRS high-level tank waste or DWPF recycle stream, and subsequent handling, storage, and transport of the CST.

  2. Best Practices for Finite Element Analysis of Spent Nuclear Fuel Transfer, Storage, and Transportation Systems

    SciTech Connect

    Bajwa, Christopher S.; Piotter, Jason; Cuta, Judith M.; Adkins, Harold E.; Klymyshyn, Nicholas A.; Fort, James A.; Suffield, Sarah R.

    2010-08-11

    Storage casks and transportation packages for spent nuclear fuel (SNF) are designed to confine SNF in sealed canisters or casks, provide structural integrity during accidents, and remove decay through a storage or transportation overpack. The transfer, storage, and transportation of SNF in dry storage casks and transport packages is regulated under 10 CFR Part 72 and 10 CFR Part 71, respectively. Finite Element Analysis (FEA) is used with increasing frequency in Safety Analysis Reports and other regulatory technical evaluations related to SNF casks and packages and their associated systems. Advances in computing power have made increasingly sophisticated FEA models more feasible, and as a result, the need for careful review of such models has also increased. This paper identifies best practice recommendations that stem from recent NRC review experience. The scope covers issues common to all commercially available FEA software, and the recommendations are applicable to any FEA software package. Three specific topics are addressed: general FEA practices, issues specific to thermal analyses, and issues specific to structural analyses. General FEA practices covers appropriate documentation of the model and results, which is important for an efficient review process. The thermal analysis best practices are related to cask analysis for steady state conditions and transient scenarios. The structural analysis best practices are related to the analysis of casks and associated payload during standard handling and drop scenarios. The best practices described in this paper are intended to identify FEA modeling issues and provide insights that can help minimize associated uncertainties and errors, in order to facilitate the NRC licensing review process.

  3. Hydrogen Energy Storage: Grid and Transportation Services (Technical Report)

    SciTech Connect

    Not Available

    2015-02-01

    Proceedings of an expert workshop convened by the U.S. Department of Energy and Industry Canada, and hosted by the National Renewable Energy Laboratory and the California Air Resources Board, May 14-15, 2014, in Sacramento, California, to address the topic of hydrogen energy storage (HES). HES systems provide multiple opportunities to increase the resilience and improve the economics of energy sup supply systems underlying the electric grid, gas pipeline systems, and transportation fuels. This is especially the case when considering particular social goals and market drivers, such as reducing carbon emissions, increasing reliability of supply, and reducing consumption of conventional petroleum fuels. This report compiles feedback collected during the workshop, which focused on policy and regulatory issues related to HES systems. Report sections include an introduction to HES pathways, market demand, and the "smart gas" concept; an overview of the workshop structure; and summary results from panel presentations and breakout groups.

  4. Transport Processes in Dendritic Crystallization

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  5. BEAM TRANSPORT AND STORAGE WITH COLD NEUTRAL ATOMS AND MOLECULES

    SciTech Connect

    Walstrom, Peter L.

    2012-05-15

    A large class of cold neutral atoms and molecules is subject to magnetic field-gradient forces. In the presence of a field, hyperfine atomic states are split into several Zeeman levels. The slopes of these curves vs. field are the effective magnetic moments. By means of optical pumping in a field, Zeeman states of neutral lithium atoms and CaH molecules with effective magnetic moments of nearly {+-} one Bohr magneton can be selected. Particles in Zeeman states for which the energy increases with field are repelled by increasing fields; particles in states for which the energy decreases with field are attracted to increasing fields. For stable magnetic confinement, field-repelled states are required. Neutral-particle velocities in the present study are on the order of tens to hundreds of m/s and the magnetic fields needed for transport and injection are on the order of in the range of 0.01-1T. Many of the general concepts of charged-particle beam transport carry over into neutral particle spin-force optics, but with important differences. In general, the role of bending dipoles in charged particle optics is played by quadrupoles in neutral particle optics; the role of quadrupoles is played by sextupoles. The neutralparticle analog of charge-exchange injection into storage rings is the use of lasers to flip the state of particles from field-seeking to field-repelled. Preliminary tracking results for two neutral atom/molecule storage ring configurations are presented. It was found that orbit instabilities limit the confinment time in a racetrack-shaped ring with discrete magnetic elements with drift spaces between them; stable behavior was observed in a toroidal ring with a continuous sextupole field. An alternative concept using a linear sextupole or octupole channel with solenoids on the ends is presently being considered.

  6. Transport processes of the legume symbiosome membrane

    PubMed Central

    Clarke, Victoria C.; Loughlin, Patrick C.; Day, David A.; Smith, Penelope M. C.

    2014-01-01

    The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome. PMID:25566274

  7. Center for Electrocatalysis, Transport Phenomena, and Materials (CETM) for Innovative Energy Storage - Final Report

    SciTech Connect

    Soloveichik, Grigorii

    2015-11-30

    EFRC vision. The direct use of organic hydrides in fuel cells as virtual hydrogen carriers that generate stable organic molecules, protons, and electrons upon electro-oxidation and can be electrochemically charged by re-hydrogenating the oxidized carrier was the major focus of the Center for Electrocatalysis, Transport Phenomena and Materials for Innovative Energy Storage (EFRC-ETM). Compared to a hydrogen-on-demand design that includes thermal decomposition of organic hydrides in a catalytic reactor, the proposed approach is much simpler and does not require additional dehydrogenation catalysts or heat exchangers. Further, this approach utilizes the advantages of a flow battery (i.e., separation of power and energy, ease of transport and storage of liquid fuels) with fuels that have system energy densities similar to current hydrogen PEM fuel cells. EFRC challenges. Two major EFRC challenges were electrocatalysis and transport phenomena. The electrocatalysis challenge addresses fundamental processes which occur at a single molecular catalyst (microscopic level) and involve electron and proton transfer between the hydrogen rich and hydrogen depleted forms of organic liquid fuel and the catalyst. To form stable, non-radical dehydrogenation products from the organic liquid fuel, it is necessary to ensure fast transport of at least two electrons and two protons (per double bond formation). The same is true for the reverse hydrogenation reaction. The transport phenomena challenge addresses transport of electrons to/from the electrocatalyst and the current collector as well as protons across the polymer membrane. Additionally it addresses prevention of organic liquid fuel, water and oxygen transport through the PEM. In this challenge, the transport of protons or molecules involves multiple sites or a continuum (macroscopic level) and water serves as a proton conducting medium for the majority of known sulfonic acid based PEMs. Proton transfer in the presence of

  8. Atypical iron storage in marine brown algae: a multidisciplinary study of iron transport and storage in Ectocarpus siliculosus

    PubMed Central

    Matzanke, Berthold F.; Küpper, Frithjof C.; Carrano, Carl J.

    2012-01-01

    Iron is an essential element for all living organisms due to its ubiquitous role in redox and other enzymes, especially in the context of respiration and photosynthesis. The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood, with two basic strategies for iron uptake being distinguished: strategy I plants use a mechanism involving induction of Fe(III)-chelate reductase (ferrireductase) and Fe(II) transporter proteins, while strategy II plants utilize high-affinity, iron-specific, binding compounds called phytosiderophores. In contrast, little is known about the corresponding systems in marine, plant-like lineages, particularly those of multicellular algae (seaweeds). Herein the first study of the iron uptake and storage mechanisms in the brown alga Ectocarpus siliculosus is reported. Genomic data suggest that Ectocarpus may use a strategy I approach. Short-term radio-iron uptake studies verified that iron is taken up by Ectocarpus in a time- and concentration-dependent manner consistent with an active transport process. Upon long-term exposure to 57Fe, two metabolites have been identified using a combination of Mössbauer and X-ray absorption spectroscopies. These include an iron–sulphur cluster accounting for ~26% of the total intracellular iron pool and a second component with spectra typical of a polymeric (Fe3+O6) system with parameters similar to the amorphous phosphorus-rich mineral core of bacterial and plant ferritins. This iron metabolite accounts for ~74% of the cellular iron pool and suggests that Ectocarpus contains a non-ferritin but mineral-based iron storage pool. PMID:22945940

  9. Integrated System for Retrieval, Transportation and Consolidated Storage of Used Nuclear Fuel in the US - 13312

    SciTech Connect

    Bracey, William; Bondre, Jayant; Shelton, Catherine; Edmonds, Robert

    2013-07-01

    The current inventory of used nuclear fuel assemblies (UNFAs) from commercial reactor operations in the United States totals approximately 65,000 metric tons or approximately 232,000 UNFAs primarily stored at the 104 operational reactors in the US and a small number of decommissioned reactors. This inventory is growing at a rate of roughly 2,000 to 2,400 metric tons each year, (Approx. 7,000 UNFAs) as a result of ongoing commercial reactor operations. Assuming an average of 10 metric tons per storage/transportation casks, this inventory of commercial UNFAs represents about 6,500 casks with an additional of about 220 casks every year. In January 2010, the Blue Ribbon Commission (BRC) [1] was directed to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and recommend a new plan. The BRC issued their final recommendations in January 2012. One of the main recommendations is for the United States to proceed promptly to develop one or more consolidated storage facilities (CSF) as part of an integrated, comprehensive plan for safely managing the back end of the nuclear fuel cycle. Based on its extensive experience in storage and transportation cask design, analysis, licensing, fabrication, and operations including transportation logistics, Transnuclear, Inc. (TN), an AREVA Subsidiary within the Logistics Business Unit, is engineering an integrated system that will address the complete process of commercial UNFA management. The system will deal with UNFAs in their current storage mode in various configurations, the preparation including handling and additional packaging where required and transportation of UNFAs to a CSF site, and subsequent storage, operation and maintenance at the CSF with eventual transportation to a future repository or recycling site. It is essential to proceed by steps to ensure that the system will be the most efficient and serve at best its purpose by defining: the problem to be resolved, the criteria to

  10. 77 FR 36527 - Enstor Katy Storage and Transportation, L.P.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Enstor Katy Storage and Transportation, L.P.; Notice of Filing Take notice that on June 12, 2012, Enstor Katy Storage and Transportation, L.P. filed to revise its Statement...

  11. 77 FR 36527 - Enstor Grama Ridge Storage and Transportation, L.L.C.; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Enstor Grama Ridge Storage and Transportation, L.L.C.; Notice of Filing Take notice that on June 11, 2012, Enstor Grama Ridge Storage and Transportation, L.L.C. filed to revise...

  12. An Analysis of Book Storage and Transportation Requirements of the Five Associated University Libraries.

    ERIC Educational Resources Information Center

    Dinka, Tesfaye; Okutcu, Davut

    The major objectives of the study were to produce a storage/transportation model which minimized (1) the cost of storage space for book materials, and (2) cost of transportation for book materials. In minimizing these costs, they are considered in relation to the time required to provide service. The data used in the study include land and…

  13. One-Dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    1998-01-01

    OTIS is a mathematical simulation model used to characterize the fate and transport of water-borne solutes in streams and rivers. The governing equation underlying the model is the advection-dispersion equation with additional terms to account for transient storage, lateral inflow, first-order decay, and sorption. This equation and the associated equations describing transient storage and sorption are solved using a Crank-Nicolson finite-difference solution. OTIS may be used in conjunction with data from field-scale tracer experiments to quantify the hydrologic parameters affecting solute transport. This application typically involves a trial-and-error approach wherein parameter estimates are adjusted to obtain an acceptable match between simulated and observed tracer concentrations. Additional applications include analyses of nonconservative solutes that are subject to sorption processes or first-order decay. OTIS-P, a modified version of OTIS, couples the solution of the governing equation with a nonlinear regression package. OTIS-P determines an optimal set of parameter estimates that minimize the squared differences between the simulated and observed concentrations, thereby automating the parameter estimation process. This report details the development and application of OTIS and OTIS-P. Sections of the report describe model theory, input/output specifications, sample applications, and installation instructions.

  14. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report

    SciTech Connect

    Not Available

    1994-03-01

    This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

  15. Utilization of the organ care system as ex-vivo lung perfusion after cold storage transportation.

    PubMed

    Mohite, P N; Maunz, O; Popov, A-F; Zych, B; Patil, N P; Simon, A R

    2015-11-01

    The Organ Care System (OCS) allows perfusion and ventilation of the donor lungs under physiological conditions. Ongoing trials to compare preservation with OCS Lung with standard cold storage do not include donor lungs with suboptimal gas exchange and donor lungs treated with OCS following cold storage transportation. We present a case of a 48-yr-old man who received such lungs after cold storage transportation treated with ex-vivo lung perfusion utilizing OCS.

  16. 12. VIEW OF GRAIN STORAGE PROCESS, SHOWING 'HEADHOUSE' (HIGHEST POINT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF GRAIN STORAGE PROCESS, SHOWING 'HEADHOUSE' (HIGHEST POINT OF ELEVATOR STRUCTURE) AND GRAIN DISCHARGE CHUTE, LOOKING EAST. ELEVATOR BUCKETS DISCHARGE GRAIN INTO THIS CHUTE, WHICH THEN DIRECTS THE GRAIN TO ANY ONE OF THE ELEVATOR'S FOURTEEN STORAGE CRIBS. - Western Elevator Company, 507 North Appleton Street, Appleton, Outagamie County, WI

  17. Advanced potato breeding clones: storage and processing evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  18. Solute transport and storage mechanisms in wetlands of the Everglades, south Florida

    USGS Publications Warehouse

    Harvey, J.W.; Saiers, J.E.; Newlin, J.T.

    2005-01-01

    Solute transport and storage processes in wetlands play an important role in biogeochemical cycling and in wetland water quality functions. In the wetlands of the Everglades, there are few data or guidelines to characterize transport through the heterogeneous flow environment. Our goal was to conduct a tracer study to help quantify solute exchange between the relatively fast flowing water in the open part of the water column and much more slowly moving water in thick floating vegetation and in the pore water of the underlying peat. We performed a tracer experiment that consisted of a constant-rate injection of a sodium bromide (NaBr) solution for 22 hours into a 3 m wide, open-ended flume channel in Everglades National Park. Arrival of the bromide tracer was monitored at an array of surface water and subsurface samplers for 48 hours at a distance of 6.8 m downstream of the injection. A one-dimensional transport model was used in combination with an optimization code to identify the values of transport parameters that best explained the tracer observations. Parameters included dimensions and mass transfer coefficients describing exchange with both short (hours) and longer (tens of hours) storage zones as well as the average rates of advection and longitudinal dispersion in the open part of the water column (referred to as the "main flow zone"). Comparison with a more detailed set of tracer measurements tested how well the model's storage zones approximated the average characteristics of tracer movement into and out of the layer of thick floating vegetation and the pore water in the underlying peat. The rate at which the relatively fast moving water in the open water column was exchanged with slowly moving water in the layer of floating vegetation and in sediment pore water amounted to 50 and 3% h-1, respectively. Storage processes decreased the depth-averaged velocity of surface water by 50% relative to the water velocity in the open part of the water column. As a

  19. Only adding stationary storage to vaccine supply chains may create and worsen transport bottlenecks.

    PubMed

    Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Claypool, Erin G; Weng, Yu-Ting; Chen, Sheng-I; Lee, Bruce Y

    2013-01-01

    Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints. PMID:23903398

  20. Only adding stationary storage to vaccine supply chains may create and worsen transport bottlenecks.

    PubMed

    Haidari, Leila A; Connor, Diana L; Wateska, Angela R; Brown, Shawn T; Mueller, Leslie E; Norman, Bryan A; Schmitz, Michelle M; Paul, Proma; Rajgopal, Jayant; Welling, Joel S; Leonard, Jim; Claypool, Erin G; Weng, Yu-Ting; Chen, Sheng-I; Lee, Bruce Y

    2013-01-01

    Although vaccine supply chains in many countries require additional stationary storage and transport capacity to meet current and future needs, international donors tend to donate stationary storage devices far more often than transport equipment. To investigate the impact of only adding stationary storage equipment on the capacity requirements of transport devices and vehicles, we used HERMES (Highly Extensible Resource for Modeling Supply Chains) to construct a discrete event simulation model of the Niger vaccine supply chain. We measured the transport capacity requirement for each mode of transport used in the Niger vaccine cold chain, both before and after adding cold rooms and refrigerators to relieve all stationary storage constraints in the system. With the addition of necessary stationary storage, the average transport capacity requirement increased from 88% to 144% for cold trucks, from 101% to 197% for pickup trucks, and from 366% to 420% for vaccine carriers. Therefore, adding stationary storage alone may worsen or create new transport bottlenecks as more vaccines flow through the system, preventing many vaccines from reaching their target populations. Dynamic modeling can reveal such relationships between stationary storage capacity and transport constraints.

  1. Transport processes in magnetically confined plasmas

    SciTech Connect

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much_lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  2. Transport processes in magnetically confined plasmas

    SciTech Connect

    Callen, J.D.

    1991-12-01

    Intensified studies of plasma transport in toroidal plasmas over the past three to five years have progressed through increased understanding in some areas and changed perceptions about the most important issues in other areas. Recent developments are reviewed for six selected topics: edge fluctuations and transport; L-H mode transition; core fluctuations; modern plasma turbulence theory; transient transport; and global scaling. Some of the developments that are highlighted include: the role of a strongly sheared poloidal flow in edge plasma turbulence, transport and the L-H transition; change of focus from {kappa}{perpendicular}{rho}s {approximately} 1 to {kappa}{perpendicular}{rho}s {much lt} 1 fluctuations in tokamak plasmas; modern Direct-Interaction-Approximation plasma turbulence and hybrid fluid/kinetic theoretical models; and transient transport experiments that are raising fundamental questions about our conceptions of local transport processes in tokamaks. 104 refs., 6 figs.

  3. SUBTASK 2.19 – OPERATIONAL FLEXIBILITY OF CO2 TRANSPORT AND STORAGE

    SciTech Connect

    Jensen, Melanie; Schlasner, Steven; Sorensen, James; Hamling, John

    2014-12-31

    Carbon dioxide (CO2) is produced in large quantities during electricity generation and by industrial processes. These CO2 streams vary in terms of both composition and mass flow rate, sometimes substantially. The impact of a varying CO2 stream on pipeline and storage operation is not fully understood in terms of either operability or infrastructure robustness. This study was performed to summarize basic background from the literature on the topic of operational flexibility of CO2 transport and storage, but the primary focus was on compiling real-world lessons learned about flexible operation of CO2 pipelines and storage from both large-scale field demonstrations and commercial operating experience. Modeling and pilot-scale results of research in this area were included to illustrate some of the questions that exist relative to operation of carbon capture and storage (CCS) projects with variable CO2 streams. It is hoped that this report’s real-world findings provide readers with useful information on the topic of transport and storage of variable CO2 streams. The real-world results were obtained from two sources. The first source consisted of five full-scale, commercial transport–storage projects: Sleipner, Snøhvit, In Salah, Weyburn, and Illinois Basin–Decatur. These scenarios were reviewed to determine the information that is available about CO2 stream variability/intermittency on these demonstration-scale projects. The five projects all experienced mass flow variability or an interruption in flow. In each case, pipeline and/or injection engineers were able to accommodate any issues that arose. Significant variability in composition has not been an issue at these five sites. The second source of real- world results was telephone interviews conducted with experts in CO2 pipeline transport, injection, and storage during which commercial anecdotal information was acquired to augment that found during the literature search of the five full-scale projects. The

  4. 64. SOUTH PLANT PROCESS PIPING, CHEMICAL STORAGE TANKS AND BUILDINGS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. SOUTH PLANT PROCESS PIPING, CHEMICAL STORAGE TANKS AND BUILDINGS. VIEW TO NORTHEAST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  5. Earth storage structural energy system and process for constructing a thermal storage well

    SciTech Connect

    Ippolito, J.J.

    1983-07-12

    A geothermal space conditioning and water heating system for a building structure comprises a battery of serially coupled thermal storage wells. Each well includes a dual concentric thermal conduction tube having an external circumference and an integrated earth interface and substantially moisture impervious clay platelet transition surrounding and at least double the tube circumference. The thermal storage battery has a cold port and a hot port maintained at a temperature greater than the cold port. A space conditioning arrangement is provided in which thermal transport fluid passes through a fan-driven radiator. A reversible heat pump has a radiator conditioned air coupled first heat exchanger and a downstream radiator fluid coupled second heat exchanger. A second heat pump has a first heat exchanger in thermal communication with a hot port coupled hot water heater and a cold port coupled second heat exchanger. A transient storage tank provides a time averaged uniform transport fluid temperature. Valving allows reversal of fluid from the hot and cold ports to and from the transient storage tank and the space conditioning arrangement as determined by multiple temperature sensors determining output states of a controller. The geothermal storage wells are established by circulating a mud in a well to stabilize the hole, running a conduit in the well and thereafter reverse-circulating a sand/gravel slurry through the conduit thereby packing the region between the conducting tube and the earth interface.

  6. 10 CFR 34.73 - Records of inspection and maintenance of radiographic exposure devices, transport and storage...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... exposure devices, transport and storage containers, associated equipment, source changers, and survey..., associated equipment, source changers, and survey instruments. (a) Each licensee shall maintain records... exposure devices, transport and storage containers, associated equipment, source changers, and...

  7. 10 CFR 34.73 - Records of inspection and maintenance of radiographic exposure devices, transport and storage...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... exposure devices, transport and storage containers, associated equipment, source changers, and survey..., associated equipment, source changers, and survey instruments. (a) Each licensee shall maintain records... exposure devices, transport and storage containers, associated equipment, source changers, and...

  8. Low temperature storage container for transporting perishables to space station

    NASA Astrophysics Data System (ADS)

    Dean, William G.; Owen, James W.

    1988-04-01

    This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.

  9. Low temperature storage container for transporting perishables to space station

    NASA Technical Reports Server (NTRS)

    Dean, William G (Inventor); Owen, James W. (Inventor)

    1988-01-01

    This invention is directed to the long term storage of frozen and refrigerated food and biological samples by the space shuttle to the space station. A storage container is utilized which has a passive system so that fluid/thermal and electrical interfaces with the logistics module is not required. The container for storage comprises two units, each having an inner storage shell and an outer shell receiving the inner shell and spaced about it. The novelty appears to lie in the integration of thermally efficient cryogenic storage techniques with phase change materials, including the multilayer metalized surface thin plastic film insulation and the vacuum between the shells. Additionally the fiberglass constructed shells having fiberglass honeycomb portions, and the lining of the space between the shells with foil combine to form a storage container which may keep food and biological samples at very low temperatures for very long periods of time utilizing a passive system.

  10. 41 CFR 302-7.1 - Who is eligible for the transportation and temporary storage of household goods (HHG) at...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... transportation and temporary storage of household goods (HHG) at Government expense? 302-7.1 Section 302-7.1 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND...

  11. 41 CFR 302-7.1 - Who is eligible for the transportation and temporary storage of household goods (HHG) at...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... transportation and temporary storage of household goods (HHG) at Government expense? 302-7.1 Section 302-7.1 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND...

  12. Reserpine-induced reduction in norepinephrine transporter function requires catecholamine storage vesicles.

    PubMed

    Mandela, Prashant; Chandley, Michelle; Xu, Yao-Yu; Zhu, Meng-Yang; Ordway, Gregory A

    2010-01-01

    Treatment of rats with reserpine, an inhibitor of the vesicular monoamine transporter (VMAT), depletes norepinephrine (NE) and regulates NE transporter (NET) expression. The present study examined the molecular mechanisms involved in regulation of the NET by reserpine using cultured cells. Exposure of rat PC12 cells to reserpine for a period as short as 5min decreased [(3)H]NE uptake capacity, an effect characterized by a robust decrease in the V(max) of the transport of [(3)H]NE. As expected, reserpine did not displace the binding of [(3)H]nisoxetine from the NET in membrane homogenates. The potency of reserpine for reducing [(3)H]NE uptake was dramatically lower in SK-N-SH cells that have reduced storage capacity for catecholamines. Reserpine had no effect on [(3)H]NE uptake in HEK-293 cells transfected with the rat NET (293-hNET), cells that lack catecholamine storage vesicles. NET regulation by reserpine was independent of trafficking of the NET from the cell surface. Pre-exposure of cells to inhibitors of several intracellular signaling cascades known to regulate the NET, including Ca(2+)/Ca(2+)-calmodulin dependent kinase and protein kinases A, C and G, did not affect the ability of reserpine to reduce [(3)H]NE uptake. Treatment of PC12 cells with the catecholamine depleting agent, alpha-methyl-p-tyrosine, increased [(3)H]NE uptake and eliminated the inhibitory effects of reserpine on [(3)H]NE uptake. Reserpine non-competitively inhibits NET activity through a Ca(2+)-independent process that requires catecholamine storage vesicles, revealing a novel pharmacological method to modify NET function. Further characterization of the molecular nature of reserpine's action could lead to the development of alternative therapeutic strategies for treating disorders known to be benefitted by treatment with traditional competitive NET inhibitors. PMID:20176067

  13. 10 CFR 34.31 - Inspection and maintenance of radiographic exposure devices, transport and storage containers...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... devices, transport and storage containers, associated equipment, source changers, and survey instruments... changers, and survey instruments. (a) The licensee shall perform visual and operability checks on survey... condition, that the sources are adequately shielded, and that required labeling is present....

  14. Lagrangian coherent structures and plasma transport processes

    NASA Astrophysics Data System (ADS)

    Falessi, M. V.; Pegoraro, F.; Schep, T. J.

    2015-10-01

    > A dynamical system framework is used to describe transport processes in plasmas embedded in a magnetic field. For periodic systems with one degree of freedom, the Poincaré map provides a splitting of the phase space into regions where particles have different kinds of motion: periodic, quasi-periodic or chaotic. The boundaries of these regions are transport barriers, i.e. a trajectory cannot cross such boundaries throughout the evolution of the system. Lagrangian coherent structures generalize this method to systems with the most general time dependence, splitting the phase space into regions with different qualitative behaviours. This leads to the definition of finite-time transport barriers, i.e. trajectories cannot cross the barrier for a finite amount of time. This methodology can be used to identify fast recirculating regions in the dynamical system and to characterize the transport between them.

  15. Transport and Storage Research Program. Gas Research Institute: Status report-1989 projects

    SciTech Connect

    Not Available

    1990-03-01

    The 1989 status report of the Gas Research Institute Transport and Storage Research Subprogram describes the tactical objectives, major accomplishments and strategies, and provides contract status reports for projects within these project areas: Construction and Maintenance, Metering and Operations, Plastic and Advanced Distribution Piping Materials, Residential/Commercial Interior Distribution Systems, Gas Storage Technology, Transmission Piping Systems, and Advanced Transport and Sensor-Based Systems.

  16. On the Law Relating Processing to Storage in Working Memory

    ERIC Educational Resources Information Center

    Barrouillet, Pierre; Portrat, Sophie; Camos, Valerie

    2011-01-01

    "Working memory" is usually defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. However, although many models of working memory have been put forward during the last decades, they often leave underspecified the dynamic interplay between processing and storage. Moreover, the account of…

  17. Performance and cost of energy transport and storage systems for dish applications using reversible chemical reactions

    NASA Technical Reports Server (NTRS)

    Schredder, J. M.; Fujita, T.

    1984-01-01

    The use of reversible chemical reactions for energy transport and storage for parabolic dish networks is considered. Performance and cost characteristics are estimated for systems using three reactions (sulfur-trioxide decomposition, steam reforming of methane, and carbon-dioxide reforming of methane). Systems are considered with and without storage, and in several energy-delivery configurations that give different profiles of energy delivered versus temperature. Cost estimates are derived assuming the use of metal components and of advanced ceramics. (The latter reduces the costs by three- to five-fold). The process that led to the selection of the three reactions is described, and the effects of varying temperatures, pressures, and heat exchanger sizes are addressed. A state-of-the-art survey was performed as part of this study. As a result of this survey, it appears that formidable technical risks exist for any attempt to implement the systems analyzed in this study, especially in the area of reactor design and performance. The behavior of all components and complete systems under thermal energy transients is very poorly understood. This study indicates that thermochemical storage systems that store reactants as liquids have efficiencies below 60%, which is in agreement with the findings of earlier investigators.

  18. CHARACTERISTICS OF NEXT-GENERATION SPENT NUCLEAR FUEL (SNF) TRANSPORT AND STORAGE CASKS

    SciTech Connect

    Haire, M.J.; Forsberg, C.W.; Matveev, V.Z.; Shapovalov, V.I.

    2004-10-03

    The design of spent nuclear fuel (SNF) casks used in the present SNF disposition systems has evolved from early concepts about the nuclear fuel cycle. The reality today is much different from that envisioned by early nuclear scientists. Most SNF is placed in pool storage, awaiting reprocessing (as in Russia) or disposal at a geologic SNF repository (as in the United States). Very little transport of SNF occurs. This paper examines the requirements for SNF casks from today's perspective and attempts to answer this question: What type of SNF cask would be produced if we were to start over and design SNF casks based on today's requirements? The characteristics for a next-generation SNF cask system are examined and are found to be essentially the same in Russia and the United States. It appears that the new depleted uranium dioxide (DUO2)-steel cermet material will enable these requirements to be met. Depleted uranium (DU) is uranium in which a portion of the 235U isotope has been removed during a uranium enrichment process. The DUO2-steel cermet material is described. The United States and Russia are cooperating toward the development of a next-generation, dual-purpose, storage and transport SNF system.

  19. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-04-01

    A numerical simulator has been developed to investigate the effects of coupled processes on heat and mass transport in semipermeable media. The governing equations on which the simulator is based were derived using the thermodynamics of irreversible processes. The equations are nonlinear and have been solved numerically using the n-dimensional Newton's method. As an example of an application, the numerical simulator has been used to investigate heat and solute transport in the vicinity of a heat source buried in a saturated clay-like medium, in part to study solute transport in bentonite packing material surrounding a nuclear waste canister. The coupled processes considered were thermal filtration, thermal osmosis, chemical osmosis and ultrafiltration. In the simulations, heat transport by coupled processes was negligible compared to heat conduction, but pressure and solute migration were affected. Solute migration was retarded relative to the uncoupled case when only chemical osmosis was considered. When both chemical osmosis and thermal osmosis were included, solute migration was enhanced. 18 refs., 20 figs.

  20. Gravity-dependent transport in industrial processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1994-01-01

    Gravity-dependent transport phenomena in various industrial processes are investigated in order to address a broader range of microgravity phenomena and to develop new applications of microgravity. A number of important topics are identified and analyzed in detail. The present article describes results on coating flow, zeolite growth, and rotating electrochemical system.

  1. TQM brings collaboration to patient transport process.

    PubMed

    Houston, K L; Clute, C; Ryan-Crepin, K; Kimball, M; Matthews, R

    1994-10-01

    Total quality management (TQM) principles can be utilized to achieve successful outcomes of an interdepartmental problem-solving process prior to implementation of a TQM formal structure within an organization. Prior to implementation of the new process, patient transport time from nursing units to lab destination was calculated at 17.6 minutes; postimplementation, an institutional benchmark of 15.4 minutes has been set. The mechanisms utilized for development, implementation, and evaluation of a process improvement team is the focus of the article. The reader will be taken on a journey through an interdepartmental problem-solving process utilizing the TQM principles.

  2. [Bacteriological aspects of preparation, storage and transport of milk formulas (author's transl)].

    PubMed

    Irle, U; Gängel, G

    1976-07-01

    1. It was shown that special apparatus for cleaning milkbottles makes additional desinfection unnecessary with regard to bacteriological and hygienic aspects. -- 2. Milk-bottles should be processed centrally for safety reasons. Special basket-containers facilitate a more economic washing process, transport and storage of the bottles. -- 3. Physiologically optimal milk formulas, as available today, should be prepared and filled into bottles in the ward where they are needed, immediately before use, to guarantee bacteriologically optimal conditions. -- 4. With appropriate organization within a clinic it should be possible to store special dietary formulas which have been prepared centrally, not in the wards, over the required time without the risk of bacterial contamination. The need for regular and systemic bacteriological checks is emphasized.

  3. Transport processes near coastal ocean outfalls

    USGS Publications Warehouse

    Noble, M.A.; Sherwood, C.R.; Lee, Hooi-Ling; Xu, Jie; Dartnell, P.; Robertson, G.; Martini, M.

    2001-01-01

    The central Southern California Bight is an urbanized coastal ocean where complex topography and largescale atmospheric and oceanographic forcing has led to numerous sediment-distribution patterns. Two large embayments, Santa Monica and San Pedro Bays, are connected by the short, very narrow shelf off the Palos Verdes peninsula. Ocean-sewage outfalls are located in the middle of Santa Monica Bay, on the Palos Verdes shelf and at the southeastern edge of San Pedro Bay. In 1992, the US Geological Survey, together with allied agencies, began a series of programs to determine the dominant processes that transport sediment and associated pollutants near the three ocean outfalls. As part of these programs, arrays of instrumented moorings that monitor currents, waves, water clarity, water density and collect resuspended materials were deployed on the continental shelf and slope information was also collected on the sediment and contaminant distributions in the region. The data and models developed for the Palos Verdes shelf suggest that the large reservoir of DDT/DDE in the coastal ocean sediments will continue to be exhumed and transported along the shelf for a long time. On the Santa Monica shelf, very large internal waves, or bores, are generated at the shelf break. The near-bottom currents associated with these waves sweep sediments and the associated contaminants from the shelf onto the continental slope. A new program underway on the San Pedro shelf will determine if water and contaminants from a nearby ocean outfall are transported to the local beaches by coastal ocean processes. The large variety of processes found that transport sediments and contaminants in this small region of the continental margin suggest that in regions with complex topography, local processes change markedly over small spatial scales. One cannot necessarily infer that the dominant transport processes will be similar even in adjacent regions.

  4. Turbulent transport process in atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Hayashi, T.; Awasaki, T.

    2012-04-01

    The organized motion or the coherent motion can be detected in wind tunnel and water channel experiments and those motions play an important role for the production of turbulent energy and transport of turbulent fluxes. Similar phenomena can be found in the atmospheric surface layer (Gao et al., 1989). The purpose of this study is to clarify the transport structure and process of turbulent fluxes, especially heat, water vapor and carbon dioxide. The organized motions are detected by using the wavelet transform analysis as well as the conventional statistical method such as Fourier spectral analysis. We consider the dependency of transport process by the organized motion to the atmospheric stability in the surface layer. The observation was carried out at the test field of Shionomisaki Wind Effect Laboratory, where two sets of the combination of sonic anemometer thermometer and open path H2O/CO2 analyzer were mounted at 2m and 20m height. The evident ramp and inverse ramp structures can be found in the time series of temperature, water vapor and CO2 in the unstable stability, using the Mexican hut wavelet transform analysis. The co-spectral density in wavelet analysis is considered as the flux at each time scale. The large amount of fluxes is transported at the sudden decrease in scalar ramp structure and the sudden increase in inverse ramp structure in several tens of seconds. The scalar and vertical wind velocity are completely either in phase or out of phase, which means that the turbulent transport by the organized motion occurs at time scales of several tens of seconds. The quadrant analysis of turbulent flux shows that the rate of the transport amount of scalar by ejection and sweep to the total transport flux increases according to the increase of the atmospheric stability. At 2m height, the transport by ejection is dominant in unstable condition, and that by sweep is larger in the stable condition. At 20m height, transport by ejection is larger than that by

  5. Gravity-Dependent Transport in Industrial Processes

    NASA Technical Reports Server (NTRS)

    Ostrach, Simon; Kamotani, Yasuhiro

    1996-01-01

    Gravity dependent transport phenomena in various industrial processes are investigated in order to indicate new directions for micro-gravity research that enhance the commercial success of the space program. The present article describes the commercialization possibilities of such topics associated with physicochemical transport phenomena. The topics are: coating flow, rotating electrochemical system, and convection in low Plandtl number fluids. The present study is directed to understand these phenomena, and to develop a knowledge base for their applications with emphasis to a micro-gravity environment.

  6. A method to determine stratification efficiency of thermal energy storage processes independently from storage heat losses

    SciTech Connect

    Haller, Michel Y.; Streicher, Wolfgang; Bales, Chris

    2010-06-15

    A new method for the calculation of a stratification efficiency of thermal energy storages based on the second law of thermodynamics is presented. The biasing influence of heat losses is studied theoretically and experimentally. Theoretically, it does not make a difference if the stratification efficiency is calculated based on entropy balances or based on exergy balances. In practice, however, exergy balances are less affected by measurement uncertainties, whereas entropy balances can not be recommended if measurement uncertainties are not corrected in a way that the energy balance of the storage process is in agreement with the first law of thermodynamics. A comparison of the stratification efficiencies obtained from experimental results of charging, standby, and discharging processes gives meaningful insights into the different mixing behaviors of a storage tank that is charged and discharged directly, and a tank-in-tank system whose outer tank is charged and the inner tank is discharged thereafter. The new method has a great potential for the comparison of the stratification efficiencies of thermal energy storages and storage components such as stratifying devices. (author)

  7. Active Storage Processing in a Parallel File System

    SciTech Connect

    Felix, Evan J.; Fox, Kevin M.; Regimbal, Kevin M.; Nieplocha, Jarek

    2006-01-01

    By creating a processing system within a parallel file system one can harness the power of unused processing power on servers that have very fast access to the disks they are serving. By inserting a module the Lustre file system the Active Storage Concept is able to perform processing with the file system architecture. Results of using this technology are presented as the results of the Supercomputing StorCloud Challenge Application are reviewed.

  8. Transportation impacts on the Tennessee highway system proposed monitored retrievable storage. Final report

    SciTech Connect

    Cobble, C.

    1985-12-12

    The issue of the transport of spent fuels to the proposed monitored retrievable storage facility in Tennessee is discussed. Relevant issues include the ability of the roads and bridges on the transport routes to handle the weight of the trucks. (CBS)

  9. Transportation impacts on the Tennessee highway system proposed monitored retrievable storage

    SciTech Connect

    Cobble, C.

    1985-12-12

    The issue of the transport of spent fuels to the proposed monitored retrievable storage facility in Tennessee is discussed. Relevant issues include the ability of the roads and bridges on the transport routes to handle the weight of the trucks. (CBS)

  10. DYNAMICS OF WATER TRANSPORT AND STORAGE IN CONIFERS STUDIED WITH DEUTERIUM AND HEAT TRACING TECHNIQUES

    EPA Science Inventory

    The volume and complexity of their vascular systems make the dynamics of long-distance water transport difficult to study. We used heat and deuterated water (D2O) as tracers to characterize whole-tree water transport and storage properties in individual trees belonging to the co...

  11. Storage, transportation, and atomization of CWF for residential applications

    SciTech Connect

    Grimanis, M.P.; Breault, R.W. ); Smit, F.J.; Jha, M.C. )

    1991-11-01

    This project investigated the properties and behavior with regard to handling, storage, and atomization in small-scale applications of different CWFs (coal water fuels) prepared from different parent coals and various beneficiation techniques as well as consideration for bulk storage and distribution. The CWFs that were prepared included Upper Elkhorn No. 3, Illinois No. 6, and Upper Wyodak coal cleaned by heavy media separation. Also, several CWFs were prepared with Upper Elkhorn No. 3 coal cleaned by heavy media separation with filtration, chemical cleaning, oil agglomeration, and froth flotation.

  12. Comment on "Generalized exclusion processes: Transport coefficients"

    NASA Astrophysics Data System (ADS)

    Becker, T.; Nelissen, K.; Cleuren, B.; Partoens, B.; Van den Broeck, C.

    2016-04-01

    In a recent paper, Arita et al. [Phys. Rev. E 90, 052108 (2014), 10.1103/PhysRevE.90.052108] consider the transport properties of a class of generalized exclusion processes. Analytical expressions for the transport-diffusion coefficient are derived by ignoring correlations. It is claimed that these expressions become exact in the hydrodynamic limit. In this Comment, we point out that (i) the influence of correlations upon the diffusion does not vanish in the hydrodynamic limit, and (ii) the expressions for the self- and transport diffusion derived by Arita et al. are special cases of results derived in Becker et al. [Phys. Rev. Lett. 111, 110601 (2013), 10.1103/PhysRevLett.111.110601].

  13. 41 CFR 302-7.105 - May an advance of funds be authorized for transporting HHG and temporary storage?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false May an advance of funds be authorized for transporting HHG and temporary storage? 302-7.105 Section 302-7.105 Public... STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL...

  14. 41 CFR 302-7.105 - May an advance of funds be authorized for transporting HHG and temporary storage?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false May an advance of funds be authorized for transporting HHG and temporary storage? 302-7.105 Section 302-7.105 Public... STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL...

  15. The Human Transporter Associated with Antigen Processing

    PubMed Central

    Corradi, Valentina; Singh, Gurpreet; Tieleman, D. Peter

    2012-01-01

    The human transporter associated with antigen processing (TAP) is a member of the ATP binding cassette (ABC) transporter superfamily. TAP plays an essential role in the antigen presentation pathway by translocating cytosolic peptides derived from proteasomal degradation into the endoplasmic reticulum lumen. Here, the peptides are loaded into major histocompatibility class I molecules to be in turn exposed at the cell surface for recognition by T-cells. TAP is a heterodimer formed by the association of two half-transporters, TAP1 and TAP2, with a typical ABC transporter core that consists of two nucleotide binding domains and two transmembrane domains. Despite the availability of biological data, a full understanding of the mechanism of action of TAP is limited by the absence of experimental structures of the full-length transporter. Here, we present homology models of TAP built on the crystal structures of P-glycoprotein, ABCB10, and Sav1866. The models represent the transporter in inward- and outward-facing conformations that could represent initial and final states of the transport cycle, respectively. We described conserved regions in the endoplasmic reticulum-facing loops with a role in the opening and closing of the cavity. We also identified conserved π-stacking interactions in the cytosolic part of the transmembrane domains that could explain the experimental data available for TAP1-Phe-265. Electrostatic potential calculations gave structural insights into the role of residues involved in peptide binding, such as TAP1-Val-288, TAP2-Cys-213, TAP2-Met-218. Moreover, these calculations identified additional residues potentially involved in peptide binding, in turn verified with replica exchange simulations performed on a peptide bound to the inward-facing models. PMID:22700967

  16. Low-level radioactive waste from commercial nuclear reactors. Volume 2. Treatment, storage, disposal, and transportation technologies and constraints

    SciTech Connect

    Jolley, R.L.; Dole, L.R.; Godbee, H.W.; Kibbey, A.H.; Oyen, L.C.; Robinson, S.M.; Rodgers, B.R.; Tucker, R.F. Jr.

    1986-05-01

    The overall task of this program was to provide an assessment of currently available technology for treating commercial low-level radioactive waste (LLRW), to initiate development of a methodology for choosing one technology for a given application, and to identify research needed to improve current treatment techniques and decision methodology. The resulting report is issued in four volumes. Volume 2 discusses the definition, forms, and sources of LLRW; regulatory constraints affecting treatment, storage, transportation, and disposal; current technologies used for treatment, packaging, storage, transportation, and disposal; and the development of a matrix relating treatment technology to the LLRW stream as an aid for choosing methods for treating the waste. Detailed discussions are presented for most LLRW treatment methods, such as aqueous processes (e.g., filtration, ion exchange); dewatering (e.g., evaporation, centrifugation); sorting/segregation; mechanical treatment (e.g., shredding, baling, compaction); thermal processes (e.g., incineration, vitrification); solidification (e.g., cement, asphalt); and biological treatment.

  17. Survival of salmonella in processed chicken products during frozen storage.

    PubMed

    Dominguez, Silvia A; Schaffner, Donald W

    2009-10-01

    Frozen chicken products have been identified recently as a cause of salmonellosis. At least eight salmonellosis outbreaks from 1998 to 2008 have implicated undercooked frozen chicken nuggets, strips, and entrees as infection vehicles. Thus, the presence of Salmonella in frozen products may pose an infection risk if the product is improperly cooked. The objective of this study was to assess the survivability of Salmonella during frozen storage (-20 degrees ) when inoculated in processed chicken products. Four Salmonella strains originally isolated from poultry were inoculated into frozen chicken nuggets (fully cooked) and frozen chicken strips (containing raw poultry) at initial populations of 10(4) to 10(5) CFU/g. Survival was assessed during storage at -20 degrees for 16 weeks by measuring bacterial growth on minimal, selective, and nonselective agars. Results indicate that cell populations measured in nonselective agars (plate count agar and plate count agar supplemented with tetracycline) and minimal (M9) agar remained relatively constant during the entire -20 degrees storage period studied (16 weeks) for both chicken nuggets and strips. However, cell populations were significantly (P < 0.05) lower when measured in selective agar (XLT4) during the 16 weeks of frozen storage for both chicken nuggets and strips, suggesting that these cells were structurally injured. The data presented in this study indicate that Salmonella can survive frozen storage when inoculated in frozen, processed chicken products and confirm that microbial counts on selective agar are not representative of the total population of samples subject to freezing.

  18. Mesoscopic Modeling of Reactive Transport Processes

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Chen, L.; Deng, H.

    2012-12-01

    Reactive transport processes involving precipitation and/or dissolution are pervasive in geochemical, biological and engineered systems. Typical examples include self-assembled patterns such as Liesegang rings or bands, cones of stalactites in limestones caves, biofilm growth in aqueous environment, formation of mineral deposits in boilers and heat exchangers, uptake of toxic metal ions from polluted water by calcium carbonate, and mineral trapping of CO2. Compared to experimental studies, a numerical approach enables a systematic study of the reaction kinetics, mass transport, and mechanisms of nucleation and crystal growth, and hence provides a detailed description of reactive transport processes. In this study, we enhance a previously developed lattice Boltzmann pore-scale model by taking into account the nucleation process, and develop a mesoscopic approach to simulate reactive transport processes involving precipitation and/or dissolution of solid phases. The model is then used to simulate the formation of Liesegang precipitation patterns and investigate the effects of gel on the morphology of the precipitates. It is shown that this model can capture the porous structures of the precipitates and can account for the effects of the gel concentration and material. A wide range of precipitation patterns is predicted under different gel concentrations, including regular bands, treelike patterns, and for the first time with numerical models, transition patterns from regular bands to treelike patterns. The model is also applied to study the effect of secondary precipitate on the dissolution of primary mineral. Several types of dissolution and precipitation processes are identified based on the morphology and structures of the precipitates and on the extent to which the precipitates affect the dissolution of the primary mineral. Finally the model is applied to study the formation of pseudomorph. It is demonstrated for the first time by numerical simulation that a

  19. 26. PROCESS PIPING AND CHEMICAL STORAGE TANKS AT SOUTH PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. PROCESS PIPING AND CHEMICAL STORAGE TANKS AT SOUTH PLANT NORTH EDGE FROM DECEMBER 7TH AVENUE. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  20. Tech Transfer Webinar: Amoeba Cysts as Natural Containers for the Transport and Storage of Pathogens

    ScienceCinema

    El-Etr, Sahar

    2016-07-12

    Sahar El-Etr, Biomedical Scientist at the Lawrence Livermore National Laboratory, shares a unique method for transporting clinical samples from the field to a laboratory. The use of amoeba as “natural” containers for pathogens was utilized to develop the first living system for the transport and storage of pathogens. The amoeba system works at ambient temperature for extended periods of time—capabilities currently not available for biological sample transport.

  1. Tech Transfer Webinar: Amoeba Cysts as Natural Containers for the Transport and Storage of Pathogens

    SciTech Connect

    El-Etr, Sahar

    2014-10-08

    Sahar El-Etr, Biomedical Scientist at the Lawrence Livermore National Laboratory, shares a unique method for transporting clinical samples from the field to a laboratory. The use of amoeba as “natural” containers for pathogens was utilized to develop the first living system for the transport and storage of pathogens. The amoeba system works at ambient temperature for extended periods of time—capabilities currently not available for biological sample transport.

  2. Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review.

    PubMed

    Dianawati, Dianawati; Mishra, Vijay; Shah, Nagendra P

    2016-07-26

    The use of live probiotic bacteria as food supplement has become popular. Capability of probiotic bacteria to be kept at room temperature becomes necessary for customer's convenience and manufacturer's cost reduction. Hence, production of dried form of probiotic bacteria is important. Two common drying methods commonly used for microencapsulation are freeze drying and spray drying. In spite of their benefits, both methods have adverse effects on cell membrane integrity and protein structures resulting in decrease in bacterial viability. Microencapsulation of probiotic bacteria has been a promising technology to ensure bacterial stability during the drying process and to preserve their viability during storage without significantly losing their functional properties such acid tolerance, bile tolerance, surface hydrophobicity, and enzyme activities. Storage at room temperatures instead of freezing or low temperature storage is preferable for minimizing costs of handling, transportation, and storage. Concepts of water activity and glass transition become important in terms of determination of bacterial survival during the storage. The effectiveness of microencapsulation is also affected by microcapsule materials. Carbohydrate- and protein-based microencapsulants and their combination are discussed in terms of their protecting effect on probiotic bacteria during dehydration, during exposure to harsh gastrointestinal transit and small intestine transit and during storage.

  3. Effect of Processing and Subsequent Storage on Nutrition

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Lai, Oiki Sylvia

    2008-01-01

    The objective of this research is to determine the effects of thermal processing, freeze drying, irradiation, and storage time on the nutritional content of food, to evaluate the nutritional content of the food items currently used on the International Space Station and Shuttle, and to establish the need to institute countermeasures. (This study does not seek to address the effect of processing on nutrients in detail, but rather aims to place in context the overall nutritional status at the time of consumption).

  4. Factors and processes modulating phenotypes in neuronopathic lysosomal storage diseases.

    PubMed

    Jakóbkiewicz-Banecka, Joanna; Gabig-Cimińska, Magdalena; Banecka-Majkutewicz, Zyta; Banecki, Bogdan; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2014-03-01

    Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.

  5. Storage stability and quality assessment of processed cereal brans.

    PubMed

    Sharma, Savita; Kaur, Satinder; Dar, B N; Singh, Baljit

    2014-03-01

    Quality improvement of cereal brans, a health promoting ingredient for functional foods is the emerging research concept due to their low shelf stability and presence of non-nutrient components. A study was conducted to evaluate the storage quality of processed milling industry byproducts so that these can be potentially utilized as a dietary fibre source. Different cereal brans (wheat, rice, barley and oat) were processed by dry, wet, microwave heating, extrusion cooking and chemical methods at variable conditions. Processed brans were stored in high density polyethylene (HDPE) pouches at ambient and refrigeration temperature. Quality assessments (moisture, free fatty acids, water activity and physical quality) of brans were done up to six months, at one month intervals. Free fatty acid content, moisture and water activity of the cereal brans remained stable during the entire storage period. Among treatments, extrusion processing is the most effective for stability. Processing treatments and storage temperature have the positive effect on extending the shelf life of all cereal brans. Therefore, processed cereal brans can be used as a dietary fortificant for the development of value added food products. PMID:24587536

  6. Simulation of Mechanical Processes in Gas Storage Caverns for Short-Term Energy Storage

    NASA Astrophysics Data System (ADS)

    Böttcher, Norbert; Nagel, Thomas; Kolditz, Olaf

    2015-04-01

    In recent years, Germany's energy management has started to be transferred from fossil fuels to renewable and sustainable energy carriers. Renewable energy sources such as solar and wind power are subjected by fluctuations, thus the development and extension of energy storage capacities is a priority in German R&D programs. This work is a part of the ANGUS+ Project, funded by the federal ministry of education and research, which investigates the influence of subsurface energy storage on the underground. The utilization of subsurface salt caverns as a long-term storage reservoir for fossil fuels is a common method, since the construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to solution mining. Another advantage of evaporate as host material is the self-healing behaviour of salt rock, thus the cavity can be assumed to be impermeable. In the framework of short-term energy storage (hours to days), caverns can be used as gas storage reservoirs for natural or artificial fuel gases, such as hydrogen, methane, or compressed air, where the operation pressures inside the caverns will fluctuate more frequently. This work investigates the influence of changing operation pressures at high frequencies on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. The salt behaviour is described by well-known constitutive material models which are capable of predicting creep, self-healing, and dilatancy processes. Our simulations include the thermodynamic behaviour of gas storage process, temperature development and distribution on the cavern boundary, the deformation of the cavern geometry, and the prediction of the dilatancy zone. Based on the numerical results, optimal operation modes can be found for individual caverns, so the risk of host rock damage

  7. Coupled transport processes in semipermeable media

    SciTech Connect

    Carnahan, C.L.; Jacobsen, J.S.

    1990-04-01

    The thermodynamics of irreversible processes (TTIP) is used to derive governing equations and phenomenological equations for transport processes and chemical reactions in water-saturated semipermeable media. TTIP is based on three fundamental postulates. The first postulate, the assumption of local equilibrium, allows the formulation of balance equations for entropy. These equations are the bases for the derivation of governing equations for the thermodynamic variables, temperature, pressure, and composition. The governing equations involve vector fluxes of heat and mass and scalar rates of chemical reactions; in accordance with the second postulate of TTIP, these fluxes and rates are related, respectively, to all scalar driving forces (gradients of thermodynamic variables) acting within the system. The third postulate of TTIP states equality (the Onsager reciprocal relations) between certain of the phenomenological coefficients relating forces and fluxes. The description by TTIP of a system undergoing irreversible processes allows consideration of coupled transport processes such as thermal osmosis, chemical osmosis, and ultrafiltration. The coupled processes can make significant contributions to flows of mass and energy in slightly permeable, permselective geological materials such as clays and shales.

  8. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cord blood processing system and storage container... processing system and storage container. (a) Identification. A cord blood processing system and storage... System and Storage Container.” For the availability of this guidance document, see § 864.1(d)....

  9. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cord blood processing system and storage container... processing system and storage container. (a) Identification. A cord blood processing system and storage... System and Storage Container.” For the availability of this guidance document, see § 864.1(d)....

  10. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cord blood processing system and storage container... processing system and storage container. (a) Identification. A cord blood processing system and storage... System and Storage Container.” For the availability of this guidance document, see § 864.1(d)....

  11. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cord blood processing system and storage container... processing system and storage container. (a) Identification. A cord blood processing system and storage... System and Storage Container.” For the availability of this guidance document, see § 864.1(d)....

  12. 21 CFR 864.9900 - Cord blood processing system and storage container.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cord blood processing system and storage container... processing system and storage container. (a) Identification. A cord blood processing system and storage... System and Storage Container.” For the availability of this guidance document, see § 864.1(d)....

  13. Scaling and predicting solute transport processes in riverine ecosystems

    NASA Astrophysics Data System (ADS)

    Gonzalez-Pinzon, R.; Haggerty, R.; Camacho Botero, L. A.

    2012-12-01

    .27 (1.07, 1.47), with 95% confidence bounds. These correlations were used to predict solute transport processes in four rivers in the UK (not included in the database used to develop the correlations) by parameterizing the Transient Storage model (R2>0.96 for all 4 rivers) and the Aggregated Dead Zone model (R2=0.87 for a channelized river, and R2>0.99 for the natural rivers) with the moment matching technique. Since our proposed technique to predict and scale solute transport processes has been developed from multi-ecosystem data around the world, and is only a function of discharge, length and travel times, i.e., quantities that are expected to appear in uncertainty analyzes, we propose its application as a fundamental routine to establish uncertainty bounds in decision-taking processes regarding solute transport in riverine ecosystems.

  14. Conceptual design report for a transportable DUCRETE spent fuel storage cask system

    SciTech Connect

    Hopf, J.E.

    1995-08-01

    A conceptual design has been developed for a spent fuel dry storage cask that employs depleted uranium concrete (DUCRETE) in place of ordinary concrete. DUCRETE, which uses depleted uranium oxide rocks rather than gravel as the concrete`s heavy aggregate, is a more efficient overall radiation shield (gamma and neutron) than either steel or ordinary concrete. Thus, it allows the cask weight and size to be substantially reduced. Also, using DUCRETE as shielding avoids, or at least defers, disposal of the depleted uranium as waste. This report focuses on DUCRETE cask transportation issues. The approach studied involves placing the storage cask into a simple steel transportation overpack. Preliminary analyses were performed to demonstrate the transportation system`s ability to meet the structural, thermal, and shielding transportation criteria. Conservative manual calculations were performed to demonstrate the adequacy of the DUCRETE transportation overpack with respect to structural requirements. Two-dimensional thermal analyses were performed on the system (the DUCRETE storage cask inside the steel overpack) using the ANSYS thermal analysis code. Two-dimensional shielding analyses were performed on the system with the MCNP code. Effects of the fuel axial burnup profile and solar radiation are considered. The analyses show that the proposed system can meet the transportation structural criteria and can easily meet the transportation shielding criteria. The thermal criteria are not as easy to meet because when the storage cask is placed horizontally in the transportation overpack, the DUCRETE storage cask`s ventilation duct becomes an insulating dead air space. The maximum allowable temperature for the DUCRETE, which is not yet known, will be the limiting factor.

  15. X-ray computed tomography studies of gas storage and transport in Devonian shales

    SciTech Connect

    Lu, X.; Miao, P.; Watson, A.T. . Dept. of Chemical Engineering); Pepin, G.P.; Moss, R.M. ); Semmelbeck, M. )

    1994-07-01

    Devonian shales and other unconventional resources can be highly fractured and may have significant amounts of gas stored by adsorption. Conventional experiments are not well suited for characterizing the properties important for describing gas storage and transport in these media. Here, X-ray computed tomography scanning is used to determine gas storage in dynamic gas flow experiments on Devonian shale samples. Several important properties are obtained from these experiments, including fracture widths, adsorption isotherms, and matrix porosities and permeabilities.

  16. Biological transport processes and space dimension.

    PubMed

    Nadler, W; Stein, D L

    1991-08-01

    We discuss the generic time behavior of reaction-diffusion processes capable of modeling various types of biological transport processes, such as ligand migration in proteins and gating fluctuations in ion channel proteins. The main observable in these two cases, the fraction of unbound ligands and the probability of finding the channel in the closed state, respectively, exhibits an algebraic t-1/2 decay at intermediate times, followed by an exponential cutoff. We provide a simple framework for understanding these observations and explain their ubiquity by showing that these qualitative results are independent of space dimension. We also derive an experimental criterion to distinguish between a one-dimensional process and one whose effective dimension is higher.

  17. Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid

    SciTech Connect

    Liu, Jun; Zhang, Jiguang; Yang, Zhenguo; Lemmon, John P.; Imhoff, Carl H.; Graff, Gordon L.; Li, Liyu; Hu, Jian Z.; Wang, Chong M.; Xiao, Jie; Xia, Guanguang; Viswanathan, Vilayanur V.; Baskaran, Suresh; Sprenkle, Vincent L.; Li, Xiaolin; Shao, Yuyan; Schwenzer, Birgit

    2013-02-15

    Large-scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li-ion batteries, sodium (sulfur and metal halide) batteries, Pb-acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.

  18. A multidisciplinary study of iron transport and storage in the marine green alga Tetraselmis suecica.

    PubMed

    Hartnett, Andrej; Böttger, Lars H; Matzanke, Berthold F; Carrano, Carl J

    2012-11-01

    The iron uptake and storage systems of terrestrial/higher plants are now reasonably well understood with two basic strategies being distinguished: strategy I involves the induction of a Fe(III)-chelate reductase (ferrireductase) along with Fe(II) or Fe(III) transporter proteins while strategy II plants have evolved sophisticated systems based on high-affinity, iron specific, binding compounds called phytosiderophores. In contrast, there is little knowledge about the corresponding systems in marine, plant-like lineages. Herein we report a study of the iron uptake and storage mechanisms in the green alga Tetraselmis suecica. Short term radio-iron uptake studies indicate that iron is taken up by Tetraselmis in a time and concentration dependent manner consistent with an active transport process. Based on inhibitor and other studies it appears that a reductive-oxidative pathway such as that found in yeast and the green alga Chlamydomonas reinhardtii is likely. Upon long term exposure to (57)Fe we have been able, using a combination of Mössbauer and X-ray absorption spectroscopies, to identify three metabolites. The first exhibits Mössbauer parameters typical of a [Fe(4)S(4)](2+) cluster and which accounts for approximately 10% of the total intracellular iron pool. The second displays a spectrum typical of a [Fe(II)O(6)] system accounting for approximately 2% of the total pool. The largest component (ca. 85+%) consists of polymeric iron-oxo mineral species with parameters between that of the crystalline ferrihydrite core of animal ferritins and the amorphous hydrated ferric phosphate of bacterial and plant ferritins.

  19. Bacteriorhodopsin films for optical signal processing and data storage

    NASA Technical Reports Server (NTRS)

    Walkup, John F. (Principal Investigator); Mehrl, David J. (Principal Investigator)

    1996-01-01

    This report summarizes the research results obtained on NASA Ames Grant NAG 2-878 entitled 'Investigations of Bacteriorhodopsin Films for Optical Signal Processing and Data Storage.' Specifically we performed research, at Texas Tech University, on applications of Bacteriorhodopisin film to both (1) dynamic spatial filtering and (2) holographic data storage. In addition, measurements of the noise properties of an acousto-optical matrix-vestor multiplier built for NASA Ames by Photonic Systems Inc. were performed at NASA Ames' Photonics Laboratory. This research resulted in two papers presented at major optical data processing conferences and a journal paper which is to appear in APPLIED OPTICS. A new proposal for additional BR research has recently been submitted to NASA Ames Research Center.

  20. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  1. Slurry ice thermal energy storage for cheese process cooling

    SciTech Connect

    Gladis, S.P.

    1997-12-31

    Many industrial processes require a large load to be cooled in a relatively short period. These loads often utilize supply chilled-water temperatures in the range of 34 F (1.1 C) to 36 F (2.2 C). The low water temperatures can be supplied from conventional on-demand chillers, such as falling film water chillers or shell-and-tube chillers using a brine solution. The low water temperatures can also be supplied from thermal energy storage (TES) systems, such as static ice builders, or dynamic ice systems, such as an ice harvester or slurry ice maker. The benefits of using a TES system in industrial processes, versus an on-demand chiller, include smaller refrigeration equipment, reserve cooling capacity, lower electrical capacity requirements, and lower energy costs. This paper outlines a unique type of dynamic slurry ice system applied to a cheese processing plant. Dynamic ice systems separate the manufacture of ice from the storage of ice. These systems are capable of satisfying very large loads of short duration by rapidly melting stored ice. Rapid melting of ice is achievable with dynamic ice-type TES systems because the warm water returning from the load comes in direct contact with the ice in storage.

  2. Improvement of storage, handling, and transportability of fine coal. Final report

    SciTech Connect

    Maxwell, R.C. Jr.; Jamison, P.R.

    1996-03-01

    The Mulled Coal process is a technology which has evolved from a line of investigations which began in the 1970`s. There was a major breakthrough in 1990, and since then, with significant support from DOE-PETC, the technology has progressed from the conceptual stage to a proven laboratory process. It is a simple process which involves the addition of a low cost specifically formulated reagent to wet fine coal by mixing the two in a pug mill. Although the converted material (Mulled Coal) retains some of its original surface moisture, it handles, transports, and stores like dry coal. But, unlike thermally dried fine coal Mulled Coal is not dusty, it will not rewet, and it causes no fugitive dust problems. This project was designed to advance the technology from the status of a process which works well in the laboratory to the status of a technology which is fully ready for commercialization. Project objectives were to: 1. Prove the concept that the technology can be used to produce Mulled Coal of a consistent quality, on a continuous basis, at a convincing rate of production, and at a major preparation plant which produces fine clean coal on a commercial basis. 2. Prove the concept that Mulled Coal, either as a blend with coarser clean coal or as a stand-alone fuel will successfully pass through a representative cross section of conventional coal storage, handling and transportation environments without causing any of the problems normally associated with wet fine coal. 3 Test the design and reliability of Mulled Coal circuit equipment and controls. 4. Test the circuit over a wide range of operating conditions. 5. Project scale-up designs for major equipment components and control circuits. 6. Forecast capital and operating costs for commercial circuits ranging from 25 TPH to 75 TPH. This report describes the work, the test results, and conclusions at each step along the way.

  3. Chill Down Process of Hydrogen Transport Pipelines

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Klausner, James

    2006-01-01

    A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.

  4. Space transportation main engine cycle assessment process

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, H. V.; Lyles, G. M.

    1991-01-01

    The Advanced Launch System (ALS) program selection process for a space transportation main engine (STME) power cycle is described in terms of the methodology employed. Low cost, robustness, and high reliability are the primary parameters for engine choice, suggesting simplicity of design and efficient fabrication methods as the crucial characteristics. An evaluation methodology is developed based on the Pugh (1981) process and the King (1989) matrices. The cycle configurations considered are the gas generator (GG), the closed expander, and the open expander. The cycle assessment team determined that the GG cycle is favored by most cycle discriminators, based on an assessment of the characteristics in terms of ALS goals. The lower development risk of the GG-cycle STME is consistent with the goals of the ALS program in terms of reliability and cost efficiency.

  5. Transport and storage of radioactive materials -- 1996. PVP-Volume 334

    SciTech Connect

    Carlson, R.W.; Hafner, R.S.; Lake, W.H.

    1996-12-01

    The design of packagings for the transport of radioactive materials is a constantly evolving activity due primarily to new materials, new design approaches, and a better understanding of the regulations. The papers included here were prepared to address engineering or regulatory issues associated with the transport or storage of radioactive materials. However, the subject matter can also have applications to solutions for problems in other areas. Separate abstracts were prepared 6 papers.

  6. Saturn Plasma Sources and Associated Transport Processes

    NASA Astrophysics Data System (ADS)

    Blanc, M.; Andrews, D. J.; Coates, A. J.; Hamilton, D. C.; Jackman, C. M.; Jia, X.; Kotova, A.; Morooka, M.; Smith, H. T.; Westlake, J. H.

    2015-10-01

    This article reviews the different sources of plasma for Saturn's magnetosphere, as they are known essentially from the scientific results of the Cassini-Huygens mission to Saturn and Titan. At low and medium energies, the main plasma source is the H2O cloud produced by the "geyser" activity of the small satellite Enceladus. Impact ionization of this cloud occurs to produce on the order of 100 kg/s of fresh plasma, a source which dominates all the other ones: Titan (which produces much less plasma than anticipated before the Cassini mission), the rings, the solar wind (a poorly known source due to the lack of quantitative knowledge of the degree of coupling between the solar wind and Saturn's magnetosphere), and the ionosphere. At higher energies, energetic particles are produced by energy diffusion and acceleration of lower energy plasma produced by the interchange instabilities induced by the rapid rotation of Saturn, and possibly, for the highest energy range, by contributions from the CRAND process acting inside Saturn's magnetosphere. Discussion of the transport and acceleration processes acting on these plasma sources shows the importance of rotation-induced radial transport and energization of the plasma, and also shows how much the unexpected planetary modulation of essentially all plasma parameters of Saturn's magnetosphere remains an unexplained mystery.

  7. 41 CFR 302-9.11 - May I receive an advance of funds for transportation and emergency storage of my POV?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of funds for transportation and emergency storage of my POV? 302-9.11 Section 302-9.11 Public... STORAGE OF PROPERTY 9-ALLOWANCES FOR TRANSPORTATION AND EMERGENCY STORAGE OF A PRIVATELY OWNED VEHICLE General Rules § 302-9.11 May I receive an advance of funds for transportation and emergency storage of...

  8. Effect of Processing and Subsequent Storage on Nutrition

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele H.

    2009-01-01

    This viewgraph presentation includes the following objectives: 1) To determine the effects of thermal processing, freeze drying, irradiation, and storage time on the nutritional content of food; 2) To evaluate the nutritional content of the food items currently used on the International Space Station and Shuttle; and 3) To determine if there is a need to institute countermeasures. (This study does not seek to address the effect of processing on nutrients in detail, but rather aims to place in context the overall nutritional status at the time of consumption).

  9. Influence of methane in CO2 transport and storage for CCS technology.

    PubMed

    Blanco, Sofía T; Rivas, Clara; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2012-12-01

    CO(2) Capture and Storage (CCS) is a good strategy to mitigate levels of atmospheric greenhouse gases. The type and quantity of impurities influence the properties and behavior of the anthropogenic CO(2), and so must be considered in the design and operation of CCS technology facilities. Their study is necessary for CO(2) transport and storage, and to develop theoretical models for specific engineering applications to CCS technology. In this work we determined the influence of CH(4), an important impurity of anthropogenic CO(2), within different steps of CCS technology: transport, injection, and geological storage. For this, we obtained new pressure-density-temperature (PρT) and vapor-liquid equilibrium (VLE) experimental data for six CO(2) + CH(4) mixtures at compositions which represent emissions from the main sources in the European Union and United States. The P and T ranges studied are within those estimated for CO(2) pipelines and geological storage sites. From these data we evaluated the minimal pressures for transport, regarding the density and pipeline's capacity requirements, and values for the solubility parameter of the mixtures, a factor which governs the solubility of substances present in the reservoir before injection. We concluded that the presence of CH(4) reduces the storage capacity and increases the buoyancy of the CO(2) plume, which diminishes the efficiency of solubility and residual trapping of CO(2), and reduces the injectivity into geological formations.

  10. Research on Spent Fuel Storage and Transportation in CRIEPI (Part 2 Concrete Cask Storage)

    SciTech Connect

    Koji Shirai; Jyunichi Tani; Taku Arai; Masumi Watatu; Hirofumi Takeda; Toshiari Saegusa; Philip L. Winston

    2008-10-01

    Concrete cask storage has been implemented in the world. At a later stage of storage period, the containment of the canister may deteriorate due to stress corrosion cracking phenomena in a salty air environment. High resistant stainless steels against SCC have been tested as compared with normal stainless steel. Taking account of the limited time-length of environment with certain level of humidity and temperature range, the high resistant stainless steels will survive from SCC damage. In addition, the adhesion of salt from salty environment on the canister surface will be further limited with respect to the canister temperature and angle of the canister surface against the salty air flow in the concrete cask. Optional countermeasure against SCC with respect to salty air environment has been studied. Devices consisting of various water trays to trap salty particles from the salty air were designed to be attached at the air inlet for natural cooling of the cask storage building. Efficiency for trapping salty particles was evaluated. Inspection of canister surface was carried out using an optical camera inserted from the air outlet through the annulus of a concrete cask that has stored real spent fuel for more than 15 years. The camera image revealed no gross degradation on the surface of the canister. Seismic response of a full-scale concrete cask with simulated spent fuel assemblies has been demonstrated. The cask did not tip over, but laterally moved by the earthquake motion. Stress generated on the surface of the spent fuel assemblies during the earthquake motion were within the elastic region.

  11. Low temperature storage container for transporting perishables to space station

    NASA Technical Reports Server (NTRS)

    Owen, James W. (Inventor); Dean, William G. (Inventor)

    1989-01-01

    Two storage containers are disclosed within which food or biological samples may be stored for transfer in a module by the space shuttle to a space station while maintaining the food or samples at very low temperatures. The container is formed in two parts, each part having an inner shell and an outer shell disposed about the inner shell. The space between the shells is filled with a continuous wrap multi-layer insulation and a getter material. The two parts of the container have interlocking members and when connected together are sealed for preventing leakage from the space between the shells. After the two parts are filled with frozen food or samples they are connected together and a vacuum is drawn in the space between the shells and the container is stored in the module. For the extremely low temperature requirements of biological samples, an internal liner having a phase change material charged by a refrigerant coil is disposed in the space between the shells, and the container is formed from glass fiber material including honeycomb structural elements. All surfaces of the glass fiber which face the vacuum space are lined with a metal foil.

  12. Mass storage systems for data transport in the early space station era 1992-1998

    NASA Technical Reports Server (NTRS)

    Carper, Richard (Editor); Dalton, John (Editor); Healey, Mike (Editor); Kempster, Linda (Editor); Martin, John (Editor); Mccaleb, Fred (Editor); Sobieski, Stanley (Editor); Sos, John (Editor)

    1987-01-01

    NASA's Space Station Program will provide a vehicle to deploy an unprecedented number of data producing experiments and operational devices. Peak down link data rates are expected to be in the 500 megabit per second range and the daily data volume could reach 2.4 terabytes. Such startling requirements inspired an internal NASA study to determine if economically viable data storage solutions are likely to be available to support the Ground Data Transport segment of the NASA data system. To derive the requirements for data storage subsystems, several alternative data transport architectures were identified with different degrees of decentralization. Data storage operations at each subsystem were categorized based on access time and retrieval functions, and reduced to the following types of subsystems: First in First out (FIFO) storage, fast random access storage, and slow access with staging. The study showed that industry funded magnetic and optical storage technology has a reasonable probability of meeting these requirements. There are, however, system level issues that need to be addressed in the near term.

  13. The Storage, Transportation, and Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Younker, J. L.

    2002-12-01

    The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form

  14. 75 FR 9452 - Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... COMMISSION Solicitation of Topics for Discussion at a Spent Fuel Storage and Transportation Licensing Conference AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Solicitation of Topics for Discussion at a... Commission (NRC) is soliciting input on topics for discussion at a proposed June 23-24, 2010, public...

  15. 75 FR 53686 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... spent nuclear fuel and nuclear waste. The Co-chairs of the Commission requested the formation of the T&S... Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice...

  16. 75 FR 64720 - Blue Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... spent nuclear fuel and nuclear waste. The Co-chairs of the Commission requested the formation of the T&S... Ribbon Commission on America's Nuclear Future, Transportation and Storage Subcommittee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of Open Meeting. SUMMARY: This notice announces...

  17. 10 CFR 34.31 - Inspection and maintenance of radiographic exposure devices, transport and storage containers...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Inspection and maintenance of radiographic exposure devices, transport and storage containers, associated equipment, source changers, and survey instruments. 34.31 Section 34.31 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS FOR...

  18. Development of enhanced heat transfer/transport/storage slurries for thermal-system improvement

    SciTech Connect

    Kasza, K.E.; Chen, M.M.

    1983-01-01

    This paper presents a formulation of a new concept for improving thermal-system performance by utilizing the combined mechanisms of enhanced heat transfer, transport, and thermal-energy storage associated with a phase-change slurry as the working fluid.

  19. Simplified models of transport and reactions in conditions of CO2 storage in saline aquifers

    NASA Astrophysics Data System (ADS)

    Suchodolska, Katarzyna; Labus, Krzysztof

    2016-04-01

    Simple hydrogeochemical models may serve as tools of preliminary assessment of CO2 injection and sequestraton impact on the aquifer and cap-rocks. In order to create models of reaction and transport in conditions of CO2 injection and storage, the TOUGHREACT simulator, and the Geochemist's Workbench software were applied. The chemical composition of waters for kinetic transport models based on the water - rock equilibrium calculations. Analyses of reaction and transport of substances during CO2 injection and storage period were carried out in three scenarios: one-dimensional radial model, and two-dimensional model of CO2 injection and sequestration, and one-dimensional model of aquifer - cap-rock interface. Modeling was performed in two stages. The first one simulated the immediate changes in the aquifer and insulating rocks impacted by CO2 injection (100 days in case of reaction model and 30 years in transport and reaction model), the second - enabled assessment of long-term effects of sequestration (20000 years). Reactions' quality and progress were monitored and their effects on formation porosity and sequestration capacity in form of mineral, residual and free phase of CO2 were calculated. Calibration of numerical models (including precipitation of secondary minerals, and correction of kinetics parameters) describing the initial stage of injection, was based on the experimental results. Modeling allowed to evaluate the pore space saturation with gas, changes in the composition and pH of pore waters, relationships between porosity and permeability changes and crystallization or dissolution minerals. We assessed the temporal and spatial extent of crystallization processes, and the amount of carbonates trapping. CO2 in mineral form. The calculated sequestration capacity of analyzed formations reached n·100 kg/m3 for the: dissolved phase - CO(aq), gas phase - CO2(g) and mineral phase, but as much as 101 kg/m3 for the supercritical phase - SCCO2. Processes of gas

  20. Monitoring of sediment transport processes using tracer stones

    NASA Astrophysics Data System (ADS)

    Redtenbacher, Matthias; Harb, Gabriele; Barbas, Teresa; Schneider, Josef

    2014-05-01

    In the last decades the vulnerability of our civilization to geomorphological damaging events like debris flows and exceptional floods increased. The reasons are, on one side, that the global hydrological cycle became more intense during the recent past and on the other side that the material assets of the population increased. Risk prevention, risk analysis and forecast methods thus became more important. Geomorphological processes are often not easy to analyse. To get information about the probability and the consequences of these increasing events, it is necessary to analyse the availability of sediments in the catchment area, the erosion processes of the sediment and the transport of the sediments along torrents. The project ClimCatch, which started in April 2012, investigates the torrential sediment transport processes in a non-glaciated Alpine valley in Austria and the related natural hazards under the viewpoint of the on-going climate change. Due to an extreme precipitation event in 2011 debris flow-similar discharges occurred in this catchment and since that the sediment sources are highly erodible there. The aims of the project are to derive a quantitative sediment budget model, including geomorphic process domains, determining sediment transport in the river system and the measurement of bed load output, besides others. To quantify river sediment dynamics several different methodologies are applied within the project. Discharge and sediment transport measurement as well as hydrological stations are installed in the catchment area. Aggradation and erosion are analysed by means of laser scanning technology in the sediment storage basin which is located at the outlet of the catchment. The observation and measurement of the sediment transport is performed by the application of radio telemetry stones and colour tracer stones. Line pebble counting, automated grain size determination using photographs and sieving on-site is performed to get qualitative sediment

  1. [Oxidative and hydrolytic deterioration of palm oil and fat products based on it under various conditions of storage and transportation].

    PubMed

    Bessonov, V V; Zaĭtseva, L V; Stepanova, L I; Baĭkov, V G

    2012-01-01

    Studies have been conducted on the effect of storage conditions for refined deodorized palm oil on the quality and safety: in containers made of ferrous metals (mild steel) at unregulated temperature, in sealed plastic bags at the temperature -20 degrees C in stainless steel under stratification of nitrogen at the temperature of 40+/-1 degrees C. The choice of the objects of study determined by the normative documents of the Russian Federation governing the transportation and storage of vegetable oils and fat products based on them. All samples of palm oil with peroxide value of 1,0 to 1,5 meq O2/kg indicated the presence of a weak foreign taste, is not peculiar impersonalfat, the samples with peroxide value above 1,5 meq O2/kg were observed pronounced off-flavors and odors characteristic of stale oil. Rancidity was observed in samples having peroxide value of 2,0 meq O2/kg or more. Free acid value and anizidin value for the studied period changed to a lesser extent, from 0,06 to 0,1 mg KOH/g and from 1,2 to 1,4 respectively. It is proved that, transportation/storage of palm oil at the temperature above 50 degrees C without stratification of nitrogen greatly accelerates the process of oxidative damage. Based on these data we can recommend transportation/storage and management process with the least possible time of contact of melted palm oil with oxygen to produce high-quality final product (within 2-3 hours from the time of melting).

  2. Signal Processing Model for Radiation Transport

    SciTech Connect

    Chambers, D H

    2008-07-28

    This note describes the design of a simplified gamma ray transport model for use in designing a sequential Bayesian signal processor for low-count detection and classification. It uses a simple one-dimensional geometry to describe the emitting source, shield effects, and detector (see Fig. 1). At present, only Compton scattering and photoelectric absorption are implemented for the shield and the detector. Other effects may be incorporated in the future by revising the expressions for the probabilities of escape and absorption. Pair production would require a redesign of the simulator to incorporate photon correlation effects. The initial design incorporates the physical effects that were present in the previous event mode sequence simulator created by Alan Meyer. The main difference is that this simulator transports the rate distributions instead of single photons. Event mode sequences and other time-dependent photon flux sequences are assumed to be marked Poisson processes that are entirely described by their rate distributions. Individual realizations can be constructed from the rate distribution using a random Poisson point sequence generator.

  3. Howard Brenner's Legacy for Biological Transport Processes

    NASA Astrophysics Data System (ADS)

    Nitsche, Johannes

    2014-11-01

    This talk discusses the manner in which Howard Brenner's theoretical contributions have had, and long will have, strong and direct impact on the understanding of transport processes occurring in biological systems. His early work on low Reynolds number resistance/mobility coefficients of arbitrarily shaped particles, and particles near walls and in pores, is an essential component of models of hindered diffusion through many types of membranes and tissues, and convective transport in microfluidic diagnostic systems. His seminal contributions to macrotransport (coarse-graining, homogenization) theory presaged the growing discipline of multiscale modeling. For biological systems they represent the key to infusing diffusion models of a wide variety of tissues with a sound basis in their microscopic structure and properties, often over a hierarchy of scales. Both scientific currents are illustrated within the concrete context of diffusion models of drug/chemical diffusion through the skin. This area of theory, which is key to transdermal drug development and risk assessment of chemical exposure, has benefitted very directly from Brenner's contributions. In this as in other areas, Brenner's physicochemical insight, mathematical virtuosity, drive for fully justified analysis free of ad hoc assumptions, quest for generality, and impeccable exposition, have consistently elevated the level of theoretical understanding and presentation. We close with anecdotes showing how his personal qualities and warmth helped to impart high standards of rigor to generations of grateful research students. Authors are Johannes M. Nitsche, Ludwig C. Nitsche and Gerald B. Kasting.

  4. 41 CFR 302-7.100 - How are the charges of transporting HHG, and temporary storage calculated?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false How are the charges of transporting HHG, and temporary storage calculated? 302-7.100 Section 302-7.100 Public Contracts and Property...-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT...

  5. 41 CFR 302-7.100 - How are the charges of transporting HHG, and temporary storage calculated?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false How are the charges of transporting HHG, and temporary storage calculated? 302-7.100 Section 302-7.100 Public Contracts and Property...-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT...

  6. 41 CFR 302-9.8 - Must my agency authorize transportation or emergency or temporary storage of my POV?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 9-ALLOWANCES FOR TRANSPORTATION AND EMERGENCY OR TEMPORARY STORAGE OF A PRIVATELY OWNED VEHICLE General Rules... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false Must my agency...

  7. 41 CFR 302-7.1 - Who is eligible for the transportation and temporary storage of household goods (HHG) at...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... transportation and temporary storage of household goods (HHG) at Government expense? 302-7.1 Section 302-7.1... BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.1 Who is eligible for the transportation and temporary storage of household goods (HHG) at Government expense? The following are eligible for...

  8. Solute transport in heterogeneous karst systems: Dimensioning and estimation of the transport parameters via multi-sampling tracer-tests modelling using the OTIS (One-dimensional Transport with Inflow and Storage) program

    NASA Astrophysics Data System (ADS)

    Dewaide, Lorraine; Bonniver, Isabelle; Rochez, Gaëtan; Hallet, Vincent

    2016-03-01

    This paper presents the modelling results of several tracer-tests performed in the cave system of Han-sur-Lesse (South Belgium). In Han-sur-Lesse, solute flows along accessible underground river stretches and through flooded areas that are rather unknown in terms of geometry. This paper focus on the impact of those flooded areas on solute transport and their dimensioning. The program used (One-dimensional Transport with Inflow and Storage: OTIS) is based on the two-region non equilibrium model that supposes the existence of an immobile water zone along the main flow zone in which solute can be caught. The simulations aim to replicate experimental breakthrough curves (BTCs) by adapting the main transport and geometric parameters that govern solute transport in karst conduits. Furthermore, OTIS allows a discretization of the investigated system, which is particularly interesting in systems presenting heterogeneous geometries. Simulation results show that transient storage is a major process in flooded areas and that the crossing of these has a major effect on the BTCs shape. This influence is however rather complex and very dependent of the flooded areas geometry and transport parameters. Sensibility tests performed in this paper aim to validate the model and show the impact of the parametrization on the BTCs shape. Those tests demonstrate that transient storage is not necessarily transformed in retardation. Indeed, significant tailing effect is only observed in specific conditions (depending on the system geometry and/or the flow) that allow residence time in the storage area to be longer than restitution time. This study ends with a comparison of solute transport in river stretches and in flooded areas.

  9. New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques

    SciTech Connect

    Brown, T.D.; Taylor, C.E.; Bernardo, M.

    2010-01-01

    Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned

  10. Carbonless Transportation and Energy Storage in Future Energy Systems

    SciTech Connect

    Lamont, A.D.; Berry, G.D.

    2001-01-17

    By 2050 world population is projected to stabilize near 10 billion. Global economic development will outpace this growth, achieving present European per capita living standards by quintupling the size of the global economy--and increasing energy use, especially electricity, substantially. Even with aggressive efficiency improvements, global electricity use will at least triple to 30 trillion kWh/yr in 2050. Direct use of fuels, with greater potential for efficiency improvement, may be held to 80 trillion kWh (289 EJ) annually, 50% above present levels (IPCC, 1996). Sustaining energy use at these or higher rates, while simultaneously stabilizing atmospheric greenhouse gas levels, will require massive deployment of carbon-conscious energy systems for electricity generation and transportation by the mid 21st Century. These systems will either involve a shift to non-fossil primary energy sources (such as solar, wind, biomass, nuclear, and hydroelectric) or continue to rely on fossil primary energy sources and sequester carbon emissions (Halmann, 1999). Both approaches share the need to convert, transmit, store and deliver energy to end-users through carbonless energy carriers.

  11. Storage and Transport of Hydrocarbons in Organic-Rich Mudstones

    NASA Astrophysics Data System (ADS)

    Kleinberg, R. L.; Falk, K. I.; Coasne, B. A.

    2014-12-01

    Organic-rich mudstones - also called source rocks - are capable of economically producing significant quantities of oil and natural gas. Although the static physical and chemical properties of these rocks are generally well understood, the dynamics of hydrocarbon fluids in them is still a matter of conjecture and debate. In conventional porous petroleum reservoirs, the solid matrix is composed of inorganic minerals such as quartz or calcite, pore sizes are in the range of micrometers, and the following assumptions generally hold to a high degree of approximation: (1) thermodynamic and transport properties of the pore fluids are identical to their bulk values; (2) matrix solids are inert; (3) fluid-solid interactions are fully described by simple notions of wettability. In contrast, in source rock, oil and gas are in intimate contact with an organic solid called kerogen, the pore spaces of which are comparable to molecular dimensions. Therefore the dynamics of hydrocarbons in organic-rich mudstones must take into account significant departures from bulk thermodynamics and hydrodynamics, and fluid-solid interactions are molecular-species specific. We present a multi-scale model of organic-rich mudstone that is consistent with a variety of molecular-level computations and physical property measurements, and that may serve as a basis for understanding the oil and gas production mechanisms of these rocks.

  12. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40 percent of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement are discussed. Potential annual fuel savings, with large scale implementation of near-term TES systems for these three industries, is nearly 9,000,000 bbl of oil.

  13. Thermal storage for industrial process and reject heat

    NASA Technical Reports Server (NTRS)

    Duscha, R. A.; Masica, W. J.

    1978-01-01

    Industrial production uses about 40% of the total energy consumed in the United States. The major share of this is derived from fossil fuel. Potential savings of scarce fuel is possible through the use of thermal energy storage (TES) of reject or process heat for subsequent use. Results of study contracts awarded by the Department of Energy (DOE) and managed by the NASA Lewis Research Center have identified three especially significant industries where high temperature TES appears attractive - paper and pulp, iron and steel, and cement. Potential annual fuel savings with large scale implementation of near-term TES systems for these three industries is nearly 9 million bbl of oil.

  14. Lactose in dairy ingredients: Effect on processing and storage stability.

    PubMed

    Huppertz, Thom; Gazi, Inge

    2016-08-01

    Lactose is the main carbohydrate in the milk of most species. It is present in virtually all dry dairy ingredients, with levels ranging from <2% (e.g., caseinates, milk protein isolates) to 100% in lactose powders. The presence of lactose has a strong effect on ingredient processing and stability. Lactose can negatively influence powder properties and lead to undesirable effects, such as the stickiness of powder resulting in fouling during drying, or caking and related phenomena during storage. In addition, being a reducing carbohydrate, lactose can also participate in the Maillard reaction with free amino groups of proteins, peptides, and free AA. In this review, the influence of the presence (or absence) of lactose on physiochemical properties of dairy ingredients is reviewed, with particular emphasis on behavior during processing and storage. Particularly important features in this respect are whether lactose is in the (glassy) amorphous phase or in the crystalline phase, which is strongly affected by precrystallization conditions (e.g., in lactose, permeate, and whey powders) and by drying conditions. Furthermore, the moisture content and water activity of the ingredients are important parameters to consider, as they determine both mobility and reactivity, influencing Maillard reactions and concomitant browning, the crystallization of amorphous lactose during storage of dairy ingredients, glass transitions temperatures, and associated stickiness and caking phenomena. For the stickiness and caking, a crucial aspect to take into account is powder particle surface composition in relation to the bulk powder. Lactose is typically underrepresented at the powder surface, as a result of which deviations between observed lactose-induced caking and stickiness temperatures, and determined glass transition temperatures arise. By considering lactose as an integral part of ingredient composition along with all other compositional and environmental properties, lactose

  15. Development of a container for the transportation and storage of plutonium bearing materials

    SciTech Connect

    Ammerman, D.; Geinitz, R.; Thorp, D.; Rivera, M.

    1998-03-01

    There is a large backlog of plutonium contaminated materials at the Rocky Flats Environmental Technology Site near Denver, Colorado, USA. The clean-up of this site requires this material to be packaged in such a way as to allow for efficient transportation to other sites or to a permanent geologic repository. Prior to off-site shipment of the material, it may be stored on-site for a period of time. For this reason, it is desirable to have a container capable of meeting the requirements for storage as well as the requirements for transportation. Most of the off-site transportation is envisioned to take place using the TRUPACT-II Type B package, with the Waste Isolation Pilot Plant (WIPP) as the destination. Prior to the development of this new container, the TRUPACT-II had a limit of 325 FGE (fissile gram equivalents) of plutonium due to criticality control concerns. Because of the relatively high plutonium content in the material to be transported, transporting 325 FGE per TRUPACT-II is uneconomical. Thus, the purpose of the new containers is to provide criticality control to increase the allowed TRUPACT-II payload and to provide a safe method for on-site storage prior to transport. This paper will describe the analysis and testing used to demonstrate that the Pipe Overpack Container provides safe on-site storage of plutonium bearing materials in unhardened buildings and provides criticality control during transportation within the TRUPACT-II. Analyses included worst-case criticality analyses, analyses of fork-lift time impacts, and analyses of roof structure collapse onto the container. Testing included dynamic crush tests, bare pipe impact tests, a 30-minute totally engulfing pool-fire test, and multiple package impact tests in end-on and side-on orientations.

  16. Reactive Transport Modeling of Cap Rock Integrity During Natural and Engineered CO2 Storage

    SciTech Connect

    Johnson, J W; Nitao, J J; Morris, J P

    2004-05-26

    Long-term cap rock integrity represents the single most important constraint on the long-term isolation performance of natural and engineered CO{sub 2} storage sites. CO{sub 2} influx that forms natural accumulations and CO{sub 2} injection for EOR/sequestration or saline-aquifer disposal both lead to concomitant geochemical alteration and geomechanical deformation of the cap rock, enhancing or degrading its seal integrity depending on the relative effectiveness of these interdependent processes. Using our reactive transport simulator (NUFT), supporting geochemical databases and software (GEMBOCHS, SUPCRT92), and distinct-element geomechanical model (LDEC), we have shown that influx-triggered mineral dissolution/precipitation reactions within typical shale cap rocks continuously reduce microfracture apertures, while pressure and effective-stress evolution first rapidly increase then slowly constrict them. For a given shale composition, the extent of geochemical enhancement is nearly independent of key reservoir properties (permeability and lateral continuity) that distinguish EOR/sequestration and saline-aquifer settings and CO{sub 2} influx parameters (rate, focality, and duration) that distinguish engineered disposal sites and natural accumulations, because these characteristics and parameters have negligible (indirect) impact on mineral dissolution/precipitation rates. In contrast, the extent of geomechanical degradation is highly dependent on these reservoir properties and influx parameters because they effectively dictate magnitude of the pressure perturbation; specifically, initial geomechanical degradation has been shown inversely proportional to reservoir permeability and lateral continuity and proportional to influx rate. Hence, while the extent of geochemical alteration is nearly independent of filling mode, that of geomechanical deformation is significantly more pronounced during engineered injection. This distinction limits the extent to which naturally

  17. Components and regulation of nuclear transport processes.

    PubMed

    Cautain, Bastien; Hill, Richard; de Pedro, Nuria; Link, Wolfgang

    2015-02-01

    The spatial separation of DNA replication and gene transcription in the nucleus and protein translation in the cytoplasm is a uniform principle of eukaryotic cells. This compartmentalization imposes a requirement for a transport network of macromolecules to shuttle these components in and out of the nucleus. This nucleo-cytoplasmic transport of macromolecules is critical for both cell physiology and pathology. Consequently, investigating its regulation and disease-associated alterations can reveal novel therapeutic approaches to fight human diseases, such as cancer or viral infection. The characterization of the nuclear pore complex, the identification of transport signals and transport receptors, as well as the characterization of the Ran system (providing the energy source for efficient cargo transport) has greatly facilitated our understanding of the components, mechanisms and regulation of the nucleo-cytoplasmic transport of proteins in our cells. Here we review this knowledge with a specific emphasis on the selection of disease-relevant molecular targets for potential therapeutic intervention.

  18. The effects of gas-fluid-rock interactions on CO2 injection and storage: Insights from reactive transport modeling

    SciTech Connect

    Xiao, Y.; Xu, T.; Pruess, K.

    2008-10-15

    Possible means of reducing atmospheric CO{sub 2} emissions include injecting CO{sub 2} in petroleum reservoirs for Enhanced Oil Recovery or storing CO{sub 2} in deep saline aquifers. Large-scale injection of CO{sub 2} into subsurface reservoirs would induce a complex interplay of multiphase flow, capillary trapping, dissolution, diffusion, convection, and chemical reactions that may have significant impacts on both short-term injection performance and long-term fate of CO{sub 2} storage. Reactive Transport Modeling is a promising approach that can be used to predict the spatial and temporal evolution of injected CO{sub 2} and associated gas-fluid-rock interactions. This presentation will summarize recent advances in reactive transport modeling of CO{sub 2} storage and review key technical issues on (1) the short- and long-term behavior of injected CO{sub 2} in geological formations; (2) the role of reservoir mineral heterogeneity on injection performance and storage security; (3) the effect of gas mixtures (e.g., H{sub 2}S and SO{sub 2}) on CO{sub 2} storage; and (4) the physical and chemical processes during potential leakage of CO{sub 2} from the primary storage reservoir. Simulation results suggest that CO{sub 2} trapping capacity, rate, and impact on reservoir rocks depend on primary mineral composition and injecting gas mixtures. For example, models predict that the injection of CO{sub 2} alone or co-injection with H{sub 2}S in both sandstone and carbonate reservoirs lead to acidified zones and mineral dissolution adjacent to the injection well, and carbonate precipitation and mineral trapping away from the well. Co-injection of CO{sub 2} with H{sub 2}S and in particular with SO{sub 2} causes greater formation alteration and complex sulfur mineral (alunite, anhydrite, and pyrite) trapping, sometimes at a much faster rate than previously thought. The results from Reactive Transport Modeling provide valuable insights for analyzing and assessing the dynamic

  19. [The design of heat dissipation of the field low temperature box for storage and transportation].

    PubMed

    Wei, Jiancang; Suin, Jianjun; Wu, Jian

    2013-02-01

    Because of the compact structure of the field low temperature box for storage and transportation, which is due to the same small space where the compressor, the condenser, the control circuit, the battery and the power supply device are all placed in, the design for heat dissipation and ventilation is of critical importance for the stability and reliability of the box. Several design schemes of the heat dissipation design of the box were simulated using the FLOEFD hot fluid analysis software in this study. Different distributions of the temperature field in every design scheme were constructed intimately in the present study. It is well concluded that according to the result of the simulation analysis, the optimal heat dissipation design is decent for the field low temperature box for storage and transportation, and the box can operate smoothly for a long time using the results of the design. PMID:23488142

  20. Candidate thermal energy storage technologies for solar industrial process heat applications

    NASA Technical Reports Server (NTRS)

    Furman, E. R.

    1979-01-01

    A number of candidate thermal energy storage system elements were identified as having the potential for the successful application of solar industrial process heat. These elements which include storage media, containment and heat exchange are shown.

  1. A Preliminary Evaluation of Using Fill Materials to Stabilize Used Nuclear Fuel During Storage and Transportation

    SciTech Connect

    Maheras, Steven J.; Best, Ralph; Ross, Steven B.; Lahti, Erik A.; Richmond, David J.

    2012-08-01

    This report contains a preliminary evaluation of potential fill materials that could be used to fill void spaces in and around used nuclear fuel contained in dry storage canisters in order to stabilize the geometry and mechanical structure of the used nuclear fuel during extended storage and transportation after extended storage. Previous work is summarized, conceptual descriptions of how canisters might be filled were developed, and requirements for potential fill materials were developed. Elements of the requirements included criticality avoidance, heat transfer or thermodynamic properties, homogeneity and rheological properties, retrievability, material availability and cost, weight and radiation shielding, and operational considerations. Potential fill materials were grouped into 5 categories and their properties, advantages, disadvantages, and requirements for future testing were discussed. The categories were molten materials, which included molten metals and paraffin; particulates and beads; resins; foams; and grout. Based on this analysis, further development of fill materials to stabilize used nuclear fuel during storage and transportation is not recommended unless options such as showing that the fuel remains intact or canning of used nuclear fuel do not prove to be feasible.

  2. Use of transportable storage casks in the nuclear waste management system: Appendices

    SciTech Connect

    Not Available

    1987-12-01

    A study was performed to determine the viability of the use of transportable storage casks (TSCs), and other metal casks that are designed primarily for storage but which might be used to ship their stored contents to DOE on a one-time use basis (referred to in this study as storage only casks, or SOCs), in the combined utility/DOE spent fuel management system. The viability of the use of TSCs and SOCs was assessed in terms of the costs and savings involved in their use, the sensitivity of these costs and savings to changes in the capacity and cost of fabrication of the casks, the impacts of variation in cask design features on cost and radiation exposure of personnel, and their prospective use in connection with the transport of defense high level wastes. Estimates were developed of the costs of acquiring and handling of TSCs and SOCs at reactor sites. For comparison purposes, similar costs were developed for the use of concrete storage casks at reactor sites. Estimates of the savings involved to the DOE system as a result of receiving spent fuel in TSCs or SOCs were separately developed. These costs are developed and presented in Volume 2, Appendices A through J.

  3. Nickel-hydrogen battery design for the Transporter Energy Storage Subsystem (TESS)

    NASA Technical Reports Server (NTRS)

    Lapinski, John R.; Bourland, Deborah S.

    1992-01-01

    Information is given in viewgraph form on nickel hydrogen battery design for the transporter energy storage subsystem (TESS). Information is given on use in the Space Station Freedom, the launch configuration, use in the Mobile Servicing Center, battery design requirements, TESS subassembley design, proof of principle testing of a 6-cell battery, possible downsizing of TESS to support the Mobile Rocket Servicer Base System (MBS) redesign, TESS output capacity, and cell testing.

  4. Vertically Integrated Models for CO2 Storage with Coupled Thermal Processes

    NASA Astrophysics Data System (ADS)

    Gasda, S. E.; Gray, W. G.; Dahle, H. K.

    2014-12-01

    CO2 storage involves coupled processes that affect the migration and ultimate fate of injected CO2 over multiple length and time scales. Coupled thermal and mechanical processes may have implications for storage security, including thermally induced fracturing and loss of caprock integrity near the wellbore. This may occur when CO2 is injected at a different temperature from reservoir conditions, e.g. Snøhvit injection, potentially leading to large temperature, density and volume changes over space and time. In addition, thermally induced density changes impact plume buoyancy that may affect large-scale migration patterns in gravity-driven systems, e.g. Sleipner injection. This interaction becomes particularly important near the critical point. Therefore, thermal processes should be considered in order to correctly capture plume migration within the reservoir. A practical modeling approach for CO2 storage at the field scale is the vertical-equilibrium (VE) model, which solves partially integrated conservation equations for flow in two lateral dimensions. This class of models is well suited for strongly segregated flows. We extend the classical VE model to nonisothermal systems by integrating the heat transport equations, focusing on thermal processes that most impact the CO2 plume. The model allows for heating/cooling of the CO2 plume through heat exchange with the surrounding environment. The upscaling procedure assumes vertically constant temperature across the plume thickness for relatively thin plumes. Conduction across the plume boundaries, into the caprock above and brine below, is modeled by an analytical heat transfer function. As a starting point, we investigate the validity of the simplifying assumptions and heat transfer boundary conditions for relatively simple systems. We find that the upscaled model compares well for systems where heat advection in the plume is the dominant heat transport mechanism. For high CO2 flux, improvements to the model can be

  5. Performance of Four Transport and Storage Systems for Molecular Detection of Multidrug-Resistant Tuberculosis

    PubMed Central

    Rabodoarivelo, Marie Sylvianne; Imperiale, Bélen; andrianiavomikotroka, Rina; Brandao, Angela; Kumar, Parveen; Singh, Sarman; Ferrazoli, Lucilaine; Morcillo, Nora; Rasolofo, Voahangy; Palomino, Juan Carlos; Vandamme, Peter; Martin, Anandi

    2015-01-01

    Background Detection of drug-resistant tuberculosis is essential for the control of the disease but it is often hampered by the limitation of transport and storage of samples from remote locations to the reference laboratory. We performed a retrospective field study to evaluate the performance of four supports enabling the transport and storage of samples to be used for molecular detection of drug resistance using the GenoType MTBDRplus. Methods Two hundred Mycobacterium tuberculosis strains were selected and spotted on slides, FTA cards, GenoCards, and in ethanol. GenoType MTBDRplus was subsequently performed with the DNA extracted from these supports. Sensitivity and specificity were calculated and compared to the results obtained by drug susceptibility testing. Results For all supports, the overall sensitivity and specificity for detection of resistance to RIF was between 95% and 100%, and for INH between 95% and 98%. Conclusion The four transport and storage supports showed a good sensitivity and specificity for the detection of resistance to RIF and INH in M. tuberculosis strains using the GenoType MTBDRplus. These supports can be maintained at room temperature and could represent an important alternative cost-effective method useful for rapid molecular detection of drug-resistant TB in low-resource settings. PMID:26431352

  6. Managing aging effects on dry cask storage systems for extended long-term storage and transportation of used fuel - rev. 0

    SciTech Connect

    Chopra, O.K.; Diercks, D.; Fabian, R.; Ma, D.; Shah, V.; Tam, S.W.; Liu, Y.

    2012-07-06

    could affect the safe storage of the used fuel. The information contained in the license and CoC renewal applications will require NRC review to verify that the aging effects on the SSCs in DCSSs/ ISFSIs are adequately managed for the period of extended operation. To date, all of the ISFSIs located across the United States with more than 1,500 dry casks loaded with used fuel have initial license terms of 20 years; three ISFSIs (Surry, H.B. Robinson and Oconee) have received their renewed licenses for 20 years, and two other ISFSIs (Calvert Cliffs and Prairie Island) have applied for license renewal for 40 years. This report examines issues related to managing aging effects on the SSCs in DCSSs/ISFSIs for extended long-term storage and transportation of used fuels, following an approach similar to that of the Generic Aging Lessons Learned (GALL) report, NUREG-1801, for the aging management and license renewal of nuclear power plants. The report contains five chapters and an appendix on quality assurance for aging management programs for used-fuel dry storage systems. Chapter I of the report provides an overview of the ISFSI license renewal process based on 10 CFR 72 and the guidance provided in NUREG-1927. Chapter II contains definitions and terms for structures and components in DCSSs, materials, environments, aging effects, and aging mechanisms. Chapter III and Chapter IV contain generic TLAAs and AMPs, respectively, that have been developed for managing aging effects on the SSCs important to safety in the dry cask storage system designs described in Chapter V. The summary descriptions and tabulations of evaluations of AMPs and TLAAs for the SSCs that are important to safety in Chapter V include DCSS designs (i.e., NUHOMS{reg_sign}, HI-STORM 100, Transnuclear (TN) metal cask, NAC International S/T storage cask, ventilated storage cask (VSC-24), and the Westinghouse MC-10 metal dry storage cask) that have been and continue to be used by utilities across the country for

  7. Safety Standard for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage and Transportation. Revision

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Safety Standard, which establishes a uniform process for hydrogen system design, materials selection, operation, storage, and transportation, is presented. The guidelines include suggestions for safely storing, handling, and using hydrogen in gaseous (GH2), liquid (LH2), or slush (SLH2) form whether used as a propellant or non-propellant. The handbook contains 9 chapters detailing properties and hazards, facility design, design of components, materials compatibility, detection, and transportation. Chapter 10 serves as a reference and the appendices contained therein include: assessment examples; scaling laws, explosions, blast effects, and fragmentation; codes, standards, and NASA directives; and relief devices along with a list of tables and figures, abbreviations, a glossary and an index for ease of use. The intent of the handbook is to provide enough information that it can be used alone, but at the same time, reference data sources that can provide much more detail if required.

  8. Comparison of FecalSwab and ESwab Devices for Storage and Transportation of Diarrheagenic Bacteria

    PubMed Central

    Kaukoranta, Suvi-Sirkku

    2014-01-01

    Using a collection (n = 12) of ATCC and known stock isolates, as well as 328 clinical stool specimens, we evaluated the ESwab and the new FecalSwab liquid-based microbiology (LBM) devices for storing and transporting diarrheagenic bacteria. The stock isolates were stored in these swab devices up to 48 h at refrigeration (4°C) or room (∼25°C) temperature and up to 3 months at −20°C or −70°C. With the clinical stool specimens, the performances of the ESwab and FecalSwab were compared to those of routinely used transport systems (Amies gel swabs and dry containers). At a refrigeration temperature, all isolates survived in FecalSwab up to 48 h, while in ESwab, only 10 isolates (83.3%) out of 12 survived. At −70°C, all isolates in FecalSwab were recovered after 3 months of storage, whereas in ESwab, none of the isolates were recovered. At −20°C, neither of the swab devices preserved the viability of stock isolates after 2 weeks of storage, and at room temperature, 7 (58.3%) of the stock isolates were recovered in both transport devices after 48 h. Of the 328 fecal specimens, 44 (13.4%) were positive for one of the common diarrheagenic bacterial species with all transport systems used. Thus, the suitability of the ESwab and FecalSwab devices for culturing fresh stools was at least equal to those of the Amies gel swabs and dry containers. Although the ESwab was shown to be an option for collecting and transporting fecal specimens, the FecalSwab device had clearly better preserving properties under different storage conditions. PMID:24740083

  9. Reactive transport models for mineral CO2 storage in basaltic rocks

    NASA Astrophysics Data System (ADS)

    Aradottir, E. S.; Sonnenthal, E. L.; Bjornsson, G.; Jonsson, H.

    2010-12-01

    CO2 mineral storage in basalts may provide a long lasting, thermodynamically stable and environmentally benign solution to reduce anthropogenic CO2 in the atmosphere. We present here development of reactive transport models of this process with focus on the CarbFix experiment at Hellisheidi geothermal power plant in Iceland. There, up to 2.2 tons/year of purified CO2 of volcanic origin will be dissolved in water and injected at intermediate depths (400-800 m) into relatively fresh basaltic lava. Plans call for a full-scale injection if the experiment is successful. Reactive transport modeling is an important factor in the CarbFix project, providing tools to predict and optimize long-term management of the injection site as well as to quantify the amount of CO2 that has the potential of being mineralized. TOUGHREACT and iTOUGH2 are used to develop reactive fluid flow models that simulate hydrology and mineral alteration associated with injecting dissolved CO2 into basalts. The mineral reactions database in TOUGHREACT has been revised and extended, providing an internally consistent database suitable for mineral reactions of interest for this study. A multiple interacting continua (MINC) dissolution model was developed to simulate the long and short-term dissolution of basaltic glass taking into account dissolution kinetics, leached layer formation and diffusion-limited dissolution rates. Our main focus has been on developing a three dimensional field model of the injection site at Hellisheidi. Hydrological parameters of the model were calibrated using iTOUGH2 to simulate tracer tests that have been ongoing since 2007. Modeling results indicate groundwater velocity in the reservoir to be significantly lower than expected. The slow groundwater velocity may necessitate increasing groundwater flow by producing downstream wells at low rates after CO2 injection has started. The three dimensional numerical model has proven to be a valuable tool in simulating different

  10. Spatial and intertemporal arbitrage in the California natural gas transportation and storage network

    NASA Astrophysics Data System (ADS)

    Uria Martinez, Rocio

    Intertemporal and spatial price differentials should provide the necessary signals to allocate a commodity efficiently inside a network. This dissertation investigates the extent to which decisions in the California natural gas transportation and storage system are taken with an eye on arbitrage opportunities. Daily data about flows into and out of storage facilities in California over 2002-2006 and daily spreads on the NYMEX futures market are used to investigate whether the injection profile is consistent with the "supply-of-storage" curve first observed by Working for wheat. Spatial price differentials between California and producing regions fluctuate throughout the year, even though spot prices at trading hubs across North America are highly correlated. In an analysis of "residual supply", gas volumes directed to California are examined for the influence of those fluctuations in locational differentials. Daily storage decisions in California do seem to be influenced by a daily price signal that combines the intertemporal spread and the locational basis between California and the Henry Hub, in addition to strong seasonal and weekly cycles. The timing and magnitude of the response differs across storage facilities depending on the regulatory requirements they face and the type of customers they serve. In contrast, deviations in spatial price differentials from the levels dictated by relative seasonality in California versus competing regions do not trigger significant reallocations of flows into California. Available data for estimation of both the supply-of-storage and residual-supply curves aggregate the behavior of many individuals whose motivations and attentiveness to prices vary. The resulting inventory and flow profiles differ from those that a social planner would choose to minimize operating costs throughout the network. Such optimal allocation is deduced from a quadratic programming model, calibrated to 2004-2005, that acknowledges relative seasonality

  11. The Earthscope USArray Array Network Facility (ANF): Evolution of Data Acquisition, Processing, and Storage Systems

    NASA Astrophysics Data System (ADS)

    Davis, G. A.; Battistuz, B.; Foley, S.; Vernon, F. L.; Eakins, J. A.

    2009-12-01

    Since April 2004 the Earthscope USArray Transportable Array (TA) network has grown to over 400 broadband seismic stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. In total, over 1.7 terabytes per year of 24-bit, 40 samples-per-second seismic and state of health data is recorded from the stations. The ANF provides analysts access to real-time and archived data, as well as state-of-health data, metadata, and interactive tools for station engineers and the public via a website. Additional processing and recovery of missing data from on-site recorders (balers) at the stations is performed before the final data is transmitted to the IRIS Data Management Center (DMC). Assembly of the final data set requires additional storage and processing capabilities to combine the real-time data with baler data. The infrastructure supporting these diverse computational and storage needs currently consists of twelve virtualized Sun Solaris Zones executing on nine physical server systems. The servers are protected against failure by redundant power, storage, and networking connections. Storage needs are provided by a hybrid iSCSI and Fiber Channel Storage Area Network (SAN) with access to over 40 terabytes of RAID 5 and 6 storage. Processing tasks are assigned to systems based on parallelization and floating-point calculation needs. On-site buffering at the data-loggers provide protection in case of short-term network or hardware problems, while backup acquisition systems at the San Diego Supercomputer Center and the DMC protect against catastrophic failure of the primary site. Configuration management and monitoring of these systems is accomplished with open-source (Cfengine, Nagios, Solaris Community Software) and commercial tools (Intermapper). In the evolution from a single server to multiple virtualized server instances, Sun Cluster software was evaluated and found to be unstable in our environment. Shared filesystem

  12. Dual Transport Process for Targeted Delivery in Porous Media

    NASA Astrophysics Data System (ADS)

    Deng, W.; Fan, J.

    2015-12-01

    The targeted delivery in porous media is a promising technology to encapsulate the solute (i.e., the cargo) in colloid-like microcapsules (i.e., the carriers), transport the microcapsules in the targeted location in porous media, and then release the solute. While extensive literatures and applications about the drug delivery in human and animal bodies exist, the targeted delivery using similar delivery carriers in subsurface porous media is not well understood. The dual transport process study is an explorative study for the targeted delivery in porous media. While the colloid transport is dominated by the advection process and the solute transport is dominated by the advection-dispersion, the dual transport process is the process with the first step of carrier transport, which is dominated by advection, and then after the release of cargo, the transport of cargo is dominated by advection-dispersion. By applying the random walk particle tracking (RWPT) approach, we investigate how the carriers transport in porous media and how the cargo release mechanisms affect the cargo distribution for the targeted delivery in various patterns of porous media. The RWPT numerical model will be verified against the experimental results of dual transport process in packed-disk 2D micromodels. The understanding of the mechanism of dual transport process is crucial to achieve the potential applications of targeted delivery in improved oil and gas recovery, CO2 sequestration, environmental remediation, and soil biomediation.

  13. GNEP Material Transportation, Storage and Disposal Analysis FY-08 Summary Report

    SciTech Connect

    Halsey, W

    2009-01-15

    for waste management calculations for the GNEP Programmatic Environmental Impact Statement (PEIS). The IWMS represents a collaborative effort between the Systems Analysis, Waste Forms, and Separations Campaigns with contributing authors from multiple laboratories. The IWMS reference is: 'Global Nuclear Energy Partnership Integrated Waste Management Strategy, D. Gombert, INL, et al, GNEP-WAST-WAST-AI-RT-2008-000214, March 2008'. (2) As input to the IWMS and support for program decisions, an evaluation of the current regulatory framework in the U.S. pertaining to the disposal of radioactive wastes under an advanced nuclear fuel cycle was completed by ANL. This evaluation also investigated potential disposal pathways for these wastes. The entire evaluation is provided in Appendix A of this report. (3) Support was provided to the development of the GNEP Programmatic Environmental Impact Statement from INL, SNL and ANL M-TSD staff. (4) M-TSD staff prepared input for DSARR (Dynamic Systems Analysis Report for Nuclear Fuel Recycle) report. The DSARR is an INL led report to examine the time-dependent dynamics for a transition from the current open fuel cycle to either a 1-tier or 2-tier closed fuel cycle. Section 5.3 Waste Management Impacts was provided to INL for incorporation into the DSARR. (5) SNL M-TSD staff prepared a M2 milestone report 'Material Transportation, Storage and Disposal Contribution for Secretarial Decision Package'. The report purpose was to comprehensively evaluate and discuss packaging, storage, and transportation for all potential nuclear and radioactive materials in the process and waste streams being considered by the GNEP program. In particular, a systems view was used to capture all packaging, storage, and transport operations needed to link the various functional aspects of the fuel cycle. (6) SRNL M-TSD staff developed a deliverable report 'Management of Decay Heat from Spent Nuclear Fuel'. This report evaluated a range of options for managing

  14. Predicting possible effects of H2S impurity on CO2 transportation and geological storage.

    PubMed

    Ji, Xiaoyan; Zhu, Chen

    2013-01-01

    For CO(2) geological storage, permitting impurities, such as H(2)S, in CO(2) streams can lead to a great potential for capital and energy savings for CO(2) capture and separation, but it also increases costs and risk management for transportation and storage. To evaluate the cost-benefits, using a recently developed model (Ji, X.; Zhu, C. Geochim. Cosmochim. Acta 2012, 91, 40-59), this study predicts phase equilibria and thermodynamic properties of the system H(2)S-CO(2)-H(2)O-NaCl under transportation and storage conditions and discusses potential effects of H(2)S on transportation and storage. The prediction shows that inclusion of H(2)S in CO(2) streams may lead to two-phase flow. For H(2)S-CO(2) mixtures, at a given temperature, the bubble and dew pressures decrease with increasing H(2)S content, while the mass density increases at low pressures and decreases at high pressures. For the CO(2)-H(2)S-H(2)O system, the total gas solubility increases while the mass density of the aqueous solution with dissolved gas decreases. For the CO(2)-H(2)S-H(2)O-NaCl system, at a given temperature, pressure and NaCl concentration, the solubility of the gas mixture in aqueous phase increases with increasing H(2)S content and then decreases, while the mass density of aqueous solution decreases and may be lower than the mass density of the solution without gas dissolution.

  15. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOEpatents

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  16. An overview of selected information storage and retrieval issues in computerized document processing

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Ihebuzor, Valentine U.

    1984-01-01

    The rapid development of computerized information storage and retrieval techniques has introduced the possibility of extending the word processing concept to document processing. A major advantage of computerized document processing is the relief of the tedious task of manual editing and composition usually encountered by traditional publishers through the immense speed and storage capacity of computers. Furthermore, computerized document processing provides an author with centralized control, the lack of which is a handicap of the traditional publishing operation. A survey of some computerized document processing techniques is presented with emphasis on related information storage and retrieval issues. String matching algorithms are considered central to document information storage and retrieval and are also discussed.

  17. Alternative poultry litter storage for improved transportation and use as a soil amendment.

    PubMed

    Penn, Chad J; Vitale, Jeffery; Fine, Scott; Payne, Joshua; Warren, Jason G; Zhang, Hailin; Eastman, Margaret; Herron, Sheri L

    2011-01-01

    Transportation of poultry litter out of nutrient limited watersheds such as the Illinois River basin (eastern Oklahoma) is a logical solution for minimizing phosphorus (P) losses from soils to surface waters. Transportation costs are basedon mass of load and distance transported. This study investigated an alternative litter storage technique designed to promote carbon (C) degradation, thereby concentrating nutrients for the purpose of decreasing transportation costs through decreased mass. Poultry litter was stored in 0.90-Mg conical piles under semipermeable tarps and adjusted to 40% moisture content, tested with and without addition of alum (aluminum sulfate). additional study was conducted using 3.6-Mg piles under the same conditions, except tested with and without use of aeration pipes. Samples were analyzed before and after (8 wk) storage. Litter mass degradation (i.e., loss in mass due to organic matter decomposition) was estimated on the basis of changes in litter total P contents. Additional characterization included pH, total nutrients, moisture content, total C, and degree of humification. Litter storage significantly decreased litter mass (16 to 27%), concentrated nutrients such as P and potassium (K) and increased proportion of fulvic and humic acids. The addition of aeration pipes increased mass degradationrelative to piles without aeration pipes. Nitrogen volatilization losses were minimized with alum additions. Increases in P and K concentrations resulted in greater monetary value per unit mass compared with fresh litter. Such increases translate to increased litter shipping distance and cost savings of $17.2 million over 25 yr for litter movement out of eastern Oklahoma.

  18. Simulation of mass storage systems operating in a large data processing facility

    NASA Technical Reports Server (NTRS)

    Holmes, R.

    1972-01-01

    A mass storage simulation program was written to aid system designers in the design of a data processing facility. It acts as a tool for measuring the overall effect on the facility of on-line mass storage systems, and it provides the means of measuring and comparing the performance of competing mass storage systems. The performance of the simulation program is demonstrated.

  19. Applications of thermal energy storage to process heat storage and recovery in the paper and pulp industry

    NASA Technical Reports Server (NTRS)

    Carr, J. H.; Hurley, P. J.; Martin, P. J.

    1978-01-01

    Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.

  20. Assessment of changes in plasma hemoglobin and potassium levels in red cell units during processing and storage.

    PubMed

    Saini, Nishant; Basu, Sabita; Kaur, Ravneet; Kaur, Jasbinder

    2015-06-01

    Red cell units undergo changes during storage and processing. The study was planned to assess plasma potassium, plasma hemoglobin, percentage hemolysis during storage and to determine the effects of outdoor blood collection and processing on those parameters. Blood collection in three types of blood storage bags was done - single CPDA bag (40 outdoor and 40 in-house collection), triple CPD + SAGM bag (40 in-house collection) and quadruple CPD + SAGM bag with integral leukoreduction filter (40 in-house collection). All bags were sampled on day 0 (day of collection), day 1 (after processing), day 7, day 14 and day 28 for measurement of percentage hemolysis and potassium levels in the plasma of bag contents. There was significant increase in percentage hemolysis, plasma hemoglobin and plasma potassium level in all the groups during storage (p < 0.001). No significant difference was found between any parameter analyzed for outdoor and in-house collected single CPDA red cell units. There was significant lower percentage hemolysis (p < 0.001) and potassium (day 7 to day 14 - p < 0.05 and day 14 to day 28 - p < 0.001) in red cell units from day 7 onward until day 28 of storage in the leukoreduced quadruple bag as compared to the triple bag. The in-house single CPDA red cell units showed significantly more hemolysis (p < 0.001) as compared to the triple bags with SAGM additive solution after 28 days of storage. There is gradual increase in plasma hemoglobin and plasma potassium levels during the storage of red blood cells. Blood collection can be safely undertaken in outdoor blood donation camps even in hot summer months in monitored blood transport boxes. SAGM additive solution decreases the red cell hemolysis and allows extended storage of red cells. Prestorage leukoreduction decreases the red cell hemolysis and improves the quality of blood.

  1. Exact analytical solutions for contaminant transport in rivers 2. Transient storage and decay chain solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of t...

  2. Large-Scale Stratospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2001-01-01

    The paper discusses the following: 1. The Brewer-Dobson circulation: tropical upwelling. 2. Mixing into polar vortices. 3. The latitudinal structure of "age" in the stratosphere. 4. The subtropical "tracer edges". 5. Transport in the lower troposphere. 6. Tracer modeling during SOLVE. 7. 3D modeling of "mean age". 8. Models and measurements II.

  3. Ectopic expression of amaranth seed storage albumin modulates photoassimilate transport and nutrient acquisition in sweetpotato

    PubMed Central

    Shekhar, Shubhendu; Agrawal, Lalit; Mishra, Divya; Buragohain, Alak Kumar; Unnikrishnan, Mullath; Mohan, Chokkappan; Chakraborty, Subhra; Chakraborty, Niranjan

    2016-01-01

    Storage proteins in plants, because of high nutrient value, have been a subject of intensive investigation. These proteins are synthesized de novo in the cytoplasm and transported to the storage organelles where they serve as reservoir of energy and supplement of nitrogen during rapid growth and development. Sweetpotato is the seventh most important food crop worldwide, and has a significant contribution to the source of nutrition, albeit with low protein content. To determine the behaviour of seed storage proteins in non-native system, a seed albumin, AmA1, was overexpressed in sweetpotato with an additional aim of improving nutritional quality of tuber proteins. Introduction of AmA1 imparted an increase in protein and amino acid contents as well as the phytophenols. The proteometabolomics analysis revealed a rebalancing of the proteome, with no significant effects on the global metabolome profile of the transgenic tubers. Additionally, the slower degradation of starch and cellulose in transgenic tubers, led to increased post-harvest durability. Present study provides a new insight into the role of a seed storage protein in the modulation of photoassimilate movement and nutrient acquisition. PMID:27147459

  4. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect

    Guenther, R J; Johnson, Jr, A B; Lund, A L; Gilbert, E R

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  5. Ageing of a neutron shielding used in transport/storage casks

    SciTech Connect

    Nizeyiman, Fidele; Alami, Aatif; Issard, Herve; Bellenger, Veronique

    2012-07-11

    In radioactive materials transport/storage casks, a mineral-filled vinylester composite is used for neutron shielding which relies on its hydrogen and boron atoms content. During cask service life, this composite is mainly subjected to three types of ageing: hydrothermal ageing, thermal oxidation and neutron irradiation. The aim of this study is to investigate the effect of hydrothermal ageing on the properties and chemical composition of this polymer composite. At high temperature (120 Degree-Sign C and 140 Degree-Sign C), the main consequence is the strong decrease of mechanical properties induced by the filler/matrix debonding.

  6. Simulation of solute transport in a mountain pool-and-riffle stream: a transient storage model.

    USGS Publications Warehouse

    Bencala, K.E.; Walters, R.A.

    1983-01-01

    A transient storage model, which couples dead zones with the one-dimensional convection-dispersion equation, simulates the general characteristics of the solute transport behavior and a set of simulation parameters were determined that yield an adequate fit to the data. However, considerable uncertainty remains in determining physically realistic values of these parameters. The values of the simulation parameters used are compared to values used by other authors for other streams. The comparison supports, at least qualitatively, the determined parameter values. -from Authors

  7. Parallel processing of numerical transport algorithms

    SciTech Connect

    Wienke, B.R.; Hiromoto, R.E.

    1984-01-01

    The multigroup, discrete ordinates representation for the linear transport equation enjoys widespread computational use and popularity. Serial solution schemes and numerical algorithms developed over the years provide a timely framework for parallel extension. On the Denelcor HEP, we investigate the parallel structure and extension of a number of standard S/sub n/ approaches. Concurrent inner sweeps, coupled acceleration techniques, synchronized inner-outer loops, and chaotic iteration are described, and results of computations are contrasted. The multigroup representation and serial iteration methods are also detailed. The basic iterative S/sub n/ method lends itself to parallel tasking, portably affording an effective medium for performing transport calculations on future architectures. This analysis represents a first attempt to extend serial S/sub n/ algorithms to parallel environments and provides good baseline estimates on ease of parallel implementation, relative algorithm efficiency, comparative speedup, and some future directions. We find basic inner-outer and chaotic iteration strategies both easily support comparably high degrees of parallelism. Both accommodate parallel rebalance and diffusion acceleration and appear as robust and viable parallel techniques for S/sub n/ production work.

  8. Criticality benchmark guide for light-water-reactor fuel in transportation and storage packages

    SciTech Connect

    Lichtenwalter, J.J.; Bowman, S.M.; DeHart, M.D.; Hopper, C.M.

    1997-03-01

    This report is designed as a guide for performing criticality benchmark calculations for light-water-reactor (LWR) fuel applications. The guide provides documentation of 180 criticality experiments with geometries, materials, and neutron interaction characteristics representative of transportation packages containing LWR fuel or uranium oxide pellets or powder. These experiments should benefit the U.S. Nuclear Regulatory Commission (NRC) staff and licensees in validation of computational methods used in LWR fuel storage and transportation concerns. The experiments are classified by key parameters such as enrichment, water/fuel volume, hydrogen-to-fissile ratio (H/X), and lattice pitch. Groups of experiments with common features such as separator plates, shielding walls, and soluble boron are also identified. In addition, a sample validation using these experiments and a statistical analysis of the results are provided. Recommendations for selecting suitable experiments and determination of calculational bias and uncertainty are presented as part of this benchmark guide.

  9. Large-scale Atmospheric Transport Processes

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2004-01-01

    Continuing earlier work, we continued an investigation of the seasonal behavior of the edges of the stratospheric surf zone. These edges form a barrier between the rapidly mixed surf zone and the relatively isolated tropics. In collaboration with Dr Lynn Sparling at GSFC, we used a statistical analysis of HALOE and CLAES trace gas data from UARS to identify and locate these edges during each UARS observing period. We found that the edges on both sides of the equator are present all year (a fact that is important for conceptual models of stratospheric transport), though that on the summer side of the equator is much less sharp than the winter edge. The edges migrate seasonally into the summer hemisphere. Their location also shows influence of the QBO, together with the SAO at higher altitudes. Comparisons with effective diffusivities, and the edge locations, suggest that the edge is sustained by surf zone entrainment during winter, but by the residual circulation during summer.

  10. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report number 8, October 1--December 31, 1995

    SciTech Connect

    1996-03-15

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. On the other hand, Mulled Coal does not cause the fugitive and airborne dust problems normally associated with thermally dried coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proved to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality, and at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems.

  11. HP-Xe to go: Storage and transportation of hyperpolarized 129Xenon

    NASA Astrophysics Data System (ADS)

    Repetto, M.; Zimmer, S.; Allmendinger, F.; Blümler, P.; Doll, M.; Grasdijk, J. O.; Heil, W.; Jungmann, K.; Karpuk, S.; Krause, H.-J.; Offenhäusser, A.; Schmidt, U.; Sobolev, Y.; Willmann, L.

    2016-04-01

    Recently the spin-lattice relaxation time T1 of hyperpolarized (HP)-129Xe was significantly improved by using uncoated and Rb-free storage vessels of GE180 glass. For these cells, a simple procedure was established to obtain reproducible wall relaxation times of about 18 h. Then the limiting relaxation mechanism in pure Xe is due to the coupling between the nuclear spins and the angular momentum of the Xe-Xe van-der-Waals-molecules. This mechanism can be significantly reduced by using different buffer gases of which CO2 was discovered to be the most efficient so far. From these values, it was estimated that for a 1:1 mixture of HP-Xe with CO2 a longitudinal relaxation time of about 7 h can be expected, sufficient to transport HP-Xe from a production to a remote application site. This prediction was verified for such a mixture at a total pressure of about 1 bar in a 10 cm glass cell showing a storage time of T1 ≈ 9 h (for T1wall = (34 ± 9) h) which was transported inside a magnetic box over a distance of about 200 km by car.

  12. HP-Xe to go: Storage and transportation of hyperpolarized (129)Xenon.

    PubMed

    Repetto, M; Zimmer, S; Allmendinger, F; Blümler, P; Doll, M; Grasdijk, J O; Heil, W; Jungmann, K; Karpuk, S; Krause, H-J; Offenhäusser, A; Schmidt, U; Sobolev, Y; Willmann, L

    2016-04-01

    Recently the spin-lattice relaxation time T1 of hyperpolarized (HP)-(129)Xe was significantly improved by using uncoated and Rb-free storage vessels of GE180 glass. For these cells, a simple procedure was established to obtain reproducible wall relaxation times of about 18 h. Then the limiting relaxation mechanism in pure Xe is due to the coupling between the nuclear spins and the angular momentum of the Xe-Xe van-der-Waals-molecules. This mechanism can be significantly reduced by using different buffer gases of which CO2 was discovered to be the most efficient so far. From these values, it was estimated that for a 1:1 mixture of HP-Xe with CO2 a longitudinal relaxation time of about 7 h can be expected, sufficient to transport HP-Xe from a production to a remote application site. This prediction was verified for such a mixture at a total pressure of about 1 bar in a 10 cm glass cell showing a storage time of T1≈9 h (for T1(wall)=(34±9) h) which was transported inside a magnetic box over a distance of about 200 km by car. PMID:26927028

  13. DUSCOBS - a depleted-uranium silicate backfill for transport, storage, and disposal of spent nuclear fuel

    SciTech Connect

    Forsberg, C.W.; Pope, R.B.; Ashline, R.C.; DeHart, M.D.; Childs, K.W.; Tang, J.S.

    1995-11-30

    A Depleted Uranium Silicate COntainer Backfill System (DUSCOBS) is proposed that would use small, isotopically-depleted uranium silicate glass beads as a backfill material inside storage, transport, and repository waste packages containing spent nuclear fuel (SNF). The uranium silicate glass beads would fill all void space inside the package including the coolant channels inside SNF assemblies. Based on preliminary analysis, the following benefits have been identified. DUSCOBS improves repository waste package performance by three mechanisms. First, it reduces the radionuclide releases from SNF when water enters the waste package by creating a local uranium silicate saturated groundwater environment that suppresses (1) the dissolution and/or transformation of uranium dioxide fuel pellets and, hence, (2) the release of radionuclides incorporated into the SNF pellets. Second, the potential for long-term nuclear criticality is reduced by isotopic exchange of enriched uranium in SNF with the depleted uranium (DU) in the glass. Third, the backfill reduces radiation interactions between SNF and the local environment (package and local geology) and thus reduces generation of hydrogen, acids, and other chemicals that degrade the waste package system. In addition, the DUSCOBS improves the integrity of the package by acting as a packing material and ensures criticality control for the package during SNF storage and transport. Finally, DUSCOBS provides a potential method to dispose of significant quantities of excess DU from uranium enrichment plants at potential economic savings. DUSCOBS is a new concept. Consequently, the concept has not been optimized or demonstrated in laboratory experiments.

  14. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  15. The Complexities of Complex Memory Span: Storage and Processing Deficits in Specific Language Impairment

    ERIC Educational Resources Information Center

    Archibald, Lisa M. D.; Gathercole, Susan E.

    2007-01-01

    This study investigated the verbal and visuospatial processing and storage skills of children with SLI and typically developing children. Fourteen school-age children with SLI, and two groups of typically developing children matched either for age or language abilities, completed measures of processing speed and storage capacity, and a set of…

  16. 40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... vessel, tar storage tank, and tar-intercepting sump. (2) The owner or operator shall duct gases from each process vessel, tar storage tank, and tar-intercepting sump to the gas collection system, gas distribution system, or other enclosed point in the by-product recovery process where the benzene in the gas will...

  17. 40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standard: Process vessels, storage... Standard: Process vessels, storage tanks, and tar-intercepting sumps. (a)(1) Each owner or operator of a furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each...

  18. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    SciTech Connect

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L.

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.

  19. Processes of Salt Transport in Disturbed Streams

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Caffrey, P. A.; Stern, J.

    2013-12-01

    The extraction of coal bed methane natural gas involves removal of large amount of ground/Coal Bed Methane (CBM) water which is commonly discharged to surface-water drainages or constructed reservoirs. The extraction of large volume of water and its disposal on soil surface not only lowers the water table but also potentially accelerate soil erosions, contaminate surface water resources, and alter the natural flows. Due to the difference in quality and quantity between the surface discharge and disposed CBM water, this management strategy potentially poses threats to quality of surface water and soil. CBM discharge water typically contains high concentrations of sodium and low concentrations of calcium and magnesium, resulting in high sodium adsorption ratio (SAR). Similarly, it also contains high concentration of other ions which could results in increasing salt concentrations. Our study area is in the Atlantic Rim development area of the Muddy Creek, SE of Wyoming, a tributary to Colorado River, where significant development of CBM wells is ongoing. Since Muddy Creek is part of the Upper Colorado River, the greatest concern is its potential to contribute to surface water quality (primarily salinity) impairment downstream. However, very few studies have made efforts to assess the water quality in this particular region. The alteration of stream water quality in this region is still not fully understood if it due to CBM water discharge or via soil/water interactions, erosion, and sediment transport. Efforts are being made to identify crucial water quality parameters such as SAR and EC along with the quantification of solute/salt loadings at both CBM discharge fed streams and natural streams at different seasons to distinguish effect of CBM discharge on water quality. We have been continuously monitoring water quality on monthly basis and discharge measurement on daily basis at sampling sites that are placed to discriminate CBM fed streams and natural streams. The

  20. Skyline Query Processing in Sensor Network Based on Data Centric Storage

    PubMed Central

    Song, Seokil; Kwak, Yunsik; Lee, Seokhee

    2011-01-01

    Data centric storages for sensor networks have been proposed to efficiently process multi-dimensional range queries as well as exact matches. Usually, a sensor network does not process only one type of the query, but processes various types of queries such as range queries, exact matches and skyline queries. Therefore, a sensor network based on a data centric storage for range queries and exact matches should process skyline queries efficiently. However, existing algorithms for skyline queries have not considered the features of data centric storages. Some of the data centric storages store similar data in sensor nodes that are placed on geographically similar locations. Consequently, all data are ordered in a sensor network. In this paper, we propose a new skyline query processing algorithm that exploits the above features of data centric storages. PMID:22346642

  1. NRC Technical Research Program to Evaluate Extended Storage and Transportation of Spent Nuclear Fuel - 12547

    SciTech Connect

    Einziger, R.E.; Compton, K.; Gordon, M.; Ahn, T.; Gonzales, H.; Pan, Y.

    2012-07-01

    Any new direction proposed for the back-end of spent nuclear fuel (SNF) cycle will require storage of SNF beyond the current licensing periods. The Nuclear Regulatory Commission (NRC) has established a technical research program to determine if any changes in the 10 CFR part 71, and 72 requirements, and associated guidance might be necessary to regulate the safety of anticipated extended storage, and subsequent transport of SNF. This three part program of: 1) analysis of knowledge gaps in the potential degradation of materials, 2) short-term research and modeling, and 3) long-term demonstration of systems, will allow the NRC to make informed regulatory changes, and determine when and if additional monitoring and inspection of the systems is necessary. The NRC has started a research program to obtain data necessary to determine if the current regulatory guidance is sufficient if interim dry storage has to be extended beyond the currently approved licensing periods. The three-phased approach consists of: - the identification and prioritization of potential degradation of the components related to the safe operation of a dry cask storage system, - short-term research to determine if the initial analysis was correct, and - a long-term prototypic demonstration project to confirm the models and results obtained in the short-term research. The gap analysis has identified issues with the SCC of the stainless steel canisters, and SNF behavior. Issues impacting the SNF and canister internal performance such as high and low temperature distributions, and drying have also been identified. Research to evaluate these issues is underway. Evaluations have been conducted to determine the relative values that various types of long-term demonstration projects might provide. These projects or follow-on work is expected to continue over the next five years. (authors)

  2. Nucleocytoplasmic transport of ribosomes in a eukaryotic system: Is there a facilitated transport process

    SciTech Connect

    Khanna-Gupta, A.; Ware, V.C. )

    1989-03-01

    The authors have examined the kinetics of the process by which ribosomes are exported from the nucleus to the cytoplasm using Xenopus laevis oocytes microinjected into the germinal vesicle with radiolabeled ribosomes or ribosomal subunits from X. laevis, Tetrahymena thermophila, or Escherichia coli. Microinjected eukaryotic mature ribosomes are redistributed into the oocyte cytoplasm by an apparent carrier-mediated transport process that exhibits saturation kinetics as increasing amounts of ribosomes are injected. T. thermophila ribosomes are competent to traverse the Xenopus nuclear envelope, suggesting that the basic mechanism underlying ribosome transport is evolutionarily conserved. Microinjected E. coli ribosomes are not transported in this system, indicating that prokaryotic ribosomes lack the signals required for transport. Surprisingly, coinjected small (40S) and large (60S) subunits from T. thermophila are transported significantly faster than individual subunits. These observations support a facilitated transport model for the translocation of ribosomal subunits as separate units across the nuclear envelope whereby the transport rate of 60S or 40S subunits is enhanced by the presence of the partner subunit. Although the basic features of the transport mechanism have been preserved through evolution, other aspects of the process may be mediated through species-specific interactions. They hypothesize that a species-specific nuclear 40S-60S subunit association may expedite the transport of individual subunits across the nuclear envelope.

  3. Transport processes in biological systems: Tumoral cells and human brain

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto

    2014-01-01

    The entropy generation approach has been developed for the analysis of complex systems, with particular regards to biological systems, in order to evaluate their stationary states. The entropy generation is related to the transport processes related to exergy flows. Moreover, cancer can be described as an open complex dynamic and self-organizing system. Consequently, it is used as an example useful to evaluate the different thermo-chemical quantities of the transport processes in normal and in tumoral cells systems.

  4. Transport induced by mean-eddy interaction: II. Analysis of transport processes

    NASA Astrophysics Data System (ADS)

    Ide, Kayo; Wiggins, Stephen

    2015-03-01

    We present a framework for the analysis of transport processes resulting from the mean-eddy interaction in a flow. The framework is based on the Transport Induced by the Mean-Eddy Interaction (TIME) method presented in a companion paper (Ide and Wiggins, 2014) [1]. The TIME method estimates the (Lagrangian) transport across stationary (Eulerian) boundaries defined by chosen streamlines of the mean flow. Our framework proceeds after first carrying out a sequence of preparatory steps that link the flow dynamics to the transport processes. This includes the construction of the so-called "instantaneous flux" as the Hovmöller diagram. Transport processes are studied by linking the signals of the instantaneous flux field to the dynamical variability of the flow. This linkage also reveals how the variability of the flow contributes to the transport. The spatio-temporal analysis of the flux diagram can be used to assess the efficiency of the variability in transport processes. We apply the method to the double-gyre ocean circulation model in the situation where the Rossby-wave mode dominates the dynamic variability. The spatio-temporal analysis shows that the inter-gyre transport is controlled by the circulating eddy vortices in the fast eastward jet region, whereas the basin-scale Rossby waves have very little impact.

  5. Proceedings of the 6th Annual Meeting for Excess Weapons Plutonium Disposition: Plutonium Packaging, Storage and Transportation and WasteTreatment, Storage and Disposal Activities

    SciTech Connect

    Jardine, L J

    2005-06-30

    The sixth annual Excess Weapons Plutonium Disposition meeting organized by Lawrence Livermore National Laboratory (LLNL) was held November 15-17, 2004, at the State Education Center (SEC), 4 Aerodromnya Drive, St. Petersburg, Russia. The meeting discussed Excess Weapons Plutonium Disposition topics for which LLNL has the US Technical Lead Organization responsibilities. The technical areas discussed included Radioactive Waste Treatment, Storage, and Disposal, and Plutonium Oxide and Plutonium Metal Packaging, Storage and Transportation and Spent Fuel Packaging, Storage and Transportation. The meeting was conducted with a conference format using technical presentations of papers with simultaneous translation into English and Russian. There were 55 Russian attendees from 16 different Russian organizations and four non-Russian attendees from the US. Forty technical presentations were made. The meeting agenda is given in Appendix B and the attendance list is in Appendix C. The 16 different Russian design, industrial sites, and scientific organizations in attendance included staff from Rosatom/Minatom, Federal Nuclear and Radiation Safety Authority of Russia (GOSATOMNADZOR, NIERA/GAN), All Russian Designing & Scientific Research Institute of Complex Power Technology (VNIPIET), Khlopin Radium Institute (KRI), A. A. Bochvar All Russian Scientific Research Institute of Inorganic Materials (VNIINM), All Russian & Design Institute of Production Engineering (VNIPIPT), Ministry of Atomic Energy of Russian Federation Specialized State Designing Institute (GSPI), State Scientific Center Research Institute of Atomic Reactors (RIAR), Siberian Chemical Combine Tomsk (SCC), Mayak PO, Mining Chemical Combine (MCC K-26), Institute of Biophysics (IBPh), Sverdlosk Scientific Research Institute of Chemical Machine Building (SNIIChM), Kurchatov Institute (KI), Institute of Physical Chemistry Russian Academy of Science (IPCh RAS) and Radon PO-Moscow. The four non-Russian attendees included

  6. Occurrence of 6-methoxymellein in fresh and processed carrots and relevant effect of storage and processing.

    PubMed

    De Girolamo, Annalisa; Solfrizzo, Michele; Vitti, Carolina; Visconti, Angelo

    2004-10-20

    The occurrence of 6-methoxymellein (6-MM) in fresh and conventionally processed carrot products (for a total of 176 samples) marketed in European locations and the effect of Alternaria spp. infection and storage conditions on 6-MM accumulation were investigated. 6-MM was found in 78% of tested samples with levels ranging from 0.02 to 76.00 microg/g, with only 1 of 79 fresh carrots exceeding the "just noticeable difference" level for 6-MM. Storage of carrots at 1 degree C was suitable to maintain low levels of 6-MM for a period of at least 17 weeks. No effect of Alternaria spp. infection was observed on 6-MM occurrence. The fate of 6-MM during carrot juice processing was also investigated by using different enzyme formulations for maceration and blanching procedures. Levels of 6-MM in blanched carrots obtained by boiling water or steam treatment were reduced by 69 or 33%, respectively, as compared to fresh carrots. No decrease in 6-MM levels was observed after maceration with pectinolytic enzyme preparations (Rapidase Carrot Juice and Ultrazym AFP-L). A reduction of 6-MM by 85 or 94% was obtained after the entire cycle of carrot juice processing, depending on the blanching procedure used.

  7. Thermodynamically coupled mass transport processes in a saturated clay

    SciTech Connect

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  8. Is energy storage and release part of the substorm process?

    NASA Technical Reports Server (NTRS)

    Clauer, C. R.

    1981-01-01

    Models for magnetospheric substorms were considered. A modified model which includes the growth phase, a time interval prior to the onset of the expansion phase, during which energy was transferred from a solar wind to the magnetosphere and stored for subsequent release, is discussed. Evidence for energy storage in the tail prior to substorm expansion for both isolated and moderate substorm activity is reviewed.

  9. Extended Burnup Credit for BWR Spent Nuclear Fuel in Storage and Transportation Systems

    SciTech Connect

    Ade, Brian J; Bowman, Stephen M; Gauld, Ian C; Ilas, Germina; Martinez, J. S.

    2015-01-01

    [Full Text] Oak Ridge National Laboratory and the United States Nuclear Regulatory Commission have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling-water reactor (BWR) fuel in storage and transportation casks. This project includes two phases. The first phase investigates the applicability of peak reactivity methods currently used for spent fuel pools to spent fuel storage and transportation casks and the validation of reactivity (keff) calculations and depleted fuel compositions. The second phase focuses on extending BUC beyond peak reactivity. This paper documents work performed to date, investigating some aspects of extended BUC, and it also describes the plan to complete the evaluations. The technical basis for application of peak reactivity methods to BWR fuel in storage and transportation systems is presented in a companion paper. Two reactor operating parameters are being evaluated to establish an adequate basis for extended BWR BUC, including investigation of the axial void profile effect and the effect of control blade utilization during operation. A detailed analysis of core simulator data for one cycle of an operating BWR plant was performed to determine the range of void profiles and the variability of the profile experienced during irradiation. While a single cycle does not provide complete data, the data obtained are sufficient to use to determine the primary effects and identify conservative modeling approaches. Using data resulting from a single cycle, the axial void profile is studied by first determining the temporal fidelity necessary in depletion modeling, and then using multiple void profiles to examine the effect of the void profile on cask reactivity. The results of these studies are being used to develop recommendations for conservatively modeling the void profile effects for BWR depletion calculations. The second operational parameter studied is control blade exposure. Control blades

  10. Knowledge Management Initiatives Used to Maintain Regulatory Expertise in Transportation and Storage of Radioactive Materials - 12177

    SciTech Connect

    Lindsay, Haile; Garcia-Santos, Norma; Saverot, Pierre; Day, Neil; Gambone Rodriguez, Kimberly; Cruz, Luis; Sotomayor-Rivera, Alexis; Vechioli, Lucieann; Vera, John; Pstrak, David

    2012-07-01

    The U.S. Nuclear Regulatory Commission (NRC) was established in 1974 with the mission to license and regulate the civilian use of nuclear materials for commercial, industrial, academic, and medical uses in order to protect public health and safety, and the environment, and promote the common defense and security. Currently, approximately half (∼49%) of the workforce at the NRC has been with the Agency for less than six years. As part of the Agency's mission, the NRC has partial responsibility for the oversight of the transportation and storage of radioactive materials. The NRC has experienced a significant level of expertise leaving the Agency due to staff attrition. Factors that contribute to this attrition include retirement of the experienced nuclear workforce and mobility of staff within or outside the Agency. Several knowledge management (KM) initiatives have been implemented within the Agency, with one of them including the formation of a Division of Spent Fuel Storage and Transportation (SFST) KM team. The team, which was formed in the fall of 2008, facilitates capturing, transferring, and documenting regulatory knowledge for staff to effectively perform their safety oversight of transportation and storage of radioactive materials, regulated under Title 10 of the Code of Federal Regulations (10 CFR) Part 71 and Part 72. In terms of KM, the SFST goal is to share critical information among the staff to reduce the impact from staff's mobility and attrition. KM strategies in place to achieve this goal are: (1) development of communities of practice (CoP) (SFST Qualification Journal and the Packaging and Storing Radioactive Material) in the on-line NRC Knowledge Center (NKC); (2) implementation of a SFST seminar program where the seminars are recorded and placed in the Agency's repository, Agency-wide Documents Access and Management System (ADAMS); (3) meeting of technical discipline group programs to share knowledge within specialty areas; (4) development of

  11. Development of a high integrity container for storage, transportation, and disposal of radioactive wastes from Three Mile Island unit II

    SciTech Connect

    Holzworth, R.E.; Chapman, R.L.; Burton, H.M.; Bixby, W.W.

    1981-01-01

    The EPICOR II ion exchange system used to decontaminate approximately 1900 m/sup 3/ of contaminated water in the Auxiliary and Fuel Handling Building (AFHB) generated 50 highly loaded and 22 lesser loaded organic resin liners. The 22 lesser loaded resins were shipped to a commercial disposal site, but the highly loaded liners have been stored on the island since their generation. One highly loaded liner, or prefilter, was shipped to Battelle Columbus Laboratories (BCL) in May, 1981 as part of the United States Department of Energy (DOE) Three Mile Island Information and Examination Program. The prefilter is being characterized to determine the behavior of the waste form with respect to time and the internal environment and to provide an information base for use in management and regulatory decisions relative to the storage, processing, and disposal of these wastes. Due to the unique characteristics of these wastes, the US DOE is sponsoring programs, such as the BCL Sorbent Experiments Program, to evaluate their characteristics and to provide a High Integrity Container (HIC) Development Program which would improve waste suitability for disposal at a land burial facility. This paper addresses regulatory considerations, establishment of design criteria, proposed design concepts, system demonstration, and status of the HIC Development Program for storage, transportation, and disposal of high specific activity, low level radioactive wastes from Three Mile Island Unit II as typified by EPICOR II ion exchange media and liners.

  12. Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042

    SciTech Connect

    Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle; Wagner, John C.

    2013-07-01

    The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup

  13. FATE Unified Modeling Method for Spent Nuclear Fuel and Sludge Processing, Shipping and Storage - 13405

    SciTech Connect

    Plys, Martin; Burelbach, James; Lee, Sung Jin; Apthorpe, Robert

    2013-07-01

    A unified modeling method applicable to the processing, shipping, and storage of spent nuclear fuel and sludge has been incrementally developed, validated, and applied over a period of about 15 years at the US DOE Hanford site. The software, FATE{sup TM}, provides a consistent framework for a wide dynamic range of common DOE and commercial fuel and waste applications. It has been used during the design phase, for safety and licensing calculations, and offers a graded approach to complex modeling problems encountered at DOE facilities and abroad (e.g., Sellafield). FATE has also been used for commercial power plant evaluations including reactor building fire modeling for fire PRA, evaluation of hydrogen release, transport, and flammability for post-Fukushima vulnerability assessment, and drying of commercial oxide fuel. FATE comprises an integrated set of models for fluid flow, aerosol and contamination release, transport, and deposition, thermal response including chemical reactions, and evaluation of fire and explosion hazards. It is one of few software tools that combine both source term and thermal-hydraulic capability. Practical examples are described below, with consideration of appropriate model complexity and validation. (authors)

  14. Linking stochastic sediment transport to physical processes (Invited)

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Martin, R.; Paola, C.; Reitz, M. D.; Schumer, R.

    2010-12-01

    Intermittent transport is the rule rather than the exception in sedimentary systems. Avalanching dynamics in granular flows is known to produce stochastic transport fluctuations over a wide range of scales - for example, the well known power-law distributions of landslide magnitudes. Similar stochastic dynamics can occur in multi-phase flows, e.g., bedload transport in rivers. A generalized theoretical framework for understanding stochastic transport is lacking. A pragmatic alternative is the stochastic processes approach: using (fractional) advection-diffusion equations, conditioned with measured statistics from a real system, to make future predictions about transport. Linking the macroscopic statistics described by such models to the microscopic physics of sediment transport will require a new statistical mechanics approach. We propose to begin by delineating generic categories of transport mechanics - universality classes - and determining their statistical signatures through theory and experiment. A first separation may be drawn between periodic and aperiodic transport fluctuations. Periodic transport fluctuations have been observed in both sand piles and river delta experiments, and appear to arise under conditions of a well-defined transport threshold (e.g., an angle of repose) and limited dissipation. Under these conditions, inertia overwhelms system heterogeneity and gives rise to periodic oscillations having a characteristic magnitude. Aperiodic transport fluctuations often imply a strong control of system heterogeneity, and/or significant dissipation or friction capable of “breaking up” sediment pulses. For example, varying soil properties give rise to a range of critical failure slopes for landslides. Transitions in the dominant transport process from small to large time or space scales are expected to result in transitions in scaling. Bedload transport is super-diffusive at short timescales because of correlated motion due to particle momentum. At

  15. Validation of scale-4 for LWR (Light Water Reactor) fuel in transportation and storage cask conditions

    SciTech Connect

    Bowman, S.M.; Parks, C.V. ); Bierman, S.R. )

    1990-01-01

    This paper presents the results of criticality calculations performed to validate the recently released SCALE-4 modular code system for light water reactor (LWR) fuel under various conditions typical of transportation and storage casks. The modifications in SCALE-4 include NITAWL-II, an updated version of the NITAWL code that performs resonance self-shielding calculations using the Nordeim Integral Treatment. In order to validate SCALE-4 with the new resonance self-shielding treatment, the CSAS4 control module was used to calculate the effective neutron multiplication factor (k{sub eff}) via the BONAMI{sup 3}, NITAWL-II, and KENO V.a{sup 4} codes. The cross section library used was the 27 group ENDF/B-IV library, which has been updated for use with NITAWL-II. 12 refs., 1 tab.

  16. Scaling and predicting solute transport processes in streams

    NASA Astrophysics Data System (ADS)

    GonzáLez-Pinzón, Ricardo; Haggerty, Roy; Dentz, Marco

    2013-07-01

    We investigated scaling of conservative solute transport using temporal moment analysis of 98 tracer experiments (384 breakthrough curves) conducted in 44 streams located on five continents. The experiments span 7 orders of magnitude in discharge (10-3 to 103 m3/s), span 5 orders of magnitude in longitudinal scale (101 to 105 m), and sample different lotic environments—forested headwater streams, hyporheic zones, desert streams, major rivers, and an urban manmade channel. Our meta-analysis of these data reveals that the coefficient of skewness is constant over time (CSK =1.18±0.08, R2>0.98). In contrast, the CSK of all commonly used solute transport models decreases over time. This shows that current theory is inconsistent with experimental data and suggests that a revised theory of solute transport is needed. Our meta-analysis also shows that the variance (second normalized central moment) is correlated with the mean travel time (R2>0.86), and the third normalized central moment and the product of the first two are very strongly correlated (R2>0.96). These correlations were applied in four different streams to predict transport based on the transient storage and the aggregated dead zone models, and two probability distributions (Gumbel and log normal).

  17. The Effects of Bioturbation on Soil Processes and Sediment Transport

    NASA Astrophysics Data System (ADS)

    Gabet, Emmanuel J.

    Plants and animals exploit the soil for food and shelter and, in the process, affect it in many different ways. For example, uprooted trees may break up bedrock, transport soil downslope, increase the heterogeneity of soil respiration rates, and inhibit soil horizonation. In this contribution, we review previously published papers that provide insights into the process of bioturbation. We focus particularly on studies that allow us to place bioturbation within a quantitative framework that links the form of hillslopes with the processes of sediment transport and soil production. Using geometrical relationships and data from others' work, we derive simple sediment flux equations for tree throw and root growth and decay.

  18. Evaluation of Advanced Potato Breeding Clones for Storage and Processing Performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The accumulation of reducing sugars during cold storage of potato tubers is a serious and costly problem for producers and processors. The degree to which cultivars accumulate reducing sugars during storage determines their processing and market potential. Cultivars or advanced breeding lines with...

  19. Process for synthesis of ammonia borane for bulk hydrogen storage

    SciTech Connect

    Autrey, S Thomas; Heldebrant, David J; Linehan, John C; Karkamkar, Abhijeet J; Zheng, Feng

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  20. Study of VOCs transport and storage in porous media and assemblies

    NASA Astrophysics Data System (ADS)

    Xu, Jing

    Indoor VOCs concentrations are influenced greatly by the transport and storage of VOCs in building and furnishing materials, majority of which belong to porous media. The transport and storage ability of a porous media for a given VOC can be characterized by its diffusion coefficient and partition coefficient, respectively, and such data are currently lacking. Besides, environmental conditions are another important factor that affects the VOCs emission. The main purposes of this dissertation are: (1) validate the similarity hypothesis between the transport of water vapor and VOCs in porous materials, and help build a database of VOC transport and storage properties with the assistance of the similarity hypothesis; (2) investigate the effect of relative humidity on the diffusion and partition coefficients; (3) develop a numerical multilayer model to simulate the VOCs' emission characteristics in both short and long term. To better understand the similarity and difference between moisture and volatile organic compounds (VOCs) diffusion through porous media, a dynamic dual-chamber experimental system was developed. The diffusion coefficients and partition coefficients of moisture and selected VOCs in materials were compared. Based on the developed similarity theory, the diffusion behavior of each particular VOC in porous media is predictable as long as the similarity coefficient of the VOC is known. Experimental results showed that relative humidity in the 80%RH led to a higher partition coefficient for formaldehyde compared to 50%RH. However, between 25% and 50% RH, there was no significant difference in partition coefficient. The partition coefficient of toluene decreased with the increase of humidity due to competition with water molecules for pore surface area and the non-soluble nature of toluene. The solubility of VOCs was found to correlate well with the partition coefficient of VOCs. The partition coefficient of VOCs was not simply inversely proportional to

  1. Experimental determination of soil heat storage for the simulation of heat transport in a coastal wetland

    USGS Publications Warehouse

    Swain, Michael; Swain, Matthew; Lohmann, Melinda; Swain, Eric

    2012-01-01

    Two physical experiments were developed to better define the thermal interaction of wetland water and the underlying soil layer. This information is important to numerical models of flow and heat transport that have been developed to support biological studies in the South Florida coastal wetland areas. The experimental apparatus consists of two 1.32. m diameter by 0.99. m tall, trailer-mounted, well-insulated tanks filled with soil and water. A peat-sand-soil mixture was used to represent the wetland soil, and artificial plants were used as a surrogate for emergent wetland vegetation based on size and density observed in the field. The tanks are instrumented with thermocouples to measure vertical and horizontal temperature variations and were placed in an outdoor environment subject to solar radiation, wind, and other factors affecting the heat transfer. Instruments also measure solar radiation, relative humidity, and wind speed.Tests indicate that heat transfer through the sides and bottoms of the tanks is negligible, so the experiments represent vertical heat transfer effects only. The temperature fluctuations measured in the vertical profile through the soil and water are used to calibrate a one-dimensional heat-transport model. The model was used to calculate the thermal conductivity of the soil. Additionally, the model was used to calculate the total heat stored in the soil. This information was then used in a lumped parameter model to calculate an effective depth of soil which provides the appropriate heat storage to be combined with the heat storage in the water column. An effective depth, in the model, of 5.1. cm of wetland soil represents the heat storage needed to match the data taken in the tank containing 55.9. cm of peat/sand/soil mix. The artificial low-density laboratory sawgrass reduced the solar energy absorbed by the 35.6. cm of water and 55.9. cm of soil at midday by less than 5%. The maximum heat transfer into the underlying peat-sand-soil mix

  2. Working Memory in Children with Cochlear Implants: Problems are in Storage, not Processing

    PubMed Central

    Nittrouer, Susan; Caldwell-Tarr, Amanda; Lowenstein, Joanna H

    2013-01-01

    Background There is growing consensus that hearing loss and consequent amplification likely interact with cognitive systems. A phenomenon often examined in regards to these potential interactions is working memory, modeled as consisting of one component responsible for storage of information and another component responsible for processing of that information. Signal degradation associated with cochlear implants should selectively inhibit storage without affecting processing. This study examined two hypotheses: (1) A single task can be used to measure storage and processing in working memory, with recall accuracy indexing storage and rate of recall indexing processing; (2) Storage is negatively impacted for children with CIs, but not processing. Method Two experiments were conducted. Experiment 1 included adults and children, 8 and 6 years of age, with NH. Procedures tested the prediction that accuracy of recall could index storage and rate of recall could index processing. Both measures were obtained during a serial-recall task using word lists designed to manipulate storage and processing demands independently: non-rhyming nouns were the standard condition; rhyming nouns were predicted to diminish storage capacity; and non-rhyming adjectives were predicted to increase processing load. Experiment 2 included 98 8-year-olds, 48 with NH and 50 with CIs, in the same serial-recall task using the non-rhyming and rhyming nouns. Results Experiment 1 showed that recall accuracy was poorest for the rhyming nouns and rate of recall was slowest for the non-rhyming adjectives, demonstrating that storage and processing can be indexed separately within a single task. In Experiment 2, children with CIs showed less accurate recall of serial order than children with NH, but rate of recall did not differ. Recall accuracy and rate of recall were not correlated in either experiment, reflecting independence of these mechanisms. Conclusions It is possible to measure the operations of

  3. A novel approach to hydrogen recovery, storage and transport: Final technical report

    SciTech Connect

    Fowler, M.C.; Sangiovanni, J.J.

    1988-12-01

    The obtaining of high purity hydrogen from the coal gasification process is a series of chemical reactions, several of which require preparation/purification. At any point in the process, it would be useful to have a chemical separation system which can purify the product hydrogen and store it in convenient form. The purpose of this research program is to evaluate one such candidate system, the catalytically reversible hydrogenation of an aromatic hydrocarbon, toluene, to its corresponding cyclical paraffin, methylcyclohexane. In this reaction scheme, the hydrogen present in the product flow from, in principle, any reaction in the coal gasification process is extracted from the flow by reaction with toluene, a readily transportable liquid at ambient temperatures, to form methylcyclohexane, MCH, which is also a liquid at ambient conditions. The hydrogen stored in the organic hydride could therefore be transported and released when desired in the reverse reaction to give recoverable toluene and the desired hydrogen. 13 refs., 30 figs., 22 tabs.

  4. Subsurface energy storage and transport for solar-powered geysers on triton.

    PubMed

    Kirk, R L; Brown, R H; Soderblom, L A

    1990-10-19

    The location of active geyser-like eruptions and related features close to the current subsolar latitude on Triton suggests a solar energy source for these phenomena. Solidstate greenhouse calculations have shown that sunlight can generate substantially elevated subsurface temperatures. A variety of models for the storage of solar energy in a sub-greenhouse layer and for the supply of gas and energy to a geyser are examined. "Leaky greenhouse" models with only vertical gas transport are inconsistent with the observed upper limit on geyser radius of approximately 1.5 kilometers. However, lateral transport of energy by gas flow in a porous N(2) layer with a block size on the order of a meter can supply the required amount of gas to a source region approximately 1 kilometer in radius. The decline of gas output to steady state may occur over a period comparable with the inferred active geyser lifetime of five Earth years. The required subsurface permeability may be maintained by thermal fracturing of the residual N2 polar cap. A lower limit on geyser source radius of approximately 50 to 100 meters predicted by a theory of negatively buoyant jets is not readily attained.

  5. Subsurface energy storage and transport for solar-powered geysers on triton.

    PubMed

    Kirk, R L; Brown, R H; Soderblom, L A

    1990-10-19

    The location of active geyser-like eruptions and related features close to the current subsolar latitude on Triton suggests a solar energy source for these phenomena. Solidstate greenhouse calculations have shown that sunlight can generate substantially elevated subsurface temperatures. A variety of models for the storage of solar energy in a sub-greenhouse layer and for the supply of gas and energy to a geyser are examined. "Leaky greenhouse" models with only vertical gas transport are inconsistent with the observed upper limit on geyser radius of approximately 1.5 kilometers. However, lateral transport of energy by gas flow in a porous N(2) layer with a block size on the order of a meter can supply the required amount of gas to a source region approximately 1 kilometer in radius. The decline of gas output to steady state may occur over a period comparable with the inferred active geyser lifetime of five Earth years. The required subsurface permeability may be maintained by thermal fracturing of the residual N2 polar cap. A lower limit on geyser source radius of approximately 50 to 100 meters predicted by a theory of negatively buoyant jets is not readily attained. PMID:17793019

  6. Subsurface energy storage and transport for solar-powered geysers on Triton

    NASA Technical Reports Server (NTRS)

    Kirk, Randolph L.; Soderblom, Laurence A.; Brown, Robert H.

    1990-01-01

    The location of active geyser-like eruptions and related features close to the current subsolar latitude on Triton suggests a solar energy source for these phenomena. Solid-state greenhouse calculations have shown that sunlight can generate substantially elevated subsurface temperatures. A variety of models for the storage of solar energy in a subgreenhouse layer and for the supply of gas and energy to a geyser are examined. 'Leaky greenhouse' models with only vertical gas transport are inconsistent with the observed upper limit on geyser radius of about 1.5 km. However, lateral transport of energy by gas flow in a porous N2 layer with a block size on the order of a meter can supply the required amount of gas to a source region about 1 km in radius. The decline of gas output to steady state may occur over a period comparable with the inferred active geyser lifetime of 5 earth years. The required subsurface permeability may be maintained by thermal fracturing of the residual N2 polar cap. A lower limit on geyser source radius of about 50 to 100 m predicted by a theory of negatively buoyant jets is not readily attained.

  7. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction.

    PubMed

    Zachara, John; Brantley, Sue; Chorover, Jon; Ewing, Robert; Kerisit, Sebastien; Liu, Chongxuan; Perfect, Edmund; Rother, Gernot; Stack, Andrew G

    2016-03-15

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments, and soil aggregates. These domains, termed internal domains in porous media (IDPM), represent a subset of a material's porosity, contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse media types, and are important locations for chemical reactivity and fluid storage. IDPM are key features controlling hydrocarbon release from shales in hydraulic fracture systems, organic matter decomposition in soil, weathering and soil formation, and contaminant behavior in the vadose zone and groundwater. Traditionally difficult to interrogate, advances in instrumentation and imaging methods are providing new insights on the physical structures and chemical attributes of IDPM, and their contributions to system behaviors. Here we discuss analytical methods to characterize IDPM, evaluate information on their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess the potential for their inclusion in reactive transport models. Ongoing developments in measurement technologies and sensitivity, and computer-assisted interpretation will improve understanding of these critical features in the future. Impactful research opportunities exist to advance understanding of IDPM, and to incorporate their effects in reactive transport models for improved environmental simulation and prediction.

  8. The role of grain boundaries in the storage and transport of noble gases in the mantle

    NASA Astrophysics Data System (ADS)

    Burnard, Pete G.; Demouchy, Sylvie; Delon, Rémi; Arnaud, Nicolas O.; Marrocchi, Yves; Cordier, Patrick; Addad, Ahmed

    2015-11-01

    Mantle noble gases record important and ancient isotopic heterogeneities, which fundamentally influence our understanding of mantle geodynamics, yet these heterogeneities are difficult to fully interpret without understanding the basic mechanisms of noble gas storage and transport in mantle minerals. A series of annealing experiments that mimic mantle conditions (i.e. sub-solidus with natural, polycrystalline, texturally equilibrated olivines at low noble gas partial pressures) show that intergranular interfaces (grain boundaries) are major hosts for noble gases in the mantle, and that interfaces can dramatically fractionate noble gases from their radio-parents (U + Th and K). Therefore, noble gas isotopic heterogeneities in the mantle could result from grain size variations. Fine-grained lithologies (mylonites and ultramylonites, for example) with more grain boundaries will have lower U/3He ratios (compared to a coarse grained equivalent), which, over time, will preserve higher 3He/4He ratios. As predicted by theory of points defect diffusivity, these results show that noble gas diffusion along interfaces is different from those in the grain lattice itself at low temperatures. However, for grain size relevant of the Earth's mantle, the resulting effective correlated activation energies (Ea) and pre-exponential factors (Do /a2) produce similar diffusivities at mantle temperatures for interface- and lattice-hosted helium. Therefore, grain boundaries do not significantly affect helium transport at mantle conditions and length scales.

  9. Internal Domains of Natural Porous Media Revealed: Critical Locations for Transport, Storage, and Chemical Reaction

    DOE PAGES

    Zachara, John; Brantley, Sue; Chorover, Jon; Ewing, Robert; Kerisit, Sebastien; Liu, Chongxuan; Perfect, Edmund; Rother, Gernot; Stack, Andrew G.

    2016-02-05

    Internal pore domains exist within rocks, lithic fragments, subsurface sediments, and soil aggregates. These domains, termed internal domains in porous media (IDPM), represent a subset of a material’s porosity, contain a significant fraction of their porosity as nanopores, dominate the reactive surface area of diverse media types, and are important locations for chemical reactivity and fluid storage. IDPM are key features controlling hydrocarbon release from shales in hydraulic fracture systems, organic matter decomposition in soil, weathering and soil formation, and contaminant behavior in the vadose zone and groundwater. It is traditionally difficult to interrogate, advances in instrumentation and imaging methodsmore » are providing new insights on the physical structures and chemical attributes of IDPM, and their contributions to system behaviors. We discuss analytical methods to characterize IDPM, evaluate information on their size distributions, connectivity, and extended structures; determine whether they exhibit unique chemical reactivity; and assess the potential for their inclusion in reactive transport models. Moreover, ongoing developments in measurement technologies and sensitivity, and computer-assisted interpretation will improve understanding of these critical features in the future. Finally, impactful research opportunities exist to advance understanding of IDPM, and to incorporate their effects in reactive transport models for improved environmental simulation and prediction.« less

  10. 40 CFR 60.254 - Standards for coal processing and conveying equipment, coal storage systems, transfer and loading...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conveying equipment, coal storage systems, transfer and loading systems, and open storage piles. 60.254... systems, transfer and loading systems, and open storage piles. (a) On and after the date on which the... conveying equipment, coal storage system, or coal transfer and loading system processing coal...

  11. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, J.F.

    1998-09-22

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.

  12. Electro-osmotic transport in wet processing of textiles

    DOEpatents

    Cooper, John F.

    1998-01-01

    Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

  13. Kinetic and electromagnetic transport processes in toroidal devices

    SciTech Connect

    Moses, R.W.; Schoenberg, K.F.

    1990-01-01

    A brief review of transport processes in toroidal devices is presented. Particular attention is given to radial transport of power by the Poynting's vector and kinetic electron flow. This work is primarily focused on the Reversed Field Pinch (RFP) which holds the added complexity of a dynamo process that sustains poloidal current in the edge region, where the toroidal field is reversed. The experimental observation of superthermal unidirectional electrons in the plasma edge of ZT-40M and HBTX1C is noted, and the rapid, nonclassical ion heating in RFPs is taken account of. Radial transport parallel to fluctuating magnetic field lines is deemed a likely candidate for both electromagnetic and kinetic energy transport. Two models are discussed and compared. It is concluded that electromagnetic transport using a local Ohm's law best describes nonclassical ion heating, and the transport of kinetic energy by long mean free path electrons best represents the half-Maxwellian of electrons observed in the edge of several RFPs. A nonlocal Ohm's law is essential for the kinetic electron model. 18 refs.

  14. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

    2013-02-01

    The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela Basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of eastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits of the upper and upper-mid subcatchments are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within these wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from upper to lower catchment areas was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during

  15. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Miller, J. R.; Mackin, G.; Lechler, P.; Lord, M.; Lorentz, S.

    2012-09-01

    The management of sediment and other non-point source (NPS) pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s), transport, and storage within the Mkabela basin, a representative agricultural catchment within the KwaZulu-Natal Midlands of southeastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses. The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment) areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants). Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within both wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from the basin was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from lower parts of the watershed during low- to moderate flood events. The construction of a

  16. 41 CFR 302-7.100 - How are the charges of transporting HHG, and temporary storage calculated?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false How are the charges of... Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7... 22314-3482), tariffs filed with GSA travel management centers, or any other mileage guide authorized...

  17. 10 CFR 34.73 - Records of inspection and maintenance of radiographic exposure devices, transport and storage...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of inspection and maintenance of radiographic exposure devices, transport and storage containers, associated equipment, source changers, and survey instruments. 34.73 Section 34.73 Energy NUCLEAR REGULATORY COMMISSION LICENSES FOR INDUSTRIAL RADIOGRAPHY AND RADIATION SAFETY REQUIREMENTS...

  18. Advanced research in solar-energy storage

    SciTech Connect

    Luft, W.

    1983-01-01

    The Solar Energy Storage Program at the Solar Energy Research Institute is reviewed. The program provides research, systems analyses, and economic assessments of thermal and thermochemical energy storage and transport. Current activities include experimental research into very high temperature (above 800/sup 0/C) thermal energy storage and assessment of novel thermochemical energy storage and transport systems. The applications for such high-temperature storage are thermochemical processes, solar thermal-electric power generation, cogeneration of heat and electricity, industrial process heat, and thermally regenerative electrochemical systems. The research results for five high-temperature thermal energy storage technologies and two thermochemical systems are described.

  19. The Importance of Biophysicochemical Transport Processes in Hyporheic Exchange

    NASA Astrophysics Data System (ADS)

    Packman, A. I.

    2001-12-01

    Hyporheic exchange processes are generally analyzed in terms of hydrologic stream-subsurface interactions, biogeochemical reactions in the hyporheic zone, or nutrient and carbon uptake in the context of stream metabolism. Often, investigations are motivated primarily by applications in hydrology, contaminant transport, or stream ecology, and thus focus on only one of these aspects of hyporheic exchange. However, it is important to consider the interrelationships between biological, physical, and chemical processes, which are inevitably and inextricably linked because the hyporheic zone represents an extraordinary complex environmental system. The nature of biophysicochemical linkages in the hyporheic zone will be discussed in general terms and illustrated with two important examples. The transport of microorganisms such as the pathogen Cryptosporidium parvum in streams is dependent on both physical transport processes and physicochemical interactions in the hyporheic zone. The transport of labile particulate organic matter to the hyporheic zone is dependent on similar processes, but also induces biologically-mediated alteration of the subsurface environment. In these types of studies, insufficient characterization of either physical, chemical, or biological processes can lead to errors in interpretation of overall system behavior.

  20. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  1. 41 CFR 302-7.15 - Must I use the method selected by my agency for transporting my HHG, PBP&E and temporary storage?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Must I use the method... Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND...

  2. 41 CFR 302-7.13 - What methods of transporting and paying for the movement of HHG, PBP&E and temporary storage are...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false What methods of... 302-7.13 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD...

  3. 41 CFR 302-7.101 - Where can the commuted rate schedules for the transportation of HHG, and temporary storage be found?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false Where can the commuted....101 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND...

  4. 41 CFR 302-7.15 - Must I use the method selected by my agency for transporting my HHG, PBP&E and temporary storage?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false Must I use the method... Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND...

  5. 41 CFR 302-7.13 - What methods of transporting and paying for the movement of HHG, PBP&E and temporary storage are...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false What methods of... 302-7.13 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD...

  6. 41 CFR 302-7.101 - Where can the commuted rate schedules for the transportation of HHG, and temporary storage be found?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Where can the commuted....101 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES TRANSPORTATION AND STORAGE OF PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND...

  7. Phase diagram and storage capacity of sequence processing neural networks

    NASA Astrophysics Data System (ADS)

    Düring, A.; Coolen, A. C. C.; Sherrington, D.

    1998-10-01

    We solve the dynamics of Hopfield-type neural networks which store sequences of patterns, close to saturation. The asymmetry of the interaction matrix in such models leads to violation of detailed balance, ruling out an equilibrium statistical mechanical analysis. Using generating functional methods we derive exact closed equations for dynamical order parameters, namely the sequence overlap and correlation and response functions, in the thermodynamic limit. We calculate the time translation invariant solutions of these equations, describing stationary limit cycles, which leads to a phase diagram. The effective retarded self-interaction usually appearing in symmetric models is here found to vanish, which causes a significantly enlarged storage capacity of 0305-4470/31/43/005/img6, compared with 0305-4470/31/43/005/img7 for Hopfield networks storing static patterns. Our results are tested against extensive computer simulations and excellent agreement is found.

  8. Geochemical processes during five years of aquifer storage recovery.

    PubMed

    Herczeg, Andrew L; Rattray, Karen J; Dillon, Peter J; Pavelic, Paul; Barry, Karen E

    2004-01-01

    A key factor in the long-term viability of aquifer storage recovery (ASR) is the extent of mineral solution interaction between two dissimilar water types and consequent impact on water quality and aquifer stability. We collected geochemical and isotopic data from three observation wells located 25, 65, and 325 m from an injection well at an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia. The experiment involved five major injection cycles of a total of 2.5 x 10(5) m3 of storm water (total dissolved solids [TDS] approximately 150 mg/L) into the brackish (TDS approximately 2400 mg/L) aquifer. Approximately 60% of the mixture was pumped out during the fifth year of the experiment. The major effect on water quality within a 25 m radius of the injection well following injection of storm water was carbonate dissolution (35 +/- 6 g of CaCO3 dissolved/m3 of aquifer) and sulfide mineral oxidation (50 +/- 10 g as FeS2/m3 after one injection). < 0.005% of the total aquifer carbonate matrix was dissolved during each injection event, and approximately 0.2% of the total reduced sulfur. Increasing amounts of ambient ground water was entrained into the injected mixture during each of the storage periods. High 14C(DIC) activities and slightly more negative delta13C(DIC) values measured immediately after injection events show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant. There were no detectable geochemical reactions while pumping during the recovery phase in the fifth year of the experiment. PMID:15161160

  9. On non-local transport processes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Macneice, P.

    1992-01-01

    We review two mechanisms which can lend a non-local character to energy transport in the solar atmosphere, heat flux propagating in the form of collisionless electrons, and non-equilibrium ionization of hydrogen driven by ambipolar diffusion. Application of these processes to modelling of the lower transition region and upper chromosphere is considered.

  10. An Atomistic View on Fundamental Transport Processes on Metal Surfaces

    SciTech Connect

    Giesen, Margret

    2007-06-14

    In this lecture I present an introduction to the time-resolved observation of atomic transport processes on metal surfaces using scanning tunneling microscopy video sequences. The experimental data is analyzed using scaling law concepts known from statistical thermodynamics. I will present studies from metal surfaces in vacuum as well as in electrolyte.

  11. Reply to "Comment on `Generalized exclusion processes: Transport coefficients' "

    NASA Astrophysics Data System (ADS)

    Arita, Chikashi; Krapivsky, P. L.; Mallick, Kirone

    2016-07-01

    We reply to the Comment of Becker, Nelissen, Cleuren, Partoens, and Van den Broeck [Phys. Rev. E 93, 046101 (2016), 10.1103/PhysRevE.93.046101] on our article [Arita, Krapivsky, and Mallick, Phys. Rev. E 90, 052108 (2014), 10.1103/PhysRevE.90.052108] about the transport properties of a class of generalized exclusion processes.

  12. Transformation and Transport Processes of Nitrogen in Agricultural Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The transformation and transport processes of nitrogen (N) in agricultural systems are discussed and information is provided on overall reservoir sizes for N. Nitrogen is ubiquitous in the environment and is required for the survival of all living things. It is also one of the most important essen...

  13. 41 CFR 302-9.11 - May I receive an advance of funds for transportation and emergency storage of my POV?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of funds for transportation and emergency storage of my POV? 302-9.11 Section 302-9.11 Public... General Rules § 302-9.11 May I receive an advance of funds for transportation and emergency storage of my... storage of your POV. Effective Date Note: By FTR Amdt. 2011-01, 76 FR 18342, Apr. 1, 2011, § 302-9.11...

  14. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    SciTech Connect

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  15. Forest Canopy Processes in a Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Staebler, Ralf; Akingunola, Ayodeji; Zhang, Junhua; McLinden, Chris; Kharol, Shailesh; Moran, Michael; Robichaud, Alain; Zhang, Leiming; Stroud, Craig; Pabla, Balbir; Cheung, Philip

    2016-04-01

    Forest canopies have typically been absent or highly parameterized in regional chemical transport models. Some forest-related processes are often considered - for example, biogenic emissions from the forests are included as a flux lower boundary condition on vertical diffusion, as is deposition to vegetation. However, real forest canopies comprise a much more complicated set of processes, at scales below the "transport model-resolved scale" of vertical levels usually employed in regional transport models. Advective and diffusive transport within the forest canopy typically scale with the height of the canopy, and the former process tends to dominate over the latter. Emissions of biogenic hydrocarbons arise from the foliage, which may be located tens of metres above the surface, while emissions of biogenic nitric oxide from decaying plant matter are located at the surface - in contrast to the surface flux boundary condition usually employed in chemical transport models. Deposition, similarly, is usually parameterized as a flux boundary condition, but may be differentiated between fluxes to vegetation and fluxes to the surface when the canopy scale is considered. The chemical environment also changes within forest canopies: shading, temperature, and relativity humidity changes with height within the canopy may influence chemical reaction rates. These processes have been observed in a host of measurement studies, and have been simulated using site-specific one-dimensional forest canopy models. Their influence on regional scale chemistry has been unknown, until now. In this work, we describe the results of the first attempt to include complex canopy processes within a regional chemical transport model (GEM-MACH). The original model core was subdivided into "canopy" and "non-canopy" subdomains. In the former, three additional near-surface layers based on spatially and seasonally varying satellite-derived canopy height and leaf area index were added to the original model

  16. Fluid Flow, Heat Transfer, and Solute Transport at Nuclear Waste Storage Tanks in the Hanford Vadose Zone

    SciTech Connect

    Pruess, Karsten; Yabusaki, Steven B.; Steefel, Carl I.; Lichtner, Peter C.

    2002-03-01

    At the Hanford site, highly radioactive and chemically aggressive waste fluids have leaked from underground storage tanks into the vadose zone. This paper addresses hydrogeological issues at the 241-SX tank farm, especially focusing on tank SX-108 which is one of the highest heat load, supernate density and ionic strength tanks at Hanford and a known leaker. The behavior of contaminants in the unsaturated zone near SX-108 is determined by an interplay of multiphase fluid flow and heat transfer processes with reactive chemical transport in a complex geological setting. Numerical simulation studies were performed to obtain a better understanding of mass and energy transport in the unique hydrogeologic system created by the SX tank farm. Problem parameters are patterned after conditions at tank SX-108, and measured data were used whenever possible. Borrowing from techniques developed in geothermal and petroleum reservoir engineering, our simulations feature a comprehensive description of multiphase processes, including boiling and condensation phenomena, and precipitation and dissolution of solids. We find that the thermal perturbation from the tank causes large-scale redistribution of moisture and alters water seepage patterns. During periods of high heat load, fluid and heat flow near the tank is dominated by vapor-liquid counterflow (heat pipe), which provides a much more efficient mechanism than heat conduction for dissipating tank heat. The heat pipe mechanism is also very effective in concentrating dissolved solids near the heat source, where salts may precipitate even if they were only present in small concentrations in ambient fluids. Tank leaks that released aqueous fluids of high ionic strength into the vadose zone were also modeled. The heat load causes formation dryout beneath the tank, which is accompanied by precipitation of solutes.

  17. Features, Events, and Processes in UZ Flow and Transport

    SciTech Connect

    J.E. Houseworth

    2001-04-10

    Unsaturated zone (UZ) flow and radionuclide transport is a component of the natural barriers that affects potential repository performance. The total system performance assessment (TSPA) model, and underlying process models, of this natural barrier component capture some, but not all, of the associated features, events, and processes (FEPs) as identified in the FEPs Database (Freeze, et al. 2001 [154365]). This analysis and model report (AMR) discusses all FEPs identified as associated with UZ flow and radionuclide transport. The purpose of this analysis is to give a comprehensive summary of all UZ flow and radionuclide transport FEPs and their treatment in, or exclusion from, TSPA models. The scope of this analysis is to provide a summary of the FEPs associated with the UZ flow and radionuclide transport and to provide a reference roadmap to other documentation where detailed discussions of these FEPs, treated explicitly in TSPA models, are offered. Other FEPs may be screened out from treatment in TSPA by direct regulatory exclusion or through arguments concerning low probability and/or low consequence of the FEPs on potential repository performance. Arguments for exclusion of FEPs are presented in this analysis. Exclusion of specific FEPs from the UZ flow and transport models does not necessarily imply that the FEP is excluded from the TSPA. Similarly, in the treatment of included FEPs, only the way in which the FEPs are included in the UZ flow and transport models is discussed in this document. This report has been prepared in accordance with the technical work plan for the unsaturated zone subproduct element (CRWMS M&O 2000 [153447]). The purpose of this report is to document that all FEPs are either included in UZ flow and transport models for TSPA, or can be excluded from UZ flow and transport models for TSPA on the basis of low probability or low consequence. Arguments for exclusion are presented in this analysis. Exclusion of specific FEPs from UZ flow and

  18. Development, testing and practical use of two special containment vessels for storage and transportation of high explosives

    SciTech Connect

    Dikken, H. den

    1995-12-31

    The storage and transportation of high explosives gives many logistic managers a headache, especially when it comes to forwarding of small quantities. Air transport is limited to 1.4 explosives on cargo aircraft and 1.4S classified explosives on passenger aircraft, so most samples cannot be transported by air. Ocean transport is a possibility, but due to stowage and segregation regulations of the IMDG code, a very expensive one. Road transport is often the only solution, but high explosives require special trucks with licensed drivers. The solution to these logistic problems is solved by creating a 1.4S (Class C) classification for all high explosives, when packed in special containment vessels.

  19. The contribution of temporary storage and executive processes to category learning.

    PubMed

    Wang, Tengfei; Ren, Xuezhu; Schweizer, Karl

    2015-09-01

    Three distinctly different working memory processes, temporary storage, mental shifting and inhibition, were proposed to account for individual differences in category learning. A sample of 213 participants completed a classic category learning task and two working memory tasks that were experimentally manipulated for tapping specific working memory processes. Fixed-links models were used to decompose data of the category learning task into two independent components representing basic performance and improvement in performance in category learning. Processes of working memory were also represented by fixed-links models. In a next step the three working memory processes were linked to components of category learning. Results from modeling analyses indicated that temporary storage had a significant effect on basic performance and shifting had a moderate effect on improvement in performance. In contrast, inhibition showed no effect on any component of the category learning task. These results suggest that temporary storage and the shifting process play different roles in the course of acquiring new categories.

  20. Optimizing Cloud Based Image Storage, Dissemination and Processing Through Use of Mrf and Lerc

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Plesea, Lucian; Maurer, Thomas

    2016-06-01

    The volume and numbers of geospatial images being collected continue to increase exponentially with the ever increasing number of airborne and satellite imaging platforms, and the increasing rate of data collection. As a result, the cost of fast storage required to provide access to the imagery is a major cost factor in enterprise image management solutions to handle, process and disseminate the imagery and information extracted from the imagery. Cloud based object storage offers to provide significantly lower cost and elastic storage for this imagery, but also adds some disadvantages in terms of greater latency for data access and lack of traditional file access. Although traditional file formats geoTIF, JPEG2000 and NITF can be downloaded from such object storage, their structure and available compression are not optimum and access performance is curtailed. This paper provides details on a solution by utilizing a new open image formats for storage and access to geospatial imagery optimized for cloud storage and processing. MRF (Meta Raster Format) is optimized for large collections of scenes such as those acquired from optical sensors. The format enables optimized data access from cloud storage, along with the use of new compression options which cannot easily be added to existing formats. The paper also provides an overview of LERC a new image compression that can be used with MRF that provides very good lossless and controlled lossy compression.

  1. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    SciTech Connect

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  2. 1995 national heat transfer conference: Proceedings. Volume 4: Transport phenomena in manufacturing and materials processing; Transport phenomena in materials joining processes; Transport phenomena in net shape manufacturing; HTD-Volume 306

    SciTech Connect

    Mahajan, R.L.

    1995-12-31

    This book is divided into three sections: (1) transport phenomena in manufacturing and materials processing; (2) transport phenomena in net shape manufacturing: and (3) transport phenomena in materials joining processes. Separate abstracts were prepared for most papers in this volume.

  3. Effect of transportation and storage using sorbent tubes of exhaled breath samples on diagnostic accuracy of electronic nose analysis.

    PubMed

    van der Schee, M P; Fens, N; Brinkman, P; Bos, L D J; Angelo, M D; Nijsen, T M E; Raabe, R; Knobel, H H; Vink, T J; Sterk, P J

    2013-03-01

    Many (multi-centre) breath-analysis studies require transport and storage of samples. We aimed to test the effect of transportation and storage using sorbent tubes of exhaled breath samples for diagnostic accuracy of eNose and GC-MS analysis. As a reference standard for diagnostic accuracy, breath samples of asthmatic patients and healthy controls were analysed by three eNose devices. Samples were analysed by GC-MS and eNose after 1, 7 and 14 days of transportation and storage using sorbent tubes. The diagnostic accuracy for eNose and GC-MS after storage was compared to the reference standard. As a validation, the stability was assessed of 15 compounds known to be related to asthma, abundant in breath or related to sampling and analysis. The reference test discriminated asthma and healthy controls with a median AUC (range) of 0.77 (0.72-0.76). Similar accuracies were achieved at t1 (AUC eNose 0.78; GC-MS 0.84), t7 (AUC eNose 0.76; GC-MS 0.79) and t14 (AUC eNose 0.83; GC-MS 0.84). The GC-MS analysis of compounds showed an adequate stability for all 15 compounds during the 14 day period. Short-term transportation and storage using sorbent tubes of breath samples does not influence the diagnostic accuracy for discrimination between asthma and health by eNose and GC-MS.

  4. Proceedings of a workshop on uses of depleted uranium in storage, transportation and repository facilities

    SciTech Connect

    1997-12-31

    A workshop on the potential uses of depleted uranium (DU) in the repository was organized to coordinate the planning of future activities. The attendees, the original workshop objective and the agenda are provided in Appendices A, B and C. After some opening remarks and discussions, the objectives of the workshop were revised to: (1) exchange information and views on the status of the Department of Energy (DOE) activities related to repository design and planning; (2) exchange information on DU management and planning; (3) identify potential uses of DU in the storage, transportation, and disposal of high-level waste and spent fuel; and (4) define the future activities that would be needed if potential uses were to be further evaluated and developed. This summary of the workshop is intended to be an integrated resource for planning of any future work related to DU use in the repository. The synopsis of the first day`s presentations is provided in Appendix D. Copies of slides from each presenter are presented in Appendix E.

  5. Characterization of Regolith Volatile Transport and Storage Properties by The MECA MSP 2001 Lander Payload

    NASA Technical Reports Server (NTRS)

    Clifford, S. M.; Marshall, J.

    1999-01-01

    The diffusive and adsorptive properties of the Martian regolith influence the exchange of volatiles between the atmosphere and subsurface. Our quantitative knowledge of these properties is extremely poor -introducing substantial uncertainties in efforts to model long-term evolution of ground ice and diurnal, seasonal, and climatic cycles of CO2 and H20. This situation should significantly improve upon arrival of the 2001 Mars Surveyor Lander in 2002. In support of the Human Exploration and Development of Space (HEDS) enterprise, the 2001 mission will include a suite of instruments to characterize the nature of the Martian environment and assess whether it contains hazards that may threaten future human exploration. A major element of this effort is the Mars Environmental Compatibility Assessment (MECA) payload, which consists an optical microscopy system incorporating electrostatic, magnetic, and scratch-hardness materials testing palets, an atomic force microscope with imaging capabilities comparable to an SEM, a wet chemistry laboratory with four independent test cells, an electrometer on the robotic arm, material test patches, a camera also mounted on the arm, and a soil scoop for excavating down to about 50 cm into the soil. Although conceived to address the needs of HEDS, MECA payload is a sophisticated soil science laboratory that should provide a wealth of new data relevant to the volatile transport and storage properties of the regolith. Additional information os contained in the original.

  6. Intracellular Iron Transport and Storage: From Molecular Mechanisms to Health Implications

    PubMed Central

    Mackenzie, Elizabeth L.; Iwasaki, Kenta

    2008-01-01

    Abstract Maintenance of proper “labile iron” levels is a critical component in preserving homeostasis. Iron is a vital element that is a constituent of a number of important macromolecules, including those involved in energy production, respiration, DNA synthesis, and metabolism; however, excess “labile iron” is potentially detrimental to the cell or organism or both because of its propensity to participate in oxidation–reduction reactions that generate harmful free radicals. Because of this dual nature, elaborate systems tightly control the concentration of available iron. Perturbation of normal physiologic iron concentrations may be both a cause and a consequence of cellular damage and disease states. This review highlights the molecular mechanisms responsible for regulation of iron absorption, transport, and storage through the roles of key regulatory proteins, including ferroportin, hepcidin, ferritin, and frataxin. In addition, we present an overview of the relation between iron regulation and oxidative stress and we discuss the role of functional iron overload in the pathogenesis of hemochromatosis, neurodegeneration, and inflammation. Antioxid. Redox Signal. 10, 997–1030. PMID:18327971

  7. Explosions of ammonium nitrate fertilizer in storage or transportation are preventable accidents.

    PubMed

    Babrauskas, Vytenis

    2016-03-01

    Ammonium nitrate (AN) is a detonable substance which has led to numerous disasters throughout the 20th century and until the present day, with the latest disaster occurring on 17 April 2013. Needed safety lesson have not been learned, since typically each accident was viewed as a great surprise and investigations focused on finding some unique reason for the accident, rather than examining what is common among the accidents. A review is made of accidents which involved AN for fertilizer purposes, and excluding incidents involving ANFO or additional explosives apart from AN. It is found that, for explosions in storage or transportation, 100% of these disasters had a single causative factor-an uncontrollable fire. Thus, such disasters can be eliminated by eliminating the potential for uncontrolled fire. Two actions are required to achieve this: (1) adoption of fertilizer formulations which reduce the potential for uncontrolled fire and for detonation; and (2) adoption of building safety measures which provide assurance against uncontrolled fires. Technical means are available for achieving both these required measures. These measures have been known for a long time and the only reason that disasters continue to occur is that these safety measures are not implemented. The problem can be solved unilaterally by product manufacturers or by government authorities, but preferably both should take necessary steps.

  8. Effects of aspirin on expression of iron transport and storage proteins in BV-2 microglial cells.

    PubMed

    Xu, Yan Xin; Du, Fang; Jiang, Li Rong; Gong, Jing; Zhou, Yu-Fu; Luo, Qian Qian; Qian, Zhong Ming; Ke, Ya

    2015-12-01

    In the light of recent studies, we hypothesized that aspirin might have the functions to regulate the expression of iron transport proteins and then affect cellular iron levels. To test this hypothesis, we investigated the effects of aspirin on expression of iron uptake protein transferrin receptor 1 (TfR1), iron release protein ferroportin 1 (Fpn1) and iron storage protein ferritin using Western blot analysis and on tumor necrosis factor (TNF)-αlpha, interleukin (IL)-6, interleukin (IL)-10 and hepcidin using quantitative real-time PCR in BV-2 microglial cells treated with lipopolysaccharides (LPS). We found that aspirin significantly down-regulated TfR1, while also up-regulated Fpn1 and ferritin expressions in BV-2 microglial cells in vitro. We also showed that TfR1 and Fpn1 expressions were significantly higher, while ferritin contents, IL-6, TNF-alpha and hepcidin mRNA levels were lower in cells treated with aspirin plus LPS than those in cells treated with LPS only. We concluded that aspirin has a negative effect on cell iron contents under 'normal' conditions and could partly reverse LPS-induced-disruption in cell iron balance under in vitro inflammatory conditions. Our findings also suggested that hepcidin might play a dominant role in the control of TfR1 expression by aspirin in the cells treated with LPS. PMID:26522688

  9. Explosions of ammonium nitrate fertilizer in storage or transportation are preventable accidents.

    PubMed

    Babrauskas, Vytenis

    2016-03-01

    Ammonium nitrate (AN) is a detonable substance which has led to numerous disasters throughout the 20th century and until the present day, with the latest disaster occurring on 17 April 2013. Needed safety lesson have not been learned, since typically each accident was viewed as a great surprise and investigations focused on finding some unique reason for the accident, rather than examining what is common among the accidents. A review is made of accidents which involved AN for fertilizer purposes, and excluding incidents involving ANFO or additional explosives apart from AN. It is found that, for explosions in storage or transportation, 100% of these disasters had a single causative factor-an uncontrollable fire. Thus, such disasters can be eliminated by eliminating the potential for uncontrolled fire. Two actions are required to achieve this: (1) adoption of fertilizer formulations which reduce the potential for uncontrolled fire and for detonation; and (2) adoption of building safety measures which provide assurance against uncontrolled fires. Technical means are available for achieving both these required measures. These measures have been known for a long time and the only reason that disasters continue to occur is that these safety measures are not implemented. The problem can be solved unilaterally by product manufacturers or by government authorities, but preferably both should take necessary steps. PMID:26547622

  10. Effects of aspirin on expression of iron transport and storage proteins in BV-2 microglial cells.

    PubMed

    Xu, Yan Xin; Du, Fang; Jiang, Li Rong; Gong, Jing; Zhou, Yu-Fu; Luo, Qian Qian; Qian, Zhong Ming; Ke, Ya

    2015-12-01

    In the light of recent studies, we hypothesized that aspirin might have the functions to regulate the expression of iron transport proteins and then affect cellular iron levels. To test this hypothesis, we investigated the effects of aspirin on expression of iron uptake protein transferrin receptor 1 (TfR1), iron release protein ferroportin 1 (Fpn1) and iron storage protein ferritin using Western blot analysis and on tumor necrosis factor (TNF)-αlpha, interleukin (IL)-6, interleukin (IL)-10 and hepcidin using quantitative real-time PCR in BV-2 microglial cells treated with lipopolysaccharides (LPS). We found that aspirin significantly down-regulated TfR1, while also up-regulated Fpn1 and ferritin expressions in BV-2 microglial cells in vitro. We also showed that TfR1 and Fpn1 expressions were significantly higher, while ferritin contents, IL-6, TNF-alpha and hepcidin mRNA levels were lower in cells treated with aspirin plus LPS than those in cells treated with LPS only. We concluded that aspirin has a negative effect on cell iron contents under 'normal' conditions and could partly reverse LPS-induced-disruption in cell iron balance under in vitro inflammatory conditions. Our findings also suggested that hepcidin might play a dominant role in the control of TfR1 expression by aspirin in the cells treated with LPS.

  11. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  12. Modeling of natural organic matter transport processes in groundwater.

    PubMed Central

    Yeh, T C; Mas-Pla, J; McCarthy, J F; Williams, T M

    1995-01-01

    A forced-gradient tracer test was conducted at the Georgetown site to study the transport of natural organic matter (NOM) in groundwater. In particular, the goal of this experiment was to investigate the interactions between NOM and the aquifer matrix. A detailed three-dimensional characterization of the hydrologic conductivity heterogeneity of the site was obtained using slug tests. The transport of a conservative tracer (chloride) was successfully reproduced using these conductivity data. Despite the good simulation of the flow field, NOM breakthrough curves could not be reproduced using a two-site sorption model with spatially constant parameters. Preliminary results suggest that different mechanisms for the adsorption/desorption processes, as well as their spatial variability, may significantly affect the transport and fate of NOM. PMID:7621798

  13. Modeling Multi-process Transport of Pathogens in Porous Media

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Brusseau, M. L.

    2004-12-01

    The transport behavior of microorganisms in porous media is of interest with regard to the fate of pathogens associated with wastewater recharge, riverbank filtration, and land application of biosolids. This interest has fomented research on the transport of pathogens in the subsurface environment. The factors influencing pathogen transport within the subsurface environment include advection, dispersion, filtration, and inactivation. The filtration process, which mediates the magnitude and rate of pathogen retention, comprises several mechanisms such as attachment to porous-medium surfaces, straining, and sedimentation. We present a mathematical model wherein individual filtration mechanisms are explicitly incorporated along with advection, dispersion, and inactivation. The performance of the model is evaluated by applying it to several data sets obtained from miscible-displacement experiments conducted using various pathogens. Input parameters are obtained to the extent possible from independent means.

  14. Solar collector panels (process-method). Rainwater collection and storage

    SciTech Connect

    Mowery, J.W.

    1981-10-15

    A process for producing panels for solar heating of potable water is described. The panels have PVC tubing flat-coiled into square or rectangular shapes. Also described is a cistern for collecting and storing rainwater. (LEW)

  15. Role of invertase activity in processing quality of potatoes: Effect of storage temperature and duration.

    PubMed

    Bandana; Sharma, Vineet; Singh, Brajesh; Raigond, Pinky; Kaushik, S K

    2016-03-01

    Invertase activity and processing attributes of three potato cultivars were studied to find the reason for deterioration of processing quality during their prolonged storage in commercial cold stores (4°C) as compared to elevated temperature storage (12 ± 0.5°C), with CIPC {Isopropyl-N-(3-Cholorophenyl) carbamate}. Lower storage temperature (4°C) tended to be more effective in increasing invertase activity of potato tubers than elevated temperature. Non-processing cultivar viz., Kufri Pukhraj resulted in accumulation of more invertase activity than relatively two processing cultivars. Kufri Chipsona-1 and Kufri Chipsona-3 at 12 ± 0.5°C possessed basal invertase activity ranging from 39.3 to 79.8 and 54.1 to 93.8 (pmoles hexose h⁻¹ g⁻¹ f.wt.) respectively, during two years. Total invertase activity at 4°C increased abruptly and remained high from 30 to 60 days of storage. The activity progressively reached 90.6 to 106.6 and 81.4 to 101.3 during both the years respectively, after 60 days of storage to that observed initially. Reducing sugar content increased from 23.3 to 105.7 and 389.0 to 1138.2 (mg 100g⁻¹ f.wt.) after 90 days of storage at 12 ± 0.5°C and 4°C, respectively. Studies concluded that basal and total invertase, were responsible for cold-induced sweetening and resulted in deterioration of processing quality of potatoes during storage at 4°C. Since this activity is low at 12 ± 0.5°C, the processing traits remained acceptable to industry and consumers. PMID:27097443

  16. Nonlinear transport processes in tokamak plasmas. I. The collisional regimes

    SciTech Connect

    Sonnino, Giorgio; Peeters, Philippe

    2008-06-15

    An application of the thermodynamic field theory (TFT) to transport processes in L-mode tokamak plasmas is presented. The nonlinear corrections to the linear ('Onsager') transport coefficients in the collisional regimes are derived. A quite encouraging result is the appearance of an asymmetry between the Pfirsch-Schlueter (P-S) ion and electron transport coefficients: the latter presents a nonlinear correction, which is absent for the ions, and makes the radial electron coefficients much larger than the former. Explicit calculations and comparisons between the neoclassical results and the TFT predictions for Joint European Torus (JET) plasmas are also reported. It is found that the nonlinear electron P-S transport coefficients exceed the values provided by neoclassical theory by a factor that may be of the order 10{sup 2}. The nonlinear classical coefficients exceed the neoclassical ones by a factor that may be of order 2. For JET, the discrepancy between experimental and theoretical results for the electron losses is therefore significantly reduced by a factor 10{sup 2} when the nonlinear contributions are duly taken into account but, there is still a factor of 10{sup 2} to be explained. This is most likely due to turbulence. The expressions of the ion transport coefficients, determined by the neoclassical theory in these two regimes, remain unaltered. The low-collisional regimes, i.e., the plateau and the banana regimes, are analyzed in the second part of this work.

  17. Toward a better understanding of the complex geochemical processes governing subsurface contaminant transport

    SciTech Connect

    Puls, R.W.

    1991-07-01

    Identification and understanding of the chemical, physical, and biological processes controlling subsurface contaminant migration is essential for making accurate predictions on the fate and transport of these constituents. Remediation assessment requires these predictions where pollution from municipal and industrial activities has occurred, and for the responsible siting of waste isolation and storage facilities. Geochemical processes include ion-exchange, precipitation, organic partitioning, chemisorption, aqueous complexation, and colloidal stability and transport. Current approaches to quantify the effect of these processes on transport in a ground water system primarily involve laboratory techniques. These include the use of closed static systems (batch experiments) and dynamic systems (column experiments) where a larger segment of the aquifer is investigated by analyzing the breakthrough profiles of reactive and non-reactive species. The latter approach may be more representative of in situ conditions than the former, however, when compared to large-scale field experiments both are still constrained by: differences in scale, alteration of media during sample collection and use, and spatial variability. More field reactivity studies are needed to complement established laboratory approaches for the determination of retardation factors, scaling factors for laboratory versus field data, corroboration or confirmation of batch and column results, and for validation of sampling techniques.

  18. Effects of storage and processing on residue levels of chlorpyrifos in soybeans.

    PubMed

    Zhao, Liuwei; Ge, Jing; Liu, Fengmao; Jiang, Naiwen

    2014-05-01

    The residue levels of chlorpyrifos in soybeans during storage and processing were investigated. Soybeans were treated with chlorpyrifos aqueous solution and placed in a sealed plastic container. The residue of chlorpyrifos was determined in soybeans at six time points within 0 and 112days during storage and oil processing of the soybeans was conducted. The analysis of the residues of chlorpyrifos was carried out by gas chromatography-mass spectrometry (GC-MS). Results show that the dissipation of chlorpyrifos in soybeans is about 62% during the storage period. Moreover, the carryover of the residues from soybeans into oil is found to be related to the processing methods. Processing factor, which is defined as the ratio of chlorpyrifos residue concentration in oil sample to that in the soybean samples, was 11 and 0.25 after cold and hot pressing, respectively.

  19. Process-based modeling of tsunami inundation and sediment transport

    USGS Publications Warehouse

    Apotsos, A.; Gelfenbaum, G.; Jaffe, B.

    2011-01-01

    The infrequent and unpredictable nature of tsunamis precludes the use of field experiments to measure the hydrodynamic and sediment transport processes that occur. Instead, these processes are often approximated from laboratory, numerical, and theoretical studies or inferred from observations of the resultant sediment deposits. Here Delft3D, a three-dimensional numerical model, is used to simulate the inundation and sediment transport of a tsunami similar in magnitude to the 26 December 2004 Indian Ocean tsunami over one measured and three idealized morphologies. The model is first shown to match well the observations taken at Kuala Meurisi, Sumatra, and then used to examine in detail the processes that occur during the tsunami. The model predicts that at a given cross-shore location the onshore flow accelerates rapidly to a maximum as the wavefront passes, and then gradually decelerates before reversing direction and flowing offshore. The onshore flow does not tend to zero everywhere at maximum inundation, but instead flow reversal occurs near the shoreline even as the wavefront continues to inundate landward. While some sediment is eroded by the passing wavefront, the suspension of sandy sediment is dominated by the long-duration, high-velocity backwash that occurs along the beach face and offshore of the shoreline. Some of the sediment suspended during backwash is advected shoreward by the subsequent wave, creating large spatial gradients in the suspended sediment concentrations, which may not be in equilibrium with the local hydrodynamics. The inundation and transport of sediment during a tsunami can be affected by complexities in the morphological profile and interactions between multiple waves, and many of the hydrodynamic and sediment transport processes predicted here are similar to analogous processes previously observed in the swash zone. Copyright 2011 by the American Geophysical Union.

  20. Recovery Act: 'Carbonsheds' as a Framework for Optimizing United States Carbon Capture and Storage (CCS) Pipeline Transport on a Regional to National Scale

    SciTech Connect

    Pratson, Lincoln

    2012-11-30

    Carbonsheds are regions in which the estimated cost of transporting CO{sub 2} from any (plant) location in the region to the storage site it encompasses is cheaper than piping the CO{sub 2} to a storage site outside the region. We use carbonsheds to analyze the cost of transport and storage of CO{sub 2} in deploying CCS on land and offshore of the continental U.S. We find that onshore the average cost of transport and storage within carbonsheds is roughly $10/t when sources cooperate to reduce transport costs, with the costs increasing as storage options are depleted over time. Offshore transport and storage costs by comparison are found to be roughly twice as expensive but t may still be attractive because of easier access to property rights for sub-seafloor storage as well as a simpler regulatory system, and possibly lower MMV requirements, at least in the deep-ocean where pressures and temperatures would keep the CO{sub 2} negatively buoyant. Agent-based modeling of CCS deployment within carbonsheds under various policy scenarios suggests that the most cost-effective strategy at this point in time is to focus detailed geology characterization of storage potential on only the largest onshore reservoirs where the potential for mitigating emissions is greatest and the cost of storage appears that it will be among the cheapest.

  1. Food ellagitannins-occurrence, effects of processing and storage.

    PubMed

    Bakkalbaşi, Emre; Menteş, Ozay; Artik, Nevzat

    2009-03-01

    Interest in ellagitannins and ellagic acid has increased over the past few years due to its properties as a micronutrient. Ellagitannins are complex plant polyphenols composed of hexahydroxydiphenoyl moieties esterified to a sugar. Fruits (especially berries and nuts) are rich sources of ellagitannins and ellagic acid, a hydrolytic product of ellagitannins. These secondary metabolites give the characteristic taste to the fruits and their products, and also play an important role in food processing. This paper reviews research about occurrence in foods, change during process, and antioxidant activity of ellagitannins and ellagic acid. PMID:19093271

  2. Reactive transport modeling to quantify trace element release into fresh groundwater in case of CO2 leak from deep geological storage.

    NASA Astrophysics Data System (ADS)

    Lions, J.; Jakymiw, C.; Devau, N.; Barsotti, V.; Humez, P.

    2014-12-01

    Geological storage of CO2 in deep saline aquifers is one of the options considered for the mitigation of CO2 emissions into the atmosphere. A deep geological CO2 storage is not expected to leak but potential impacts on groundwater have to be studied. A better understanding on how it could affect groundwater quality, aquifer minerals and trace elements is necessary to characterize a future storage site. Moreover, monitoring and remediation solutions have to be evaluated before storage operations. As part of the ANR project CIPRES, we present here reactive transport works. In a 3D model using ToughReact v.2, we perform different CO2 leakage scenarios in a confined aquifer, considering CO2 gas leakage. The model is based on the Albian aquifer, a strategic water resource. It takes into account groundwater and rock chemistry of the Albian green sand layer (Quartz, Glauconite, Kaolinite) at 700 m deep. The geochemical model was elaborated from experimental data. The aquifer consists in a mesh, divided roughly in 20000 cells making a 60 m thick and a 500 m large layer. Furthermore, cells are subdivided near the leakage point to consider local phenomena (secondary precipitation, sorption/desorption...). The chemical model takes into account kinetics for mineral dissolution, ion exchange and surface complexation. We highlight the importance of sorption processes on trace element transport (As, Zn and Ni) in fresh groundwater. Moreover, we distinguish different geochemical behavior (CO2 plume shape, secondary precipitation, desorption...) according to different horizontal flow rates influenced by the hydrodynamics (regional gradient). Understanding how geochemical processes and regional flows influence water chemistry, allows to ascertain measurement monitoring and verification plan and remediation works in case of leak considering a given location.

  3. Contemporary sediment-transport processes in submarine canyons.

    PubMed

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures. PMID:23937169

  4. Contemporary sediment-transport processes in submarine canyons.

    PubMed

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  5. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers.

    PubMed

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang Michael; Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiO(x)/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  6. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

    NASA Astrophysics Data System (ADS)

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang (Michael); Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  7. Apparatus, Method and Program Storage Device for Determining High-Energy Neutron/Ion Transport to a Target of Interest

    NASA Technical Reports Server (NTRS)

    Wilson, John W. (Inventor); Tripathi, Ram K. (Inventor); Badavi, Francis F. (Inventor); Cucinotta, Francis A. (Inventor)

    2012-01-01

    An apparatus, method and program storage device for determining high-energy neutron/ion transport to a target of interest. Boundaries are defined for calculation of a high-energy neutron/ion transport to a target of interest; the high-energy neutron/ion transport to the target of interest is calculated using numerical procedures selected to reduce local truncation error by including higher order terms and to allow absolute control of propagated error by ensuring truncation error is third order in step size, and using scaling procedures for flux coupling terms modified to improve computed results by adding a scaling factor to terms describing production of j-particles from collisions of k-particles; and the calculated high-energy neutron/ion transport is provided to modeling modules to control an effective radiation dose at the target of interest.

  8. NG6: Integrated next generation sequencing storage and processing environment

    PubMed Central

    2012-01-01

    Background Next generation sequencing platforms are now well implanted in sequencing centres and some laboratories. Upcoming smaller scale machines such as the 454 junior from Roche or the MiSeq from Illumina will increase the number of laboratories hosting a sequencer. In such a context, it is important to provide these teams with an easily manageable environment to store and process the produced reads. Results We describe a user-friendly information system able to manage large sets of sequencing data. It includes, on one hand, a workflow environment already containing pipelines adapted to different input formats (sff, fasta, fastq and qseq), different sequencers (Roche 454, Illumina HiSeq) and various analyses (quality control, assembly, alignment, diversity studies,…) and, on the other hand, a secured web site giving access to the results. The connected user will be able to download raw and processed data and browse through the analysis result statistics. The provided workflows can easily be modified or extended and new ones can be added. Ergatis is used as a workflow building, running and monitoring system. The analyses can be run locally or in a cluster environment using Sun Grid Engine. Conclusions NG6 is a complete information system designed to answer the needs of a sequencing platform. It provides a user-friendly interface to process, store and download high-throughput sequencing data. PMID:22958229

  9. Collecting duct principal cell transport processes and their regulation.

    PubMed

    Pearce, David; Soundararajan, Rama; Trimpert, Christiane; Kashlan, Ossama B; Deen, Peter M T; Kohan, Donald E

    2015-01-01

    The principal cell of the kidney collecting duct is one of the most highly regulated epithelial cell types in vertebrates. The effects of hormonal, autocrine, and paracrine factors to regulate principal cell transport processes are central to the maintenance of fluid and electrolyte balance in the face of wide variations in food and water intake. In marked contrast with the epithelial cells lining the proximal tubule, the collecting duct is electrically tight, and ion and osmotic gradients can be very high. The central role of principal cells in salt and water transport is reflected by their defining transporters-the epithelial Na(+) channel (ENaC), the renal outer medullary K(+) channel, and the aquaporin 2 (AQP2) water channel. The coordinated regulation of ENaC by aldosterone, and AQP2 by arginine vasopressin (AVP) in principal cells is essential for the control of plasma Na(+) and K(+) concentrations, extracellular fluid volume, and BP. In addition to these essential hormones, additional neuronal, physical, and chemical factors influence Na(+), K(+), and water homeostasis. Notably, a variety of secreted paracrine and autocrine agents such as bradykinin, ATP, endothelin, nitric oxide, and prostaglandin E2 counterbalance and limit the natriferic effects of aldosterone and the water-retaining effects of AVP. Considerable recent progress has improved our understanding of the transporters, receptors, second messengers, and signaling events that mediate principal cell responses to changing environments in health and disease. This review primarily addresses the structure and function of the key transporters and the complex interplay of regulatory factors that modulate principal cell ion and water transport.

  10. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts

    NASA Astrophysics Data System (ADS)

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-10-01

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices.

  11. Structures, properties, and energy-storage mechanisms of the semi-lunar process cuticles in locusts

    PubMed Central

    Wan, Chao; Hao, Zhixiu; Feng, Xiqiao

    2016-01-01

    Locusts have excellent jumping and kicking abilities to survive in nature, which are achieved through the energy storage and release processes occurring in cuticles, especially in the semi-lunar processes (SLP) at the femorotibial joints. As yet, however, the strain energy-storage mechanisms of the SLP cuticles remain unclear. To decode this mystery, we investigated the microstructure, material composition, and mechanical properties of the SLP cuticle and its remarkable strain energy-storage mechanisms for jumping and kicking. It is found that the SLP cuticle of adult Locusta migratoria manilensis consists of five main parts that exhibit different microstructural features, material compositions, mechanical properties, and biological functions in storing strain energy. The mechanical properties of these five components are all transversely isotropic and strongly depend on their water contents. Finite element simulations indicate that the two parts of the core region of the SLP cuticle likely make significant contributions to its outstanding strain energy-storage ability. This work deepens our understanding of the locomotion behaviors and superior energy-storage mechanisms of insects such as locusts and is helpful for the design and fabrication of strain energy-storage devices. PMID:27748460

  12. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    USGS Publications Warehouse

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  13. From producer to consumer: greenhouse tomato quality as affected by variety, maturity stage at harvest, transport conditions, and supermarket storage.

    PubMed

    Verheul, Michèl J; Slimestad, Rune; Tjøstheim, Irene Holta

    2015-05-27

    Possible causes for differences in quality traits at the time of buying were studied in two widely different red tomato types. Three maturity stages were harvested from commercial greenhouses and transferred immediately to controlled environments simulating different storage, transport, and supermarket conditions. Results show significant differences in development of color, fruit firmness, contents of soluble solids (SSC), titratable acids (TTA), phenolics, and carotenoids from harvest to sale, as related to postharvest conditions. Fruit firmness, SSC, and TTA of vine-ripened red cherry tomatoes was 30, 55 and 11% higher than for those harvested at breakers and ripened to red. Temperature, light, UVC radiation, or ethylene during 4 days transport affected tomato quality traits, and differences persisted during 3 weeks of supermarket storage. Ethylene exposure gave a 3.7-fold increase in lycopene content in cherry tomatoes, whereas UVC hormesis revealed a 6-fold increase compared with the control. Results can be used to update recommendations concerning optimal handling. PMID:25916229

  14. From producer to consumer: greenhouse tomato quality as affected by variety, maturity stage at harvest, transport conditions, and supermarket storage.

    PubMed

    Verheul, Michèl J; Slimestad, Rune; Tjøstheim, Irene Holta

    2015-05-27

    Possible causes for differences in quality traits at the time of buying were studied in two widely different red tomato types. Three maturity stages were harvested from commercial greenhouses and transferred immediately to controlled environments simulating different storage, transport, and supermarket conditions. Results show significant differences in development of color, fruit firmness, contents of soluble solids (SSC), titratable acids (TTA), phenolics, and carotenoids from harvest to sale, as related to postharvest conditions. Fruit firmness, SSC, and TTA of vine-ripened red cherry tomatoes was 30, 55 and 11% higher than for those harvested at breakers and ripened to red. Temperature, light, UVC radiation, or ethylene during 4 days transport affected tomato quality traits, and differences persisted during 3 weeks of supermarket storage. Ethylene exposure gave a 3.7-fold increase in lycopene content in cherry tomatoes, whereas UVC hormesis revealed a 6-fold increase compared with the control. Results can be used to update recommendations concerning optimal handling.

  15. Solution-Processed Two-Dimensional Metal Dichalcogenide-Based Nanomaterials for Energy Storage and Conversion.

    PubMed

    Cao, Xiehong; Tan, Chaoliang; Zhang, Xiao; Zhao, Wei; Zhang, Hua

    2016-08-01

    The development of renewable energy storage and conversion devices is one of the most promising ways to address the current energy crisis, along with the global environmental concern. The exploration of suitable active materials is the key factor for the construction of highly efficient, highly stable, low-cost and environmentally friendly energy storage and conversion devices. The ability to prepare two-dimensional (2D) metal dichalcogenide (MDC) nanosheets and their functional composites in high yield and large scale via various solution-based methods in recent years has inspired great research interests in their utilization for renewable energy storage and conversion applications. Here, we will summarize the recent advances of solution-processed 2D MDCs and their hybrid nanomaterials for energy storage and conversion applications, including rechargeable batteries, supercapacitors, electrocatalytic hydrogen generation and solar cells. Moreover, based on the current progress, we will also give some personal insights on the existing challenges and future research directions in this promising field.

  16. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral.

    PubMed

    Pratt, R B; Jacobsen, A L; Ewers, F W; Davis, S D

    2007-01-01

    Here, hypotheses about stem and root xylem structure and function were assessed by analyzing xylem in nine chaparral Rhamnaceae species. Traits characterizing xylem transport efficiency and safety, mechanical strength and storage were analyzed using linear regression, principal components analysis and phylogenetic independent contrasts (PICs). Stems showed a strong, positive correlation between xylem mechanical strength (xylem density and modulus of rupture) and xylem transport safety (resistance to cavitation and estimated vessel implosion resistance), and this was supported by PICs. Like stems, greater root cavitation resistance was correlated with greater vessel implosion resistance; however, unlike stems, root cavitation resistance was not correlated with xylem density and modulus of rupture. Also different from stems, roots displayed a trade-off between xylem transport safety from cavitation and xylem transport efficiency. Both stems and roots showed a trade-off between xylem transport safety and xylem storage of water and nutrients, respectively. Stems and roots differ in xylem structural and functional relationships, associated with differences in their local environment (air vs soil) and their primary functions.

  17. [Influence of transient storage on solute transport and the parameter sensitivity analysis in a suburban drainage ditch].

    PubMed

    Li, Ru-Zhong; Qian, Jing; Dong, Yu-Hong; Tang, Wen-Kun; Yang, Ji-Wei

    2015-02-01

    From September to October 2013, five in-stream tracer experiments involving slug additions of chloride were performed in Guanzhenhe Branch, a headwater stream in suburban Hefei. From the perspective of different transport mechanisms such as transient storage, lateral inflow and advection-dispersion, four scenarios were set to analyze the effects of transient storage on solute transport in the drainage ditch. And sensitivity analysis of parameters in OTIS model was conducted. The results showed that transient storage exerted a significant influence on the peak values of simulated chloride concentration breakthrough curves (BTCs) in the main channel, and the REs (relative errors) of peak values in the BTCs ranged from 24.23% to 117.26%, which were much higher than those of the peak times. Meanwhile, the effects on simulated BTCs of transient storage markedly exceeded those of lateral inflow. Correlation analysis results showed that A(s)/A were significantly correlated with the peak value REs and the peak time RE's, respectively. Moreover, the ranking of parameter sensitivity in OTIS model was A > A(s) > α > D.

  18. Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program

    SciTech Connect

    S. G. Johnson; K. L. Lively

    2010-05-01

    This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type ‘B’ shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

  19. [Influence of transient storage on solute transport and the parameter sensitivity analysis in a suburban drainage ditch].

    PubMed

    Li, Ru-Zhong; Qian, Jing; Dong, Yu-Hong; Tang, Wen-Kun; Yang, Ji-Wei

    2015-02-01

    From September to October 2013, five in-stream tracer experiments involving slug additions of chloride were performed in Guanzhenhe Branch, a headwater stream in suburban Hefei. From the perspective of different transport mechanisms such as transient storage, lateral inflow and advection-dispersion, four scenarios were set to analyze the effects of transient storage on solute transport in the drainage ditch. And sensitivity analysis of parameters in OTIS model was conducted. The results showed that transient storage exerted a significant influence on the peak values of simulated chloride concentration breakthrough curves (BTCs) in the main channel, and the REs (relative errors) of peak values in the BTCs ranged from 24.23% to 117.26%, which were much higher than those of the peak times. Meanwhile, the effects on simulated BTCs of transient storage markedly exceeded those of lateral inflow. Correlation analysis results showed that A(s)/A were significantly correlated with the peak value REs and the peak time RE's, respectively. Moreover, the ranking of parameter sensitivity in OTIS model was A > A(s) > α > D. PMID:26031073

  20. Cryogenic thermal storage system for discontinuous industrial vacuum processes

    NASA Astrophysics Data System (ADS)

    Bruzzi, M.; Chesi, A.; Baldi, A.; Tarani, F.; Mori, R.; Scaringella, M.; Carnevale, E.

    2012-10-01

    Phase Change Materials are proposed for refrigerating systems in discontinuous industrial vacuum processes where temperatures as low as -140 ÷ -100°C are necessary within time-frames representing 10÷20% of total operating time. An application is proposed for cooling systems used in a Physical Vapour Deposition (PVD) apparatus. A prototype has been manufactured which couples a cryopump with a reservoir filled with MethylCycloPentane (MCP-C6H12) and a distribution line where nitrogen in the gaseous state is flowing. Preliminary tests show that temperatures of about -120°C are actually achieved within time windows compatible with PVD applications.

  1. Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems

    SciTech Connect

    Yoshimura, H.R.; Ludwigsen, J.S.; McAllaster, M.E.

    1996-09-01

    The US DOE has amassed over 555,000 metric tons of depleted uranium from its uranium enrichment operations. Rather than dispose of this depleted uranium as waste, this study explores a beneficial use of depleted uranium as metal shielding in casks designed to contain canisters of vitrified high-level waste. Two high-level waste storage, transport, and disposal shielded cask systems are analyzed. The first system employs a shielded storage and disposal cask having a separate reusable transportation overpack. The second system employs a shielded combined storage, transport, and disposal cask. Conceptual cask designs that hold 1, 3, 4 and 7 high-level waste canisters are described for both systems. In all cases, cask design feasibility was established and analyses indicate that these casks meet applicable thermal, structural, shielding, and contact-handled requirements. Depleted uranium metal casting, fabrication, environmental, and radiation compatibility considerations are discussed and found to pose no serious implementation problems. About one-fourth of the depleted uranium inventory would be used to produce the casks required to store and dispose of the nearly 15,400 high-level waste canisters that would be produced. This study estimates the total-system cost for the preferred 7-canister storage and disposal configuration having a separate transportation overpack would be $6.3 billion. When credits are taken for depleted uranium disposal cost, a cost that would be avoided if depleted uranium were used as cask shielding material rather than disposed of as waste, total system net costs are between $3.8 billion and $5.5 billion.

  2. Sources, Transport, and Storage of Sediment at Selected Sites in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Gellis, Allen C.; Hupp, Cliff R.; Pavich, Milan J.; Landwehr, Jurate M.; Banks, William S.L.; Hubbard, Bernard E.; Langland, Michael J.; Ritchie, Jerry C.; Reuter, Joanna M.

    2009-01-01

    The Chesapeake Bay Watershed covers 165,800 square kilometers and is supplied with water and sediment from five major physiographic provinces: Appalachian Plateau, Blue Ridge, Coastal Plain, Piedmont, and the Valley and Ridge. Suspended-sediment loads measured in the Chesapeake Bay Watershed showed that the Piedmont Physiographic Province has the highest rates of modern (20th Century) sediment yields, measured at U.S. Geological Survey streamflow-gaging stations, and the lowest rates of background or geologic rates of erosion (~10,000 years) measured with in situ beryllium-10. In the agricultural and urbanizing Little Conestoga Creek Watershed, a Piedmont watershed, sources of sediment using the 'sediment-fingerprinting' approach showed that streambanks were the most important source (63 percent), followed by cropland (37 percent). Cesium-137 inventories, which quantify erosion rates over a 40-year period, showed average cropland erosion of 19.39 megagrams per hectare per year in the Little Conestoga Creek Watershed. If this erosion rate is extrapolated to the 13 percent of the watershed that is in cropland, then cropland could contribute almost four times the measured suspended-sediment load transported out of the watershed (27,600 megagrams per hectare per year), indicating that much of the eroded sediment is being deposited in channel and upland storage. The Piedmont has had centuries of land-use change, from forest to agriculture, to suburban and urban areas, and in some areas, back to forest. These land-use changes mobilized a large percentage of sediment that was deposited in upland and channel storage, and behind thousands of mill dams. The effects of these land-use changes on erosion and sediment transport are still being observed today as stored sediment in streambanks is a source of sediment. Cropland is also an important source of sediment. The Coastal Plain Physiographic Province has had the lowest sediment yields in the 20th Century and with sandy

  3. The Relationship between Processing and Storage in Working Memory Span: Not Two Sides of the Same Coin

    ERIC Educational Resources Information Center

    Maehara, Yukio; Saito, Satoru

    2007-01-01

    In working memory (WM) span tests, participants maintain memory items while performing processing tasks. In this study, we examined the impact of task processing requirements on memory-storage activities, looking at the stimulus order effect and the impact of storage requirements on processing activities, testing the processing time effect in WM…

  4. Analytical model of reactive transport processes with spatially variable coefficients

    PubMed Central

    Simpson, Matthew J.; Morrow, Liam C.

    2015-01-01

    Analytical solutions of partial differential equation (PDE) models describing reactive transport phenomena in saturated porous media are often used as screening tools to provide insight into contaminant fate and transport processes. While many practical modelling scenarios involve spatially variable coefficients, such as spatially variable flow velocity, v(x), or spatially variable decay rate, k(x), most analytical models deal with constant coefficients. Here we present a framework for constructing exact solutions of PDE models of reactive transport. Our approach is relevant for advection-dominant problems, and is based on a regular perturbation technique. We present a description of the solution technique for a range of one-dimensional scenarios involving constant and variable coefficients, and we show that the solutions compare well with numerical approximations. Our general approach applies to a range of initial conditions and various forms of v(x) and k(x). Instead of simply documenting specific solutions for particular cases, we present a symbolic worksheet, as supplementary material, which enables the solution to be evaluated for different choices of the initial condition, v(x) and k(x). We also discuss how the technique generalizes to apply to models of coupled multispecies reactive transport as well as higher dimensional problems. PMID:26064648

  5. Neural information processing and self-organizing maps as a tool in safeguarding storage facilities

    SciTech Connect

    Howell, J.A.; Fuyat, C.

    1993-08-01

    Storage facilities for nuclear materials and weapons dismantlement facilities could have a large number of sensors with the potential for generating large amounts of data. Because of the anticipated complexity and diversity of the data, efficient automatic algorithms are necessary to make interpretations and ensure secure and safe operation. New, advanced safeguards systems are needed to process the information gathered from monitors and make interpretations that are in the best interests of the facility or agency. In this paper we present a conceptual design for software to assist with processing these large quantities of data from storage facilities.

  6. Description of a Multipurpose Processing and Storage Complex for the Hanford Site`s radioactive material

    SciTech Connect

    Nyman, D.H.; Wolfe, B.A.; Hoertkorn, T.R.

    1993-05-01

    The mission of the US Department of Energy`s (DOE) Hanford Site has changed from defense nuclear materials production to that of waste management/disposal and environmental restoration. ne Multipurpose Processing and Storage Complex (MPSC) is being designed to process discarded waste tank internal hardware contaminated with mixed wastes, failed melters from the vitrification plant, and other Hanford Site high-level solid waste. The MPSC also will provide interim storage of other radioactive materials (irradiated fuel, canisters of vitrified high-level waste [HLW], special nuclear material [SNM], and other designated radioactive materials).

  7. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology.

    PubMed

    Blanco, Sofía T; Rivas, Clara; Bravo, Ramón; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2014-09-16

    This paper discusses the influence of the noncondensable impurities CO and CH4 on Carbon Capture and Storage (CCS) technology. We calculated and drew conclusions about the impact of both impurities in the CO2 on selected transport, injection, and storage parameters (pipeline pressure drop, storage capacity, etc.), whose analysis is necessary for the safe construction and operation of CO2 pipelines and for the secure long-term geological storage of anthropogenic CO2. To calculate these parameters, it is necessary to acquire data on the volumetric properties and the vapor-liquid equilibrium of the fluid being subjected to CCS. In addition to literature data, we used new experimental data, which are presented here and were obtained for five mixtures of CO2+CO with compositions characteristic of the typical emissions of the E.U. and the U.S.A. Temperatures and pressures are based on relevant CO2 pipeline and geological storage site values. From our experimental results, Peng-Robinson, PC-SAFT, and GERG Equations of State for were validated CO2+CO under the conditions of CCS. We conclude that the concentration of both impurities strongly affects the studied parameters, with CO being the most influential and problematic. The overall result of these negative effects is an increase in the difficulties, risks, and overall costs of CCS.

  8. Discussion of the influence of CO and CH4 in CO2 transport, injection, and storage for CCS technology.

    PubMed

    Blanco, Sofía T; Rivas, Clara; Bravo, Ramón; Fernández, Javier; Artal, Manuela; Velasco, Inmaculada

    2014-09-16

    This paper discusses the influence of the noncondensable impurities CO and CH4 on Carbon Capture and Storage (CCS) technology. We calculated and drew conclusions about the impact of both impurities in the CO2 on selected transport, injection, and storage parameters (pipeline pressure drop, storage capacity, etc.), whose analysis is necessary for the safe construction and operation of CO2 pipelines and for the secure long-term geological storage of anthropogenic CO2. To calculate these parameters, it is necessary to acquire data on the volumetric properties and the vapor-liquid equilibrium of the fluid being subjected to CCS. In addition to literature data, we used new experimental data, which are presented here and were obtained for five mixtures of CO2+CO with compositions characteristic of the typical emissions of the E.U. and the U.S.A. Temperatures and pressures are based on relevant CO2 pipeline and geological storage site values. From our experimental results, Peng-Robinson, PC-SAFT, and GERG Equations of State for were validated CO2+CO under the conditions of CCS. We conclude that the concentration of both impurities strongly affects the studied parameters, with CO being the most influential and problematic. The overall result of these negative effects is an increase in the difficulties, risks, and overall costs of CCS. PMID:25140928

  9. Low temperature processing of dielectric perovskites for energy storage

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Schreib, Ben; Devilbiss, Michael; Loiacono, Julian; Arnold, Bradley; Choa, Fow-Sen; Mandal, K. D.

    2016-05-01

    Since the report of high dielectric value was published for the calcium copper titanate of the stoichiometry CaCu3Ti4O12 (CCTO), several of its analogs such as Yittrium copper titanate Y2/3Cu3Ti4O12 (YCTO), Pr2/3Cu3Ti4O12 (PCTO) and several other compounds have been studied extensively. Most of these materials have demonstrated very high dielectric constants. However, the roadblock is their low resistivity. To overcome this problem, several approaches have been considered, including doping and substitution. In order to solve this problem, we have synthesized the stoichiometric composition and used low temperature processing to grow grains of La2/3Cu3Ti4O12 (LCTO) stoichiometric compound. LCTO with excess copper oxide was also prepared to determine its effect on the morphology and dielectric constant of the stoichiometric LCTO compound. In spite of the low melting point of copper oxide, we observed that excess copper oxide did not show any faster grain growth. Also, the dielectric constant of LCTO was lower than CCTO and unlike CCTO, LCTO showed significant changes as the function of frequency. The measured resistivity was slightly higher than CCTO.

  10. [Effect of processing and storage time on content of hesperidin in green tangerine peel].

    PubMed

    Wang, T; Guo, X; Zhang, J

    1997-03-01

    The contents of hesperidin in Green Tangerine Peel (Citrus reticulata), in its processed products and in commecial samples were determined by HPLC. The results indicate that the contents of hesperidin in the processed products from Chengdu and Huangyan are 14.28% and 10.75% less than shose of the crude drugs respectively. It has been found out that the content of hesperidin in Green Tangerine Peel before and after processing reduces with the passage of storage time. PMID:10743184

  11. Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications

    USGS Publications Warehouse

    Boano, Fulvio; Harvey, Judson W.; Marion, Andrea; Packman, Aaron I.; Revelli, Roberto; Ridolfi, Luca; Anders, Wörman

    2014-01-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed."

  12. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications

    NASA Astrophysics Data System (ADS)

    Boano, F.; Harvey, J. W.; Marion, A.; Packman, A. I.; Revelli, R.; Ridolfi, L.; Wörman, A.

    2014-12-01

    Fifty years of hyporheic zone research have shown the important role played by the hyporheic zone as an interface between groundwater and surface waters. However, it is only in the last two decades that what began as an empirical science has become a mechanistic science devoted to modeling studies of the complex fluid dynamical and biogeochemical mechanisms occurring in the hyporheic zone. These efforts have led to the picture of surface-subsurface water interactions as regulators of the form and function of fluvial ecosystems. Rather than being isolated systems, surface water bodies continuously interact with the subsurface. Exploration of hyporheic zone processes has led to a new appreciation of their wide reaching consequences for water quality and stream ecology. Modern research aims toward a unified approach, in which processes occurring in the hyporheic zone are key elements for the appreciation, management, and restoration of the whole river environment. In this unifying context, this review summarizes results from modeling studies and field observations about flow and transport processes in the hyporheic zone and describes the theories proposed in hydrology and fluid dynamics developed to quantitatively model and predict the hyporheic transport of water, heat, and dissolved and suspended compounds from sediment grain scale up to the watershed scale. The implications of these processes for stream biogeochemistry and ecology are also discussed.

  13. Condensation and transport in the totally asymmetric inclusion process (TASIP)

    NASA Astrophysics Data System (ADS)

    Knebel, Johannes; Weber, Markus F.; Krueger, Torben; Frey, Erwin

    Transport phenomena are often modeled by the hopping of particles on regular lattices or networks. Such models describe, e.g., the exclusive movement of molecular motors along microtubules: no two motors may occupy the same site. In our work, we study inclusion processes that are the bosonic analogues of the fermionic exclusion processes. In inclusion processes, many particles may occupy a single site and hopping rates depend linearly on the occupation of departure and arrival sites. Particles thus attract other particles to their own site. Condensation occurs when particles collectively cluster in one or multiple sites, whereas other sites become depleted.We showed that inclusion processes describe both the selection of strategies in evolutionary zero-sum games and the condensation of non-interacting bosons into multiple quantum states in driven-dissipative systems. The condensation is captured by the antisymmetric Lotka-Volterra equation (ALVE), which constitutes a nonlinearly coupled dynamical system. We derived an algebraic method to analyze the ALVE and to determine the condensates. Our approach allows for the design of networks that result in condensates with oscillating occupations, and yields insight into the interplay between network topology and transport properties. Deutsche Forschungsgemeinschaft (SFB-TR12), German Excellence Initiative (Nanosystems Initiative Munich), Center for NanoScience Munich.

  14. Partial ages: diagnosing transport processes by means of multiple clocks

    NASA Astrophysics Data System (ADS)

    Mouchet, Anne; Cornaton, Fabien; Deleersnijder, Éric; Delhez, Éric J. M.

    2016-03-01

    The concept of age is widely used to quantify the transport rate of tracers - or pollutants - in the environment. The age focuses only on the time taken to reach a given location and disregards other aspects of the path followed by the tracer parcel. To keep track of the subregions visited by the tracer parcel along this path, partial ages are defined as the time spent in the different subregions. Partial ages can be computed in an Eulerian framework in much the same way as the usual age by extending the Constituent oriented Age and Residence Time theory (CART, www.climate.be/CARTstorage, to the 1D advection-diffusion equation and to the diagnosis of the ventilation of the deep ocean are provided. They demonstrate the versatility of the concept of partial age and the potential new insights that can be gained with it.

  15. Cycles, randomness, and transport from chaotic dynamics to stochastic processes.

    PubMed

    Gaspard, Pierre

    2015-09-01

    An overview of advances at the frontier between dynamical systems theory and nonequilibrium statistical mechanics is given. Sensitivity to initial conditions is a mechanism at the origin of dynamical randomness-alias temporal disorder-in deterministic dynamical systems. In spatially extended systems, sustaining transport processes, such as diffusion, relationships can be established between the characteristic quantities of dynamical chaos and the transport coefficients, bringing new insight into the second law of thermodynamics. With methods from dynamical systems theory, the microscopic time-reversal symmetry can be shown to be broken at the statistical level of description in nonequilibrium systems. In this way, the thermodynamic entropy production turns out to be related to temporal disorder and its time asymmetry away from equilibrium. PMID:26428559

  16. CONVERTING PYROLYSIS OILS TO RENEWABLE TRANSPORT FUELS: PROCESSING CHALLENGES & OPPORTUNITIES

    SciTech Connect

    Holmgren, Jennifer; Nair, Prabhakar N.; Elliott, Douglas C.; Bain, Richard; Marinangelli, Richard

    2008-03-11

    To enable a sustained supply of biomass-based transportation fuels, the capability to process feedstocks outside the food chain must be developed. Significant industry efforts are underway to develop these new technologies, such as converting cellulosic wastes to ethanol. UOP, in partnership with U.S. Government labs, NREL and PNNL, is developing an alternate route using cellulosic feedstocks. The waste biomass is first subjected to a fast pyrolysis operation to generate pyrolysis oil (pyoil for short). Current efforts are focused on developing a thermochemical platform to convert pyoils to renewable gasoline, diesel and jet fuel. The fuels produced will be indistinguishable from their fossil fuel counterparts and, therefore, will be compatible with existing transport and distribution infrastructure.

  17. Convection in the Physical Vapor Transport Process-I: Thermal

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1994-01-01

    The effects of convection on diffusive-convective physical vapor transport process are examined computationally. We analyze conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. This corresponds to thermal Rayleigh numbers Ra, ranging from 1.80 x 10 to 1.92 x 10(exp 6). Our results indicate that the effect of the sublimation and condensation fluxes at the boundaries is to increase the threshold of instability. For typical ground based conditions, time dependent oscillatory convection can occur. This results in unsteady transport, and non- uniform temperature and concentration gradients at the crystal interface. Spectral analysis of the flow field shows parametric regions exhibiting both an oscillatory approach to steady state and a chaotic transient to a periodic state. Low gravity conditions stabilize the flow field. Convective effects are effectively reduced, thus resulting in uniform temperature and concentration gradients at the interface, a desirable condition for crystal growth.

  18. Convection in the Physical Vapor Transport Process. 1; Thermal

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1994-01-01

    The effects of convection on diffusive-convective physical vapor transport process are examined computationally. We analyze conditions ranging from typical laboratory conditions to conditions achievable only in a low gravity environment. This corresponds to thermal Rayleigh numbers Ra(sub tau) ranging from 1.80 x 10 to 1.92 x 10(exp 6). Our results indicate that the effect of the sublimation and condensation fluxes at the boundaries is to increase the threshold of instability. For typical ground based conditions, time dependent oscillatory convection can occur. This results in unsteady transport, and non-uniform temperature and concentration gradients at the crystal interface. Spectral analysis of the flow field shows parametric regions exhibiting both an oscillatory approach to steady state and a chaotic transient to a periodic state. Low gravity conditions stabilize the flow field. Convective effects are effectively reduced, thus resulting in uniform temperature and concentration gradients at the interface, a desirable condition for crystal growth.

  19. Specific Lipids Modulate the Transporter Associated with Antigen Processing (TAP)*

    PubMed Central

    Schölz, Christian; Parcej, David; Ejsing, Christer S.; Robenek, Horst; Urbatsch, Ina L.; Tampé, Robert

    2011-01-01

    The transporter associated with antigen processing (TAP) plays a key role in adaptive immunity by translocating proteasomal degradation products from the cytosol into the endoplasmic reticulum lumen for subsequent loading onto major histocompatibility (MHC) class I molecules. For functional and structural analysis of this ATP-binding cassette complex, we established the overexpression of TAP in the methylotrophic yeast Pichia pastoris. Screening of optimal solubilization and purification conditions allowed the isolation of the heterodimeric transport complex, yielding 30 mg of TAP/liter of culture. Detailed analysis of TAP function in the membrane, solubilized, purified, and reconstituted states revealed a direct influence of the native lipid environment on activity. TAP-associated phospholipids, essential for function, were profiled by liquid chromatography Fourier transform mass spectrometry. The antigen translocation activity is stimulated by phosphatidylinositol and -ethanolamine, whereas cholesterol has a negative effect on TAP activity. PMID:21357424

  20. Characterization of Transport and Solidification in the Metal Recycling Processes

    SciTech Connect

    M. A. Ebadian; R. C. Xin; Z. F. Dong

    1997-08-06

    The characterization of the transport and solidification of metal in the melting and casting processes is significant for the optimization of the radioactively contaminated metal recycling and refining processes. . In this research project, the transport process in the melting and solidification of metal was numerically predicted, and the microstructure and radionuclide distribution have been characterized by scanning electron microscope/electron diffractive X-ray (SEWEDX) analysis using cesium chloride (CSC1) as the radionuclide surrogate. In the melting and solidification process, a resistance furnace whose heating and cooling rates are program- controlled in the helium atmosphere was used. The characterization procedures included weighing, melting and solidification, weighing after solidification, sample preparation, and SEM/EDX analysis. This analytical methodology can be used to characterize metal recycling and refining products in order to evaluate the performance of the recycling process. The data obtained provide much valuable information that is necessary for the enhancement of radioactive contaminated metal decontamination and recycling technologies. The numerical method for the prediction of the melting and solidification process can be implemented in the control and monitoring system-of the melting and casting process in radioactive contaminated metal recycling. The use of radionuclide surrogates instead of real radionuclides enables the research to be performed without causing harmfid effects on people or the community. This characterization process has been conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University since October 1995. Tests have been conducted on aluminum (Al) and copper (Cu) using cesium chloride (CSCI) as a radionuclide surrogate, and information regarding the radionuclide transfer and distribution in melting and solidification process has been obtained. The numerical simulation of

  1. Changes in chokeberry (Aronia melanocarpa L.) polyphenols during juice processing and storage.

    PubMed

    Wilkes, Kail; Howard, Luke R; Brownmiller, Cindi; Prior, Ronald L

    2014-05-01

    Chokeberries are an excellent source of polyphenols, but their fate during juice processing and storage is unknown. The stability of anthocyanins, total proanthocyanidins, hydroxycinnamic acids, and flavonols at various stages of juice processing and over 6 months of storage at 25 °C was determined. Flavonols, total proanthocyanidins, and hydroxycinnamic acids were retained in the juice to a greater extent than anthocyanins, with losses mostly due to removal of seeds and skins following pressing. Anthocyanins were extensively degraded by thermal treatments during which time levels of protocatechuic acid and phloroglucinaldehyde increased, and additional losses occurred following pressing. Flavonols, total proanthocyanidins, and hydroxycinnamic acids were well retained in juices stored for 6 months at 25 °C, whereas anthocyanins declined linearly. Anthocyanin losses during storage were paralleled by increased polymeric color values, indicating that the small amounts of anthocyanins remaining were present in large part in polymeric forms.

  2. Use of boundary fluxes when simulating solute transport with the MODFLOW ground-water transport process

    USGS Publications Warehouse

    Konikow, L.F.; Hornberger, G.Z.

    2003-01-01

    This report describes modifications to a U.S. Geological Survey (USGS) threedimensional solute-transport model (MODFLOWGWT), which is incorporated into the USGS MODFLOW ground-water model as the Ground- Water Transport (GWT) Process. The modifications improve the capability of MODFLOW-GWT to accurately simulate solute transport in simulations that represent a nonzero flux across an aquifer boundary. In such situations, the new Boundary Flux Package (BFLX) will allow the user flexibility to assign the flux to specific cell faces, although that flexibility is limited for certain types of fluxes (such as recharge and evapotranspiration, which can only be assigned to the top face if either is to be represented as a boundary flux). The approach is consistent with that used in the MODPATH model. The application of the BFLX Package was illustrated using a test case in which the Lake Package was active. The results using the BFLX Package showed noticeably higher magnitudes of velocity in the cells adjacent to the lake than previous results without the BFLX Package. Consequently, solute was transported slightly faster through the lake-aquifer system when the BFLX Package is active. However, the overall solute distributions did not differ greatly from simulations made without using the BFLX Package.

  3. Engineered Barrier System Degradation, Flow, and Transport Process Model Report

    SciTech Connect

    E.L. Hardin

    2000-07-17

    The Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is one of nine PMRs supporting the Total System Performance Assessment (TSPA) being developed by the Yucca Mountain Project for the Site Recommendation Report (SRR). The EBS PMR summarizes the development and abstraction of models for processes that govern the evolution of conditions within the emplacement drifts of a potential high-level nuclear waste repository at Yucca Mountain, Nye County, Nevada. Details of these individual models are documented in 23 supporting Analysis/Model Reports (AMRs). Nineteen of these AMRs are for process models, and the remaining 4 describe the abstraction of results for application in TSPA. The process models themselves cluster around four major topics: ''Water Distribution and Removal Model, Physical and Chemical Environment Model, Radionuclide Transport Model, and Multiscale Thermohydrologic Model''. One AMR (Engineered Barrier System-Features, Events, and Processes/Degradation Modes Analysis) summarizes the formal screening analysis used to select the Features, Events, and Processes (FEPs) included in TSPA and those excluded from further consideration. Performance of a potential Yucca Mountain high-level radioactive waste repository depends on both the natural barrier system (NBS) and the engineered barrier system (EBS) and on their interactions. Although the waste packages are generally considered as components of the EBS, the EBS as defined in the EBS PMR includes all engineered components outside the waste packages. The principal function of the EBS is to complement the geologic system in limiting the amount of water contacting nuclear waste. A number of alternatives were considered by the Project for different EBS designs that could provide better performance than the design analyzed for the Viability Assessment. The design concept selected was Enhanced Design Alternative II (EDA II).

  4. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Fuel gas systems and processes...

  5. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  6. 40 CFR 63.984 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fuel Gas System or a Process § 63.984 Fuel gas systems and processes to which storage vessel, transfer... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak regulated material emissions are routed....

  7. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2012-07-01 2012-07-01 false Fuel gas systems and processes...

  8. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Fuel gas systems and processes...

  9. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Fuel gas systems and processes...

  10. 40 CFR 65.144 - Fuel gas systems and processes to which storage vessel, transfer rack, or equipment leak...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... System or a Process § 65.144 Fuel gas systems and processes to which storage vessel, transfer rack, or... evaluation as specified in § 65.165(a)(1). (c) Statement of connection to fuel gas system. For storage... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Fuel gas systems and processes...

  11. Advanced Reactors Thermal Energy Transport for Process Industries

    SciTech Connect

    P. Sabharwall; S.J. Yoon; M.G. McKellar; C. Stoots; George Griffith

    2014-07-01

    The operation temperature of advanced nuclear reactors is generally higher than commercial light water reactors and thermal energy from advanced nuclear reactor can be used for various purposes such as liquid fuel production, district heating, desalination, hydrogen production, and other process heat applications, etc. Some of the major technology challenges that must be overcome before the advanced reactors could be licensed on the reactor side are qualification of next generation of nuclear fuel, materials that can withstand higher temperature, improvement in power cycle thermal efficiency by going to combined cycles, SCO2 cycles, successful demonstration of advanced compact heat exchangers in the prototypical conditions, and from the process side application the challenge is to transport the thermal energy from the reactor to the process plant with maximum efficiency (i.e., with minimum temperature drop). The main focus of this study is on doing a parametric study of efficient heat transport system, with different coolants (mainly, water, He, and molten salts) to determine maximum possible distance that can be achieved.

  12. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes. PMID:16494340

  13. Transport equations of electrodiffusion processes in the laboratory reference frame.

    PubMed

    Garrido, Javier

    2006-02-23

    The transport equations of electrodiffusion processes use three reference frames for defining the fluxes: Fick's reference in diffusion, solvent-fixed reference in transference numbers, and laboratory fluxes in electric conductivity. The convenience of using only one reference frame is analyzed here from the point of view of the thermodynamics of irreversible processes. A relation between the fluxes of ions and solvent and the electric current density is deduced first from a mass and volume balance. This is then used to show that (i) the laboratory and Fick's diffusion coefficients are identical and (ii) the transference numbers of both the solvent and the ion in the laboratory reference frame are related. Finally, four experimental methods for the measurement of ion transference numbers are analyzed critically. New expressions for evaluating transference numbers for the moving boundary method and the chronopotentiometry technique are deduced. It is concluded that the ion transport equation in the laboratory reference frame plays a key role in the description of electrodiffusion processes.

  14. Trends in large wood storage and transport on the low-gradient Roanoke River, North Carolina

    NASA Astrophysics Data System (ADS)

    Schenk, E. R.; Hupp, C. R.

    2010-12-01

    Large wood (LW) provides essential aquatic habitat in fine-grained low-gradient rivers. Unfortunately, there is a paucity of large-river LW data for the Eastern USA, especially in the low relief clay and fine sand dominated Coastal Plain province. The purposes of our study are to determine LW abundance and transport processes for the 210 kilometer (km) Coastal Plain segment of the dam-regulated Roanoke River, North Carolina. Our methods included collecting background geomorphic data including a 200 km channel geometry survey and measurements from 701 bank erosion pins at 36 cross-sections over 132 km. LW concentrations were evaluated over a 177 km reach using georeferenced aerial video taken in March 2007. LW transport was measured using 290 radio tagged LW pieces (mean diameter = 35.0 cm, length = 9.3 m) installed between 2008 and 2010. An additional 54 floating pieces were tagged with aluminum tree tags for a one week flood study in November 2009 (mean diameter = 29.2 cm, length = 5.2 m). The longitudinal distribution of aerially surveyed individual pieces of LW was highly variable with a mean abundance of 55 pieces/km. The abundance of LW in logjams was 59 pieces/km, with logjams concentrated (21.5 logjams/km) in an actively eroding reach with relatively high sinuosity, high local LW production rates, and narrow channel widths. Most jams (70%) are available nearly year round as aquatic habitat, positioned either on the lower bank or submerged at low-water flows. Conversely, individual LW pieces are found on the upper bank, with only 18% of the population located in the channel during low-water flows. Repeat surveys of radio tagged LW determined that transport is common despite dam regulation and a low channel gradient (0.0016). The mean distance travelled by a radio tagged piece of LW was 19.0 km with a maximum of 84.6 km (49 tags moved, 53 stationary, 188 not found). The mean distance travelled by an aluminum tagged LW was 13.3 km with a maximum of 72.12 km

  15. Influence of postharvest storage, processing, and extraction methods on the analysis of phenolic phytochemicals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter provides an overview of the challenges associated with accurate analysis of phenolic compounds from foods, dietary supplements, and other matrices. It discusses the significance of sample preparation, post-harvest processing, and storage conditions on the assay of phenolic phytochemica...

  16. Spatio-temporal distribution of stored-product inects around food processing and storage facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain storage and processing facilities consist of a landscape of indoor and outdoor habitats that can potentially support stored-product insect pests, and understanding patterns of species diversity and spatial distribution in the landscape surrounding structures can provide insight into how the ou...

  17. Oak Ridge National Laboratory Melton Valley Storage Tanks Waste Filtration Process Evaluation

    SciTech Connect

    Walker, B.W.

    1998-12-07

    Cross-flow filtration is being evaluated as a pretreatment in the proposed treatment processes for aqueous high-level radioactive wastes at Oak Ridge National Laboratory (ORNL) to separate insoluble solids from aqueous waste from the Melton Valley Storage Tanks (MVST).

  18. Spent Nuclear Fuel (SNF) Project Canister Storage Building (CSB) Process Flow Diagram Mass Balance Calculations

    SciTech Connect

    KLEM, M.J.

    2000-05-11

    The purpose of these calculations is to develop the material balances for documentation of the Canister Storage Building (CSB) Process Flow Diagram (PFD) and future reference. The attached mass balances were prepared to support revision two of the PFD for the CSB. The calculations refer to diagram H-2-825869.

  19. NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

  20. The influence of deck storage and initial processing on patulin levels in apple juice.

    PubMed

    Sydenham, E W; Vismer, H F; Marasas, W F; Brown, N L; Schlechter, M; Rheeder, J P

    1997-07-01

    Patulin, a secondary metabolite produced by Penicillium expansum and some other fungal species, is a common contaminant of ripened apples used for the production of apple juice concentrates. The limited availability of suitable storage facilities may result in fruit being subjected to storage in the open ('deck storage') for extended periods of time, prior to processing. A study was conducted to determine the influence that deck storage and subsequent initial processing practices had on patulin levels in freshly pressed juice. Over the study period, triplicate samples were collected at four strategic processing points from individual consignments of Granny Smith apples deck-stored for 7, 15 and 33 days, respectively. Over the study period, mean patulin levels in non-processed fruit increased from 90 to 2445 ng/g, respectively, but decreased to between 75 and 695 ng/g, respectively, following a water wash step. Subsequent removal of rotten/damaged fruit decreased patulin levels further (to between 55 and 405 ng/g, respectively), although the numerical decreases between sampling points were not shown to be statistically significant (P > 0.05). However, patulin levels were significantly higher (P < 0.05) in the rejected rotten/damaged fruit (mean levels ranged from 1120 to 6235 ng/g, respectively). P. expansum was the major patulin-producing fungus isolated from the juice samples. The mycological analyses tended to support the chemical data, in that removal of the rotten/damaged fractions significantly reduced total fungal counts in the juice samples.

  1. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 7, July 1, 1995--September 30, 1995

    SciTech Connect

    1996-08-22

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. The Mulled Coal circuit was installed in an empty bay at the Chetopa Preparation Plant. Equipment has been installed to divert a 2.7 tonnes/hr (3 tons/hr) slipstream of the froth concentrate to a dewatering centrifuge. The concentrated wet coal fines from the centrifuge dropped through a chute directly into a surge hopper and feed system for the Mulled Coal circuit. The Mulled Coal product was gravity discharged from the circuit to a truck or product discharge area from which it will be hauled to a stockpile located at the edge of the clean coal stockpile area. During the 3-month operating period, the facility produced 870 tonnes (966 tons) of the Muffed Coal for evaluation in various storage, handling, and transportation equipment and operations. Immediately following the production demonstration, the circuit was disassembled and the facility was decommissioned.

  2. Direct evidence of transport processes in the thermospheric diurnal tide

    NASA Technical Reports Server (NTRS)

    Hedin, A. E.; Spencer, N. W.; Mayr, H. G.; Harris, I.; Porter, H. S.

    1978-01-01

    Measurements of neutral composition and temperature obtained between December 6, 1975, and September 17, 1976, with instruments aboard the near-equatorial AE-E satellite are analyzed to determine the diurnal variations at altitudes from 145 to 295 km. The general trends, including the shift in oxygen phase from afternoon at high altitudes to morning at low altitudes, are reproduced by circulation theories. The oxygen and helium variations show small departures from diffusive equilibrium below 200 km that are consistent with wind-induced diffusion and provide the first direct evidence of transport processes in the diurnal tide of the thermosphere.

  3. A novel thermochemical energy storage and transportation concept based on concentrated solar irradiation-aided CaO-looping

    NASA Astrophysics Data System (ADS)

    Obermeier, Jonas; Müller, Karsten; Karagiannakis, George; Stubos, Athanasios; Arlt, Wolfgang

    2016-05-01

    To overcome the temporal and regional gap of surplus solar energy, the concept of thermochemical heat storage is discussed. In this particular case, the application of CaO and CaCO3 as energy carrying compounds for a trans-regional energy distribution concept is analyzed regarding the effective energetic and exergetic storage density. In a comprehensive sensitivity analysis, the influences of reaction temperature, conversion and heat recovery strategies are worked out. It can be seen that the effective storage density is strongly influenced by the preheating of reactants from ambient to reaction temperature. Thus, high conversion rates during forward and reverse reaction as well as improved heat recovery ratios are necessary to achieve a high energetic storage density. In case of effective exergetic storage density, carbonation temperature reaches an optimum. The method presented in this contribution can be applied to similar thermochemical heat storage systems and the results are of great importance for the process design and development of the suggested concept.

  4. Reactive Transport Analysis of Fault 'Self-sealing' Associated with CO2 Storage

    NASA Astrophysics Data System (ADS)

    Patil, V.; McPherson, B. J. O. L.; Priewisch, A.; Franz, R. J.

    2014-12-01

    We present an extensive hydrologic and reactive transport analysis of the Little Grand Wash fault zone (LGWF), a natural analog of fault-associated leakage from an engineered CO2 repository. Injecting anthropogenic CO2 into the subsurface is suggested for climate change mitigation. However, leakage of CO2 from its target storage formation into unintended areas is considered as a major risk involved in CO2 sequestration. In the event of leakage, permeability in leakage pathways like faults may get sealed (reduced) due to precipitation or enhanced (increased) due to dissolution reactions induced by CO2-enriched water, thus influencing migration and fate of the CO2. We hypothesize that faults which act as leakage pathways can seal over time in presence of CO2-enriched waters. An example of such a fault 'self-sealing' is found in the LGWF near Green River, Utah in the Paradox basin, where fault outcrop shows surface and sub-surface fractures filled with calcium carbonate (CaCO3). The LGWF cuts through multiple reservoirs and seal layers piercing a reservoir of naturally occurring CO2, allowing it to leak into overlying aquifers. As the CO2-charged water from shallower aquifers migrates towards atmosphere, a decrease in pCO2 leads to supersaturation of water with respect to CaCO3, which precipitates in the fractures of the fault damage zone. In order to test the nature, extent and time-frame of the fault sealing, we developed reactive flow simulations of the LGWF. Model parameters were chosen based on hydrologic measurements from literature. Model geochemistry was constrained by water analysis of the adjacent Crystal Geyser and observations from a scientific drilling test conducted at the site. Precipitation of calcite in the top portion of the fault model led to a decrease in the porosity value of the damage zone, while clay precipitation led to a decrease in the porosity value of the fault core. We found that the results were sensitive to the fault architecture

  5. FATE AND TRANSPORT OF PETROLEUM RELEASED FROM UNDERGROUND STORAGE TANKS in Areas of Karst Topography

    EPA Science Inventory

    The study determines the transport and ultimate fate of petroleum products within a region of karst geomorphology. The paper entails a complete literature review, including references that pertain to contaminant transport within karst aquifers

  6. [Nitrate storage and transport within a typical karst aquifer system in the paralleled ridge-valley of east Sichuan].

    PubMed

    Yang, Ping-Heng; Yuan, Dao-Xian; Ren, You-Rong; Xie, Shi-You; He, Qiu-Fang; Hu, Xiao-Feng

    2012-09-01

    In order to investigate the nitrate storage and transport in the karst aquifer system, the hydrochemical dynamics of Qingmuguan underground river system was monitored online by achieving high-resolution data during storm events and monthly data in normal weather. The principal component analysis was employed to analyze the karst water geochemistry. Results showed that nitrate in Jiangjia spring did not share the same source with soluble iron, manganese and aluminum, and exhibited different geochemical behaviors. Nitrate was derived from land surface and infiltrated together with soil water, which was mainly stored in fissure, pore and solution crack of karst unsaturated zone, whereas soluble iron, manganese and aluminum were derived from soil erosion and directly recharged the underground river through sinkholes and shafts. Nitrate transport in the karst aquifer system could be ideally divided into three phases, including input storage, fast output and re-inputting storage. Under similar external conditions, the karstification intensity of vadose zone was the key factor to determine the dynamics of nitrate concentrations in the groundwater during storm events. Nitrate stored in the karst vadose zone was easily released, which would impair the aquatic ecosystem and pose seriously threats to the local health. Thus, to strengthen the management of ecological system, changing the land-use patterns and scientifically applying fertilizer could effectively make a contribution to controlling mass nutrient input from the surface.

  7. Fate and transport of petroleum released from leaking underground-storage tanks in areas of karst topography. Technical report

    SciTech Connect

    Compton, E.

    1988-01-01

    This study determines the transport and ultimate fate of petroleum products within a region of karst geomorphology. The paper entails a complete literature review, including references that pertain to contaminant transport within karst aquifers and the remediation of hydrocarbon spills. Rapid dispersal of contaminants within cavernous karstic terrain demands prevention as the only solution, in addition to the recommended technological advances for optimal cleanup of leaking underground storage tanks. Because numerous and widespread service stations have hydrocarbon storage tanks, the contamination problem is considered a nonpoint source of pollution. Stricter standards must be imposed for regulating underground storage tanks that overly karst. Preventative measures to improve inventory control, leak detection, and upgraded tank specifications (rather than corrective actions) are necessary to protect the quality of drinking water provided by carbonate aquifers. Arkansas, louisiana, New Mexico, Oklahoma, and Texas (the five states forming U.S. EPA Region VI) constitute the designated study area. With the exception of Louisiana, each state within the region has considerably large, karst aquifers.

  8. Numerical simulation of fracture permeability evolution due to reactive transport and pressure solution processes

    NASA Astrophysics Data System (ADS)

    Watanabe, N.; Sun, Y.; Taron, J.; Shao, H.; Kolditz, O.

    2013-12-01

    Modeling fracture permeability evolution is of great interest in various geotechnical applications including underground waste repositories, carbon capture and storage, and engineered geothermal systems where fractures dominate transport behaviors. In this study, a numerical model is presented to simulate fracture permeability evolution due to reactive transport and pressure solution processes in single fractures. The model was developed within the international benchmarking project for radioactive waste disposals, DECOVALEX 2015 (Task C1). The model combines bulk behavior in pore spaces with intergranular process at asperity contacts. Hydraulic flow and reactive transport including mineral dissolution and precipitation in fracture pore space are simulated using the Galerkin finite element method. A pressure solution model developed by Taron and Elsworth (2010 JGR) is applied to simulating stress-enhanced dissolution, solute exchange with pore space, and volume removal at grain contacts. Fracture aperture and contact area ratio are updated as a result of the pore-space reaction and intergranular dissolution. In order to increase robustness and time step size, relevant processes are monolithically coupled with the simulations. The model is implemented in a scientific open-source project OpenGeoSys (www.opengeosys.org) for numerical simulation of thermo-hydro-mechanical/chemical processes in porous and fractured media. Numerical results are compared to previous experiment performed by Yasuhara et al. (2006) on flow through fractures in the Arkansas novaculite sample. The novaculite is approximated as pure quartz aggregates. Only with fitted quartz dissolution rate constants and solubility is the current model capable of reproducing observed hydraulic aperture reduction and aqueous silicate concentrations. Future work will examine reaction parameters and further validate the model against experimental results.

  9. Assessment of shielding analysis methods, codes, and data for spent fuel transport/storage applications. [Radiation dose rates from shielded spent fuels and high-level radioactive waste

    SciTech Connect

    Parks, C.V.; Broadhead, B.L.; Hermann, O.W.; Tang, J.S.; Cramer, S.N.; Gauthey, J.C.; Kirk, B.L.; Roussin, R.W.

    1988-07-01

    This report provides a preliminary assessment of the computational tools and existing methods used to obtain radiation dose rates from shielded spent nuclear fuel and high-level radioactive waste (HLW). Particular emphasis is placed on analysis tools and techniques applicable to facilities/equipment designed for the transport or storage of spent nuclear fuel or HLW. Applications to cask transport, storage, and facility handling are considered. The report reviews the analytic techniques for generating appropriate radiation sources, evaluating the radiation transport through the shield, and calculating the dose at a desired point or surface exterior to the shield. Discrete ordinates, Monte Carlo, and point kernel methods for evaluating radiation transport are reviewed, along with existing codes and data that utilize these methods. A literature survey was employed to select a cadre of codes and data libraries to be reviewed. The selection process was based on specific criteria presented in the report. Separate summaries were written for several codes (or family of codes) that provided information on the method of solution, limitations and advantages, availability, data access, ease of use, and known accuracy. For each data library, the summary covers the source of the data, applicability of these data, and known verification efforts. Finally, the report discusses the overall status of spent fuel shielding analysis techniques and attempts to illustrate areas where inaccuracy and/or uncertainty exist. The report notes the advantages and limitations of several analysis procedures and illustrates the importance of using adequate cross-section data sets. Additional work is recommended to enable final selection/validation of analysis tools that will best meet the US Department of Energy's requirements for use in developing a viable HLW management system. 188 refs., 16 figs., 27 tabs.

  10. A model for the distributed storage and processing of large arrays

    NASA Technical Reports Server (NTRS)

    Mehrota, P.; Pratt, T. W.

    1983-01-01

    A conceptual model for parallel computations on large arrays is developed. The model provides a set of language concepts appropriate for processing arrays which are generally too large to fit in the primary memories of a multiprocessor system. The semantic model is used to represent arrays on a concurrent architecture in such a way that the performance realities inherent in the distributed storage and processing can be adequately represented. An implementation of the large array concept as an Ada package is also described.

  11. Features, Events, and Processes in UZ and Transport

    SciTech Connect

    P. Persoff

    2004-11-06

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  12. Features, Events and Processes in UZ Flow and Transport

    SciTech Connect

    P. Persoff

    2005-08-04

    The purpose of this report is to evaluate and document the inclusion or exclusion of the unsaturated zone (UZ) features, events, and processes (FEPs) with respect to modeling that supports the total system performance assessment (TSPA) for license application (LA) for a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP, along with the technical basis for the screening decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 173273]. The FEPs deal with UZ flow and radionuclide transport, including climate, surface water infiltration, percolation, drift seepage, and thermally coupled processes. This analysis summarizes the implementation of each FEP in TSPA-LA (that is, how the FEP is included) and also provides the technical basis for exclusion from TSPA-LA (that is, why the FEP is excluded). This report supports TSPA-LA.

  13. Deciphering and modeling interconnections in ecohydrology: The role of scale, thresholds and stochastic storage processes

    NASA Astrophysics Data System (ADS)

    Bartlett, M. S.; McDonnell, J. J.; Porporato, A. M.

    2013-12-01

    Several components of ecohydrological systems are characterized by an interplay of stochastic inputs, finite capacity storage, and nonlinear, threshold-like losses, resulting in a complex partitioning of the rainfall input between the different basin scales. With the goal of more accurate predictions of rainfall partitioning and threshold effects in ecohydrology, we examine ecohydrological processes at the various scales, including canopy interception, soil storage with runoff/percolation, hillslope filling-spilling mechanisms, and the related groundwater recharge and baseflow contribution to streamflow. We apply a probabilistic approach to a hierarchical arrangement of cascading reservoirs that are representative of the components of the basin system. The analytical results of this framework help single out the key parameters controlling the partitioning of rainfall within the storage compartments of river basins. This theoretical framework is a useful learning tool for exploring the physical meaning of known thresholds in ecohydrology.

  14. Analysis of suspended solids transport processes in primary settling tanks.

    PubMed

    Patziger, Miklós; Kiss, Katalin

    2015-01-01

    The paper shows the results of a long-term research comprising FLUENT-based numerical modeling, in situ measurements and laboratory tests to analyze suspended solids (SS) transport processes in primary settling tanks (PSTs). The investigated PST was one of the rectangular horizontal flow PSTs at a large municipal wastewater treatment plant (WWTP) of a capacity of 500,000 population equivalent. Many middle-sized and large WWTPs are equipped with such PSTs. The numerical PST model was calibrated and validated based on the results of comprehensive in situ flow and SS concentration measurements from low (5 m/h) up to quite high surface overflow rates of 9.5 and 13.0 m/h and on settling and other laboratory tests. The calibrated and validated PST model was also successfully used for evaluation of some slight modifications of the inlet geometry (removing lamellas, installing a flocculation 'box', shifting the inlet into a 'bottom-near' or into a 'high' position), which largely affect PST behavior and performance. The investigations provided detailed insight into the flow and SS transport processes within the investigated PST, which strongly contributes to hydrodynamically driven design and upgrading of PSTs.

  15. Synthesis and processing of materials for direct thermal-to-electric energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Thompson, Travis

    thermogalvanic devices. Although thermogalvanic devices are known, there has been little exploration into the use of thermogalvanic devices for power generation and energy storage. First, this work formalizes the energy problem and introduces the operating principles of thermoelectric, galvanic, and thermogalvanic devices. Second, oxide based thermoelectric materials are explored from a synthetic and processing standpoint. Out of necessity, a new synthetic technique was invented and a novel hot-press technique was developed. Third, a solid Li-ion conducting electrolyte, based on the garnet crystal structure, is identified for the use in a thermogalvanic cell. In order to better understand the conductivity behavior, an in-depth exploration into the variables that control the ionic transport is performed on the electrolyte. Third, a thermogalvanic cell is constructed using this garnet based Li-ion conducting solid electrolyte and the first demonstration of such a cell is presented. Finally, strategies to improve the performance of thermogalvanic cells based on garnet type solid electrolytes are outlined for future work. The purpose of this work is to use an interdisciplinary approach to marry together the electrochemistry of galvanic systems with the strategies used to better semiconductor based thermoelectric materials and ceramics processing techniques to fabricate these systems. This dissertation will explore the interplay of these areas.

  16. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  17. Evaluation of the Universal Viral Transport system for long-term storage of virus specimens for microbial forensics.

    PubMed

    Hosokawa-Muto, Junji; Fujinami, Yoshihito; Mizuno, Natsuko

    2015-08-01

    Forensic microbial specimens, including bacteria and viruses, are collected at biocrime and bioterrorism scenes. Although it is preferable that the pathogens in these samples are alive and kept in a steady state, the samples may be stored for prolonged periods before analysis. Therefore, it is important to understand the effects of storage conditions on the pathogens contained within such samples. To evaluate the capacity to preserve viable virus and the viral genome, influenza virus was added to the transport medium of the Universal Viral Transport system and stored for over 3 months at various temperatures, after which virus titrations and quantitative analysis of the influenza hemagglutinin gene were performed. Although viable viruses became undetectable 29 days after the medium was stored at room temperature, viruses in the medium stored at 4°C were viable even after 99 days. A quantitative PCR analysis indicated that the hemagglutinin gene was maintained for 99 days at both 4°C and room temperature. Therefore, long-term storage at 4°C has little effect on viable virus and viral genes, so the Universal Viral Transport system can be useful for microbial forensics. This study provides important information for the handling of forensic virus specimens.

  18. Study of coupled transport and its effect on different electrochemical systems: Implications in high temperature energy storage batteries and proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Preethy

    Coupled transport is studied on two electrochemical systems: Na-ZnCl 2 batteries and Proton Exchange Membrane Fuel Cells (PEMFC). The energy storage system of interest here is based on sodium β"-alumina solid electrolyte (BASE): Na/BASE/ZnCl2. BASE is an excellent Na+ conductor with a very high conductivity at 300°C. Its high Na+ ion conductivity and high stability are the principal reasons for its application in electrochemical storage systems. A novel vapor phase process was invented facilitating the fabrication of high strength and moisture/CO 2 resistant BASE. A two-phase composite of alumiNa+YSZ is formed by sintering and exposed to Na2O vapor, keeping the activity of Na2O lower than that in NaAlO2. This prevents the formation of hygroscopic NaAlO2 at the grain boundaries. A thin layer of β"-alumina is formed on the surface upon exposure. Further reaction occurs by transporting Na+ ions through the formed β"-alumina and a parallel transport of O2- ions through YSZ. This occurs by a coupled transport of Na+ through β"-alumina and O 2- ions through YSZ, thus expediting the process. The second electrochemical system of interest is PEMFC. The degradation mechanism of catalysts is studied using inexpensive copper particles. The mechanism of growth involves a coupled transport of Cu2+ through the aqueous medium and an electron transport through the direct particle-to-particle contact. Effect of applied stress on coarsening of platinum was also investigated. Two platinum wires/foils were immersed in a PtCl4+DMSO (Dimethyl sulfoxide) solution. A tensile load was applied to one wire/foil and the other one was left load-free. The wire/foil subjected to a tensile load became cathodic with respect to the unstressed wire/foil. Thus, under a tensile stress, the chemical potential of Pt decreases. This result suggests design strategies for core-shell catalysts used in PEMFCs: stable core-shell catalysts for PEMFC with Pt shell should be designed such that the shell is

  19. Characterization of solute transport properties of different types of constructed wetlands using multi-tracer data and transient storage modelling

    NASA Astrophysics Data System (ADS)

    Schuetz, Tobias; Lange, Jens; Weiler, Markus

    2010-05-01

    Constructed wetlands in agricultural headwater catchments may serve as simple treatment systems to improve retention and mitigation of agricultural non-point-source pollution. To calculate and predict retention capacities of 6 different constructed wetland systems concerning micro-pollutants, we used a one-dimensional solute transport model to compare the results of a series of multi-tracer experiments. The investigated wetland systems consisted of two surface flow wetlands with permanent through flow, two vegetated ditches, a forest buffer zone and a flood detention pond. Transport behaviour was investigated using different tracers: salt and two differently sorptive fluorescent dyes (Sulphorhodamine B and fluoresceine). The hypothesis that shallow and vegetated systems offer the highest sorption capacity for sorptive but mobile pollutants was tested applying a solute transport model to the observed tracer breakthrough. The transport model OTIS (Runkel, 1998) which includes advection, dispersion and lateral exchange to a transient storage was optimized to observed breakthrough of applied tracers at defined cross-sections along the wetlands. Optimized model parameters include dispersivity, cross-sectional areas of both stream and transient storage, as well as an exchange coefficient. Sorption was included based on the KD value, mass of accessible sediment and a sorption coefficient. We assumed that each measurable cross-section is a combination of dead zones and flowing parts. For three of the wetland systems we could exclude lateral in- and outflows. For the other systems, a quantification of lateral flows was possible. We used the set of conservative tracer data to calculate conservative transport characteristics and cross-sections. Then we applied the calibrated model on the sorptive tracer data only using sorption capacity in the storage zone as a calibration parameter and observed KD values and mass of accessible sediment. The results for the different tracer

  20. A Multi-function Cask for At-Reactor Storage of Short-Cooled Spent Fuel, Transport, and Disposal

    SciTech Connect

    Forsberg, C.W.

    2004-07-01

    The spent nuclear fuel (SNF) system in the United States was designed with the assumptions that SNF would be stored for several years in an at-reactor pool and then transported to reprocessing plants for recovery of fissile materials, that security would not be a major issue, and that the SNF burnups would be low. The system has evolved into a once-through fuel cycle with high-burnup SNF, long-term storage at the reactor sites, and major requirements for safeguards and security. An alternative system is proposed to better meet these current requirements. The SNF is placed in multi-function casks with the casks used for at-reactor storage, transport, and repository disposal. The cask is the handling package, provides radiation shielding, and protects the SNF against accidents and assault. SNF assemblies are handled only once to minimize accident risks, maximize security and safeguards by minimizing access to SNF, and reduce costs. To maximize physical protection, the cask body is constructed of a cermet (oxide particles embedded in steel, the same class of materials used in tank armor) and contains no cooling channels or other penetrations that allow access to the SNF. To minimize pool storage of SNF, the cask is designed to accept short-cooled SNF. To maximize the capability of the cask to reject decay heat and to limit SNF temperatures from short-cooled SNF, the cask uses (1) natural circulation of inert gas mixtures inside the cask to transfer heat from the SNF to the cask body and (2) an overpack with external natural-circulation, liquid-cooled fins to transfer heat from the cask body to the atmosphere. This approach utilizes the entire cask body area for heat transfer to maximize heat removal rates-without any penetrations through the cask body that would reduce the physical protection capabilities of the cask body. After the SNF has cooled, the cooling overpack is removed. At the repository, the cask is placed in a corrosion-resistant overpack before disposal

  1. Effect of processing and storage on the stability of flaxseed lignan added to dairy products.

    PubMed

    Hyvärinen, Helena K; Pihlava, Juha-Matti; Hiidenhovi, Jaakko A; Hietaniemi, Veli; Korhonen, Hannu J T; Ryhänen, Eeva-Liisa

    2006-11-15

    This study investigated the effects of processing and storage on the stability of purified, flaxseed-derived secoisolariciresinol diglucoside (SDG) added to milk prior to the manufacture of different dairy products. We analyzed the effect of high-temperature pasteurization, fermentation, and milk renneting as well as storage on the stability of SDG added to milk, yogurt, and cheese. Also, the stability of SDG in whey-based drinks was studied. Added SDG was found to withstand the studied processes well. In edam cheese manufacture, most of the added SDG was retained in the whey fraction and 6% was found in the cheese curd. SDG was also relatively stable in edam cheese during ripening of 6 weeks at 9 degrees C and in yogurt during storage of 21 days at 4 degrees C. Up to 25% of added SDG was lost in whey-based drinks during storage of 6 months at 8 degrees C. We conclude that SDG can be successfully supplemented in dairy-based products.

  2. Reactive transport modeling of the long-term effects of CO2 storage in the P18 depleted gas field

    NASA Astrophysics Data System (ADS)

    Tambach, T. J.; Koenen, M.; Wasch, L. J.; Loeve, D.; Maas, J. G.

    2012-04-01

    Depleted gas fields are an import CO2 storage sink for The Netherlands, with a total storage capacity of more than 3 Gtonne. The CO2 sources are located at relatively short distances from potential storage reservoirs and an infrastructure for (cross-border) gas transport over large distances already exists. Several depleted gas fields in the subsurface of the Netherlands have yet been evaluated as potential locations for CO2 storage (for example the K12-B field). The P18 gas field is located in the offshore of The Netherlands and is currently evaluated as potential CO2 storage reservoir. The aim of this study is to predict the long-term effects of CO2 injection into the P18 field using reactive transport modeling (TOUGHREACT). The storage reservoir is described using the mineralogy and petrophysical characteristics of three geological layers in a radial (R,Z) reservoir model with top depth of 3456 m, a thickness of 98 m, and 3300 grid cells. The initial reservoir temperature was defined as 90 degrees C with an initial (depletion) pressure of 20.0 bars. Capillary pressure curves are based on empirical relations. The CO2 is injected uniformly distributed over the model height, at a constant rate of 35 kg/s (1.1 Mton/year), and a temperature of 40 degrees C for 30 years. The well is then shut-in with a reservoir pressure of approximately 375 bar. The simulations are continued up to 10,000 years for computing the long-term effects in the reservoir. The results show that the near-well area is dried out during injection, leading to salt precipitation and reduced permeability during injection. Condensation of the evaporated water occurs outside the near-well area. Water imbibition is modelled after shut in of the well, leading to rewetting of the near-well area and redissolution of the salt. Most geochemical reactions need water to occur, including well-cement minerals, and therefore predictions of water flow after well shut-ins are important to take into account

  3. Validation of a postfixation tissue storage and transport medium to preserve histopathology and molecular pathology analyses (total and phosphoactivated proteins, and FISH).

    PubMed

    Stumm, Michael M; Walker, Maja R; Stork, Caroline; Hanoteau, Noelle; Wagner, Urs; O'Reilly, Terence M

    2012-03-01

    Tumor biomarker studies are integral to oncology clinical trials but may yield artifactual results owing to variation in sample procurement and processing. Ethanol, 70% vol/vol, was validated as a sample transport medium using markers of the PI3K/Akt/mTOR pathway. BT474 tumor xenografts were excised and slices were immediately placed into formaldehyde and fixed for 24 hours. Fixed tissue slices were immediately processed into paraffin or transferred to 70% vol/vol ethanol and stored at room temperature for 1, 2, and 4 weeks before further processing. Freshly cut tissue sections were evaluated for pAKT(S473), HER2, pHER-2(Y1248), pS6(S235/236), and pS6(S240/244), Ki-67, and HER2 by fluorescence in situ hybridization and stained with H&E and Masson trichrome. No significant changes were observed when comparing samples stored in 70% ethanol for up to 4 weeks with immediately processed tissue. Ethanol, 70% vol/vol, provides a safe storage medium for formaldehyde-fixed tumor tissue, facilitating sample transport during multicenter clinical trials.

  4. Long-term storage and transport length scale of fine sediment: Analysis of a mercury release into a river

    NASA Astrophysics Data System (ADS)

    Pizzuto, J. E.

    2014-08-01

    Excessive suspended sediment concentrations create important water quality problems, but scientists disagree on how to predict its movement through watersheds. Most models assume that fine-grained sediment moves rapidly far downstream, without recognizing the importance of episodic, long-term storage. Here a historic industrial release of mercury is interpreted as a decadal sediment tracer experiment, releasing sediment particles "tagged" with mercury that are deposited on floodplains. As expected, floodplain mercury inventories decrease exponentially downstream, with a characteristic decay length of 10 km (95% confidence interval: 5-25 km) that defines the distance suspended particles typically move downstream before entering storage. Floodplain mercury inventories are not significantly different above and below three colonial age mill dams (present at the time of mercury release but now breached), suggesting that these results reflect ongoing processes. Suspended sediment routing models that neglect long-term storage, and the watershed management plans based on them, may need revision.

  5. Facility site check report transportation safeguards divsision (TSD) underground storage tanks 2334-U and 2335-U at Building 9714

    SciTech Connect

    1995-09-01

    This document presents an overview of the underground storage tank (UST)-related events that have taken place at the Transportation Safeguards Division (TSD) Facility (Facility ID 0-730168). The TSD facility is managed by Lockheed Martin Energy Systems, Inc. (LMES) for the U.S. Department of Energy (DOE), and is used to maintain and fuel specialty fleet vehicles. The facility is located approximately one mile east of the K-25 site at the intersection of Blair Road and the Oak Ridge Turnpike (Hwy 58). The location of the USTs at the TSD facility are illustrated.

  6. Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives

    DOEpatents

    Nutt, Gerald L.

    1991-01-01

    The stability of porous solid high explosives, for purposes of transport or storage, is enhanced by reducing the sensitivity to shock initiation of a reaction that leads to detonation. The pores of the explosive down to a certain size are filled under pressure with a stable, low melt temperature material in liquid form, and the combined material is cooled so the pore filling material solidifies. The stability can be increased to progressively higher levels by filling smaller pores. The pore filling material can be removed, at least partially, by reheating above its melt temperature and drained off so that the explosive is once more suitable for detonation.

  7. Decoupling instead of grid coarsening: how to achieve reservoir scale reactive transport simulations in highly heterogeneous settings. Example from CO2 storage

    NASA Astrophysics Data System (ADS)

    De Lucia, M.; Kempka, T.; Kuehn, M.

    2014-12-01

    The characteristics of a typical CO2 storage system allow simplification strategies for reactive transport simulations based on process decoupling. In such systems the feedback of the slow chemical reactions to hydrodynamics is low until the system reaches a substantial hydrodynamic equilibrium. Furthermore, the presence of CO2 is the main driving force for chemical reactions, which are for most reactants kinetically controlled. Hence, the same reaction path is substantially replicated in all elements of the grid exposed to the injected CO2, either in gaseous or in dissolved form. The analysis offully coupled 3D simulations of the Ketzin pilot site for CO2 storage performed with the TOUGHREACT simulator confirms these hypotheses to a large extent, both in homogeneous and in heterogeneous settings. This allows the definition of a simplified one-way coupling combining independent non-reactive hydrodynamic and batch geochemical models. The exposure time to CO2 of each grid element is estimated by the conservative simulations, then the outcome of one single geochemical model per lithofacies is applied to each grid element. A threshold value for the minimum concentration of dissolved CO2 required to start chemical reactions permits to mitigate the discrepancy due to the lack of a mass balance between the independently run simulations. The comparison with fully coupled simulations validates the novel approach. The simplified coupling can tackle a wide class of problems, not only CO2 storage; it allows calculating reactive chemistry on grids comprising millions of elements, overcoming a major limitation of reactive transport models, which are often bounded to 2D radial domains. This is particularly advantageous in highly heterogeneous settings with complex hydrodynamics. The new coupling is demonstrated at full scale for the Ketzin site with simulations up to 15000 years, a result which cannot yet be achieved by fully coupled simulations.

  8. Impact of packaging atmosphere, storage and processing conditions on the generation of phytoprostanes as quality processing compounds in almond kernels.

    PubMed

    Carrasco-Del Amor, Ana María; Aguayo, Encarna; Collado-González, Jacinta; Guy, Alexandre; Galano, Jean-Marie; Durand, Thierry; Gil-Izquierdo, Ángel

    2016-11-15

    The thermal processing of almond kernels implies the use of techniques that produce chemical changes such as oxidation. Phytoprostanes (PhytoPs) are considered biomarkers of the oxidative stress in plants. We studied the PhytoP profile in kernels of almond cultivars under different conditions, in relation to packaging, temperature and time of storage and processing. The most abundant PhytoP was the F1t series. The PhytoP levels increased significantly with the time of storage (3 and 6months) and the total PhytoP concentration was higher under air than in a vacuum packaging atmosphere. Storage at 24°C raised the concentrations of individual PhytoPs and the total sum of PhytoPs. The frying and roasting processes led to a strong reduction of the original concentration of most PhytoPs and promoted the synthesis of specific PhytoPs that were not detected in raw kernels and thus could be biomarkers of the degree of oxidative degradation of almonds. PMID:27283707

  9. Reusable module for the storage, transportation, and supply of multiple propellants in a space environment

    NASA Technical Reports Server (NTRS)

    Mazanek, Daniel D. (Inventor); Mankins, John C. (Inventor)

    2004-01-01

    A space module has an outer structure designed for traveling in space, a docking mechanism for facilitating a docking operation therewith in space, a first storage system storing a first propellant that burns as a result of a chemical reaction therein, a second storage system storing a second propellant that burns as a result of electrical energy being added thereto, and a bi-directional transfer interface coupled to each of the first and second storage systems to transfer the first and second propellants into and out thereof. The space module can be part of a propellant supply architecture that includes at least two of the space modules placed in an orbit in space.

  10. Features, Events, and Processes in SZ Flow and Transport

    SciTech Connect

    K. Economy

    2004-11-16

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either ''Included'' or ''Excluded'', is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.114 (d), (e), (f) (DIRS 156605). This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  11. Features, Events, and Processes in SZ Flow and Transport

    SciTech Connect

    S. Kuzio

    2005-08-20

    This analysis report evaluates and documents the inclusion or exclusion of the saturated zone (SZ) features, events, and processes (FEPs) with respect to modeling used to support the total system performance assessment (TSPA) for license application (LA) of a nuclear waste repository at Yucca Mountain, Nevada. A screening decision, either Included or Excluded, is given for each FEP along with the technical basis for the decision. This information is required by the U.S. Nuclear Regulatory Commission (NRC) at 10 CFR 63.11(d), (e), (f) [DIRS 173273]. This scientific report focuses on FEP analysis of flow and transport issues relevant to the SZ (e.g., fracture flow in volcanic units, anisotropy, radionuclide transport on colloids, etc.) to be considered in the TSPA model for the LA. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical basis for exclusion from TSPA-LA (i.e., why the FEP is excluded).

  12. From deposition to erosion: Spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed

    NASA Astrophysics Data System (ADS)

    Florsheim, J. L.; Pellerin, B. A.; Oh, N. H.; Ohara, N.; Bachand, P. A. M.; Bachand, S. M.; Bergamaschi, B. A.; Hernes, P. J.; Kavvas, M. L.

    2011-09-01

    The spatial and temporal variability of sediment sources, storage, and transport were investigated in a small agricultural watershed draining the Coast Ranges and Sacramento Valley in central California. Results of field, laboratory, and historical data analysis in the Willow Slough fluvial system document changes that transformed a transport-limited depositional system to an effective erosion and transport system, despite a large sediment supply. These changes were caused by a combination of factors: (i) an increase in transport capacity, and (ii) hydrologic alteration. Alteration of the riparian zone and drainage network pattern during the past ~ 150 years included a twofold increase in straightened channel segments along with a baselevel change from excavation that increased slope, and increased sediment transport capacity by ~ 7%. Hydrologic alteration from irrigation water contributions also increased transport capacity, by extending the period with potential for sediment transport and erosion by ~ 6 months/year. Field measurements document Quaternary Alluvium as a modern source of fine sediment with grain size distributions characterized by 5 to 40% fine material. About 60% of an upland and 30% of a lowland study reach incised into this deposit exhibit bank erosion. During this study, the wet 2006 and relatively dry 2007 water years exhibited a range of total annual suspended sediment load spanning two orders of magnitude: ~ 108,500 kg/km 2/year during 2006 and 5,950 kg/km 2/year during 2007, only 5% of that during the previous year. Regional implications of this work are illustrated by the potential for a small tributary such as Willow Slough to contribute sediment - whereas large dams limit sediment supply from larger tributaries - to the Sacramento River and San Francisco Bay Delta and Estuary. This work is relevant to lowland agricultural river-floodplain systems globally in efforts to restore aquatic and riparian functions and where water quality

  13. From deposition to erosion: spatial and temporal variability of sediment sources, storage, and transport in a small agricultural watershed

    USGS Publications Warehouse

    Florsheim, J.L.; Pellerin, B.A.; Oh, N.H.; Ohara, N.; Bachand, P.A.M.; Bachand, Sandra M.; Bergamaschi, B.A.; Hernes, P.J.; Kavvas, M.L.

    2011-01-01

    The spatial and temporal variability of sediment sources, storage, and transport were investigated in a small agricultural watershed draining the Coast Ranges and Sacramento Valley in central California. Results of field, laboratory, and historical data analysis in the Willow Slough fluvial system document changes that transformed a transport-limited depositional system to an effective erosion and transport system, despite a large sediment supply. These changes were caused by a combination of factors: (i) an increase in transport capacity, and (ii) hydrologic alteration. Alteration of the riparian zone and drainage network pattern during the past ~ 150 years included a twofold increase in straightened channel segments along with a baselevel change from excavation that increased slope, and increased sediment transport capacity by ~ 7%. Hydrologic alteration from irrigation water contributions also increased transport capacity, by extending the period with potential for sediment transport and erosion by ~ 6 months/year. Field measurements document Quaternary Alluvium as a modern source of fine sediment with grain size distributions characterized by 5 to 40% fine material. About 60% of an upland and 30% of a lowland study reach incised into this deposit exhibit bank erosion. During this study, the wet 2006 and relatively dry 2007 water years exhibited a range of total annual suspended sediment load spanning two orders of magnitude: ~ 108,500 kg/km2/year during 2006 and 5,950 kg/km2/year during 2007, only 5% of that during the previous year. Regional implications of this work are illustrated by the potential for a small tributary such as Willow Slough to contribute sediment – whereas large dams limit sediment supply from larger tributaries – to the Sacramento River and San Francisco Bay Delta and Estuary. This work is relevant to lowland agricultural river–floodplain systems globally in efforts to restore aquatic and riparian functions and where water quality

  14. Comparison of beam transport simulations to measurements at the Los Alamos Proton Storage Ring

    SciTech Connect

    Wilkinson, C.; Neri, F.; Fitzgerald, D.H.; Blind, B.; Macek, R.; Plum, M.; Sander, O.; Thiessen, H.A.

    1997-10-01

    The ability to model and simulate beam behavior in the Proton Storage Ring (PSR) of the Los Alamos Neutron Science Center (LANSCE) is an important diagnostic and predictive tool. This paper gives the results of an effort to model the ring apertures and lattice and use beam simulation programs to track the beam. The results are then compared to measured activation levels from beam loss in the ring. The success of the method determines its usefulness in evaluating the effects of planned upgrades to the Proton Storage Ring.

  15. Transport mechanisms of soil-bound mercury in the erosion process during rainfall-runoff events.

    PubMed

    Zheng, Yi; Luo, Xiaolin; Zhang, Wei; Wu, Xin; Zhang, Juan; Han, Feng

    2016-08-01

    Soil contamination by mercury (Hg) is a global environmental issue. In watersheds with a significant soil Hg storage, soil erosion during rainfall-runoff events can result in nonpoint source (NPS) Hg pollution and therefore, can extend its environmental risk from soils to aquatic ecosystems. Nonetheless, transport mechanisms of soil-bound Hg in the erosion process have not been explored directly, and how different fractions of soil organic matter (SOM) impact transport is not fully understood. This study investigated transport mechanisms based on rainfall-runoff simulation experiments. The experiments simulated high-intensity and long-duration rainfall conditions, which can produce significant soil erosion and NPS pollution. The enrichment ratio (ER) of total mercury (THg) was the key variable in exploring the mechanisms. The main study findings include the following: First, the ER-sediment flux relationship for Hg depends on soil composition, and no uniform ER-sediment flux function exists for different soils. Second, depending on soil composition, significantly more Hg could be released from a less polluted soil in the early stage of large rainfall events. Third, the heavy fraction of SOM (i.e., the remnant organic matter coating on mineral particles) has a dominant influence on the enrichment behavior and transport mechanisms of Hg, while clay mineral content exhibits a significant, but indirect, influence. The study results imply that it is critical to quantify the SOM composition in addition to total organic carbon (TOC) for different soils in the watershed to adequately model the NPS pollution of Hg and spatially prioritize management actions in a heterogeneous watershed.

  16. Magma genesis, storage and eruption processes at Aluto volcano, Ethiopia: lessons from remote sensing, gas emissions and geochemistry

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Biggs, Juliet; Mather, Tamsin; Pyle, David; Gleeson, Matthew; Lewi, Elias; Yirgu, Gezahgen; Caliro, Stefano; Chiodini, Giovanni; Fischer, Tobias

    2016-04-01

    One of the most intriguing aspects of magmatism during the transition from continental rifting to sea-floor spreading is that large silicic magmatic systems develop within the rift zone. In the Main Ethiopian Rift (MER) these silicic volcanoes not only pose a significant hazard to local populations but they also sustain major geothermal resources. Understanding the journey magma takes from source to surface beneath these volcanoes is vital for determining its eruption style and for better evaluating the geothermal resources that these complexes host. We investigate Aluto, a restless silicic volcano in the MER, and combine a wide range of geochemical and geophysical techniques to constrain magma genesis, storage and eruption processes and shed light on magmatic-hydrothermal-tectonic interactions. Magma genesis and storage processes at Aluto were evaluated using new whole-rock geochemical data from recent eruptive products. Geochemical modelling confirms that Aluto's peralkaline rhyolites, that constitute the bulk of recent erupted products, are generated from protracted fractionation (>80 %) of basalt that is compositionally similar to rift-related basalts found on the margins of the complex. Crustal melting did not play a significant role in rhyolite genesis and melt storage depths of ~5 km can reproduce almost all aspects of their geochemistry. InSAR methods were then used to investigate magma storage and fluid movement at Aluto during an episode of ground deformation that took place between 2008 and 2010. Combining new SAR imagery from different viewing geometries we identified an accelerating uplift pulse and found that source models support depths of magmatic and/or fluid intrusion at ~5 km for the uplift and shallower depths of ~4 km for the subsidence. Finally, gas samples collected on Aluto in 2014 were used to evaluate magma and fluid transport processes. Our results show that gases are predominantly emanating from major fault zones on Aluto and that they

  17. A Reactive Transport Simulator for Biogeochemical Processes in Subsurface System

    2003-04-01

    BIOGEOCHEM is a Fortran code that mumerically simulates the coupled processes of solute transport, microbial population dynamics, microbial metabolism, and geochemical reactions. The potential applications of the code include, but not limited to, (a) sensitivity and uncertainty analyses for assessing the impact of microbial activity on subsurface geochemical systems; (b) extraction of biogeochemical parameter values from field observations or laboratory measurements, (c) helping to design and optimize laboratory biogeochemical experiments, and (d) data integration. Methodmore » of Solution: A finite difference method and a Newton-Raphson technique are used to solve a set of coupled nonlinear partial differential equations and algebraic equations. Practical Application: Environmental analysis, bioremediation performance assessments of radioactive or non-radioactive wase disposal, and academic research.« less

  18. Mathematical programming (MP) model to determine optimal transportation infrastructure for geologic CO2 storage in the Illinois basin

    NASA Astrophysics Data System (ADS)

    Rehmer, Donald E.

    Analysis of results from a mathematical programming model were examined to 1) determine the least cost options for infrastructure development of geologic storage of CO2 in the Illinois Basin, and 2) perform an analysis of a number of CO2 emission tax and oil price scenarios in order to implement development of the least-cost pipeline networks for distribution of CO2. The model, using mixed integer programming, tested the hypothesis of whether viable EOR sequestration sites can serve as nodal points or hubs to expand the CO2 delivery infrastructure to more distal locations from the emissions sources. This is in contrast to previous model results based on a point-to- point model having direct pipeline segments from each CO2 capture site to each storage sink. There is literature on the spoke and hub problem that relates to airline scheduling as well as maritime shipping. A large-scale ship assignment problem that utilized integer linear programming was run on Excel Solver and described by Mourao et al., (2001). Other literature indicates that aircraft assignment in spoke and hub routes can also be achieved using integer linear programming (Daskin and Panayotopoulos, 1989; Hane et al., 1995). The distribution concept is basically the reverse of the "tree and branch" type (Rothfarb et al., 1970) gathering systems for oil and natural gas that industry has been developing for decades. Model results indicate that the inclusion of hubs as variables in the model yields lower transportation costs for geologic carbon dioxide storage over previous models of point-to-point infrastructure geometries. Tabular results and GIS maps of the selected scenarios illustrate that EOR sites can serve as nodal points or hubs for distribution of CO2 to distal oil field locations as well as deeper saline reservoirs. Revenue amounts and capture percentages both show an improvement over solutions when the hubs are not allowed to come into the solution. Other results indicate that geologic

  19. Research and Development in the Computer and Information Sciences. Volume 2, Processing, Storage, and Output Requirements in Information Processing Systems: A Selective Literature Review.

    ERIC Educational Resources Information Center

    Stevens, Mary Elizabeth

    Areas of concern with respect to processing, storage, and output requirements of a generalized information processing system are considered. Special emphasis is placed on multiple-access systems. Problems of system management and control are discussed, including hierarchies of storage levels. Facsimile, digital, and mass random access storage…

  20. Recent advances towards a theory of catchment hydrologic transport: age-ranked storage and the Ω-functions

    NASA Astrophysics Data System (ADS)

    Harman, C. J.

    2014-12-01

    Models that faithfully represent spatially-integrated hydrologic transport through the critical zone at sub-watershed scales are essential building blocks for large-scale models of land use and climate controls on non-point source contaminant delivery. A particular challenge facing these models is the need to represent the delay between inputs of soluble contaminants (such as nitrate) at the field scale, and the solute load that appears in streams. Recent advances in the theory of time-variable transit time distributions (e.g. Botter et al., GRL 38(L11403), 2011) have provided a rigorous framework for representing conservative solute transport and its coupling to hydrologic variability and partitioning. Here I will present a reformulation of this framework that offers several distinct advantages over existing formulations: 1) the derivation of the governing conservation equation is simple and intuitive, 2) the closure relations are expressed in a convenient and physically meaningful way as probability distributions Ω(ST)Omega(S_T) over the storage ranked by age STS_T, and 3) changes in transport behavior determined by storage-dependent dilution and flow-path dynamics (as distinct from those due only to changes in the rates and partitioning of water flux) are completely encapsulated by these probability distributions. The framework has been implemented to model to the rich dataset of long-term stream and precipitation chloride from the Plynlimon watershed in Wales, UK. With suitable choices for the functional form of the closure relationships, only a small number of free parameters are required to reproduce the observed chloride dynamics as well as previous models with many more parameters, including reproducing the observed fractal 1/f filtering of the streamflow chloride variability. The modeled transport dynamics are sensitive to the input precipitation variability and water balance partitioning to evapotranspiration. Apparent storage-dependent age

  1. Geochemical constraints on magma formation and transport processes

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Antoshechkina, P. M.; Dasgupta, R.; Rudge, J. F.; Asimow, P. D.

    2015-12-01

    Primitive basalts provide an invaluable probe of the mantle's thermo-chemical structure. What these samples show is that the Earth's interior is widely variable in its trace element, isotopic and even major element composition, on the km to the hemispherical scale. This heterogeneity has profound implications for not only the history of the solid Earth, but the oceans and atmosphere as well, as it represents ~4 billions of years of elemental transport back into the mantle via subduction recycling of oceanic crustal to mantle sections. Reconstructing planetary evolution through the volcanic record of mantle composition is therefore a primary aim of igneous geochemistry. However, between the solid mantle and our chemical analyses lie a series of melt generation, aggregation and transport processes, themselves poorly understood, that are potentially critical in controlling the amplitude and style of chemical heterogeneity preserved in an erupted basalt. If these processes are also sensitive to mantle potential temperature, the degree of melting and the presence of lithological heterogeneity, then the geochemical record may not only be biased as a whole, but biased in a relative sense between different geodynamic settings: such a dichotomy may be represented by ocean islands and mid-ocean ridges. Here we combine observational and modelling approaches to understand how varying conditions of melt generation and transport affect basalt chemical variability. Focusing first on Iceland, we combine new and existing melt inclusion data to investigate how chemical variability may be controlled by tectonic parameters (on versus off rift) and source enrichment. We find that on Iceland the key parameter controlling variability is enrichment, with the most enriched basalts preserving diminished variability compared with more depleted eruptions. However, on a larger scale enriched sources preserve the greatest variability: we see this both in terms of the greater variability of

  2. Influence of processing and storage time on the lipidic fraction of taralli.

    PubMed

    Caponio, Francesco; Summo, Carmine; Pasqualone, Antonella; Paradiso, Vito Michele; Gomes, Tommaso

    2009-01-01

    An experimental investigation was carried out to evaluate the influence of processing and storage time on the lipidic fraction of taralli. The data obtained pointed out that the kneading phase caused a significant increase of the oxidized triacylglycerols and triacylglycerol oligopolymers, primary and secondary oxidation compounds, respectively, accompanied by a significant decrease of the content of polyunsaturated fatty acids. The successive baking step caused the degradation of a part of the oxidized compounds to volatile substances, as confirmed by the p-Anisidine values, whereas the storage time determined a further significant increase of the level of oxidized triacylglycerols. Finally, the level of diacylglycerols, monoacylglycerols, and free fatty acids, indicative of hydrolytic degradation, did not show significant changes. The principal component analysis allowed one to clearly distinguish among samples obtained through processing conditions.

  3. 75 FR 43906 - Hazardous Materials: Requirements for the Storage of Explosives During Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... rulemaking under Docket HM-232A (67 FR 46622) entitled ``Security Requirements for Motor Carriers... November 16, 2005 (70 FR 69493), in which we summarized government and industry standards for explosives... Requirements applicable to explosives storage (33 CFR Parts 101-126) Bureau of Alcohol, Tobacco, Firearms,...

  4. Effects of Sorption in the Lower Unsaturated Zone on the Storage and Transport of Ions in Recharge to Ground Water, Southern New Jersey

    NASA Astrophysics Data System (ADS)

    Reilly, T. J.; Baehr, A. L.

    2006-05-01

    A field-based approach for determining sorption in the lower unsaturated zone (between the root zone and the capillary fringe) and its effect on the storage and transport of ions in recharge to ground water has been demonstrated for a small (8 km2) agricultural watershed in the Coastal Plain of southern New Jersey. These sediments typically are quartzose, acidic (pH 3.9-6.8 standard units), iron- and kaolinite-rich, and organic-matter poor, and the shallow ground water is nearly saturated with oxygen. Moisture-content and chemical-concentration data obtained from 14 paired unsaturated-zone-core (mean depth 5.7 m) and shallow- ground-water samples (mean depth 6.0 m) were used to estimate the mass flux of chemical constituents across the water table and sorption coefficients (Kd). Denitrification is not thought to be a significant process in this system as the water is nearly saturated with oxygen. The selectivity order of the Kd values for cations is consistent with the expected selectivity order based on charge density (for example, Na+ > Mg++ > Ca++ for sands). Although calculated sorption coefficients were greater for cations than for anions (cation sorption coefficients were 4 to 10 times greater than those calculated for NO3-), sorption has a substantial effect on the transport of anions through the unsaturated zone. In particular, average Kd values for NO3- were 0.22 L/mg for sands and 0.62 L/mg for finer grained sediments. This result indicates that the lower unsaturated zone in the study area is a large reservoir for nitrogen as nitrate. Unless the system is at steady state, models that do not account for sorption will result in underestimates of nitrogen storage and overestimates of contaminant transport rates. Such predictions would lead to overly optimistic expectations for natural cleansing in this watershed and in other, similar settings.

  5. PRELIMINARY REPORT: EFFECTS OF IRRADIATION AND THERMAL EXPOSURE ON ELASTOMERIC SEALS FOR CASK TRANSPORTATION AND STORAGE

    SciTech Connect

    Verst, C.; Skidmore, E.; Daugherty, W.

    2014-05-30

    A testing and analysis approach to predict the sealing behavior of elastomeric seal materials in dry storage casks and evaluate their ability to maintain a seal under thermal and radiation exposure conditions of extended storage and beyond was developed, and initial tests have been conducted. The initial tests evaluate the aging response of EPDM elastomer O-ring seals. The thermal and radiation exposure conditions of the CASTOR® V/21 casks were selected for testing as this cask design is of interest due to its widespread use, and close proximity of the seals to the fuel compared to other cask designs leading to a relatively high temperature and dose under storage conditions. A novel test fixture was developed to enable compression stress relaxation measurements for the seal material at the thermal and radiation exposure conditions. A loss of compression stress of 90% is suggested as the threshold at which sealing ability of an elastomeric seal would be lost. Previous studies have shown this value to be conservative to actual leakage failure for most aging conditions. These initial results indicate that the seal would be expected to retain sealing ability throughout extended storage at the cask design conditions, though longer exposure times are needed to validate this assumption. The high constant dose rate used in the testing is not prototypic of the decreasingly low dose rate that would occur under extended storage. The primary degradation mechanism of oxidation of polymeric compounds is highly dependent on temperature and time of exposure, and with radiation expected to exacerbate the oxidation.

  6. TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN

    SciTech Connect

    RAYMOND RE

    2011-12-27

    In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is

  7. Improvement of storage, handling and transportability of fine coal. Quarterly technical progress report No. 3, July 1, 1994--September 30, 1994

    SciTech Connect

    1996-08-16

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this third quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the feedstock coal options at the Chetopa Plant was conducted and mulling characteristics determined to enable a decision to be made regarding the feedstock selection. It was decided that the froth concentrate will be the feedstock wet fine coal used for the project. On that basis, activities in the areas of design and procurement were initiated.

  8. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 5, January 1, 1995--March 31, 1995

    SciTech Connect

    1996-08-21

    The Mulled Coal process was developed as a means of overcoming the adverse handling characteristics of wet fine coal without thermal drying. The process involves the addition of a low cost, harmless reagent to wet fine coal using off-the-shelf mixing equipment. Based on laboratory- and bench-scale testing, Mulled Coal can be stored, shipped, and burned without causing any of the plugging, pasting, carryback and freezing problems normally associated with wet coal. The objectives of this project are to demonstrate that: the Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant; the wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation; and a wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this reporting period, virtually all of the technical activities and progress was made in the areas of circuit installation and startup operations. Work in these activity areas are described.

  9. Modeling the processing of mineral iron during dust transport

    NASA Astrophysics Data System (ADS)

    Vogelsberg, Ulrike; Wolke, Ralf; Tilgner, Andreas; Tegen, Ina; Herrmann, Hartmut

    2014-05-01

    The Saharan desert and the Gobi desert are the main contributors to Aeolian desert dust, which is a major source of micronutrients to the remote ocean regions. Micronutrients, such as transition metals like iron or copper, are regarded essential for biological processes of different marine species. In this context recent studies have shown that soluble iron, since it is generally the most abundant transition metal in dust particles, has the ability to control marine productivity and thereby likely influence the CO2- budget. Nevertheless, the processing of desert dust leading to the release of soluble iron still lacks sufficient understanding since several factors control the solubilization process. Especially anthropogenic emissions are regarded to significantly add to the amount of soluble iron by acidification of dust particles or by the direct emission of soluble iron comprised, e.g. in coal fly ash. For the investigation of the dissolution process of iron that takes place during dust transportation the spectral air parcel model SPACCIM is used. A mechanism describing the precipitation and dissolution of mineral particles by heterogeneous surface reactions has been implemented. Trajectory properties were derived from COSMO-MUSCAT simulations or from re-analysis data by HYSPLIT. Differences in the chemical composition and the amount of anthropogenic and naturally emitted species on the North African continent and the highly industrialized region of South-East Asia have considerable impact on the acidification of the desert dust. Under this aspect, special cases of dust outbreaks of the Saharan desert and the Gobi desert are investigated and compared with focus on soluble iron produced.

  10. Interference between storage and processing in working memory: Feature overwriting, not similarity-based competition.

    PubMed

    Oberauer, Klaus

    2009-04-01

    Eight experiments with the complex span paradigm are presented to investigate why concurrent processing disrupts short-term retention. Increasing the pace of the processing task led to worse recall, supporting the hypothesis that the processing task distracts attention from maintenance operations. Neither phonological nor semantic similarity between memory items and processing-task material impaired memory. In contrast, the degree of phonological overlap between memory items and processing-task material affected recall negatively, supporting feature overwriting as one source of interference in the complex span paradigm. When compared directly, phonological overlap impaired memory, but similarity had a beneficial effect. These findings rule out response competition or confusion as a mechanism of interference between storage and processing. PMID:19246349

  11. Processing Satellite Images on Tertiary Storage: A Study of the Impact of Tile Size on Performance

    NASA Technical Reports Server (NTRS)

    Yu, JieBing; DeWitt, David J.

    1996-01-01

    Before raw data from a satellite can be used by an Earth scientist, it must first undergo a number of processing steps including basic processing, cleansing, and geo-registration. Processing actually expands the volume of data collected by a factor of 2 or 3 and the original data is never deleted. Thus processing and storage requirements can exceed 2 terrabytes/day. Once processed data is ready for analysis, a series of algorithms (typically developed by the Earth scientists) is applied to a large number of images in a data set. The focus of this paper is how best to handle such images stored on tape using the following assumptions: (1) all images of interest to a scientist are stored on a single tape, (2) images are accessed and processed in the order that they are stored on tape, and (3) the analysis requires access to only a portion of each image and not the entire image.

  12. Measuring hydrodynamics and sediment transport processes in the Dee estuary

    NASA Astrophysics Data System (ADS)

    Bolaños, R.; Souza, A.

    2010-03-01

    The capability of monitoring and predicting the marine environment leads to a more sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes become an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The data aims to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data involves the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data covers flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, is being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  13. Measuring hydrodynamics and sediment transport processes in the Dee Estuary

    NASA Astrophysics Data System (ADS)

    Bolaños, R.; Souza, A.

    2010-06-01

    The capability of monitoring and prediction in the marine environment provides information that may allow sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes becomes an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The aim of the data collection is to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data includes information from the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data cover flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, are being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  14. Hydrologic processes controlling herbicide transport in a Missouri claypan watershed

    NASA Astrophysics Data System (ADS)

    Liu, F.; Lerch, R.; Baffaut, C.; Yang, J.; Sadler, J.

    2011-12-01

    Hydrologic processes controlling herbicide transport are still poorly understood for claypan watersheds in the US Midwest. The presence of a near-surface claypan, a restrictive soil layer of smectitic mineralogy, may play a critical role in controlling herbicide transport to stream water. Data from Goodwater Creek Experimental Watershed (GCEW) (area = 72.5 km2) in central Missouri indicate that atrazine concentrations in stream water peaked during spring storm events, but high concentrations persisted in the baseflow following these events for days to weeks. It is hypothesized that hydrologic pathways exert a major control on atrazine concentrations in stream water. The hypothesis is tested using a combination of a statistical hydrograph model developed by Washington University in Saint Louis using Darcy's law and the diffusion equation and orthogonal data such as electric conductivity (EC). The basin time constant, the single fitting parameter for the model, was approximately 600 minutes or 0.4 days for GCEW. This value is similar to those for other small, non-claypan watersheds in Missouri. Stream flows were simulated very well by the model during the rising limbs of hydrographs for GCEW. Unlike other Missouri watersheds without claypan soils, stream flows in this claypan watershed were always significantly over-predicted for the prolonged falling tails, indicating a possible strong evapotranspiration effect during baseflow. EC values in shallow subsurface water indeed became much higher during baseflow than during storm events, consistent with the evapotranspiration effect on shallow subsurface water. These results suggests that both hydrologic pathways and evapotranspiration exert a major control on stream water quality in Goodwater Creek Experimental Watershed.

  15. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  16. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  17. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  18. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  19. 29 CFR 788.11 - “Transporting [such] products to the mill, processing plant, railroad, or other transportation...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING OPERATIONS IN WHICH NOT MORE THAN EIGHT EMPLOYEES ARE... terminal.” The transportation or movement of logs or other forestry products to a “mill processing plant... other forestry products onto railroad cars or other transportation facilities for further shipment...

  20. Application studies of RFID technology in the process of coal logistics transport

    NASA Astrophysics Data System (ADS)

    Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin

    2012-04-01

    For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.

  1. Evaluation of bioactive compounds of black mulberry juice after thermal, microwave, ultrasonic processing, and storage at different temperatures.

    PubMed

    Jiang, Bo; Mantri, Nitin; Hu, Ya; Lu, Jiayin; Jiang, Wu; Lu, Hongfei

    2015-07-01

    The effect of different sterilization methods (thermal, microwave, and ultrasonic processing) on the main bioactive compounds and antioxidant activity of black mulberry juice during selected storage time (8 days) and temperatures (5, 15, and 25 ℃) was investigated. The antioxidant activity of thermal-treated juice depleted with storage time, whilst both ultrasound- and microwave-treated juices showed transient increase in antioxidant activity during the first 2 days that later decreased with storage time. Lower temperature storage preserved more bioactive compounds and antioxidant activity, especially in ultrasound sterilized samples. The activation energy values were 15.99, 13.07, and 12.81 kJ/mol for ultrasonic, microwave, and thermal pasteurization processes, respectively. In general, ultrasound-sterilized samples showed higher total phenolics, anthocyanin, and antioxidant activity compared to the microwave- and thermal-processed juice during the storage time especially at lower temperatures.

  2. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    SciTech Connect

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. This paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)

  3. Salmonella survival on pecans as influenced by processing and storage conditions.

    PubMed

    Beuchat, L R; Heaton, E K

    1975-06-01

    Survival of Salmonella senftenberg 775W, S. anatum, and S. typhimurium during exposure to currently practiced, as well as abusive, pecan processing and storage conditions was studied. Thermal treatments normally carried out during the processing of pecans are inadequate to consistently destroy salmonellae in highly contaminated inshell nuts. Pecan nut packing tissue was toxic to salmonellae, thus affording some protection against high initial contamination and subsequent survival of the organisms. Examinations of inoculated inshell pecans stored at -18, -7, 5, and 21 C for up to 32 weeks revealed that the extent of survival was inversely correlated to the storage temperature. S. senftenberg 775W and S. anatum were not detectable on inshell nuts after 16 weeks of storage at 21 C. Little decrease in viable population of the three species was noted on inoculated pecan halves stored at -18, -7, and 5 C for 32 weeks. Due to organoleptic quality deterioration in pecan nutmeats at elevated temperatures, sterilization methods other than thermal treatment appear to be required for the elimination of viable salmonellae from pecan nuts. PMID:1098573

  4. Family process correlates of firearm ownership and firearm storage among families with young children.

    PubMed

    Martin-Storey, Alexa; Prickett, Kate C; Crosnoe, Robert

    2015-01-01

    To understand how family relations and dynamics were associated with firearm ownership among US families with 4-year-olds and with firearm storage among those families with firearms, controlling for sociodemographic characteristics of families and states. With representative data from the Early Childhood Longitudinal Study-Birth Cohort (n = 8,100), logistic regression models employed a set of family process variables (e.g., parenting practices, parental stress, maternal depression, and safety behaviors) as (1) predictors of firearm ownership among all families and, (2) as predictors of safe firearm storage among firearm owning families. An estimated 22 % of families with pre-kindergarten age children reported having firearms in their households. Among firearm owning families, 69 % of families kept firearms in a locked cabinet. Comparing families who did and did not report owning firearms, those who did were more likely to report spanking their children. Firearm owning parents who reported higher levels of parenting stress and lower likelihood that their child always wore a helmet when bicycling were also more likely to report unsafe firearm storage practices. Family processes differentiated both firearm owners from non-firearm owners and firearms owners who locked up their firearms from firearm owners who did not. These findings suggest that firearm ownership and firearm safety behaviors likely arise from a more general family context related to child health and safety.

  5. Fatty acids, sterols, and antioxidant activity in minimally processed avocados during refrigerated storage.

    PubMed

    Plaza, Lucía; Sánchez-Moreno, Concepción; de Pascual-Teresa, Sonia; de Ancos, Begoña; Cano, M Pilar

    2009-04-22

    Avocado ( Persea americana Mill.) is a good source of bioactive compounds such as monounsaturated fatty acids and sterols. The impact of minimal processing on its health-promoting attributes was investigated. Avocados cut into slices or halves were packaged in plastic bags under nitrogen, air, or vacuum and stored at 8 degrees C for 13 days. The stabilities of fatty acids and sterols as well as the effect on antioxidant activity were evaluated. The main fatty acid identified and quantified in avocado was oleic acid (about 57% of total content), whereas beta-sitosterol was found to be the major sterol (about 89% of total content). In general, after refrigerated storage, a significant decrease in fatty acid content was observed. Vacuum/halves and air/slices were the samples that maintained better this content. With regard to phytosterols, there were no significant changes during storage. Antioxidant activity showed a slight positive correlation against stearic acid content. At the end of refrigerated storage, a significant increase in antiradical efficiency (AE) was found for vacuum samples. AE values were quite similar among treatments. Hence, minimal processing can be a useful tool to preserve health-related properties of avocado fruit.

  6. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Krooss, B. M.; Littke, R.

    2012-12-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a subbituminous A coal from the Surat Basin, Queensland Australia (figure). From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg-corrected permeability depends on gas type. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa, with increasing mean pore pressure at lower confining pressure an increase in permeability is observed, which is attributed to a widening of cleat aperture. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane and CO2. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals was significantly lower (by 50%) than that of dry coals, no hysteresis was observed between sorption and desorption on dry and moisture-equilibrated samples and the

  7. Improved understanding of geologic CO{sub 2} storage processes requires risk-driven field experiments

    SciTech Connect

    Oldenburg, C.M.

    2011-06-01

    The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improve performance assessment and guide development of mitigation strategies.

  8. Solute transport processes in flow-event-driven stream-aquifer interaction

    NASA Astrophysics Data System (ADS)

    Xie, Yueqing; Cook, Peter G.; Simmons, Craig T.

    2016-07-01

    The interaction between streams and groundwater controls key features of the stream hydrograph and chemograph. Since surface runoff is usually less saline than groundwater, flow events are usually accompanied by declines in stream salinity. In this paper, we use numerical modelling to show that, at any particular monitoring location: (i) the increase in stream stage associated with a flow event will precede the decrease in solute concentration (arrival time lag for solutes); and (ii) the decrease in stream stage following the flow peak will usually precede the subsequent return (increase) in solute concentration (return time lag). Both arrival time lag and return time lag increase with increasing wave duration. However, arrival time lag decreases with increasing wave amplitude, whereas return time lag increases. Furthermore, while arrival time lag is most sensitive to parameters that control river velocity (channel roughness and stream slope), return time lag is most sensitive to groundwater parameters (aquifer hydraulic conductivity, recharge rate, and dispersitivity). Additionally, the absolute magnitude of the decrease in river concentration is sensitive to both river and groundwater parameters. Our simulations also show that in-stream mixing is dominated by wave propagation and bank storage processes, and in-stream dispersion has a relatively minor effect on solute concentrations. This has important implications for spreading of contaminants released to streams. Our work also demonstrates that a high contribution of pre-event water (or groundwater) within the flow hydrograph can be caused by the combination of in-stream and bank storage exchange processes, and does not require transport of pre-event water through the catchment.

  9. 40 CFR 60.254 - Standards for coal processing and conveying equipment, coal storage systems, transfer and loading...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for coal processing and conveying equipment, coal storage systems, transfer and loading systems, and open storage piles. 60.254... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal...

  10. 40 CFR 60.254 - Standards for coal processing and conveying equipment, coal storage systems, transfer and loading...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for coal processing and conveying equipment, coal storage systems, transfer and loading systems, and open storage piles. 60.254... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal...

  11. The contribution of an overlooked transport process to a wetland's methane emissions

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina M.; Baldocchi, Dennis D.; Matthes, Jaclyn Hatala; Knox, Sara Helen; Variano, Evan A.

    2016-06-01

    Wetland methane transport processes affect what portion of methane produced in wetlands reaches the atmosphere. We model what has been perceived to be the least important of these transport processes: hydrodynamic transport of methane through wetland surface water and show that its contribution to total methane emissions from a temperate freshwater marsh is surprisingly large. In our 1 year study, hydrodynamic transport comprised more than half of nighttime methane fluxes and was driven primarily by water column thermal convection occurring overnight as the water surface cooled. Overall, hydrodynamic transport was responsible for 32% of annual methane emissions. Many methane models have overlooked this process, but our results show that wetland methane fluxes cannot always be accurately described using only other transport processes (plant-mediated transport and ebullition). Modifying models to include hydrodynamic transport and the mechanisms that drive it, particularly convection, could help improve predictions of future wetland methane emissions.

  12. Biochemical and microbial changes during the storage of minimally processed cantaloupe.

    PubMed

    Lamikanra, O; Chen, J C; Banks, D; Hunter, P A

    2000-12-01

    The effect of storage time on pH, titratable acidity, degrees Brix, organic acids, sugars, amino acids, and color of minimally processed cantaloupe melon (Cucumis melo L. var. reticulatus Naud. cv. Mission) was determined at 4 degrees C and 20 degrees C. Changes in most of the biochemical parameters with storage time were relatively slow at the lower temperature. At 20 degrees C, a 17% loss in soluble solids and a 2-fold increase in acidity occurred after 2 days. Organic acid content also increased considerably with time at this temperature as a result of the production of lactic acid. Oxalic, citric, malic, and succinic acids were the organic acids, and glucose, fructose, and sucrose were the sugars present in the freshly cut cantaloupe. Malic acid concentration decreased concurrently with lactic acid production indicating the possible involvement of anaerobic malo-lactic fermentation along with sugar utilization by lactic acid bacteria. The effect of storage on microbial growth was determined at 4, 10, and 20 degrees C. Gram-negative stained rods grew at a slower rate at 4 degrees C and 10 degrees C than the Gram-positive mesophilic bacteria that dominated microorganism growth at 20 degrees C. Eighteen amino acids were identified in fresh cantaloupe: aspartic acid, glutamic acid, asparagine, serine, glutamine, glycine, histidine, arginine, threonine, alanine, proline, tyrosine, valine, methionine, isoleucine, leucine, phenyl alanine, and lysine. The dominant amino acids were aspartic acid, glutamic acid, arginine, and alanine. Total amino acid content decreased rapidly at 20 degrees C, but only a slight decrease occurred at 4 degrees C after prolonged storage. Changes in lightness (L), chroma, and hue at both temperatures indicate the absence of browning reactions. The results indicate the potential use of lactic acid and lactic acid bacteria as quality control markers in minimally processed fruits. PMID:11141266

  13. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes - May 2008

    SciTech Connect

    Ott, Kevin C.; Linehan, Sue; Lipiecki, Frank; Christopher, Aardahl L.

    2008-05-12

    Chemical Hydrogen Storage Center of Excellence FY2008 Second Quarter Milestone Report: Technical report describing assessment of hydrogen storage materials and progress towards meeting DOE’s hydrogen storage targets.

  14. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  15. Space Transportation System Liftoff Debris Mitigation Process Overview

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  16. Features, Events, and Processes in UZ Flow and Transport

    SciTech Connect

    P. Persoff

    2004-11-06

    The evaluation of impacts of potential volcanic eruptions on populations and facilities far in the future may involve detailed volcanological studies that differ from traditional hazards analyses. The proximity of Quaternary volcanoes to a proposed repository for disposal of the USA's high-level radioactive waste at Yucca Mountain, Nevada, has required in-depth study of probability and consequences of basaltic igneous activity. Because of the underground nature of the repository, evaluation of the potential effects of dike intrusion and interaction with the waste packages stored in underground tunnels (dnfts) as well as effects of eruption and ash dispersal have been important. These studies include analyses of dike propagation, dike-drift intersection, flow of magma into dnfts, heat and volcanic gas migration, atmospheric dispersal of tephra, and redistribution of waste-contaminated tephra by surficial processes. Unlike traditional volcanic hazards studies that focus on impacts on housing, transportation, communications, etc. (to name a small subset), the igneous consequences studies at Yucca Mountain have focused on evaluation of igneous impacts on nuclear waste packages and implications for enhanced radioactive dose on a hypothetical future ({le} 10000 yrs) local population. Potential exposure pathways include groundwater (affected by in-situ degradation of waste packages by igneous heat and corrosion) and inhalation, ingestion, and external exposure due to deposition and redistribution of waste-contaminated tephra.

  17. Convection in the Physical Vapor Transport Process. Part 2; Thermosolutal

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.

    1994-01-01

    We consider the effect of an inert gas on the diffusive-convective physical vapor transport process. We investigate the case when the temperature gradient is stabilizing and the concentration gradient is destabilizing for a wide parametric range. When an inert gas is present, the thermal and solutal convection oppose each other. The solutal field is destabilizing while the thermal field and the advective-diffusive flux stabilize the flow field. When the pressure of the inert component is increased, the stabilizing effect of the advective-diffusive flux is decreased. The intensity of convection as well as the oscillatory transient time increases. Below, the critical Rayleigh number, the nonlinear dynamics of the flow field show an oscillatory approach to steady state. For parametric values in the neighborhood of the critical Rayleigh number, the flow field undergoes a chaotic transient which settles to a periodic state. The asymptotic state of the flow field shows that growth and amalgamation of cells yields an overturning motion which results in an asymmetric cellular structure. The low gravity environment yields the stabilizing advective-diffusive flow which results in uniform temperature and concentration gradients near the crystal interface.

  18. MIC: Magnetically Deployable Structures for Power, Propulsion, Processing, Habitats and Energy Storage at Manned Lunar Bases

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Paniagua, John; Rather, John

    2007-01-01

    MIC (Magnetically Inflated Cables) is a new approach for robotically erecting very large, strong, rigid, and ultra-lightweight structures in space. MIC structures use a network of high current (SC) cables with attached high tensile strength Kevlar or Spectra tethers. MIC is launched as a compact package of coiled SC cables and tethers on a conventional launch vehicle. Once in space the SC cables are electrically energized. The resultant strong outwards magnetic forces expand them and the restraining tethers into a large structure, which can be 100's of meters in size. MIC structures can be configured for many different applications, including solar electric generation, solar thermal propulsion, energy storage, large space telescopes, magnetic shielding for astronauts, etc. The MIC technology components, including high temperature superconductors (HTS), thermal insulation, high strength tethers, and cryogenic refrigerators all exist commercially. Refrigeration requirements are very modest, on the order of 100 watts thermal per kilometer of MIC cable, with an input electric power to the refrigeration system of ~5 kW(e) per km. baseline MIC designs are described for a manned lunar base, including: 1) a 1 MW(e) solar electric system, 2) a high Isp (~900 seconds) solar thermal tug to transport 30 ton payloads between the Earth and the Moon, 3) a 2000 Megajoule electric energy storage system for peaking and emergency power, and 4) a large (~1 km) space telescope.

  19. Criticality Calculations of Fresh LEU and MOX Assemblies for Transport and Storage at the Balakovo Nuclear Power Plant

    SciTech Connect

    Goluoglu, S.

    2001-01-11

    Transportation of low-enriched uranium (LEU) and mixed-oxide (MOX) assemblies to and within the VVER-1000-type Balakovo Nuclear Power Plant is investigated. Effective multiplication factors for fresh fuel assemblies on the railroad platform, fresh fuel assemblies in the fuel transportation vehicle, and fresh fuel assemblies in the spent fuel storage pool are calculated. If there is no absorber between the units, the configurations with all MOX assemblies result in higher effective multiplication factors than the configurations with all LEU assemblies when the system is dry. When the system is flooded, the configurations with all LEU assemblies result in higher effective multiplication factors. For normal operating conditions, effective multiplication factors for all configurations are below the presumed upper subcritical limit of 0.95. For an accident condition of a fully loaded fuel transportation vehicle that is flooded with low-density water (possibly from a fire suppression system), the presumed upper subcritical limit is exceeded by configurations containing LEU assemblies.

  20. Transport, storage and mobilization of nitrogen by trees and shrubs in the wet/dry tropics of northern Australia.

    PubMed

    Schmidt, Susanne; Stewart, George R.

    1998-06-01

    Xylem sap from woody species in the wet/dry tropics of northern Australia was analyzed for N compounds. At the peak of the dry season, arginine was the main N compound in sap of most species of woodlands and deciduous monsoon forest. In the wet season, a marked change occurred with amides becoming the main sap N constituents of most species. Species from an evergreen monsoon forest, with a permanent water source, transported amides in the dry season. In the dry season, nitrate accounted for 7 and 12% of total xylem sap N in species of deciduous and evergreen monsoon forests, respectively. In the wet season, the proportion of N present as nitrate increased to 22% in deciduous monsoon forest species. These results suggest that N is taken up and assimilated mainly in the wet season and that this newly assimilated N is mostly transported as amide-N (woodland species, monsoon forest species) and nitrate (monsoon forest species). Arginine is the form in which stored N is remobilized and transported by woodland and deciduous monsoon forest species in the dry season. Several proteins, which may represent bark storage proteins, were detected in inner bark tissue from a range of trees in the dry season, indicating that, although N uptake appears to be limited in the dry season, the many tree and shrub species that produce flowers, fruit or leaves in the dry season use stored N to support growth. Nitrogen characteristics of the studied species are discussed in relation to the tropical environment.

  1. Energy loss in a partonic transport model including bremsstrahlung processes

    SciTech Connect

    Fochler, Oliver; Greiner, Carsten; Xu Zhe

    2010-08-15

    A detailed investigation of the energy loss of gluons that traverse a thermal gluonic medium simulated within the perturbative QCD-based transport model BAMPS (a Boltzmann approach to multiparton scatterings) is presented in the first part of this work. For simplicity the medium response is neglected in these calculations. The energy loss from purely elastic interactions is compared with the case where radiative processes are consistently included based on the matrix element by Gunion and Bertsch. From this comparison, gluon multiplication processes gg{yields}ggg are found to be the dominant source of energy loss within the approach employed here. The consequences for the quenching of gluons with high transverse momentum in fully dynamic simulations of Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) energy of {radical}(s)=200A GeV are discussed in the second major part of this work. The results for central collisions as discussed in a previous publication are revisited, and first results on the nuclear modification factor R{sub AA} for noncentral Au+Au collisions are presented. They show a decreased quenching compared to central collisions while retaining the same shape. The investigation of the elliptic flow v{sub 2} is extended up to nonthermal transverse momenta of 10 GeV, exhibiting a maximum v{sub 2} at roughly 4 to 5 GeV and a subsequent decrease. Finally the sensitivity of the aforementioned results on the specific implementation of the effective modeling of the Landau-Pomeranchuk-Migdal (LPM) effect via a formation-time-based cutoff is explored.

  2. Energy storage

    NASA Astrophysics Data System (ADS)

    Kaier, U.

    1981-04-01

    Developments in the area of energy storage are characterized, with respect to theory and laboratory, by an emergence of novel concepts and technologies for storing electric energy and heat. However, there are no new commercial devices on the market. New storage batteries as basis for a wider introduction of electric cars, and latent heat storage devices, as an aid for solar technology applications, with satisfactory performance standards are not yet commercially available. Devices for the intermediate storage of electric energy for solar electric-energy systems, and for satisfying peak-load current demands in the case of public utility companies are considered. In spite of many promising novel developments, there is yet no practical alternative to the lead-acid storage battery. Attention is given to central heat storage for systems transporting heat energy, small-scale heat storage installations, and large-scale technical energy-storage systems.

  3. Transportable, university-level educational programs in interactive information storage and retrieval systems

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D.; Roquemore, Leroy

    1984-01-01

    Pursuant to the specifications of a research contract entered into in December, 1983 with NASA, the Computer Science Departments of the University of Southwestern Louisiana and Southern University will be working jointly to address a variety of research and educational issues relating to the use, by non-computer professionals, of some of the largest and most sophiticated interactive information storage and retrieval systems available. Over the projected 6 to 8 year life of the project, in addition to NASA/RECON, the following systems will be examined: Lockheed DIALOG, DOE/RECON, DOD/DTIC, EPA/CSIN, and LLNL/TIS.

  4. Sodium Chloride Diffusion in Low-Acid Foods during Thermal Processing and Storage.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S

    2016-05-01

    This study aimed at modeling sodium chloride (NaCl) diffusion in foods during thermal processing using analytical and numerical solutions and at investigating the changes in NaCl concentrations during storage after processing. Potato, radish, and salmon samples in 1% or 3% NaCl solutions were heated at 90, 105, or 121 °C for 5 to 240 min to simulate pasteurization and sterilization. Selected samples were stored at 4 or 22 °C for up to 28 d. Radish had the largest equilibrium NaCl concentrations and equilibrium distribution coefficients, but smallest effective diffusion coefficients, indicating that a greater amount of NaCl diffused into the radish at a slower rate. Effective diffusion coefficients determined using the analytical solution ranged from 0.2 × 10(-8) to 2.6 × 10(-8) m²/s. Numerical and analytical solutions showed good agreement with experimental data, with average coefficients of determination for samples in 1% NaCl at 121 °C of 0.98 and 0.95, respectively. During storage, food samples equilibrated to a similar NaCl concentration regardless of the thermal processing severity. The results suggest that sensory evaluation of multiphase (solid and liquid) products should occur at least 14 d after processing to allow enough time for the salt to equilibrate within the product. PMID:27060992

  5. Sodium Chloride Diffusion in Low-Acid Foods during Thermal Processing and Storage.

    PubMed

    Bornhorst, Ellen R; Tang, Juming; Sablani, Shyam S

    2016-05-01

    This study aimed at modeling sodium chloride (NaCl) diffusion in foods during thermal processing using analytical and numerical solutions and at investigating the changes in NaCl concentrations during storage after processing. Potato, radish, and salmon samples in 1% or 3% NaCl solutions were heated at 90, 105, or 121 °C for 5 to 240 min to simulate pasteurization and sterilization. Selected samples were stored at 4 or 22 °C for up to 28 d. Radish had the largest equilibrium NaCl concentrations and equilibrium distribution coefficients, but smallest effective diffusion coefficients, indicating that a greater amount of NaCl diffused into the radish at a slower rate. Effective diffusion coefficients determined using the analytical solution ranged from 0.2 × 10(-8) to 2.6 × 10(-8) m²/s. Numerical and analytical solutions showed good agreement with experimental data, with average coefficients of determination for samples in 1% NaCl at 121 °C of 0.98 and 0.95, respectively. During storage, food samples equilibrated to a similar NaCl concentration regardless of the thermal processing severity. The results suggest that sensory evaluation of multiphase (solid and liquid) products should occur at least 14 d after processing to allow enough time for the salt to equilibrate within the product.

  6. Studies of thunderstorm transport processes with aircraft using tracer techniques

    SciTech Connect

    Detwiler, A.G.; Smith, P.L.; Stith, J.L.

    1996-10-01

    Instrumented aircraft can provide in situ measurements of winds and turbulence useful for studying transport and dispersion in clouds. Using inert artificial gases as tracers, and fast response analyzers on aircraft, time-resolved observations of transport and dispersion have been obtained. Examples are shown of these types of observations in and around cumulus and cumulonimbus clouds. 23 refs., 6 figs.

  7. Theory and Simulation of Neoclassical Transport Processes, with Local Trapping

    SciTech Connect

    Dubin, Daniel H. E.

    2009-03-30

    Neoclassical transport is studied using idealized simulations that follow guiding centers in given fields, neglecting collective effects on the plasma evolution, but including collisions at rate {nu}. For simplicity the magnetic field is assumed to be uniform; transport is due to asymmetries in applied electrostatic fields. Also, the Fokker-Planck equation describing the particle distribution is solved, and the predicted transport is found to agree with the simulations. Banana, plateau, and fluid regimes are identified and observed in the simulations. When separate trapped particle populations are created by application of an axisymmetric squeeze potential, enhanced transport regimes are observed, scaling as {radical}({nu}) when {nu}<{omega}{sub 0}<{omega}{sub b} and as 1/{nu} when {omega}{sub 0}<{nu}<{omega}{sub b} where {omega}{sub 0} and {omega}{sub b} are the rotation and axial bounce frequencies, respectively. These regimes are similar to those predicted for neoclassical transport in stellarators.

  8. Parameter Selection and Model Uncertainty in the Evaluation of Contaminant Transport From a Proposed Sulfide Mine Tailings Perpetual Storage Facility, a Case Study.

    NASA Astrophysics Data System (ADS)

    Thibodeau, P. M.

    2004-05-01

    An independent contaminant transport model (hereafter, ITM) was created, using MT3D96 (Zheng, 1996), to evaluate the movement and concentration distribution of constituents of concern that would likely leach out of a proposed Tailings Management Area (TMA) for the formerly proposed Crandon Mine in Forest County, Wisconsin. The Crandon Mine proposal included mining of zinc and copper ore from an identified high sulfide mineral deposit, with on-site processing and perpetual storage of mine tailings. The contaminant transport model was developed using an independently-derived groundwater flow model (hereafter, IFM), created by the investigators and others, as part of a comprehensive analysis of site hydrogeology and solute transport dynamics. Data and discretization of solute transport parameters, simulation specifications, and TMA activity phases, were performed using existing information provided in the Crandon Mine proponent's submissions. The only initial modification to the proponent's transport model (hereafter, PTM) was the substitution of a revised conceptual model of the hydrogeology as depicted in the IFM. The new ITM provided a baseline for comparison to the proponent's evaluation of potential acid mine drainage (AMD) from the TMA and into the surrounding groundwater. Receiving surface waters and wetlands are located approximately 1,500 feet from the proposed TMA. Activities at the proposed TMA were evaluated through a series of six discrete MT3D model simulations, representing the various proposed operations and leakage phases for the facility and associated reclaim pond. Contaminant transport model results were superpositioned to provide a cumulative contaminant concentration response over time and evaluated at a distance of 1,200 feet from the proposed TMA. A simplifying assumption was that AMD constituents flowed conservatively through the groundwater system, with neither adsorption, decay, nor reactivity over time and travel. The maximum concentration

  9. Effect of storage, processing and cooking on glucosinolate content of Brassica vegetables.

    PubMed

    Song, Lijiang; Thornalley, Paul J

    2007-02-01

    Epidemiological studies have shown that consumption of Brassica vegetables decrease the risk of cancer. These associations are linked to dietary intake of glucosinolates and their metabolism to cancer preventive isothiocyanates. Bioavailability of glucosinolates and related isothiocyanates are influenced by storage and culinary processing of Brassica vegetables. In this work, the content of the 7 major glucosinolates in broccoli, Brussels sprouts, cauliflower and green cabbage and their stability under different storage and cooking conditions is examined. Glucosinolates and isothiocyanates were quantified by liquid chromatography with tandem mass spectrometric detection (LC-MS/MS). Isothiocyanates were detected with high sensitivity as the corresponding thiourea derivatives. Storage at ambient temperature and in a domestic refrigerator showed no significant difference and a minor loss (9-26%) of glucosinolate levels over 7 days. Vegetables shredded finely showed a marked decline of glucosinolate level with post-shredding dwell time - up to 75% over 6h. Glucosinolate losses were detected partly as isothiocyanates. Cooking by steaming, microwaving and stir-fry did not produce significant loss of glucosinolates whereas boiling showed significant losses by leaching into cooking water. Most of the loss of the glucosinolates (approximately 90%) was detected in the cooking water. Increased bioavailability of dietary isothiocyanates may be achieved by avoiding boiling of vegetables.

  10. Effects of storage, processing and proteolytic digestion on microcystin-LR concentration in edible clams.

    PubMed

    Freitas, Marisa; Azevedo, Joana; Carvalho, António Paulo; Campos, Alexandre; Vasconcelos, Vitor

    2014-04-01

    Accumulation of microcystin-LR (MC-LR) in edible aquatic organisms, particularly in bivalves, is widely documented. In this study, the effects of food storage and processing conditions on the free MC-LR concentration in clams (Corbicula fluminea) fed MC-LR-producing Microcystisaeruginosa (1×10(5) cell/mL) for four days, and the bioaccessibility of MC-LR after in vitro proteolytic digestion were investigated. The concentration of free MC-LR in clams decreased sequentially over the time with unrefrigerated and refrigerated storage and increased with freezing storage. Overall, cooking for short periods of time resulted in a significantly higher concentration (P<0.05) of free MC-LR in clams, specifically microwave (MW) radiation treatment for 0.5 (57.5%) and 1 min (59%) and boiling treatment for 5 (163.4%) and 15 min (213.4%). The bioaccessibility of MC-LR after proteolytic digestion was reduced to 83%, potentially because of MC-LR degradation by pancreatic enzymes. Our results suggest that risk assessment based on direct comparison between MC-LR concentrations determined in raw food products and the tolerable daily intake (TDI) value set for the MC-LR might not be representative of true human exposure. PMID:24491263

  11. Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain)

    NASA Astrophysics Data System (ADS)

    Longpré, Marc-Antoine; Troll, Valentin R.; Hansteen, Thor H.

    2008-08-01

    We use clinopyroxene-liquid thermobarometry, aided by petrography and mineral major element chemistry, to reconstruct the magma plumbing system of the late Miocene, largely mafic Teno shield-volcano on the island of Tenerife. Outer rims of clinopyroxene and olivine phenocrysts show patterns best explained by decompression-induced crystallization upon rapid ascent of magmas from depth. The last equilibrium crystallization of clinopyroxene occurred in the uppermost mantle, from ˜20 to 45 km depth. We propose that flexural stresses or, alternatively, thermomechanical contrasts create a magma trap that largely confines magma storage to an interval roughly coinciding with the Moho at ˜15 km and the base of the long-term elastic lithosphere at ˜40 km below sea level. Evidence for shallow magma storage is restricted to the occurrence of a thick vitric tuff of trachytic composition emplaced before the Teno shield-volcano suffered large-scale flank collapses. The scenario developed in this study may help shed light on some unresolved issues of magma supply to intraplate oceanic volcanoes characterized by relatively low magma fluxes, such as those of the Canary, Madeira and Cape Verde archipelagoes, as well as Hawaiian volcanoes in their postshield stage. The data presented also support the importance of progressive magmatic underplating in the Canary Islands.

  12. Getting the tail to wag the dog: Incorporating groundwater transport into catchment solute transport models using rank StorAge Selection (rSAS) functions

    NASA Astrophysics Data System (ADS)

    Harman, C. J.

    2015-12-01

    Surface water hydrologic models are increasingly used to analyze the transport of solutes through the landscape, such as nitrate. However, many of these models cannot adequately capture the effect of groundwater flow paths, which can have long travel times and accumulate legacy contaminants, releasing them to streams over decades. If these long lag times are not accounted for, the short-term efficacy of management activities to reduce nitrogen loads may be overestimated. Models that adopt a simple 'well-mixed' assumption, leading to an exponential transit time distribution at steady state, cannot adequately capture the broadly skewed nature of groundwater transit times in typical watersheds. Here I will demonstrate how StorAge Selection functions can be used to capture the long lag times of groundwater in a typical subwatershed-based hydrologic model framework typical of models like SWAT, HSPF, HBV, PRMS and others. These functions can be selected and calibrated to reproduce historical data where available, but can also be fitted to the results of a steady-state groundwater transport model like MODFLOW/MODPATH, allowing those results to directly inform the parameterization of an unsteady surface water model. The long tails of the transit time distribution predicted by the groundwater model can then be completely captured by the surface water model. Examples of this application in the Chesapeake Bay watersheds and elsewhere will be given.

  13. The Vesicle Protein SAM-4 Regulates the Processivity of Synaptic Vesicle Transport

    PubMed Central

    Zheng, Qun; Ahlawat, Shikha; Schaefer, Anneliese; Mahoney, Tim; Koushika, Sandhya P.; Nonet, Michael L.

    2014-01-01

    Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport. PMID:25329901

  14. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  15. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Cumming, D.; Krooss, B. M.

    2012-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  16. Isotopic Tracers for Biogeochemical Processes and Contaminant Transport: Hanford, Washington

    SciTech Connect

    Donald J. DePaolo; John N. Christensen; Mark E. Conrad; and P. Evan Dresel

    2007-04-19

    Our goal is to use isotopic measurements to understand how contaminants are introduced to and stored in the vadose zone, and what processes control migration from the vadose zone to groundwater and then to surface water. We have been using the Hanford Site in south-central Washington as our field laboratory, and our investigations are often stimulated by observations made as part of the groundwater monitoring program and vadose zone characterization activities. Understanding the transport of contaminants at Hanford is difficult due to the presence of multiple potential sources within small areas, the long history of activities, the range of disposal methods, and the continuing evolution of the hydrological system. Observations often do not conform to simple models, and cannot be adequately understood with standard characterization approaches, even though the characterization activities are quite extensive. One of our objectives is to test the value of adding isotopic techniques to the characterization program, which has the immediate potential benefit of addressing specific remediation issues, but more importantly, it allows us to study fundamental processes at the scale and in the medium where they need to be understood. Here we focus on two recent studies at the waste management area (WMA) T-TX-TY, which relate to the sources and transport histories of vadose zone and groundwater contamination and contaminant fluid-sediment interaction. The WMA-T and WMA-TX-TY tank farms are located within the 200 West Area in the central portion of the Hanford Site (Fig. 2). They present a complicated picture of mixed groundwater plumes of nitrate, {sup 99}Tc, Cr{sup 6+}, carbon tetrachloride, etc. and multiple potential vadose zone sources such as tank leaks and disposal cribs (Fig. 3). To access potential vadose zone sources, we analyzed samples from cores C3832 near tank TX-104 and from C4104 near tank T-106. Tank T-106 was involved in a major event in 1973 in which 435,000 L

  17. Purely electronic zero-phonon lines in optical data storage and processing.

    PubMed

    Rebane, Karl K

    2005-03-01

    Spectroscopies of matrix isolated species and impurity activated solids are close relatives. Both are among the well developing chapters of solid state spectroscopy and optics. In this paper I am trying to give very brief overview what has been achieved in science and applications of impurity activated solids based on zero-phonon lines (ZPLs) in optical data storage and processing. I would like to show that the latter comprises via persistent spectral hole burning time-and-space domain holography in a certain meaning also the "stopping of light". ZPLs are beginning to play a role in the approaches to optical quantum computing.

  18. Unregulated potential sources of groundwater contamination involving the transport and storage of liquid fuels: Technical and policy issues

    SciTech Connect

    Davis, M.J.

    1989-08-01

    A large population of underground and aboveground tanks storing petroleum or petroleum products and the pipelines transporting such materials are not subject to federal regulations intended to protect groundwater, although existing regulations that address safety and surface-water protection do provide some groundwater protection. This study examined technical and policy issues related to regulating such facilities specifically to protect groundwater from losses of contents. Because the extent of groundwater contamination associated with these facilities is largely unknown, the benefits associated with additional regulations are difficult to estimate. The study found that the most effective leak detection approaches are not required or generally employed by any of the facility types considered. The effectiveness of leak prevention approaches varies with facility type. Issues associated with implementing additional regulations also vary with the type of facility. Costs of groundwater protection would be high for older pipelines, considerably less for modern pipelines. Many unregulated storage tanks are at residences, and implementation problems could be expected if stringent groundwater protection is required. For large storage tanks, issues would not be significantly different from those for currently regulated underground tanks. 44 refs., 3 figs., 17 tabs.

  19. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    SciTech Connect

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  20. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    SciTech Connect

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  1. Site-specific investigations of aquifer thermal energy storage for space and process cooling

    SciTech Connect

    Brown, D R; Hattrup, M P; Watts, R L

    1991-08-01

    The Pacific Northwest Laboratory (PNL) has completed three preliminary site-specific feasibility studies that investigated using aquifer thermal energy storage (ATES) to reduce space and process cooling costs. Chilled water stored in an ATES system could be used to meet all or part of the process and/or space cooling loads at the three facilities investigated. The work was sponsored by the US Department of Energy's (DOE) Office of Energy Management. The ultimate goal of DOE's Thermal Energy Storage Program is to successfully transfer ATES technology to industrial and commercial sectors. The primary objective of this study was to identify prospective sites and determine the technical and economic feasibility of implementing chill ATES technology. A secondary objective was to identify site-specific factors promoting or inhibiting the application of chill ATES technology so that other potentially attractive sites could be more easily identified and evaluated. A preliminary investigation of the feasibility of commercializing chill ATES in automotive assembly facilities was completed. The results suggested that automotive assembly facilities was completed. The results suggested that automotive assembly facilities represent a good entry market for chill ATES, if the system is cost-effective. As a result, this study was undertaken to identify and evaluate prospective chill ATES applications in the automotive industry. The balance of the report contains two main sections. Section 2.0 describes the site identification process. Site feasibility is addressed in Section 3.0. Overall study conclusions and recommendations are than presented in Section 4.0.

  2. Environmental emissions and socioeconomic considerations in the production, storage, and transportation of biomass energy feedstocks

    SciTech Connect

    Perlack, R.D.; Ranney, J.W.; Wright, L.L.

    1992-07-01

    An analysis was conducted to identify major sources and approximate levels of emissions to land, air, and water, that may result, in the year 2010, from supplying biofuel conversion facilities with energy crops. Land, fuel, and chemicals are all used in the establishment, maintenance, harvest, handling and transport of energy crops. The operations involved create soil erosion and compaction, particulate releases, air emissions from fuel use and chemical applications, and runoff or leachate. The analysis considered five different energy facility locations (each in a different major crop growing region) and three classes of energy crops -- woody crops, perennial herbaceous grasses, and an annual herbaceous crop (sorghum). All projections had to be based on reasonable assumptions regarding probable species used, type of land used, equipment requirements, chemical input requirements, and transportation fuel types. Emissions were summarized by location and class of energy crop.

  3. Role of relative humidity in processing and storage of seeds and assessment of variability in storage behaviour in Brassica spp. and Eruca sativa.

    PubMed

    Suma, A; Sreenivasan, Kalyani; Singh, A K; Radhamani, J

    2013-01-01

    The role of relative humidity (RH) while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40 ± 2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa.

  4. Role of Relative Humidity in Processing and Storage of Seeds and Assessment of Variability in Storage Behaviour in Brassica spp. and Eruca sativa

    PubMed Central

    Suma, A.; Sreenivasan, Kalyani; Singh, A. K.; Radhamani, J.

    2013-01-01

    The role of relative humidity (RH) while processing and storing seeds of Brassica spp. and Eruca sativa was investigated by creating different levels of relative humidity, namely, 75%, 50%, 32%, and 11% using different saturated salt solutions and 1% RH using concentrated sulphuric acid. The variability in seed storage behaviour of different species of Brassica was also evaluated. The samples were stored at 40 ± 2°C in sealed containers and various physiological parameters were assessed at different intervals up to three months. The seed viability and seedling vigour parameters were considerably reduced in all accessions at high relative humidity irrespective of the species. Storage at intermediate relative humidities caused minimal decline in viability. All the accessions performed better at relative humidity level of 32% maintaining seed moisture content of 3%. On analyzing the variability in storage behaviour, B. rapa and B. juncea were better performers than B. napus and Eruca sativa. PMID:24489504

  5. Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Levin, Michael; Gallucci, V. F.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes the application of irreversible thermodynamics to biology. It begins with…

  6. Recovery of several volatile organic compounds from simulated water samples: Effect of transport and storage

    USGS Publications Warehouse

    Friedman, L.C.; Schroder, L.J.; Brooks, M.G.

    1986-01-01

    Solutions containing volatile organic compounds were prepared in organic-free water and 2% methanol and submitted to two U.S. Geological Survey laboratories. Data from the determination of volatile compounds in these samples were compared to analytical data for the same volatile compounds that had been kept in solutions 100 times more concentrated until immediately before analysis; there was no statistically significant difference in the analytical recoveries. Addition of 2% methanol to the storage containers hindered the recovery of bromomethane and vinyl chloride. Methanol addition did not enhance sample stability. Further, there was no statistically significant difference in results from the two laboratories, and the recovery efficiency was more than 80% in more than half of the determinations made. In a subsequent study, six of eight volatile compounds showed no significant loss of recovery after 34 days.

  7. Thermal and non-thermal processing of apple cider: storage quality under equivalent process conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three processing techniques: heat, pulsed electric field (PEF) and ultraviolet light (UV) were optimized to achieve a similar 6 log reduction of inoculated Escherichia coli K12 in apple cider. PEF treatment at 23 kV/cm for a total treatment time of 150 us at 48C, UV exposure for 51 s at 15C and heat...

  8. Interfacial phenomena and microscale transport processes in evaporating ultrathin menisci

    NASA Astrophysics Data System (ADS)

    Panchamgam, Sashidhar S.

    The study of interfacial phenomena in the three-phase contact line region, where a liquid-vapor interface intersects a solid surface, is of importance to many equilibrium and non-equilibrium processes. However, lack of experimental data on microscale transport processes controlled by interfacial phenomena has restricted progress. This thesis includes a high resolution image analyzing technique, based on reflectivity measurements, that accurately measures the thickness, contact angle and curvature profiles of ultrathin films, drops and curved menisci. In particular, the technique was used to emphasize measurements for thicknesses, delta < 100 nm, while studying delta < 2.5 mum. Using the "reflectivity technique", we studied fluid flow and heat transfer in a wickless, miniature heat pipe, a device which will be a very effective passive heat exchanger in a microgravity environment. The heat pipe is based on the Vertical Constrained Vapor Bubble (VCVB) concept. The broad objective was to increase the efficiency of the miniature heat pipe by enhancing the liquid flow towards the hotter region. This was achieved by understanding and manipulating the wetting and spreading characteristics of the liquid on the solid surface. By using a binary mixture (98% pentane and 2% octane by volume) instead of either pure pentane or octane, we were able to achieve a significant increase in the microscale phase change heat transfer. The experimental work was supported by numerical studies to understand the physics of the system at microscopic scale. In addition, using the reflectivity technique, we enhanced our understanding of interfacial phenomena in the contact line region. Experiments included flow instabilities in HFE-7000 meniscus on quartz (System S1), the spreading of a pentane (System S2 and S3), octane (System S4) and binary mixture menisci (System S5) during evaporation. The main objectives of the work are to present a new experimental technique, new observations, new data

  9. Kinetic theory of transport processes in partially ionized reactive plasma, I: General transport equations

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-03-01

    In this paper we derive the set of general transport equations for multicomponent partially ionized reactive plasma in the presence of electric and magnetic fields taking into account the internal degrees of freedom and electronic excitation of plasma particles. Our starting point is a generalized Boltzmann equation with the collision integral in the Wang-Chang and Uhlenbeck form and a reactive collision integral. We obtain a set of conservation equations for such plasma and employ a linearized variant of Grad's moment method to derive the system of moment (or transport) equations for the plasma species nonequilibrium parameters. Full and reduced transport equations, resulting from the linearized system of moment equations, are presented, which can be used to obtain transport relations and expressions for transport coefficients of electrons and heavy plasma particles (molecules, atoms and ions) in partially ionized reactive plasma.

  10. 23 CFR 450.306 - Scope of the metropolitan transportation planning process.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Scope of the metropolitan transportation planning... PLANNING AND RESEARCH PLANNING ASSISTANCE AND STANDARDS Metropolitan Transportation Planning and Programming § 450.306 Scope of the metropolitan transportation planning process. (a) The...

  11. Improvement of storage, handling, and transportability of fine coal. Quarterly technical progress report No. 4, October 1, 1994--December 31, 1994

    SciTech Connect

    1996-08-20

    The objectives of this project are to demonstrate that: The Mulled Coal process, which has been proven to work on a wide range of wet fine coals at bench scale, will work equally well on a continuous basis, producing consistent quality at a convincing rate of production in a commercial coal preparation plant. The wet product from a fine coal cleaning circuit can be converted to a solid fuel form for ease of handling and cost savings in storage and rail car transportation. A wet fine coal product thus converted to a solid fuel form, can be stored, shipped, and burned with conventional fuel handling, transportation, and combustion systems. During this fourth quarter of the contract period, activities were underway under Tasks 2 and 3. Sufficient characterization of the bench-scale testing and pilot-plant testing results enabled the design and procurement activities to move forward. On that basis, activities in the areas of design and procurement that had been initiated during the previous quarter were conducted and completed.

  12. Uncertainty analysis of a long term reactive transport modeling of CO2 storage at Subei Basin, China

    NASA Astrophysics Data System (ADS)

    Shi, X.; Zheng, F.; Wu, J.; Zhao, L.; Chen, Y.; Xu, H.

    2012-12-01

    Geological storage of CO2 in deep saline aquifers is one of the most promising means for mitigating climate change. Here we reported a numerical modeling study of the long term storage of CO2 in a saline aquifer at the northern Jiangsu basin, which is one of the most promising reservoirs for geological storage in China. Based on the preliminary study of geological formation in the northern Jiangsu Basin, the Yancheng Formation is selected as the suitable saline aquifer for CO2 storage, owing to (1) multiple sandstone-mudstone sequences' structure consisting of gray coarse sandstone-sandy conglomerate and reddish brown mudstone; (2) the good reservoir quality of sandstone with high permeability and porosity; (3) adequate burning depth (>1000m); (4) occurrence of high salinity formation water. A 2D vertical radial geometry model was built using TOUGHREACT to predict how CO2 will be trapped because of geochemical reactions for long term simulations. The primary minerals of sandstone stratum are quartz, k-feldspar, Na-feldspar, epidote, almandine, muscovite, biotite, pyrite, hornblende and hematite. Various sources of uncertainties are associated with the cumulative CO2 sequestration amount, especially mineral precipitation and dissolution kinetic (i.e., rate) parameters have a large impact on mineral trapping. In this content, the cumulative amount of CO2 mineral sequestration is considered as the response function and its influence of eight sources of uncertainties is studied, namely the intrinsic permeability, the porosity, the pore compressibility, the capillary model parameters, the residual fluid and gas saturation and the salinity. Unlike the commonly used "one factor at a time" approach (local sensitivity analysis), we used global sensitivity analysis to measure parameter importance so that the potential co-operative effects between input parameters are also investigated. Results of this study can be used as an inductive tool to enhance understanding of

  13. Function of the Caenorhabditis elegans ABC Transporter PGP-2 in the Biogenesis of a Lysosome-related Fat Storage Organelle

    PubMed Central

    Schroeder, Lena K.; Kremer, Susan; Kramer, Maxwell J.; Currie, Erin; Kwan, Elizabeth; Watts, Jennifer L.; Lawrenson, Andrea L.

    2007-01-01

    Caenorhabditis elegans gut granules are intestine specific lysosome-related organelles with birefringent and autofluorescent contents. We identified pgp-2, which encodes an ABC transporter, in screens for genes required for the proper formation of gut granules. pgp-2(−) embryos mislocalize birefringent material into the intestinal lumen and are lacking in acidified intestinal V-ATPase–containing compartments. Adults without pgp-2(+) function similarly lack organelles with gut granule characteristics. These cellular phenotypes indicate that pgp-2(−) animals are defective in gut granule biogenesis. Double mutant analysis suggests that pgp-2(+) functions in parallel with the AP-3 adaptor complex during gut granule formation. We find that pgp-2 is expressed in the intestine where it functions in gut granule biogenesis and that PGP-2 localizes to the gut granule membrane. These results support a direct role of an ABC transporter in regulating lysosome biogenesis. Previously, pgp-2(+) activity has been shown to be necessary for the accumulation of Nile Red–stained fat in C. elegans. We show that gut granules are sites of fat storage in C. elegans embryos and adults. Notably, levels of triacylglycerides are relatively normal in animals defective in the formation of gut granules. Our results provide an explanation for the loss of Nile Red–stained fat in pgp-2(−) animals as well as insight into the specialized function of this lysosome-related organelle. PMID:17202409

  14. Development of a New Transportation/Storage Cask System for Use by the DOE Russian Research Reactor Fuel Return Program

    SciTech Connect

    Michael J. Tyacke; Frantisek Svitak; Jiri Rychecky; Miroslav Picek; Alexey Smirnov; Sergey Komarov; Edward Bradley; Alexander Dudchenko; Konstantin Golubkin

    2007-10-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions at these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design, licensing, testing, and delivery of this new cask system result from a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: 1) Introduction; 2) VPVR/M Cask Description; 3) Ancillary Equipment, 4) Cask Licensing; 5) Cask Demonstration and Operations; 6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, 7) Conclusions.

  15. Nanotechnologies for efficient solar and wind energy harvesting and storage in smart-grid and transportation applications

    NASA Astrophysics Data System (ADS)

    Eldada, Louay

    2011-01-01

    A wide array of nanotechnologies can be used to improve the efficiency of energy harvest from the Sun and the wind, and the efficiency of energy storage in secondary batteries, for use in smart grid and transportation applications. High-quality nanostructured copper indium gallium selenide thin films help produce high-efficiency photovoltaic modules. Various nanotechnologies are utilized to improve the efficiency of power-generating wind turbines, including nanoparticle-containing lubricants that reduce the friction generated from the rotation of the turbines, nanocoatings for de-icing and self-cleaning technologies, and advanced nanocomposites that provide lighter and stronger wind blades. A number of nanotechnologies can be beneficial in advanced high-capacity secondary batteries for smart grid and transportation applications. These technologies include nanostructured carbon-nanotube-based and silicon-nanowire-based electrodes with ultrahigh surface areas, as well as nanoengineered β-alumina ceramic electrolytes with well-controlled grains, grain boundaries, and crystal orientation, which are used to boost the energy and power densities in secondary batteries such as lithium-ion, sodium-sulfur, flow, and dry cell batteries.

  16. Leaching of Major and Minor Elements during the Transport and Storage of Coal Ash Obtained in Power Plant

    PubMed Central

    Krgović, Rada; Trifković, Jelena; Milojković-Opsenica, Dušanka; Manojlović, Dragan; Mutić, Jelena

    2014-01-01

    In power plant, coal ash obtained by combustion is mixed with river water and transported to the dump. Sequential extraction was used in order to assess pollution caused by leaching of elements during ash transport through the pipeline and in the storage (cassettes). A total of 80 samples of filter ash as well as the ash from active (currently filled) and passive (previously filled) cassettes were studied. Samples were extracted with distilled water, ammonium acetate, ammonium oxalate/oxalic acid, acidic solution of hydrogen-peroxide, and a hydrochloric acid. Concentrations of the several elements (Al, As, Cd, Co, Cu, Cr, Fe, Ba, Ca, Mg, Ni, Pb, and Zn) in all extracts were determined by inductively coupled plasma atomic emission spectrometry. Pattern recognition method was carried out in order to provide better understanding of the nature of distribution of elements according to their origins. Results indicate possible leaching of As, Ca, Cd, Cu, Zn, and Pb. Among these elements As, Cd, and Pb are toxicologically the most important but they were not present in the first two phases with the exception of As. The leaching could be destructive and cause negative effects on plants, water pollution, and damage to some life forms. PMID:25101314

  17. Modeling of the process of moisture loss during the storage of dried apricots.

    PubMed

    Miranda, G; Berna, A; Bon, J; Mulet, A

    2011-10-01

    Moisture content is a reference parameter for dried food because the growth of most microorganisms is inhibited below certain water activity levels. In addition, it has a determining influence on the evolution of important parameters, such as color and flavor, and on other properties and deterioration reactions, such as texture, oxidation processes and nutritional value. During the storage of some dried fruits, moisture is produced due to Maillard reactions and exchanged with the surrounding environment through the packaging. The evolution of dried foods during their shelf life depends on the storage conditions. The aim of this study is to analyze the evolution of the moisture content in dried apricots packaged in different types of containers, namely glass and thermosealed polypropylene trays. The samples were stored at constant temperatures: 5, 15, 25 and 35 °C and were analyzed periodically over a period of 12 months. The sorption isotherms of apricots used in this study were also determined. In order to model how the moisture evolved, an empirical kinetic model was tested. This model considers both water transfer from the fruit and also water production as a result of the Maillard processes. The explained variance was higher than 95% in the samples stored in trays, which were thermosealed with film. PMID:21954317

  18. Simulation of transport processes during Czochralski growth of YAG crystals

    NASA Astrophysics Data System (ADS)

    Banerjee, Jyotirmay; Muralidhar, K.

    2006-01-01

    Numerical simulation of transport phenomena in the solid, liquid and gaseous phases of a Czochralski process is reported. The Czochralski domain comprises a YAG melt, crystal and gas within the enclosure. The mathematical model is axisymmetric in space and unsteady in time. The governing equations are those of conservation of mass, momentum and energy. The simulation includes a bulk radiation model to account for the semi-transparency of the YAG melt and the growing crystal. Results have been obtained for thermal boundary conditions that do not change with time, a constant diameter growing crystal for which the pull velocity changes with time. Buoyant convection in the melt is seen to produce a melt-crystal interface that is convex into the melt. When the crystal is given rotation, centrifugal forces drive a clockwise roll that counteracts the thermally driven motion. At a specific rotation rate, the interface shape changes from convex to concave. The critical rotation rate for interface inversion has been obtained in the study as a function of the radius ratio and the aspect ratio. Marangoni convection has an effect of strengthening buoyancy-driven flow. Unsteadiness in the YAG melt is observed at high Grashof numbers. The introduction of crystal rotation at high Grashof numbers is found to change the periodic oscillations to aperiodic high amplitude fluctuations. Simulation that includes the crystal and the gas phases along with the melt reveals the possibility of superheating of the crystal beyond its melting point. Similarly, the possibility of subcooling of the melt near the crystal edge below the melting point of YAG is indicated for a certain range of parameters. The internal absorption of radiation in the crystal increases thermal losses from the melt, steepens temperature gradients and is found to create deeply convex melt-crystal interface towards the melt. Additionally, the bulk of the melt is found to become cooler. Scattering is found to have an

  19. COBRA-SFS: A thermal-hydraulic analysis code for spent fuel storage and transportation casks

    SciTech Connect

    Michener, T.E.; Rector, D.R.; Cuta, J.M.; Dodge, R.E.; Enderlin, C.W.

    1995-09-01

    COBRA-SFS is a general thermal-hydraulic analysis computer code for prediction of material temperatures and fluid conditions in a wide variety of systems. The code has been validated for analysis of spent fuel storage systems, as part of the Commercial Spent Fuel Management Program of the US Department of Energy. The code solves finite volume equations representing the conservation equations for mass, moment, and energy for an incompressible single-phase heat transfer fluid. The fluid solution is coupled to a finite volume solution of the conduction equation in the solid structure of the system. This document presents a complete description of Cycle 2 of COBRA-SFS, and consists of three main parts. Part 1 describes the conservation equations, constitutive models, and solution methods used in the code. Part 2 presents the User Manual, with guidance on code applications, and complete input instructions. This part also includes a detailed description of the auxiliary code RADGEN, used to generate grey body view factors required as input for radiative heat transfer modeling in the code. Part 3 describes the code structure, platform dependent coding, and program hierarchy. Installation instructions are also given for the various platform versions of the code that are available.

  20. Microbiological aspects of polyphosphate injection in the processing and chill storage of poultry.

    PubMed

    Mead, G C; Adams, B W

    1979-02-01

    During commercial processing of broiler chickens, injection of polyphosphate (Puron 604 or 6040) resulted in microorganisms being added to the deep breast muscle. The level of contamination was related to the microbiological condition of the injection solution. Injection of polyphosphate had no effect on the shelf-life of fresh chilled carcasses held at 1 degree of 10 degrees C but changes were observed in the growth rate of microorganisms in the deep muscle and in the composition of the muscle microflora following storage. Cross-contamination of carcasses and the transfer of organisms from the skin to the deep muscle during injection was demonstrated with a marker strain of Clostridium perfringens. However, both processes were influenced by the number of marker organisms applied initially to the skin. The above findings are discussed in relation to the possible behaviour of any food poisoning bacteria present.

  1. Microbiological aspects of polyphosphate injection in the processing and chill storage of poultry.

    PubMed Central

    Mead, G. C.; Adams, B. W.

    1979-01-01

    During commercial processing of broiler chickens, injection of polyphosphate (Puron 604 or 6040) resulted in microorganisms being added to the deep breast muscle. The level of contamination was related to the microbiological condition of the injection solution. Injection of polyphosphate had no effect on the shelf-life of fresh chilled carcasses held at 1 degree of 10 degrees C but changes were observed in the growth rate of microorganisms in the deep muscle and in the composition of the muscle microflora following storage. Cross-contamination of carcasses and the transfer of organisms from the skin to the deep muscle during injection was demonstrated with a marker strain of Clostridium perfringens. However, both processes were influenced by the number of marker organisms applied initially to the skin. The above findings are discussed in relation to the possible behaviour of any food poisoning bacteria present. PMID:216743

  2. Bidirectional Five-Level Power Processing Interface for Low Voltage Battery Energy Storage System

    NASA Astrophysics Data System (ADS)

    Huang, Jain-Yi; Jou, Hurng-Liahng; Wu, Kuen-Der; Lin, You-Si; Wu, Jinn-Chang

    A bidirectional five-level power processing interface for low voltage battery energy storage system (BESS) is developed in this paper. This BESS consists of a bidirectional five-level DC-AC converter, a bidirectional dual boost/buck DC-DC converter and a battery set. This five-level DC-AC converter includes a bidirectional full-bridge converter and a bidirectional dual buck DC-DC converter. The five-level power processing interface can charge power to the battery set form the utility or discharge the power from the battery set to the utility depending on the demanded operation of user. A hardware prototype is developed to verify the performance of this BESS. Experimental results show the performance of the developed BESS is as expected.

  3. Heat recovery/thermal energy storage for energy conservation in food processing

    SciTech Connect

    Combes, R.S.; Boykin, W.B.

    1981-01-01

    Based on energy consumption data compiled for 1974, 59% of the total energy consumed in the US food processing industry was thermal energy. The energy-consuming processes which utilize this thermal energy reject significant quantities of waste heat, usually to the atmosphere or to the wastewater discharged from the plant. Design considerations for waste heat recovery systems in the food processing industry are discussed. A systematic analysis of the waste heat source, in terms of quantity and quality is explored. Other aspects of the waste heat source, such as contamination, are addressed as potential impediments to practical heat recovery. The characteristics of the recipient process which will utilize the recovered waste heat are discussed. Thermal energy storage, which can be used as a means of allowing the waste eat recovery process to operate independent of the subsequent utilization of the recovered energy, is discussed. The project included the design, installation and monitoring of two heat recovery systems in a Gold Kist broiler processing plant. These systems recover waste heat from a poultry scalder overflow (heated wastewater) and from a refrigeration condenser utilizing ammonia as the refrigerant. The performance and economic viability of the heat recovery systems are presented.

  4. Lithium storage mechanism in cubic lithium copper titanate anode material upon lithiation/delithiation process

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Zhou, Zhengrong; Liang, Hanfeng; Shao, Lianyi; Shu, Jie; Wang, Zhoucheng

    2015-05-01

    Complex spinel Li2CuTi3O8 with a space group of Fd-3m is prepared for the first time by a simple solid state reaction route. This compound has different space group from the previous reported Li2MTi3O8 (M = Zn, Co, Mg, Ni and Mn) with a space group of P4332. It shows reversibility for lithium storage in the cubic structure. A reversible capacity of 203 mAh g-1 can be delivered at a current density of 100 mA g-1 after 50 cycles with the capacity retention of 70.7%. The electrochemical reaction mechanism between Li2CuTi3O8 and lithium is investigated by various in-situ and ex-situ observations. Rietveld refinement results show that Li2CuTi3O8 has multiple interstitials to accommodate lithium ions during the lithiation process, in which the irregular octahedral 32e sites would be occupied by lithium ions at high working potentials and the regular octahedral 16c sites would be occupied by lithium ions at low working potentials. Besides, a reversible migration of copper ions can found during discharge process. Based on the reverse delithiation process, it is known that the whole charge-discharge process is quasi-reversible for Li2CuTi3O8. Therefore, Li2CuTi3O8 shows high structural stability as a promising lithium storage material for lithium-ion batteries.

  5. Modeling of Compositional Effects of Foam Assisted CO2 Storage Processes

    NASA Astrophysics Data System (ADS)

    Naderi Beni, A.; Varavei, A.; Farajzadeh, R.; Delshad, M.

    2012-12-01

    Foaming of carbon dioxide (CO2, e.g. from fossil-fuel power plants) has been proposed as a possible strategy to resolve the limitations of direct disposal of CO2 into (saline) aquifers. Such limitations include gravity segregation that may damage the caprock and aquifer rock property alteration as a result of geochemical interactions. Foam may also block the CO2 leakage paths, resulting in an overall storage security enhancement. In this regard, specific aspects of composition and type of gas (N2 vs. CO2) may affect the foaming properties of gas-surfactant systems. The aim of this study is to determine these effects on the foaming properties of gas-surfactant solutions. To this end, we study the physics of foam assisted CO2 storage by modeling coreflood experiments. Different options such as simplified population balance foam model and a table-look-up approach were used to couple the fluid flow and mass transport equations in a reservoir simulator. Both laboratory and numerical results show that three regions along the flow direction can be distinguished: (i) an upstream region characterized by low liquid saturation, (ii) a region downstream of the foam front where the liquid saturation is still unchanged with a value of one and (iii) a frontal region characterized by a mixing of flowing foam and liquid, exhibiting fine fingering effects. It is also shown that the extent of the fingering behavior caused by the rock heterogeneity depends on foam strength. Additionally, permeation of gas through foam films is a strong function of water salinity and appears to have significant impact on foam in CO2 storage. It further turns out that the amount of dissolved CO2 in brine can be considerable and, therefore, the effect of water solubility cannot be neglected in simulation studies. In summary, the differences in the foaming behavior of nitrogen and carbon dioxide can be explained by the differences in their physical properties of solubility in water, interfacial tension, p

  6. Swab transport in Amies gel followed by frozen storage in skim milk tryptone glucose glycerol broth (STGGB) for studies of respiratory bacterial pathogens.

    PubMed

    Hare, Kim M; Stubbs, Elizabeth; Beissbarth, Jemima; Morris, Peter Stanley; Leach, Amanda J

    2010-06-01

    Nasopharyngeal carriage studies are needed to monitor changes in important bacterial pathogens in response to vaccination and antibiotics. Commercial swab transport followed by transfer to skim milk tryptone glucose glycerol broth for frozen storage is an option for studies of Streptococcus pneumoniae, Haemophilus influenzae and Moraxella catarrhalis.

  7. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  8. Fluid storage and transport in thrust belts: the Gavarnie Thrust system revisited

    NASA Astrophysics Data System (ADS)

    McCaig, Andrew

    2015-04-01

    replenish fluid by metamorphic dehydration in the Pyrenees. This does not appear to have occurred, suggesting that any enhanced permeability events were shortlived and perhaps form patches of limited size. Fluid can be stored at various scales: in fluid inclusions in vein minerals and on grain boundaries (eg. pressure shadows in cleaved rocks); in veins and pull-aparts in competent layers such as dolomite within calcite mylonites; and in structural culminations such as the Pic de Port Vieux, where development of fold-thrust structures allowed slow dilation with evidence from fluid inclusions for influx of fluid from both footwall and hangingwall. This latter can be considered a dynamic form of storage generated by deviatoric stress and strain at high fluid pressure (not "hydraulic fracture"), whereas fluid inclusions can be considered passive storage. Stored fluid in such sites can be expelled during seismic events (both slow and fast slip) where the pressure regime in large volumes of crust will change dramatically.

  9. Trailers transporting oranges to processing plants move Asian citrus psyllids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Huanglongbing (citrus greening) is one of the most serious of citrus diseases. Movement of the disease occurs as a result of natural vector-borne infection and by movement of plant material. We demonstrate here that Diaphorina citri Kuwayama (vector of citrus greening pathogens) can be transported i...

  10. Modeling field scale unsaturated flow and transport processes

    SciTech Connect

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data.

  11. Benthic processes affecting contaminant transport in Upper Klamath Lake, Oregon

    USGS Publications Warehouse

    Kuwabara, James S.; Topping, Brent R.; Carter, James L.; Carlson, Rick A; Parchaso, Francis; Fend, Steven V.; Stauffer-Olsen, Natalie; Manning, Andrew J.; Land, Jennie M.

    2016-09-30

    Executive SummaryMultiple sampling trips during calendar years 2013 through 2015 were coordinated to provide measurements of interdependent benthic processes that potentially affect contaminant transport in Upper Klamath Lake (UKL), Oregon. The measurements were motivated by recognition that such internal processes (for example, solute benthic flux, bioturbation and solute efflux by benthic invertebrates, and physical groundwater-surface water interactions) were not integrated into existing management models for UKL. Up until 2013, all of the benthic-flux studies generally had been limited spatially to a number of sites in the northern part of UKL and limited temporally to 2–3 samplings per year. All of the benthic invertebrate studies also had been limited to the northern part of the lake; however, intensive temporal (weekly) studies had previously been completed independent of benthic-flux studies. Therefore, knowledge of both the spatial and temporal variability in benthic flux and benthic invertebrate distributions for the entire lake was lacking. To address these limitations, we completed a lakewide spatial study during 2013 and a coordinated temporal study with weekly sampling of benthic flux and benthic invertebrates during 2014. Field design of the spatially focused study in 2013 involved 21 sites sampled three times as the summer cyanobacterial bloom developed (that is, May 23, June 13, and July 3, 2013). Results of the 27-week, temporally focused study of one site in 2014 were summarized and partitioned into three periods (referred to herein as pre-bloom, bloom and post-bloom periods), each period involving 9 weeks of profiler deployments, water column and benthic sampling. Partitioning of the pre-bloom, bloom, and post-bloom periods were based on water-column chlorophyll concentrations and involved the following date intervals, respectively: April 15 through June 10, June 17 through August 13, and August 20 through October 16, 2014. To examine

  12. Improved temperature regulation of process water systems for the APS storage ring.

    SciTech Connect

    Putnam, C.; Dortwegt, R.

    2002-10-10

    Beam stability and operational reliability of critical mechanical systems are key performance issues for synchrotron accelerators such as the Advanced Photon Source (APS). Stability is influenced by temperature fluctuations of the process water (PW) used for cooling and/or temperature conditioning storage ring (SR) components such as vacuum chambers, magnets, absorbers, etc. Operational reliability is crucial in maintaining facility beam operations and remaining within downtime ''budgets.'' Water systems for the APS storage ring were originally provided with a distributive control system (DCS) capable of regulation to {+-}1.0 F, as specified by facility design requirements. After several years of operation, a particular mode of component mortality indicated a need for upgrade of the temperature control system. The upgrade that was implemented was chosen for both improved component reliability and temperature stability (now on the order of {+-}0.2 F for copper components and {+-}0.05 F for aluminum components). The design employs a network of programmable logic controllers (PLCs) for temperature control that functions under supervision of the existing DCS. The human-machine interface (HMI) of the PLC system employs RSView32 software. The PLC system also interfaces with the EPICS accelerator control system to provide monitoring of temperature control parameters. Eventual supervision of the PLC system by EPICS is possible with this design.

  13. Loss of miRNAs during Processing and Storage of Cow's (Bos taurus)Milk

    PubMed Central

    Howard, Katherine M.; Kusuma, Rio Jati; Baier, Scott R.; Friemel, Taylor; Markham, Laura; Vanamala, Jairam; Zempleni, and Janos

    2015-01-01

    MicroRNAs (miRs, miRNAs) play central roles in gene regulation. Previously, we reported that miRNAs from somatic cell content, and handling by consumers on the degradation of miRNAs in milk; we also quantified miRNAs in dairy products. Pasteurization and homogenization caused a 63% loss of miR-200c, whereas a 67% loss observed for miR-29b was statistically significant only in skim milk. Effects of cold storage and somatic cell content were quantitatively minor (<2% loss). Heating in the microwave caused a 40% loss of miR-29b but no loss of miR-200c. The milk fat content had no effect on miRNA stability during storage and microwave heating. The concentrations of miRNAs in dairy products were considerably lower than in store-bought milk. We conclude that processing of milk by dairies and handling by consumers causes a significant loss of miRNAs. PMID:25565082

  14. Why is working memory related to intelligence? Different contributions from storage and processing.

    PubMed

    Dang, Cai-Ping; Braeken, Johan; Colom, Roberto; Ferrer, Emilio; Liu, Chang

    2014-01-01

    Domain-specific contributions of working memory (WM), short-term memory (STM), and executive functioning (EF) to individual differences in intelligence were analysed using a latent variable approach. A sample of 345 participants completed a battery of 24 tests tapping the constructs of interests as comprehensively as possible. Visuospatial and verbal STM and WM tasks were administered along with three subcomponents of EF, namely inhibition, planning, and shifting. Intelligence was assessed by non-verbal/abstract/fluid intelligence (Gf) and verbal/crystallised intelligence (Gc) standardised tests. Structural equation modelling results show that EF is the main predictor of Gf, whereas verbal STM is the main predictor of Gc. Storage and processing providing different contributions to the prediction of Gf and Gc supports the view that both short-term storage and executive functioning account for the relationship between WM and intelligence. This main conclusion stresses the importance of acknowledging core cognitive constructs as being hierarchical systems with general and domain-specific mechanisms.

  15. Magma supply, storage, and transport at shield-stage Hawaiian volcanoes: Chapter 5 in Characteristics of Hawaiian volcanoes

    USGS Publications Warehouse

    Poland, Michael P.; Miklius, Asta; Montgomery-Brown, Emily K.; Poland, Michael P.; Takahashi, T. Jane; Landowski, Claire M.

    2014-01-01

    Magma supply to Hawaiian volcanoes has varied over millions of years but is presently at a high level. Supply to Kīlauea’s shallow magmatic system averages about 0.1 km3/yr and fluctuates on timescales of months to years due to changes in pressure within the summit reservoir system, as well as in the volume of melt supplied by the source hot spot. Magma plumbing systems beneath Kīlauea and Mauna Loa are complex and are best constrained at Kīlauea. Multiple regions of magma storage characterize Kīlauea’s summit, and two pairs of rift zones, one providing a shallow magma pathway and the other forming a structural boundary within the volcano, radiate from the summit to carry magma to intrusion/eruption sites located nearby or tens of kilometers from the caldera. Whether or not magma is present within the deep rift zone, which extends beneath the structural rift zones at ~3-km depth to the base of the volcano at ~9-km depth, remains an open question, but we suggest that most magma entering Kīlauea must pass through the summit reservoir system before entering the rift zones. Mauna Loa’s summit magma storage system includes at least two interconnected reservoirs, with one centered beneath the south margin of the caldera and the other elongated along the axis of the caldera. Transport of magma within shield-stage Hawaiian volcanoes occurs through dikes that can evolve into long-lived pipe-like pathways. The ratio of eruptive to noneruptive dikes is large in Hawai‘i, compared to other basaltic volcanoes (in Iceland, for example), because Hawaiian dikes tend to be intruded with high driving pressures. Passive dike intrusions also occur, motivated at Kīlauea by rift opening in response to seaward slip of the volcano’s south flank.

  16. Solar energy in the context of energy use, energy transportation and energy storage.

    PubMed

    MacKay, David J C

    2013-08-13

    -carbon sources, namely 'clean' coal, 'clean' gas and nuclear power. If solar is to play a large role in the future energy system, then we need new methods for energy storage; very-large-scale solar either would need to be combined with electricity stores or it would need to serve a large flexible demand for energy that effectively stores useful energy in the form of chemicals, heat, or cold.

  17. Solar energy in the context of energy use, energy transportation and energy storage.

    PubMed

    MacKay, David J C

    2013-08-13

    -carbon sources, namely 'clean' coal, 'clean' gas and nuclear power. If solar is to play a large role in the future energy system, then we need new methods for energy storage; very-large-scale solar either would need to be combined with electricity stores or it would need to serve a large flexible demand for energy that effectively stores useful energy in the form of chemicals, heat, or cold. PMID:23816908

  18. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  19. Integrated analysis of transportation demand pathway options for hydrogen production, storage, and distribution

    SciTech Connect

    Thomas, C.E.S.

    1996-10-01

    Directed Technologies, Inc. has begun the development of a computer model with the goal of providing guidance to the Hydrogen Program Office regarding the most cost effective use of limited resources to meet national energy security and environmental goals through the use of hydrogen as a major energy carrier. The underlying assumption of this programmatic pathway model is that government and industry must work together to bring clean hydrogen energy devices into the marketplace. Industry cannot provide the long term resources necessary to overcome technological, regulatory, institutional, and perceptual barriers to the use of hydrogen as an energy carrier, and government cannot provide the substantial investments required to develop hydrogen energy products and increased hydrogen production capacity. The computer model recognizes this necessary government/industry partnership by determining the early investments required by government to bring hydrogen energy end uses within the time horizon and profitability criteria of industry, and by estimating the subsequent investments required by industry. The model then predicts the cost/benefit ratio for government, based on contributions of each hydrogen project to meeting societal goals, and it predicts the return on investment for industry. Sensitivity analyses with respect to various government investments such as hydrogen research and development and demonstration projects will then provide guidance as to the most cost effective mix of government actions. The initial model considers the hydrogen transportation market, but this programmatic pathway methodology will be extended to other market segments in the future.

  20. Atomic layer deposition of ruthenium and ruthenium dioxide: New process development, fabrication of heterostructured nanoelectrodes, and applications in energy storage

    NASA Astrophysics Data System (ADS)

    Gregorczyk, Keith E.

    The ability to fabricate heterostructured nanomaterials with each layer of the structure having some specific function, i.e. energy storage, charge collection, etc., has recently attracted great interest. Of the techniques capable of this type of process, atomic layer deposition (ALD) remains unique due to its monolayer thickness control, extreme conformality, and wide variety of available materials. This work aims at using ALD to fabricate fully integrated heterostructured nanomaterials. To that end, two ALD processes, using a new and novel precursor, bis(2,6,6-trimethyl-cyclohexadienyl)ruthenium, were developed for Ru and RuO2 showing stable growth rates of 0.5 A/cycle and 0.4 A/cycle respectively. Both process are discussed and compared to similar processes reported in the literature. The Ru process is shown to have significantly lower nucleation while the RuO2 is the first fully characterized ALD process known. Using the fully developed RuO2 ALD process, thin film batteries were fabricated and tested in standard coin cell configurations. These cells showed high first cycle gravimetric capacities of ˜1400 mAh/g, which significantly degraded after ˜40 cycles. Rate performance was also studied and showed a decrease in 1st cycle capacity as a function of increased rate. These results represent the first reports of any RuO2 battery studied beyond 3 cycles. To understand the degradation mechanisms witnessed in the thin film studies in-situ TEM experiments were conducted. Single crystal RuO2 nanowires were grown using a vapor transport method. These nanowires were cycled inside a TEM using Li2O as an electrolyte and showed a ˜95% volume expansion after lithiation, ˜26% of which was irreversible. Furthermore, a chemical irreversibility was also witnessed, where the reaction products Ru and Li2O remain even after full delithiation. With these mechanisms in mind heterostructured nanowires were fabricated in an attempt to improve the cycling performance. Core/shell Ti