Sample records for processive carbohydrate polymerization

  1. Triennial Growth Symposium: effects of polymeric carbohydrates on growth and development in pigs.

    PubMed

    Bach Knudsen, K E

    2011-07-01

    Polymeric carbohydrates, starch and nonstarch polysaccharides (NSP), quantitatively represent the largest portion of the diets for pigs and are, therefore, the largest energy contributor. The 2 types of polysaccharides, however, have different fates and functions in the gastrointestinal tract and lead to different metabolites upon digestion. Pancreatic and mucosal enzymes in the small intestine break down the majority of starch, whereas NSP primarily are degraded by the microflora in the large intestine. Starch degradation leads to the release of glucose, which is absorbed by an active absorption process that triggers the release of insulin from the pancreas, whereas the fermentation of NSP to short-chain fatty acids (SCFA; i.e., acetate, propionate, and butyrate) occurs at a slower and more constant rate and with SCFA being absorbed by passive diffusion. Type and amounts of polymeric carbohydrates influence growth and development through different mechanisms. First, the proportion of starch to NSP plays an important role for the content of available energy (i.e., DE, ME, and NE); available energy relative to protein is crucial for performance and carcass quality. Second, the proportion of starch to NSP will influence rate and type of metabolites (i.e., glucose vs. SCFA) deriving from carbohydrate assimilation. Third and finally, the type of starch (i.e., types A, B, and C) and soluble NSP will influence the release of insulin, the hormone that facilitates nutrient uptake by tissues, organs, and cells, and thus plays a critically essential role in protein synthesis and muscle growth, as well as lipid synthesis and adipose tissue growth. In conclusion, polymeric carbohydrates influence growth and development through events in the gut and direct and indirect effects of different metabolites deriving from carbohydrate assimilation. © 2011 American Society of Animal Science. All rights reserved.

  2. Fungal biodegradation and biotransformation of soluble lignocarbohydrate complexes from straw. [Aspergillus japonicus, Polyporus versicolor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milstein, O.A.; Vared, Y.; Sharma, A.

    1983-08-01

    Aspergillus japonicus is an efficient degrader of phenolics and carbohydrates present in a mixture of soluble lignocarbohydrate complexes extracted from wheat straw. Trichoderma species attacked part of the carbohydrate but hardly affected the aromatic portion of this solution. Polyporus versicolor had a complex effect; polymerization of low-molecular-size phenolics accompanied the degradation of aromatic and carbohydrate polymers. The addition of xylose to the medium facilitated depolymerization of lignin by the fungi tested and prevented the polymerization of low-molecular-size fractions of lignocarbohydrate complexes by P. versicolor. P. versicolor, in contrast to A. japonicus and Trichoderma species, also excreted into the medium considerablemore » amounts of laccase, but only in the absence of endogenous or exogenous carbohydrates. Apparently, laccase is involved in polymerization rather than degradation of lignin in this organism. A number of extracellular glycanases were also secreted by these fungi. 19 references« less

  3. Carbohydrate Polymers for Nonviral Nucleic Acid Delivery

    PubMed Central

    Sizovs, Antons; McLendon, Patrick M.; Srinivasachari, Sathya

    2014-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  4. Monomeric and polymeric forms of ependymin: a brain extracellular glycoprotein implicated in memory consolidation processes.

    PubMed

    Shashoua, V E

    1988-07-01

    Ependymin, a brain extracellular glycoprotein that appears to be implicated in neural circuit modifications associated with the process of memory consolidation, can rapidly polymerize into fibrous aggregates when the Ca2+ concentration in solution is reduced by the addition of EGTA or by dialysis. Such aggregates, once formed, could not be redissolved in boiling 1% SDS in 6 M urea, acetic acid, saturated aqueous potassium thiocyanate, and trifluoroacetic acid. They were, however, soluble in formic acid. Investigations of the immunological properties of ependymin indicated that various monomers, oligomers and polymers of the molecule with differing carbohydrate contents can be obtained. The polymerization properties of the ependymins may play an important role in their functions in memory consolidation mechanisms.

  5. Immobilization of sugars in supermacroporous cryogels for the purification of lectins by affinity chromatography.

    PubMed

    Gonçalves, Gabriel Ramos Ferreira; Gandolfi, Olga Reinert Ramos; Santos, Leandro Soares; Bonomo, Renata Cristina Ferreira; Veloso, Cristiane Martins; Veríssimo, Lizzy Ayra Alcântara; Fontan, Rafael da Costa Ilhéu

    2017-11-15

    Lectins are glycoproteins that bind to carbohydrates or glycoconjugates by specific interactions. The specificity of lectins to various carbohydrates is a determinant factor in the choice of ligand for the chromatographic matrix when using chromatography as a lectin purification technique. In this work, the immobilization of three different aminated carbohydrates on the surface of macroporous polymeric cryogels was evaluated. Carbohydrates were immobilized on cryogel surfaces via the glutaraldehyde method to create spacer arms, reducing steric hindrance. The immobilized N-acetyl-d-glucosamine and N-acetyl-d-mannosamine concentrations contained approximately 130mg of carbohydrate/g dehydrated cryogel, while the N-acetyl-d-galactosamine contained 105mg of carbohydrate/g dehydrated cryogel. Scanning electron microscopy showed that the physical structure and porosity of the chromatographic columns were not affected by the immobilization process, maintaining an elevated hydration capacity and the macroporous structure of the cryogels. Adsorption of concanavalin A on cryogels functionalized with N-acetyl-d-glucosamine (cryo-d-GlcNAc) was tested, as well as its reuse capability. After 5 cycles of use, cryo-d-GlcNAc was shown to be stable, with an adsorptive capacity of around 50mg/g. Carbohydrate immobilization in polyacrylamide cryogels was satisfactory, with promise for applications in lectin purification processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nanoindentation studies of paper

    Treesearch

    B.F. West; B.T. Hotle; J.E. Jakes; J.M. Considine; R.E. Rowlands; K.T. Turner

    2008-01-01

    Paper materials consist of a porous web of cellulose polymeric fibers held together by entanglement and fiber-to-fiber bonding. These materials usually contain lignin and hemicellulose carbohydrates remaining from the pulping process. Pulped fibers are a flattened ribbon shape on the order of 30 microns wide, 10 microns thick and from one to four mm long. Paper web...

  7. Formation of extracellular polymeric substances from acidogenic sludge in H2-producing process.

    PubMed

    Sheng, Guo-Ping; Yu, Han-Qing

    2007-02-01

    In this study, the formation of extracellular polymeric substances (EPS) and surface characteristics of an acidogenic sludge in anaerobic H(2)-producing process was investigated. Results show that carbohydrates, proteins, and humic substances were the dominant components in bound EPS (BEPS), while in soluble EPS (SEPS), carbohydrates were the main component. The total content of BEPS initially increased but then kept almost unchanged during fermentation from 25 to 35 h; after that, it slightly decreased. The total content of SEPS increased to 172.5 +/- 0.05 mg C g(-1) volatile suspended solid with the time that increased to 23.5 h, and then rapidly decreased until 43 h; thereafter, it kept almost unchanged. The SEPS had good correlations with the specific H(2) production rate, substrate degradation rate, and specific aqueous products formation rate, but the BEPS seemed to have no such correlations with these specific rates. Results also confirm that part of EPS could be utilized by the H(2)-producing sludge. As the substrate was in short supply, the EPS would be hydrolyzed to sever as carbon and energy source.

  8. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Wychen, Stefanie; Laurens, Lieve M. L.

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  9. Intact carbohydrate structures as part of the melanoidin skeleton.

    PubMed

    Cämmerer, Bettina; Jalyschko, Walentina; Kroh, Lothar W

    2002-03-27

    Model melanoidins from monomeric, oligomeric, and polymeric carbohydrates, and amino acids formed under aqueous as well as water-free reaction conditions, were submitted to acidic catalyzed hydrolysis. Their degradation products were detected qualitatively and quantitatively by HPTLC and HPLC-DAD. A considerable amount of monomer carbohydrates from hydrolysis of model melanoidins formed under water-free reaction conditions was detected. It can be seen clearly that the amount of carbohydrates released increased with increasing degree of polymerization of the carbohydrates used as starting material. In comparison, the hydrolysis of melanoidins formed in aqueous condition resulted in only a small glucose release. It seems that in the Maillard reaction under water-free conditions, a significant amount of di- and oligomer carbohydrates were incorporated into the melanoidin skeleton as complete oligomer with intact glycosidic bond, forming side chains at the melanoidin skeleton. Additional side chains could be formed by transglycosylation reactions. With increasing water content, hydrothermolytic as well as retro-aldol reactions of the starting carbonyl components became significant, and therefore the possibility of forming side chains decreased. The results are consistent with the postulated melanoidin structure being built up mainly from sugar degradation products, probably branched via amino compounds.

  10. Glycosylated polyacrylate nanoparticles by emulsion polymerization

    PubMed Central

    Abeylath, Sampath C.; Turos, Edward

    2007-01-01

    A selection of glycosylated polyacrylate nanoparticles has been prepared by radical-initiated emulsion polymerization in aqueous media. Using ethyl acrylate as a co-monomer, carbohydrate acrylates were incorporated into the poly(ethyl acrylate) framework to give stable emulsions of glyconanoparticles with an average particle size of around 40 nm. Using this technique a variety of glyconanoparticles were prepared from 3-O-acryloyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose, 1-O-acryloyl-2,3:5,6-di-O-isopropylidene-α-D-mannofuranose, 6-O-acryloyl-1,2:3,4-di-O-isopropylidene-α-D-galactopyranose, 2-N-acryloyl-1,3,4,6-tetra-O-acetyl-β-D-glucosamine, 5-O-acryloyl-2,3-isopropylidene-1-methoxy-β-D-ribofuranose and 4-N-acetyl-5’-O-acryloyl-2’,3’-O-isopropylidene cytidine. Scanning electron microscopy, dynamic light scattering and proton NMR analysis of the emulsions indicated essentially 100% incorporation of the carbohydrate acrylate monomer into the polymer with the exception of O-benzyl- and O-benzoyl-protected carbohydrate acrylates, which gave incomplete incorporation. Formation of larger glyconanoparticles of ~80nm with (unprotected) 3-O-acryloyl-D-glucose and 5-O-acryloyl-1-methoxy-β-D-ribofuranose revealed the influence of free hydroxyl groups in the monomer on the particle size during polymerization, a feature which is also apparently dependent on the amount of carbohydrate in the matrix. This methodology allows for a new, simple route to the synthesis of polymeric glyconanoparticles with potential applications in targeted drug delivery and materials development. PMID:18677404

  11. Synthetic carbohydrate: An aid to nutrition in the future

    NASA Technical Reports Server (NTRS)

    Berman, G. A. (Editor); Murashige, K. H. (Editor)

    1973-01-01

    The synthetic production of carbohydrate on a large scale is discussed. Three possible nonagricultural methods of making starch are presented in detail and discussed. The simplest of these, the hydrolysis of cellulose wastes to glucose followed by polymerization to starch, appears a reasonable and economic supplement to agriculture at the present time. The conversion of fossil fuels to starch was found to be not competitive with agriculture at the present time, but tractable enough to allow a reasonable plant design to be made. A reconstruction of the photosynthetic process using isolated enzyme systems proved technically much more difficult than either of the other two processes. Particular difficulties relate to the replacement of expensive energy carrying compounds, separation of similar materials, and processing of large reactant volumes. Problem areas were pinpointed, and technological progress necessary to permit such a system to become practical is described.

  12. Influence of glycosidic linkage on solution conformational entropy of oligosaccharides: Malto- vs. isomalto- and cello- vs. laminarioligosaccharides.

    PubMed

    Striegel, André M; Boone, Marcus A

    2011-04-01

    Carbohydrate flexibility can influence a variety of recognition, processing, and end-use properties, at both the polymeric and oligomeric levels. The influence of glycosidic linkage, in particular, on carbohydrate flexibility is manifested in properties such as bacterial selectivity, solution viscosity, and the ability to regulate the spread of disease. Here, we apply size-exclusion chromatography, an entropically controlled technique, to determine the solution conformational entropy (ΔS) of various oligosaccharide series. The aim of the present study is to highlight how, for a given anomeric configuration, glycosidic linkage affects ΔS, and to do so quantitatively as a function of degree of polymerization (DP). To this end, we compare ΔS values for DP 1-7 for malto- and isomaltooligosaccharides, and for DP 1-5 for cello- and laminarioligosaccharides. To do so, we realize previously unattainable separations of disaccharides via a strict size-exclusion mechanism. Also given here are the requirements for extending our method to other oligomers, as well as to biopolymers Copyright © 2010 Wiley Periodicals, Inc.

  13. Short communication: Development of a rapid laboratory method to polymerize lactose to nondigestible carbohydrates.

    PubMed

    Kuechel, A F; Schoenfuss, T C

    2018-04-01

    Nondigestible carbohydrates with a degree of polymerization between 3 and 10 (oligosaccharides) are commonly used as dietary fiber ingredients in the food industry, once they have been confirmed to have positive effects on human health by regulatory authorities. These carbohydrates are produced through chemical or enzymatic synthesis. Polylactose, a polymerization product of lactose and glucose, has been produced by reactive extrusion using a twin-screw extruder, with citric acid as the catalyst. Trials using powdered cheese whey permeate as the lactose source for this reaction were unsuccessful. The development of a laboratory method was necessary to investigate the effect of ingredients present in permeate powder that could be inhibiting polymerization. A Mars 6 Microwave Digestion System (CEM Corp., Matthews, NC) was used to heat and polymerize the sugars. The temperatures had to be lowered from extrusion conditions to produce a caramel-like product and not decompose the sugars. Small amounts of water had to be added to the reaction vessels to allow consistent heating of sugars between vessels. Elevated levels of water (22.86 and 28.57%, vol/wt) and calcium phosphate (0.928 and 1.856%, wt/wt) reduced the oligosaccharide yield in the laboratory method. Increasing the citric acid (catalyst) concentration increased the oligosaccharide yield for the pure sugar blend and when permeate powder was used. The utility of the laboratory method to predict oligosaccharide yields was confirmed during extrusion trials of permeate when this increased acid catalyst concentration resulted in similar oligosaccharide concentrations. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis.

    PubMed

    Kooy, Floor K; Ma, Muyuan; Beeftink, Hendrik H; Eggink, Gerrit; Tramper, Johannes; Boeriu, Carmen G

    2009-01-15

    Hyaluronan (HA) is a polysaccharide with high-potential medical applications, depending on the chain length and the chain length distribution. Special interest goes to homogeneous HA oligosaccharides, which can be enzymatically produced using Pasteurella multocida hyaluronan synthase (PmHAS). We have developed a sensitive, simple, and fast method, based on fluorophore-assisted carbohydrate electrophoresis (FACE), for characterization and quantification of polymerization products. A chromatographic pure fluorescent template was synthesized from HA tetrasaccharide (HA4) and 2-aminobenzoic acid. HA4-fluor and HA4 were used as template for PmHAS-mediated polymerization of nucleotide sugars. All products, fluorescent and nonfluorescent, were analyzed with gel electrophoresis and quantified using lane densitometry. Comparison of HA4- and HA4-fluor-derived polymers showed that the fluorophore did not negatively influence the PmHAS-mediated polymerization. Only even-numbered oligosaccharide products were observed using HA4-fluor or HA4 as template. The fluorophore intensity was linearly related to its concentration, and the limit of detection was determined to be 7.4pmol per product band. With this assay, we can now differentiate oligosaccharides of size range DP2 (degree of polymerization 2) to approximately DP400, monitor the progress of polymerization reactions, and measure subtle differences in polymerization rate. Quantifying polymerization products enables us to study the influence of experimental conditions on HA synthesis.

  15. Polymeric Selectin Ligands Mimicking Complex Carbohydrates: From Selectin Binders to Modifiers of Macrophage Migration.

    PubMed

    Moog, Kai E; Barz, Matthias; Bartneck, Matthias; Beceren-Braun, Figen; Mohr, Nicole; Wu, Zhuojun; Braun, Lydia; Dernedde, Jens; Liehn, Elisa A; Tacke, Frank; Lammers, Twan; Kunz, Horst; Zentel, Rudolf

    2017-01-24

    Novel polymeric cell adhesion inhibitors were developed in which the selectin tetrasaccharide sialyl-Lewis X (SLe X ) is multivalently presented on a biocompatible poly(2-hydroxypropyl)methacrylamide (PHPMA) backbone either alone (P1) or in combination with O-sulfated tyramine side chains (P2). For comparison, corresponding polymeric glycomimetics were prepared in which the crucial "single carbohydrate" substructures fucose, galactose, and sialic acid side chains were randomly linked to the PHPMA backbone (P3 or P4 (O-sulfated tyramine)). All polymers have an identical degree of polymerization, as they are derived from the same precursor polymer. Binding assays to selectins, to activated endothelial cells, and to macrophages show that polyHPMA with SLe X is an excellent binder to E-, L-, and P-selectins. However, mimetic P4 can also achieve close to comparable binding affinities in in vitro measurements and surprisingly, it also significantly inhibits the migration of macrophages; this provides new perspectives for the therapy of severe inflammatory diseases. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A facile molten-salt route to graphene synthesis.

    PubMed

    Liu, Xiaofeng; Giordano, Cristina; Antonietti, Markus

    2014-01-15

    Efficient synthetic routes are continuously pursued for graphene in order to implement its applications in different areas. However, direct conversion of simple monomers to graphene through polymerization in a scalable manner remains a major challenge for chemists. Herein, a molten-salt (MS) route for the synthesis of carbon nanostructures and graphene by controlled carbonization of glucose in molten metal chloride is reported. In this process, carbohydrate undergoes polymerization in the presence of strongly interacting ionic species, which leads to nanoporous carbon with amorphous nature and adjustable pore size. At a low precursor concentration, the process converts the sugar molecules (glucose) to rather pure few-layer graphenes. The MS-derived graphenes are strongly hydrophobic and exhibit remarkable selectivity and capacity for absorption of organics. The methodology described may open up a new avenue towards the synthesis and manipulation of carbon materials in liquid media. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A novel approach for the quantitation of carbohydrates in mash, wort, and beer with RP-HPLC using 1-naphthylamine for precolumn derivatization.

    PubMed

    Rakete, Stefan; Glomb, Marcus A

    2013-04-24

    A novel universal method for the determination of reducing mono-, di-, and oligosaccharides in complex matrices on RP-HPLC using 1-naphthylamine for precolumn derivatization with sodium cyanoborhydride was established to study changes in the carbohydrate profile during beer brewing. Fluorescence and mass spectrometric detection enabled very sensitive analyses of beer-relevant carbohydrates. Mass spectrometry additionally allowed the identification of the molecular weight and thereby the degree of polymerization of unknown carbohydrates. Thus, carbohydrates with up to 16 glucose units were detected. Comparison demonstrated that the novel method was superior to fluorophore-assisted carbohydrate electrophoresis (FACE). The results proved the HPLC method clearly to be more powerful in regard to sensitivity and resolution. Analogous to FACE, this method was designated fluorophore-assisted carbohydrate HPLC (FAC-HPLC).

  18. Biosorption of Cadmium by Non-Toxic Extracellular Polymeric Substances (EPS) Synthesized by Bacteria from Marine Intertidal Biofilms

    PubMed Central

    Camacho-Chab, Juan Carlos; Chan-Bacab, Manuel Jesús; Aguila-Ramírez, Ruth Noemí; Bartolo-Pérez, Pascual; Tabasco-Novelo, Carolina; Gaylarde, Christine; Ortega-Morales, Benjamín Otto

    2018-01-01

    Cadmium is a major heavy metal found in polluted aquatic environments, mainly derived from industrial production processes. We evaluated the biosorption of solubilized Cd2+ using the extracellular polymeric substances (EPS) produced by Bacillus sp. MC3B-22 and Microbacterium sp. MC3B-10 (Microbactan); these bacteria were originally isolated from intertidal biofilms off the coast of Campeche, Mexico. EPS were incubated with different concentrations of cadmium in ultrapure water. Residual Cd2+ concentrations were determined by Inductive Coupled Plasma-Optic Emission Spectrometry and the maximum sorption capacity (Qmax) was calculated according to the Langmuir model. EPS were characterized by X-ray photoelectron spectroscopy (XPS) before and after sorption. The Qmax of Cd2+ was 97 mg g−1 for Microbactan and 141 mg g−1 for MC3B-22 EPS, these adsorption levels being significantly higher than previously reported for other microbial EPS. In addition, XPS analysis revealed changes in structure of EPS after biosorption and showed that amino functional groups contributed to the binding of Cd2+, unlike other studies that show the carbohydrate fraction is responsible for this activity. This work expands the current view of bacterial species capable of synthesizing EPS with biosorbent potential for cadmium and provides evidence that different chemical moieties, other than carbohydrates, participate in this process. PMID:29439486

  19. Clustered carbohydrates as a target for natural killer cells: a model system.

    PubMed

    Kovalenko, Elena I; Abakushina, Elena; Telford, William; Kapoor, Veena; Korchagina, Elena; Khaidukov, Sergei; Molotkovskaya, Irina; Sapozhnikov, Alexander; Vlaskin, Pavel; Bovin, Nicolai

    2007-03-01

    Membrane-associated oligosaccharides are known to take part in interactions between natural killer (NK) cells and their targets and modulate NK cell activity. A model system was therefore developed using synthetic glycoconjugates as tools to modify the carbohydrate pattern on NK target cell surfaces. NK cells were then assessed for function in response to synthetic glycoconjugates, using both cytolysis-associated caspase 6 activation measured by flow cytometry and IFN-gamma production. Lipophilic neoglycoconjugates were synthesized to provide their easy incorporation into the target cell membranes and to make carbohydrate residues available for cell-cell interactions. While incorporation was successful based on fluorescence monitoring, glycoconjugate incorporation did not evoke artifactual changes in surface antigen expression, and had no negative effect on cell viability. Glycoconjugates contained Le(x), sulfated Le(x), and Le(y) sharing the common structure motif trisaccharide Le(x) were revealed to enhance cytotoxicity mediated specifically by CD16 +CD56+NK cells. The glycoconjugate effects were dependent on saccharide presentation in a polymeric form. Only polymeric, or clustered, but not monomeric glycoconjugates resulted in alteration of cytotoxicity in our system, suggesting that appropriate presentation is critical for carbohydrate recognition and subsequent biological effects.

  20. Analysis of Prebiotic Oligosaccharides

    NASA Astrophysics Data System (ADS)

    Sanz, M. L.; Ruiz-Matute, A. I.; Corzo, N.; Martínez-Castro, I.

    Carbohydrates and more specifically prebiotics, are complex mixtures of isomers with different degrees of polymerization (DP), monosaccharide units and/or glycosidic linkages. Many efforts are focused on the search for new products and the determination of their biological activity. However, the study of their chemical structure is fundamental to both acquire a basic knowledge of the carbohydrate and to increase the understanding of the mechanisms for their metabolic effect.

  1. Static adsorptive fouling of extracellular polymeric substances with different membrane materials.

    PubMed

    Su, Xinying; Tian, Yu; Zuo, Wei; Zhang, Jun; Li, Hui; Pan, Xiaoyue

    2014-03-01

    Adsorptive fouling of microbial extracellular polymeric substances (EPS) greatly influences the fouling behavior and membrane characteristics in a membrane bioreactor (MBR). In this study, adsorptive fouling of the EPS on different membrane materials was compared and adsorptive mechanism between membranes and EPS was investigated by thermodynamic analysis. The results suggested that both the absolute and relative changes of hydraulic resistances should be considered to evaluate fouling of membranes with different materials, and Sips isotherm was the most suitable model to describe the EPS carbohydrate and protein adsorptions on membranes. Thermodynamic analysis showed that both EPS carbohydrate and protein adsorptions were spontaneous (ΔrG(θ) < 0), endothermic (ΔrH(θ) > 0), and entropy driven (ΔrS(θ) > 0). Decreasing ΔrG(θ) values with temperature suggested that EPS adsorptive fouling can be limited by reducing temperature. In addition, physisorption processes and hydrogen bonding interactions between EPS and membranes might play a relatively major role in the adsorption mechanism of EPS on the membrane surface. Atomic force microscopy (AFM) and contact angle analysis confirmed that the adsorptive fouling modified the membrane surface, making the membrane surface more heterogeneous and more hydrophobic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Technology Transfer of Biopolymer Soil Amendment for Rapid Revegetation and Erosion Control at Fort A. P. Hill, Virginia

    DTIC Science & Technology

    2016-05-01

    consisting of a polysaccharide polymeric material, a natural product of plant/soil rhyzobial microbial activity, was demonstrated to enhance site...critical concern of the modern Army and the Army engineer. A unique soil additive consisting of a polysaccharide polymeric material, a natural product of... polysaccharide secreted by Rhizobium leguminosarum var. phaseoli CIAT 899. Carbohydrate Research 204: 103- 107. Kochian, L.V. 1995. Cellular mechanisms of

  3. Photonic crystal borax competitive binding carbohydrate sensing motif†

    PubMed Central

    Cui, Qingzhou; Muscatello, Michelle M. Ward; Asher, Sanford A.

    2009-01-01

    We developed a photonic crystal sensing method for diol containing species such as carbohydrates based on a poly(vinyl alcohol) (PVA) hydrogel containing an embedded crystalline colloidal array (CCA). The polymerized CCA (PCCA) diffracts visible light. We show that in the presence of borax the diffraction wavelength shifts as the concentration of glucose changes. The diffraction shifts result from the competitive binding of glucose to borate, which reduces the concentration of borate bound to the PVA diols. PMID:19381378

  4. Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): inhibitory activity of proanthocyanidins against glycolysis enzymes.

    PubMed

    Li, Qian; Chen, Jun; Li, Ti; Liu, Chengmei; Zhai, Yuxin; McClements, David Julian; Liu, Jiyan

    2015-12-01

    Bioactive proanthocyanidins were isolated from the peel of Choerospondias axillaris fruit, which is a waste product of the food processing industry. Compositional analysis indicated that the proanthocyanidins had extension units mainly consisting of epicatechin gallate or epicatechin, and terminal units mainly consisting of catechin. Numerous polymeric forms of the molecules were detected, including monomers, dimers, and trimers. Certain fractions exhibited strong α-amylase or α-glucosidase inhibition in a dose-dependent manner. Furthermore, their inhibitory activities depended on their degree of polymerization and galloylation. For example, the most bioactive fraction had α-amylase and α-glucosidase inhibitory activities (IC50 values) of 541 and 3.1 μg mL(-1), respectively. This study demonstrates that proanthocyanidins from C. axillaris peels can inhibit carbohydrate digestive enzymes in vitro and may therefore serve as antidiabetic ingredients in functional or medical foods.

  5. Poly-amido-saccharides: Synthesis via Anionic Polymerization of a β-Lactam Sugar Monomer

    PubMed Central

    Dane, Eric L.; Grinstaff, Mark W.

    2013-01-01

    Chiral poly-amido-saccharides (PASs) with a defined molecular weight and narrow polydispersity are synthesized using an anionic ring-opening polymerization of a β-lactam sugar monomer. The PASs have a previously unreported main chain structure that is composed of pyranose rings linked through the 1- and 2-positions by an amide bond with α-stereochemistry. The monomer is synthesized in one-step from benzyl-protected d-glucal and polymerized using mild reaction conditions to give degrees of polymerization ranging from 25 to >150 in high yield. Computational modeling reveals how the monomer’s structure and steric bulk affect the thermodynamics and kinetics of polymerization. Protected and deprotected polymers and model compounds are characterized using a variety of methods (NMR, GPC, IR, DLS, etc.). Reductive debenzylation provides the deprotected, hydrophilic polymers in high yield. Based on circular dichroism, the deprotected polymers possess a regular secondary structure in aqueous solution, which agrees favorably with the prediction of a helical structure using molecular modeling. Furthermore, we provide evidence suggesting that the polymers bind the lectin concanavalin A at the same site as natural carbohydrates, showing the potential of these polymers to mimic natural polysaccharides. PASs offer the advantages associated with synthetic polymers, such as greater control over structure and derivitization, and less batch-to-batch variation. At the same time, they preserve many of the structural features of natural polysaccharides, such as a stereochemically regular, rigid pyranose backbone, that make natural carbohydrate polymers important materials both for their unique properties and useful applications. PMID:22937875

  6. Synthesis and emulsifying properties of carbohydrate fatty acid esters produced from Agave tequilana fructans by enzymatic acylation.

    PubMed

    Casas-Godoy, Leticia; Arrizon, Javier; Arrieta-Baez, Daniel; Plou, Francisco J; Sandoval, Georgina

    2016-08-01

    Carbohydrate fatty acid esters are non-ionic surfactants with a broad spectrum of applications. These molecules are generally synthesized using short carbohydrates or linear fructans; however in this research carbohydrate fatty acid esters were produced for the first time with branched fructans from Agave tequilana. Using immobilized lipases we successfully acylated A. tequilana fructans with vinyl laurate, obtaining products with different degrees of polymerization (DP). Lipozyme 435 was the most efficient lipase to catalyze the transesterification reaction. HPLC and ESI-MS analysis proved the presence of a mixture of acylated products as a result of the chemical complexity of fructans in the A. tequilana. The ESI-MS spectra showed a molecular mass shift between 183 and 366g/mol for fructooligosaccharides with a DP lower than 6, which indicated the presence of Agave fructans that had been mono- and diacylated with lauric acid. The carbohydrate fatty acid esters (CFAE) obtained showed good emulsifying properties in W/O emulsions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Energetics and mechanisms for the unimolecular dissociation of protonated trioses and relationship to proton-mediated formaldehyde polymerization to carbohydrates in interstellar environments.

    PubMed

    Simakov, Anton; Sekiguchi, Osamu; Bunkan, Arne Joakim C; Uggerud, Einar

    2011-12-28

    We report the unimolecular decomposition of protonated glyceraldehyde, [HOCH(2)CH(OH)CHO]H(+), and protonated dihydroxyacetone, [HOCH(2)C(O)CH(2)OH]H(+). On the basis of mass spectrometric experiments and computational quantum chemistry, we have found that these isomeric ions interconvert freely at energies below that required for their unimolecular decompositions. The losses of formaldehyde and water (the latter also followed by CO loss) are the dominating processes, with formaldehyde loss having the lower energetic threshold. The reverse of the formaldehyde loss, namely, the addition of formaldehyde to protonated glycolaldehyde, appears to be an inefficient reaction at low temperature and pressure in the gas phase, leading to dissociation products. The relevance of these findings to interstellar chemistry and prebiotic chemistry is discussed, and it is concluded that the suggestion made in the literature that successive addition of formaldehyde by proton-assisted reactions should account for interstellar carbohydrates most likely is incorrect. © 2011 American Chemical Society

  8. Performance and fouling characteristics of different pore-sized submerged ceramic membrane bioreactors (SCMBR).

    PubMed

    Jin, Le; Ng, How Yong; Ong, Say Leong

    2009-01-01

    The membrane bioreactor (MBR), a combination of activated sludge process and the membrane separation system, has been widely used in wastewater treatment. However, 90% of MBR reported were employing polymeric membranes. The usage of ceramic membranes in MBR is quite rare. Four submerged ceramic membrane bioreactors (SCMBRs) with different membrane pore size were used in this study to treat sewage. The results showed that the desirable carbonaceous removal of 95% and ammonia nitrogen removal of 98% were obtained for all the SCMBRs. It was also showed that the ceramic membranes were able to reject some portions of the protein and carbohydrate, whereby the carbohydrate rejection rate was much higher than that of protein. Membrane pore size did not significantly affect the COD and TOC removal efficiencies, the composition of EPS and SMP or the membrane rejection rate, although slight differences were observed. The SCMBR with the biggest membrane pore size fouled fastest, and membrane pore size was a main contributor for the different fouling potential observed.

  9. Superresolution Imaging Captures Carbohydrate Utilization Dynamics in Human Gut Symbionts

    PubMed Central

    Karunatilaka, Krishanthi S.; Cameron, Elizabeth A.; Martens, Eric C.; Koropatkin, Nicole M.

    2014-01-01

    ABSTRACT Gut microbes play a key role in human health and nutrition by catabolizing a wide variety of glycans via enzymatic activities that are not encoded in the human genome. The ability to recognize and process carbohydrates strongly influences the structure of the gut microbial community. While the effects of diet on the microbiota are well documented, little is known about the molecular processes driving metabolism. To provide mechanistic insight into carbohydrate catabolism in gut symbionts, we studied starch processing in real time in the model Bacteroides thetaiotaomicron starch utilization system (Sus) by single-molecule fluorescence. Although previous studies have explored Sus protein structure and function, the transient interactions, assembly, and collaboration of these outer membrane proteins have not yet been elucidated in live cells. Our live-cell superresolution imaging reveals that the polymeric starch substrate dynamically recruits Sus proteins, serving as an external scaffold for bacterial membrane assembly of the Sus complex, which may promote efficient capturing and degradation of starch. Furthermore, by simultaneously localizing multiple Sus outer membrane proteins on the B. thetaiotaomicron cell surface, we have characterized the dynamics and stoichiometry of starch-induced Sus complex assembly on the molecular scale. Finally, based on Sus protein knockout strains, we have discerned the mechanism of starch-induced Sus complex assembly in live anaerobic cells with nanometer-scale resolution. Our insights into the starch-induced outer membrane protein assembly central to this conserved nutrient uptake mechanism pave the way for the development of dietary or pharmaceutical therapies to control Bacteroidetes in the intestinal tract to enhance human health and treat disease. PMID:25389179

  10. The effect of solids retention times on the characterization of extracellular polymeric substances and soluble microbial products in a submerged membrane bioreactor.

    PubMed

    Duan, Liang; Song, Yonghui; Yu, Huibin; Xia, Siqing; Hermanowicz, Slawomir W

    2014-07-01

    In this study, the effect of solids retention times (SRTs) on extracellular polymeric substances (EPS) and soluble microbial products (SMPs) were investigated in a membrane bioreactor (MBR) at SRTs of 10, 5 and 3 days. The results showed that more carbohydrates and proteins were accumulated at short SRT, which can due to the higher biomass activity in the reactor. The molecular weight (MW) distribution analysis suggested that macromolecules (MW>30 kDa) and small molecules (MW<1 kDa) were the dominant fraction of EPS and SMP, respectively. The reactor at shorter SRT had more small molecules and less macromolecules of carbohydrates. The MW distribution of total organic carbon (TOC) suggested that other organic moieties were exuded by microbes into the solution. The shorter SRT had more undefined microbial by-product-like substances and different O − H bonds in hydroxyl functional groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    PubMed

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  12. Preparation of water-soluble glycoconjugated poly(acrylamide) for NMR analyses of carbohydrate-carbohydrate interactions

    NASA Astrophysics Data System (ADS)

    Xuan, Trinh Anh; Trung, Phan Nghia; Dinh, Bui Long; Yamaguchi, Takumi; Kato, Koichi

    2014-05-01

    Oligosaccharide chains of glycoconjugates are important biopolymers not only as carriers of information in cell-cell interactions but also as markers of cellular differentiation, aging, and malignant alteration. Molecular interactions where carbohydrates are involved are usually considered as weak interactions, so the study and evaluation of these interactions is still in its infancy. The evidences and studies of carbohydrate-carbohydrate interactions (CCI) will be confirming the importance of this mechanism for specific cell adhesion and communication. Their development will go hand in hand with the development of new and more sensitive techniques to study weak interactions. Recently, synthetic glycopolymers with functions similar to those of such natural carbohydrates and with specific pendant saccharide moieties were used as a solution for enhancement CCI when forming polyvalent interactions. Carbohydrates are ubiquitous components of cell wall membranes and occur as glycolipids, glycoproteins, proteoglycans, and capsular polysaccharides. As such they can participate in forefront intramolecular and intracellular events. Apart from their recognized roles in the physicochemical properties of glycolipids and glycoproteins. In this study, we designed trisaccharide monomers for free radical polymerization. Subsequently, the trisaccharide unit for chemical conjugation was synthesized from galactosamine in good yield. For further NMR analyses of CCI, glycopolymers composed of these sugar derivatives will be provided.

  13. Carbohydrate terminology and classification.

    PubMed

    Cummings, J H; Stephen, A M

    2007-12-01

    Dietary carbohydrates are a group of chemically defined substances with a range of physical and physiological properties and health benefits. As with other macronutrients, the primary classification of dietary carbohydrate is based on chemistry, that is character of individual monomers, degree of polymerization (DP) and type of linkage (alpha or beta), as agreed at the Food and Agriculture Organization/World Health Organization Expert Consultation in 1997. This divides carbohydrates into three main groups, sugars (DP 1-2), oligosaccharides (short-chain carbohydrates) (DP 3-9) and polysaccharides (DP> or =10). Within this classification, a number of terms are used such as mono- and disaccharides, polyols, oligosaccharides, starch, modified starch, non-starch polysaccharides, total carbohydrate, sugars, etc. While effects of carbohydrates are ultimately related to their primary chemistry, they are modified by their physical properties. These include water solubility, hydration, gel formation, crystalline state, association with other molecules such as protein, lipid and divalent cations and aggregation into complex structures in cell walls and other specialized plant tissues. A classification based on chemistry is essential for a system of measurement, predication of properties and estimation of intakes, but does not allow a simple translation into nutritional effects since each class of carbohydrate has overlapping physiological properties and effects on health. This dichotomy has led to the use of a number of terms to describe carbohydrate in foods, for example intrinsic and extrinsic sugars, prebiotic, resistant starch, dietary fibre, available and unavailable carbohydrate, complex carbohydrate, glycaemic and whole grain. This paper reviews these terms and suggests that some are more useful than others. A clearer understanding of what is meant by any particular word used to describe carbohydrate is essential to progress in translating the growing knowledge of the physiological properties of carbohydrate into public health messages.

  14. Colorimetric measurement of carbohydrates in biological wastewater treatment systems: A critical evaluation.

    PubMed

    Le, Chencheng; Stuckey, David C

    2016-05-01

    Four laboratory preparations and three commercially available assay kits were tested on the same carbohydrate samples with the addition of 14 different interfering solutes typically found in wastewater treatment plants. This work shows that a wide variety of solutes can interfere with these assays. In addition, a comparative study on the use of these assays with different carbohydrate samples was also carried out, and the metachromatic response was clearly influenced by variation in sample composition. The carbohydrate content in the supernatant of a submerged anaerobic membrane bioreactor (SAMBR) was also measured using these assays, and the amount in the different supernatant samples, with and without a standard addition of glucose to the samples, showed substantial differences. We concluded that the carbohydrates present in wastewater measured using these colorimetric methods could be seriously under- or over-estimated. A new analytical method needs to be developed in order to better understand the biological transformations occurring in anaerobic digestion that leads to the production of soluble microbial products (SMPs) and extracellular polymeric substance (EPS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. The role of ependymin in the development of long lasting synaptic changes.

    PubMed

    Shashoua, V E

    1.) Three types of training experiments (a complex motor task, avoidance conditioning and classical conditioning) in the goldfish and one in the mouse (T-maze learning) indicate that the brain extracellular glycoprotein (ependymin) has a role in the consolidation process of long-term memory formation. 2.) Direct ELISA measures of the concentration of ependymin in the brain extracellular fluid (ECF) indicate that its level decreases after goldfish learn to associate a light stimulus (cs) with the subsequent arrival of a shock (US): paired CS-US gave changes whereas an unpaired presentation of CS-US gave no changes in comparison to unstimulated controls. 3.) Ependymin is released into ECF and CSF as mixtures of three types of disulfide-linked dimers of two acidic polypeptide chains (M. W. 37 kDa and 31 kDa). It contains 10% carbohydrate as an N-linked glycan. 4.) Ependymin has the capacity to polymerize in response to events that deplete Ca2+ from the brain extracellular environment. A molecular hypothesis relating polymerization properties to the process of formation of long-lasting synaptic changes is proposed. 5.) Investigations of the pattern of regeneration of goldfish optic nerve and the mechanisms of long-term potentiation (LTP) of rat brain hippocampal slices suggest that ependymin has a role in the formation of long-lasting synaptic changes. The E.M. data show that polymerized products which stain with anti-ependymin sera accumulate at synapses and in new spines after LTP.

  16. Application of controlled radical polymerization (CRP) in the design of functional biomedical architectures

    NASA Astrophysics Data System (ADS)

    Siegwart, Daniel John

    In this thesis, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization were utilized in the design of synthetic polymers to create tissue engineering scaffolds and drug delivery systems with improved control over structure and functionality. Thermo-sensitive injectable hydrogels based on poly(NIPAAm) with degradable ester units within the polymer backbone and at the cross-linking sites were prepared using ATRP and RAFT. Solvent induced morphologies of poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) triblock copolymers synthesized by ATRP were described. A micellar structure, composed of a hydrophobic PMMA core and a PEO shell was constructed for delivery of hydrophobic drugs. ATRP was carried out in inverse miniemulsion to prepare well defined functional nanogels that were capable of entrapping and releasing various molecules (Doxorubicin, carbohydrate-based drugs, fluorophores, and gold nanoparticles). The results demonstrated that nanogels prepared by ATRP in inverse miniemulsion could be internalized into cells via clathrin-mediated endocytosis. Nanogels functionalized with integrin-binding peptides increased cellular uptake. A process called Atom Transfer Radical Coupling (ATRC) was also described, which illustrated the power of functionality in ATRP. Finally, linear polymers and cross-linked nanogels were synthesized by ATRP and functionalized with biotin, pyrene, and peptide sequences, tying together the overall themes of structural control and functionality.

  17. Synthesis of highly water-soluble fluorescent conjugated glycopoly(p-phenylene)s for lectin and Escherichia coli.

    PubMed

    Xue, Cuihua; Jog, Sonali P; Murthy, Pushpalatha; Liu, Haiying

    2006-09-01

    Two facile, convenient, and versatile synthetic approaches are used to covalently attach carbohydrate residues to conjugated poly(p-phenylene)s (PPPs) for highly water-soluble PPPs bearing alpha-mannopyranosyl and beta-glucopyranosyl pendants (polymers A and B), which highly fluoresce in phosphate buffer (pH 7.0). The post-polymerization functionalization approach is to treat bromo-bearing PPP (polymer 1) with 1-thiolethyl-alpha-D-mannose tetraacetate or 1-thiol-beta-D-glucose tetraacetate in THF solution in the presence of K(2)CO(3) at room temperature through formation of thioether bridges, affording polymer 2a or 2b. The prepolymerization functionalization approach is to polymerize a well-defined sugar-carrying monomer, affording polymer 2a. Polymers 2a and 2b were deacetylated under Zemplén conditions in methanol and methylene chloride containing sodium methoxide, affording polymers A and B, respectively. The multivalent display of carbohydrates on the fluorescent conjugated glycopolymer overcomes the characteristic low binding affinity of the individual carbohydrates to their receptor proteins. Titration of concanavalin A (Con A) to alpha-mannose-bearing polymer A resulted in significant fluorescent quenching of the polymer with Stern-Volmer quenching constant of 4.5 x 10(7). Incubation of polymer A with Escherichia coli (E. coli) lead to formation of fluorescently stained bacterial clusters. Beta-glucose-bearing polymer B displayed no response to Con A and E. coli.

  18. Manufacture of Prebiotics from Biomass Sources

    NASA Astrophysics Data System (ADS)

    Gullón, Patricia; Gullón, Beatriz; Moure, Andrés; Alonso, José Luis; Domínguez, Herminia; Parajó, Juan Carlos

    Biomass from plant material is the most abundant and widespread renewable raw material for sustainable development, and can be employed as a source of polymeric and oligomeric carbohydrates. When ingested as a part of the diet, some biomass polysaccharides and/or their oligomeric hydrolysis products are selectively fermented in the colon, causing prebiotic effects.

  19. Graft copolymers of ethyl methacrylate on waxy maize starch derivatives as novel excipients for matrix tablets: physicochemical and technological characterisation.

    PubMed

    Marinich, J A; Ferrero, C; Jiménez-Castellanos, M R

    2009-05-01

    Nowadays, graft copolymers are being used as an interesting option when developing a direct compression excipient for controlled release matrix tablets. New graft copolymers of ethyl methacrylate (EMA) on waxy maize starch (MS) and hydroxypropylstarch (MHS) were synthesised by free radical polymerization and alternatively dried in a vacuum oven (OD) or freeze-dried (FD). This paper evaluates the performance of these new macromolecules and discusses the effect of the carbohydrate nature and drying process on their physicochemical and technological properties. Grafting of EMA on the carbohydrate backbone was confirmed by IR and NMR spectroscopy, and the grafting yields revealed that graft copolymers present mainly a hydrophobic character. The graft copolymerization also leads to more amorphous materials with larger particle size and lower apparent density and water content than carbohydrates (MS, MHS). All the products show a lack of flow, except MHSEMA derivatives. MSEMA copolymers underwent much plastic flow and less elastic recovery than MHSEMA copolymers. Concerning the effect of drying method, FD derivatives were characterised by higher plastic deformation and less elasticity than OD derivatives. Tablets obtained from graft copolymers showed higher crushing strength and disintegration time than tablets obtained from raw starches. This behaviour suggests that these copolymers could be used as excipients in matrix tablets obtained by direct compression and with a potential use in controlled release.

  20. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil.

    PubMed

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose.

  1. Changes in inulin and soluble sugar concentration in artichokes (Cynara scolymus L.) during storage.

    PubMed

    Leroy, Gaëlle; Grongnet, Jean François; Mabeau, Serge; Corre, Daniel Le; Baty-Julien, Céline

    2010-05-01

    The artichoke (Cynara scolymus L.) accumulates about 50-70 g kg(-1) of its fresh weight as inulin-type fructan. Inulin fermentation increases gas production and thereby provokes intestinal discomfort in some people. The present research focuses on the changes in carbohydrate composition occurring in artichoke heads during storage under different conditions (18 degrees C, 4 degrees C and 4 degrees C under polypropylene film packing). Carbohydrate content and composition were determined by anion-exchange high-performance liquid chromatography with pulsed amperometric detection. Storage time caused a decrease in inulin content and an average degree of polymerization, accompanied by an increase of free fructose and sucrose due to depolymerization of inulin. Higher-temperature storage and storage without packing induce strong carbohydrate changes. Thereby, eating stored artichoke leads to consumption of an inulin quantity that does not provoke unwanted symptoms related to gas production but sufficient to have a prebiotic effect.

  2. Prevention of peritoneal adhesions using polymeric rheological blends.

    PubMed

    Hoare, Todd; Yeo, Yoon; Bellas, Evangelia; Bruggeman, Joost P; Kohane, Daniel S

    2014-03-01

    The effectiveness of rheological blends of high molecular weight hyaluronic acid (HA) and low molecular weight hydroxypropyl methylcellulose (HPMC) in the prevention of peritoneal adhesions post-surgery is demonstrated. The physical mixture of the two carbohydrates increased the dwell time in the peritoneum while significantly improving the injectability of the polymer compared with HA alone. HA-HPMC treatment decreased the total adhesion area by ∼ 70% relative to a saline control or no treatment in a repeated cecal injury model in the rabbit. No significant cytotoxicity and minimal inflammation were associated with the blend. Furthermore, no chemical or physical processing was required prior to their use beyond simple mixing. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Composition of Extracellular Polymeric Substances (EPS) produced by Flavobacterium columnare isolated from tropical fish in Brazil

    PubMed Central

    de Alexandre Sebastião, Fernanda; Pilarski, Fabiana; Lemos, Manoel Victor Franco

    2013-01-01

    Thirty nine isolates of Flavobacterium columnare from Brazilian fish farms had their carbohydrate composition of EPS evaluated by high efficiency liquid chromatography, using the phenol-sulfuric acid method of EPS. The occurrence of capsules on F. columnare cells was not directly related to biofilm formation, and the predominant monosaccharide is glucose. PMID:24516426

  4. High monomeric sugar yields from enzymatic hydrolysis of soybean meal and effects of mild heat pretreatments with chelators.

    PubMed

    Islam, S M Mahfuzul; Loman, Abdullah A; Ju, Lu-Kwang

    2018-05-01

    Defatted soybean meal has 30-35% oligo-/polymeric carbohydrates and approximately 50% proteins. Enzymatic carbohydrate monomerization enables easy separation to enrich protein content, reduces indigestibility concerns, and facilitates use of carbohydrate as fermentation feedstock. Among soybean carbohydrates, pectin and glucan are more recalcitrant to hydrolyze. To destabilize Ca 2+ -bridged junctures in pectin, effects of 3 chelators ethylenediaminetetraacetic acid (EDTA), sodium hexametaphosphate (HMP) and citric acid under 2-h 90 °C pretreatments were investigated here. Citric acid was the most effective while EDTA decreased enzymatic hydrolysis. In a 3-factor 2-level factorial study, heat (90 °C, 2 h) and citric acid (10 g/L) pretreatments and cellulase supplementation (10 FPU/g) were found to increase yields of all monosaccharides, to 86.8 ± 5.2% glucose, 98.1 ± 1.6% xylose, 87.5 ± 5.2% galactose, 83.6 ± 1.6% arabinose, and 91.4 ± 3.1% fructose + mannose. The largest percentage improvements were for arabinose (382%), mannose (113%) and glucose (51%). Achieving high monosaccharide yields greatly increases value of soybean carbohydrate as fermentation feedstock. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Study on substrate metabolism process of saline waste sludge and its biological hydrogen production potential.

    PubMed

    Zhang, Zengshuai; Guo, Liang; Li, Qianqian; Zhao, Yangguo; Gao, Mengchun; She, Zonglian

    2017-07-01

    With the increasing of high saline waste sludge production, the treatment and utilization of saline waste sludge attracted more and more attention. In this study, the biological hydrogen production from saline waste sludge after heating pretreatment was studied. The substrate metabolism process at different salinity condition was analyzed by the changes of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS), and dissolved organic matters (DOM). The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate the effect of salinity on EPS and DOM composition during hydrogen fermentation. The highest hydrogen yield of 23.6 mL H 2 /g VSS and hydrogen content of 77.6% were obtained at 0.0% salinity condition. The salinity could influence the hydrogen production and substrate metabolism of waste sludge.

  6. Intake of indigestible carbohydrates influences IgA response and polymeric Ig receptor expression in the rat submandibular gland.

    PubMed

    Yamamoto, Yuko; To, Masahiro; Hayashi, Takashi; Shimizu, Tomoko; Kamata, Yohei; Saruta, Juri; Takahashi, Toru; Tsukinoki, Keiichi

    2015-06-28

    Secretory IgA in the saliva is essential for protection from mucosally transmitted pathogens and maintaining homeostasis at mucosal surfaces of the oral cavity. Expression of submandibular gland polymeric Ig receptor (pIgR) is essential for IgA secretion. In the present study, we investigated the influence of indigestible carbohydrates on IgA production in the salivary gland and saliva. Five-week-old rats were fed a fibre-free diet (control), or a diet with 5 % (w/w) fructo-oligosaccharide (FOS) or a combination of 2·5 % (w/w) polydextrose (PDX) and 2·5 % (w/w) lactitol for 21-d. IgA concentrations in the caecal digesta, submandibular gland tissue, and saliva in the FOS and PDX+lactitol diet groups were significantly higher than those in the control group (P< 0·05). The increase in IgA in the submandibular gland tissue was confirmed using immunohistochemical analysis. However, the IgA concentrations of serum did not differ between the FOS or PDX+lactitol groups and the control group (P= 0·5). In the FOS and PDX+lactitol groups, the pIgR mRNA (pIgR/β-actin) expression level in the submandibular gland tissue was significantly higher than that in the control group (P< 0·05). The present study suggests that indigestible carbohydrates play an important role in the increase in IgA concentrations in the submandibular gland tissue, saliva, and caecal digesta.

  7. Effect of soil salinity on fructan content and polymerization degree in the sprouting tubers of Jerusalem artichoke (Helianthus tuberosus L.).

    PubMed

    Luo, Rui; Song, Xiaoyang; Li, Ziwei; Zhang, Aiqin; Yan, Xiufeng; Pang, Qiuying

    2018-04-01

    In addition to their role as reserve carbohydrates, fructans have been recognized as compounds that are protective against adverse environments. The aim of this study was to identify changes in the content and the degree of polymerization (DP) of fructan in sprouting tubers of Jerusalem artichoke under salt stress. Fructan was extracted from tubers at 1, 3, 5, and 7 days after planting in sandy loam soil irrigated with NaCl solution. Fructan accumulation and polymerization and the expression of genes encoding enzymes for fructan synthesis and degradation were evaluated. No significant differences between the control and treatment groups were observed until 5 days after sowing. The highest level of salinity (250 mM) not only inhibited sprouting and root growth but also decreased the level of fructan in the tubers. The proportion of fructan at DP 2-5 rapidly increased one day after sowing and then decreased over time. Under various NaCl treatments, at 7 days after sowing, all fructans except fructan at DP 6-10 were present in proportions less than or equal to the control. The variation in the DP of fructan was related to the transcription level of fructan metabolism genes. Fructan may support sprouting or resistance to salt stress by changing the DP of fructan molecules through hydrolysis without changing the total amount of fructan. The low-molecular-weight oligosaccharides (DP < 5) may be the major carbohydrates that support tuber sprouting or that are involved in protection from salt stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Fouling analysis of membrane bioreactor treating antibiotic production wastewater at different hydraulic retention times.

    PubMed

    Yu, Dawei; Chen, Yutao; Wei, Yuansong; Wang, Jianxing; Wang, Yawei; Li, Kun

    2017-04-01

    Membrane fouling, including foulants and factors, was investigated during hydraulic retention time (HRT) optimization of a membrane bioreactor (MBR) that treated wastewater from the production of antibiotics. The results showed that HRT played an important role in membrane fouling. Trans-membrane pressure (TMP), membrane flux, and resistance were stable at -6 kPa, 76 L m -2  h -1  bar -1 , and 4.5 × 10 12  m -1 when HRT was at 60, 48, and 36 h, respectively. Using Fourier transform infrared spectroscopy, foulants were identified as carbohydrates and proteins, which correlated with effluent organic matter and effluent chemical oxygen demand (COD) compounds. Therefore, membrane fouling trends would benefit from low supernatant COD (378 mg L -1 ) and a low membrane removal rate (26 %) at a HRT of 36 h. Serious membrane fouling at 72 and 24 h was related to soluble microbial products and extracellular polymeric substances in mixed liquor, respectively. Based on the TMP decrease and flux recovery after physical and chemical cleaning, irremovable fouling aggravation was related to extracellular polymeric substances' increase and soluble microbial products' decrease. According to changes in the specific oxygen uptake rate (SOUR) and mixed liquor suspended solids (MLSSs) during HRT optimization in this study, antibiotic production wastewater largely inhibited MLSS growth, which only increased from 4.5 to 5.0 g L -1 when HRT was decreased from 72 to 24 h, but did not limit sludge activity. The results of a principal component analysis highlighted both proteins and carbohydrates in extracellular polymeric substances as the primary foulants. Membrane fouling associated with the first principal component was positively related to extracellular polymeric substances and negatively related to soluble microbial products. Principal component 2 was primarily related to proteins in the influent. Additional membrane fouling factors included biomass characteristics, operational conditions, and feed characteristics.

  9. Reuteran and levan as carbohydrate sinks in transgenic sugarcane.

    PubMed

    Bauer, Rolene; Basson, Carin E; Bekker, Jan; Eduardo, Iban; Rohwer, Johann M; Uys, Lafras; van Wyk, Johannes H; Kossmann, Jens

    2012-12-01

    The present study reports the effect of high molecular weight bacterial fructan (levan) and glucan (reuteran) on growth and carbohydrate partitioning in transgenic sugarcane plants. These biopolymers are products of bacterial glycosyltransferases, enzymes that catalyze the polymerization of glucose or fructose residues from sucrose. Constructs, targeted to different subcellular compartments (cell wall and cytosol) and driven by the Cauliflower mosaic virus-35S: maize-ubiquitin promoter, were introduced into sugarcane by biolistic transformation. Polysaccharide accumulation severely affected growth of callus suspension cultures. Regeneration of embryonic callus tissue into plants proved problematic for cell wall-targeted lines. When targeted to the cytosol, only plants with relative low levels of biopolymer accumulation survived. In internodal stalk tissue that accumulate reuteran (max 0.03 mg/g FW), sucrose content (ca 60 mg/g FW) was not affected, while starch content (<0.4 mg/g FW) was increased up to four times. Total carbohydrate content was not significantly altered. On the other hand, starch and sucrose levels were significantly reduced in plants accumulating levan (max 0.01 mg/g FW). Heterologous expression resulted in a reduction in total carbohydrate assimilation rather than a simple diversion by competition for substrate.

  10. Lanthanide-IMAC enrichment of carbohydrates and polyols.

    PubMed

    Schemeth, Dieter; Rainer, Matthias; Messner, Christoph B; Rode, Bernd M; Bonn, Günther K

    2014-03-01

    In this study a new type of immobilized metal ion affinity chromatography resin for the enrichment of carbohydrates and polyols was synthesized by radical polymerization reaction of vinyl phosphonic acid and 1,4-butandiole dimethacrylate using azo-bis-isobutyronitrile as radical initiator. Interaction between the chelated trivalent lanthanide ions and negatively charged hydroxyl groups of carbohydrates and polyols was observed by applying high pH values. The new method was evaluated by single standard solutions, mixtures of standards, honey and a more complex extract of Cynara scolymus. The washing step was accomplished by acetonitrile in excess volumes. Elution of enriched carbohydrates was successfully performed with deionized water. The subsequent analysis was carried out with matrix-free laser desorption/ionization-time of flight mass spectrometry involving a TiO2 -coated steel target, especially suitable for the measurement of low-molecular-weight substances. Quantitative analysis of the sugar alcohol xylitol as well as the determination of the maximal loading capacity was performed by gas chromatography in conjunction with mass spectrometric detection after chemical derivatization. In a parallel approach quantum mechanical geometry optimizations were performed in order to compare the coordination behavior of various trivalent lanthanide ions. Copyright © 2013 John Wiley & Sons, Ltd.

  11. Engineering of routes to heparin and related polysaccharides.

    PubMed

    Bhaskar, Ujjwal; Sterner, Eric; Hickey, Anne Marie; Onishi, Akihiro; Zhang, Fuming; Dordick, Jonathan S; Linhardt, Robert J

    2012-01-01

    Anticoagulant heparin has been shown to possess important biological functions that vary according to its fine structure. Variability within heparin's structure occurs owing to its biosynthesis and animal tissue-based recovery and adds another dimension to its complex polymeric structure. The structural variations in chain length and sulfation patterns mediate its interaction with many heparin-binding proteins, thereby eliciting complex biological responses. The advent of novel chemical and enzymatic approaches for polysaccharide synthesis coupled with high throughput combinatorial approaches for drug discovery have facilitated an increased effort to understand heparin's structure-activity relationships. An improved understanding would offer potential for new therapeutic development through the engineering of polysaccharides. Such a bioengineering approach requires the amalgamation of several different disciplines, including carbohydrate synthesis, applied enzymology, metabolic engineering, and process biochemistry.

  12. Effects of extracellular polymeric substances on the bioaccumulation of mercury and its toxicity toward the cyanobacterium Microcystis aeruginosa.

    PubMed

    Chen, Ho-Wen; Huang, Winn-Jung; Wu, Ting-Hsiang; Hon, Chen-Lin

    2014-01-01

    This investigation examines how extracellular polymeric substances (EPSs) and environmental factors affect the bioaccumulation and toxicity of inorganic mercury (+2 oxidation state, Hg(II)) using a culture of Microcystis aeruginosa, which dominates eutrophic reservoir populations. The identified EPSs were classified as carbohydrates and proteins. Evaluation of the bioaccumulation of Hg(II) in cells by multiple regression analysis reveals that the concentration of EPSs in filtrate, the initial concentration of Hg(II) in medium, and the culture age significantly affected the amount of Hg(II) accumulated. Composition profiles revealed that the concentrations of soluble carbohydrates were significantly higher in Hg(II)-accumulated cells than in the control ones. Preliminary results based on scanning electron microscopic (SEM) map investigations suggest that most of the Hg(II) was accumulated in the cytoplasm (intracellular). Additionally, the effective concentrations (EC50) of Hg(II) that inhibit the growth of M. aeruginosa were 38.6 μg L(-1) in the logarithmic phase and 17.5 μg L(-1) in the stationary phase. As expected, the production of more EPSs in the logarithmic phase typically implies higher EC50 values because EPSs may be regarded as a protective barrier of cells against an external Hg(II) load, enabling them to be less influenced by Hg(II).

  13. Fructan metabolism in A. tequilana Weber Blue variety along its developmental cycle in the field.

    PubMed

    Mellado-Mojica, Erika; López, Mercedes G

    2012-11-28

    Fructan, as reserve carbohydrate, supplies energy needs during vegetative development, thereby exhibiting variations in its content and composition. Fructan metabolism in Agave tequilana Blue variety from 2- to 7-year-old plants was analyzed in this work. Soluble carbohydrates were determined at all ages. Fructan (328-711 mg/g), sucrose (14-39 mg/g), fructose (11-20 mg/g), glucose (4-14 mg/g), and starch (0.58-4.98 mg/g) were the most abundant carbohydrates. Thin-layer chromatography exhibited that 2-5-year-old plants mainly stored fructooligosaccharides, while 6-7-year-old plants mainly contained long-chain fructans. The fructan degree of polymerization (DP) increased from 6 to 23 throughout plant development. The 7-year-old plants mainly stored highly branched agavins. Partially methylated alditol acetate analyzed by gas chromatography-mass spectrometry reveals that fructan molecular structures became more complex with plant age. For the first time, we report the presence of a large number of DP3 (seven forms), DP4 (eight forms), and DP5 (six forms) isomers for agave fructans. Overall, fructan metabolism in A. tequilana displays changes in its soluble carbohydrates, DP, type, and fructan structures stored, along its developmental cycle in the field.

  14. Optimization of the electrodeposition of copper on poly-1-naphthylamine for the amperometric detection of carbohydrates in HPLC.

    PubMed

    D'Eramo, Fabiana; Marioli, Juan M; Arévalo, Alejandro H; Sereno, Leonides E

    2003-11-04

    A modified electrode consisting of copper dispersed in a poly-1-naphthylamine (p-1-NAP/Cu) film on a glassy carbon electrode was used as an amperometric detector for the on-line analysis of various carbohydrates separated by high performance liquid chromatography. The results obtained with this new sensor were compared to those obtained with a modified electrode based on the same polymer but with copper ions incorporated at open circuit, as described in a previous paper. In this new modified electrode the copper microparticles were electrochemically deposited into the polymeric matrix by single potential step chronoamperometry. A nucleation and growth mechanism was proposed to explain the current transients of copper electrodeposition. The experimental results were fitted to the proposed mechanism by using a mathematical equation that considers three-dimensional growth and progressive nucleation, assuming a no overlap and no diffusion mechanism. Cyclic voltammetric experiments showed that the electrodeposited copper microparticles provided a catalytic surface suited for the oxidation of glucose and several carbohydrates. The sensitivity of the electrode was influenced by the amount of copper electrodeposited, which in turn depended on the applied overpotential used for the deposition of copper. Liquid chromatographic experiments were carried out to test the analytical performance of these electrodes for the determination of various carbohydrates.

  15. Stability of oligosaccharides derived from lactulose during the processing of milk and apple juice.

    PubMed

    López-Sanz, Sara; Montilla, Antonia; Moreno, F Javier; Villamiel, Mar

    2015-09-15

    The scientific evidence on the bioactivity of oligosaccharides from lactulose has encouraged us to study their physicochemical modifications during the processing of milk and apple juice. The carbohydrate fraction with a degree of polymerization ⩾3 was stable in milk heated at temperatures up to 100°C for 30min and in apple juice heated up to 90°C for 15min. An assessment of the Maillard reaction in heated milk pointed out a higher formation of furosine in milk with oligosaccharides from lactulose as compared to its counterpart without this ingredient, due to a higher presence of galactose. The organoleptic properties of juice with oligosaccharides from lactulose were acceptable and similar to those of apple juice with commercial galactooligosaccharides. The results presented herein demonstrate that oligosaccharides from lactulose can be used as prebiotic ingredients in a wide range of functional foods, including those intended for diabetics and lactose intolerant individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice

    PubMed Central

    Underwood, Graham J. C.; Aslam, Shazia N.; Michel, Christine; Niemi, Andrea; Norman, Louiza; Meiners, Klaus M.; Laybourn-Parry, Johanna; Paterson, Harriet; Thomas, David N.

    2013-01-01

    Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions. PMID:24019487

  17. Broad-scale predictability of carbohydrates and exopolymers in Antarctic and Arctic sea ice.

    PubMed

    Underwood, Graham J C; Aslam, Shazia N; Michel, Christine; Niemi, Andrea; Norman, Louiza; Meiners, Klaus M; Laybourn-Parry, Johanna; Paterson, Harriet; Thomas, David N

    2013-09-24

    Sea ice can contain high concentrations of dissolved organic carbon (DOC), much of which is carbohydrate-rich extracellular polymeric substances (EPS) produced by microalgae and bacteria inhabiting the ice. Here we report the concentrations of dissolved carbohydrates (dCHO) and dissolved EPS (dEPS) in relation to algal standing stock [estimated by chlorophyll (Chl) a concentrations] in sea ice from six locations in the Southern and Arctic Oceans. Concentrations varied substantially within and between sampling sites, reflecting local ice conditions and biological content. However, combining all data revealed robust statistical relationships between dCHO concentrations and the concentrations of different dEPS fractions, Chl a, and DOC. These relationships were true for whole ice cores, bottom ice (biomass rich) sections, and colder surface ice. The distribution of dEPS was strongly correlated to algal biomass, with the highest concentrations of both dEPS and non-EPS carbohydrates in the bottom horizons of the ice. Complex EPS was more prevalent in colder surface sea ice horizons. Predictive models (validated against independent data) were derived to enable the estimation of dCHO concentrations from data on ice thickness, salinity, and vertical position in core. When Chl a data were included a higher level of prediction was obtained. The consistent patterns reflected in these relationships provide a strong basis for including estimates of regional and seasonal carbohydrate and dEPS carbon budgets in coupled physical-biogeochemical models, across different types of sea ice from both polar regions.

  18. Evaluation of the damage of cell wall and cell membrane for various extracellular polymeric substance extractions of activated sludge.

    PubMed

    Guo, Xuesong; Liu, Junxin; Xiao, Benyi

    2014-10-20

    Extracellular polymeric substances (EPS) are susceptible to contamination by intracellular substances released during the extraction of EPS owing to the damage caused to microbial cell structures. The damage to cell walls and cell membranes in nine EPS extraction processes of activated sludge was evaluated in this study. The extraction of EPS (including proteins, carbohydrates and DNA) was the highest using the NaOH extraction method and the lowest using formaldehyde extraction. All nine EPS extraction methods in this study resulted in cell wall and membrane damage. The damage to cell walls, evaluated by 2-keto-3-deoxyoctonate (KDO) and N-acetylglucosamine content changes in extracted EPS, was the most significant in the NaOH extraction process. Formaldehyde extraction showed a similar extent of damage to cell walls to those detected in the control method (centrifugation), while those in the formaldehyde-NaOH and cation exchange resin extractions were slightly higher than those detected in the control. N-acetylglucosamine was more suitable than KDO for the evaluation of cell wall damage in the EPS extraction of activated sludge. The damage to cell membranes was characterized by two fluorochromes (propidium iodide and FITC Annexin V) with flow cytometry (FCM) measurement. The highest proportion of membrane-damaged cells was detected in NaOH extraction (26.54% of total cells) while membrane-damaged cells comprised 8.19% of total cells in the control. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Enzyme-based processing of soybean carbohydrate: Recent developments and future prospects.

    PubMed

    Al Loman, Abdullah; Ju, Lu-Kwang

    2017-11-01

    Soybean is well known for its high-value oil and protein. Carbohydrate is, however, an underutilized major component, representing almost 26-30% (w/w) of the dried bean. The complex soybean carbohydrate is not easily hydrolyzable and can cause indigestibility when included in food and feed. Enzymes can be used to hydrolyze the carbohydrate for improving soybean processing and value of soybean products. Here the enzyme-based processing developed for the following purposes is reviewed: hydrolysis of different carbohydrate-rich by/products from soybean processing, improvement of soybean oil extraction, and increase of nutritional value of soybean-based food and animal feed. Once hydrolyzed into fermentable sugars, soybean carbohydrate can find more value-added applications and further improve the overall economics of soybean processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2017-01-24

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  1. Micro-fluidic partitioning between polymeric sheets for chemical amplification and processing

    DOEpatents

    Anderson, Brian L.

    2015-05-26

    A system for fluid partitioning for chemical amplification or other chemical processing or separations of a sample, comprising a first dispenser of a first polymeric sheet, wherein the first polymeric sheet contains chambers; a second dispenser of a second polymeric sheet wherein the first dispenser and the second dispenser are positioned so that the first polymeric sheet and the second polymeric sheet become parallel; a dispenser of the fluid positioned to dispense the fluid between the first polymeric sheet and the second polymeric sheet; and a seal unit that seals the first polymeric sheet and the second polymeric sheet together thereby sealing the sample between the first polymeric sheet and the second polymeric sheet and partitioning the fluid for chemical amplification or other chemical processing or separations.

  2. Renewability is not Enough: Recent Advances in the Sustainable Synthesis of Biomass-Derived Monomers and Polymers.

    PubMed

    Llevot, Audrey; Dannecker, Patrick-Kurt; von Czapiewski, Marc; Over, Lena C; Söyler, Zafer; Meier, Michael A R

    2016-08-08

    Taking advantage of the structural diversity of different biomass resources, recent efforts were directed towards the synthesis of renewable monomers and polymers, either for the substitution of petroleum-based resources or for the design of novel polymers. Not only the use of biomass, but also the development of sustainable chemical approaches is a crucial aspect for the production of sustainable materials. This review discusses the recent examples of chemical modifications and polymerizations of abundant biomass resources with a clear focus on the sustainability of the described processes. Topics such as synthetic methodology, catalysis, and development of new solvent systems or greener alternative reagents are addressed. The chemistry of vegetable oil derivatives, terpenes, lignin, carbohydrates, and sugar-based platform chemicals was selected to highlight the trends in the active field of a sustainable use of renewable resources. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Clostridium botulinum C2 toxin--new insights into the cellular up-take of the actin-ADP-ribosylating toxin.

    PubMed

    Aktories, Klaus; Barth, Holger

    2004-04-01

    Clostridium botulinum C2 toxin is a member of the family of binary actin-ADP-ribosylating toxins. It consists of the enzyme component C2I, and the separated binding/translocation component C2II. Proteolytically activated C2II forms heptamers and binds to a carbohydrate cell surface receptor. After attachment of C2I, the toxin complex is endocytosed to reach early endosomes. At low pH of endosomes, C2II-heptamers insert into the membrane, form pores and deliver C2I into the cytosol. Here, C2I ADP-ribosylates actin at Arg177 to block actin polymerization and to induce depolymerization of actin filaments. The mini-review describes main properties of C2 toxin and discusses new findings on the involvement of chaperones in the up-take process of the toxin.

  4. Influence of pectins on the solubility and the molar mass distribution of dehydrogenative polymers (DHPs, lignin model compounds).

    PubMed

    Cathala, B; Monties, B

    2001-07-19

    Dehydrogenation polymers (DHPs, lignin model compounds) were synthesized in the presence of increasing pectin concentrations using two different methods. The first method ('Zutropfverfahren', ZT) consists in the slow adding of monomers whereas in the second method ('Zulaufverfahren', ZL) all the reactants are added simultaneously. DHPs solubility increases with the pectin concentration in the ZT experiments and remains stable in the ZL experiments. Covalent bonds between pectin and DHP are formed during ZT polymerization resulting in lignin carbohydrate complex (LCC) which keeps the unbound DHPs in solution by the formation of aggregate or micelle-like structures. In contrast LCC are not formed during the ZL process which behave like the DHP reference. The ZT DHP molar masses increase observed is attributed to the reactivity of the high molar mass polymer solubilized by the LCC whereas ZL higher molar mass polymers are precipitated out of the solution and cannot react further.

  5. Chemical Changes in Carbohydrates Produced by Thermal Processing.

    ERIC Educational Resources Information Center

    Hoseney, R. Carl

    1984-01-01

    Discusses chemical changes that occur in the carbohydrates found in food products when these products are subjected to thermal processing. Topics considered include browning reactions, starch found in food systems, hydrolysis of carbohydrates, extrusion cooking, processing of cookies and candies, and alterations in gums. (JN)

  6. Short-Chain Polysaccharide Analysis in Ethanol-Water Solutions.

    PubMed

    Yan, Xun

    2017-07-01

    This study demonstrates that short-chain polysaccharides, or oligosaccharides, could be sufficiently separated with hydrophilic interaction LC (HILIC) conditions and quantified by evaporative light-scattering detection (ELSD). The multianalyte calibration approach improved the efficiency of calibrating the nonlinear detector response. The method allowed easy quantification of short-chain carbohydrates. Using the HILIC method, the oligosaccharide solubility and its profile in water/alcohol solutions at room temperature were able to be quantified. The results showed that the polysaccharide solubility in ethanol-water solutions decreased as ethanol content increased. The results also showed oligosaccharides to have minimal solubility in pure ethanol. In a saturated maltodextrin ethanol (80%) solution, oligosaccharide components with a degree of polymerization >12 were practically insoluble and contributed less than 0.2% to the total solute dry weight. The HILIC-ELSD method allows for the identification and quantification of low-MW carbohydrates individually and served as an alternative method to current gel permeation chromatography procedures.

  7. A randomized placebo controlled trial of preoperative carbohydrate drinks and early postoperative nutritional supplement drinks in colorectal surgery.

    PubMed

    Lidder, P; Thomas, S; Fleming, S; Hosie, K; Shaw, S; Lewis, S

    2013-06-01

    There is evidence that preoperative carbohydrate drinks and postoperative nutritional supplements improve the outcome of colorectal surgery. There is little information on their individual contribution. A prospective four-arm double-blind controlled trial was carried out in which patients were randomized to carbohydrate or placebo drinks preoperatively and a polymeric supplement or placebo drink postoperatively. The primary outcome was insulin resistance (using the short insulin tolerance test and HOMA-IR). Secondary outcomes included handgrip strength, pulmonary function, intestinal permeability and postoperative complications. A total of 120 patients were randomized to four demographically well matched groups. Patients who received preoperative and postoperative supplements had better glucose homeostasis (P = 0.004), peak expiratory flow rate (P = 0.035), handgrip strength (P = 0.002) and less insulin resistance (P = 0.001) compared with those who only received placebo drinks. Oral nutritional supplements given preoperatively and postoperatively improve postoperative handgrip strength, pulmonary function and insulin resistance. A weaker effect was seen in patients who received supplements either preoperatively or postoperatively. Oral nutritional supplements should be given both preoperatively and postoperatively. Colorectal Disease © 2013 The Association of Coloproctology of Great Britain and Ireland.

  8. Lignocentric analysis of a carbohydrate-producing lignocellulosic biorefinery process.

    PubMed

    Narron, Robert H; Han, Qiang; Park, Sunkyu; Chang, Hou-Min; Jameel, Hasan

    2017-10-01

    A biologically-based lignocellulosic biorefinery process for obtaining carbohydrates from raw biomass was investigated across six diverse biomasses (three hardwoods & three nonwoods) for the purpose of decoding lignin's influence on sugar production. Acknowledging that lignin could positively alter the economics of an entire process if valorized appropriately, we sought to correlate the chemical properties of lignin within the process to the traditional metrics associated with carbohydrate production-cellulolytic digestibility and total sugar recovery. Based on raw carbohydrate, enzymatic recovery ranged from 40 to 64% w/w and total recovery ranged from 70 to 87% w/w. Using nitrobenzene oxidation to quantify non-condensed lignin structures, it was found that raw hardwoods bearing increasing non-condensed S/V ratios (2.5-5.1) render increasing total carbohydrate recovery from hardwood biomasses. This finding indicates that the chemical structure of hardwood lignin influences the investigated biorefinery process' ability to generate carbohydrates from a given raw hardwood feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Amphiphilic, cross-linkable diblock copolymers for multifunctionalized nanoparticles as biological probes

    NASA Astrophysics Data System (ADS)

    Schmidtke, Christian; Pöselt, Elmar; Ostermann, Johannes; Pietsch, Andrea; Kloust, Hauke; Tran, Huong; Schotten, Theo; Bastús, Neus G.; Eggers, Robin; Weller, Horst

    2013-07-01

    Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium.Nanoparticles (NPs) play an increasingly important role in biological labeling and imaging applications. However, preserving their useful properties in an aqueous biological environment remains challenging, even more as NPs therein have to be long-time stable, biocompatible and nontoxic. For in vivo applications, size control is crucial in order to route excretion pathways, e.g. renal clearance vs. hepato-biliary accumulation. Equally necessary, cellular and tissue specific targeting demands suitable linker chemistry for surface functionalization with affinity molecules, like peptides, proteins, carbohydrates and nucleotides. Herein, we report a three stage encapsulation process for NPs comprised of (1) a partial ligand exchange by a multidentate polyolefinic amine ligand, PI-N3, (2) micellar encapsulation with a precisely tuned amphiphilic diblock PI-b-PEG copolymer, in which the PI chains intercalate to the PI-N3 prepolymer and (3) radical cross-linking of the adjacent alkenyl bonds. As a result, water-soluble NPs were obtained, which virtually maintained their primal physical properties and were exceptionally stable in biological media. PEG-terminal functionalization of the diblock PI-b-PEG copolymer with numerous functional groups was mostly straightforward by chain termination of the living anionic polymerization (LAP) with the respective reagents. More complex affinity ligands, e.g. carbohydrates or biotin, were introduced in a two-step process, prior to micellar encapsulation. Advantageously, this pre-assembly approach opens up rapid access to precisely tuned multifunctional NPs, just by using mixtures of diverse functional PI-b-PEG polymers in a combinatorial manner. All constructs showed no toxicity from 0.001 to 1 μM (particle concentration) in standard WST and LDH assays on A549 cells, as well as only marginal unspecific cellular uptake, even in serum-free medium. Electronic supplementary information (ESI) available: Images of the QDs, toxicity data and NMR spectra. See DOI: 10.1039/c3nr01520c

  10. 'Click'-xylosides as initiators of the biosynthesis of glycosaminoglycans: Comparison of mono-xylosides with xylobiosides.

    PubMed

    Chatron-Colliet, Aurore; Brusa, Charlotte; Bertin-Jung, Isabelle; Gulberti, Sandrine; Ramalanjaona, Nick; Fournel-Gigleux, Sylvie; Brézillon, Stéphane; Muzard, Murielle; Plantier-Royon, Richard; Rémond, Caroline; Wegrowski, Yanusz

    2017-03-01

    Different mono-xylosides and their corresponding xylobiosides obtained by a chemo-enzymatic approach featuring various substituents attached to a triazole ring were probed as priming agents for glycosaminoglycan (GAG) biosynthesis in the xylosyltransferase-deficient pgsA-745 Chinese hamster ovary cell line. Xylosides containing a hydrophobic aglycone moiety were the most efficient priming agents. Mono-xylosides induced higher GAG biosynthesis in comparison with their corresponding xylobiosides. The influence of the degree of polymerization of the carbohydrate part on the priming activity was investigated through different experiments. We demonstrated that in case of mono-xylosides, the cellular uptake as well as the affinity and the catalytic efficiency of β-1,4-galactosyltransferase 7 were higher than for xylobiosides. Altogether, these results indicate that hydrophobicity of the aglycone and degree of polymerization of glycone moiety were critical factors for an optimal priming activity for GAG biosynthesis. © 2016 John Wiley & Sons A/S.

  11. Transglycosylation reactions, a main mechanism of phenolics incorporation in coffee melanoidins: Inhibition by Maillard reaction.

    PubMed

    Moreira, Ana S P; Nunes, Fernando M; Simões, Cristiana; Maciel, Elisabete; Domingues, Pedro; Domingues, M Rosário M; Coimbra, Manuel A

    2017-07-15

    Under roasting conditions, polysaccharides depolymerize and also are able to polymerize, forming new polymers through non-enzymatic transglycosylation reactions (TGRs). TGRs can also occur between carbohydrates and aglycones, such as the phenolic compounds present in daily consumed foods like coffee. In this study, glycosidically-linked phenolic compounds were quantified in coffee melanoidins, the polymeric nitrogenous brown-colored compounds formed during roasting, defined as end-products of Maillard reaction. One third of the phenolics present were in glycosidically-linked form. In addition, the roasting of solid-state mixtures mimicking coffee beans composition allowed the conclusion that proteins play a regulatory role in TGRs extension and, consequently, modulate melanoidins composition. Overall, the results obtained showed that TGRs are a main mechanism of phenolics incorporation in melanoidins and are inhibited by amino groups through Maillard reaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Thermal effects on the stability and antioxidant activity of an acid polysaccharide conjugate derived from green tea.

    PubMed

    Chen, Xiaoqiang; Ye, Yang; Cheng, Hao; Jiang, Yongwen; Wu, Yalin

    2009-07-08

    A technique of high-performance gel permeation chromatography (HPGPC)-evaporative light-scattering detection and circular dichroism (CD) was developed for the measurement of thermal effects on the homogeneity and conformation of polymeric carbohydrate conjugates and was applied to an acid polysaccharide conjugate (GTa) isolated from the composite enzyme extract of green tea. Incubations in water at 40 and 70 degrees C for 1.0, 2.5, and 5.0 h have no effects on GTa. In contrast, when incubated in water for 1.0, 2.5, and 5.0 h at 98 degrees C, a single symmetrical peak corresponding to GTa in HPGPC was split into two adjacent peaks representing two different components formed, and CD spectra revealed an additional positive Cotton effect at 216 nm. To contribute toward our understanding of thermal effects of this polymeric carbohydrate conjugate on antioxidant activity, GTa and related heat-treated samples (GTa-HTI, GTa-HTII, and GTa-HTIII), the latter being obtained from 1.0, 2.5, and 5.0 h incubations at 98 degrees C, respectively, were subjected to the self-oxidation of 1,2,3-phentriol assay and found to have respective scavenging activities in a concentration-dependent manner. In comparison with GTa, the scavenging potency of heat-treated samples was similar at the dosage range of 50-300 microg/mL but became stronger with continually increasing concentration. Moreover, the present study also provides further insights into the optimal preparation of tea polysaccharide conjugates.

  13. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei.

    PubMed

    Tsujikawa, Yuji; Nomoto, Ryohei; Osawa, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth.

  14. Difference in Degradation Patterns on Inulin-type Fructans among Strains of Lactobacillus delbrueckii and Lactobacillus paracasei

    PubMed Central

    TSUJIKAWA, Yuji; NOMOTO, Ryohei; OSAWA, Ro

    2013-01-01

    Lactobacillus delbrueckii strains were assessed for their degradation patterns of various carbohydrates with specific reference to inulin-type fructans in comparison with those of Lactobacillus paracasei strains. Firstly, growth curves on glucose, fructose, sucrose and inulin-type fructans with increasing degrees of fructose polymerization (i.e., 1-kestose, fructo-oligosaccharides and inulin) of the strains were compared. L. paracasei DSM 20020 grew well on all these sugars, while the growth rates of the 4 L. delbrueckii strains were markedly higher on the fructans with a greater degree of polymerization than on fructose and sucrose. Secondly, sugar compositions of spent cultures of the strains of L. delbrueckii and L. paracasei grown in mMRS containing either the fructans or inulin were determined by thin layer chromatography, in which the spent cultures of L. paracasei DSM 20020 showed spots of short fructose and sucrose fractions, whereas those of the L. delbrueckii strains did not show such spots at all. These results suggest that, unlike the L. paracasei strains, the L. delbrueckii strains do not degrade the inulin-type fructans extracellularly, but transport the fructans capable of greater polymerization preferentially into their cells to be degraded intracellularly for their growth. PMID:24936375

  15. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1989-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  16. Monitoring technology

    NASA Technical Reports Server (NTRS)

    Stevenson, William A. (Inventor)

    1992-01-01

    A process for infrared spectroscopic monitoring of insitu compositional changes in a polymeric material comprises the steps of providing an elongated infrared radiation transmitting fiber that has a transmission portion and a sensor portion, embedding the sensor portion in the polymeric material to be monitored, subjecting the polymeric material to a processing sequence, applying a beam of infrared radiation to the fiber for transmission through the transmitting portion to the sensor portion for modification as a function of properties of the polymeric material, monitoring the modified infrared radiation spectra as the polymeric material is being subjected to the processing sequence to obtain kinetic data on changes in the polymeric material during the processing sequence, and adjusting the processing sequence as a function of the kinetic data provided by the modified infrared radiation spectra information.

  17. Strategies to achieve high-solids enzymatic hydrolysis of dilute-acid pretreated corn stover.

    PubMed

    Geng, Wenhui; Jin, Yongcan; Jameel, Hasan; Park, Sunkyu

    2015-01-01

    Three strategies were presented to achieve high solids loading while maximizing carbohydrate conversion, which are fed-batch, splitting/thickening, and clarifier processes. Enzymatic hydrolysis was performed at water insoluble solids (WIS) of 15% using washed dilute-acid pretreated corn stover. The carbohydrate concentration increased from 31.8 to 99.3g/L when the insoluble solids content increased from 5% to 15% WIS, while the final carbohydrate conversion was decreased from 78.4% to 73.2%. For the fed-batch process, a carbohydrate conversion efficiency of 76.8% was achieved when solid was split into 60:20:20 ratio, with all enzymes added first. For the splitting/thickening process, a carbohydrate conversion of 76.5% was realized when the filtrate was recycled to simulate a steady-state process. Lastly, the clarifier process was evaluated and the highest carbohydrate conversion of 81.4% was achieved. All of these results suggests the possibility of enzymatic hydrolysis at high solids to make the overall conversion cost-competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  19. Gut feedback mechanisms and food intake: a physiological approach to slow carbohydrate bioavailability.

    PubMed

    Zhang, Genyi; Hasek, Like Y; Lee, Byung-Hoo; Hamaker, Bruce R

    2015-04-01

    Glycemic carbohydrates in foods are an important macronutrient providing the biological fuel of glucose for a variety of physiological processes. A classification of glycemic carbohydrates into rapidly digestible carbohydrate (RDC) and slowly digestible carbohydrate (SDC) has been used to specify their nutritional quality related to glucose homeostasis that is essential to normal functioning of the brain and critical to life. Although there have been many studies and reviews on slowly digestible starch (SDS) and SDC, the mechanisms of their slow digestion and absorption were mostly investigated from the material side without considering the physiological processes of their in vivo digestion, absorption, and most importantly interactions with other food components and the gastrointestinal tract. In this article, the physiological processes modulating the bioavailability of carbohydrates, specifically the rate and extent of their digestion and absorption as well as the related locations, in a whole food context, will be discussed by focusing on the activities of the gastrointestinal tract including glycolytic enzymes and glucose release, sugar sensing, gut hormones, and neurohormonal negative feedback mechanisms. It is hoped that a deep understanding of these physiological processes will facilitate the development of innovative dietary approaches to achieve desired carbohydrate or glucose bioavailability for improved health.

  20. Process for the treatment of lignocellulosic biomass

    DOEpatents

    Dale, Bruce E.

    2014-07-08

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  1. Process for the treatment of lignocellulosic biomass

    DOEpatents

    Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

    2013-03-12

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  2. Detecting molecular features of spectra mainly associated with structural and non-structural carbohydrates in co-products from bioEthanol production using DRIFT with uni- and multivariate molecular spectral analyses.

    PubMed

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485-1188 cm(-1)), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm(-1) with region and baseline: ca. 1292-1198 cm(-1)), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187-950 cm(-1)), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm(-1) with region and baseline: ca. 952-910 cm(-1)), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm(-1) with region and baseline: ca. 880-827 cm(-1)), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm(-1) with baseline: ca. 1485-1188 cm(-1)), H_1370 (structural carbohydrate, peak height at ca. 1370 cm(-1) with a baseline: ca. 1485-1188 cm(-1)). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05) intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292-1198 cm(-1) and A_CHO (total CHO) at 1187-950 cm(-1) with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared with the original grains. However, the sensitivities of different types of carbohydrates and different grains (corn and wheat) to the processing differ. In general, the bioethanol processing increases the molecular spectral intensities for the structural carbohydrates and decreases the intensities for the non-structural carbohydrates. Further study is needed to quantify carbohydrate related molecular spectral features of the bioethanol co-products in relation to nutrient supply and availability of carbohydrates.

  3. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, A.J.; Spence, R.D.

    1988-05-04

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  4. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  5. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities.

    PubMed

    Hayes, Maria; Tiwari, Brijesh K

    2015-09-17

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these.

  6. Bioactive Carbohydrates and Peptides in Foods: An Overview of Sources, Downstream Processing Steps and Associated Bioactivities

    PubMed Central

    Hayes, Maria; Tiwari, Brijesh K.

    2015-01-01

    Bioactive peptides and carbohydrates are sourced from a myriad of plant, animal and insects and have huge potential for use as food ingredients and pharmaceuticals. However, downstream processing bottlenecks hinder the potential use of these natural bioactive compounds and add cost to production processes. This review discusses the health benefits and bioactivities associated with peptides and carbohydrates of natural origin and downstream processing methodologies and novel processes which may be used to overcome these. PMID:26393573

  7. Evaluation of carbohydrates in natural and cultured Cordyceps by pressurized liquid extraction and gas chromatography coupled with mass spectrometry.

    PubMed

    Guan, Jia; Yang, Feng-Qing; Li, Shao-Ping

    2010-06-11

    Free and polymeric carbohydrates in Cordyceps, a valued edible mushroom and well-known traditional Chinese medicine, were determined using stepwise pressurized liquid extraction (PLE) extraction and GC-MS. Based on the optimized PLE conditions, acid hydrolysis and derivatization, ten monosaccharides, namely rhamnose, ribose, arabinose, xylose, mannose, glucose, galactose, mannitol, fructose and sorbose in 13 samples of natural and cultured Cordyceps were qualitatively and quantitatively analyzed and compared with myo-inositol hexaacetate as internal standard. The results showed that natural C. sinensis contained more than 7.99% free mannitol and a small amount of glucose, while its polysaccharides were usually composed of mannose, glucose and galactose with a molar ratio of 1.00:16.61-3.82:1.60-1.28. However, mannitol in cultured C. sinensis and cultured C. militaris were less than 5.83%, and free glucose was only detected in a few samples, while their polysaccharides were mainly composed of mannose, glucose and galactose with molar ratios of 1.00:3.01-1.09:3.30-1.05 and 1.00:2.86-1.28:1.07-0.78, respectively. Natural and cultured Cordyceps could be discriminated by hierarchical clustering analysis based on its free carbohydrate contents.

  8. Carbohydrates

    MedlinePlus

    ... include sugars added during food processing and refining. Complex carbohydrates include whole grain breads and cereals, starchy vegetables and legumes. Many of the complex carbohydrates are good sources of fiber. For a healthy ...

  9. Degradation of carbohydrates during dilute sulfuric acid pretreatment can interfere with lignin measurements in solid residues.

    PubMed

    Katahira, Rui; Sluiter, Justin B; Schell, Daniel J; Davis, Mark F

    2013-04-03

    The lignin content measured after dilute sulfuric acid pretreatment of corn stover indicates more lignin than could be accounted for on the basis of the untreated corn stover lignin content. This phenomenon was investigated using a combination of (13)C cross-polarization/magic-angle spinning (CP/MAS) solid-state nuclear magnetic resonance (NMR) spectroscopy and lignin removal using acid chlorite bleaching. Only minimal contamination with carbohydrates and proteins was observed in the pretreated corn stover. Incorporating degradation products from sugars was also investigated using (13)C-labeled sugars. The results indicate that sugar degradation products are present in the pretreatment residue and may be intimately associated with the lignin. Studies comparing whole corn stover (CS) to extractives-free corn stover [CS(Ext)] clearly demonstrated that extractives are a key contributor to the high-lignin mass balance closure (MBC). Sugars and other low molecular weight compounds present in plant extractives polymerize and form solids during pretreatment, resulting in apparent Klason lignin measurements that are biased high.

  10. Characteristic hydrolyzing of megalosaccharide by human salivary α-amylase and small intestinal enzymes, and its bioavailability in healthy subjects.

    PubMed

    Nakamura, Sadako; Takami, Masayuki; Tanabe, Kenichi; Oku, Tsuneyuki

    2014-09-01

    The digestibility of Megalosaccharide® (newly developed carbohydrate comprising α-1,4-glucosaccharide) was investigated in vitro and in vivo. Isomaltosyl-megalosaccharide® (IMS) and nigerosyl-megalosaccharide® (NMS) contain 20% and 50% of the megalosaccharide fraction (degree of polymerization (DP) 10-35), respectively. IMS was hydrolyzed readily by α-amylase to oligosaccharides (DP ≤ 7), and a small amount of glucose was produced from oligosaccharides by small intestinal enzymes (SIEs). NMS was partially hydrolyzed by α-amylase to oligosaccharides, and a small amount of glucose produced by SIEs. When IMS and NMS were treated by SIEs after treatment with human saliva α-amylase for a few minutes, IMS and NMS were hydrolyzed readily to glucose. Plasma levels of glucose and insulin upon ingestion of 50 g of IMS or NMS were elevated the same as those for 50 g of glucose, and breath hydrogen was not excreted. These results suggest that IMS and NMS are digestible carbohydrates.

  11. Proximate and polyphenolic characterization of cranberry pomace.

    PubMed

    White, Brittany L; Howard, Luke R; Prior, Ronald L

    2010-04-14

    The proximate composition and identification and quantification of polyphenolic compounds in dried cranberry pomace were determined. Proximate analysis was conducted based on AOAC methods for moisture, protein, fat, dietary fiber, and ash. Other carbohydrates were determined by the difference method. Polyphenolic compounds were identified and quantified by HPLC-ESI-MS. The composition of dried cranberry pomace was 4.5% moisture, 2.2% protein, 12.0% fat, 65.5% insoluble fiber, 5.7% soluble fiber, 8.4% other carbohydrates, 1.1% ash, and 0.6% total polyphenolics. It contained six anthocyanins (111.5 mg/100 g of DW) including derivatives of cyanidin and peonidin. Thirteen flavonols were identified (358.4 mg/100 g of DW), and the aglycones myricetin (55.6 mg/100 g of DW) and quercetin (146.2 mg/100 g of DW) were the most prominent. Procyanidins with degrees of polymerization (DP) of 1-6 were identified (167.3 mg/100 g of DW), the most abundant being an A-type of DP2 (82.6 mg/100 g of DW).

  12. Semi-aromatic polyesters based on a carbohydrate-derived rigid diol for engineering plastics.

    PubMed

    Wu, Jing; Eduard, Pieter; Thiyagarajan, Shanmugam; Noordover, Bart A J; van Es, Daan S; Koning, Cor E

    2015-01-01

    New carbohydrate-based polyesters were prepared from isoidide-2,5-dimethanol (extended isoidide, XII) through melt polymerization with dimethyl esters of terephthalic acid (TA) and furan-2,5-dicarboxylic acid (FDCA), yielding semi-crystalline prepolymers. Subsequent solid-state post-condensation (SSPC) gave high molecular weight (Mn =30 kg mol(-1) for FDCA) materials, the first examples of high Mn , semi-aromatic homopolyesters containing isohexide derivatives obtained via industrially relevant procedures. NMR spectroscopy showed that the stereo-configuration of XII was preserved under the applied conditions. The polyesters are thermally stable up to 380 °C. The TA- and FDCA-based polyesters have high Tg (105 °C and 94 °C, resp.) and Tm (284 °C and 250 °C, resp.) values. Its reactivity, stability, and ability to afford high Tg and Tm polyesters make XII a promising diol for the synthesis of engineering polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Equilibrium polymerization on the equivalent-neighbor lattice

    NASA Technical Reports Server (NTRS)

    Kaufman, Miron

    1989-01-01

    The equilibrium polymerization problem is solved exactly on the equivalent-neighbor lattice. The Flory-Huggins (Flory, 1986) entropy of mixing is exact for this lattice. The discrete version of the n-vector model is verified when n approaches 0 is equivalent to the equal reactivity polymerization process in the whole parameter space, including the polymerized phase. The polymerization processes for polymers satisfying the Schulz (1939) distribution exhibit nonuniversal critical behavior. A close analogy is found between the polymerization problem of index the Schulz r and the Bose-Einstein ideal gas in d = -2r dimensions, with the critical polymerization corresponding to the Bose-Einstein condensation.

  14. Detecting Molecular Features of Spectra Mainly Associated with Structural and Non-Structural Carbohydrates in Co-Products from BioEthanol Production Using DRIFT with Uni- and Multivariate Molecular Spectral Analyses

    PubMed Central

    Yu, Peiqiang; Damiran, Daalkhaijav; Azarfar, Arash; Niu, Zhiyuan

    2011-01-01

    The objective of this study was to use DRIFT spectroscopy with uni- and multivariate molecular spectral analyses as a novel approach to detect molecular features of spectra mainly associated with carbohydrate in the co-products (wheat DDGS, corn DDGS, blend DDGS) from bioethanol processing in comparison with original feedstock (wheat (Triticum), corn (Zea mays)). The carbohydrates related molecular spectral bands included: A_Cell (structural carbohydrates, peaks area region and baseline: ca. 1485–1188 cm−1), A_1240 (structural carbohydrates, peak area centered at ca. 1240 cm−1 with region and baseline: ca. 1292–1198 cm−1), A_CHO (total carbohydrates, peaks region and baseline: ca. 1187–950 cm−1), A_928 (non-structural carbohydrates, peak area centered at ca. 928 cm−1 with region and baseline: ca. 952–910 cm−1), A_860 (non-structural carbohydrates, peak area centered at ca. 860 cm−1 with region and baseline: ca. 880–827 cm−1), H_1415 (structural carbohydrate, peak height centered at ca. 1415 cm−1 with baseline: ca. 1485–1188 cm−1), H_1370 (structural carbohydrate, peak height at ca. 1370 cm−1 with a baseline: ca. 1485–1188 cm−1). The study shows that the grains had lower spectral intensity (KM Unit) of the cellulosic compounds of A_1240 (8.5 vs. 36.6, P < 0.05), higher (P < 0.05) intensities of the non-structural carbohydrate of A_928 (17.3 vs. 2.0) and A_860 (20.7 vs. 7.6) than their co-products from bioethanol processing. There were no differences (P > 0.05) in the peak area intensities of A_Cell (structural CHO) at 1292–1198 cm−1 and A_CHO (total CHO) at 1187–950 cm−1 with average molecular infrared intensity KM unit of 226.8 and 508.1, respectively. There were no differences (P > 0.05) in the peak height intensities of H_1415 and H_1370 (structural CHOs) with average intensities 1.35 and 1.15, respectively. The multivariate molecular spectral analyses were able to discriminate and classify between the corn and corn DDGS molecular spectra, but not wheat and wheat DDGS. This study indicated that the bioethanol processing changes carbohydrate molecular structural profiles, compared with the original grains. However, the sensitivities of different types of carbohydrates and different grains (corn and wheat) to the processing differ. In general, the bioethanol processing increases the molecular spectral intensities for the structural carbohydrates and decreases the intensities for the non-structural carbohydrates. Further study is needed to quantify carbohydrate related molecular spectral features of the bioethanol co-products in relation to nutrient supply and availability of carbohydrates. PMID:21673931

  15. Thermodynamic evidence for Ca2+-mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction.

    PubMed

    de la Fuente, Jesús M; Eaton, Peter; Barrientos, Africa G; Menéndez, Margarita; Penadés, Soledad

    2005-05-04

    Thermodynamic evidence for the selective Ca(2+)-mediated self-aggregation via carbohydrate-carbohydrate interactions of gold glyconanoparticles functionalized with the disaccharides lactose (lacto-Au) and maltose (malto-Au), or the biologically relevant trisaccharide Lewis X (Le(X)-Au), was obtained by isothermal titration calorimetry. The aggregation process was also directly visualized by atomic force microscopy. It was shown in the case of the trisaccharide Lewis X that the Ca(2+)-mediated aggregation is a slow process that takes place with a decrease in enthalpy of 160 +/- 30 kcal mol(-)(1), while the heat evolved in the case of lactose and maltose glyconanoparticles was very low and thermal equilibrium was quickly achieved. Measurements in the presence of Mg(2+) and Na(+) cations confirm the selectivity for Ca(2+) of Le(X)-Au glyconanoparticles. The relevance of this result to cell-cell adhesion process mediated by carbohydrate-carbohydrate interactions is discussed.

  16. Carbohydrate Structure Database: tools for statistical analysis of bacterial, plant and fungal glycomes

    PubMed Central

    Egorova, K.S.; Kondakova, A.N.; Toukach, Ph.V.

    2015-01-01

    Carbohydrates are biological blocks participating in diverse and crucial processes both at cellular and organism levels. They protect individual cells, establish intracellular interactions, take part in the immune reaction and participate in many other processes. Glycosylation is considered as one of the most important modifications of proteins and other biologically active molecules. Still, the data on the enzymatic machinery involved in the carbohydrate synthesis and processing are scattered, and the advance on its study is hindered by the vast bulk of accumulated genetic information not supported by any experimental evidences for functions of proteins that are encoded by these genes. In this article, we present novel instruments for statistical analysis of glycomes in taxa. These tools may be helpful for investigating carbohydrate-related enzymatic activities in various groups of organisms and for comparison of their carbohydrate content. The instruments are developed on the Carbohydrate Structure Database (CSDB) platform and are available freely on the CSDB web-site at http://csdb.glycoscience.ru. Database URL: http://csdb.glycoscience.ru PMID:26337239

  17. Polymeric mannosides prevent DC-SIGN-mediated cell-infection by cytomegalovirus.

    PubMed

    Brument, S; Cheneau, C; Brissonnet, Y; Deniaud, D; Halary, F; Gouin, S G

    2017-09-20

    Human cytomegalovirus (HCMV) is a beta-herpesvirus with a high prevalence in the population. HCMV is asymptomatic for immunocompetent adults but is a leading cause of morbidity for new born and immunocompromised patients. It was recently shown that the envelope glycoprotein B (gB) of HCMV interacts with the Dendritic Cell-Specific ICAM-3 Grabbing Non integrin (DC-SIGN) to infect the host. In this work we developed a set of DC-SIGN blockers based on mono-, di-, tetra and polyvalent mannosides. The multivalent mannosides were designed to interact with the carbohydrate recognition domains of DC-SIGN in a chelate or bind and recapture process, and represent the first chemical antiadhesives of HCMV reported so far. Polymeric dextrans coated with triazolylheptylmannoside (THM) ligands were highly potent, blocking the gB and DC-SIGN interaction at nanomolar concentrations. The compounds were further assessed for their ability to prevent the DC-SIGN mediated HCMV infection of dendritic cells. A dextran polymer coated with an average of 902 THM ligands showed an outstanding effect in blocking the HCMV trans-infection with IC 50 values down to the picomolar range (nanomolar when expressed in THM concentration). Each THM moiety on the polymer surpassed the antiadhesive effect of the methylmannoside reference by more than four orders of magnitude. The compound proved non-cytotoxic at the high concentration of 2 mM and therefore represents an interesting antiadhesive candidate against HCMV and potentially against other virus hijacking dendritic cells to infect the host.

  18. Extraction of extracellular polymeric substances from aerobic granule with compact interior structure.

    PubMed

    Adav, Sunil S; Lee, Duu-Jong

    2008-06-15

    Extracellular polymeric substances (EPS) were extracted from aerobic granules of compact interior structure using seven extraction methods. Ultrasound followed by the chemical reagents formamide and NaOH outperformed other methods in extracting EPS from aerobic granules of compact interior. The collected EPS revealed no contamination by intracellular substances and consisted mainly of proteins, polysaccharides, humic substances and lipids. The quantity of extracted proteins exhibited a weak correlation with quantity of extracted carbohydrates but no correlation with quantity of extracted humic substances. The total polysaccharides/total proteins (PN/PS) ratios for sludge flocs were approximately 0.9 regardless of extraction method. Protein content was significantly enriched in the granules, producing a PN/PS ratio of 3.4-6.2. This experimental result correlated with observations using excitation-emission matrix (EEM) and confocal laser scanning microscope technique. However, detailed study disproved the use of EEM results as a quantitative index of extracted EPS from sludge flocs or from granules.

  19. Carbohydrates as indicators of biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Lazareva, E. V.; Romankevich, E. A.

    2012-05-01

    A method is presented to study the carbohydrate composition of marine objects involved into sedimento- and diagenesis (plankton, particulate matter, benthos, and bottom sediments). The analysis of the carbohydrates is based upon the consecutive separation of their fractions with different solvents (water, alkali, and acid). The ratio of the carbohydrate fractions allows one to evaluate the lability of the carbohydrate complex. It is also usable as an indicator of the biogeochemical processes in the ocean, as well of the genesis and the degree of conversion of organic matter in the bottom sediments and nodules. The similarity in the monosaccharide composition is shown for dissolved organic matter and aqueous and alkaline fractions of seston and particulate matter.

  20. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging.

    PubMed

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-07-25

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes.

  1. Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging

    PubMed Central

    Chen, Junling; Gao, Jing; Zhang, Min; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-01-01

    Carbohydrates on the cell surface control intercellular interactions and play a vital role in various physiological processes. However, their systemic distribution patterns are poorly understood. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we systematically revealed that several types of representative carbohydrates are found in clustered states. Interestingly, the results from dual-color dSTORM imaging indicate that these carbohydrate clusters are prone to connect with one another and eventually form conjoined platforms where different functional glycoproteins aggregate (e.g., epidermal growth factor receptor, (EGFR) and band 3 protein). A thorough understanding of the ensemble distribution of carbohydrates on the cell surface paves the way for elucidating the structure-function relationship of cell membranes and the critical roles of carbohydrates in various physiological and pathological cell processes. PMID:27453176

  2. Biofunctionalization of multiwalled carbon nanotubes by electropolymerized poly(pyrrole-concanavalin A) films.

    PubMed

    Papper, Vladislav; Elouarzaki, Kamal; Gorgy, Karine; Sukharaharja, Ayrine; Cosnier, Serge; Marks, Robert S

    2014-10-13

    The synthesis and electropolymerization of a pyrrolic concanavalin A derivative (pyrrole-Con A) onto a multiwalled carbon nanotube (MWCNT) deposit is reported. Glucose oxidase was then immobilized onto the MWCNT-poly(pyrrole-Con A) coating by affinity carbohydrate interactions with the polymerized Con A protein. The resulting enzyme electrode was applied to the amperometric detection of glucose exhibiting a high sensitivity of 36 mA cm(-2) mol(-1) L and a maximum current density of 350 μA cm(-2) . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sustainable polymers from renewable resources

    NASA Astrophysics Data System (ADS)

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K.

    2016-12-01

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  4. Sustainable polymers from renewable resources.

    PubMed

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2016-12-14

    Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.

  5. Carbohydrate Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally ...

  6. Photopolymerization Of Levitated Droplets

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan; Rhim, Won-Kyu; Hyson, Michael T.; Chang, Manchium

    1989-01-01

    Experimental containerless process combines two established techniques to make variety of polymeric microspheres. In single step, electrostatically-levitated monomer droplets polymerized by ultraviolet light. Faster than multiple-step emulsion polymerization process used to make microspheres. Droplets suspended in cylindrical quadrupole electrostatic levitator. Alternating electrostatic field produces dynamic potential along axis. Process enables tailoring of microspheres for medical, scientific, and industrial applications.

  7. Focus on Nutrition: Cats and carbohydrates: implications for health and disease.

    PubMed

    Laflammme, Dottie

    2010-01-01

    It has been suggested that high-carbohydrate diets contribute to the development of feline diabetes and obesity. The evidence does not support this. Healthy cats efficiently digest and metabolize properly processed starches and complex carbohydrates. Dietary carbohydrate can efficiently meet cats' cellular requirement for carbohydrate (glucose), sparing protein that would otherwise be needed for gluconeogenesis. Excess calories, regardless of source, contribute to obesity and obesity-related problems, but low-carbohydrate, high-fat diets pose a greater risk for obesity. The increasing prevalence of feline diabetes appears to be due to obesity and aging rather than to dietary carbohydrates. However, once cats become diabetic, consumption of a high-protein, low-carbohydrate diet may be beneficial.

  8. Carbohydrate and exercise performance: the role of multiple transportable carbohydrates.

    PubMed

    Jeukendrup, Asker E

    2010-07-01

    Carbohydrate feeding has been shown to be ergogenic, but recently substantial advances have been made in optimizing the guidelines for carbohydrate intake during prolonged exercise. It was found that limitations to carbohydrate oxidation were in the absorptive process most likely because of a saturation of carbohydrate transporters. By using a combination of carbohydrates that use different intestinal transporters for absorption it was shown that carbohydrate delivery and oxidation could be increased. Studies demonstrated increases in exogenous carbohydrate oxidation rates of up to 65% of glucose: fructose compared with glucose only. Exogenous carbohydrate oxidation rates reach values of 1.75 g/min whereas previously it was thought that 1 g/min was the absolute maximum. The increased carbohydrate oxidation with multiple transportable carbohydrates was accompanied by increased fluid delivery and improved oxidation efficiency, and thus the likelihood of gastrointestinal distress may be diminished. Studies also demonstrated reduced fatigue and improved exercise performance with multiple transportable carbohydrates compared with a single carbohydrate. Multiple transportable carbohydrates, ingested at high rates, can be beneficial during endurance sports in which the duration of exercise is 3 h or more.

  9. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus.

    PubMed

    Jurak, Edita; Kabel, Mirjam A; Gruppen, Harry

    2014-01-30

    Changes of plant cell wall carbohydrate structures occurring during the process to make suitable compost for growth of Agaricus bisporus are unknown. In this paper, composition and carbohydrate structures in compost samples collected during composting and mycelium growth were analyzed. Furthermore, different extracts of compost samples were prepared with water, 1M and 4M alkali and analyzed. At the beginning of composting, 34% and after 16 days of mycelium growth 27% of dry matter was carbohydrates. Carbohydrate composition analysis showed that mainly cellulose and poorly substituted xylan chains with similar amounts and ratios of xylan building blocks were present in all phases studied. Nevertheless, xylan solubility increased 20% over the period of mycelium growth indicating partial degradation of xylan backbone. Apparently, degradation of carbohydrates occurred over the process studied by both bacteria and fungi, mainly having an effect on xylan-chain length and solubility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism.

    PubMed

    Lairon, Denis; Play, Barbara; Jourdheuil-Rahmani, Dominique

    2007-04-01

    The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.

  11. Tidal and seasonal effects on the short-term temporal patterns of bacteria, microphytobenthos and exopolymers in natural intertidal biofilms (Brouage, France)

    NASA Astrophysics Data System (ADS)

    Orvain, Francis; De Crignis, Margot; Guizien, Katell; Lefebvre, Sébastien; Mallet, Clarisse; Takahashi, Eri; Dupuy, Christine

    2014-09-01

    Relationships between bacteria, microphytobenthos and extracellular polymeric substances (EPS) that make up microbial biofilms over bare mudflats were investigated at an hourly frequency during two 14-day spring-neap cycles in winter and summer 2008. Bacterial abundance and total chl a concentration were lower in summer (0.78 × 108 ± SD 0.39 × 108 cell.m- 2 and 59.0 ± SD 10.42 mgchla.m- 2) than in winter (3.7 × 108 ± SD 1.9 × 108 cell.m- 2 and 106.64 ± SD 11.29 mgchla.m- 2), coinciding with a high abundance of the gastropod Peringia ulvae in summer, which subsequently impacted 1st-cm chl a concentration by intense grazing. Bound and colloidal EPS carbohydrate temporal patterns were similar in winter (5.71 ± SD 3.95 and 4.67 ± SD 3.45 μg.g- 1, respectively) but were different in summer (14.9 ± SD 4.05 and 5.60 ± SD 4.50 μg.g- 1, respectively). Carbohydrate colloidal EPS appeared to be related to light and salinity, while 1st-mm chl a concentration was negatively affected by strong salinities and predation pressure by P. ulvae. The fluctuations of colloidal carbohydrates were remarkably similar in the two seasons with peaks just after spring tides when the highest irradiance was received by microphytobenthic cells. Apparently, colloidal EPS carbohydrates can protect cells against the high salinity values ranging from 32.3 to 50.4 PSU. The presence of bound EPS carbohydrates may be linked to sediment colonization and resistance of biofilm activity. Proteins in EPS were absent in winter and represented a small proportion in summer (10%), but they appeared to be a good indicator of potential synergistic effects between MPB and bacteria in summer. Conversely, bound EPS carbohydrates reached high levels in winter, while the number of bacteria decreased simultaneously, suggesting a negative effect on bacterial growth in the absence of proteins in EPS. There was a lower proportion (31%) of low molecular weight EPS in summer than in winter (83%), possibly in relation to desiccation.

  12. Carbohydrates in Supramolecular Chemistry.

    PubMed

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  13. Correlating molecular spectroscopy and molecular chemometrics to explore carbohydrate functional groups and utilization of coproducts from biofuel and biobrewing processing.

    PubMed

    Chen, Limei; Zhang, Xuewei; Yu, Peiqiang

    2014-06-04

    Dried distillers grains with solubles (DDGS) was coproducts from bioethanol and biobrewing industry. It was an excellent resource of protein and energy feedstuff in China. Conventional studies often focus on traditional nutritional profiles. To data, there is little research on molecular structure-nutrition interaction of carbohydrate in coproducts. In this study, five kinds of corn-grain based DDGS and two kinds of barley-grain based DDGS were collected from different manufactures in the north of China. They were coded as "1, 2, 3, 4, 5, 6, and 7", respectively. The primary purposes of this project were to investigate the molecular structure-nutrition interaction of carbohydrate in coproducts, in terms of (1) carbohydrate-related chemical composition and nutrient profiles, (2) predicted values for energy in coproducts for animal, and (3) in situ digestion of dry matter. The result showed that acid detergent fiber content in corn DDGS and barley DDGS had negative correlation with structural carbohydrate peak area, cellulose compounds, and carbohydrate component peaks (first, second, and total peak area), which were measured with molecular spectroscopy. The correlation between carbohydrate peak area (second and total) and digestible fiber (tdNDF) were negative. There were no correlation between carbohydrate spectral intensities and energy values, carbohydrate subfractions partitioned by CNCPS system, and in situ rumen degradation. The results indicate that carbohydrate spectral profiles (functional groups) are associated with the carbohydrate nutritive values in coproducts from biofuel and biobrewing processing.

  14. Developments of the studies on the polymerization under microgravity

    NASA Astrophysics Data System (ADS)

    Li, Ping; Yi, Zongchun

    Microgravity has been recognized as a new and useful way of processing materials for pharmacology biology and microelectronic In microgravity there is no direction for gravity sensitive processes which take part in crystal growth convection sedimentation physical--chemical processes in biological objects The absent of gravity leads to the possibility of synthesis of new materials which cannot be prepared on Earth The perspective for possible biotechnological applications gave an impetus to a series of experiments on polymerization in space by NASA Rocket-Space Corporation RSC ENERGIYA the Institute of Bioorganic Chemistry Uzbekistan and so on The influence of microgravity on polymerization is based on the exclusion of convection and sedimentation processes in curing polymer Under microgravity condition a frontal polymerization process and creation of high homogeneous polyacrilamide gel were observed 1 Thus a much better resolution result of proteins by electrophoresis on orbital PAG matrices was obtained than that on terrestrial PAG matrices A deeper understanding of conditions responsible for generation of physical properties of PAG synthesized on the Earth was a strong motivation for seeking gravity-sensitive mechanisms of polymerization The polymerization under microgravity can potentially applied on functional polymer The conductive polymer such as polypyrrole is usually utilized especially for microelectronics The polymerization of pyrrole in microgravity conditions was made to prepare polymer particles having shapes

  15. Chemical characterization of detrital sugar chains with peptides in oceanic surface particulate organic matter

    NASA Astrophysics Data System (ADS)

    Tsukasaki, A.; Nishida, T.; Tanoue, E.

    2016-02-01

    For better understanding of the dynamics of organic matter in the ocean interior, particulate organic matter (POM) in oceanic surface water is a key material as a starting material in food chain and biological carbon pump, and the source of dissolved organic matter. POM consists of a mixture of non-living POM (detritus) and small amount of living POM (organisms). Particulate combined amino acids (PCAAs) are one of the major components of POM and the most important source of nitrogen and carbon for heterotrophic organisms in marine environments. In our previous studies of molecular-level characterization of PCAAs using electrophoretic separation (SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis) with specific detection of protein/peptide and sugar chains, we reported that most of PCAAs existed as small-sized peptide chains with carbohydrate-rich remnants. Although carbohydrates are one of the major carbon components of POM, the details of molecular-level structures including sugar chains are unknown. In this study, we applied electrophoretic separation for sugar chains (FACE: fluorophore-assisted carbohydrate electrophoresis) to the POM samples collected from the surface water of the Pacific Ocean. The results showed that sugar chains with various degree of polymerization were detected in POM. The possible roles of such sugar chains in marine biogeochemical cycle of organic matter are discussed in the presentation.

  16. Biodiversity of thermophilic prokaryotes with hydrolytic activities in hot springs of Uzon Caldera, Kamchatka (Russia).

    PubMed

    Kublanov, Ilya V; Perevalova, Anna A; Slobodkina, Galina B; Lebedinsky, Aleksander V; Bidzhieva, Salima K; Kolganova, Tatyana V; Kaliberda, Elena N; Rumsh, Lev D; Haertlé, Thomas; Bonch-Osmolovskaya, Elizaveta A

    2009-01-01

    Samples of water from the hot springs of Uzon Caldera with temperatures from 68 to 87 degrees C and pHs of 4.1 to 7.0, supplemented with proteinaceous (albumin, casein, or alpha- or beta-keratin) or carbohydrate (cellulose, carboxymethyl cellulose, chitin, or agarose) biological polymers, were filled with thermal water and incubated at the same sites, with the contents of the tubes freely accessible to the hydrothermal fluid. As a result, several enrichment cultures growing in situ on different polymeric substrates were obtained. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments obtained after PCR with Bacteria-specific primers showed that the bacterial communities developing on carbohydrates included the genera Caldicellulosiruptor and Dictyoglomus and that those developing on proteins contained members of the Thermotogales order. DGGE analysis performed after PCR with Archaea- and Crenarchaeota-specific primers showed that archaea related to uncultured environmental clones, particularly those of the Crenarchaeota phylum, were present in both carbohydrate- and protein-degrading communities. Five isolates obtained from in situ enrichments or corresponding natural samples of water and sediments represented the bacterial genera Dictyoglomus and Caldanaerobacter as well as new archaea of the Crenarchaeota phylum. Thus, in situ enrichment and consequent isolation showed the diversity of thermophilic prokaryotes competing for biopolymers in microbial communities of terrestrial hot springs.

  17. Measurement and Analysis of in vitro Actin Polymerization

    PubMed Central

    Doolittle, Lynda K.; Rosen, Michael K.; Padrick, Shae B.

    2014-01-01

    Summary The polymerization of actin underlies force generation in numerous cellular processes. While actin polymerization can occur spontaneously, cells maintain control over this important process by preventing actin filament nucleation and then allowing stimulated polymerization and elongation by several regulated factors. Actin polymerization, regulated nucleation and controlled elongation activities can be reconstituted in vitro, and used to probe the signaling cascades cells use to control when and where actin polymerization occurs. Introducing a pyrene fluorophore allows detection of filament formation by an increase in pyrene fluorescence. This method has been used for many years and continues to be broadly used, owing to its simplicity and flexibility. Here we describe how to perform and analyze these in vitro actin polymerization assays, with an emphasis on extracting useful descriptive parameters from kinetic data. PMID:23868594

  18. Production of extracellular polymeric substances (EPS) by Serratia sp.1 using wastewater sludge as raw material and flocculation activity of the EPS produced.

    PubMed

    Bezawada, J; Hoang, N V; More, T T; Yan, S; Tyagi, N; Tyagi, R D; Surampalli, R Y

    2013-10-15

    Growth profile and extracellular polymeric substances (EPS) production of Serratia sp.1 was studied in shake flask fermentation for 72 h using wastewater sludge as raw material. Maximum cell concentration of 6.7 × 10(9) cfu/mL was obtained at 48 h fermentation time. EPS dry weight, flocculation activity and dewaterability of different EPS (tightly bound or TB-EPS, loosely bound or LB-EPS and broth-EPS or B-EPS) were also measured. The highest concentration of LB-EPS (2.45 g/L) and TB-EPS (0.99 g/L) were attained at 48 h of fermentation. Maximum flocculation activity and dewaterability (ΔCST) of TB-EPS (76.4%, 14.5s and 76.5%, 15.5s), LB-EPS (67.8%, 8.1s and 64.7%, 7.6s) and broth EPS (61%, 6.1s and 70.4%, 6.8s) were obtained at 36 and 48 h of growth. Higher flocculation activity and dewaterability were achieved with TB-EPS than with the two other EPS. Characterization of TB-EPS and LB-EPS was done in terms of their protein and carbohydrate content. Protein content was much higher in TB-EPS where as carbohydrate content was only slightly higher in TB-EPS than LB-EPS. Morphology of the Serratia strain after fermentation in sludge and TSB was observed under a scanning electron microscope and the cell size was found to be bigger in the sludge medium than the TSB medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities.

    PubMed

    Yeow, Jonathan; Boyer, Cyrille

    2017-07-01

    The polymerization-induced self-assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo-PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo-PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo-PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self-assembly process. The purpose of this mini-review is therefore to examine some of these recent advances that have been made in Photo-PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems.

  20. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  1. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  2. Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review.

    PubMed

    Sharma, Virender K; Oturan, Mehmet; Kim, Hyunook

    2014-01-01

    Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed.

  3. Towards complete hydrolysis of soy flour carbohydrates by enzyme mixtures for protein enrichment: A modeling approach.

    PubMed

    Loman, Abdullah Al; Ju, Lu-Kwang

    2016-05-01

    Soy protein is a well-known nutritional supplement in proteinaceous food and animal feed. However, soybeans contain complex carbohydrate. Selective carbohydrate removal by enzymes could increase the protein content and remove the indigestibility of soy products for inclusion in animal feed. Complete hydrolysis of soy flour carbohydrates is challenging due to the presence of proteins and different types of non-structural polysaccharides. This study is designed to guide complex enzyme mixture required for hydrolysis of all types of soy flour carbohydrates. Enzyme broths from Aspergillus niger, Aspergillus aculeatus and Trichoderma reesei fermentations were evaluated in this study for soy carbohydrate hydrolysis. The resultant hydrolysate was measured for solubilized carbohydrate by both total carbohydrate and reducing sugar analyses. Conversion data attained after 48h hydrolysis were first fitted with models to determine the maximum fractions of carbohydrate hydrolyzable by each enzyme group, i.e., cellulase, xylanase, pectinase and α-galactosidase. Kinetic models were then developed to describe the increasing conversions over time under different enzyme activities and process conditions. The models showed high fidelity in predicting soy carbohydrate hydrolysis over broad ranges of soy flour loading (5-25%) and enzyme activities: per g soy flour, cellulase, 0.04-30 FPU; xylanase, 3.5-618U; pectinase, 0.03-120U; and α-galactosidase, 0.01-60U. The models are valuable in guiding the development and production of optimal enzyme mixtures toward hydrolysis of all types of carbohydrates present in soy flour and in optimizing the design and operation of hydrolysis reactor and process. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Room temperature preparation of fluorescent starch nanoparticles from starch-dopamine conjugates and their biological applications.

    PubMed

    Shi, Yingge; Xu, Dazhuang; Liu, Meiying; Fu, Lihua; Wan, Qing; Mao, Liucheng; Dai, Yanfeng; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-01-01

    Fluorescent organic nanoparticles (FONs) have been regarded as the promising candidates for biomedical applications owing to their well adjustment of chemical structure and optical properties and good biological properties. However, the preparation of FONs from the natural derived polymers has been rarely reported thus far. In current work, we reported a novel strategy for preparation of FONs based on the self-polymerization of starch-dopamine conjugates and polyethyleneimine in rather mild experimental conditions, including air atmosphere, aqueous solution, absent catalysts and at room temperature. The morphology, chemical structure and optical properties of the resultant starch-based FONs were investigated by different characterization techniques. Biological evaluation results demonstrated that these starch-based FONs possess good biocompatibility and fluorescent imaging performance. More importantly, the novel strategy might also be extended for the preparation of many other carbohydrate polymers based FONs with different structure and functions. Therefore, this work opens a new avenue for the preparation and biomedical applications of luminescent carbohydrate polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dissociation reactions of potassiated glucose: deionization, potassium hydroxide loss, and cross-ring dissociation

    NASA Astrophysics Data System (ADS)

    Dyakov, Y. A.; Kazaryan, M. A.; Golubkov, M. G.; Gubanova, D. P.; Asratyan, A. A.

    2018-04-01

    Photochemical properties of carbohydrates, including mono- and polysaccharides, as well as various kinds of glycoproteins, proteoglycans, and glycolipids, take great attention last decades due to their significance for clarifying physical and chemical processes happening in biological molecules under irradiation. Understanding of excitation and ionization processes is important for interpretation of mass spectrometric (MS) experiments, which is the main instrument for quick and reliable analysis of biological samples. While polynucleotides and simple proteins can be easily studied by standard MS techniques (MALDI, ESI, and CID), carbohydrates and complicated biomolecules containing oligosaccharide residues are difficult to be ionized. Carbohydrates give a low signal yield. Their detection and analysis requires the special equipment and technology. Therefore, the development of new efficient methods for identification of carbohydrates in biological samples currently is the critical scientific and technical problem. In this work we study dissociation processes taking place in potassiated α- and β-glucose, which can be concerned as the modelling molecule for investigation of wide range of carbohydrates and carbohydrate fragments of biomolecules containing potassium ion as the ionization source. Here we compare deionization process with H2O and KOH elimination channels, as far as their competition with cross-ring dissociation processes. Potential energy surface were optimized by the density functional B3LYP/6-31G* method. Single point energy calculations in minima and transition state points were performed by G3(MP2,CCSD) ab initio method.

  6. Improved sugar yields from biomass sorghum feedstocks: comparing low-lignin mutants and pretreatment chemistries

    USDA-ARS?s Scientific Manuscript database

    Background: For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars b...

  7. (1)H NMR spectroscopy for profiling complex carbohydrate mixtures in non-fractionated beer.

    PubMed

    Petersen, Bent O; Nilsson, Mathias; Bøjstrup, Marie; Hindsgaul, Ole; Meier, Sebastian

    2014-05-01

    A plethora of biological and biotechnological processes involve the enzymatic remodelling of carbohydrates in complex mixtures whose compositions affect both the processes and products. In the current study, we employed high-resolution (1)H NMR spectroscopy for the analysis of cereal-derived carbohydrate mixtures as exemplified on six beer samples of different styles. Structural assignments of more than 50 carbohydrate moieties were obtained using (1)H1-(1)H2 groups as structural reporters. Spectroscopically resolved carbohydrates include more than ''20 different'' small carbohydrates with more than 38 isomeric forms in addition to cereal polysaccharide fragments with suspected organoleptic and prebiotic function. Structural motifs at the cleavage sites of starch, β-glucan and arabinoxylan fragments were identified, showing different extent and specificity of enzymatic polysaccharide cleavage during the production of different beer samples. Diffusion ordered spectroscopy supplied independent size information for the characterisation and identification of polysaccharide fragments, indicating the presence especially of high molecular weight arabinoxylan fragments in the final beer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale.

    PubMed

    Hura, Tomasz; Dziurka, Michał; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga

    2016-09-01

    Carbohydrates are used in plant growth processes, osmotic regulation and secondary metabolism. A study of the allocation of carbohydrates to a target set of metabolites during triticale acclimation to soil drought was performed. The study included a semi-dwarf cultivar 'Woltario' and a long-stemmed cultivar 'Moderato', differing in the activity of the photosynthetic apparatus under optimum growth conditions. Differences were found in the quantitative and qualitative composition of individual carbohydrates and phenolic compounds, depending on the developmental stage and water availability. Soluble carbohydrates in the semi-dwarf 'Woltario' cv. under soil drought were utilized for synthesis of starch, soluble phenolic compounds and an accumulation of cell wall carbohydrates. In the typical 'Moderato' cv., soluble carbohydrates were primarily used for the synthesis of phenolic compounds that were then incorporated into cell wall structures. Increased content of cell wall-bound phenolics in 'Moderato' cv. improved the cell wall tightness and reduced the rate of leaf water loss. In 'Woltario' cv., the increase in cell osmotic potential due to an enhanced concentration of carbohydrates and proline was insufficient to slow down the rate of leaf water loss. The mechanism of cell wall tightening in response to leaf desiccation may be the main key in the process of triticale acclimation to soil drought. Copyright © 2016 Elsevier GmbH. All rights reserved.

  9. Functionalized C-Glycoside Ketohydrazones: Carbohydrate Derivatization that Retains the Ring Integrity of the Terminal Reducing Sugar

    USDA-ARS?s Scientific Manuscript database

    Glycosylation often mediates important biological processes through the interaction of carbohydrates with complementary proteins. Most chemical tools for the functional analysis of glycans are highly dependent upon various linkage chemistries that involve the reducing-terminus of carbohydrates. Ho...

  10. Enzyme recycle and fed-batch addition for high-productivity soybean flour processing to produce enriched soy protein and concentrated hydrolysate of fermentable sugars.

    PubMed

    Loman, Abdullah Al; Islam, S M Mahfuzul; Li, Qian; Ju, Lu-Kwang

    2017-10-01

    Despite having high protein and carbohydrate, soybean flour utilization is limited to partial replacement of animal feed to date. Enzymatic process can be exploited to increase its value by enriching protein content and separating carbohydrate for utilization as fermentation feedstock. Enzyme hydrolysis with fed-batch and recycle designs were evaluated here for achieving this goal with high productivities. Fed-batch process improved carbohydrate conversion, particularly at high substrate loadings of 250-375g/L. In recycle process, hydrolysate retained a significant portion of the limiting enzyme α-galactosidase to accelerate carbohydrate monomerization rate. At single-pass retention time of 6h and recycle rate of 62.5%, reducing sugar concentration reached up to 120g/L using 4ml/g enzyme. When compared with batch and fed-batch processes, the recycle process increased the volumetric productivity of reducing sugar by 36% (vs. fed-batch) to 57% (vs. batch) and that of protein product by 280% (vs. fed-batch) to 300% (vs. batch). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Facile Purification of Milligram to Gram Quantities of Condensed Tannins According to Mean Degree of Polymerization and Flavan-3-ol Subunit Composition.

    PubMed

    Brown, Ron H; Mueller-Harvey, Irene; Zeller, Wayne E; Reinhardt, Laurie; Stringano, Elisabetta; Gea, An; Drake, Christopher; Ropiak, Honorata M; Fryganas, Christos; Ramsay, Aina; Hardcastle, Emily E

    2017-09-13

    Unambiguous investigation of condensed tannin (CT) structure-activity relationships in biological systems requires well-characterized, high-purity CTs. Sephadex LH-20 and Toyopearl HW-50F resins were compared for separating CTs from acetone/water extracts, and column fractions analyzed for flavan-3-ol subunits, mean degree of polymerization (mDP), and purity. Toyopearl HW-50F generated fractions with higher mDP values and better separation of procyanidins (PC) and prodelphinidins (PD) but required a prepurification step, needed more time for large scale purifications, and gave poorer recoveries. Therefore, two gradient elution schemes were developed for CT purification on Sephadex LH-20 providing 146-2000 mg/fraction. Fractions were analyzed by thiolysis and NMR spectroscopy. In general, PC/PD ratios decreased and mDP increased during elution. 1 H NMR spectroscopy served as a rapid screening tool to qualitatively determine CT enrichment and carbohydrate impurities present, guiding fractionation toward repurification or 1 H- 13 C HSQC NMR spectroscopy and thiolysis. These protocols provide options for preparing highly pure CT samples.

  12. Characterization of Extracellular Polymeric Substances Produced by Pseudomonas fragi Under Air and Modified Atmosphere Packaging.

    PubMed

    Wang, Guang-Yu; Ma, Fang; Wang, Hu-Hu; Xu, Xing-Lian; Zhou, Guang-Hong

    2017-09-01

    Extracellular polymeric substances (EPS) play an important role in bacterial biochemical properties. The characteristics of EPS from 2 strains of Pseudomonas fragi cultured in meat aerobically (control) and in modified atmosphere packaging (MAP) were studied. The amount and components of EPS, the surface properties, and the effect on biofilm formation of several spoilage organisms were evaluated. The results showed that MAP inhibited the growth of the P. fragi strains. Compared with the control, more loose and less bound EPS (containing protein and carbohydrate) were produced by P. fragi in MAP samples. MAP also caused increased cell autoaggregation and surface hydrophobicity. After the removal of the EPS, the surface property changes were strain-dependent, suggesting that membrane compositions were also changed. In addition, the EPS displayed significant antibiofilm activity on Pseudomonas fluorescens and Serratia liquefaciens. In conclusion, P. fragi strains not only modified the amount, components, and surface properties of EPS but also changed the cell membrane compositions to adapt to MAP stress. Moreover, EPS may play an important role in microbial community competitions. © 2017 Institute of Food Technologists®.

  13. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: Effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances.

    PubMed

    Remmas, Nikolaos; Melidis, Paraschos; Zerva, Ioanna; Kristoffersen, Jon Bent; Nikolaki, Sofia; Tsiamis, George; Ntougias, Spyridon

    2017-08-01

    A membrane bioreactor (MBR), accomplishing high nitrogen removal efficiencies, was evaluated under various landfill leachate concentrations (50, 75 and 100% v/v). Proteinous and carbohydrate extracellular polymeric substances (EPS) and soluble microbial product (SMP) were strongly correlated (p<0.01) with organic load, salinity and NH 4 + -N. Exceptionally high β-glucosidase activities (6700-10,100Ug -1 ) were determined during MBR operation with 50% v/v leachate, as a result of the low organic carbon availability that extendedly induced β-glucosidases to breakdown the least biodegradable organic fraction. Illumina sequencing revealed that candidate Saccharibacteria were dominant, independently of the leachate concentration applied, whereas other microbiota (21.2% of total reads) disappeared when undiluted leachate was used. Fungal taxa shifted from a Saccharomyces- to a newly-described Cryptomycota-based community with increasing leachate concentration. Indeed, this is the first report on the dominance of candidate Saccharibacteria and on the examination of their metabolic behavior in a bioreactor treating real wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Adsorption of cesium ion by marine actinobacterium Nocardiopsis sp. 13H and their extracellular polymeric substances (EPS) role in bioremediation.

    PubMed

    Sivaperumal, Pitchiah; Kamala, Kannan; Rajaram, Rajendran

    2018-02-01

    This paper evaluates the cesium adsorption of marine actinobacterium Nocardiposis sp. 13H strain isolated from nuclear power plant sites in India. It could remove 88.6 ± 0.72% of Cs + from test solution containing 10 mM CsCl 2 . The biosorption of Cs + with different environmental factors such as pH, temperature, and time interval is also determined. Scanning electron microscopy coupled with energy dispersive spectroscopy (EDS) confirmed the Cs + adsorption by Nocardiopsis sp. 13H. Most of the bound cesium was found to be associated extracellular polymeric substances (EPS) suggesting its interaction with the surface active groups. The main component of the EPS was carbohydrate followed by protein and nucleic acid. Further, Fourier transform infrared (FTIR) spectroscopy suggested the carboxyl, hydroxyl, and amide groups on the strain cell surface were likely to be involved in Cs + adsorption. Results from this study show Nocardiopsis sp. 13H microorganism could be useful in exploring the biosorption of radioisotope pollution and developing efficient and eco-friendly biosorbent for environmental cleanup.

  15. Comparison of thermophilic bacteria and alkyl polyglucose pretreatment on two-stage anaerobic digestion with waste sludge: Biogas production potential and substrate metabolism process.

    PubMed

    Guo, Liang; Zhang, Zengshuai; Gao, Mengchun; She, Zonglian; Zhao, Yangguo; Guo, Yiding; Sun, Jian

    2018-02-01

    To gain a better understanding of the influence on two-stage anaerobic digestion of waste sludge with thermophilic bacteria (TB) and alkyl polyglucose (APG) pretreatment, changing of soluble chemical oxygen demand (SCOD), carbohydrate and protein in extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed. The excitation-emission matrix (EEM) with fluorescence regional integration (FRI) was also used to investigate compositional and structural characteristics of DOM. The highest hydrogen and methane yield of TB pretreated sludge was 12.2 ml/g VS (volatile suspended solid) and 124.7 ml/g VS, and that of APG pretreated sludge was 28.3 ml/g VS and 19.9 ml/g VS. The VS removal of TB pretreated sludge (36.7%) was higher than APG pretreated sludge (27.1%) in the two-stage anaerobic digestion. The APG pretreatment could inhibit the activity of methanogens and the substrate (such as volatile fatty acids (VFAs), protein and soluble microbial materials) was accumulated compared with TB pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Three-dimensional fluorescence excitation-emission matrix (EEM) spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria.

    PubMed

    Guo, Liang; Lu, Mingmin; Li, Qianqian; Zhang, Jiawen; Zong, Yan; She, Zonglian

    2014-11-01

    The hydrolysis effect of waste sludge after multi-enzyme and thermophilic bacteria pretreatments is investigated using excitation-emission matrix (EEM) with fluorescence regional integration (FRI) in this study. The compositional characteristics of extracellular polymeric substances (EPS) and dissolved organic matters (DOM) were analyzed to evaluate the sludge disintegration. The EPS and cell wall in sludge were disrupted after hydrolysis which led to carbohydrate, protein and soluble chemical oxygen demand (SCOD) of DOM increasing in sludge supernatant. The bio-degradability level in the extracted fractions of EPS and DOM depending on the fluorescence zones was found after hydrolysis. The highest proportion of percent fluorescence response (Pi,n) in EPS and DOM was soluble microbial by-product and humic acid-like organics. A significant increase of humic acid-like organics in DOM after thermophilic bacteria hydrolysis was obtained. The assessment of hydrolysis using EEM coupled with FRI provided a new insight toward the bio-utilization process of waste sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Stereochemical Control in Carbohydrate Chemistry

    ERIC Educational Resources Information Center

    Batchelor, Rhys; Northcote, Peter T.; Harvey, Joanne E.; Dangerfield, Emma M.; Stocker, Bridget L.

    2008-01-01

    Carbohydrates, in the form of glycoconjugates, have recently been shown to control a wide range of cellular processes. Accordingly, students interested in the study of organic chemistry and biomedical sciences should be exposed to carbohydrate chemistry. To this end, we have developed a sequence of experiments that leads the student from the…

  18. Effects of carbohydrates on satiety: differences between liquid and solid food.

    PubMed

    Pan, An; Hu, Frank B

    2011-07-01

    To examine the satiety effect of carbohydrates with a focus on the comparison of liquid and solid food and their implications for energy balance and weight management. A number of studies have examined the role of dietary fiber, whole grains, and glycemic index or glycemic load on satiety and subsequent energy intake, but results remain inconclusive. Intake of liquid carbohydrates, particularly sugar-sweetened beverages, has increased considerably across the globe in recent decades in both adolescents and adults. In general, liquid carbohydrates produce less satiety compared with solid carbohydrates. Some energy from liquids may be compensated for at subsequent meals but because the compensation is incomplete, it leads to an increase in total long-term energy intake. Recent studies also suggest some potential differential responses of satiety by characteristics of the patients (e.g., race, sex, and body weight status). These differences warrant further research. Satiety is a complex process influenced by a number of properties in food. The physical form (solid vs. liquid) of carbohydrates is an important component that may affect the satiety process and energy intake. Accumulating evidence suggests that liquid carbohydrates generally produce less satiety than solid forms.

  19. [Current concepts of digestion and absorption of carbohydrates].

    PubMed

    Luz, S dos S; de Campos, P L; Ribeiro, S M; Tirapegui, J

    1997-01-01

    The aim of this paper is to review recent aspects of digestion and absorption of carbohydrates that are the main source of energy in human diets. Recent researches have found that starch is not largely hydrolysed and absorbed in the small bowel but one part of it is resistant to digestion. Several food factors may be responsible for digestion and absorption velocity and totality of carbohydrates. Therefore, carbohydrate classification must be based not only on molecular size to express the real carbohydrates utilization as an energy source by humans. In agreement with molecular size of carbohydrate, its classification can be: a) monosaccharides; b) disaccharides; c) oligosaccharides; d) polysaccharides. In agreement with carbohydrate digestibility or availability, its classification can be: a) digestible carbohydrates; b) undigestable carbohydrates (NSP). Carbohydrate digestibility can be altered by several factors like: Intrinsic factors: a) physical structure; b) molecular physical distribution; c) physical state of food; d) food antinutrients. Extrinsics factors: a) chewing; b) transit time of food; c) amount of starch present; d) diet antinutrients. Under influence of this factors, process of digestion happen by enzymatic activity a long the gastrointestinal tract. Salivary and pancreatic amylase; glycosidases of the duodenal enterocyte brush border (lactase, sacarase and maltase), whose activity happen by close interaction of digestive breakdown with transport. The summarized pathways of the absorptive process: 1. movement from the bulk phase of the lumenal or mucosal fluid to enterocyte surface; 2. movement across the brush border membrane through specific transporters: a) SGLT1; b) GLUT 5; c) passive diffusion. 3. movement across the basolateral membrane by the GLUT 2.

  20. The long underestimated carbonyl function of carbohydrates – an organocatalyzed shot into carbohydrate chemistry.

    PubMed

    Mahrwald, R

    2015-09-21

    The aggressive and strong development of organocatalysis provides several protocols for the convenient utilization of the carbonyl function of unprotected carbohydrates in C-C-bond formation processes. These amine-catalyzed mechanisms enable multiple cascade-protocols for the synthesis of a wide range of carbohydrate-derived compound classes. Several, only slightly different protocols, have been developed for the application of 1,3-dicarbonyl compounds in the stereoselective chain-elongation of unprotected carbohydrates and the synthesis of highly functionalized C-glycosides of defined configuration. In addition, C-glycosides can also be accessed by amine-catalyzed reactions with methyl ketones. By a one-pot cascade reaction of isocyanides with unprotected aldoses and amino acids access to defined configured glycopeptide mimetics is achieved. Depending on the reaction conditions different origins to control the installation of configuration during the bond-formation process were observed.

  1. Dynamics and Regulation of RecA Polymerization and De-Polymerization on Double-Stranded DNA

    PubMed Central

    Muniyappa, Kalappa; Yan, Jie

    2013-01-01

    The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo. PMID:23825559

  2. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    PubMed

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  3. Method for improving separation of carbohydrates from wood pulping and wood or biomass hydrolysis liquors

    DOEpatents

    Griffith, William Louis; Compere, Alicia Lucille; Leitten, Jr., Carl Frederick

    2010-04-20

    A method for separating carbohydrates from pulping liquors includes the steps of providing a wood pulping or wood or biomass hydrolysis pulping liquor having lignin therein, and mixing the liquor with an acid or a gas which forms an acid upon contact with water to initiate precipitation of carbohydrate to begin formation of a precipitate. During precipitation, at least one long chain carboxylated carbohydrate and at least one cationic polymer, such as a polyamine or polyimine are added, wherein the precipitate aggregates into larger precipitate structures. Carbohydrate gel precipitates are then selectively removed from the larger precipitate structures. The method process yields both a carbohydrate precipitate and a high purity lignin.

  4. Bacterial dynamics in a microphytobenthic biofilm: A tidal mesocosm approach

    NASA Astrophysics Data System (ADS)

    Agogué, Hélène; Mallet, Clarisse; Orvain, Francis; De Crignis, Margot; Mornet, Françoise; Dupuy, Christine

    2014-09-01

    In intertidal mudflats, during low tide exposure, microphytobenthos (MPB) migrate vertically through the surface sediment and form, with the heterotrophic bacteria, a transient biofilm. Inside this biofilm, multiple interactions exist between MPB and bacteria. These micro-organisms secrete a wide range of extracellular polymeric substances (EPS), which are major components of the biofilm matrix. In this study, we used a tidal mesocosm experiment in order to decipher the interactions of the MPB-EPS-bacteria complex within the biofilm. We tried to determine if the EPS could control bacterial activities and/or production and/or richness according to the age of the biofilm and to the immersion/emersion period. The dynamics of biomasses of MPB and prokaryotes, the bacterial production, the hydrolysis of predominating organic constituents in the dissolved organic carbon (DOC) pool (i.e., carbohydrates and polypeptides), and the bacterial structure were studied in relation to the different EPS fractions (carbohydrates and proteins: colloidal and bound) dynamics during 8 days. Our experiment had emphasized the influence of the environmental conditions (light, immersion/emersion) on the interactions within the biofilm and also on the effects on biofilm aging. Bacterial production was always inhibited by the bound EPS-carbohydrate, especially during low tide. Our results suggest that the concentration and composition of EPS had a major role in the bacterial/MPB interactions: these interactions can be either positive or negative in order to regulate the productive phases of MPB and bacteria.

  5. Force fields and scoring functions for carbohydrate simulation.

    PubMed

    Xiong, Xiuming; Chen, Zhaoqiang; Cossins, Benjamin P; Xu, Zhijian; Shao, Qiang; Ding, Kai; Zhu, Weiliang; Shi, Jiye

    2015-01-12

    Carbohydrate dynamics plays a vital role in many biological processes, but we are not currently able to probe this with experimental approaches. The highly flexible nature of carbohydrate structures differs in many aspects from other biomolecules, posing significant challenges for studies employing computational simulation. Over past decades, computational study of carbohydrates has been focused on the development of structure prediction methods, force field optimization, molecular dynamics simulation, and scoring functions for carbohydrate-protein interactions. Advances in carbohydrate force fields and scoring functions can be largely attributed to enhanced computational algorithms, application of quantum mechanics, and the increasing number of experimental structures determined by X-ray and NMR techniques. The conformational analysis of carbohydrates is challengeable and has gone into intensive study in elucidating the anomeric, the exo-anomeric, and the gauche effects. Here, we review the issues associated with carbohydrate force fields and scoring functions, which will have a broad application in the field of carbohydrate-based drug design. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Carbohydrate Analysis: Can We Control the Ripening of Bananas?

    NASA Astrophysics Data System (ADS)

    Deal, S. Todd; Farmer, Catherine E.; Cerpovicz, Paul F.

    2002-04-01

    We have developed an experiment for nutritional/introductory biochemistry courses that focuses on carbohydrate analysis--specifically, the carbohydrates found in bananas and the change in carbohydrate composition as the banana ripens. Pairs of students analyze the starch and reducing sugar content of green, ripe, and overripe bananas. Using the techniques and knowledge gained from these analyses, they then investigate the influence of various storage methods on the ripening process. While this experiment was developed for an introductory-level biochemistry lab, it can easily be adapted for use in other laboratory programs that seek to teach the fundamentals of carbohydrate analysis.

  7. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity

    PubMed Central

    2012-01-01

    Background Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. Results In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as a model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. Conclusion The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels. PMID:22490508

  8. Application of a Box-Behnken design for optimizing the extraction process of agave fructans (Agave tequilana Weber var. Azul).

    PubMed

    Flores-Girón, Emmanuel; Salazar-Montoya, Juan Alfredo; Ramos-Ramírez, Emma Gloria

    2016-08-01

    Agave (Agave tequilana Weber var. Azul) is an industrially important crop in México since it is the only raw material appropriate to produce tequila, an alcoholic beverage. Nowadays, however, these plants have also a nutritional interest as a source of functional food ingredients, owing to the prebiotic potential of agave fructans. In this study, a Box-Behnken design was employed to determine the influence of temperature, liquid:solid ratio and time in a maceration process for agave fructan extraction and optimization. The developed regression model indicates that the selected study variables were statistical determinants for the extraction yield, and the optimal conditions for maximum extraction were a temperature of 60 °C, a liquid:solid ratio of 10:1 (v/w) and a time of 26.7 min, corresponding to a predicted extraction yield of 37.84%. Through selective separation via precipitation with ethanol, fructans with a degree of polymerization of 29.1 were obtained. Box-Behnken designs are useful statistical methods for optimizing the extraction process of agave fructans. A mixture of carbohydrates was obtained from agave powder. This optimized method can be used to obtain fructans for use as prebiotics or as raw material for obtaining functional oligosaccharides. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Tracking Dynamics of Plant Biomass Composting by Changes in Substrate Structure, Microbial Community, and Enzyme Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, H.; Tucker, M. P.; Baker, J. O.

    2012-04-01

    Understanding the dynamics of the microbial communities that, along with their secreted enzymes, are involved in the natural process of biomass composting may hold the key to breaking the major bottleneck in biomass-to-biofuels conversion technology, which is the still-costly deconstruction of polymeric biomass carbohydrates to fermentable sugars. However, the complexity of both the structure of plant biomass and its counterpart microbial degradation communities makes it difficult to investigate the composting process. In this study, a composter was set up with a mix of yellow poplar (Liriodendron tulipifera) wood-chips and mown lawn grass clippings (85:15 in dry-weight) and used as amore » model system. The microbial rDNA abundance data obtained from analyzing weekly-withdrawn composted samples suggested population-shifts from bacteria-dominated to fungus-dominated communities. Further analyses by an array of optical microscopic, transcriptional and enzyme-activity techniques yielded correlated results, suggesting that such population shifts occurred along with early removal of hemicellulose followed by attack on the consequently uncovered cellulose as the composting progressed. The observed shifts in dominance by representative microbial groups, along with the observed different patterns in the gene expression and enzymatic activities between cellulases, hemicellulases, and ligninases during the composting process, provide new perspectives for biomass-derived biotechnology such as consolidated bioprocessing (CBP) and solid-state fermentation for the production of cellulolytic enzymes and biofuels.« less

  10. Inhibitory Effects of Silver Nanoparticles on Removal of Organic Pollutants and Sulfate in an Anaerobic Biological Wastewater Treatment Process.

    PubMed

    Rasool, Kashif; Lee, Dae Sung

    2016-05-01

    The increasing use of silver nanoparticles (AgNPs) in commercial products and industrial processes raises issues regarding the toxicity of sludge biomass in biological wastewater treatment plants, due to potential antimicrobial properties. This study investigated the effects of AgNPs on removal of organic pollutants and sulfate in an anaerobic biological sulfate reduction process. At AgNPs concentrations of up to 10 mg/L, no significant inhibition of sulfate and COD removal was observed. However, at higher concentrations (50-200 mg/L) sulfate and COD removal efficiencies were significantly decreased to 51.8% and 33.6%, respectively. Sulfate and COD reduction followed first-order kinetics at AgNPs concentrations of up to 10 mg/L and second-order kinetics at AgNPs concentrations of 50-200 mg/L. Lactate dehydrogenase release profiles showed increases in cytotoxicity at AgNPs concentrations greater than 50 mg/L suggesting cell membrane disruption. Analysis of extracellular polymeric substances (EPS) from sulfidogenic sludge biomass and of Fourier transform infrared (FT-IR) spectra showed a decrease in concentrations of carbohydrates, proteins, humic substances, and lipids in the presence of AgNPs. Moreover, the interaction of AgNPs with sludge biomass and the damage caused to cell walls were confirmed through scanning electron microscopy with energy dispersive X-ray spectroscopy.

  11. Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum)

    Treesearch

    B.L. Wong; K.L. Baggett; A.H. Rye

    2003-01-01

    Sugar maple (Acer saccharum Marsh.) trees exhibit seasonal patterns of production, accumulation, and utilization of nonstructural carbohydrates that are closely correlated with phenological events and (or) physiological processes. The simultaneous seasonal patterns of both reserve and soluble carbohydrates in the leaves, twigs, branches, and trunks of healthy mature...

  12. Enzyme resistant carbohydrate based micro-scale materials from sugar beet (Beta vulgaris L.) pulp for food and pharmaceutical applications

    USDA-ARS?s Scientific Manuscript database

    Bio-based micro scale materials are increasingly used in functional food and pharmaceutical applications. The present study produced carbohydrate-based micro scale tubular materials from sugar beet (Beta vulgaris L.) pulp (SBP), a by-product of sugar beet processing. The isolated carbohydrates wer...

  13. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    PubMed

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  14. Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum.

    PubMed

    Benziman, M; Haigler, C H; Brown, R M; White, A R; Cooper, K M

    1980-11-01

    Calcofluor White ST, stilbene derivative used commerically as an optical brightener for cellulose, increased the rate of glucose polymerization into cellulose by resting cells of the gram-negative bacterium Acetobacter xylinum. This bacterium normally produces a ribbon of cellulose that is a composite of crystalline microfibrils. In concentrations above 0.1 mM, Calcofluor disrupts the assembly of crystalline cellulose I microfibrils and their integration into a composite ribbon by stoichiometric binding to glucose residues of newly polymerized glucan chains. Under these conditions, the rate of glucose polymerization increases up to 4 times the control rate, whereas oxygen uptake increases only 10-15%. These observed effects are readily reversible. If free Calcofluor is washed away or depleted below the threshold value by binding to cellulose as polymerization continues, ribbon production and the normal rate of polymerization resume. It is concluded that polymerization and crystallization are cell-directed, coupled processes and that the rate of crystallization determines the rate of polymerization. It is suggested that coupling must be maintained for biogenesis of crystalline cellulose I.

  15. 21 CFR 106.25 - In-process control.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... analyzed as specified in § 106.30(b)(1), the manufacturer shall analyze each in-process batch for: (1) Solids; (2) Protein, fat, and carbohydrates (carbohydrates either by analysis or by mathematical difference); (3) The indicator nutrient(s) in each nutrient premix; (4) Each nutrient added independently of...

  16. Fabrication of Carbohydrate Microarrays by Boronate Formation.

    PubMed

    Adak, Avijit K; Lin, Ting-Wei; Li, Ben-Yuan; Lin, Chun-Cheng

    2017-01-01

    The interactions between soluble carbohydrates and/or surface displayed glycans and protein receptors are essential to many biological processes and cellular recognition events. Carbohydrate microarrays provide opportunities for high-throughput quantitative analysis of carbohydrate-protein interactions. Over the past decade, various techniques have been implemented for immobilizing glycans on solid surfaces in a microarray format. Herein, we describe a detailed protocol for fabricating carbohydrate microarrays that capitalizes on the intrinsic reactivity of boronic acid toward carbohydrates to form stable boronate diesters. A large variety of unprotected carbohydrates ranging in structure from simple disaccharides and trisaccharides to considerably more complex human milk and blood group (oligo)saccharides have been covalently immobilized in a single step on glass slides, which were derivatized with high-affinity boronic acid ligands. The immobilized ligands in these microarrays maintain the receptor-binding activities including those of lectins and antibodies according to the structures of their pendant carbohydrates for rapid analysis of a number of carbohydrate-recognition events within 30 h. This method facilitates the direct construction of otherwise difficult to obtain carbohydrate microarrays from underivatized glycans.

  17. Investigation of Solution Polymerizations in Microgravity and 1 G

    NASA Technical Reports Server (NTRS)

    Kennedy, Alvin P.

    1998-01-01

    The in-situ dielectric spectra for the solution polymerization of polydiacetylene has been successfully measured. The results show a distinct difference between the response for the bulk solution and surface polymerization. It also shows a low frequency peak in the dissipation factor which is present in both the bulk and surface polymerizations. These features may prove to be significant indicators for important polymerization processes. Future studies will investigate the mechanisms responsible for these dielectric responses. This technique will eventually be used to monitor microgravity polymerizations and provide in-situ data on how microgravity affects solution polymerization.

  18. Hyper-activated motility in sperm capacitation is mediated by phospholipase D-dependent actin polymerization.

    PubMed

    Itach, Sarit Bar-Sheshet; Finklestein, Maya; Etkovitz, Nir; Breitbart, Haim

    2012-02-15

    In order to fertilize the oocyte, sperm must undergo a series of biochemical changes in the female reproductive tract, known as capacitation. Once capacitated, spermatozoon can bind to the zona pellucida of the egg and undergo the acrosome reaction (AR), a process that enables its penetration and fertilization of the oocyte. Important processes that characterize sperm capacitation are actin polymerization and the development of hyper-activated motility (HAM). Previously, we showed that Phospholipase D (PLD)-dependent actin polymerization occurs during sperm capacitation, however the role of this process in sperm capacitation is not yet known. In the present study, we showed for the first time the involvement of PLD-dependent actin polymerization in sperm motility during mouse and human capacitation. Sperm incubated under capacitation conditions revealed a time dependent increase in actin polymerization and HAM. Inhibition of Phosphatidic Acid (PA) formation by PLD using butan-1-ol, inhibited actin polymerization and motility, as well as in vitro fertilization (IVF) and the ability of the sperm to undergo the AR. The inhibition of sperm HAM by low concentration of butan-1-ol is completely restored by adding PA, further indicating the involvement of PLD in these processes. Furthermore, exogenous PA enhanced rapid actin polymerization that was followed by a rise in the HAM, as well as an increased in IVF rate. In conclusion, our results demonstrate that PLD-dependent actin polymerization is a critical step needed for the development of HAM during mouse and human sperm capacitation. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Effect of processing on the microstructure of finger millet by X-ray diffraction and scanning electron microscopy.

    PubMed

    Dharmaraj, Usha; Parameswara, P; Somashekar, R; Malleshi, Nagappa G

    2014-03-01

    Finger millet is one of the important minor cereals, and carbohydrates form its major chemical constituent. Recently, the millet is processed to prepare hydrothermally treated (HM), decorticated (DM), expanded (EM) and popped (PM) products. The present research aims to study the changes in the microstructure of carbohydrates using X-ray diffraction and scanning electron microscopy. Processing the millet brought in significant changes in the carbohydrates. The native millet exhibited A-type pattern of X-ray diffraction with major peaks at 2θ values of 15.3, 17.86 and 23.15°, whereas, all other products showed V-type pattern with single major peak at 2θ values ranging from 19.39 to 19.81°. The corresponding lattice spacing and the number of unit cells in a particular direction of reflection also reduced revealing that crystallinity of starch has been decreased depending upon the processing conditions. Scanning electron microscopic studies also revealed that the orderly pattern of starch granules changed into a coherent mass due to hydrothermal treatment, while high temperature short time treatment rendered a honey-comb like structure to the product. However, the total carbohydrates and non-starch polysaccharide contents almost remained the same in all the products except for DM and EM, but the individual carbohydrate components changed significantly depending on the type of processing.

  20. Snow on the Seafloor? Methods to Detect Carbohydrates in Deep-sea Sediments Impacted by the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Lincoln, S. A.; Freeman, K. H.

    2015-12-01

    A significant portion of the oil released from the Macondo well after the 2010 Deepwater Horizon (DwH) explosion reached the seafloor (1,2). The transfer of buoyant hydrocarbons from the sea surface and subsurface plumes to depths >1500 m, however, is not well understood. A prominent role for sinking marine snow--small, composite particles composed largely of extracellular polymeric substances exuded by algae and bacteria--has been proposed. Snow particles, rich in carbohydrates, may have sorbed and physically entrained oil from the water column as they sank. Several lines of evidence support this scenario: abundant snow was observed 3-4 weeks after the oil spill (3); oil and dispersants can induce marine snow formation (4); and flocculent material covering deep-sea corals near the DwH site contained biomarkers consistent with Macondo oil (5). To investigate whether the chemically complex marine oil snow leaves a direct sedimentary record, we analyzed carbohydrates at high resolution (2 mm intervals) in sediment cores collected at 4 sites in the northern Gulf of Mexico in 2013 using a modified phenol-sulfuric acid spectrophotometric method. We detected a sharp subsurface peak in carbohydrate concentrations near the Macondo well; we interpret this peak as post-DwH marine snow. Coeval carbohydrate, polycyclic aromatic hydrocarbon, and hopane profiles suggest a clear link between marine snow and Macondo oil components, as documented in a 3-year time-series at one site, and enable preliminary conclusions about the delivery and fate of marine snow components in sediments. We also characterized carbohydrates near the wellhead using fluorescent lectin-binding analyses developed for applications in cell biology. Particle morphologies include collapse structures suggestive of a water column origin. Finally, we explore the extent to which polysaccharide residues detected with selective lectins can be used to determine the provenance of marine snow (e.g., bacterial v. algal). (1) Valentine et al., 2014. PNAS 111, 15906-15911. (2) Romero et al., 2015. PLOS One 10(5): e0128371 (3) Passow et al., ERL 7, 035301. (4) Passow, 2014. Deep-Sea Res. II, http://dx.doi. org/10.1016/j.dsr2.2014.10.001i (5) White et al., 2012. PNAS 109(50), 20303-20308.

  1. A functional glycoprotein competitive recognition and signal amplification strategy for carbohydrate-protein interaction profiling and cell surface carbohydrate expression evaluation

    NASA Astrophysics Data System (ADS)

    Wang, Yangzhong; Chen, Zhuhai; Liu, Yang; Li, Jinghong

    2013-07-01

    A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes.A simple and sensitive carbohydrate biosensor has been suggested as a potential tool for accurate analysis of cell surface carbohydrate expression as well as carbohydrate-based therapeutics for a variety of diseases and infections. In this work, a sensitive biosensor for carbohydrate-lectin profiling and in situ cell surface carbohydrate expression was designed by taking advantage of a functional glycoprotein of glucose oxidase acting as both a multivalent recognition unit and a signal amplification probe. Combining the gold nanoparticle catalyzed luminol electrogenerated chemiluminescence and nanocarrier for active biomolecules, the number of cell surface carbohydrate groups could be conveniently read out. The apparent dissociation constant between GOx@Au probes and Con A was detected to be 1.64 nM and was approximately 5 orders of magnitude smaller than that of mannose and Con A, which would arise from the multivalent effect between the probe and Con A. Both glycoproteins and gold nanoparticles contribute to the high affinity between carbohydrates and lectin. The as-proposed biosensor exhibits excellent analytical performance towards the cytosensing of K562 cells with a detection limit of 18 cells, and the mannose moieties on a single K562 cell were determined to be 1.8 × 1010. The biosensor can also act as a useful tool for antibacterial drug screening and mechanism investigation. This strategy integrates the excellent biocompatibility and multivalent recognition of glycoproteins as well as the significant enzymatic catalysis and gold nanoparticle signal amplification, and avoids the cell pretreatment and labelling process. This would contribute to the glycomic analysis and the understanding of complex native glycan-related biological processes. Electronic supplementary information (ESI) available: Experimental details; characterization of probes; the influence of electrolyte pH; probe concentration and glucose concentration on the electrode ECL effect. See DOI: 10.1039/c3nr01598j

  2. 21 CFR 106.25 - In-process control.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false In-process control. 106.25 Section 106.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN..., and carbohydrates (carbohydrates either by analysis or by mathematical difference); (3) The indicator...

  3. 21 CFR 106.25 - In-process control.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false In-process control. 106.25 Section 106.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN..., and carbohydrates (carbohydrates either by analysis or by mathematical difference); (3) The indicator...

  4. 21 CFR 106.25 - In-process control.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false In-process control. 106.25 Section 106.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN..., and carbohydrates (carbohydrates either by analysis or by mathematical difference); (3) The indicator...

  5. 21 CFR 106.25 - In-process control.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false In-process control. 106.25 Section 106.25 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN..., and carbohydrates (carbohydrates either by analysis or by mathematical difference); (3) The indicator...

  6. Transcriptional switches in the control of macronutrient metabolism.

    PubMed

    Wise, Alan

    2008-06-01

    This review shows how some transcription factors respond to alterations in macronutrients. Carbohydrates induce enzymes for their metabolism and fatty acid synthesis. Fatty acids reduce carbohydrate processing, induce enzymes for their metabolism, and increase both gluconeogenesis and storage of fat. Fat stores help control carbohydrate uptake by other cells. The following main transcription factors are discussed: carbohydrate response element-binding protein; sterol regulatory element-binding protein-1c, cyclic AMP response element-binding protein, peroxisome proliferator-activated receptor-alpha, and peroxisome proliferator-activated receptor-gamma.

  7. SOM neural network fault diagnosis method of polymerization kettle equipment optimized by improved PSO algorithm.

    PubMed

    Wang, Jie-sheng; Li, Shu-xia; Gao, Jie

    2014-01-01

    For meeting the real-time fault diagnosis and the optimization monitoring requirements of the polymerization kettle in the polyvinyl chloride resin (PVC) production process, a fault diagnosis strategy based on the self-organizing map (SOM) neural network is proposed. Firstly, a mapping between the polymerization process data and the fault pattern is established by analyzing the production technology of polymerization kettle equipment. The particle swarm optimization (PSO) algorithm with a new dynamical adjustment method of inertial weights is adopted to optimize the structural parameters of SOM neural network. The fault pattern classification of the polymerization kettle equipment is to realize the nonlinear mapping from symptom set to fault set according to the given symptom set. Finally, the simulation experiments of fault diagnosis are conducted by combining with the industrial on-site historical data of the polymerization kettle and the simulation results show that the proposed PSO-SOM fault diagnosis strategy is effective.

  8. Thio-amide functionalized polymers via polymerization or post-polymerization modification

    NASA Astrophysics Data System (ADS)

    Ozcam, Ali; Henke, Adam; Stibingerova, Iva; Srogl, Jiri; Genzer, Jan

    2011-03-01

    Decreasing supplies of fresh water and increasing population necessitates development of advanced water cleaning technologies, which would facilitate the removal of water pollutants. Amongst the worst of such contaminants are heavy metals and cyanides, infamous for their high toxicity. To assist the water purification processes, we aim to synthesize functionalized macromolecules that would contribute in the decontamination processes by scavenging detrimental chemicals. Epitomizing this role thio-amide unit features remarkable chemical flexibility that facilitates reversible catch-release of the ions, where the behavior controlled by subtle red-ox changes in the environment. Chemical tunability of the thio-amide moiety enables synthesis of thio-amide based monomers and post-polymerization modification agents. Two distinct synthetic pathways, polymerization and post-polymerization modification, have been exploited, leading to functional thioamide-based macromolecules: thioamide-monomers were copolymerized with N-isopropylacrylamide and post-polymerization modifications of poly(dimethylaminoethyl methacrylate) and poly(propargyl methacrylate) were accomplished via quarternization and ``click'' reactions, respectively.

  9. Cooperative polymerization of α-helices induced by macromolecular architecture

    NASA Astrophysics Data System (ADS)

    Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun

    2017-07-01

    Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

  10. Cyclopropenimine superbases: Competitive initiation processes in lactide polymerization

    DOE PAGES

    Stukenbroeker, Tyler S.; Bandar, Jeffrey S.; Zhang, Xiangyi; ...

    2015-07-30

    Cyclopropenimine superbases were employed in this study to catalyze the ring-opening polymerization of lactide. Polymerization occurred readily in the presence and absence of alcohol initiators. Polymerizations in the absence of alcohol initiators revealed a competitive initiation mechanism involving deprotonation of lactide by the cyclopropenimine to generate an enolate. NMR and MALDI-TOF analysis of the poly(lactides) generated from cyclopropenimines in the absence of alcohol initiators showed acylated lactide and hydroxyl end groups. Finally, model studies and comparative experiments with guanidine and phosphazene catalysts revealed the subtle influence of the nature of the superbase on competitive initiation processes.

  11. Quantum Chemical Calculations of Amine-Catalyzed Polymerization of Silanol

    NASA Astrophysics Data System (ADS)

    Gu, Hongyu; Xu, Wenbin; Zhang, Jinlin; Qi, Zhenyi; Zhang, Tao; Song, Lixin

    2018-03-01

    Because of the technical importance of organosilicon materials, insight into the related synthetic processes is significantly essential. In this paper, the amine-catalyzed polymerization of silanol has been investigated by the density functional theory (DFT) method. Our data have shown that amines can catalytically promote the hydrogen transfer process by substantially reducing the energy barrier. The activation barrier via hydrogen transfer with catalysis is 38.32 kJ/mol, much lower than that of catalysis-free process (120.88 kJ/mol). The lower energy barrier is in agreement with the much more intense polymerization of silanols with amine catalysts. Based on the above results, amines and other catalysts capable of assisting hydrogen transfer are expected to be used as catalysts for silanol polymerization.

  12. Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.

    PubMed

    Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C

    2016-09-28

    Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.

  13. Use of the refractometer as a tool to monitor dietary formula concentration in gastric juice.

    PubMed

    Chang, W-K; Chen, M-Z; Chao, Y-C

    2002-12-01

    Critically ill patients do not always tolerate nasogastric tube feeding. Gastric residual volumes are widely used to evaluate feeding tolerance, but controversy exists about what constitutes the residual volume (diet formula or digestive juice). In this paper, we describe the use of the refractometer as a tool to monitor dietary formula concentration in gastric juice and evaluate gastric juice refractometry as a possible clinical application. Brix value (an index of the total solutes in solution) readings for polymeric diet at pH 1, 4, 7 and 8, and at 4 degrees C, 25 degrees C and 37 degrees C, and in fasting gastric juice were determined with a refractometer. We found that distilled water, minerals, and vitamins had low Brix values of 0+/-0, 1.2+/-0.1, and 0.4+/-0.1, respectively. On the other hand, because carbohydrate (17 g/100 ml), protein (5.3 g/100 ml), fat (4.1 g/100 ml), and full-strength polymeric diet had high concentrations of dissolved nutrients, they also had high Brix values (12.1+/-0.6, 6.5+/-0.1, 6.0+/-0.1, and 23.5+/-0.1, respectively). The Brix values of polymeric diet had a linear additive relationship with the diet formula concentration at various pHs, temperatures, and in the gastric juice. Brix value measurement can be used to monitor stomach dietary formula concentration. Such information can be obtained at the bedside and used to evaluate feeding-intolerant patients receiving enteral feeding.

  14. Filtered molasses concentrate from sugar cane: natural functional ingredient effective in lowering the glycaemic index and insulin response of high carbohydrate foods.

    PubMed

    Wright, Alison G; Ellis, Timothy P; Ilag, Leodevico L

    2014-12-01

    An aqueous filtered molasses concentrate (FMC) sourced from sugar cane was used as a functional ingredient in a range of carbohydrate-containing foods to reduce glycaemic response. When compared to untreated controls, postprandial glucose responses in the test products were reduced 5-20%, assessed by accredited glycaemic index (GI) testing. The reduction in glucose response in the test foods was dose-dependent and directly proportional to the ratio of FMC added to the amount of available carbohydrate in the test products. The insulin response to the foods was also reduced with FMC addition as compared to untreated controls. Inclusion of FMC in test foods did not replace any formulation ingredients; it was incorporated as an additional ingredient to existing formulations. Filtered molasses concentrate, made by a proprietary and patented process, contains many naturally occurring compounds. Some of the identified compounds are known to influence carbohydrate metabolism, and include phenolic compounds, minerals and organic acids. FMC, sourced from a by-product of sugar cane processing, shows potential as a natural functional ingredient capable of modifying carbohydrate metabolism and contributing to GI reduction of processed foods and beverages.

  15. SOURCE ASSESSMENT: POLYVINYL CHLORIDE

    EPA Science Inventory

    This report summarizes data on air emissions from the polyvinyl chloride (PVC) industry. PVC is manufactured by 20 companies at 35 plants. Each plant uses one or more of four possible polymerization processes: (1) suspension polymerization, (2) emulsion polymerization, (3) bulk p...

  16. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation.

    PubMed

    Kim, Kyoung Hyoun; Choi, In Seong; Kim, Ho Myeong; Wi, Seung Gon; Bae, Hyeun-Jong

    2014-02-01

    The microalga Chlorella vulgaris is a potential feedstock for bioenergy due to its rapid growth, carbon dioxide fixation efficiency, and high accumulation of lipids and carbohydrates. In particular, the carbohydrates in microalgae make them a candidate for bioethanol feedstock. In this study, nutrient stress cultivation was employed to enhance the carbohydrate content of C. vulgaris. Nitrogen limitation increased the carbohydrate content to 22.4% from the normal content of 16.0% on dry weight basis. In addition, several pretreatment methods and enzymes were investigated to increase saccharification yields. Bead-beating pretreatment increased hydrolysis by 25% compared with the processes lacking pretreatment. In the enzymatic hydrolysis process, the pectinase enzyme group was superior for releasing fermentable sugars from carbohydrates in microalgae. In particular, pectinase from Aspergillus aculeatus displayed a 79% saccharification yield after 72h at 50°C. Using continuous immobilized yeast fermentation, microalgal hydrolysate was converted into ethanol at a yield of 89%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. One-step synthesis of carbohydrate esters as antibacterial and antifungal agents.

    PubMed

    AlFindee, Madher N; Zhang, Qian; Subedi, Yagya Prasad; Shrestha, Jaya P; Kawasaki, Yukie; Grilley, Michelle; Takemoto, Jon Y; Chang, Cheng-Wei Tom

    2018-02-01

    Carbohydrate esters are biodegradable, and the degraded adducts are naturally occurring carbohydrates and fatty acids which are environmentally friendly and non-toxic to human. A simple one-step regioselective acylation of mono-carbohydrates has been developed that leads to the synthesis of a wide range of carbohydrate esters. Screening of these acylated carbohydrates revealed that several compounds were active against a panel of bacteria and fungi, including Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Candida albicans, Cryptococcus neoformans, Aspergillus flavus and Fusarium graminearum. Unlike prior studies on carbohydrate esters that focus only on antibacterial applications, our compounds are found to be active against both bacteria and fungi. Furthermore, the synthetic methodology is suitable to scale-up production for a variety of acylated carbohydrates. The identified lead compound, MAN014, can be used as an antimicrobial in applications such as food processing and preservation and for treatment of bacterial and fungal diseases in animals and plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Carbohydrate Analysis

    NASA Astrophysics Data System (ADS)

    Bemiller, James N.

    Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).

  19. Bacterial cell surface properties: role of loosely bound extracellular polymeric substances (LB-EPS).

    PubMed

    Zhao, Wenqiang; Yang, Shanshan; Huang, Qiaoyun; Cai, Peng

    2015-04-01

    This study investigated the effect of loosely bound extracellular polymeric substances (LB-EPS) on the comprehensive surface properties of four bacteria (Bacillus subtilis, Streptococcus suis, Escherichia coli and Pseudomonas putida). The removal of LB-EPS from bacterial surfaces by high-speed centrifugation (12,000×g) was confirmed by SEM images. Viability tests showed that the percentages of viable cells ranged from 95.9% to 98.0%, and no significant difference was found after treatment (P>0.05). FTIR spectra revealed the presence of phosphodiester, carboxylic, phosphate, and amino functional groups on bacteria surfaces, and the removal of LB-EPS did not alter the types of cell surface functional groups. Potentiometric titration results suggested the total site concentrations on the intact bacteria were higher than those on LB-EPS free bacteria. Most of the acidity constants (pKa) were almost identical, except the increased pKa values of phosphodiester groups on LB-EPS free S. suis and E. coli surfaces. The electrophoretic mobilities and hydrodynamic diameters of the intact and LB-EPS free bacteria were statistically unchanged (P>0.05), indicating LB-EPS had no influence on the net surface charges and size distribution of bacteria. However, LB-ESP could enhance cell aggregation processes. The four LB-EPS free bacteria all exhibited fewer hydrophobicity values (26.1-65.0%) as compared to the intact cells (47.4-69.3%), suggesting the removal of uncharged nonpolar compounds (e.g., carbohydrates) in LB-EPS. These findings improve our understanding of the changes in cell surface characterizations induced by LB-EPS, and have important implications for assessing the role of LB-EPS in bacterial adhesion and transport behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. 40 CFR 405.61 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials entered into process. It can be calculated by multiplying the fats, proteins and carbohydrates by... carbohydrates. Composition of input materials may be based on either direct analyses or generally accepted...

  1. 40 CFR 405.51 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials entered into process. It can be calculated by multiplying the fats, proteins and carbohydrates by... carbohydrates. Composition of input materials may be based on either direct analyses or generally accepted...

  2. 40 CFR 405.51 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials entered into process. It can be calculated by multiplying the fats, proteins and carbohydrates by... carbohydrates. Composition of input materials may be based on either direct analyses or generally accepted...

  3. 40 CFR 405.51 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials entered into process. It can be calculated by multiplying the fats, proteins and carbohydrates by... carbohydrates. Composition of input materials may be based on either direct analyses or generally accepted...

  4. Fabrication of lead zirconate titanate actuator via suspension polymerization casting

    NASA Astrophysics Data System (ADS)

    Miao, Weiguo

    2000-10-01

    The research presented herein has focused on the fabrication of a lead zirconate titanate (PZT) telescopic actuator from Suspension Polymerization Casting (SPC). Two systems were studied: an acrylamide-based hydrogel, and an acrylate-based nonaqueous system. Analytical tools such as thermomechanical analysis (TMA), differential scanning calorimetry (DSC), chemorheology, thermogravimetric analysis (TGA), and differential thermal analysis (DTA) were used to investigate the polymerization and burnout processes. The acrylamide hydrogel polymerization casting process used hydroxymethyl acrylamide (HMAM) monofunctional monomer with methylenebisacrylamide (MBAM) difunctional monomer, or used methacrylamide (MAM) as monofunctional monomer. High solid loading PZT slurries with low viscosities were obtained by optimizing the amounts of dispersant and the PZT powders. The overall activation energy of gelation was calculated to be 60--76 kJ/mol for the monomer solution, this energy was increased to 91 kJ/mol with the addition of PZT powder. The results show that the PZT powder has a retardation effect on gelation. Although several PZT tubes were made using the acrylamide-based system, the demolding and drying difficulties made this process unsuitable for building internal structures, such as the telescopic actuator. The acrylate-based system was used successfully to build telescopic actuator. Efforts were made to study the influence of composition and experimental conditions on the polymerization process. Temperature was found to have the largest impact on polymerization. To adjust the polymerization temperature and time, initiator and/or catalyst were used. PZT powder has a catalytic effect on the polymerization process. Compared with acrylamide systems, acrylate provided a strong polymer network to support the ceramic green body. This high strength is beneficial for the demolding process, but it can easily cause cracks during the burnout process. To solve the burnout issue, non-reactive decalin was used as a solvent to lower the stress inside the green body. The addition of decalin has no large impact on the polymerization process. With 15 wt% decalin in the monomer solution, the burnout process was successfully solved. The burnout process was monitored by TGA/DTA and TMA. A 51 vol% PZT filled acrylate slurry was cast into a mold made by Stereolithography (SLA), and after curing, the telescopic actuator was removed from the mold. This indirect SLA method provides an efficient way to build ceramic parts. PZT samples were sintered at 1275°C for 4 hours, with density over 98%. SEM analysis showed the sample made by SPC has a uniform microstructure, which may be beneficial to the electric properties. The sample made by polymerization has a d33 value about 680 pm/V, which is better than the literature value (580 pm/V). The electric tests showed this telescopic actuator produced a maximum deflection of 24.7 mum at 250 kV/m, in line with theoretical calculations. Compared with actuators made by other methods, the actuator made by SPC provides a comparable structural factor (187.5). The distortion in actuators is caused by fabrication and sintering.

  5. Highly reflective polymeric substrates functionalized utilizing atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato

    2015-08-01

    Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.

  6. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High boiling point solutions are needed because in order to produce a propagating front, a high front temperature is needed to produce sufficiently rapid decomposition of the free radical initiator and subsequent free radical polymerization and heat release at a rate faster than heat losses remove thermal energy from the system. (While the conduction heat loss rate increases linearly with temperature, the free radical initiator decomposition is a high activation energy process whose rate increases much more rapidly than linearly with temperature, thus as the temperature decreases, the ratio of heat loss to heat generation increases, eventually leading to extinction of the front if the temperature is too low.) In order to obtain atmospheric pressure frontal polymerization in water, it is necessary to identify a monomer/initiator combination that is water soluble and will not extinguish even when the peak temperature (T*) is less than 100 C. In this work acrylic acid (AA) was chosen as the monomer because is it one of the most reactive monomers and can polymerize readily at low temperatures even without initiators. Ammonium persulfate (AP) was chosen as the initiator because it decomposes readily at low temperatures, produces relatively few bubbles and is commercially available. The propagation rates and extinction conditions of the fronts are studied for a range of AA and AP concentrations. Small amounts of fumed silica powder (Cab-o-sil, Cabot Corporation) were added to the solutions to inhibit buoyancy induced convection in the solutions; future studies will investigate the effects of buoyant convection within the solutions.

  7. Step-Growth Polymerization.

    ERIC Educational Resources Information Center

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  8. Making Polymeric Microspheres

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu; Hyson, Michael T.; Chung, Sang-Kun; Colvin, Michael S.; Chang, Manchium

    1989-01-01

    Combination of advanced techniques yields uniform particles for biomedical applications. Process combines ink-jet and irradiation/freeze-polymerization techniques to make polymeric microspheres of uniform size in diameters from 100 to 400 micrometer. Microspheres used in chromatography, cell sorting, cell labeling, and manufacture of pharmaceutical materials.

  9. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  10. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  11. Characterization and pharmacodynamic properties of Arnica montana complex.

    PubMed

    Šutovská, M; Capek, P; Kočmalová, M; Pawlaczyk, I; Zaczyńska, E; Czarny, A; Uhliariková, I; Gancarz, R; Fraňová, S

    2014-08-01

    A dark brown polymeric complex was isolated from flowering parts of medicinal plant Arnica montana L. by hot alkaline extraction followed by neutralization and multi-step extractions with organic solvents. It was recovered in 5.7% yield, on GPC showed two peaks of molecular mass of 9 and 3.5kDa. The compositional analyses of Arnica complex revealed the presence of carbohydrates (26%), uronic acids (12%), phenolics (1.25mM or 213mg of GAE/1g), and low protein content (∼1%). The carbohydrate moiety was rich mainly in rhamnogalacturonan and arabinogalactan. The antitussive tests showed the reduction of the cough efforts by Arnica complex, however, its total antitussive effect was lower compared with that of codeine, the strongest antitussive agent. The bronchodilatory activity of Arnica complex was similar to salbutamol, a classic antiasthmatic drug, and was confirmed by significantly decreased values of specific airways resistance in vivo and by considerably attenuated the amplitude of acetylcholine and histamine-induced contractions in vitro. Arnica complex did not show any cytotoxic effect on mouse fibroblast cultures and human lung cells, up to the dose of 500μg/mL. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Enhanced Polysaccharide Binding and Activity on Linear β-Glucans through Addition of Carbohydrate-Binding Modules to Either Terminus of a Glucooligosaccharide Oxidase

    PubMed Central

    Foumani, Maryam; Vuong, Thu V.; MacCormick, Benjamin; Master, Emma R.

    2015-01-01

    The gluco-oligosaccharide oxidase from Sarocladium strictum CBS 346.70 (GOOX) is a single domain flavoenzyme that favourably oxidizes gluco- and xylo- oligosaccharides. In the present study, GOOX was shown to also oxidize plant polysaccharides, including cellulose, glucomannan, β-(1→3,1→4)-glucan, and xyloglucan, albeit to a lesser extent than oligomeric substrates. To improve GOOX activity on polymeric substrates, three carbohydrate binding modules (CBMs) from Clostridium thermocellum, namely CtCBM3 (type A), CtCBM11 (type B), and CtCBM44 (type B), were separately appended to the amino and carboxy termini of the enzyme, generating six fusion proteins. With the exception of GOOX-CtCBM3 and GOOX-CtCBM44, fusion of the selected CBMs increased the catalytic activity of the enzyme (kcat) on cellotetraose by up to 50%. All CBM fusions selectively enhanced GOOX binding to soluble and insoluble polysaccharides, and the immobilized enzyme on a solid cellulose surface remained stable and active. In addition, the CBM fusions increased the activity of GOOX on soluble glucomannan by up to 30 % and on insoluble crystalline as well as amorphous cellulose by over 50 %. PMID:25932926

  13. Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water.

    PubMed

    He, Chao; Zhao, Jun; Yang, Yanhui; Wang, Jing-Yuan

    2016-07-01

    Dewatered sewage sludge was upgraded to hydrochar using hydrothermal conversion in sub- and near-critical water. Three characteristic temperature regimes responsible for the upgrading were identified. Drastic hydrolysis of carbohydrates, amide II or secondary amines occurred at 200°C while noticeable decarboxylation initiated above 260°C. Elevated temperature improved porosity but did not induce higher surface area. Aliphatic C was mainly transformed to aromatic hydrocarbon rather than aromatic C-O in subcritical water, whereas COO/N-CO and aromatic C-O were decomposed to carbohydrate C at 380°C. Below 300°C, carbon functionalities in hydrochars were thermally stable and faster decomposition of N than C-(C,H) resulted in dramatic decline of N/C. Above 300°C, C-H was gradually polymerized to aromatic C-(C,H) which was considerably transformed to C-(O,N) and C-H at 380°C. CaO favored intense destruction of aromatic C-C/C-H, anomeric O-C-O, C-H and C-(O,N) functionalities but introduced more aromatic C-O and OC-O. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching

    NASA Astrophysics Data System (ADS)

    Xiong, Yuting; Jiang, Ge; Li, Minmin; Qing, Guangyan; Li, Xiuling; Liang, Xinmiao; Sun, Taolei

    2017-01-01

    Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into regulating material’s macroscopic property and contributing to some new bio-applications. Here we designed a novel smart polymer based on polyacrylamide (PAM) grafted with lactose units (PAM-g-lactose0.11), and reported carbohydrate-carbohydrate interaction (CCI)-promoted macroscopic properties switching on this smart polymer surface. Detailed investigations indicated that the binding of sialic acid molecules with the grafted lactose units via the CCIs induced conformational transformation of the polymer chains, further resulted in remarkable and reversible switching in surface topography, wettability and stiffness. With these excellent recognition and response capacities towards sialic acid, the PAM-g-lactose0.11 further facilitated good selectivity, strong anti-interference and high adsorption capacity in the capture of sialylated glycopeptides (important biomarkers for cancers). This work provides some enlightenment for the development of biointerface materials with tunable property, as well as high-performance glycopeptide enrichment materials.

  15. Aliphatic, Cyclic, and Aromatic Organic Acids, Vitamins, and Carbohydrates in Soil: A Review

    PubMed Central

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-01-01

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research. PMID:24319374

  16. Aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil: a review.

    PubMed

    Vranova, Valerie; Rejsek, Klement; Formanek, Pavel

    2013-11-10

    Organic acids, vitamins, and carbohydrates represent important organic compounds in soil. Aliphatic, cyclic, and aromatic organic acids play important roles in rhizosphere ecology, pedogenesis, food-web interactions, and decontamination of sites polluted by heavy metals and organic pollutants. Carbohydrates in soils can be used to estimate changes of soil organic matter due to management practices, whereas vitamins may play an important role in soil biological and biochemical processes. The aim of this work is to review current knowledge on aliphatic, cyclic, and aromatic organic acids, vitamins, and carbohydrates in soil and to identify directions for future research. Assessments of organic acids (aliphatic, cyclic, and aromatic) and carbohydrates, including their behaviour, have been reported in many works. However, knowledge on the occurrence and behaviour of D-enantiomers of organic acids, which may be abundant in soil, is currently lacking. Also, identification of the impact and mechanisms of environmental factors, such as soil water content, on carbohydrate status within soil organic matter remains to be determined. Finally, the occurrence of vitamins in soil and their role in biological and biochemical soil processes represent an important direction for future research.

  17. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process.

    PubMed

    Sun, Xian; Cao, Yu; Xu, Hui; Liu, Yan; Sun, Jianrui; Qiao, Dairong; Cao, Yi

    2014-03-01

    Triacylglyceride (TAG) and carbohydrate are potential feedstock for biofuels production. In this study, a two-stage process was applied for enhancing TAG/carbohydrate production in the selected microalgae - Neochloris oleoabundans HK-129. In stage I, effects of nitrogen, light intensity and iron on cell growth were investigated, and the highest biomass productivity of 292.83±5.83mg/L/d was achieved. In stage II, different nitrogen-starvation periods, light intensities and iron concentrations were employed to trigger accumulation of TAG and carbohydrate. The culture under 2-day N-starvation, 200μmol/m(2)/s light intensity and 0.037mM Fe(3+) concentration produced the maximum TAG and carbohydrate productivity of 51.58mg/L/d and 90.70mg/L/d, respectively. Nitrogen starvation period and light intensity had marked effects on TAG/carbohydrate accumulation and fatty acids profile, compared to iron concentration. The microalgal lipid was mainly composed of C16/C18 fatty acids (90.02%), saturated fatty acids (29.82%), and monounsaturated fatty acids (32.67%), which is suitable for biodiesel synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Dielectric loss property of strong acids doped polyaniline (PANi)

    NASA Astrophysics Data System (ADS)

    Amalia, Rianti; Hafizah, Mas Ayu Elita; Andreas, Manaf, Azwar

    2018-04-01

    In this study, strong acid doped polyaniline (PANi) has been successfully fabricated through the chemical oxidative polymerization process with various polymerization times. Nonconducting PANi resulting from the polymerization process at various polymerization times were then doped by a strong acid HClO4 to generate dielectric properties. Ammonium Persulfate (APS) as an initiator was used during Polymerization process to develop dark green precipitates which then called Emeraldine Base Polyaniline (PANi-EB). The PANi-EB was successively doped by strong acid HClO4 with dopant and PANi ratio 10:1 to enhance the electrical conductivity. The conductivity of doped PANi was evaluated by Four Point Probe. Results of evaluation showed that the conductivity values of HClO4 doped PANi were in the range 337-363 mS/cm. The dielectric properties of doped PANi were evaluated by Vector Network Analyzer (VNA) which suggested that an increase in the permittivity value in the conducting PANi. It is concluded that PANi could be a potential candidate for electromagnetic waves absorbing materials.

  19. Simple carbohydrates (image)

    MedlinePlus

    ... the body to be used as energy. Simple carbohydrates are found naturally in foods such as fruits, milk, and milk products. They are also found in processed and refined sugars such as candy, table sugar, ...

  20. Reconstituted Polymeric Materials Derived From Post-Consumer Waste, Industrial Scrap And Virgin Resins Made By Solid State Shear Pulverizat

    DOEpatents

    Khait, Klementina

    2005-02-01

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  1. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, K.

    1998-09-29

    A method of making polymeric particulates is described wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatible agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. 29 figs.

  2. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization

    DOEpatents

    Khait, Klementina

    2001-01-30

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  3. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, Klementina

    1998-09-29

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  4. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J [Livermore, CA; Hatch, Anson V [Tracy, CA; Wang, Ying-Chih [Pleasanton, CA; Singh, Anup K [Danville, CA; Renzi, Ronald F [Tracy, CA; Claudnic, Mark R [Livermore, CA

    2011-11-01

    Methods for making a micofluidic device according to embodiments of the present invention include defining a cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  5. Method for forming polymerized microfluidic devices

    DOEpatents

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  6. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor); Ashcraft, A. C., Jr.; Wise, E. W.

    1971-01-01

    Various experimental factors were examined to determine the source of difficulty in an isoprene polymerization in the 5-gallon reactor which gave a non-uniform product of low functionality. It was concluded that process improvements relating to initiator and monomer purity were desirable, but that the main difficulty was in the initiator feed system. A new pumping system was installed and an analog simulation of the reactor, feed system and initiator decomposition kinetics was devised which permits the selection of initial initiator concentrations and feed rates to use to give a nearly uniform initiator concentration throughout a polymerization run. An isoprene polymerization was run in which the process improvements were implemented.

  7. Self-folding polymeric containers for encapsulation and delivery of drugs

    PubMed Central

    Fernandes, Rohan; Gracias, David H.

    2012-01-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2 nm and fold polyhedra as small as 100 nm, with a surface patterning resolution of 15 nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. PMID:22425612

  8. Separation of time scales in one-dimensional directed nucleation-growth processes

    NASA Astrophysics Data System (ADS)

    Pierobon, Paolo; Miné-Hattab, Judith; Cappello, Giovanni; Viovy, Jean-Louis; Lagomarsino, Marco Cosentino

    2010-12-01

    Proteins involved in homologous recombination such as RecA and hRad51 polymerize on single- and double-stranded DNA according to a nucleation-growth kinetics, which can be monitored by single-molecule in vitro assays. The basic models currently used to extract biochemical rates rely on ensemble averages and are typically based on an underlying process of bidirectional polymerization, in contrast with the often observed anisotropic polymerization of similar proteins. For these reasons, if one considers single-molecule experiments, the available models are useful to understand observations only in some regimes. In particular, recent experiments have highlighted a steplike polymerization kinetics. The classical model of one-dimensional nucleation growth, the Kolmogorov-Avrami-Mehl-Johnson (KAMJ) model, predicts the correct polymerization kinetics only in some regimes and fails to predict the steplike behavior. This work illustrates by simulations and analytical arguments the limitation of applicability of the KAMJ description and proposes a minimal model for the statistics of the steps based on the so-called stick-breaking stochastic process. We argue that this insight might be useful to extract information on the time and length scales involved in the polymerization kinetics.

  9. Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria.

    PubMed

    Sand, Wolfgang; Gehrke, Tilman

    2006-01-01

    Extracellular polymeric substances seem to play a pivotal role in biocorrosion of metals and bioleaching, biocorrosion of metal sulfides for the winning of precious metals as well as acid rock drainage. For better control of both processes, the structure and function of extracellular polymeric substances of corrosion-causing or leaching bacteria are of crucial importance. Our research focused on the extremophilic bacteria Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, because of the "simplicity" and knowledge about the interactions of these bacteria with their substrate/substratum and their environment. For this purpose, the composition of the corresponding extracellular polymeric substances and their functions were analyzed. The extracellular polymeric substances of both species consist mainly of neutral sugars and lipids. The functions of the exopolymers seem to be: (i) to mediate attachment to a (metal) sulfide surface, and (ii) to concentrate iron(III) ions by complexation through uronic acids or other residues at the mineral surface, thus, allowing an oxidative attack on the sulfide. Consequently, dissolution of the metal sulfide is enhanced, which may result in an acceleration of 20- to 100-fold of the bioleaching process over chemical leaching. Experiments were performed to elucidate the importance of the iron(III) ions complexed by extracellular polymeric substances for strain-specific differences in oxidative activity for pyrite. Strains of A. ferrooxidans with a high amount of iron(III) ions in their extracellular polymeric substances possess greater oxidation activity than those with fewer iron(III) ions. These data provide insight into the function of and consequently the advantages that extracellular polymeric substances provide to bacteria. The role of extracellular polymeric substances for attachment under the conditions of a space station and resulting effects like biofouling, biocorrosion, malodorous gases, etc. will be discussed.

  10. Elucidation of a side reaction occurring during nitroxide-mediated polymerization of cyclic ketene acetals by tandem mass spectrometric end-group analysis of aliphatic polyesters.

    PubMed

    Albergaria Pereira, Bruna de Fátima; Tardy, Antoine; Monnier, Valérie; Guillaneuf, Yohann; Gigmes, Didier; Charles, Laurence

    2015-12-15

    In order to prevent side reactions while developing new polymerization processes, their mechanism has to be understood and one first key insight is the structure of the end-groups in polymeric by-products. The synthetic method scrutinized here is the nitroxide-mediated polymerization (NMP) of a cyclic ketene acetal, a promising alternative process to the production of polyesters. Polymer end-group characterization was performed by mass spectrometry (MS), combining elemental composition information derived from accurate mass data in the MS mode with fragmentation features recorded in the MS/MS mode. Electrospray was used as the ionization method to ensure the integrity of original chain terminations and a quadrupole time-of-flight (QTOF) instrument was employed for high-resolution mass measurements in both MS and tandem mass spectrometry (MS/MS) modes. Occurrence of side reactions in the studied polymerization method, first evidenced by an unusual increase in dispersity with conversion, was confirmed in MS with the detection of two polymeric impurities in addition to the expected species. Fragmentation rules were first established for this new polyester family in order to derive useful structural information from MS/MS data. In addition to a usual NMP by-product, the initiating group of the second polymeric impurities revealed the degradation of the nitroxide moiety. Unambiguous MS/MS identification of end-groups in by-products sampled from the polymerization medium allowed an unusual side reaction to be identified during the NMP preparation of polyesters. On-going optimization of the polymerization method aims at preventing this undesired process. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Anti-Cancer Drug Delivery Using Carbohydrate-Based Polymers.

    PubMed

    Ranjbari, Javad; Mokhtarzadeh, Ahad; Alibakhshi, Abbas; Tabarzad, Maryam; Hejazi, Maryam; Ramezani, Mohammad

    2018-02-12

    Polymeric drug delivery systems in the form of nanocarriers are the most interesting vehicles in anticancer therapy. Among different types of biocompatible polymers, carbohydrate-based polymers or polysaccharides are the most common natural polymers with complex structures consisting of long chains of monosaccharide or disaccharide units bound by glycosidic linkages. Their appealing properties such as availability, biocompatibility, biodegradability, low toxicity, high chemical reactivity, facile chemical modification and low cost led to their extensive applications in biomedical and pharmaceutical fields including development of nano-vehicles for delivery of anti-cancer therapeutic agents. Generally, reducing systemic toxicity, increasing short half-lives and tumor localization of agents are the top priorities for a successful cancer therapy. Polysaccharide-based or - coated nanosystems with respect to their advantageous features as well as accumulation in tumor tissue due to enhanced permeation and retention (EPR) effect can provide promising carrier systems for the delivery of noblest impressive agents. Most challenging factor in cancer therapy was the toxicity of anti-cancer therapeutic agents for normal cells and therefore, targeted delivery of these drugs to the site of action can be considered as an interesting therapeutic strategy. In this regard, several polysaccharides exhibited selective affinity for specific cell types, and so they can act as a targeting agent in drug delivery systems. Accordingly, different aspects of polysaccharide applications in cancer treatment or diagnosis were reviewed in this paper. In this regard, after a brief introduction of polysaccharide structure and its importance, the pharmaceutical usage of carbohydrate-based polymers was considered according to the identity of accompanying active pharmaceutical agents. It was also presented that the carbohydrate based polymers have been extensively considered as promising materials in the design of efficient nanocarriers for anti-cancer biopharmaceuticals including peptide and proteins or nucleic acid-based therapeutics. Then, the importance of various polysaccharide co-polymers in the drug delivery approaches was illustrated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Combined effects of EPS and HRT enhanced biofouling on a submerged and hybrid PAC-MF membrane bioreactor.

    PubMed

    Khan, Mohiuddin Md Taimur; Takizawa, Satoshi; Lewandowski, Zbigniew; Habibur Rahman, M; Komatsu, Kazuhiro; Nelson, Sara E; Kurisu, Futoshi; Camper, Anne K; Katayama, Hiroyuki; Ohgaki, Shinichiro

    2013-02-01

    The goal of this study was to quantify and demonstrate the dynamic effects of hydraulic retention time (HRT), organic carbon and various components of extracellular polymeric substances (EPS) produced by microorganisms on the performance of submersed hollow-fiber microfiltration (MF) membrane in a hybrid powdered activated carbon (PAC)-MF membrane bioreactor (MBR). The reactors were operated continuously for 45 days to treat surface (river) water before and after pretreatment using a biofiltration unit. The real-time levels of organic carbon and the major components of EPS including five different carbohydrates (D(+) glucose and D(+) mannose, D(+) galactose, N-acetyl-D-galactosamine and D-galactose, oligosaccharides and L(-) fucose), proteins, and polysaccharides were quantified in the influent water, foulants, and in the bulk phases of different reactors. The presence of PAC extended the filtration cycle and enhanced the organic carbon adsorption and removal more than two fold. Biological filtration improved the filtrate quality and decreased membrane fouling. However, HRT influenced the length of the filtration cycle and had less effect on organic carbon and EPS component removal and/or biodegradation. The abundance of carbohydrates in the foulants on MF surfaces was more than 40 times higher than in the bulk phase, which demonstrates that the accumulation of carbohydrates on membrane surfaces contributed to the increase in transmembrane pressure significantly and PAC was not a potential adsorbent of carbohydrates. The abundance of N-acetyl-d-galactosamine and d-galactose was the highest in the foulants on membranes receiving biofilter-treated river water. Most of the biological fouling compounds were produced inside the reactors due to biodegradation. PAC inside the reactor enhanced the biodegradation of polysaccharides up to 97% and that of proteins by more than 95%. This real-time extensive and novel study demonstrates that the PAC-MF hybrid MBR is a sustainable technology for treating river water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. 40 CFR 405.11 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  14. 40 CFR 405.61 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  15. 40 CFR 405.101 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  16. 40 CFR 405.111 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  17. 40 CFR 405.121 - Specialized definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  18. 40 CFR 405.121 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  19. 40 CFR 405.11 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  20. 40 CFR 405.111 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  1. 40 CFR 405.121 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  2. 40 CFR 405.61 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  3. 40 CFR 405.101 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  4. 40 CFR 405.91 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  5. 40 CFR 405.21 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  6. 40 CFR 405.101 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  7. 40 CFR 405.31 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  8. 40 CFR 405.11 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  9. 40 CFR 405.11 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  10. 40 CFR 405.101 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  11. 40 CFR 405.111 - Specialized definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  12. 40 CFR 405.61 - Specialized definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  13. 40 CFR 405.111 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  14. 40 CFR 405.121 - Specialized definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... process. It can be calculated by multiplying the fats, proteins and carbohydrates by factors of 0.890, 1.031 and 0.691 respectively. Organic acids (e.g., lactic acids) should be included as carbohydrates...

  15. Low-temperature carbonization and more effective degradation of carbohydrates induced by ferric trichloride.

    PubMed

    Xia, Juan; Song, Le Xin; Dang, Zheng

    2012-07-05

    The present work is devoted to an attempt to understand the effect of an inorganic salt such as ferric trichloride (FeCl(3)) on the carbonization and degradation of carbohydrates such as β-cyclodextrin (CD), amylose, and cellulose. Our data revealed two important observations. First, the presence of FeCl(3) led to the occurrence of a low carbonization temperature of 373 K. This is a rare phenomenon, in which carbonization improvement is present even if a small amount of FeCl(3) was added. Experimental results had provided evidence for the fact that a redox process was started during the low-temperature carbonization of β-CD, causing the reduction of FeCl(3) to ferrous chloride (FeCl(2)) by carbon materials formed in the carbonization process in air. However, the reduction process of FeCl(3) produced the in situ composite nanomaterial of Fe-FeCl(2) combination in nitrogen. Second, a molecule-ion interaction emerged between FeCl(3) and the carbohydrates in aqueous solution, resulting in a more effective degradation of the carbohydrates. Moreover, our results demonstrated that FeCl(3) played the role of a catalyst during the degradation of the carbohydrates in solution. We believe that the current work not only has a significant potential application in disposal of waste carbohydrates but also could be helpful in many fields such as environmental protection, biomass energy development, and inorganic composite nanomaterials.

  16. Stability of lime essential oil microparticles produced with protein-carbohydrate blends.

    PubMed

    Campelo, Pedro Henrique; Sanches, Edgar Aparecido; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Borges, Soraia Vilela

    2018-03-01

    The objective of this work was to analyze the influence of maltodextrin equivalent dextrose on the lime essential oil reconstitution, storage, release and protection properties. Four treatments were evaluated: whey protein concentrate (WPC), and blends of maltodextrin with dextrose equivalents of 5 (WM5), 10 (WM10) and 20 (WM20). The reconstitution and storage properties of the microparticles (solubility, wettability and density), water kinetics adsorption, sorption isotherms, thermogravimetric properties, controlled release and degradation kinetics of encapsulated lime essential oil were studied to measure the quality of the encapsulated materials. The results of the study indicated that the DE degree influences the characteristics of reconstitution, storage, controlled release and degradation characteristics of encapsulated bioactive compounds. The increase in dextrose equivalent improves microparticle solubility, wettability and density, mainly due to the size of the maltodextrin molecules. The adsorption kinetics and sorption isotherm curves confirmed the increase in the hygroscopicity of maltodextrins with higher degrees of polymerization. The size of the maltodextrin chains influenced the release and protection of the encapsulated lime essential oil. Finally, the maltodextrin polymerization degree can be considered a parameter that will influence the physicochemical properties of microencapsulated food. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Extracellular polymeric substances govern the surface charge of biogenic elemental selenium nanoparticles.

    PubMed

    Jain, Rohan; Jordan, Norbert; Weiss, Stephan; Foerstendorf, Harald; Heim, Karsten; Kacker, Rohit; Hübner, René; Kramer, Herman; van Hullebusch, Eric D; Farges, François; Lens, Piet N L

    2015-02-03

    The origin of the organic layer covering colloidal biogenic elemental selenium nanoparticles (BioSeNPs) is not known, particularly in the case when they are synthesized by complex microbial communities. This study investigated the presence of extracellular polymeric substances (EPS) on BioSeNPs. The role of EPS in capping the extracellularly available BioSeNPs was also examined. Fourier transform infrared (FT-IR) spectroscopy and colorimetric measurements confirmed the presence of functional groups characteristic of proteins and carbohydrates on the BioSeNPs, suggesting the presence of EPS. Chemical synthesis of elemental selenium nanoparticles in the presence of EPS, extracted from selenite fed anaerobic granular sludge, yielded stable colloidal spherical selenium nanoparticles. Furthermore, extracted EPS, BioSeNPs, and chemically synthesized EPS-capped selenium nanoparticles had similar surface properties, as shown by ζ-potential versus pH profiles and isoelectric point measurements. This study shows that the EPS of anaerobic granular sludge form the organic layer present on the BioSeNPs synthesized by these granules. The EPS also govern the surface charge of these BioSeNPs, thereby contributing to their colloidal properties, hence affecting their fate in the environment and the efficiency of bioremediation technologies.

  18. Biophysical Effects of a Polymeric Biosurfactant in Candida krusei and Candida albicans Cells.

    PubMed

    Ferreira, Gabriella Freitas; Dos Santos Pinto, Bruna Lorrana; Souza, Eliene Batista; Viana, José Lima; Zagmignan, Adrielle; Dos Santos, Julliana Ribeiro Alves; Santos, Áquila Rodrigues Costa; Tavares, Priscila Batista; Denadai, Ângelo Márcio Leite; Monteiro, Andrea Souza

    2016-12-01

    This study evaluated the effects of a polymeric biosurfactant produced by Trichosporon montevideense CLOA72 in the adhesion of Candida albicans and Candida krusei cells to human buccal epithelial cells and its interference in biofilm formation by these strains. The biofilm inhibition by biosurfactant (25 mg/mL) in C. krusei and C. albicans in polystyrene was reduced up to 79.5 and 85 %, respectively. In addition, the zeta potential and hydrodynamic diameter of the yeasts altered as a function of the biosurfactant concentration added to the cell suspension. The changes in the cell surface characteristics and the interface modification can contribute to the inhibition of the initial adherence of yeasts cells to the surface. In addition, the analyses of the biofilm matrix and planktonic cell surfaces demonstrated differences in carbohydrate and protein concentrations for the two studied strains, which may contribute to the modulation of cell adhesion or consolidation of biofilms, especially in C. krusei. This study suggests a possible application of the of CLOA72 biosurfactant in inhibiting the adhesion and formation of biofilms on biological surfaces by yeasts of the Candida genus.

  19. Tension modulates actin filament polymerization mediated by formin and profilin

    PubMed Central

    Courtemanche, Naomi; Lee, Ja Yil; Pollard, Thomas D.; Greene, Eric C.

    2013-01-01

    Formins promote processive elongation of actin filaments for cytokinetic contractile rings and other cellular structures. In vivo, these structures are exposed to tension, but the effect of tension on these processes was unknown. Here we used single-molecule imaging to investigate the effects of tension on actin polymerization mediated by yeast formin Bni1p. Small forces on the filaments dramatically slowed formin-mediated polymerization in the absence of profilin, but resulted in faster polymerization in the presence of profilin. We propose that force shifts the conformational equilibrium of the end of a filament associated with formin homology 2 domains toward the closed state that precludes polymerization, but that profilin–actin associated with formin homology 1 domains reverses this effect. Thus, physical forces strongly influence actin assembly by formin Bni1p. PMID:23716666

  20. In-situ Frequency Dependent Dielectric Sensing of Cure

    NASA Technical Reports Server (NTRS)

    Kranbuehl, David E.

    1996-01-01

    With the expanding use of polymeric materials as composite matrices, adhesives, coatings and films, the need to develop low cost, automated fabrication processes to produce consistently high quality parts is critical. Essential to the development of reliable, automated, intelligent processing is the ability to continuously monitor the changing state of the polymeric resin in-situ in the fabrication tool. This final report discusses work done on developing dielectric sensing to monitor polymeric material cure and which provides a fundamental understanding of the underlying science for the use of frequency dependent dielectri sensors to monitor the cure process.

  1. Multiple Functions of Aromatic-Carbohydrate Interactions in a Processive Cellulase Examined with Molecular Simulation*

    PubMed Central

    Payne, Christina M.; Bomble, Yannick J.; Taylor, Courtney B.; McCabe, Clare; Himmel, Michael E.; Crowley, Michael F.; Beckham, Gregg T.

    2011-01-01

    Proteins employ aromatic residues for carbohydrate binding in a wide range of biological functions. Glycoside hydrolases, which are ubiquitous in nature, typically exhibit tunnels, clefts, or pockets lined with aromatic residues for processing carbohydrates. Mutation of these aromatic residues often results in significant activity differences on insoluble and soluble substrates. However, the thermodynamic basis and molecular level role of these aromatic residues remain unknown. Here, we calculate the relative ligand binding free energy by mutating tryptophans in the Trichoderma reesei family 6 cellulase (Cel6A) to alanine. Removal of aromatic residues near the catalytic site has little impact on the ligand binding free energy, suggesting that aromatic residues immediately upstream of the active site are not directly involved in binding, but play a role in the glucopyranose ring distortion necessary for catalysis. Removal of aromatic residues at the entrance and exit of the Cel6A tunnel, however, dramatically impacts the binding affinity, suggesting that these residues play a role in chain acquisition and product stabilization, respectively. The roles suggested from differences in binding affinity are confirmed by molecular dynamics and normal mode analysis. Surprisingly, our results illustrate that aromatic-carbohydrate interactions vary dramatically depending on the position in the enzyme tunnel. As aromatic-carbohydrate interactions are present in all carbohydrate-active enzymes, these results have implications for understanding protein structure-function relationships in carbohydrate metabolism and recognition, carbon turnover in nature, and protein engineering strategies for biomass utilization. Generally, these results suggest that nature employs aromatic-carbohydrate interactions with a wide range of binding affinities for diverse functions. PMID:21965672

  2. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  3. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  4. Method of Making Thermally Stable, Piezoelectric and Proelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium: applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  5. Thermal Gradient Mid- and Far-Infrared Spectroscopy as Tools for Characterization of Protein Carbohydrate Lyophilizates.

    PubMed

    Mensink, M A; Šibík, J; Frijlink, H W; van der Voort Maarschalk, K; Hinrichs, W L J; Zeitler, J A

    2017-10-02

    Protein drugs play an important role in modern day medicine. Typically, these proteins are formulated as liquids requiring cold chain processing. To circumvent the cold chain and achieve better storage stability, these proteins can be dried in the presence of carbohydrates. We demonstrate that thermal gradient mid- and far-infrared spectroscopy (FTIR and THz-TDS, respectively) can provide useful information about solid-state protein carbohydrate formulations regarding mobility and intermolecular interactions. A model protein (BSA) was lyophilized in the presence of three carbohydrates with different size and protein stabilizing capacity. A gradual increase in mobility was observed with increasing temperature in formulations containing protein and/or larger carbohydrates (oligo- or polysaccharides), lacking a clear onset of fast mobility as was observed for smaller molecules. Furthermore, both techniques are able to identify the glass transition temperatures (T g ) of the samples. FTIR provides additional information as it can independently monitor changes in protein and carbohydrate bands at the T g . Lastly, THz-TDS confirms previous findings that protein-carbohydrate interactions decrease with increasing molecular weight of the carbohydrate, which results in decreased protein stabilization.

  6. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.

    PubMed

    Warda, Alicja K; Siezen, Roland J; Boekhorst, Jos; Wells-Bennik, Marjon H J; de Jong, Anne; Kuipers, Oscar P; Nierop Groot, Masja N; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.

  7. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity

    PubMed Central

    Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H. J.; de Jong, Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929

  8. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    PubMed

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  9. Clays and other minerals in prebiotic processes

    NASA Technical Reports Server (NTRS)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  10. Process for radiation grafting hydrogels onto organic polymeric substrates

    DOEpatents

    Ratner, Buddy D.; Hoffman, Allan S.

    1976-01-01

    An improved process for radiation grafting of hydrogels onto organic polymeric substrates is provided comprising the steps of incorporating an effective amount of cupric or ferric ions in an aqueous graft solution consisting of N-vinyl-2 - pyrrolidone or mixture of N-vinyl-2 - pyrrolidone and other monomers, e.g., 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, propylene glycol acrylate, acrylamide, methacrylic acid and methacrylamide, immersing an organic polymeric substrate in the aqueous graft solution and thereafter subjecting the contacted substrate with ionizing radiation.

  11. Polymer performance in cooling water: The influence of process variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amjad, Z.; Pugh, J.; Zibrida, J.

    1997-01-01

    The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this article, the performance of several polymeric additives is evaluated under a variety of stressed conditions.

  12. Polymer performance in cooling water: The influence of process variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amjad, Z.; Pugh, J.; Zibrida, J.

    1996-12-01

    The key to the efficacy of phosphate and phosphonates in stabilized phosphate and all-organic cooling water treatment (CWT) programs is the presence and performance of polymeric inhibitors/dispersants. The performance of polymeric additives used in CWT programs can be adversely impacted by the presence of iron, phosphonate, or cationic polymer and influenced by a variety of process variables including system pH and temperature. In this paper, the performance of several polymeric additives is evaluated under a variety of stressed conditions.

  13. Evaluation of Fifteen Cultivars of Cool-Season Perennial Grasses as Biofuel Feedstocks Using Near-Infrared

    DOE PAGES

    Payne, Courtney E.; Wolfrum, Edward J.; Nagle, Nicholas J.; ...

    2017-06-22

    Cool-season (C3) perennial grasses have a long history of cultivation and use as animal forage. This study evaluated 15 cultivars of C3 grasses, when harvested in late June for increased biomass yield, as biofuel feedstocks using near- infrared spectroscopy (NIR) based partial least square (PLS) analysis. These grasses were grown near Iliff, CO, for three growing seasons (2009-2011). The carbohydrate composition and released carbohydrates (total glucose and xylose released from dilute acid pretreatment and enzymatic hydrolysis [EH]) were predicted for samples from the study using NIR/PLS. The results were analyzed from a biofuels perspective, where composition combined with harvest yieldmore » provided information on the carbohydrate yield available for biomass conversion processes, and released carbohydrate yield provided information on the accessibility of those carbohydrates to conversion methods. The range in harvest yields varied more among cultivars (2900 kg ha-1) than did the range in carbohydrate composition (56.0 g kg-1) or released carbohydrates (60.0 g kg-1). When comparing carbohydrate yield to released carbohydrate yield between cultivars, an efficiency as high as 87% release of available carbohydrates was obtained for pubescent wheatgrass [ Thinopyrum intermedium (Host) Barkworth & D.R. Dewey 'Mansaka'], with a low of 71% for hybrid wheatgrass [Elytrigia repens (L.) nevski pseudoroegneria spicata (PURSH) A. Love 'Newhy']. Though hybrid wheatgrass had the lowest release efficiency, its high harvest yield resulted in release of more total carbohydrates than half the other cultivars analyzed. Furthermore, this suggested that harvest yield, carbohydrate release, and carbohydrate composition, together play significant roles in biofuel feedstock evaluation.« less

  14. Evaluation of Fifteen Cultivars of Cool-Season Perennial Grasses as Biofuel Feedstocks Using Near-Infrared

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, Courtney E.; Wolfrum, Edward J.; Nagle, Nicholas J.

    Cool-season (C3) perennial grasses have a long history of cultivation and use as animal forage. This study evaluated 15 cultivars of C3 grasses, when harvested in late June for increased biomass yield, as biofuel feedstocks using near- infrared spectroscopy (NIR) based partial least square (PLS) analysis. These grasses were grown near Iliff, CO, for three growing seasons (2009-2011). The carbohydrate composition and released carbohydrates (total glucose and xylose released from dilute acid pretreatment and enzymatic hydrolysis [EH]) were predicted for samples from the study using NIR/PLS. The results were analyzed from a biofuels perspective, where composition combined with harvest yieldmore » provided information on the carbohydrate yield available for biomass conversion processes, and released carbohydrate yield provided information on the accessibility of those carbohydrates to conversion methods. The range in harvest yields varied more among cultivars (2900 kg ha-1) than did the range in carbohydrate composition (56.0 g kg-1) or released carbohydrates (60.0 g kg-1). When comparing carbohydrate yield to released carbohydrate yield between cultivars, an efficiency as high as 87% release of available carbohydrates was obtained for pubescent wheatgrass [ Thinopyrum intermedium (Host) Barkworth & D.R. Dewey 'Mansaka'], with a low of 71% for hybrid wheatgrass [Elytrigia repens (L.) nevski pseudoroegneria spicata (PURSH) A. Love 'Newhy']. Though hybrid wheatgrass had the lowest release efficiency, its high harvest yield resulted in release of more total carbohydrates than half the other cultivars analyzed. Furthermore, this suggested that harvest yield, carbohydrate release, and carbohydrate composition, together play significant roles in biofuel feedstock evaluation.« less

  15. Hydrocracking of carbohydrates making glycerol, glycols and other polyols

    DOEpatents

    Andrews, Mark A.; Klaeren, Stephen A.

    1991-01-01

    A homogeneous process for hydrocracking of carbohydrates in the presence of soluble transition metal hydrogenation catalyst with the production of lower polyhydric alcohols. A carbohydrate is contacted with hydrogen in the presence of a soluble transition metal catalyst and a strong base at a temperature of from about 25.degree. C. to about 200.degree. C. and a pressure of from about 15 to about 3000 psi.

  16. Phosphorous Nutritional Level, Carbohydrate Reserves and Flower Quality in Olives.

    PubMed

    Erel, Ran; Yermiyahu, Uri; Yasuor, Hagai; Cohen Chamus, Dan; Schwartz, Amnon; Ben-Gal, Alon; Dag, Arnon

    2016-01-01

    The olive tree is generally characterized by relatively low final fruit set consequential to a significant rate of undeveloped pistils, pistil abortion, and flower and fruitlet abscission. These processes are acknowledged to be governed by competition for resources between the developing vegetative and reproductive organs. To study the role of phosphorus (P) nutritional level on reproductive development, trees were grown under four levels of P for three years in large containers. Phosphorus nutritional level was positively related to rate of reproductive bud break, inflorescence weight, rate of hermaphrodite flowers, pistil weight, fruitlet persistence, fruit set and the consequential total number of fruits. The positive impact of P nutrition on the productivity parameters was not related to carbohydrate reserves or to carbohydrate transport to the developing inflorescence. Phosphorous deficient trees showed significant impairment of assimilation rate, and yet, carbohydrates were accumulated in inflorescences at levels comparable to or higher than trees receiving high P. In contrast to female reproductive organs, pollen viability was consistently higher in P deficient trees, possibly due to the enhanced carbohydrate availability. Overall, the positive effect of P on female reproductive development was found to be independent of the total carbohydrate availability. Hence, P is speculated to have a direct influence on reproductive processes.

  17. Recent progress in chemical and chemoenzymatic synthesis of carbohydrates.

    PubMed

    Muthana, Saddam; Cao, Hongzhi; Chen, Xi

    2009-12-01

    The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products.

  18. Recent Progress in Chemical and Chemoenzymatic Synthesis of Carbohydrates

    PubMed Central

    Muthana, Saddam; Cao, Hongzhi; Chen, Xi

    2011-01-01

    Summary The important roles that carbohydrates play in biological processes and their potential application in diagnosis, therapeutics, and vaccine development have made them attractive synthetic targets. Despite ongoing challenges, tremendous progresses have been made in recent years for the synthesis of carbohydrates. The chemical glycosylation methods have become more sophisticated and the synthesis of oligosaccharides has become more predictable. Simplified one-pot glycosylation strategy and automated synthesis are increasingly used to obtain biologically important glycans. On the other hand, chemoenzymatic synthesis continues to be a powerful alternative for obtaining complex carbohydrates. This review highlights recent progress in chemical and chemoenzymatic synthesis of carbohydrates with a particular focus on the methods developed for the synthesis of oligosaccharides, polysaccharides, glycolipids, and glycosylated natural products. PMID:19833544

  19. Agricultural waste from the tequila industry as substrate for the production of commercially important enzymes.

    PubMed

    Huitron, C; Perez, R; Sanchez, A E; Lappe, P; Rocha Zavaleta, L

    2008-01-01

    Approximately 1 million tons of Agave tequilana plants are processed annually by the Mexican Tequila industry generating vast amounts of agricultural waste. The aim of this study was to investigate the potential use of Agave tequilana waste as substrate for the production of commercially important enzymes. Two strains of Aspergillus niger (CH-A-2010 and CH-A-2016), isolated from agave fields, were found to grow and propagate in submerged cultures using Agave tequilana waste as substrate. Isolates showed simultaneous extracellular inulinase, xylanase, pectinase, and cellulase activities. Aspergillus CH-A-2010 showed the highest production of inulinase activity (1.48 U/ml), whereas Aspergillus niger CH-A-2016 produced the highest xylanase (1.52 U/ml) and endo-pectinase (2.7U/ml) activities. In both cases production of enzyme activities was significantly higher on Agave tequilana waste than that observed on lemon peel and specific polymeric carbohydrates. Enzymatic hydrolysis of raw A. tequilana stems and leaves, by enzymes secreted by the isolates yielded maximum concentrations of reducing sugars of 28.2 g/l, and 9.9 g/l respectively. In conclusion, Agave tequilana waste can be utilized as substrate for the production of important biotechnological enzymes.

  20. Cellulosic-Derived Biofuels Program in Kentucky - Part 2

    DTIC Science & Technology

    2014-04-30

    and lignin, are complex raw materials. Selection of robust strains of algae that are able to convert C6 (glucose) and C5 carbohydrates from...13 Task B2.03 Development of Metalloporphyrin-Ionic Liquid Complexes for Degradation of Biomass . 14 Task B2.04 –Biomass Conversion Process Scale...Up ............................................................................. 15 Task B3: Carbohydrate to Oil Conversion Process Development

  1. Metabolism

    MedlinePlus

    ... anabolism, small molecules are changed into larger, more complex molecules of carbohydrate, protein, and fat. Catabolism (pronounced: kuh-TAB-uh- ... this process, cells break down large molecules (mostly carbohydrates and ... body to move. As complex chemical units are broken down into more simple ...

  2. Simulation model for plant growth in controlled environment systems

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Wann, M.

    1986-01-01

    The role of the mathematical model is to relate the individual processes to environmental conditions and the behavior of the whole plant. Using the controlled-environment facilities of the phytotron at North Carolina State University for experimentation at the whole-plant level and methods for handling complex models, researchers developed a plant growth model to describe the relationships between hierarchial levels of the crop production system. The fundamental processes that are considered are: (1) interception of photosynthetically active radiation by leaves, (2) absorption of photosynthetically active radiation, (3) photosynthetic transformation of absorbed radiation into chemical energy of carbon bonding in solube carbohydrates in the leaves, (4) translocation between carbohydrate pools in leaves, stems, and roots, (5) flow of energy from carbohydrate pools for respiration, (6) flow from carbohydrate pools for growth, and (7) aging of tissues. These processes are described at the level of organ structure and of elementary function processes. The driving variables of incident photosynthetically active radiation and ambient temperature as inputs pertain to characterization at the whole-plant level. The output of the model is accumulated dry matter partitioned among leaves, stems, and roots; thus, the elementary processes clearly operate under the constraints of the plant structure which is itself the output of the model.

  3. The fabrication of small molecule organic light-emitting diode pixels by laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Shaw-Stewart, J. R. H.; Mattle, T.; Lippert, T. K.; Nagel, M.; Nüesch, F. A.; Wokaun, A.

    2013-01-01

    Laser-induced forward transfer (LIFT) is a versatile organic light-emitting diode (OLED) pixel deposition process, but has hitherto been applied exclusively to polymeric materials. Here, a modified LIFT process has been used to fabricate small molecule Alq3 organic light-emitting diodes (SMOLEDs). Small molecule thin films are considerably more mechanically brittle than polymeric thin films, which posed significant challenges for LIFT of these materials. The LIFT process presented here uses a polymeric dynamic release layer, a reduced environmental pressure, and a well-defined receiver-donor gap. The Alq3 pixels demonstrate good morphology and functionality, even when compared to conventionally fabricated OLEDs. The Alq3 SMOLED pixel performances show a significant amount of fluence dependence, not observed with polymerical OLED pixels made in previous studies. A layer of tetrabutyl ammonium hydroxide has been deposited on top of the aluminium cathode, as part of the donor substrate, to improve electron injection to the Alq3, by over 600%. These results demonstrate that this variant of LIFT is applicable for the deposition of functional small molecule OLEDs as well as polymeric OLEDs.

  4. Self-folding polymeric containers for encapsulation and delivery of drugs.

    PubMed

    Fernandes, Rohan; Gracias, David H

    2012-11-01

    Self-folding broadly refers to self-assembly processes wherein thin films or interconnected planar templates curve, roll-up or fold into three dimensional (3D) structures such as cylindrical tubes, spirals, corrugated sheets or polyhedra. The process has been demonstrated with metallic, semiconducting and polymeric films and has been used to curve tubes with diameters as small as 2nm and fold polyhedra as small as 100nm, with a surface patterning resolution of 15nm. Self-folding methods are important for drug delivery applications since they provide a means to realize 3D, biocompatible, all-polymeric containers with well-tailored composition, size, shape, wall thickness, porosity, surface patterns and chemistry. Self-folding is also a highly parallel process, and it is possible to encapsulate or self-load therapeutic cargo during assembly. A variety of therapeutic cargos such as small molecules, peptides, proteins, bacteria, fungi and mammalian cells have been encapsulated in self-folded polymeric containers. In this review, we focus on self-folding of all-polymeric containers. We discuss the mechanistic aspects of self-folding of polymeric containers driven by differential stresses or surface tension forces, the applications of self-folding polymers in drug delivery and we outline future challenges. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process

    NASA Astrophysics Data System (ADS)

    Kawai, T.; Sakata, T.

    1980-07-01

    A photocatalytic process for the conversion of carbohydrates into hydrogen fuel is presented. The method involves the irradiation of sugar, starch or cellulose in the presence of water and a RuO2/TiO2/Pt catalyst, which has been found to lead to the generation of CO2 and H2 at efficiencies 100 times larger than those obtained with TiO2 alone, with no detectable amounts of other products. The reaction mechanism can be explained in terms of an electrochemical microcell, in which electron-hole pairs generated in TiO2 cause redox reactions at the surface. The process may thus be used in the conversion of solar energy stored in the form of carbohydrates by green plant photosynthesis into useful hydrogen fuels.

  6. Prediction of Carbohydrate Binding Sites on Protein Surfaces with 3-Dimensional Probability Density Distributions of Interacting Atoms

    PubMed Central

    Tsai, Keng-Chang; Jian, Jhih-Wei; Yang, Ei-Wen; Hsu, Po-Chiang; Peng, Hung-Pin; Chen, Ching-Tai; Chen, Jun-Bo; Chang, Jeng-Yih; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Non-covalent protein-carbohydrate interactions mediate molecular targeting in many biological processes. Prediction of non-covalent carbohydrate binding sites on protein surfaces not only provides insights into the functions of the query proteins; information on key carbohydrate-binding residues could suggest site-directed mutagenesis experiments, design therapeutics targeting carbohydrate-binding proteins, and provide guidance in engineering protein-carbohydrate interactions. In this work, we show that non-covalent carbohydrate binding sites on protein surfaces can be predicted with relatively high accuracy when the query protein structures are known. The prediction capabilities were based on a novel encoding scheme of the three-dimensional probability density maps describing the distributions of 36 non-covalent interacting atom types around protein surfaces. One machine learning model was trained for each of the 30 protein atom types. The machine learning algorithms predicted tentative carbohydrate binding sites on query proteins by recognizing the characteristic interacting atom distribution patterns specific for carbohydrate binding sites from known protein structures. The prediction results for all protein atom types were integrated into surface patches as tentative carbohydrate binding sites based on normalized prediction confidence level. The prediction capabilities of the predictors were benchmarked by a 10-fold cross validation on 497 non-redundant proteins with known carbohydrate binding sites. The predictors were further tested on an independent test set with 108 proteins. The residue-based Matthews correlation coefficient (MCC) for the independent test was 0.45, with prediction precision and sensitivity (or recall) of 0.45 and 0.49 respectively. In addition, 111 unbound carbohydrate-binding protein structures for which the structures were determined in the absence of the carbohydrate ligands were predicted with the trained predictors. The overall prediction MCC was 0.49. Independent tests on anti-carbohydrate antibodies showed that the carbohydrate antigen binding sites were predicted with comparable accuracy. These results demonstrate that the predictors are among the best in carbohydrate binding site predictions to date. PMID:22848404

  7. Oxidative Reactions with Nonaqueous Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan S. Dordick; Douglas Clark; Brian H Davison

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with lessmore » waste.« less

  8. Polymerization method for formation of thermally exfoliated graphite oxide containing polymer

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor)

    2010-01-01

    A process for polymerization of at least one monomer including polymerizing the at least one monomer in the presence of a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m(esp 2)/g to 2600 m(esp 2/g.

  9. Structural basis of reverse nucleotide polymerization

    PubMed Central

    Nakamura, Akiyoshi; Nemoto, Taiki; Heinemann, Ilka U.; Yamashita, Keitaro; Sonoda, Tomoyo; Komoda, Keisuke; Tanaka, Isao; Söll, Dieter; Yao, Min

    2013-01-01

    Nucleotide polymerization proceeds in the forward (5′-3′) direction. This tenet of the central dogma of molecular biology is found in diverse processes including transcription, reverse transcription, DNA replication, and even in lagging strand synthesis where reverse polymerization (3′-5′) would present a “simpler” solution. Interestingly, reverse (3′-5′) nucleotide addition is catalyzed by the tRNA maturation enzyme tRNAHis guanylyltransferase, a structural homolog of canonical forward polymerases. We present a Candida albicans tRNAHis guanylyltransferase-tRNAHis complex structure that reveals the structural basis of reverse polymerization. The directionality of nucleotide polymerization is determined by the orientation of approach of the nucleotide substrate. The tRNA substrate enters the enzyme’s active site from the opposite direction (180° flip) compared with similar nucleotide substrates of canonical 5′-3′ polymerases, and the finger domains are on opposing sides of the core palm domain. Structural, biochemical, and phylogenetic data indicate that reverse polymerization appeared early in evolution and resembles a mirror image of the forward process. PMID:24324136

  10. Processes for microemulsion polymerization employing novel microemulsion systems

    DOEpatents

    Beckman, Eric J.; Smith, Richard D.; Fulton, John L.

    1990-06-12

    This invention is directed to a microemulsion system comprising a first phase including a low-polarity fluid material which is a gas at standard temperature and pressure, and which has a cloud-point density. It also includes a second phase including a polar fluid, typically water, a monomer, preferably a monomer soluble in the polar fluid, and a microemulsion promoter for facilitating the formation of micelles including the monomer in the system. In the subject process, micelles including the monomer are formed in the first phase. A polymerization initiator is introduced into the micelles in the microemulsion system. The monomer is then polymerized in the micelles, preferably in the core of the micelle, to produce a polymeric material having a relatively high molecular weight.

  11. Modeling the chemistry of plasma polymerization using mass spectrometry.

    PubMed

    Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver

    2003-04-01

    The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.

  12. Recent Developments in Synthetic Carbohydrate-Based Diagnostics, Vaccines, and Therapeutics.

    PubMed

    Fernández-Tejada, Alberto; Cañada, F Javier; Jiménez-Barbero, Jesús

    2015-07-20

    Glycans are everywhere in biological systems, being involved in many cellular events with important implications for medical purposes. Building upon a detailed understanding of the functional roles of carbohydrates in molecular recognition processes and disease states, glycans are increasingly being considered as key players in pharmacological research. On the basis of the important progress recently made in glycochemistry, glycobiology, and glycomedicine, we provide a complete overview of successful applications and future perspectives of carbohydrates in the biopharmaceutical and medical fields. This review highlights the development of carbohydrate-based diagnostics, exemplified by glycan imaging techniques and microarray platforms, synthetic oligosaccharide vaccines against infectious diseases (e.g., HIV) and cancer, and finally carbohydrate-derived therapeutics, including glycomimetic drugs and glycoproteins. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Method of forming composite fiber blends

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  14. Investigation of excited-state relaxation processes of organic dyes by time-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Przhonska, O.; Slominsky, Yu.; Kachkovsky, A.; Stahl, U.; Senoner, M.; Dähne, S.

    1996-04-01

    The results of the measurements of the fluorescence decay kinetics of the new series of polymethine dyes in liquid and solid polymeric media are reported. The effects of polymeric media on absorption-relaxation-emission processes are studied at wide excitation, emission and temperature regions.

  15. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation.

    PubMed

    Wang, Yue; Chiu, Sheng-Yi; Ho, Shih-Hsin; Liu, Zhuo; Hasunuma, Tomohisa; Chang, Ting-Ting; Chang, Kuan-Fu; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-08-01

    Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate-mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate-amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate-contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES-2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85-90%), which is very suitable for bio-alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES-2168 has a high potential to serve as a feedstock for subsequent biofuels conversion. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Porous Structure Design of Polymeric Membranes for Gas Separation

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Mahurin, Shannon Mark; ...

    2017-04-04

    High-performance polymeric membranes for gas separation are of interest for molecular-level separations in industrial-scale chemical, energy and environmental processes. To overcome the inherent trade-off relationship between permeability and selectivity, the creation of permanent microporosity in polymeric matrices is highly desirable because the porous structures can provide a high fractional free volume to facilitate gas transport through the dense layer. In this feature article, recent developments in the formation of porous polymeric membranes and potential strategies for pore structure design are reviewed.

  17. Synthesis and Characterization of Polyethylene/Starch Nanocomposites: A Spherical Starch-Supported Catalyst and In Situ Ethylene Polymerization.

    PubMed

    Zhanga, Hao; Xi, Shixia; Wang, Shuwei; Liu, Jingsheng; Yoon, Keun-Byoung; Lee, Dong-Ho; Zhang, Hexin; Zhang, Xuequan

    2017-01-01

    In the present article, a novel spherical starch-supported vanadium (V)-based Ziegler-Natta catalyst was synthesized. The active centers of the obtained catalyst well dispersed in the starch through the SEM-EDX analysis. The effects of reaction conditions on ethylene polymerization were studied. The synthesized catalyst exhibited high activity toward ethylene polymerization in the presence of ethylaluminium sesquichloride (EASC) cocatalyst. Interestingly, the fiber shape PE was obtained directly during the polymerization process.

  18. Self-assembly of block copolymers on topographically patterned polymeric substrates

    DOEpatents

    Russell, Thomas P.; Park, Soojin; Lee, Dong Hyun; Xu, Ting

    2016-05-10

    Highly-ordered block copolymer films are prepared by a method that includes forming a polymeric replica of a topographically patterned crystalline surface, forming a block copolymer film on the topographically patterned surface of the polymeric replica, and annealing the block copolymer film. The resulting structures can be used in a variety of different applications, including the fabrication of high density data storage media. The ability to use flexible polymers to form the polymeric replica facilitates industrial-scale processes utilizing the highly-ordered block copolymer films.

  19. Photochemical removal of aniline in aqueous solutions: switching from photocatalytic degradation to photo-enhanced polymerization recovery.

    PubMed

    Tang, Heqing; Li, Jing; Bie, Yeqiang; Zhu, Lihua; Zou, Jing

    2010-03-15

    Organic pollutants may be treated by either a degradation process or a recovery process in the view point of sustainable chemistry. Photocatalytic removal of aniline was investigated in aqueous solutions. It was found that the photocatalytic oxidation of aniline resulted in its degradation or polymerization, depending on its concentration. Hence a new treatment strategy was proposed in combination of photocatalytic degradation and polymerization, where the polymerization was in fact a recovery process. When aniline concentration was as low as 0.1 mmol L(-1), it was possible to photocatalytically degrade aniline, which could be further enhanced by increasing solution pH, modifying TiO(2) surface with the addition of anions, or coupling with the photoreduction of added oxidants. When aniline concentration was increased to about 1 mmol L(-1), the photocatalytic oxidation was observed to yield the polymerization of aniline, leading to nanocomposites of polyaniline (PAN) and TiO(2). Alternatively, the photo-enhanced chemical polymerization of aniline at higher concentrations (>or=50 mmol L(-1)) in the presence of chemical oxidants produced PAN nanostructures. The conversion of pollutant aniline to valuable PAN nanostructures or nano-PAN/TiO(2) composites is suggestive for possible applications in the treatment of aniline wastewaters as a sustainable environmental protection measure. (c) 2009 Elsevier B.V. All rights reserved.

  20. A technique for improved maxillary record base adaptation through controlled polymerization of light-activated dental resins.

    PubMed

    Hopkins, D S; Phoenix, R D; Abrahamsen, T C

    1997-09-01

    A technique for the fabrication of light-activated maxillary record bases is described. The use of a segmental polymerization process provides improved palatal adaptation by minimizing the effects of polymerization shrinkage. Utilization of this technique results in record bases that are well adapted to the corresponding master casts.

  1. Characterization of the functional interactions of plastidial starch phosphorylase and starch branching enzymes from rice endosperm during reserve starch biosynthesis.

    PubMed

    Nakamura, Yasunori; Ono, Masami; Sawada, Takayuki; Crofts, Naoko; Fujita, Naoko; Steup, Martin

    2017-11-01

    Functional interactions of plastidial phosphorylase (Pho1) and starch branching enzymes (BEs) from the developing rice endosperm are the focus of this study. In the presence of both Pho1 and BE, the same branched primer molecule is elongated and further branched almost simultaneously even at very low glucan concentrations present in the purified enzyme preparations. By contrast, in the absence of any BE, glucans are not, to any significant extent, elongated by Pho1. Based on our in vitro data, in the developing rice endosperm, Pho1 appears to be weakly associated with any of the BE isozymes. By using fluorophore-labeled malto-oligosaccharides, we identified maltose as the smallest possible primer for elongation by Pho1. Linear dextrins act as carbohydrate substrates for BEs. By functionally interacting with a BE, Pho1 performs two essential functions during the initiation of starch biosynthesis in the rice endosperm: First, it elongates maltodextrins up to a degree of polymerization of at least 60. Second, by closely interacting with BEs, Pho1 is able to elongate branched glucans efficiently and thereby synthesizes branched carbohydrates essential for the initiation of amylopectin biosynthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Implication of Fructans in Health: Immunomodulatory and Antioxidant Mechanisms

    PubMed Central

    Franco-Robles, Elena; López, Mercedes G.

    2015-01-01

    Previous studies have shown that fructans, a soluble dietary fiber, are beneficial to human health and offer a promising approach for the treatment of some diseases. Fructans are nonreducing carbohydrates composed of fructosyl units and terminated by a single glucose molecule. These carbohydrates may be straight or branched with varying degrees of polymerization. Additionally, fructans are resistant to hydrolysis by human digestive enzymes but can be fermented by the colonic microbiota to produce short chain fatty acids (SCFAs), metabolic by-products that possess immunomodulatory activity. The indirect role of fructans in stimulating probiotic growth is one of the mechanisms through which fructans exert their prebiotic activity and improve health or ameliorate disease. However, a more direct mechanism for fructan activity has recently been suggested; fructans may interact with immune cells in the intestinal lumen to modulate immune responses in the body. Fructans are currently being studied for their potential as “ROS scavengers” that benefit intestinal epithelial cells by improving their redox environment. In this review, we discuss recent advances in our understanding of fructans interaction with the intestinal immune system, the gut microbiota, and other components of the intestinal lumen to provide an overview of the mechanisms underlying the effects of fructans on health and disease. PMID:25961072

  3. [Dietary fiber: concept, classification and current indications].

    PubMed

    García Peris, P; Camblor Alvarez, M

    1999-05-01

    Fiber is a concept that refers to or encompasses several carbohydrates and lignine that resist hydrolysis by human digestive enzymes and that are fermented by the microflora of the colon. From a practical point of view, fibers can be divided into soluble and insoluble. There is general acceptance of the concepts soluble fiber, fermentable, viscous and insoluble fiber, and non-viscous and barely fermentable fiber. The physiological effects and therefore the clinical applications of both fibers are different. In general, the insoluble fiber is barely fermentable and has a marked laxative and intestinal regulatory effect. Soluble fiber is fermented to a high degree, showing a powerful trophic effect at the colon level. Soluble fiber is also attributed a positive role in the carbohydrate and lipid metabolism due to the effects that this has at the intestinal and the systemic level on the glucose and the cholesterol metabolism. The goal of this article is to review the current concept of fiber based on the existing bibliography (it is thought that perhaps the current classification should be changed and that fiber should be talked about depending on its degree of polymerization), its physiologic effects and the possible indications that this may have from a clinical point of view, be this at the level of oral or enteral nutrition.

  4. Photoinitiated Polymerization‐Induced Self‐Assembly (Photo‐PISA): New Insights and Opportunities

    PubMed Central

    Yeow, Jonathan

    2017-01-01

    The polymerization‐induced self‐assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo‐PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo‐PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo‐PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self‐assembly process. The purpose of this mini‐review is therefore to examine some of these recent advances that have been made in Photo‐PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems. PMID:28725534

  5. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  6. Sol-gel chemistry by ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-02-07

    Sol-gel processing of materials is plagued by shrinkage during polymerization of the alkoxide monomers and processing (aging and drying) of the resulting gels. The authors have developed a new class of hybrid organic-inorganic materials based on the solventless ring-opening polymerization (ROP) of monomers bearing the 2,2,5,5-tetramethyl-2,5-disilaoxacyclopentyl group, which permits them to drastically reduce shrinkage in sol-gel processed materials. Because the monomers are polymerized through a chain growth mechanism catalyzed by base rather than the step growth mechanism normally used in sol-gel systems, hydrolysis and condensation products are entirely eliminated. Furthermore, since water is not required for hydrolysis, an alcohol solventmore » is not necessary. Monomers with two disilaoxacyclopentyl groups, separated by a rigid phenylene group or a more flexible alkylene group, were prepared through disilylation of the corresponding diacetylenes, followed by ring closure and hydrogenation. Anionic polymerization of these materials, either neat or with 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a copolymer, affords thermally stable transparent gels with no visible shrinkage. These materials provide an easy route to the introduction of sol-gel type materials in encapsulation of microelectronics, which they have successfully demonstrated.« less

  7. A comprehensive review of select smart polymeric and gel actuators for soft mechatronics and robotics applications: fundamentals, freeform fabrication, and motion control

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Tyler, Tom; Leang, Kam K.

    2017-10-01

    Smart polymeric and gel actuators change shape or size in response to stimuli like electricity, heat, or light. These smart polymeric- and gel-based actuators are compliant and well suited for development of soft mechatronic and robotic devices. This paper provides a thorough review of select smart polymeric and gel actuator materials where an automated and freeform fabrication process, like 3D printing, is exploited to create custom shaped monolithic devices. In particular, the advantages and limitations, examples of applications, manufacturing and fabrication techniques, and methods for actuator control are discussed. Finally, a rigorous comparison and analysis of some of the advantages and limitations, as well as manufacturing processes, for these materials, are presented.

  8. Discovery and design of carbohydrate-based therapeutics.

    PubMed

    Cipolla, Laura; Araújo, Ana C; Bini, Davide; Gabrielli, Luca; Russo, Laura; Shaikh, Nasrin

    2010-08-01

    Till now, the importance of carbohydrates has been underscored, if compared with the two other major classes of biopolymers such as oligonucleotides and proteins. Recent advances in glycobiology and glycochemistry have imparted a strong interest in the study of this enormous family of biomolecules. Carbohydrates have been shown to be implicated in recognition processes, such as cell-cell adhesion, cell-extracellular matrix adhesion and cell-intruder recognition phenomena. In addition, carbohydrates are recognized as differentiation markers and as antigenic determinants. Due to their relevant biological role, carbohydrates are promising candidates for drug design and disease treatment. However, the growing number of human disorders known as congenital disorders of glycosylation that are being identified as resulting from abnormalities in glycan structures and protein glycosylation strongly indicates that a fast development of glycobiology, glycochemistry and glycomedicine is highly desirable. The topics give an overview of different approaches that have been used to date for the design of carbohydrate-based therapeutics; this includes the use of native synthetic carbohydrates, the use of carbohydrate mimics designed on the basis of their native counterpart, the use of carbohydrates as scaffolds and finally the design of glyco-fused therapeutics, one of the most recent approaches. The review covers mainly literature that has appeared since 2000, except for a few papers cited for historical reasons. The reader will gain an overview of the current strategies applied to the design of carbohydrate-based therapeutics; in particular, the advantages/disadvantages of different approaches are highlighted. The topic is presented in a general, basic manner and will hopefully be a useful resource for all readers who are not familiar with it. In addition, in order to stress the potentialities of carbohydrates, several examples of carbohydrate-based marketed therapeutics are given. Carbohydrates are a rich class of natural compounds, possessing an intriguing and still not fully understood biological role. This richness offers several strategies for the design of carbohydrate-based therapeutics.

  9. Method of forming composite fiber blends and molding same

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor)

    1989-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a tow of strong filamentary materials; (b) forming a thermoplastic polymeric fiber; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  10. Composite Materials for Maxillofacial Prostheses.

    DTIC Science & Technology

    1980-08-01

    projected composite systems are elastomeric-shelled, liquid-filled * microcapsules . Experiments continued on the interfacial polymerization process with...filled microcapsules . Experiments continued on the interfacial polymerization process, with spherical, sealed, capsules achieved. Needs identified are...consists of liquid-filled, elastomeric-shelled microcapsules held together to form a deformable mass; this is to simulate the semi-liquid cellular structure

  11. Continuous, linearly intermixed fiber tows and composite molded article thereform

    NASA Technical Reports Server (NTRS)

    McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)

    2000-01-01

    The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a carbon fiber tow; (b) forming a thermoplastic polymeric fiber tow; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.

  12. 40 CFR 61.60 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment used in research and development if the reactor used to polymerize the vinyl chloride processed in the equipment has a capacity of no more than 0.19 m 3 (50 gal). (c) Sections of this subpart other... equipment used in research and development if the reactor used to polymerize the vinyl chloride processed in...

  13. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene substrates

    NASA Astrophysics Data System (ADS)

    Zanini, S.; Orlandi, M.; Colombo, C.; Grimoldi, E.; Riccardi, C.

    2009-08-01

    A detailed study of argon plasma-induced graft-polymerization of polyethylene glycol acrylate (PEGA) on polypropylene (PP) substrates (membranes and films) is presented. The process consists of four steps: (a) plasma pre-activation of the PP substrates; (b) immersion in a PEGA solution; (c) argon plasma-induced graft-polymerization; (d) washing and drying of the samples. Influence of the solution and plasma parameters on the process efficiency evaluated in terms of amount of grafted polymer, coverage uniformity and substrates wettability, are investigated. The plasma-induced graft-polymerization of PEGA is then followed by sample weighting, water droplet adsorption time and contact angle measurements, attenuated total reflection infrared spectroscopy (ATR-IR), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analyses. The stability of the obtained thin films was evaluated in water and in phosphate buffer saline (PBS) at 37 °C. Results clearly indicates that plasma-induced graft-polymerization of PEGA is a practical methodology for anti-fouling surface modification of materials.

  14. A New Route for High-Purity Organic Materials: High-Pressure-Ramp-Induced Ultrafast Polymerization of 2-(Hydroxyethyl)Methacrylate

    NASA Astrophysics Data System (ADS)

    Evlyukhin, E.; Museur, L.; Traore, M.; Perruchot, C.; Zerr, A.; Kanaev, A.

    2015-12-01

    The synthesis of highly biocompatible polymers is important for modern biotechnologies and medicine. Here, we report a unique process based on a two-step high-pressure ramp (HPR) for the ultrafast and efficient bulk polymerization of 2-(hydroxyethyl)methacrylate (HEMA) at room temperature without photo- and thermal activation or addition of initiator. The HEMA monomers are first activated during the compression step but their reactivity is hindered by the dense glass-like environment. The rapid polymerization occurs in only the second step upon decompression to the liquid state. The conversion yield was found to exceed 90% in the recovered samples. The gel permeation chromatography evidences the overriding role of HEMA2•• biradicals in the polymerization mechanism. The HPR process extends the application field of HP-induced polymerization, beyond the family of crystallized monomers considered up today. It is also an appealing alternative to typical photo- or thermal activation, allowing the efficient synthesis of highly pure organic materials.

  15. Fine-tuning of process conditions to improve product uniformity of polystyrene particles used for wind tunnel velocimetry

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1990-01-01

    Monodisperse polymer particles (having uniform diameter) were used for the last two decades in physical, biological, and chemical sciences. In NASA Langley Research Center monodisperse polystyrene particles are used in wind tunnel laser velocimeters. These polystyrene (PS) particles in latex form were formulated at the Engineering Laboratory of FENGD using emulsion-free emulsion polymerization. Monodisperse PS latices particles having different particle diameters were formulated and useful experimental data involving effects of process conditions on particle size were accumulated. However, similar process conditions and chemical recipes for polymerization of styrene monomer have often yielded monodisperse particles having varying diameters. The purpose was to improve the PS latex product uniformity by fine-tuning the process parameters based on the knowledge of suspension and emulsion polymerization.

  16. Effects of sugar functional groups, hydrophobicity, and fluorination on carbohydrate-DNA stacking interactions in water.

    PubMed

    Lucas, Ricardo; Peñalver, Pablo; Gómez-Pinto, Irene; Vengut-Climent, Empar; Mtashobya, Lewis; Cousin, Jonathan; Maldonado, Olivia S; Perez, Violaine; Reynes, Virginie; Aviñó, Anna; Eritja, Ramón; González, Carlos; Linclau, Bruno; Morales, Juan C

    2014-03-21

    Carbohydrate-aromatic interactions are highly relevant for many biological processes. Nevertheless, experimental data in aqueous solution relating structure and energetics for sugar-arene stacking interactions are very scarce. Here, we evaluate how structural variations in a monosaccharide including carboxyl, N-acetyl, fluorine, and methyl groups affect stacking interactions with aromatic DNA bases. We find small differences on stacking interaction among the natural carbohydrates examined. The presence of fluorine atoms within the pyranose ring slightly increases the interaction with the C-G DNA base pair. Carbohydrate hydrophobicity is the most determinant factor. However, gradual increase in hydrophobicity of the carbohydrate does not translate directly into a steady growth in stacking interaction. The energetics correlates better with the amount of apolar surface buried upon sugar stacking on top of the aromatic DNA base pair.

  17. Carbohydrate Cluster Microarrays Fabricated on 3-Dimensional Dendrimeric Platforms for Functional Glycomics Exploration

    PubMed Central

    Zhou, Xichun; Turchi, Craig; Wang, Denong

    2009-01-01

    We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771

  18. Biomass Yield and Carbohydrate Composition in Sugarcane and Energy Cane

    USDA-ARS?s Scientific Manuscript database

    Sugarcane and energy cane are important crops for sugar and bio-ethanol production. A better understanding their carbohydrate composition and concentrations in addition to biomass yields can improve knowledge in biomass processing and utilization. There were two objectives for this study. The first ...

  19. A thorough experimental study of CH/π interactions in water: quantitative structure-stability relationships for carbohydrate/aromatic complexes.

    PubMed

    Jiménez-Moreno, Ester; Jiménez-Osés, Gonzalo; Gómez, Ana M; Santana, Andrés G; Corzana, Francisco; Bastida, Agatha; Jiménez-Barbero, Jesus; Asensio, Juan Luis

    2015-11-13

    CH/π interactions play a key role in a large variety of molecular recognition processes of biological relevance. However, their origins and structural determinants in water remain poorly understood. In order to improve our comprehension of these important interaction modes, we have performed a quantitative experimental analysis of a large data set comprising 117 chemically diverse carbohydrate/aromatic stacking complexes, prepared through a dynamic combinatorial approach recently developed by our group. The obtained free energies provide a detailed picture of the structure-stability relationships that govern the association process, opening the door to the rational design of improved carbohydrate-based ligands or carbohydrate receptors. Moreover, this experimental data set, supported by quantum mechanical calculations, has contributed to the understanding of the main driving forces that promote complex formation, underlining the key role played by coulombic and solvophobic forces on the stabilization of these complexes. This represents the most quantitative and extensive experimental study reported so far for CH/π complexes in water.

  20. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  1. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.« less

  2. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids-loading enzymatic hydrolysis

    DOE PAGES

    Xue, Saisi; Uppugundla, Nirmal; Bowman, Michael J.; ...

    2015-11-26

    Accumulation of recalcitrant oligosaccharides during high-solids loading enzymatic hydrolysis of cellulosic biomass reduces biofuel yields and increases processing costs for a cellulosic biorefinery. Recalcitrant oligosaccharides in AFEX-pretreated corn stover hydrolysate accumulate to the extent of about 18–25 % of the total soluble sugars in the hydrolysate and 12–18 % of the total polysaccharides in the inlet biomass (untreated), equivalent to a yield loss of about 7–9 kg of monomeric sugars per 100 kg of inlet dry biomass (untreated). These oligosaccharides represent a yield loss and also inhibit commercial hydrolytic enzymes, with both being serious bottlenecks for economical biofuel production frommore » cellulosic biomass. Very little is understood about the nature of these oligomers and why they are recalcitrant to commercial enzymes. This work presents a robust method for separating recalcitrant oligosaccharides from high solid loading hydrolysate in gramme quantities. Composition analysis, recalcitrance study and enzyme inhibition study were performed to understand their chemical nature. Results indicate that, oligosaccharide accumulation occurs during high solid loading enzymatic hydrolysis of corn stover (CS) irrespective of using different pretreated corn stover (dilute acid: DA, ionic liquids: IL, and ammonia fibre expansion: AFEX). The methodology for large-scale separation of recalcitrant oligosaccharides from 25 % solids-loading AFEXcorn stover hydrolysate using charcoal fractionation and size exclusion chromatography is reported for the first time. Oligosaccharides with higher degree of polymerization (DP) were recalcitrant towards commercial enzyme mixtures [Ctec2, Htec2 and Multifect pectinase (MP)] compared to lower DP oligosaccharides. Enzyme inhibition studies using processed substrates (Avicel and xylan) showed that low DP oligosaccharides also inhibit commercial enzymes. Addition of monomeric sugars to oligosaccharides increases the inhibitory effects of oligosaccharides on commercial enzymes. In conclusion, the carbohydrate composition of the recalcitrant oligosaccharides, ratios of different DP oligomers and their distribution profiles were determined. Recalcitrance and enzyme inhibition studies help determine whether the commercial enzyme mixtures lack the enzyme activities required to completely de-polymerize the plant cell wall. Such studies clarify the reasons for oligosaccharide accumulation and contribute to strategies by which oligosaccharides can be converted into fermentable sugars and provide higher biofuel yields with less enzyme.« less

  3. Spatial control of actin polymerization during neutrophil chemotaxis

    PubMed Central

    Weiner, Orion D.; Servant, Guy; Welch, Matthew D.; Mitchison, Timothy J.; Sedat, John W.; Bourne, Henry R.

    2010-01-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients. PMID:10559877

  4. Spatial control of actin polymerization during neutrophil chemotaxis.

    PubMed

    Weiner, O D; Servant, G; Welch, M D; Mitchison, T J; Sedat, J W; Bourne, H R

    1999-06-01

    Neutrophils respond to chemotactic stimuli by increasing the nucleation and polymerization of actin filaments, but the location and regulation of these processes are not well understood. Here, using a permeabilized-cell assay, we show that chemotactic stimuli cause neutrophils to organize many discrete sites of actin polymerization, the distribution of which is biased by external chemotactic gradients. Furthermore, the Arp2/3 complex, which can nucleate actin polymerization, dynamically redistributes to the region of living neutrophils that receives maximal chemotactic stimulation, and the least-extractable pool of the Arp2/3 complex co-localizes with sites of actin polymerization. Our observations indicate that chemoattractant-stimulated neutrophils may establish discrete foci of actin polymerization that are similar to those generated at the posterior surface of the intracellular bacterium Listeria monocytogenes. We propose that asymmetrical establishment and/or maintenance of sites of actin polymerization produces directional migration of neutrophils in response to chemotactic gradients.

  5. Photoinitiated Polymerization-Induced Self-Assembly of Glycidyl Methacrylate for the Synthesis of Epoxy-Functionalized Block Copolymer Nano-Objects.

    PubMed

    Tan, Jianbo; Liu, Dongdong; Huang, Chundong; Li, Xueliang; He, Jun; Xu, Qin; Zhang, Li

    2017-08-01

    Herein, a novel photoinitiated polymerization-induced self-assembly formulation via photoinitiated reversible addition-fragmentation chain transfer dispersion polymerization of glycidyl methacrylate (PGMA) in ethanol-water at room temperature is reported. It is demonstrated that conducting polymerization-induced self-assembly (PISA) at low temperatures is crucial for obtaining colloidal stable PGMA-based diblock copolymer nano-objects. Good control is maintained during the photo-PISA process with a high rate of polymerization. The polymerization can be switched between "ON" and "OFF" in response to visible light. A phase diagram is constructed by varying monomer concentration and degree of polymerization. The PGMA-based diblock copolymer nano-objects can be further cross-linked by using a bifunctional primary amine reagent. Finally, silver nanoparticles are loaded within cross-linked vesicles via in situ reduction, exhibiting good catalytic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    PubMed

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  7. Formulation and Immunogenicity studies of Type III Secretion System needle antigens as Vaccine Candidates

    PubMed Central

    Barrett, Brooke S.; Markham, Aaron P.; Esfandiary, Reza; Picking, Wendy L.; Picking, William D.; Joshi, Sangeeta B.; Middaugh, C. Russell

    2013-01-01

    Bacterial infections caused by Shigella flexneri, Salmonella typhimurium and Burkholderia pseudomallei are currently difficult to prevent due to the lack of a licensed vaccine. Here we present formulation and immunogenicity studies for the three type III secretion system (TTSS) needle proteins MxiHΔ5, PrgIΔ5 and BsaLΔ5 (each truncated by five residues at its C terminus) as potential candidates for vaccine development. These antigens are found to be thermally stabilized by the presence of carbohydrates and polyols. Additionally, all adsorb readily to aluminum hydroxide apparently through a combination of hydrogen bonds and/or Van der Waals forces. The interaction of these proteins with the aluminum-based adjuvant changes with time to resulting in varying degrees of irreversible binding. Peptide maps of desorbed protein, however, suggest that chemical changes are not responsible for this irreversible association. The ability of MxiHΔ5 and PrgIΔ5 to elicit strong humoral immune responses was tested in a murine model. When administered intramuscularly as monomers, the needle components exhibited dose dependent immunogenic behavior. The polymerized version of MxiH was exceptionally immunogenic even at low doses. The responses of both monomeric and polymerized forms were boosted by adsorption to an aluminum salt adjuvant. PMID:20845448

  8. Exploring the free-energy landscape of carbohydrate-protein complexes: development and validation of scoring functions considering the binding-site topology

    NASA Astrophysics Data System (ADS)

    Eid, Sameh; Saleh, Noureldin; Zalewski, Adam; Vedani, Angelo

    2014-12-01

    Carbohydrates play a key role in a variety of physiological and pathological processes and, hence, represent a rich source for the development of novel therapeutic agents. Being able to predict binding mode and binding affinity is an essential, yet lacking, aspect of the structure-based design of carbohydrate-based ligands. We assembled a diverse data set comprising 273 carbohydrate-protein crystal structures with known binding affinity and evaluated the prediction accuracy of a large collection of well-established scoring and free-energy functions, as well as combinations thereof. Unfortunately, the tested functions were not capable of reproducing binding affinities in the studied complexes. To simplify the complex free-energy surface of carbohydrate-protein systems, we classified the studied proteins according to the topology and solvent exposure of the carbohydrate-binding site into five distinct categories. A free-energy model based on the proposed classification scheme reproduced binding affinities in the carbohydrate data set with an r 2 of 0.71 and root-mean-squared-error of 1.25 kcal/mol ( N = 236). The improvement in model performance underlines the significance of the differences in the local micro-environments of carbohydrate-binding sites and demonstrates the usefulness of calibrating free-energy functions individually according to binding-site topology and solvent exposure.

  9. Pinus sylvestris switches respiration substrates under shading but not during drought.

    PubMed

    Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Gleixner, Gerd; Popp, Jürgen; Trumbore, Susan; Hartmann, Henrik

    2015-08-01

    Reduced carbon (C) assimilation during prolonged drought forces trees to rely on stored C to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major C storage pool and apparently the main respiratory substrate in plants, strongly declines with decreasing plant hydration. Yet no empirical evidence has been produced to what degree other C storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to C limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ(13) C of respired CO2 and concentrations of the major storage compounds, that is, carbohydrates, lipids and amino acids. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees, the fraction of carbohydrates used in respiration did not decline but respiration rates were strongly reduced. The lower consumption and potentially allocation from other organs may have caused initial carbohydrate content to remain constant during the experiment. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate shift cannot provide an efficient means to counterbalance C limitation under natural drought. © 2015 The Authors New Phytologist © 2015 New Phytologist Trust.

  10. Chemical Characterization of Potentially Prebiotic Oligosaccharides in Brewed Coffee and Spent Coffee Grounds.

    PubMed

    Tian, Tian; Freeman, Samara; Corey, Mark; German, J Bruce; Barile, Daniela

    2017-04-05

    Oligosaccharides are indigestible carbohydrates widely present in mammalian milk and in some plants. Milk oligosaccharides are associated with positive health outcomes; however, oligosaccharides in coffee have not been extensively studied. We investigated the oligosaccharides and their monomeric composition in dark roasted coffee beans, brewed coffee, and spent coffee grounds. Oligosaccharides with a degree of polymerization ranging from 3 to 15, and their constituent monosaccharides, were characterized and quantified. The oligosaccharides identified were mainly hexoses (potentially galacto-oligosaccharides and manno-oligosaccharides) containing a heterogeneous mixture of glucose, arabinose, xylose, and rhamnose. The diversity of oligosaccharides composition found in these coffee samples suggests that they could have selective prebiotic activity toward specific bacterial strains able to deconstruct the glycosidic bonds and utilize them as a carbon source.

  11. Polysaccharide‐Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside

    PubMed Central

    Miao, Tianxin; Wang, Junqing; Zeng, Yun; Chen, Xiaoyuan

    2018-01-01

    Abstract Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section. Recent progresses in preclinical applications are then discussed, including tissue engineering and treatment of diseases in both therapeutic and monitoring aspects. Finally, clinical translational studies with ongoing clinical trials are summarized and reviewed. The promise of new development in nanotechnology and polysaccharide chemistry helps clinical translation of polysaccharide‐based drug delivery systems. PMID:29721408

  12. Glycobiology of Reproductive Processes in Marine Animals: The State of the Art

    PubMed Central

    Gallo, Alessandra; Costantini, Maria

    2012-01-01

    Glycobiology is the study of complex carbohydrates in biological systems and represents a developing field of science that has made huge advances in the last half century. In fact, it combines all branches of biomedical research, revealing the vast and diverse forms of carbohydrate structures that exist in nature. Advances in structure determination have enabled scientists to study the function of complex carbohydrates in more depth and to determine the role that they play in a wide range of biological processes. Glycobiology research in marine systems has primarily focused on reproduction, in particular for what concern the chemical communication between the gametes. The current status of marine glycobiology is primarily descriptive, devoted to characterizing marine glycoconjugates with potential biomedical and biotechnological applications. In this review, we describe the current status of the glycobiology in the reproductive processes from gametogenesis to fertilization and embryo development of marine animals. PMID:23247316

  13. A novel process for enhancing oil production in algae biorefineries through bioconversion of solid by-products.

    PubMed

    Trzcinski, Antoine P; Hernandez, Ernesto; Webb, Colin

    2012-07-01

    This paper focuses on a novel process for adding value to algae residue. In current processes oleaginous microalgae are grown and harvested for lipid production leaving a lipid-free algae residue. The process described here includes conversion of the carbohydrate fraction into glucose prior to lipid extraction. This can be fermented to produce up to 15% additional lipids using another oleaginous microorganism. It was found that in situ enzymes can hydrolyze storage carbohydrates in the algae into glucose and that a temperature of 55 °C for about 20 h gave the best glucose yield. Up to 75% of available carbohydrates were converted to a generic fermentation feedstock containing 73 g/L glucose. The bioconversion step was found to increase the free water content by 60% and it was found that when the bioconversion was carried out prior to the extraction step, it improved the solvent extractability of lipids from the algae. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. ANALYSIS OF RICIN TOXIN PREPARATIONS FOR CARBOHYDRATE AND FATTY ACID ABUNDANCE AND ISOTOPE RATIO INFORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunschel, David S.; Kreuzer-Martin, Helen W.; Antolick, Kathryn C.

    2009-12-01

    This report describes method development and preliminary evaluation for analyzing castor samples for signatures of purifying ricin. Ricin purification from the source castor seeds is essentially a problem of protein purification using common biochemical methods. Indications of protein purification will likely manifest themselves as removal of the non-protein fractions of the seed. Two major, non-protein, types of biochemical constituents in the seed are the castor oil and various carbohydrates. The oil comprises roughly half the seed weight while the carbohydrate component comprises roughly half of the remaining “mash” left after oil and hull removal. Different castor oil and carbohydrate componentsmore » can serve as indicators of specific toxin processing steps. Ricinoleic acid is a relatively unique fatty acid in nature and is the most abundant component of castor oil. The loss of ricinoleic acid indicates a step to remove oil from the seeds. The relative amounts of carbohydrates and carbohydrate-like compounds, including arabinose, xylose, myo-inositol fucose, rhamnose, glucosamine and mannose detected in the sample can also indicate specific processing steps. For instance, the differential loss of arabinose relative to mannose and N-acetyl glucosamine indicates enrichment for the protein fraction of the seed using protein precipitation. The methods developed in this project center on fatty acid and carbohydrate extraction from castor samples followed by derivatization to permit analysis by gas chromatography-mass spectrometry (GC-MS). Method descriptions herein include: the source and preparation of castor materials used for method evaluation, the equipment and description of procedure required for chemical derivatization, and the instrument parameters used in the analysis. Two types of derivatization methods describe analysis of carbohydrates and one procedure for analysis of fatty acids. Two types of GC-MS analysis is included in the method development, one employing a quadrupole MS system for compound identification and an isotope ratio MS for measuring the stable isotope ratios of deuterium and hydrogen (D/H) in fatty acids. Finally, the method for analyzing the compound abundance data is included. This study indicates that removal of ricinoleic acid is a conserved consequence of each processing step we tested. Furthermore, the stable isotope D/H ratio of ricinoleic acid distinguished between two of the three castor seed sources. Concentrations of arabinose, xylose, mannose, glucosamine and myo-inositol differentiated between crude or acetone extracted samples and samples produced by protein precipitation. Taken together these data illustrate the ability to distinguish between processes used to purify a ricin sample as well as potentially the source seeds.« less

  15. Intrinsic embedded sensors for polymeric mechatronics: flexure and force sensing.

    PubMed

    Jentoft, Leif P; Dollar, Aaron M; Wagner, Christopher R; Howe, Robert D

    2014-02-25

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  16. Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing

    PubMed Central

    Jentoft, Leif P.; Dollar, Aaron M.; Wagner, Christopher R.; Howe, Robert D.

    2014-01-01

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor. PMID:24573310

  17. Polymeric Packaging for Fully Implantable Wireless Neural Microsensors

    PubMed Central

    Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.

    2014-01-01

    We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999

  18. Barnacle cement: a polymerization model based on evolutionary concepts

    PubMed Central

    Dickinson, Gary H.; Vega, Irving E.; Wahl, Kathryn J.; Orihuela, Beatriz; Beyley, Veronica; Rodriguez, Eva N.; Everett, Richard K.; Bonaventura, Joseph; Rittschof, Daniel

    2009-01-01

    Summary Enzymes and biochemical mechanisms essential to survival are under extreme selective pressure and are highly conserved through evolutionary time. We applied this evolutionary concept to barnacle cement polymerization, a process critical to barnacle fitness that involves aggregation and cross-linking of proteins. The biochemical mechanisms of cement polymerization remain largely unknown. We hypothesized that this process is biochemically similar to blood clotting, a critical physiological response that is also based on aggregation and cross-linking of proteins. Like key elements of vertebrate and invertebrate blood clotting, barnacle cement polymerization was shown to involve proteolytic activation of enzymes and structural precursors, transglutaminase cross-linking and assembly of fibrous proteins. Proteolytic activation of structural proteins maximizes the potential for bonding interactions with other proteins and with the surface. Transglutaminase cross-linking reinforces cement integrity. Remarkably, epitopes and sequences homologous to bovine trypsin and human transglutaminase were identified in barnacle cement with tandem mass spectrometry and/or western blotting. Akin to blood clotting, the peptides generated during proteolytic activation functioned as signal molecules, linking a molecular level event (protein aggregation) to a behavioral response (barnacle larval settlement). Our results draw attention to a highly conserved protein polymerization mechanism and shed light on a long-standing biochemical puzzle. We suggest that barnacle cement polymerization is a specialized form of wound healing. The polymerization mechanism common between barnacle cement and blood may be a theme for many marine animal glues. PMID:19837892

  19. Self-Healing of biocompatible polymeric nanocomposities

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina

    2014-03-01

    Polymers are vulnerable to damage in form of cracks deep within the structure, where detection is difficult and repair is near to impossible. These cracks lead to mechanical degradation of the polymer. A method has been created to solve this problem named polymeric self healing. Self healing capabilities implies the dispersion within the polymeric matrix of microcapsules filled with a monomer and of catalyst. Poly urea-formaldehyde microcapsules used in this method are filled with dicyclopentadiene that is liberated after being ruptured by the crack propagation in the material. Polymerization is assisted by a catalyst FGGC that ignites the self healing process. Nanocomposites, such as titanium oxide, will be used as an integration of these polymers that will be tested by rupturing mechanically slowly. In order to prove the self healing process, Raman spectroscopy, FTIR, and SEM are used.

  20. Conductivity enhancement of surface-polymerized polyaniline films via control of processing conditions

    NASA Astrophysics Data System (ADS)

    Park, Chung Hyoi; Jang, Sung Kyu; Kim, Felix Sunjoo

    2018-01-01

    We investigate a fast and facile approach for the simultaneous synthesis and coating of conducting polyaniline (PANI) onto a substrate and the effects of processing conditions on the electrical properties of the fabricated films. Simultaneous polymerizing and depositing on the substrate forms a thin film with the average thickness of 300 nm and sheet resistance of 304 Ω/sq. Deposition conditions such as polymerization time (3-240 min), temperature (-10 to 40 °C), concentrations of monomer and oxidant (0.1-0.9 M), and type of washing solvents (acetone, water, and/or HCl solution) affect the film thickness, doping state, absorption characteristics, and solid-state nanoscale morphology, therefore affecting the electrical conductivity. Among the conditions, the surface-polymerized PANI film deposited at room temperature with acetone washing showed the highest conductivity of 22.2 S/cm.

  1. One-Pot Conversion of Carbohydrates into Furan Derivatives via Furfural and 5-Hydroxylmethylfurfural as Intermediates.

    PubMed

    Liu, Bing; Zhang, Zehui

    2016-08-23

    Recently, there has been growing interest in the transformation of renewable biomass into value-added fuels and chemicals. The catalytic conversion of naturally abundant carbohydrates can generate two-important furan chemicals: 5-hydroxymethylfurfural (HMF) from C6 carbohydrates and furfural from C5 carbohydrates. Both HMF and furfural have received great interest as precursors in the synthesis of commodity chemicals and liquid fuels. In recent years, a trend has emerged to integrate sequential catalytic processes involving multistep reactions for the direct one-pot transformation of carbohydrates into the aimed fuels and chemicals. One-pot reactions have remarkably unique and environmentally friendly benefits, including the fact that isolation and purification of intermediate compounds can be avoided. Herein, the present article aims to review recent advances in the one-pot conversion of carbohydrates into furan derivatives via furfural and HMF as intermediates. Special attention will be paid to the catalytic systems, mechanistic insight, reaction pathways, and catalyst stability. It is expected that this review will guide researchers to develop effective catalytic systems for the one-pot transformation of carbohydrates into furan derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Absorption of nutrients is only slightly reduced by supplementing enteral formulas with viscous fiber in miniature pigs.

    PubMed

    Ehrlein, H; Stockmann, A

    1998-12-01

    Viscous polysaccharides reduce intestinal absorption of glucose and diminish postprandial hyperglycemia. However, it is unknown whether viscous fiber also inhibits absorption of nutrients under conditions of enteric feeding. Therefore, we measured the absorption rates of nutrients in miniature pigs by perfusing a 150-cm length of jejunum with 8.37 kJ/min of the three following enteral diets: an isoosmotic oligomeric diet (1670 kJ/L), a hyperosmotic oligomeric diet and an isoosmotic polymeric diet (both 3350 kJ/L). The diets were supplemented with guar gum from 0 to 4.4 g/L. With the three guar-free diets, the mean absorption rate of energy was 5.2 +/- 0.32 kJ/min, corresponding to 62% of the energy infused. Absorption rates of carbohydrate, protein, fat and energy linearly declined as concentrations of guar or the logarithm of chyme viscosity increased. Due to modulations in viscosity, the inhibitory effects of guar were significantly different among the three diets. With the isoosmotic and hyperosmotic oligomeric and the polymeric diets, the addition of 1 g guar/L diminished the absorption of energy by 9.7, 6. 6 and 3.7%, respectively. The strong inhibitory effect on nutrient absorption with the isoosmotic oligomeric diet was caused by an increase in chyme viscosity due to water absorption. With the hyperosmotic oligomeric and the polymeric diets, the chyme viscosity and thus inhibitory effects on absorption were diminished by water secretion and the concomitant infusion of pancreatic enzymes. Results indicate that the addition of small amounts of guar gum to enteral diets of high energy density exerts only small effects on absorption of nutrients.

  3. Effect of initial temperature and concentration of catalyst in polyeugenol production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widayat, E-mail: yayat-99@yahoo.com; Center of Biomass and Renewable Energy Center of Research and Service Diponegoro University Jln Prof. Soedarto, SH. Semarang 50 239, Tel / Fax:; Fatuchrohman, Alviano

    2015-12-29

    Objective of this research to study influencing of sulfuric acid concentration and initials temperature on polymerization of eugenol. Eugenol is the largest compound in the clove oil that used as raw material. Eugenol was polymerized laboratory scale. Polymerization processing conducted in reactor at 30 minutes. Polyeugenol was obtained in polymerization was conducted at temperature 40°C and ratio eugenol to sulfuric acid 1:15 mole. This research was pbtained the highest yield 81.49%. However, the weight would be increase in according with increasing of initial temperature. The polymerization in temperature 50°C with 1:1.5 mole ratio has the heaviest molecule weight; 47,530.76 gr/mole.

  4. Modular in situ-Functionalization Strategy: Multicomponent Polymerization via Palladium/Norbornene Cooperative Catalysis.

    PubMed

    Yoon, Ki-Young; Dong, Guangbin

    2018-05-23

    Herein, we report the palladium/norbornene cooperatively catalyzed polymerization, which simplifies synthesis of functional aromatic polymers, including conjugated polymers. Specifically, an A2B2C-type multicomponent polymerization is developed using ortho-amination/ipso-alkynylation reaction for preparing various amine-functionalized arylacetylene-containing polymers. Within a single catalytic cycle, the amine side-chains are site-selectively installed in situ via C-H activation during the polymerization process, which represents a major difference from conventional cross-coupling polymerizations. This in situ-functionalization strategy enables modular incorporation of functional side-chains from simple monomers, thereby conveniently affording a diverse range of functional polymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Carbohydrates.

    PubMed

    Cocinero, Emilio J; Çarçabal, Pierre

    2015-01-01

    Although carbohydrates represent one of the most important families of biomolecules, they remain under-studied in comparison to the other biomolecular families (peptides, nucleobases). Beyond their best-known function of energy source in living systems, they act as mediator of molecular recognition processes, carrying molecular information in the so-called "sugar code," just to name one of their countless functions. Owing to their high conformational flexibility, they encode extremely rich information conveyed via the non-covalent hydrogen bonds within the carbohydrate and with other biomolecular assemblies, such as peptide subunits of proteins. Over the last decade there has been tremendous progress in the study of the conformational preferences of neutral oligosaccharides, and of the interactions between carbohydrates and various molecular partners (water, aromatic models, and peptide models), using vibrational spectroscopy as a sensitive probe. In parallel, other spectroscopic techniques have recently become available to the study of carbohydrates in the gas phase (microwave spectroscopy, IRMPD on charged species).

  6. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Xiong, De-Cai; Chen, Si-Cong; Wang, Yong-Shi; Ye, Xin-Shan

    2017-03-01

    Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains.

  7. A biomolecule friendly photolithographic process for fabrication of protein microarrays on polymeric films coated on silicon chips.

    PubMed

    Petrou, Panagiota S; Chatzichristidi, Margarita; Douvas, Antonios M; Argitis, Panagiotis; Misiakos, Konstantinos; Kakabakos, Sotirios E

    2007-04-15

    The last years, there is a steadily growing demand for methods and materials appropriate to create patterns of biomolecules for bioanalytical applications. Here, a photolithographic method for patterning biomolecules onto a silicon surface coated with a polymeric layer of high protein binding capacity is presented. The patterning process does not affect the polymeric film and the activity of the immobilized onto the surface biomolecules. Therefore, it permits sequential immobilization of different biomolecules on spatially distinct areas on the same solid support. The polymeric layer is based on a commercially available photoresist (AZ5214) that is cured at high temperature in order to provide a stable substrate for creation of protein microarrays by the developed photolithographic process. The photolithographic material consists of a (meth)acrylate copolymer and a sulfonium salt as a photoacid generator, and it is lithographically processed by thermal treatment at temperatures

  8. The impact of pollen consumption on honey bee digestive physiology and carbohydrate metabolism

    USDA-ARS?s Scientific Manuscript database

    Carbohydrate-active enzymes play an important role in the honey bee (Apis mellifera) due to its dietary specialization on plant-based nutrition. Secretory glycoside hydrolases (GHs) produced in worker head glands aid in the processing of floral nectar into honey and are expressed in accordance with ...

  9. Effect of structural modifications of ganglioside GM2 on intra-molecular carbohydrate-to-carbohydrate interaction and enzymatic susceptibility.

    PubMed

    Li, Yu-Teh; Li, Su-Chen; Kiso, Makoto; Ishida, Hideharu; Mauri, Laura; Raimondi, Laura; Bernardi, Anna; Sonnino, Sandro

    2008-03-01

    The effect of inter-molecular carbohydrate-to-carbohydrate interaction on basic cell biological processes has been well documented and appreciated. In contrast, very little is known about the intra-molecular carbohydrate-to-carbohydrate interaction. The presence of an interaction between the GalNAc and the Neu5Ac in GM2 detected by NMR spectroscopy represents a well-defined intra-molecular carbohydrate-to-carbohydrate interaction. This intriguing interaction is responsible for the GM2-epitope, GalNAcbeta1-->4(Neu5Acalpha2-->3)Gal-, to exhibit a rigid and compact conformation. We hypothesized that this compact conformation may be the cause for both the GalNAc and the Neu5Ac in GM2 to be refractory to enzymatic hydrolysis and the GM2 activator protein is able to interact with the compact trisaccharide GM2-epitope, rendering the GalNAc and the Neu5Ac accessible to beta-hexosaminidase A and sialidase. We have used a series of structurally modified GM2 to study the effect of modifications of sugar chains on the conformation and enzymatic susceptibility of this ganglioside. Our hypothesis was borne out by the fact that when the GalNAcbeta1-->4Gal linkage in GM2 was converted to the GalNAcbeta1-->6Gal, both the GalNAc and the Neu5Ac became susceptible to beta-hexosaminidase A and sialidase, respectively, without GM2 activator protein. We hope our work will engender interest in identifying other intra-molecular carbohydrate-to-carbohydrate interactions in glycoconjugates.

  10. Association between Carbohydrate Intake and Serum Lipids

    PubMed Central

    Ma, Yunsheng; Chiriboga, David E.; Olendzki, Barbara C.; Li, Wenjun; Leung, Katherine; Hafner, Andrea R.; Li, Youfu; Ockene, Ira S.; Hebert, James R.

    2006-01-01

    Background The effect of dietary carbohydrate on blood lipids has received considerable attention in light of the current trend in lowering carbohydrate intake for weight loss. Objectives To evaluate the association between carbohydrate intake and serum lipids. Methods Blood samples and 24-hour dietary and physical activity recall interviews were obtained from each subject at quarterly intervals for five consecutive quarters between 1994 and 1998 from 574 healthy adults in Central Massachusetts. Relationships between serum lipids and dietary carbohydrate factors were assessed using linear mixed models and adjusting for other risk factors known to be related to blood lipids. Both cross-sectional and longitudinal results were reported. Results Cross-sectional analysis results from this study suggest that higher total carbohydrate intake, percentage of calories from carbohydrate, glycemic index (GI) and/or glycemic load (GL) are related to lower high-density lipoprotein cholesterol (HDL-C) and higher serum triacylglycerol levels, while higher total carbohydrate intake and/or GL are related to lower total and low-density lipoprotein cholesterol (LDL-C) levels. In a one-year longitudinal analysis, GL was positively associated with total and LDL-C levels, and there was an inverse association between percentage of calories from carbohydrate and HDL-C levels. Conclusions Results suggest that there is a complex and predominantly unfavorable effect of increased intake of highly processed carbohydrate on lipid profile, which may have implications for metabolic syndrome, diabetes, and coronary heart disease. Further studies in the form of randomized controlled trials are required to investigate these associations and determine the implications for lipid management. PMID:16582033

  11. Modern trends in industrial technology of production of optical polymeric components for night vision devices

    NASA Astrophysics Data System (ADS)

    Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.

    2005-06-01

    The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.

  12. Is the Proportion of Carbohydrate Intake Associated with the Incidence of Diabetes Complications?-An Analysis of the Japan Diabetes Complications Study.

    PubMed

    Horikawa, Chika; Yoshimura, Yukio; Kamada, Chiemi; Tanaka, Shiro; Tanaka, Sachiko; Matsunaga, Satoshi; Hanyu, Osamu; Araki, Atsushi; Ito, Hideki; Tanaka, Akira; Ohashi, Yasuo; Akanuma, Yasuo; Sone, Hirohito

    2017-02-06

    The appropriate proportions of macronutritional intake have been controversial in medical nutritional therapy for diabetes, and evidence of the effects of carbohydrate consumption on diabetes complications in prospective settings is sparse. We investigated the relationships between proportions of carbohydrate intake as the % of total energy and diabetes complications in a nationwide cohort of Japanese patients with type 2 diabetes aged 40-70 years with hemoglobin A1c ≥6.5%. The analysis was of 1516 responders to a baseline dietary survey assessed by the Food Frequency Questionnaire based on food groups. Primary outcomes were times to overt nephropathy, diabetic retinopathy, and cardiovascular disease (CVD) after 8 years. Hazard ratios (HRs) for proportions of carbohydrate intake were estimated by Cox regression adjusted for confounders. High carbohydrate intake was significantly related to higher intakes of grain, fruits, and sweets/snacks and lower intakes of soybean and soy products, vegetables, seaweed, meat and processed meat, fish and processed fish, eggs, milk and dairy products, oil, and alcoholic beverages. During the eight-year follow-up, there were 81, 275, and 129 events of overt nephropathy, diabetic retinopathy, and CVD, respectively. After adjustment for confounders, HRs for complications in patients with carbohydrate intake in the second or third tertiles (51.0%-56.4% and ≥56.5%, respectively) compared with carbohydrate intake in the first tertile (<50.9%, referent) were analyzed. No significant associations were shown in the second and third tertiles relative to first tertile (overt nephropathy: 1.05 (95% Confidence Interval, 0.54-2.06) and 0.98 (0.40-2.44); diabetic retinopathy: 1.30 (0.90-1.88) and 1.30 (0.78-2.15); and CVD: 0.95 (0.55-1.63) and 1.37 (0.69-2.72)). By exploring potentially nonlinear relationships, trends for the incidence of diabetes complications according to proportions of carbohydrate intake were not clearly shown. Findings suggested that proportions of carbohydrate intake were not associated with the incidence of diabetes complications among type 2 diabetes patients in Japan.

  13. Analysis of the surfaces of wood tissues and pulp fibers using carbohydrate-binding modules specific for crystalline cellulose and mannan.

    PubMed

    Filonova, Lada; Kallas, Asa M; Greffe, Lionel; Johansson, Gunnar; Teeri, Tuula T; Daniel, Geoffrey

    2007-01-01

    Carbohydrate binding modules (CBMs) are noncatalytic substrate binding domains of many enzymes involved in carbohydrate metabolism. Here we used fluorescent labeled recombinant CBMs specific for crystalline cellulose (CBM1(HjCel7A)) and mannans (CBM27(TmMan5) and CBM35(CjMan5C)) to analyze the complex surfaces of wood tissues and pulp fibers. The crystalline cellulose CBM1(HjCel7A) was found as a reliable marker of both bacterially produced and plant G-layer cellulose, and labeling of spruce pulp fibers with CBM1(HjCel7A) revealed a signal that increased with degree of fiber damage. The mannan-specific CBM27(TmMan5) and CBM35(CjMan5C) CBMs were found to be more specific reagents than a monoclonal antibody specific for (1-->4)-beta-mannan/galacto-(1-->4)-beta-mannan for mapping carbohydrates on native substrates. We have developed a quantitative fluorometric method for analysis of crystalline cellulose accumulation on fiber surfaces and shown a quantitative difference in crystalline cellulose binding sites in differently processed pulp fibers. Our results indicated that CBMs provide useful, novel tools for monitoring changes in carbohydrate content of nonuniform substrate surfaces, for example, during wood or pulping processes and possibly fiber biosynthesis.

  14. Identification of carbohydrate anomers using ion mobility-mass spectrometry.

    PubMed

    Hofmann, J; Hahm, H S; Seeberger, P H; Pagel, K

    2015-10-08

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  15. Identification of carbohydrate anomers using ion mobility-mass spectrometry

    NASA Astrophysics Data System (ADS)

    Hofmann, J.; Hahm, H. S.; Seeberger, P. H.; Pagel, K.

    2015-10-01

    Carbohydrates are ubiquitous biological polymers that are important in a broad range of biological processes. However, owing to their branched structures and the presence of stereogenic centres at each glycosidic linkage between monomers, carbohydrates are harder to characterize than are peptides and oligonucleotides. Methods such as nuclear magnetic resonance spectroscopy can be used to characterize glycosidic linkages, but this technique requires milligram amounts of material and cannot detect small amounts of coexisting isomers. Mass spectrometry, on the other hand, can provide information on carbohydrate composition and connectivity for even small amounts of sample, but it cannot be used to distinguish between stereoisomers. Here, we demonstrate that ion mobility-mass spectrometry--a method that separates molecules according to their mass, charge, size, and shape--can unambiguously identify carbohydrate linkage-isomers and stereoisomers. We analysed six synthetic carbohydrate isomers that differ in composition, connectivity, or configuration. Our data show that coexisting carbohydrate isomers can be identified, and relative concentrations of the minor isomer as low as 0.1 per cent can be detected. In addition, the analysis is rapid, and requires no derivatization and only small amounts of sample. These results indicate that ion mobility-mass spectrometry is an effective tool for the analysis of complex carbohydrates. This method could have an impact on the field of carbohydrate synthesis similar to that of the advent of high-performance liquid chromatography on the field of peptide assembly in the late 1970s.

  16. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy.

    PubMed

    Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-15

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH 4 CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH 4 CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Marín-Yaseli, Margarita R.; Moreno, Miguel; de la Fuente, José L.; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-01

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH4CN and NaCN, at middle temperatures between 4 and 38 °C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH4CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study.

  18. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene-Containing Agents with Aggregation-Induced Emission Characteristics.

    PubMed

    Liu, Shunjie; Cheng, Yanhua; Zhang, Haoke; Qiu, Zijie; Kwok, Ryan T K; Lam, Jacky W Y; Tang, Ben Zhong

    2018-05-22

    A facile and efficient approach is demonstrated to visualize the polymerization in situ. A group of tetraphenylethylene (TPE)-containing dithiocarbamates were synthesized and screened as agents for reversible addition fragmentation chain transfer (RAFT) polymerizations. The spatial-temporal control characteristics of photochemistry enabled the RAFT polymerizations to be ON and OFF on demand under alternating visible light irradiation. The emission of TPE is sensitive to the local viscosity change owing to its aggregation-induced emission characteristic. Quantitative information could be easily acquired by the naked eye without destroying the reaction system. Furthermore, the versatility of such a technique was well demonstrated by 12 different polymerization systems. The present approach thus demonstrated a powerful platform for understanding the controlled living radical polymerization process. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Organic Matter Polymerization by Disulfide Bonding Near the Chemocline in Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Raven, M. R.; Adkins, J. F.; Sessions, A. L.

    2013-12-01

    The preservation of organic carbon in sediments as kerogen is an essential pathway in the global carbon cycle, but the chemical reactions involved in kerogen formation remain poorly understood. Previous researchers have found that many sediments deposited under euxinic conditions contain sulfur-bearing non-polar lipids as well as disulfide bonds among lipid and carbohydrate monomers. It remains unclear, however, when during organic matter decomposition and diagenesis these different sulfur-bearing structures form, and how different environmental conditions affect the extent of organic matter sulfurization. We investigate organic sulfurization processes armed with a technique for measuring the sulfur-isotopic compositions of individual organosulfur compounds by coupled gas chromatography - inductively coupled plasma mass spectrometry. Organic compounds were extracted from sediments and water column sediment traps from Cariaco Basin, a euxinic basin in the Caribbean Sea. We measured the sulfur-isotopic compositions of both non-polar lipids and of derivatized disulfide-bound compounds from eight sediment trap profiles and a six-meter-long sediment core. In Cariaco Basin, lipid sulfurization processes appear to begin near the chemocline and continue in sediments on timescales of thousands of years. Slow diagenetic sulfurization in sediments produces lipid monomers with sulfur atoms in ring structures that are 34S-depleted relative to coexisting dissolved sulfide. Lipid monomers become progressively enriched in 34S over time, indicating ongoing formation coinciding with an increase in the amount of total sulfur in bulk kerogen. One of the most abundant monomers observed in Cariaco sediments, a phytol-related thiophene, is also produced intermittently near the chemocline. Phytol thiophene δ34S values in sediment traps are similar to those observed in shallow Cariaco sediments except during occasional ';enrichment events,' when phytol thiophene δ34S values increase to as high as -2‰. In contrast, disulfide bonding appears to affect both lipids and carbohydrates and occur exclusively at the chemocline on very short timescales of days to weeks. In both the water column and the sediments, the sulfur isotope ratios of disulfide-bound monosaccharides are dramatically 34S-enriched relative to dissolved sulfide at the chemocline (~-30‰), ranging from -11‰ to +9‰. Disulfide-bound phytenes, which likely derive from the same precursor compounds as phytol thiophenes, were observed in only a few of the sediment trap extracts and have sulfur-isotopic compositions near +4.5‰. These 34S-enriched compositions indicate that the source of sulfur for rapid disulfide bonding may be an intermediate sulfur species that is not in isotopic equilibrium with dissolved sulfide. Significantly, δ34S values for disulfide-bound compounds in Cariaco Basin appear to be set at the chemocline and stable during subsequent diagenesis, opening the possibility that organic sulfur isotopes may archive information about environmental conditions at the chemocline in low-maturity sediments. Disulfide bonding does not, however, appear to be the major process driving slower diagenetic sulfur incorporation into kerogen. Compound-specific organic sulfur isotope analysis makes it possible to distinguish the products of different lipid and carbohydrate sulfurization processes for the first time.

  20. Fully optical backplane system using novel optical plug and slot

    NASA Astrophysics Data System (ADS)

    Cho, In-Kui; Ahn, Seung-Ho; Lee, Woo-Jin; Han, Sang-Pil; Kim, Jin-Tae; Choi, Chun-Ki; Shin, Kyung-Up; Yoon, Keun Byoung; Jeong, Myung-Yung; Park, Hyo Hoon

    2005-10-01

    A fully optical PCB with transmitter/receiver system boards and optical bakcplane was prepared, which is board-to-board interconnection by an optical slot. We report a 10 Gb/s PRBS NRZ data transmission between transmitter system board and optical backplane embedded multimode polymeric waveguide arrays. The basic concept of the optical PCB is as follows; 1) Metal optical bench is integrated with optoelectronic devices, driver and receiver circuits, polymeric waveguide and access line PCB module. 2) Multimode polymeric waveguide inside an optical backplane, which is embedded into PCB, 3) Optical slot and plug for high-density (channel pitch : 500 um) board-to-board interconnection. The polymeric waveguide technology can be used for transmission of data between transmitter/receiver processing boards and backplane boards. The main components are low-loss tapered polymeric waveguides and a novel optical plug and slot for board-to-board interconnections, respectively. The transmitter/receiver processing boards are designed as plug types, and can be easily plugged-in and -out at an optical backplane board. The optical backplane boards are prepared by employing the lamination processes for conventional electrical PCBs. A practical optical backplane system was implemented with two processing boards and an optical backplane. As connection components between the transmitter/receiver processing boards and backplane board, optical slots made of a 90°-bending structure-embedded optical plug was used. A 10 Gb/s data link was successfully demonstrated. The bit error rate (BER) was determined and is 5.6×10 -9(@10Gb/s) and the BER of 8 Gb/s is < 10 -12.

  1. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block.

    PubMed

    Tan, Zhe; Dhande, Yogesh K; Reineke, Theresa M

    2017-12-20

    A series of 3-guanidinopropyl methacrylamide (GPMA)-based polymeric gene delivery vehicles were developed via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers have been evaluated for their cellular internalization ability, transfection efficiency, and cytotoxicity. Two homopolymers: P(GPMA 20 ), P(GPMA 34 ), were synthesized to study the effect of guanidium polymer length on delivery efficiency and toxicity. In addition, an N-acetyl-d-galactosamine (GalNAc)-based hydrophilic block was incorporated to produce diblock polymers, which provides a neutral hydrophilic block that sterically protects plasmid-polymer complexes (polyplexes) from colloidal aggregation and aids polyplex targeting to hepatocytes via binding to asialoglycoprotein receptors (ASGPRs). Polyplexes formed with P(GPMA x ) (x = 20, 34) homopolymers were shown to be internalized via both energy-dependent and independent pathways, whereas polyplexes formed with block polymers were internalized through endocytosis. Notably, P(GPMA x ) polyplexes enter cells very efficiently but are also very toxic to human hepatocellular carcinoma (HepG2) cells and triggered cell apoptosis. In comparison, the presence of a carbohydrate block in the polymer structures reduced the cytotoxicity of the polyplex formulations and increased gene delivery efficiency with HepG2 cells. Transfection efficiency and toxicity studies were also carried out with HEK 293T (human embryonic kidney) cells for comparison. Results showed that polyplexes formed with the P(GPMA x ) homopolymers exhibit much higher transfection efficiency and lower toxicity with HEK 293T cells. The presence of the carbohydrate block did not further increase transfection efficiency in comparison to the homopolymers with HEK 293T cells, likely due to the lack of ASGPRs on the HEK 293T cell line. This study revealed that although guanidinium-based polymers have high membrane permeability, their application as plasmid delivery vehicles may be limited by their high cytotoxicity to certain cell types. Thus, the use of cell penetrating structures in polyplex formulations should be used with caution and carefully tailored toward individual cell/tissue types.

  2. Theoretical investigation of low detection sensitivity for underivatized carbohydrates in ESI and MALDI.

    PubMed

    Chen, Jien-Lian; Lee, Chuping; Lu, I-Chung; Chien, Chia-Lung; Lee, Yuan-Tseh; Hu, Wei-Ping; Ni, Chi-Kung

    2016-12-01

    Electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) mainly generate protonated ions from peptides and proteins but sodiated (or potassiated) ions from carbohydrates. The ion intensities of sodiated (or potassiated) carbohydrates generated by ESI and MALDI are generally lower than those of protonated peptides and proteins. Ab initio calculations and transition state theory were used to investigate the reasons for the low detection sensitivity for underivatized carbohydrates. We used glucose and cellobiose as examples and showed that the low detection sensitivity is partly attributable to the following factors. First, glucose exhibits a low proton affinity. Most protons generated by ESI or MALDI attach to water clusters and matrix molecules. Second, protonated glucose and cellobiose can easily undergo dehydration reactions. Third, the sodiation affinities of glucose and cellobiose are small. Some sodiated glucose and cellobiose dissociate into the sodium cations and neutral carbohydrates during ESI or MALDI process. The increase of detection sensitivity of carbohydrates in mass spectrometry by various methods can be rationalized according to these factors. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    PubMed

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  4. Effects of organic solvents on drug incorporation into polymeric carriers and morphological analyses of drug-incorporated polymeric micelles.

    PubMed

    Harada, Yoshiko; Yamamoto, Tatsuhiro; Sakai, Masaru; Saiki, Toshiharu; Kawano, Kumi; Maitani, Yoshie; Yokoyama, Masayuki

    2011-02-14

    We incorporated an anticancer agent, camptothecin (CPT), into polymeric micelle carriers by using two different solvents (TFE and chloroform) in the solvent-evaporation drug incorporation process. We observed significant differences in the drug-incorporation behaviors, in the morphologies of the incorporated drug and the polymeric micelles, and in the pharmacokinetic behaviors between the two solvents' cases. In particular, the CPT-incorporated polymeric micelles prepared with TFE as the incorporation solvent exhibited more stable circulation in blood than those prepared with chloroform. This contrast indicates a novel technological perspective regarding the drug incorporation into polymeric micelle carriers. Morphological analyses of the inner core have revealed the presence of the directed alignment of the CPT molecules and CPT crystals in the micelle inner core. This is the first report of the morphologies of the drug incorporated into the polymeric micelle inner cores. We believe these analyses are very important for further pharmaceutical developments of polymeric micelle drug-carrier systems. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Carbohydrates and sports practice: a Twitter virtual ethnography

    PubMed

    Rodríguez-Martín, Beatriz; Castillo, Carlos Alberto

    2017-02-01

    Introduction: Although carbohydrates consumption is a key factor to enhance sport performance, intake levels seem questioned by some amateur athletes, leading to develop an irrational aversion to carbohydrate known as “carbophobia”. On the other hand, food is the origin of virtual communities erected as a source of knowledge and a way to exchange information. Despite this, very few studies have analysed the influence of social media in eating behaviours. Objectives: To know the conceptualizations about carbohydrates intake and eating patterns related to carbophobia expressed in amateur athletes’ Twitter accounts. Methods: Qualitative research designed from Hine’s Virtual Ethnography. Virtual immersion was used for data collection in Twitter open accounts in a theoretical sample of tweets from amateur athletes. Discourse analysis of narrative information of tweets was carried out through open, axial and selective coding process and the constant comparison method. Results: Data analysis revealed four main categories that offered a picture of conceptualizations of carbohydrates: carbohydrates as suspects or guilty from slowing down training, carbophobia as a lifestyle, carbophobia as a religion and finally the love/hate relationship with carbohydrates. Conclusions: Low-carbohydrate diet is considered a healthy lifestyle in some amateur athletes. The results of this study show the power of virtual communication tools such as Twitter to support, promote and maintain uncommon and not necessarily healthy eating behaviours. Future studies should focus on the context in which these practices appear.

  6. Effects of quality of energy on substrate oxidation in enterally fed, low-birth-weight infants.

    PubMed

    Kashyap, S; Towers, H M; Sahni, R; Ohira-Kist, K; Abildskov, K; Schulze, K F

    2001-09-01

    Carbohydrate and fat may differ in their ability to support energy-requiring physiologic processes, such as protein synthesis and growth. If so, varying the constituents of infant formula might be therapeutically advantageous. We tested the hypothesis that low-birth-weight infants fed a diet containing 65% of nonprotein energy as carbohydrate oxidize relatively more carbohydrate and relatively less protein than do infants fed an isoenergetic, isonitrogenous diet containing 35% of nonprotein energy as carbohydrate. Sixty-two low-birth-weight infants weighing from 750 to 1600 g at birth were assigned randomly and blindly to receive 1 of 5 formulas that differed only in the quantity and quality of nonprotein energy. Formula containing 544 kJ x kg(-1) x d(-1) with either 50%, 35%, or 65% of nonprotein energy as carbohydrate was administered to control subjects, group 1, and group 2, respectively. Groups 3 and 4 received gross energy intakes of 648 kJ x kg(-1) x d(-1) with 35% and 65% of nonprotein energy as carbohydrate. Protein intake was targeted at 4 g x kg(-1) x d(-1). Substrate oxidation was estimated from biweekly, 6-h measurements of gas exchange and 24-h urinary nitrogen excretion. Carbohydrate oxidation was positively (r = 0.71, P < 0.0001) and fat oxidation was negatively (r = -0.46, P < 0.001) correlated with carbohydrate intake. Protein oxidation was negatively correlated with carbohydrate oxidation (r = -0.42, P < 0.001). Fat oxidation was not correlated with protein oxidation. Protein oxidation was less in infants receiving 65% of nonprotein energy as carbohydrate than in groups receiving 35% nonprotein energy as carbohydrate. These data support the hypothesis that energy supplied as carbohydrate is more effective than energy supplied as fat in sparing protein oxidation in enterally fed low-birth-weight infants.

  7. Preconcentration and separation of analytes in microchannels

    DOEpatents

    Hatch, Anson; Singh, Anup K.; Herr, Amy E.; Throckmorton, Daniel J.

    2010-11-09

    Disclosed herein are methods and devices for preconcentrating and separating analytes such as proteins and polynucleotides in microchannels. As disclosed, at least one size-exclusion polymeric element is adjacent to processing area or an assay area in a microchannel which may be porous polymeric element. The size-exclusion polymeric element may be used to manipulate, e.g. concentrate, analytes in a sample prior to assaying in the assay area.

  8. Direct evidence for the gas phase thermal polymerization of styrene. Determination of the initiation mechanism and structures of the early oligomers by ion mobility.

    PubMed

    Alsharaeh, Edreese H; Ibrahim, Yehia M; El-Shall, M Samy

    2005-05-04

    We present here direct evidence for the thermal self-initiated polymerization of styrene in the gas phase and establish that the initiation process proceeds via essentially the same mechanism (the Mayo mechanism) as in condensed phase polymerization. Furthermore, we provide structural identifications of the dimers and trimers formed in the gas phase.

  9. In situ electron-beam polymerization stabilized quantum dot micelles.

    PubMed

    Travert-Branger, Nathalie; Dubois, Fabien; Renault, Jean-Philippe; Pin, Serge; Mahler, Benoit; Gravel, Edmond; Dubertret, Benoit; Doris, Eric

    2011-04-19

    A polymerizable amphiphile polymer containing PEG was synthesized and used to encapsulate quantum dots in micelles. The quantum dot micelles were then polymerized using a "clean" electron beam process that did not require any post-irradiation purification. Fluorescence spectroscopy revealed that the polymerized micelles provided an organic coating that preserved the quantum dot fluorescence better than nonpolymerized micelles, even under harsh conditions. © 2011 American Chemical Society

  10. Diversity of Glycosyl Hydrolases from Cellulose-Depleting Communities Enriched from Casts of Two Earthworm Species▿ †

    PubMed Central

    Beloqui, Ana; Nechitaylo, Taras Y.; López-Cortés, Nieves; Ghazi, Azam; Guazzaroni, María-Eugenia; Polaina, Julio; Strittmatter, Axel W.; Reva, Oleg; Waliczek, Agnes; Yakimov, Michail M.; Golyshina, Olga V.; Ferrer, Manuel; Golyshin, Peter N.

    2010-01-01

    The guts and casts of earthworms contain microbial assemblages that process large amounts of organic polymeric substrates from plant litter and soil; however, the enzymatic potential of these microbial communities remains largely unexplored. In the present work, we retrieved carbohydrate-modifying enzymes through the activity screening of metagenomic fosmid libraries from cellulose-depleting microbial communities established with the fresh casts of two earthworm species, Aporrectodea caliginosa and Lumbricus terrestris, as inocula. Eight glycosyl hydrolases (GHs) from the A. caliginosa-derived community were multidomain endo-β-glucanases, β-glucosidases, β-cellobiohydrolases, β-galactosidase, and β-xylosidases of known GH families. In contrast, two GHs derived from the L. terrestris microbiome had no similarity to any known GHs and represented two novel families of β-galactosidases/α-arabinopyranosidases. Members of these families were annotated in public databases as conserved hypothetical proteins, with one being structurally related to isomerases/dehydratases. This study provides insight into their biochemistry, domain structures, and active-site architecture. The two communities were similar in bacterial composition but significantly different with regard to their eukaryotic inhabitants. Further sequence analysis of fosmids and plasmids bearing the GH-encoding genes, along with oligonucleotide usage pattern analysis, suggested that those apparently originated from Gammaproteobacteria (pseudomonads and Cellvibrio-like organisms), Betaproteobacteria (Comamonadaceae), and Alphaproteobacteria (Rhizobiales). PMID:20622123

  11. Thermal plasma process for recovering monomers and high value carbons from polymeric materials

    DOEpatents

    Knight, Richard; Grossmann, Elihu D.; Guddeti, Ravikishan R.

    2002-01-01

    The present invention relates to a method of recycling polymeric waste products into monomers and high value forms of carbon by pyrolytic conversion using an induction coupled RF plasma heated reactor.

  12. Supramolecular 1-D polymerization of DNA origami through a dynamic process at the 2-dimensionally confined air-water interface.

    PubMed

    Yonamine, Yusuke; Cervantes-Salguero, Keitel; Minami, Kosuke; Kawamata, Ibuki; Nakanishi, Waka; Hill, Jonathan P; Murata, Satoshi; Ariga, Katsuhiko

    2016-05-14

    In this study, a Langmuir-Blodgett (LB) system has been utilized for the regulation of polymerization of a DNA origami structure at the air-water interface as a two-dimensionally confined medium, which enables dynamic condensation of DNA origami units through variation of the film area at the macroscopic level (ca. 10-100 cm(2)). DNA origami sheets were conjugated with a cationic lipid (dioctadecyldimethylammonium bromide, 2C18N(+)) by electrostatic interaction and the corresponding LB-film was prepared. By applying dynamic pressure variation through compression-expansion processes, the lipid-modified DNA origami sheets underwent anisotropic polymerization forming a one-dimensionally assembled belt-shaped structure of a high aspect ratio although the thickness of the polymerized DNA origami was maintained at the unimolecular level. This approach opens up a new field of mechanical induction of the self-assembly of DNA origami structures.

  13. Various aspects of ultrasound assisted emulsion polymerization process.

    PubMed

    Korkut, Ibrahim; Bayramoglu, Mahmut

    2014-07-01

    In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Liquid-liquid two phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review

    PubMed Central

    Elbert, Donald L.

    2010-01-01

    Macroporous hydrogels may have direct applications in regenerative medicine as scaffolds to support tissue formation. Hydrogel microspheres may be used as drug delivery vehicles or as building blocks to assemble modular scaffolds. A variety of techniques exist to produce macroporous hydrogels and hydrogel microspheres. A subset of these relies on liquid-liquid two phase systems. Within this subset, vastly different types of polymerization processes are found. In this review, the history, terminology and classification of liquid-liquid two phase polymerization and crosslinking are described. Instructive examples of hydrogel microsphere and macroporous scaffold formation by precipitation/dispersion, emulsion and suspension polymerizations are used to illustrate the nature of these processes. The role of the kinetics of phase separation in determining the morphology of scaffolds and microspheres is also delineated. Brief descriptions of miniemulsion, microemulsion polymerization and ionotropic gelation are also included. PMID:20659596

  15. Rapid Engineering of Three-Dimensional, Multicellular Tissues With Polymeric Scaffolds

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Jordan, Jacqueline; Fraga, Denise N.

    2007-01-01

    A process has been developed for the rapid tissue engineering of multicellular-tissue-equivalent assemblies by the controlled enzymatic degradation of polymeric beads in a low-fluid-shear bioreactor. In this process, the porous polymeric beads serve as temporary scaffolds to support the assemblies of cells in a tissuelike 3D configuration during the critical initial growth phases of attachment of anchorage-dependent cells, aggregation of the cells, and formation of a 3D extracellular matrix. Once the cells are assembled into a 3D array and enmeshed in a structural supportive 3D extracellular matrix (ECM), the polymeric scaffolds can be degraded in the low-fluid-shear environment of the NASA-designed bioreactor. The natural 3D tissuelike assembly, devoid of any artificial support structure, is maintained in the low-shear bioreactor environment by the newly formed natural cellular/ECM. The elimination of the artificial scaffold allows normal tissue structure and function.

  16. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying

    PubMed Central

    2016-01-01

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Chan Yi, E-mail: vicchanyiwei@hotmail.com; Ongkudon, Clarence M., E-mail: clarence@ums.edu.my; Kansil, Tamar, E-mail: tamarkansil87@gmail.com

    Modern day synthesis protocols of methacrylate monolithic polymer adsorbent are based on existing polymerization blueprint without a thorough understanding of the dynamics of pore structure and formation. This has resulted in unproductiveness of polymer adsorbent consequently affecting purity and recovery of final product, productivity, retention time and cost effectiveness of the whole process. The problems magnified in monolith scaling-up where internal heat buildup resulting from external heating and high exothermic polymerization reaction was reflected in cracking of the adsorbent. We believe that through careful and precise control of the polymerization kinetics and parameters, it is possible to prepare macroporous methacrylatemore » monolithic adsorbents with controlled pore structures despite being carried out in an unstirred mould. This research involved the study of the effect of scaling-up on pore morphology of monolith, in other words, porous polymethacrylate adsorbents that were prepared via bulk free radical polymerization process by imaging the porous morphology of polymethacrylate with scanning electron microscope.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hong.

    A new technique was developed and demonstrated for combining carbon fibers with aromatic thermoplastic matrices to form a high-quality towpreg. The developed technique utilizes an in-situ electrochemical process (Electrochemical polymerization - ECP) to create the entire polymer matrix surrounding the fiber array by direct polymerization of monomer. Poly-paraxylylene (PPX) and derivatives are successfully polymerized in-situ on carbon fiber surfaces through ECP. A PPX/carbon-fiber towpreg with 40 vol % of matrix is achieved in a fairly short reaction time with a high polymer-coating efficiency. Vapor deposition polymerization (VDP) was also studied. PPX and carbon-fiber towpreg were made successfully by this process.more » A comparison between ECP and VDP was conducted. A study on electrochemical oxidation (ECO) of carbon fibers was also performed. The ECO treatment may be suitable for carbon fibers incorporated in composites with high-temperature curing resins and thermoplastic matrices.« less

  19. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    PubMed

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  20. Polymeric drugs: Advances in the development of pharmacologically active polymers

    PubMed Central

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  1. Facile preparation of cobaltocenium-containing polyelectrolyte via click chemistry and RAFT polymerization.

    PubMed

    Yan, Yi; Zhang, Jiuyang; Qiao, Yali; Tang, Chuanbing

    2014-01-01

    A facile method to prepare cationic cobaltocenium-containing polyelectrolyte is reported. Cobaltocenium monomer with methacrylate is synthesized by copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between 2-azidoethyl methacrylate and ethynylcobaltocenium hexafluorophosphate. Further controlled polymerization is achieved by reversible addition-fragmentation chain transfer polymerization (RAFT) by using cumyl dithiobenzoate (CDB) as a chain transfer agent. Kinetic study demonstrates the controlled/living process of polymerization. The obtained side-chain cobaltocenium-containing polymer is a metal-containing polyelectrolyte that shows characteristic redox behavior of cobaltocenium. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Spatially controlled, in situ synthesis of polymers

    DOEpatents

    Caneba, Gerard T.; Tirumala, Vijaya Raghavan; Mancini, Derrick C.; Wang, Hsien-Hau

    2005-03-22

    An in situ polymer microstructure formation method. The monomer mixture is polymerized in a solvent/precipitant through exposure to ionizing radiation in the absence any chemical mediators. If an exposure mask is employed to block out certain regions of the radiation cross section, then a patterned microstructure is formed. The polymerization mechanism is based on the so-called free-radical retrograde-precipitation polymerization process, in which polymerization occurs while the system is phase separating above the lower critical solution temperature. This method was extended to produce a crosslinked line grid-pattern of poly (N-isopropylacrylamide), which has been known to have thermoreversible properties.

  3. Synthesis of nanostructured materials in inverse miniemulsions and their applications.

    PubMed

    Cao, Zhihai; Ziener, Ulrich

    2013-11-07

    Polymeric nanogels, inorganic nanoparticles, and organic-inorganic hybrid nanoparticles can be prepared via the inverse miniemulsion technique. Hydrophilic functional cargos, such as proteins, DNA, and macromolecular fluoresceins, may be conveniently encapsulated in these nanostructured materials. In this review, the progress of inverse miniemulsions since 2000 is summarized on the basis of the types of reactions carried out in inverse miniemulsions, including conventional free radical polymerization, controlled/living radical polymerization, polycondensation, polyaddition, anionic polymerization, catalytic oxidation reaction, sol-gel process, and precipitation reaction of inorganic precursors. In addition, the applications of the nanostructured materials synthesized in inverse miniemulsions are also reviewed.

  4. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal

    NASA Astrophysics Data System (ADS)

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm-1), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm-1), total carbohydrates (CHO, region and baseline ca. 1193-889 cm-1) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm-1, region: 1102-1083 cm-1) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm-1) to 2nd peak (ca. 1374 cm-1) height ratio, CHO 1st peak (ca. 1149 cm-1) to 3rd peak (ca. 1032 cm-1) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P < 0.05) during 48 h ruminal degradation in both carinata meal and canola meal. Although carinata meal differed from canola meal in some carbohydrate spectral parameters, multivariate results from agglomerative hierarchical cluster analysis and principal component analysis showed that both original and in situ residues of two meals were not fully distinguished from each other within carbohydrate spectral regions. It was concluded that carbohydrate structural conformation could be detected in carinata meal by using ATR-FT/IR techniques and further study is needed to explore more information on molecular spectral features of other functional group such as protein structure profile and their association with potential nutrient supply and availability of carinata meal in animals.

  5. Using ATR-FT/IR to detect carbohydrate-related molecular structure features of carinata meal and their in situ residues of ruminal fermentation in comparison with canola meal.

    PubMed

    Xin, Hangshu; Yu, Peiqiang

    2013-10-01

    There is no information on the co-products from carinata bio-fuel and bio-oil processing (carinata meal) in molecular structural profiles mainly related to carbohydrate biopolymers in relation to ruminant nutrition. Molecular analyses with Fourier transform infrared spectroscopy (FT/IR) technique with attenuated total reflectance (ATR) and chemometrics enable to detect structural features on a molecular basis. The objectives of this study were to: (1) determine carbohydrate conformation spectral features in original carinata meal, co-products from bio-fuel/bio-oil processing; and (2) investigate differences in carbohydrate molecular composition and functional group spectral intensities after in situ ruminal fermentation at 0, 12, 24 and 48 h compared to canola meal as a reference. The molecular spectroscopic parameters of carbohydrate profiles detected were structural carbohydrates (STCHO, mainly associated with hemi-cellulosic and cellulosic compounds; region and baseline ca. 1483-1184 cm(-1)), cellulosic compounds (CELC, region and baseline ca. 1304-1184 cm(-1)), total carbohydrates (CHO, region and baseline ca. 1193-889cm(-1)) as well as the spectral ratios calculated based on respective spectral intensity data. The results showed that the spectral profiles of carinata meal were significantly different from that of canola meal in CHO 2nd peak area (center at ca. 1091 cm(-1), region: 1102-1083 cm(-1)) and functional group peak intensity ratios such as STCHO 1st peak (ca. 1415 cm(-1)) to 2nd peak (ca. 1374 cm(-1)) height ratio, CHO 1st peak (ca. 1149 cm(-1)) to 3rd peak (ca. 1032 cm(-1)) height ratio, CELC to total CHO area ratio and STCHO to CELC area ratio, indicating that carinata meal may not in full accord with canola meal in carbohydrate utilization and availability in ruminants. Carbohydrate conformation and spectral features were changed by significant interaction of meal type and incubation time and almost all the spectral parameters were significantly decreased (P<0.05) during 48 h ruminal degradation in both carinata meal and canola meal. Although carinata meal differed from canola meal in some carbohydrate spectral parameters, multivariate results from agglomerative hierarchical cluster analysis and principal component analysis showed that both original and in situ residues of two meals were not fully distinguished from each other within carbohydrate spectral regions. It was concluded that carbohydrate structural conformation could be detected in carinata meal by using ATR-FT/IR techniques and further study is needed to explore more information on molecular spectral features of other functional group such as protein structure profile and their association with potential nutrient supply and availability of carinata meal in animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    NASA Astrophysics Data System (ADS)

    Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo

    2015-08-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.

  7. Effect of structural modifications of ganglioside GM2 on intra-molecular carbohydrate-to-carbohydrate interaction and enzymatic susceptibility

    PubMed Central

    Li, Yu-Teh; Li, Su-Chen; Kiso, Makoto; Ishida, Hideharu; Mauri, Laura; Raimondi, Laura; Bernardi, Anna; Sonnino, Sandro

    2008-01-01

    Summary The effect of inter-molecular carbohydrate-to-carbohydrate interaction on basic cell biological processes has been well documented and appreciated. In contrast, very little is known about the intra-molecular carbohydrate-to-carbohydrate interaction. The presence of an interaction between the GalNAc and the Neu5Ac in GM2 detected by NMR spectroscopy represents a well-defined intra-molecular carbohydrate-to-carbohydrate interaction. This intriguing interaction is responsible for the GM2-epitope, GalNAcβ1Π4(Neu5Acα2Π3)Gal-, to exhibit a rigid and compact conformation. We hypothesized that this compact conformation may be the cause for both the GalNAc and the Neu5Ac in GM2 to be refractory to enzymatic hydrolysis and the GM2 activator protein is able to interact with the compact trisaccharide GM2-epitope, rendering the GalNAc and the Neu5Ac accessible to β-hexosaminidase A and sialidase. We have used a series of structurally modified GM2 to study the effect of modifications of sugar chains on the conformation and enzymatic susceptibility of this ganglioside. Our hypothesis was borne out by the fact that when the GalNAcβ1Π4Gal linkage in GM2 was converted to the GalNAcβ1Π6Gal, both the GalNAc and the Neu5Ac became susceptible to β-hexosaminidase A and sialidase, respectively, without GM2 activator protein. We hope our work will engender interest in identifying other intra-molecular carbohydrate-to-carbohydrate interactions in glycoconjugates. PMID:17967427

  8. A novel methylation derivatization method for δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry.

    PubMed

    Lehmann, Marco M; Fischer, Maria; Blees, Jan; Zech, Michael; Siegwolf, Rolf T W; Saurer, Matthias

    2016-01-15

    The oxygen isotope ratio (δ(18)O) of carbohydrates derived from animals, plants, sediments, and soils provides important information about biochemical and physiological processes, past environmental conditions, and geographical origins, which are otherwise not available. Nowadays, δ(18)O analyses are often performed on carbohydrate bulk material, while compound-specific δ(18)O analyses remain challenging and methods for a wide range of individual carbohydrates are rare. To improve the δ(18)O analysis of individual carbohydrates by gas chromatography/pyrolysis-isotope ratio mass spectrometry (GC/Pyr-IRMS) we developed a new methylation derivatization method. Carbohydrates were fully methylated within 24 h in an easy-to-handle one-pot reaction in acetonitrile, using silver oxide as proton acceptor, methyl iodide as methyl group carrier, and dimethyl sulfide as catalyst. The precision of the method ranged between 0.12 and 1.09‰ for the δ(18)O values of various individual carbohydrates of different classes (mono-, di-, and trisaccharides, alditols), with an accuracy of a similar order of magnitude, despite high variation in peak areas. Based on the δ(18)O values of the main isomers, important monosaccharides such as glucose and fructose could also be precisely analyzed for the first time. We tested the method on standard mixtures, honey samples, and leaf carbohydrates extracted from Pinus sylvestris, showing that the method is also applicable to different carbohydrate mixtures. The new methylation method shows unrivalled accuracy and precision for δ(18)O analysis of various individual carbohydrates; it is fast and easy-to-handle, and may therefore find wide-spread application. Copyright © 2015 John Wiley & Sons, Ltd.

  9. The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units.

    PubMed

    Neumann, Miguel G; Schmitt, Carla C; Ferreira, Giovana C; Corrêa, Ivo C

    2006-06-01

    To evaluate the efficiency of the photopolymerization of dental resins it is necessary to know to what extent the light emitted by the light curing units is absorbed by the photoinitiators. On the other hand, the efficiency of the absorbed photons to produce species that launch the polymerization process is also of paramount importance. Therefore, the previously determined PAE (photon absorption efficiency) is used in conjunction with the polymerization quantum yields for the photoinitiators, in order to be able to compare the total process on an equivalent basis. This parameter can be used to identify the best performance for the photochemical process with specific photoinitiators. The efficiency of LED (Ultrablue IS) and QTH (Optilux 401) lamps were tested comparing their performances with the photoinitiators camphorquinone (CQ); phenylpropanedione (PPD); monoacylphosphine oxide (Lucirin TPO); and bisacylphosphine oxide (Irgacure 819). The extent of photopolymerization per absorbed photon was determined from the polymerization quantum yields obtained by using the photoinitiators to polymerize methyl methacrylate, and afterwards combined with the previously determined PAEs. Although CQ presents a rather low polymerization quantum yield, its photopolymerization efficiency is practically the highest when irradiated with the Ultrablue LED. On the other hand, Lucirin is much more efficient than the other photoinitiators when irradiated with a QTH lamp, due to its high quantum yield and the overlap between its absorption spectrum and the output of the visible lamp light. Difference in photopolymerization efficiencies arise when combinations of photoinitiators are used, and when LED sources are used in preference to QTH. Mechanistic understanding is essential to optimal initiator formulation.

  10. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction.

    PubMed

    Guo, Qiuping; Yang, Xiaohai; Wang, Kemin; Tan, Weihong; Li, Wei; Tang, Hongxing; Li, Huimin

    2009-02-01

    Here we have developed a sensitive DNA amplified detection method based on isothermal strand-displacement polymerization reaction. This method takes advantage of both the hybridization property of DNA and the strand-displacement property of polymerase. Importantly, we demonstrate that our method produces a circular polymerization reaction activated by the target, which essentially allows it to self-detect. Functionally, this DNA system consists of a hairpin fluorescence probe, a short primer and polymerase. Upon recognition and hybridization with the target ssDNA, the stem of the hairpin probe is opened, after which the opened probe anneals with the primer and triggers the polymerization reaction. During this process of the polymerization reaction, a complementary DNA is synthesized and the hybridized target is displaced. Finally, the displaced target recognizes and hybridizes with another probe, triggering the next round of polymerization reaction, reaching a target detection limit of 6.4 x 10(-15) M.

  11. Influence of carbohydrates on the interaction of procyanidin B3 with trypsin.

    PubMed

    Gonçalves, Rui; Mateus, Nuno; De Freitas, Victor

    2011-11-09

    The biological properties of procyanidins, in particular their inhibition of digestive enzymes, have received much attention in the past few years. Dietary carbohydrates are an environmental factor that is known to affect the interaction of procyanidins with proteins. This work aimed at understanding the effect of ionic food carbohydrates (polygalacturonic acid, arabic gum, pectin, and xanthan gum) on the interaction between procyanidins and trypsin. Physical-chemical techniques such as saturation transfer difference-NMR (STD-NMR) spectroscopy, fluorescence quenching, and nephelometry were used to evaluate the interaction process. Using STD-NMR, it was possible to identify the binding of procyanidin B3 to trypsin. The tested carbohydrates prevented the association of procyanidin B3 and trypsin by a competition mechanism in which the ionic character of carbohydrates and their ability to encapsulate procyanidins seem crucial leading to a reduction in STD signal and light scattering and to a recovery of the proteins intrinsic fluorescence. On the basis of these results, it was possible to grade the carbohydrates in their aggregation inhibition ability: XG > PA > AG ≫ PC. These effects may be relevant since the coingestion of procyanidins and ionic carbohydrates are frequent and furthermore since these might negatively affect the antinutritional properties ascribed to procyanidins in the past.

  12. Pinus sylvestris switches respiration substrates under shading but not during drought

    NASA Astrophysics Data System (ADS)

    Hartmann, Henrik; Fischer, Sarah; Hanf, Stefan; Frosch, Torsten; Poppp, Jürgen; Trumbore, Susan

    2015-04-01

    Reduced carbon assimilation during prolonged drought forces trees to rely on stored carbon to maintain vital processes like respiration. It has been shown, however, that the use of carbohydrates, a major carbon storage pool and main respiratory substrate in plants, strongly declines with deceasing plant hydration. Yet, no empirical evidence has been produced to what degree other carbon storage compounds like lipids and proteins may fuel respiration during drought. We exposed young scots pine trees to carbon limitation using either drought or shading and assessed respiratory substrate use by monitoring the respiratory quotient, δ13C of respired CO2and concentrations of the major storage compounds, i.e. carbohydrates (COH), lipids and amino acids. Generally, respiration was dominated by the most abundant substrate. Only shaded trees shifted from carbohydrate-dominated to lipid-dominated respiration and showed progressive carbohydrate depletion. In drought trees respiration was strongly reduced and fueled with carbohydrates from also strongly reduced carbon assimilation. Initial COH content was maintained during drought probably due to reduced COH mobilization and use and the maintained COH content may have prevented lipid catabolism via sugar signaling. Our results suggest that respiratory substrates other than carbohydrates are used under carbohydrate limitation but not during drought. Thus, respiratory substrate change cannot provide an efficient means to counterbalance carbon limitation under natural drought.

  13. Ion mobility studies of carbohydrates as group I adducts: isomer specific collisional cross section dependence on metal ion radius.

    PubMed

    Huang, Yuting; Dodds, Eric D

    2013-10-15

    Carbohydrates play numerous critical roles in biological systems. Characterization of oligosaccharide structures is essential to a complete understanding of their functions in biological processes; nevertheless, their structural determination remains challenging in part due to isomerism. Ion mobility spectrometry provides the means to resolve gas phase ions on the basis of their shape-to-charge ratios, thus providing significant potential for separation and differentiation of carbohydrate isomers. Here, we report on the determination of collisional cross sections for four groups of isomeric carbohydrates (including five isomeric disaccharides, four isomeric trisaccharides, two isomeric pentasaccharides, and two isomeric hexasaccharides) as their group I metal ion adducts (i.e., [M + Li](+), [M + Na](+), [M + K](+), [M + Rb](+), and [M + Cs](+)). In all, 65 collisional cross sections were measured, the great majority of which have not been previously reported. As anticipated, the collisional cross sections of the carbohydrate metal ion adducts generally increase with increasing metal ion radius; however, the collisional cross sections were found to scale with the group I cation size in isomer specific manners. Such measurements are of substantial analytical value, as they illustrate how the selection of charge carrier influences carbohydrate ion mobility determinations. For example, certain pairs of isomeric carbohydrates assume unique collisional cross sections upon binding one metal ion, but not another. On the whole, these data suggest a role for the charge carrier as a probe of carbohydrate structure and thus have significant implications for the continued development and application of ion mobility spectrometry for the distinction and resolution of isomeric carbohydrates.

  14. Polymeric foams from cross-linkable poly-N-ary lenebenzimidazoles

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.; Delano, C. B.; Riccitello, S. R. (Inventor)

    1978-01-01

    Foamed cross-linked poly-N-arylenebinzimidazoles are prepared by mixing an organic tetraamine and an ortho substituted aromatic dicarboxylic acid anhydride in the presence of a blowing agent, and then heating the prepolymer to a temperature sufficient to complete polymerization and foaming of the reactants. In another embodiment of the process, the reactants are heated to form a prepolymer. The prepolymer is then cured at higher temperatures to complete foaming and polymerization.

  15. One-Pot Synthesis of Multifunctional Polymers by Light-Controlled Radical Polymerization and Enzymatic Catalysis with Candida antarctica Lipase B.

    PubMed

    Hrsic, Emin; Keul, Helmut; Möller, Martin

    2015-12-01

    The preparation of multifunctional polymers and block copolymers by a straightforward one-pot reaction process that combines enzymatic transacylation with light-controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light-controlled polymerization, leading to multifunctional methacrylate-based polymers with well-defined microstructure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Detection Of Gas-Phase Polymerization in SiH4 And GeH4

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han; Perry, Joseph W.; Allevato, Camillo E.

    1990-01-01

    Inelastic scattering of laser light found to indicate onset of gas-phase polymerization in plasma-enhanced chemical-vapor deposition (PECVD) of photoconductive amorphous hydrogenated silicon/germanium alloy (a-SiGe:H) film. In PECVD process, film deposited from radio-frequency glow-discharge plasma of silane (SiH4) and germane (GeH4) diluted with hydrogen. Gas-phase polymerization undesirable because it causes formation of particulates and defective films.

  17. Autocatalytic polymerization generates persistent random walk of crawling cells.

    PubMed

    Sambeth, R; Baumgaertner, A

    2001-05-28

    The autocatalytic polymerization kinetics of the cytoskeletal actin network provides the basic mechanism for a persistent random walk of a crawling cell. It is shown that network remodeling by branching processes near the cell membrane is essential for the bimodal spatial stability of the network which induces a spontaneous breaking of isotropic cell motion. Details of the phenomena are analyzed using a simple polymerization model studied by analytical and simulation methods.

  18. Sialic acid-triggered macroscopic properties switching on a smart polymer surface

    NASA Astrophysics Data System (ADS)

    Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei

    2018-01-01

    Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.

  19. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.

    PubMed

    Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2016-06-08

    Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.

  20. Supramolecular Complexation of Carbohydrates for the Bioavailability Enhancement of Poorly Soluble Drugs.

    PubMed

    Cho, Eunae; Jung, Seunho

    2015-10-27

    In this review, a comprehensive overview of advances in the supramolecular complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation process, poorly soluble drugs could be efficiently delivered to their desired destinations. Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties owing to their inherent three-dimensional structures, hydrogen bonding, and molecular recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or stability. By extension, polysaccharides and their derivatives can form self-assembled architectures with poorly soluble drugs and have shown increased bioavailability in terms of the sustained or controlled drug release. These supramolecular systems using carbohydrate will be developed consistently in the field of pharmaceutical and medical application.

  1. Methane and Hydrogen Production from Anaerobic Fermentation of Municipal Solid Wastes

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuro; Lee, Dong-Yeol; Xu, Kaiqin; Li, Yu-You; Inamori, Yuhei

    Methane and hydrogen production was investigated in batch experiments of thermophilic methane and hydrogen fermentation, using domestic garbage and food processing waste classified by fat/carbohydrate balance as a base material. Methane production per unit of VS added was significantly positively correlated with fat content and negatively correlated with carbohydrate content in the substrate, and the average value of the methane production per unit of VS added from fat-rich materials was twice as large as that from carbohydrate-rich materials. By contrast, hydrogen production per unit of VS added was significantly positively correlated with carbohydrate content and negatively correlated with fat content. Principal component analysis using the results obtained in this study enable an evaluation of substrates for methane and hydrogen fermentation based on nutrient composition.

  2. Gold glyconanoparticles as new tools in antiadhesive therapy.

    PubMed

    Rojo, Javier; Díaz, Vicente; de la Fuente, Jesús M; Segura, Inmaculada; Barrientos, Africa G; Riese, Hans H; Bernad, Antonio; Penadés, Soledad

    2004-03-05

    Gold glyconanoparticles (GNPs) have been prepared as new multivalent tools that mimic glycosphingolipids on the cell surface. GNPs are highly soluble under physiological conditions, stable against enzymatic degradation and nontoxic. Thereby GNPs open up a novel promising multivalent platform for biological applications. It has recently been demonstrated that specific tumor-associated carbohydrate antigens (glycosphingolipids and glycoproteins) are involved in the initial step of tumor spreading. A mouse melanoma model was selected to test glyconanoparticles as possible inhibitors of experimental lung metastasis. A carbohydrate-carbohydrate interaction is proposed as the first recognition step for this process. Glyconanoparticles presenting lactose (lacto-GNPs) have been used successfully to significantly reduce the progression of experimental metastasis. This result shows for the first time a clear biological effect of lacto-GNPs, demonstrating the potential application of this glyconanotechnology in biological processes.

  3. The Use of NMR to Study Transient Carbohydrate-Protein Interactions.

    PubMed

    Nieto, Pedro M

    2018-01-01

    Carbohydrates are biologically ubiquitous and are essential to the existence of all known living organisms. Although they are better known for their role as energy sources (glucose/glycogen or starch) or structural elements (chitin or cellulose), carbohydrates also participate in the recognition events of molecular recognition processes. Such interactions with other biomolecules (nucleic acids, proteins, and lipids) are fundamental to life and disease. This review focuses on the application of NMR methods to understand at the atomic level the mechanisms by which sugar molecules can be recognized by proteins to form complexes, creating new entities with different properties to those of the individual component molecules. These processes have recently gained attention as new techniques have been developed, while at the same time old techniques have been reinvented and adapted to address newer emerging problems.

  4. Iron-carbon compacts and process for making them

    DOEpatents

    Sheinberg, Haskell

    2000-01-01

    The present invention includes iron-carbon compacts and a process for making them. The process includes preparing a slurry comprising iron powder, furfuryl alcohol, and a polymerization catalyst for initiating the polymerization of the furfuryl alcohol into a resin, and heating the slurry to convert the alcohol into the resin. The resulting mixture is pressed into a green body and heated to form the iron-carbon compact. The compact can be used as, or machined into, a magnetic flux concentrator for an induction heating apparatus.

  5. Quantum dots assisted laser desorption/ionization mass spectrometric detection of carbohydrates: qualitative and quantitative analysis.

    PubMed

    Bibi, Aisha; Ju, Huangxian

    2016-04-01

    A quantum dots (QDs) assisted laser desorption/ionization mass spectrometric (QDA-LDI-MS) strategy was proposed for qualitative and quantitative analysis of a series of carbohydrates. The adsorption of carbohydrates on the modified surface of different QDs as the matrices depended mainly on the formation of hydrogen bonding, which led to higher MS intensity than those with conventional organic matrix. The effects of QDs concentration and sample preparation method were explored for improving the selective ionization process and the detection sensitivity. The proposed approach offered a new dimension to the application of QDs as matrices for MALDI-MS research of carbohydrates. It could be used for quantitative measurement of glucose concentration in human serum with good performance. The QDs served as a matrix showed the advantages of low background, higher sensitivity, convenient sample preparation and excellent stability under vacuum. The QDs assisted LDI-MS approach has promising application to the analysis of carbohydrates in complex biological samples. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes

    PubMed Central

    Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás

    2010-01-01

    In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.

  7. Synthesis and Photochromic Properties of Configurationally Varied Azobenzene Glycosides

    PubMed Central

    Chandrasekaran, Vijayanand; Johannes, Eugen; Kobarg, Hauke; Sönnichsen, Frank D; Lindhorst, Thisbe K

    2014-01-01

    Spatial orientation of carbohydrates is a meaningful parameter in carbohydrate recognition processes. To vary orientation of sugars with temporal and spatial resolution, photosensitive glycoconjugates with favorable photochromic properties appear to be opportune. Here, a series of azobenzene glycosides were synthesized, employing glycoside synthesis and Mills reaction, to allow “switching” of carbohydrate orientation by reversible E/Z isomerization of the azobenzene N=N double bond. Their photochromic properties were tested and effects of azobenzene substitution as well as the effect of anomeric configuration and the orientation of the sugars 2-hydroxy group were evaluated. PMID:25050228

  8. Galectin-3 as a Potential Target to Prevent Cancer Metastasis

    PubMed Central

    Ahmed, Hafiz; AlSadek, Dina M. M.

    2015-01-01

    Interactions between two cells or between cell and extracellular matrix mediated by protein–carbohydrate interactions play pivotal roles in modulating various biological processes such as growth regulation, immune function, cancer metastasis, and apoptosis. Galectin-3, a member of the β-galactoside-binding lectin family, is involved in fibrosis as well as cancer progression and metastasis, but the detailed mechanisms of its functions remain elusive. This review discusses its structure, carbohydrate-binding properties, and involvement in various aspects of tumorigenesis and some potential carbohydrate ligands that are currently investigated to block galectin-3 activity. PMID:26640395

  9. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota.

    PubMed

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-03-24

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens , Bacteroides ovatus , and Bacteroides uniforms , isolated from human gut microbiota, are studied.

  10. Degradation of Marine Algae-Derived Carbohydrates by Bacteroidetes Isolated from Human Gut Microbiota

    PubMed Central

    Li, Miaomiao; Shang, Qingsen; Li, Guangsheng; Wang, Xin; Yu, Guangli

    2017-01-01

    Carrageenan, agarose, and alginate are algae-derived undigested polysaccharides that have been used as food additives for hundreds of years. Fermentation of dietary carbohydrates of our food in the lower gut of humans is a critical process for the function and integrity of both the bacterial community and host cells. However, little is known about the fermentation of these three kinds of seaweed carbohydrates by human gut microbiota. Here, the degradation characteristics of carrageenan, agarose, alginate, and their oligosaccharides, by Bacteroides xylanisolvens, Bacteroides ovatus, and Bacteroides uniforms, isolated from human gut microbiota, are studied. PMID:28338633

  11. A review of processable high temperature resistant addition-type laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    An important finding that resulted from research that was conducted to develop improved ablative resins was the discovery of a novel approach to synthesize processable high temperature resistant polymers. Low molecular weight polyimide prepolymers end-capped with norbornene groups were polymerized into thermo-oxidatively stable modified polyimides without the evolution of void producing volatile materials. This paper reviews basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type polyimides. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymer as the matrix are described. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomeric reactants on the fiber reinforcement is also described. Polyimide/graphite fiber composite performance at elevated temperatures is presented for A-type polyimides.

  12. Effect of heat polymerization conditions and microwave on the flexural strength of polymethyl methacrylate

    PubMed Central

    Ozkir, Serhat Emre; Yilmaz, Burak; Unal, Server Mutluay; Culhaoglu, Ahmet; Kurkcuoglu, Isin

    2018-01-01

    Objective: The objective of this study is the effect of different heat polymerization conditions on the strength of polymethyl methacrylate (PMMA) resin base is unknown. Distinguishing one method that provides improved mechanical properties may be beneficial to the clinical success of complete and partial dentures and overdentures. The purpose of this study was to evaluate the effect of different polymerization methods on the flexural strength of a dental PMMA resin. Materials and Methods: Forty PMMA specimens (64 mm × 10 mm × 4 mm) were prepared with 4 different polymerization methods (n = 10); heat polymerization at 74°C for 9 h, at 100°C for 40 min, and with 620 kPa pressure at 100°C for 20 min. The remaining group of specimens was microwave polymerized at 180 W for 6 min. All specimens were thermocycled at 5°C and 55°C for 5000 times. Three-point flexure test was used to measure the flexural strength of specimens. One-way ANOVA and Tukey Honestly Significant Difference were applied to analyze the differences in flexural strengths (α = 0.05). Results: The flexural strength of heat-polymerized groups was similar. The flexural strength of microwave polymerized group was significantly different and lower than the other groups (P < 0.05). Conclusion: Polymerizing conventional heat-polymerizing PMMA resin with microwave energy resulted in a significant decrease in flexural strength. The results of this study suggest that clinicians may benefit from using heat polymerization when processing PMMA denture bases instead of microvawe polymerization when tested brand is used. PMID:29657535

  13. Biophysical studies on calcium and carbohydrate binding to carbohydrate recognition domain of Gal/GalNAc lectin from Entamoeba histolytica: insights into host cell adhesion.

    PubMed

    Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando

    2016-09-01

    Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  14. Polythiophene thin films by surface-initiated polymerization: Mechanistic and structural studies

    DOE PAGES

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.; ...

    2016-06-15

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less

  15. [The influence of polymerization time on physicochemical properties of the acrylic resin Vertex RS].

    PubMed

    Fraczak, Bogumiła; Sobolewska, Ewa; Ey-Chmielewska, Halina; Skowronek, Maria; Błazewicz, Stanisław

    2009-01-01

    A good denture can only be produced through proper actions during the clinical and laboratory stages of the production process. The aim of this study was to determine if a change in polymerization time affects the physicochemical properties of polymethacrylate material used for dentures. We examined the acrylic resin Vertex R.S. polymerized for 15, 25, 40, or 60 minutes. Palapress Vario was taken as reference material. Static bending, microhardness, surface wettability, and susceptibility to abrasion were determined. The microhardness test showed that most of the samples had similar Vickers hardness (VS) values, except for the sample polymerized for 25 min. which demonstrated a significantly higher value. Grindability was affected by a change in polymerization time. Mass loss was greatest for samples polymerized for 15, 25, and 60 min. and smallest for Vertex 40 and Palapress Vario. We also observed differences in the wetting angle. Vertex 40 and 60 had a relatively low wetting angle signifying that longer polymerization time results in lower hydrophobicity of the material. The present study has demonstrated that polymerization time has a significant effect on the hardness and some mechanical properties of the acrylic resin.

  16. Radical molecule and ion-molecule mechanisms in the polymerization of hydrocarbons and chlorosilanes in R.F. plasmas at low pressures (below 1.0 Torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar(+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.

  17. Radical and ion molecule mechanisms in the polymerization of hydrocarbons and chlorosilanes in RF plasmas at low pressures ( 1.0 torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar(+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.

  18. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2003-09-02

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  19. Microporous polymer films and methods of their production

    DOEpatents

    Aubert, James H.

    1995-01-01

    A process for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquified gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase.

  20. Metal-doped organic gels and method thereof

    DOEpatents

    Satcher, Jr., Joe H.; Baumann, Theodore F.

    2007-10-23

    Disclosed herein is a sol-gel polymerization process for synthesizing metal-doped organic gels. The process polymerizes metal salts of hydroxylated benzenes or hydroxylated benzene derivatives with alkyl or aryl aldehydes to form metal-doped, wet, organic gels. The gels can then be dried by supercritical solvent extraction to form metal-doped aerogels or by evaporation to form metal-doped xerogels. The aerogels and xerogels can then be pyrolyzed.

  1. Enhancement of MCF Rubber Utilizing Electric and Magnetic Fields, and Clarification of Electrolytic Polymerization

    PubMed Central

    Shimada, Kunio

    2017-01-01

    Many sensors require mechanical durability to resist immense or impulsive pressure and large elasticity, so that they can be installed in or assimilated into the outer layer of artificial skin on robots. Given these demanding requirements, we adopted natural rubber (NR-latex) and developed a new method (NM) for curing NR-latex by the application of a magnetic field under electrolytic polymerization. The aim of the present work is to clarify the new manufacturing process for NR-latex embedded with magnetic compound fluid (MCF) as a conductive filler, and the contribution of the optimization of the new process for sensor. We first clarify the effect of the magnetic field on the enhancement of the NR-latex MCF rubber created by the alignment of magnetic clusters of MCF. Next, SEM, XRD, Raman spectroscopy, and XPS are used for morphological and microscopic observation of the electrolytically polymerized MCF rubber, and a chemical approach measuring pH and ORP of the MCF rubber liquid was used to investigate the process of electrolytic polymerization with a physical mode. We elucidate why the MCF rubber produced by the NM is enhanced with high sensitivity and long-term stability. This process of producing MCF rubber by the NM is closely related to the development of a highly sensitive sensor. PMID:28375182

  2. Polymer Nanocomposites—A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers

    PubMed Central

    Bhattacharya, Mrinal

    2016-01-01

    Nanofilled polymeric matrices have demonstrated remarkable mechanical, electrical, and thermal properties. In this article we review the processing of carbon nanotube, graphene, and clay montmorillonite platelet as potential nanofillers to form nanocomposites. The various functionalization techniques of modifying the nanofillers to enable interaction with polymers are summarized. The importance of filler dispersion in the polymeric matrix is highlighted. Finally, the challenges and future outlook for nanofilled polymeric composites are presented. PMID:28773388

  3. Design, Synthesis, and Chemical Processing of Hierarchical Ceramic Structures for Aerospace Applications

    DTIC Science & Technology

    1993-03-30

    Massachusetts Institute of Technology, Cambridge, MA 02139I ABSTRACT polysilanes." Pyrolysis of these polymers usually The decomposition of polymeric SiC ...of soluble polymeric solids. Pyrolysis of these polymers in argon yielded The precursors were prepared by adding a TiC/A120 3 composite at 12501C...formation of soluble polymeric solids. Pyrolysis described an approach for synthesizing AI2O/ SiC of these polymers in argon yielded TiC/AI203

  4. Synthesis of Biocompatible Surfaces by Different Techniques

    DTIC Science & Technology

    2002-04-01

    production . In the other hand, polymers are widely used in bone/cartilage implants, both, as polymeric materials themselves and as a polymeric surface on a...focus on the production of HA scaffolds by a sol-gel method using different drying processes, and on the study of the plasma polymerization technique to...precursor at 3. SA-stoichiometric amount (to maintain Ca/P= 1,67) of the calcium precursor solution (3 M solution in anhidrous etanol ) was added dropwise

  5. Changes in molecular characteristics of cereal carbohydrates after processing and digestion.

    PubMed

    Kasprzak, Mirosław Marek; Lærke, Helle Nygaard; Knudsen, Knud Erik Bach

    2012-12-10

    Different extraction, purification and digestion methods were used to investigate the molecular properties of carbohydrates in arabinoxylan and β-glucan concentrates, dietary fiber (DF) rich breads and ileum content of bread fed pigs. The breads studied were: a low DF wheat bread (WF), whole meal rye bread (GR), rye bread with kernels (RK), wheat bread supplemented with wheat arabinoxylan concentrate (AX) and wheat bread supplemented with oat β-glucan concentrate (BG). The weight average molecular weight (M(w)) of extractable carbohydrates in β-glucan concentrate decreased eight-fold after inclusion in the BG bread when exposed to in vitro digestion, while the M(w) of purified extractable carbohydrates in AX bread was reduced two-fold, and remained almost unaffected until reaching the terminal ileum of pigs. Similarly, the M(w) of purified extractable carbohydrates in GR and RK bread was not significantly changed in the ileum. The AX bread resulted in the highest concentration of dissolved arabinoxylan in the ileum among all the breads that caused a substantial increased in ileal AX viscosity. Nevertheless, for none of the breads, the M(w) of extractable carbohydrates was related neither to the bread extract nor ileal viscosity.

  6. Simulated and experimental evaluation of factors affecting the rate and extent of reductive dehalogenation of chloroethenes with glucose.

    PubMed

    Lee, Il-Su; Bae, Jae-Ho; Yang, Yanru; McCarty, Perry L

    2004-10-01

    Carbohydrates such as molasses are being added to aquifers to serve as electron donors for reductive dehalogenation of chloroethenes. Glucose, as a model carbohydrate, was studied to better understand the processes involved and to evaluate the effectiveness for dehalogenation of different approaches for carbohydrate addition. A simulation model was developed and calibrated with experimental data for the reductive dehalogenation of tetrachloroethene to ethene via cis-1,2-dichloroethene. The model included fermentors that convert the primary donor (glucose) into butyrate, acetate and hydrogen, methanogens, and two separate dehalogenator groups. The dehalogenation groups use the hydrogen intermediate as an electron donor and the different haloethenes as electron acceptors through competitive inhibition. Model simulations suggest first that the initial relative population size of dehalogenators and H(2)-utilizing methanogens greatly affects the degree of dehalogenation achieved. Second, the growth and decay of biomass from soluble carbohydrate plays a significant role in reductive dehalogenation. Finally, the carbohydrate delivery strategies used (periodic versus batch addition and the time interval between periodic addition) greatly affect the degree of dehalogenation that can be obtained with a given amount of added carbohydrate.

  7. Application of surface plasmon resonance for the detection of carbohydrates, glycoconjugates, and measurement of the carbohydrate-specific interactions: a comparison with conventional analytical techniques. A critical review.

    PubMed

    Safina, Gulnara

    2012-01-27

    Carbohydrates (glycans) and their conjugates with proteins and lipids contribute significantly to many biological processes. That makes these compounds important targets to be detected, monitored and identified. The identification of the carbohydrate content in their conjugates with proteins and lipids (glycoforms) is often a challenging task. Most of the conventional instrumental analytical techniques are time-consuming and require tedious sample pretreatment and utilising various labeling agents. Surface plasmon resonance (SPR) has been intensively developed during last two decades and has received the increasing attention for different applications, from the real-time monitoring of affinity bindings to biosensors. SPR does not require any labels and is capable of direct measurement of biospecific interaction occurring on the sensing surface. This review provides a critical comparison of modern analytical instrumental techniques with SPR in terms of their analytical capabilities to detect carbohydrates, their conjugates with proteins and lipids and to study the carbohydrate-specific bindings. A few selected examples of the SPR approaches developed during 2004-2011 for the biosensing of glycoforms and for glycan-protein affinity studies are comprehensively discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Changes in Molecular Characteristics of Cereal Carbohydrates after Processing and Digestion

    PubMed Central

    Kasprzak, Mirosław Marek; Lærke, Helle Nygaard; Knudsen, Knud Erik Bach

    2012-01-01

    Different extraction, purification and digestion methods were used to investigate the molecular properties of carbohydrates in arabinoxylan and β-glucan concentrates, dietary fiber (DF) rich breads and ileum content of bread fed pigs. The breads studied were: a low DF wheat bread (WF), whole meal rye bread (GR), rye bread with kernels (RK), wheat bread supplemented with wheat arabinoxylan concentrate (AX) and wheat bread supplemented with oat β-glucan concentrate (BG). The weight average molecular weight (Mw) of extractable carbohydrates in β-glucan concentrate decreased eight-fold after inclusion in the BG bread when exposed to in vitro digestion, while the Mw of purified extractable carbohydrates in AX bread was reduced two-fold, and remained almost unaffected until reaching the terminal ileum of pigs. Similarly, the Mw of purified extractable carbohydrates in GR and RK bread was not significantly changed in the ileum. The AX bread resulted in the highest concentration of dissolved arabinoxylan in the ileum among all the breads that caused a substantial increased in ileal AX viscosity. Nevertheless, for none of the breads, the Mw of extractable carbohydrates was related neither to the bread extract nor ileal viscosity. PMID:23222731

  9. Cobalt-Mediated Radical Polymerization of Vinyl Acetate and Acrylonitrile in Supercritical Carbon Dioxide.

    PubMed

    Kermagoret, Anthony; Chau, Ngoc Do Quyen; Grignard, Bruno; Cordella, Daniela; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2016-03-01

    Cobalt-mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO2). CMRP of VAc is conducted using an alkyl-cobalt(III) adduct that is soluble in scCO2. Kinetics studies coupled to visual observations of the polymerization medium highlight that the melt viscosity and PVAc molar mass (Mn) are key parameters that affect the CMRP in scCO2. It is noticed that CMRP is controlled for Mn up to 10 000 g mol(-1), but loss of control is progressively observed for higher molar masses when PVAc precipitates in the polymerization medium. Low molar mass PVAc macroinitiator, prepared by CMRP in scCO2, is then successfully used to initiate the acrylonitrile polymerization. PVAc-b-PAN block copolymer is collected as a free flowing powder at the end of the process although the dispersity of the copolymer increases with the reaction time. Although optimization is required to decrease the dispersity of the polymer formed, this CMRP process opens new perspectives for macromolecular engineering in scCO2 without the utilization of fluorinated comonomers or organic solvents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. CVD Polymers for Devices and Device Fabrication.

    PubMed

    Wang, Minghui; Wang, Xiaoxue; Moni, Priya; Liu, Andong; Kim, Do Han; Jo, Won Jun; Sojoudi, Hossein; Gleason, Karen K

    2017-03-01

    Chemical vapor deposition (CVD) polymerization directly synthesizes organic thin films on a substrate from vapor phase reactants. Dielectric, semiconducting, electrically conducting, and ionically conducting CVD polymers have all been readily integrated into devices. The absence of solvent in the CVD process enables the growth of high-purity layers and avoids the potential of dewetting phenomena, which lead to pinhole defects. By limiting contaminants and defects, ultrathin (<10 nm) CVD polymeric device layers have been fabricated in multiple laboratories. The CVD method is particularly suitable for synthesizing insoluble conductive polymers, layers with high densities of organic functional groups, and robust crosslinked networks. Additionally, CVD polymers are prized for the ability to conformally cover rough surfaces, like those of paper and textile substrates, as well as the complex geometries of micro- and nanostructured devices. By employing low processing temperatures, CVD polymerization avoids damaging substrates and underlying device layers. This report discusses the mechanisms of the major CVD polymerization techniques and the recent progress of their applications in devices and device fabrication, with emphasis on initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis.

    PubMed

    Abeylath, Sampath C; Turos, Edward; Dickey, Sonja; Lim, Daniel V

    2008-03-01

    This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio beta-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-d-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-alpha-d-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters ( approximately 40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio beta-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine.

  12. Glyconanobiotics: Novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis

    PubMed Central

    Abeylath, Sampath C.; Turos, Edward; Dickey, Sonja; Limb, Daniel V.

    2008-01-01

    This report describes the synthesis and evaluation of glycosylated polyacrylate nanoparticles that have covalently-bound antibiotics within their framework. The requisite glycosylated drug monomers were prepared from one of three known antibiotics, an N-sec-butylthio β-lactam, ciprofloxacin, and a penicillin, by acylation with 3-O-acryloyl-1,2-O-isopropylidene-5,6 bis((chlorosuccinyl)oxy)-D-glucofuranose (7) or 6-O-acetyl-3-O-acryloyl-1,2-O-isopropylidene-5-(chlorosuccinyl)oxy-α-D-glucofuranose (10). These acrylated monomers were subjected to emulsion polymerization in a 7:3 (w:w) mixture of butyl acrylate-styrene in the presence of sodium dodecyl sulfate as surfactant (3 weight %) and potassium persulfate as a radical initiator (1 weight %). The resulting nanoparticle emulsions were characterized by dynamic light scattering and found to have similar diameters (~40 nm) and size distributions to those of our previously studied systems. Microbiological testing showed that the N-sec-butylthio β-lactam and ciprofloxacin nanoparticles both have powerful in vitro activities against methicillin-resistant Staphylococcus aureus and Bacillus anthracis, while the penicillin-bound nanoparticles have no antimicrobial activity. This indicates the need for matching a suitable antibiotic with the nanoparticle carrier. Overall, the study shows that even relatively large, polar acrylate monomers (MW>1000 amu) can be efficiently incorporated into the nanoparticle matrix by emulsion polymerization, providing opportunities for further advances in nanomedicine. PMID:18063370

  13. Wastewater characterisation by combining size fractionation, chemical composition and biodegradability.

    PubMed

    Ravndal, Kristin T; Opsahl, Eystein; Bagi, Andrea; Kommedal, Roald

    2017-12-18

    The potential for resource recovery from wastewater can be evaluated based on a detailed characterisation of wastewater. In this paper, results from fractionation and characterisation of two distinct wastewaters are reported. Using tangential flow filtration, the wastewater was fractionated into 10 size fractions ranging from 1 kDa to 1 mm, wherein the chemical composition and biodegradability were determined. Carbohydrates were dominant in particulate size fractions larger than 100 μm, indicating a potential of cellulose recovery from these fractions. While the particulate size fractions between 0.65 and 100 μm show a potential as a source for biofuel production due to an abundance of saturated C16 and C18 lipids. Both wastewaters were dominated by particulate (>0.65 μm), and oligo- and monomeric (<1 kDa) COD. Polymeric (1-1000 kDa) and colloidal (1000 kDa-0.65 μm) fractions had a low COD content, expected due to degradation in the sewer system upstream of the wastewater treatment plant. Biodegradation rates of particulate fractions increase with decreasing size. However, this was not seen in polymeric fractions where degradation rate was governed by chemical composition. Analytical validation of molecular weight and particle size distribution showed below filter cut-off retention of particles and polymers close to nominal cut-off, shifting the actual size distribution. Copyright © 2017. Published by Elsevier Ltd.

  14. Recent progress of atomic layer deposition on polymeric materials.

    PubMed

    Guo, Hong Chen; Ye, Enyi; Li, Zibiao; Han, Ming-Yong; Loh, Xian Jun

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Advantages and drawbacks of Thiol-ene based resins for 3D-printing

    NASA Astrophysics Data System (ADS)

    Leonards, Holger; Engelhardt, Sascha; Hoffmann, Andreas; Pongratz, Ludwig; Schriever, Sascha; Bläsius, Jana; Wehner, Martin; Gillner, Arnold

    2015-03-01

    The technology of 3D printing is conquering the world and awakens the interest of many users in the most varying of applications. New formulation approaches for photo-sensitive thiol-ene resins in combination with various printing technologies, like stereolithography (SLA), projection based printing/digital light processing (DLP) or two-photon polymerization (TPP) are presented. Thiol-ene polymerizations are known for its fast and quantitative reaction and to form highly homogeneous polymer networks. As the resins are locally and temporally photo-curable the polymerization type is very promising for 3D-printing. By using suitable wavelengths, photoinitiator-free fabrication is feasible for single- and two photon induced polymerization. In this paper divinyl ethers of polyethylene glycols in combination with star-shaped tetrathiols were used to design a simple test-system for photo-curable thiol-ene resins. In order to control and improve curing depth and lateral resolution in 3D-polymerization processes, either additives in chemical formulation or process parameters can be changed. The achieved curing depth and resolution limits depend on the applied fabrication method. While two-/multiphoton induced lithography offers the possibility of micron- to sub-micron resolution it lacks in built-up speed. Hence single-photon polymerization is a fast alternative with optimization potential in sub-10-micron resolution. Absorber- and initiator free compositions were developed in order to avoid aging, yellowing and toxicity of resulting products. They can be cured with UV-laser radiation below 300 nm. The development at Fraunhofer ILT is focusing on new applications in the field of medical products and implants, technical products with respect to mechanical properties or optical properties of 3D-printed objects. Recent process results with model system (polyethylene glycol divinylether/ Pentaerithrytol tetrakis (3-mercaptopropionat), Raman measurements of polymer conversion and surface modifications using bifunctional crosslinkers are presented with advantages, drawbacks and a general outlook.

  16. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst

    PubMed Central

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-01-01

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm2), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology. PMID:27340940

  17. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst.

    PubMed

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-06-08

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.

  18. Pentacene-based organic thin film transistors, integrated circuits, and active matrix displays on polymeric substrates

    NASA Astrophysics Data System (ADS)

    Sheraw, Christopher Duncan

    2003-10-01

    Organic thin film transistors are attractive candidates for a variety of low cost, large area commercial electronics including smart cards, RF identification tags, and flat panel displays. Of particular interest are high performance organic thin film transistors (TFTs) that can be fabricated on flexible polymeric substrates allowing low-cost, lightweight, rugged electronics such as flexible active matrix displays. This thesis reports pentacene organic thin film transistors fabricated on flexible polymeric substrates with record performance, the fastest photolithographically patterned organic TFT integrated circuits on polymeric substrates reported to date, and the fabrication of the organic TFT backplanes used to build the first organic TFT-driven active matrix liquid crystal display (AMLCD), also the first AMLCD on a flexible substrate, ever reported. In addition, the first investigation of functionalized pentacene derivatives used as the active layer in organic thin film transistors is reported. A low temperature (<110°C) process technology was developed allowing the fabrication of high performance organic TFTs, integrated circuits, and large TFT arrays on flexible polymeric substrates. This process includes the development of a novel water-based photolithographic active layer patterning process using polyvinyl alcohol that allows the patterning of organic semiconductor materials for elimination of active layer leakage current without causing device degradation. The small molecule aromatic hydrocarbon pentacene was used as the active layer material to fabricate organic TFTs on the polymeric material polyethylene naphthalate with field-effect mobility as large as 2.1 cm2/V-s and on/off current ratio of 108. These are the best values reported for organic TFTs on polymeric substrates and comparable to organic TFTs on rigid substrates. Analog and digital integrated circuits were also fabricated on polymeric substrates using pentacene TFTs with propagation delay as low as 38 musec and clocked digital circuits that operated at 1.1 kHz. These are the fastest photolithographically patterned organic TFT circuits on polymeric substrates reported to date. Finally, 16 x 16 pentacene TFT pixel arrays were fabricated on polymeric substrates and integrated with polymer dispersed liquid crystal to build an AMLCD. The pixel arrays showed good optical response to changing data signals when standard quarter-VGA display waveforms were applied. This result marks the first organic TFT-driven active matrix liquid crystal display ever reported as well as the first active matrix liquid crystal display on a flexible polymeric substrate. Lastly, functionalized pentacene derivatives were used as the active layer in organic thin film transistor materials. Functional groups were added to the pentacene molecule to influence the molecular ordering so that the amount of pi-orbital overlap would be increased allowing the potential for improved field-effect mobility. The functionalization of these materials also improves solubility allowing for the possibility of solution-processed devices and increased oxidative stability. Organic thin film transistors were fabricated using five different functionalized pentacene active layers. Devices based on the pentacene derivative triisopropylsilyl pentacene were found to have the best performance with field-effect mobility as large as 0.4 cm 2/V-s.

  19. Variations in abundance and size distribution of carbohydrates in the lower Mississippi River, Pearl River and Bay of St Louis

    NASA Astrophysics Data System (ADS)

    Wang, Xuri; Cai, Yihua; Guo, Laodong

    2013-07-01

    Riverine export of dissolved and particulate organic matter to the sea is one of the major components in marine carbon cycles, affecting biogeochemical processes in estuarine and coastal regions. However, the detailed composition of organic material and the relative partitioning among the dissolved, colloidal, and particulate phases are poorly quantified. The abundance of carbohydrate species and their partitioning among dissolved, colloidal, and particulate phases were examined in the waters from the lower Mississippi River (MR), the lower Pearl River (PR), and the Bay of St. Louis (BSL). Particulate carbohydrates (PCHO) represented a small fraction of the particulate organic carbon (POC) pool, with 4.7 ± 3.1%, 4.5 ± 2.4% and 1.8 ± 0.83% in the MR, PR, and BSL, respectively. Dissolved carbohydrates (DCHO) were a major component of the bulk dissolved organic carbon (DOC) pool, comprising 23%, 35%, and 18% in the MR, PR, and BSL, respectively. Differences in the DCHO/DOC ratio between the MR, PR, and BSL were related to their distinct characteristics in drainage basins, anthropogenic impacts, and hydrological conditions, reflecting differences in sources and composition of organic matter in different aquatic environments. Within the total carbohydrates (TCHO) pool, the high-molecular-weight carbohydrates (HMW-CHO, 1 kDa-0.45 μm) were the dominant species, representing 52-71% of the TCHO pool, followed by the low-molecular-weight carbohydrates (LMW-CHO, <1 kDa), representing 14-44% of the TCHO. The PCHO accounted for 4-16% of the bulk TCHO. Variations in the size distribution of carbohydrates among the MR, PR, and BSL were closely linked to the cycling pathway of organic matter and the interactions between different size fractions of the carbohydrates.

  20. pdb-care (PDB carbohydrate residue check): a program to support annotation of complex carbohydrate structures in PDB files.

    PubMed

    Lütteke, Thomas; von der Lieth, Claus-W

    2004-06-04

    Carbohydrates are involved in a variety of fundamental biological processes and pathological situations. They therefore have a large pharmaceutical and diagnostic potential. Knowledge of the 3D structure of glycans is a prerequisite for a complete understanding of their biological functions. The largest source of biomolecular 3D structures is the Protein Data Bank. However, about 30% of all 1663 PDB entries (version September 2003) containing carbohydrates comprise errors in glycan description. Unfortunately, no software is currently available which aligns the 3D information with the reported assignments. It is the aim of this work to fill this gap. The pdb-care program http://www.glycosciences.de/tools/pdb-care/ is able to identify and assign carbohydrate structures using only atom types and their 3D atom coordinates given in PDB-files. Looking up a translation table where systematic names and the respective PDB residue codes are listed, both assignments are compared and inconsistencies are reported. Additionally, the reliability of reported and calculated connectivities for molecules listed within the HETATOM records is checked and unusual values are reported. Frequent use of pdb-care will help to improve the quality of carbohydrate data contained in the PDB. Automatic assignment of carbohydrate structures contained in PDB entries will enable the cross-linking of glycobiology resources with genomic and proteomic data collections.

  1. A NOVEL ENVIRONMENT FRIENDLY METHOD FOR EXPANSION AND MOLDING OF POLYMERIC FOAM

    EPA Science Inventory

    The objective of the project is to develop an environment friendly, novel and efficient alternative process for expansion and molding of polymeric foam. Spherical, expandable polymer beads are prepared from liquid monomer suspended in an aqueous medium, containing an expansion...

  2. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    PubMed

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  3. Characterization of milled solid residue from cypress liquefaction in sub- and super ethanol.

    PubMed

    Liu, Hua-Min; Liu, Yu-Lan

    2014-01-01

    Cypress liquefaction in sub- and super ethanol was carried out in an autoclave at various temperatures. Milled solid residue (MSR) was isolated from solid residue remaining from the liquefaction process, and its chemical characteristics was comparatively investigated with milled wood lignin (MWL) of cypress by sugar analysis, elemental analysis, FT-IR analysis, gel permeation chromatography, and NMR analysis. Results showed that there were two reactions (de-polymerization and re-polymerization) during the cypress liquefaction in sub- and super ethanol and the re-polymerization reactions were the main reaction at 220-260°C. Considering the stability of side-chain, the stability of lignin side-chain in cypress during liquefaction process in ethanol could be sequenced as follows: β-5>β-β'>β-O-4'. The MSR were mainly from the decomposition and re-polymerization of lignin. This study suggests that characterization of MSR provides a promising method to investigate the mechanisms of cypress liquefaction in ethanol. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Analysis and quality control of carbohydrates in therapeutic proteins with fluorescence HPLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Kun; Huang, Jian; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054

    Conbercept is an Fc fusion protein with very complicated carbohydrate profiles which must be carefully monitored through manufacturing process. Here, we introduce an optimized fluorescence derivatization high-performance liquid chromatographic method for glycan mapping in conbercept. Compared with conventional glycan analysis method, this method has much better resolution and higher reproducibility making it excellent for product quality control.

  5. Photonic devices based on patterning by two photon induced polymerization techniques

    NASA Astrophysics Data System (ADS)

    Fortunati, I.; Dainese, T.; Signorini, R.; Bozio, R.; Tagliazucca, V.; Dirè, S.; Lemercier, G.; Mulatier, J.-C.; Andraud, C.; Schiavuta, P.; Rinaldi, A.; Licoccia, S.; Bottazzo, J.; Franco Perez, A.; Guglielmi, M.; Brusatin, G.

    2008-04-01

    Two and three dimensional structures with micron and submicron resolution have been achieved in commercial resists, polymeric materials and sol-gel materials by several lithographic techniques. In this context, silicon-based sol-gel materials are particularly interesting because of their versatility, chemical and thermal stability, amount of embeddable active compounds. Compared with other micro- and nano-fabrication schemes, the Two Photon Induced Polymerization is unique in its 3D processing capability. The photopolymerization is performed with laser beam in the near-IR region, where samples show less absorption and less scattering, giving rise to a deeper penetration of the light. The use of ultrashort laser pulses allows the starting of nonlinear processes like multiphoton absorption at relatively low average power without thermally damaging the samples. In this work we report results on the photopolymerization process in hybrid organic-inorganic films based photopolymerizable methacrylate-containing Si-nanobuilding blocks. Films, obtained through sol-gel synthesis, are doped with a photo-initiator allowing a radical polymerization of methacrylic groups. The photo-initiator is activated by femtosecond laser source, at different input energies. The development of the unexposed regions is performed with a suitable solvent and the photopolymerized structures are characterized by microscopy techniques.

  6. Syntheses, structures and properties of polycarbosilanes formed directly by polymerization of Alkenylsilanes

    NASA Technical Reports Server (NTRS)

    Masnovi, John; Bu, Xin Y.; Beyene, Kassahun; Heimann, Paula; Kacik, Terrence; Andrist, A. Harry; Hurwitz, Frances I.

    1993-01-01

    Vinylsilane polymerizes to form predominantly a carbosilane polymer using dimethyltitanocene catalyst. This is in contrast to alkylsilanes, which afford polysilanes under the same conditions. The mechanism of polymerization of alkenylsilanes has been shown to be fundamentally different from that for the polymerization of alkylsilanes. The silyl substitute apparently activates a double bond to participate in a number of polymerization processes in this system, particularly hydrosilation. Isotopic labeling indicates the involvement of silametallocyclic intermediates, accompanied by extensive nuclear rearrangement. Polymers and copolymers derived from alkenylsilanes have relatively high char yields even for conditions which afford low molecular weight distributions. Formation of crystalline beta-SiC is optimum for a copolymer of an alkylsilane and an alkenylsilane having a silane/carbosilane backbone ratio of 85/15 and a C/Si ratio of 1.3/1.

  7. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  8. Living olefin polymerization processes

    DOEpatents

    Schrock, R.R.; Baumann, R.

    1999-03-30

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  9. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Baumann, Robert

    2003-08-26

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  10. Living olefin polymerization processes

    DOEpatents

    Schrock, Richard R.; Bauman, Robert

    2006-11-14

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  11. Applications of polymeric micelles with tumor targeted in chemotherapy

    NASA Astrophysics Data System (ADS)

    Ding, Hui; Wang, Xiaojun; Zhang, Song; Liu, Xinli

    2012-11-01

    Polymeric micelles (PMs) have gained more progress as a carrier system with the quick development of biological and nanoparticle techniques. In particular, PMs with smart targeting can deliver anti-cancer drugs directly into tumor cells at a sustained rate. PMs with core-shell structure (with diameters of 10 100 nm) have been prepared by a variety of biodegradable and biocompatible polymers via a self-assembly process. The preparation of polymeric micelles with stimuli-responsive block copolymers or modification of target molecules on polymeric micelles' surface are able to significantly improve the efficiency of drug delivery. Polymeric micelles, which have been considered as a novel promising drug carrier for cancer therapeutics, are rapidly evolving and being introduced in an attempt to overcome several limitations of traditional chemotherapeutics, including water solubility, tumor-specific accumulation, anti-tumor efficacy, and non-specific toxicity. This review describes the preparation of polymeric micelles and the targeted modification which greatly enhance the effects of chemotherapeutic agents.

  12. A master equation approach to actin polymerization applied to endocytosis in yeast.

    PubMed

    Wang, Xinxin; Carlsson, Anders E

    2017-12-01

    We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin "nucleation promoting factors" (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs.

  13. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.

    PubMed

    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B

    2016-04-01

    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A master equation approach to actin polymerization applied to endocytosis in yeast

    PubMed Central

    Wang, Xinxin

    2017-01-01

    We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin “nucleation promoting factors” (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs. PMID:29240771

  15. Apparatus and method for stabilization or oxidation of polymeric materials

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2010-01-19

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere at a selected temperature; a means for supporting the polymeric material within the chamber; and, a source of ozone-containing gas, which decomposes at the selected temperature yielding at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at the selected temperature. The ozone may be generated by a plasma discharge or by various chemical processes. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments as well as to make flame-retardant fabrics.

  16. Living Supramolecular Polymerization of a Perylene Bisimide Dye into Fluorescent J-Aggregates.

    PubMed

    Wagner, Wolfgang; Wehner, Marius; Stepanenko, Vladimir; Ogi, Soichiro; Würthner, Frank

    2017-12-11

    The self-assembly of a new perylene bisimide (PBI) organogelator with 1,7-dimethoxy substituents in the bay position affords non-fluorescent H-aggregates at high cooling rates and fluorescent J-aggregates at low cooling rates. Under properly adjusted conditions, the kinetically trapped "off-pathway" H-aggregates are transformed into the thermodynamically favored J-aggregates, a process that can be accelerated by the addition of J-aggregate seeds. Spectroscopic studies revealed a subtle interplay of π-π interactions and intra- and intermolecular hydrogen bonding for monomeric, H-, and J-aggregated PBIs. Multiple polymerization cycles initiated from the seed termini demonstrate the living character of this chain-growth supramolecular polymerization process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microporous polymer films and methods of their production

    DOEpatents

    Aubert, J.H.

    1995-06-06

    A process is described for producing thin microporous polymeric films for a variety of uses. The process utilizes a dense gas (liquefied gas or supercritical fluid) selected to combine with a solvent-containing polymeric film so that the solvent is dissolved in the dense gas, the polymer is substantially insoluble in the dense gas, and two phases are formed. A microporous film is obtained by removal of a dense gas-solvent phase. 9 figs.

  18. Engineering topochemical polymerizations using block copolymer templates.

    PubMed

    Zhu, Liangliang; Tran, Helen; Beyer, Frederick L; Walck, Scott D; Li, Xin; Agren, Hans; Killops, Kato L; Campos, Luis M

    2014-09-24

    With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials.

  19. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa. © 2015 Blackwell Verlag GmbH.

  20. The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices

    NASA Astrophysics Data System (ADS)

    Barelko, V. V.; Pomogailo, A. D.; Dzhardimalieva, G. I.; Evstratova, S. I.; Rozenberg, A. S.; Uflyand, I. E.

    1999-06-01

    The phenomenon of autowave (frontal) solid phase polymerization of metal-containing monomers based on metal-acrylamide complexes is considered. The comparison of the features of autowave processes realized in both the single-component matrices of the monomer and the matrices filled by the fiberglass materials is performed. The unstable regimes of the polymerization wave as well as the conditions for the stabilization of the flat front in the filled matrices are described. The peculiarities of the frontal regimes in the three- and two-dimensional media are studied. Some possibilities for using of autowave polymerization in the fabrication of the polymer-fiberglass composites and composition prepregs are discussed.

  1. The Viscosity of Polymeric Fluids.

    ERIC Educational Resources Information Center

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  2. Food Intake Adequacy in Children and Adolescents With Inflammatory Bowel Disease.

    PubMed

    Hartman, Corina; Marderfeld, Luba; Davidson, Keren; Mozer-Glassberg, Yael; Poraz, Irit; Silbermintz, Ari; Zevit, Noam; Shamir, Raanan

    2016-10-01

    Diet assessment is essential in the care of patients with inflammatory bowel disease (IBD). We aimed to study food intake in children with IBD and evaluated the relation of dietary intake with disease activity and nutritional status in these children. This cross-sectional study investigated 68 children and adolescents with IBD (57 Crohn disease, 11 ulcerative colitis). Evaluation included clinical, laboratory, and nutritional assessment including 3 days diet record. Compared with recommended daily allowance, the intake of patients with IBD was significantly poor for carbohydrates (75%, P = 0.016), calcium (49%, P < 0.05), magnesium (76%, P < 0.05), vitamin A (72%, P < 0.05), vitamin E (57%, P < 0.05), and fiber (44%, P < 0.05) and higher for protein (175%, P < 0.05), iron (112%, P < 0.05), and water-soluble vitamins (118%-189% P < 0.05). Compared with the intakes of healthy children from National Nutritional Survey, the intake of IBD group was lower for calories (78%, P = 0.012), carbohydrates (61% P < 0.05), magnesium (67% P < 0.05), vitamin C (34%, P < 0.05), and fiber (54%, P < 0.05) and high for B12 (141%, P < 0.05). Fifty subjects ate ordinary diets, 7 of 68 children were on exclusive enteral nutrition and 11 of 68 consumed regular food with different polymeric formulas supplements. Compared with children without supplements, children on exclusive enteral nutrition and nutritional supplements (18/68) had significantly better intakes of energy (1870 ± 755 vs 2267 ± 432, P < 0.05), carbohydrates (223 ± 97 vs 292 ± 99, P < 0.05), and all minerals (P < 0.05) and micronutrients (P < 0.05). Dietary intake was not different by disease status (remission or relapse). In the absence of nutritional supplements, food intake is inadequate for many nutrients in many children with IBD.

  3. N-O linkage in carbohydrates and glycoconjugates.

    PubMed

    Chen, N; Xie, J

    2016-11-29

    The importance of oligosaccharides and their conjugates in various biological and pathological processes has stimulated growing interest in the development of (neo)glycoconjugates. Thanks to its high nucleophilicity, hydroxylamine has been employed as a powerful chemoselective ligation tool. Great effort has been focused on carbohydrates bearing aminooxy or N-hydroxy amino groups for organic synthesis, glycobiology and drug discovery. This review provides an overview of N-O linked carbohydrates and glycoconjugates, focusing particularly on the synthetic methodologies and chemical and physicochemical properties as well as biological and medical applications of N-glycosyl and O-glycosyl hydroxylamines, N-hydroxy amino and O-amino sugar as well as sugar aminooxy acid derivatives.

  4. Calculating binding free energies for protein-carbohydrate complexes.

    PubMed

    Hadden, Jodi A; Tessier, Matthew B; Fadda, Elisa; Woods, Robert J

    2015-01-01

    A variety of computational techniques may be applied to compute theoretical binding free energies for protein-carbohydrate complexes. Elucidation of the intermolecular interactions, as well as the thermodynamic effects, that contribute to the relative strength of receptor binding can shed light on biomolecular recognition, and the resulting initiation or inhibition of a biological process. Three types of free energy methods are discussed here, including MM-PB/GBSA, thermodynamic integration, and a non-equilibrium alternative utilizing SMD. Throughout this chapter, the well-known concanavalin A lectin is employed as a model system to demonstrate the application of these methods to the special case of carbohydrate binding.

  5. Modifications of Glycans: Biological Significance and Therapeutic Opportunities

    PubMed Central

    Muthana, Saddam M.; Campbell, Christopher; Gildersleeve, Jeffrey C.

    2012-01-01

    Carbohydrates play a central role in a wide range of biological processes. As with nucleic acids and proteins, modifications of specific sites within the glycan chain can modulate a carbohydrate’s overall biological function. For example, acylation, methylation, sulfation, epimerization, and phosphorylation can occur at various positions within a carbohydrate to modulate bioactivity. Therefore, there is significant interest in identifying discrete carbohydrate modifications and understanding their biological effects. Additionally, enzymes that catalyze those modifications and proteins that bind modified glycans provide numerous targets for therapeutic intervention. This review will focus on modifications of glycans that occur after the oligomer/polymer has been assembled, generally referred to as postglycosylational modifications. PMID:22195988

  6. [Influence of bean yellow mosaic virus on metabolism of photosynthetic pigments, proteins and carbohydrates in Glycine soja L].

    PubMed

    Kyrychenko, A M

    2014-01-01

    This paper presents data on BYMV effects on some physiological processes of Glycine soja L. cultivated in the right-bank forest-steppe regions. Pigment content (chlorophyll a, b and carotenoids), soluble proteins and water soluble carbohydrates were estimated and, as has been shown, are subjected to significant changes as compared with control plants, namely: a decrease in the content of chlorophyll a, b and carotenoids was 64%, 53% and 36% compared with the control plants. The significant increase in carbohydrates (56% compared to the control) was observed at the end of the test period.

  7. Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L.

    PubMed Central

    Tombesi, Sergio; Palliotti, Alberto; Poni, Stefano; Farinelli, Daniela

    2015-01-01

    Adventitious root formation in plant cuttings is influenced by many endogenous and environmental factors. Leaf photosynthesis during rooting of leafy cuttings in hard to root species can contribute to supply carbohydrates to the intensive metabolic processes related to adventious root formation. Light intensity during rooting is artificially kept low to decrease potential cutting desiccation, but can be limiting for photosynthetic activity. Furthermore, leafy cuttings collected from different part of the shoot can have a different ability to fuel adventitious root formation in cutting stem. The aim of this work was to determine the role of leaf photosynthesis on adventitious root formation in hazelnut (Corylus avellana L) (a hard-to-root specie) leafy cuttings and to investigate the possible influence of the shoot developmental stage on cutting rooting and survival in the post-rooting phase. Cutting rooting was closely related to carbohydrate content in cutting stems during the rooting process. Cutting carbohydrate status was positively influenced by leaf photosynthesis during rooting. Non-saturating light exposure of leafy cuttings can contribute to improve photosynthetic activity of leafy cuttings. Collection of cuttings from different part of the mother shoots influenced rooting percentage and this appear related to the different capability to concentrate soluble sugars in the cutting stem during rooting. Adventitious root formation depend on the carbohydrate accumulation at the base of the cutting. Mother shoot developmental stage and leaf photosynthesis appear pivotal factors for adventitious roots formation. PMID:26635821

  8. Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Williams, Martha

    2008-01-01

    Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20-50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired. With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications. A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into useable articles.

  9. Development of processing diagrams for polymeric die attach adhesives

    NASA Astrophysics Data System (ADS)

    Hsiung, Jen-Chou

    With a processing diagram, one can reduce the effort required to customize curing process conditions for polymeric die attach adhesives. Polymeric die attach adhesives are often cured per the manufacturer's recommendations during initial screening evaluations. In most cases, the recommended cure schedules have to be modified so as to fit differences in process equipment. Unfortunately, the modified cure schedule is usually determined by a trial-and-error method. An aim of our experiments is to understand the curing process of a wide range of polymeric die attach adhesives (conventional, fast, and snap cure adhesives) and to construct a processing diagram, i.e., "Bondability Diagram", so as to define the processing window. Such diagrams should be helpful in determining both the time and cure temperature required to produce high quality bonds. The bondability diagram can be constructed based on fundamental understandings of the phenomena involved in the curing process using a wide variety of tools. Differential Scanning Calorimetry (DSC) is utilized to study the cure kinetics and the extent of reaction. Dynamic Mechanical Analysis (DMA) is used to determine gelation times and melt viscosity under a shear mode. A modified Rheovibron is employed to perform cure characterizations under a tensile mode so that cure stresses could be determined. Thermogravimetric Analysis (TGA) is used to evaluate the outgassing phenomena. Optical Microscopy (OM) is used to detect voids. Results indicate that the cure behaviors of conventional, fast, and snap cure adhesives are different in several respects. The combination of DSC, DMA, TGA, OM, and lap shear test leads to a frame work of developing the bondability diagram concept. The bondability diagram concept provides a foundation for an understanding of the recommended cure schedule and allows one to design their own cure schedule.

  10. The Use of Ketogenic Diet in Pediatric Patients with Epilepsy

    PubMed Central

    Misiewicz Runyon, Amanda; So, Tsz-Yin

    2012-01-01

    A ketogenic diet is a nonpharmacologic treatment strategy to control refractory epilepsy in children. Although this diet has been used successfully to reduce seizures since the 1920s, the anticonvulsant mechanism of ketosis remains unknown. The initiation of the diet requires an average four-day hospitalization to achieve ketosis in the patient as well as to provide thorough education on diet maintenance for both the patient and the caregivers. A ketogenic diet, consisting of low carbohydrate and high fat intake, leaves little room for additional carbohydrates supplied by medications. Patients on ketogenic diets who exceed their daily carbohydrate limit have the risk of seizure relapse, necessitating hospital readmission to repeat the diet initiation process. These patients are at a high risk for diversion from the diet. Patients admitted to the hospital setting are often initiated on multiple medications, and many hospital systems are not equipped with appropriate monitoring systems to prevent clinicians from introducing medications with high carbohydrate contents. Pharmacists have the resources and the expertise to help identify and prevent the initiation of medications with high carbohydrate content in patients on ketogenic diets. PMID:22970384

  11. Wholeness and primary and secondary food structure effects on in vitro digestion patterns determine nutritionally distinct carbohydrate fractions in cereal foods.

    PubMed

    Mishra, Suman; Monro, John

    2012-12-01

    Starchy foods of differing structure, including bakery products, breakfast cereals, pastas, and pulses were digested in vitro. Bakery products and processed breakfast cereals with little resilient structure yielded large amounts of rapidly available carbohydrate (RAC), less slowly digested starch (SDS) and little inaccessible digestible starch (IDS) (70:22:8%). Partially processed grains, such as rolled oats contained an increased proportion of SDS (55:38:7%). Pastas, being dense starch structures digested more gradually to completion by superficial erosion, yielding approximately equal proportions of RAC and SDS but little IDS (43:52:4%). Pulses, which retained their cellular morphology, digested more linearly yielding a lower proportion of RAC, a larger proportion of SDS and more IDS (9:69:22%). Preservation of native "primary" structure, and use of processing to create "secondary" structure, are both means by which wholeness, in the sense of intactness, can be used to influence carbohydrate digestion to make foods of lower glycaemic impact. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  13. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    PubMed Central

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-01-01

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152

  14. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials.

    PubMed

    Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin

    2017-10-30

    Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  15. Subcritical Water Technology for Enhanced Extraction of Biochemical Compounds from Chlorella vulgaris

    PubMed Central

    Awaluddin, S. A.; Thiruvenkadam, Selvakumar; Izhar, Shamsul; Hiroyuki, Yoshida; Danquah, Michael K.; Harun, Razif

    2016-01-01

    Subcritical water extraction (SWE) technology has been used for the extraction of active compounds from different biomass materials with low process cost, mild operating conditions, short process times, and environmental sustainability. With the limited application of the technology to microalgal biomass, this work investigates parametrically the potential of subcritical water for high-yield extraction of biochemicals such as carbohydrates and proteins from microalgal biomass. The SWE process was optimized using central composite design (CCD) under varying process conditions of temperature (180–374°C), extraction time (1–20 min), biomass particulate size (38–250 μm), and microalgal biomass loading (5–40 wt.%). Chlorella vulgaris used in this study shows high volatile matter (83.5 wt.%) and carbon content (47.11 wt.%), giving advantage as a feedstock for biofuel production. The results showed maximum total carbohydrate content and protein yields of 14.2 g/100 g and 31.2 g/100 g, respectively, achieved under the process conditions of 277°C, 5% of microalgal biomass loading, and 5 min extraction time. Statistical analysis revealed that, of all the parameters investigated, temperature is the most critical during SWE of microalgal biomass for protein and carbohydrate production. PMID:27366748

  16. Microwave-assisted cationic polymerization of palm olein and their urea inclusion products

    NASA Astrophysics Data System (ADS)

    Soegijono, Bambang; Farid, Muhamad; Alim Mas'ud, Zainal

    2018-01-01

    Cationic polymerization is affected by the relative amount of unsaturated bond (C=C) in the compound. The enrichment of an unsaturated triglyceride fraction from oils may be performed using urea inclusion techniques. In this study, palm olein was enriched-unsaturated fraction using urea-methanol system. The palm olein and its urea-inclusion products were cationic polymerized with ethereal boron trifluoride catalyst and followed by irradiation using a commercial microwave (microwave-assisted). The microwave irradiated products were cured at 110 °C for 24 hours. Fatty acid composition of the palm olein and its urea-inclusion products were analyzed by gas chromatography. Iodine numbers, functional groups, and ultraviolet absorption spectra of all palm olein origin, urea inclusion products and polymerization products were analyzed using titrimetric, ultraviolet spectrophotometric, and Fourier Transform infrared spectrophotometric methods. Differential scanning calorimetric (DSC) was used to observe the thermal characteristics of the polymer. Urea-inclusion process increased the unsaturated fatty acid components as indicated by the increased iodine number, intensity of alkene band absorptions in the infrared spectra, and the absorbance of the ultraviolet spectra. The polymer formation is converting the C=C group to C-C, which is indicated by the opposite of the urea inclusion process. The curing process results in reformation of new C=C bonds that were similar to that of the urea inclusion process. The DSC thermogram curve shows that the enrichment process improves the thermal stability of the polymer formed.

  17. N-Acetylglucosamine: Production and Applications

    PubMed Central

    Chen, Jeen-Kuan; Shen, Chia-Rui; Liu, Chao-Lin

    2010-01-01

    N-Acetylglucosamine (GlcNAc) is a monosaccharide that usually polymerizes linearly through (1,4)-β-linkages. GlcNAc is the monomeric unit of the polymer chitin, the second most abundant carbohydrate after cellulose. In addition to serving as a component of this homogeneous polysaccharide, GlcNAc is also a basic component of hyaluronic acid and keratin sulfate on the cell surface. In this review, we discuss the industrial production of GlcNAc, using chitin as a substrate, by chemical, enzymatic and biotransformation methods. Also, newly developed methods to obtain GlcNAc using glucose as a substrate in genetically modified microorganisms are introduced. Moreover, GlcNAc has generated interest not only as an underutilized resource but also as a new functional material with high potential in various fields. Here we also take a closer look at the current applications of GlcNAc, and several new and cutting edge approaches in this fascinating area are thoroughly discussed. PMID:20948902

  18. Differentiating Pseudomonas sp. strain ADP cells in suspensions and biofilms using Raman spectroscopy and scanning electron microscopy.

    PubMed

    Henry, Victoria A; Jessop, Julie L P; Peeples, Tonya L

    2017-02-01

    High quality spectra of Pseudomonas sp. strain ADP in the planktonic and biofilm state were obtained using Raman microspectroscopy. These spectra enabled the identification of key differences between free and biofilm cells in the fingerprint region of Raman spectra in the nucleic acid, carbohydrate, and protein regions. Scanning electron microscopy (SEM) enabled detailed visualization of ADP biofilm with confirmation of associated extracellular matrix structure. Following extraction and Raman analysis of extracellular polymeric substances, Raman spectral differences between free and biofilm cells were largely attributed to the contribution of extracellular matrix components produced in mature biofilms. Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species. Graphical Abstract Raman spectroscopy complemented with SEM proves to be useful in distinguishing physiological properties among cells of the same species.

  19. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions.

    PubMed

    Cooper, Matthew A; Singleton, Victoria T

    2007-01-01

    The widespread exploitation of biosensors in the analysis of molecular recognition has its origins in the mid-1990s following the release of commercial systems based on surface plasmon resonance (SPR). More recently, platforms based on piezoelectric acoustic sensors (principally 'bulk acoustic wave' (BAW), 'thickness shear mode' (TSM) sensors or 'quartz crystal microbalances' (QCM)), have been released that are driving the publication of a large number of papers analysing binding specificities, affinities, kinetics and conformational changes associated with a molecular recognition event. This article highlights salient theoretical and practical aspects of the technologies that underpin acoustic analysis, then reviews exemplary papers in key application areas involving small molecular weight ligands, carbohydrates, proteins, nucleic acids, viruses, bacteria, cells and lipidic and polymeric interfaces. Key differentiators between optical and acoustic sensing modalities are also reviewed. Copyright (c) 2007 John Wiley & Sons, Ltd.

  20. 40 CFR 63.12005 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... venting episode that is associated with a single unit operation. A unit operation may have more than one... characterized by a two-step anhydrous polymerization process: the formation of small resin particles in a pre... of the resin particles in a post-polymerization reactor using additional vinyl chloride monomer...

  1. Method for conversion of carbohydrate polymers to value-added chemical products

    DOEpatents

    Zhang, Zongchao C [Norwood, NJ; Brown, Heather M [Kennewick, WA; Su, Yu [Richland, WA

    2012-02-07

    Methods are described for conversion of carbohydrate polymers in ionic liquids, including cellulose, that yield value-added chemicals including, e.g., glucose and 5-hydroxylmethylfurfural (HMF) at temperatures below 120.degree. C. Catalyst compositions that include various mixed metal halides are described that are selective for specified products with yields, e.g., of up to about 56% in a single step process.

  2. Transcriptome analysis of carbohydrate metabolism during bulblet formation and development in Lilium davidii var. unicolor.

    PubMed

    Li, XueYan; Wang, ChunXia; Cheng, JinYun; Zhang, Jing; da Silva, Jaime A Teixeira; Liu, XiaoYu; Duan, Xin; Li, TianLai; Sun, HongMei

    2014-12-19

    The formation and development of bulblets are crucial to the Lilium genus since these processes are closely related to carbohydrate metabolism, especially to starch and sucrose metabolism. However, little is known about the transcriptional regulation of both processes. To gain insight into carbohydrate-related genes involved in bulblet formation and development, we conducted comparative transcriptome profiling of Lilium davidii var. unicolor bulblets at 0 d, 15 d (bulblets emerged) and 35 d (bulblets formed a basic shape with three or four scales) after scale propagation. Analysis of the transcriptome revealed that a total of 52,901 unigenes with an average sequence size of 630 bp were generated. Based on Clusters of Orthologous Groups (COG) analysis, 8% of the sequences were attributed to carbohydrate transport and metabolism. The results of KEGG pathway enrichment analysis showed that starch and sucrose metabolism constituted the predominant pathway among the three library pairs. The starch content in mother scales and bulblets decreased and increased, respectively, with almost the same trend as sucrose content. Gene expression analysis of the key enzymes in starch and sucrose metabolism suggested that sucrose synthase (SuSy) and invertase (INV), mainly hydrolyzing sucrose, presented higher gene expression in mother scales and bulblets at stages of bulblet appearance and enlargement, while sucrose phosphate synthase (SPS) showed higher expression in bulblets at morphogenesis. The enzymes involved in the starch synthetic direction such as ADPG pyrophosphorylase (AGPase), soluble starch synthase (SSS), starch branching enzyme (SBE) and granule-bound starch synthase (GBSS) showed a decreasing trend in mother scales and higher gene expression in bulblets at bulblet appearance and enlargement stages while the enzyme in the cleavage direction, starch de-branching enzyme (SDBE), showed higher gene expression in mother scales than in bulblets. An extensive transcriptome analysis of three bulblet development stages contributes considerable novel information to our understanding of carbohydrate metabolism-related genes in Lilium at the transcriptional level, and demonstrates the fundamentality of carbohydrate metabolism in bulblet emergence and development at the molecular level. This could facilitate further investigation into the molecular mechanisms underlying these processes in lily and other related species.

  3. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    PubMed

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-21

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  4. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization

    PubMed Central

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  5. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    PubMed

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  6. A model for the enantiomeric enrichment of polypeptides on the primitive earth

    NASA Technical Reports Server (NTRS)

    Blair, N. E.; Bonner, W. A.

    1981-01-01

    A potential model is presented for the origin of optical activity in polypeptides on the primitive earth due to enantiomeric enrichment in succeeding polymerization-hydrolysis cycles. The model was developed in experiments with the polymerization of a DL-leucine N-carboxyanhydride mixture with a 31.2% enantiomeric excess of the L isomer with sodium methoxide initiator to yield a polyleucine product which was in turn partially hydrolyzed by acid. The polymerization-hydrolysis was found to produce a net 23.8% increase in the enantiomeric excess of the remaining unhydrolyzed polypeptide (14.2% from the polymerization and 9.6% from the partial hydrolysis). On the basis of these results, it is suggested that a slight excess produced by an appropriate chiral physical process may be enhanced by cycles of stereoselective polymerization and hydrolysis driven by fluctuating wet and dry environmental cycles on the primitive earth.

  7. The unusual dynamics of parasite actin result from isodesmic polymerization

    PubMed Central

    Skillman, Kristen M.; Ma, Christopher I.; Fremont, Daved H.; Diraviyam, Karthikeyan; Cooper, John A.; Sept, David; Sibley, L. David

    2013-01-01

    Previous reports have indicated that parasite actins are short and inherently unstable, despite being required for motility. Here, we re-examine the polymerization properties of actin in Toxoplasma gondii (TgACTI), unexpectedly finding that it exhibits isodesmic polymerization in contrast to the conventional nucleation-elongation process of all previously studied actins from both eukaryotes and bacteria. TgACTI polymerization kinetics lacks both a lag phase and critical concentration, normally characteristic of actins. Unique among actins, the kinetics of assembly can be fit with a single set of rate constants for all subunit interactions, without need for separate nucleation and elongation rates. This isodesmic model accurately predicts the assembly, disassembly, and the size distribution of TgACTI filaments in vitro, providing a mechanistic explanation for actin dynamics in vivo. Our findings expand the repertoire of mechanisms by which actin polymerization is governed and offer clues about the evolution of self-assembling, stabilized protein polymers. PMID:23921463

  8. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  9. Highly efficient reversible addition-fragmentation chain-transfer polymerization in ethanol/water via flow chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Piaoran; Cao, Peng -Fei; Su, Zhe

    Here, utilization of a flow reactor under high pressure allows highly efficient polymer synthesis via reversible addition–fragmentation chain-transfer (RAFT) polymerization in an aqueous system. Compared with the batch reaction, the flow reactor allows the RAFT polymerization to be performed in a high-efficiency manner at the same temperature. The adjustable pressure of the system allows further elevation of the reaction temperature and hence faster polymerization. Other reaction parameters, such as flow rate and initiator concentration, were also well studied to tune the monomer conversion and the molar mass dispersity (Ð) of the obtained polymers. Gel permeation chromatography, nuclear magnetic resonance (NMR),more » and Fourier transform infrared spectroscopies (FTIR) were utilized to monitor the polymerization process. With the initiator concentration of 0.15 mmol L –1, polymerization of poly(ethylene glycol) methyl ethermethacrylate with monomer conversion of 52% at 100 °C under 73 bar can be achieved within 40 min with narrow molar mass dispersity (D) Ð (<1.25). The strategy developed here provides a method to produce well-defined polymers via RAFT polymerization with high efficiency in a continuous manner.« less

  10. In-situ, time-lapse study of extracellular polymeric substance discharge in Streptococcus mutans biofilm.

    PubMed

    Liu, Bernard Haochih; Yu, Li-Chieh

    2017-02-01

    Streptococcus mutans is one of the main pathogens that cause tooth decay. By metabolizing carbohydrates, S. mutans emits extracellular polymeric substance (EPS) that adheres to the tooth surface and forms layers of biofilm. Periodontal disease occurs due to the low pH environment created by S. mutans biofilm, and such an acidic environment gradually erodes tooth enamel. Since the existence of EPS is essential in the formation of biofilm, the in-situ investigation of its generation and distribution in real time is the key to the control and suppression of S. mutans biofilm. Prior studies of the biofilm formation process by fluorescence microscope, scanning electron microscope, or spectroscope have roughly divided the mechanism into three stages: (1) initial attachment; (2) microcolonies; and (3) maturation. However, these analytical methods are incapable to observe real-time changes in different locations of the extracellular matrix, and to analyze mechanical properties for single bacteria in micro and nanoscale. Since atomic force microscopy (AFM) operates by precise control of tip-sample interaction forces in liquid and in air, living microorganisms can be analyzed under near-physiological conditions. Thus, analytical techniques based on AFM constitute powerful tools for the study of biological samples, both qualitatively and quantitatively. In this study, we used AFM to quantitatively track the changes of multiple nanomechanical properties of S. mutans, including dissipation energy, adhesion force, deformation, and elastic modulus at different metabolic stages. The data revealed that the bacterial extracellular matrix has a gradient distribution in stickiness, in which different stickiness indicates the variation of EPS compositions, freshness, and metabolic stages. In-situ, time-lapse AFM images showed the local generation and distribution of EPS at different times, in which the highest adhesion distributed along sides of the S. mutans cells. Through time-lapse analysis, we concluded that each contour layer is associated with a dynamic process of cell growth and nutrient consumption, and S. mutans is capable of controlling the priority of EPS secretion at specific locations. The live bacteria exhibited cyclic metabolic activities in the period of 23-34min at the maturation stage of biofilm formation. In addition, the discharge of EPS is responsive to the shear stress caused by the topographical change of biofilm to provide stronger mechanical support in the formation of 3D networked biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youm, Sang Gil; Hwang, Euiyong; Chavez, Carlos A.

    The ability to control nanoscale morphology and molecular organization in organic semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of organic thin-film devices including organic light-emitting and photovoltaic devices. The current “top-down” paradigm for making such devices is based on utilizing solution-based processing (e.g., spin-casting) of soluble semiconducting polymers. This approach typically provides only modest control over nanoscale molecular organization and polymer chain alignment. A promising alternative to using solutions of presynthesized semiconducting polymers pursues instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by surface-initiated polymerization of small-molecule monomers. Herein, we describe themore » development of an efficient method to prepare polythiophene thin films utilizing surface-initiated Kumada catalyst transfer polymerization. In this study, we provided evidence that the surface-initiated polymerization occurs by the highly robust controlled (quasi-“living”) chain-growth mechanism. Further optimization of this method enabled reliable preparation of polythiophene thin films with thickness up to 100 nm. Extensive structural studies of the resulting thin films using X-ray and neutron scattering methods as well as ultraviolet photoemission spectroscopy revealed detailed information on molecular organization and the bulk morphology of the films, and enabled further optimization of the polymerization protocol. One of the remarkable findings was that surface-initiated polymerization delivers polymer thin films showing complex molecular organization, where polythiophene chains assemble into lateral crystalline domains of about 3.2 nm size, with individual polymer chains folded to form in-plane aligned and densely packed oligomeric segments (7-8 thiophene units per each segment) within each domain. Achieving such a complex mesoscale organization is virtually impossible with traditional methods relying on solution processing of presynthesized polymers. Another significant advantage of surface-confined polymer thin films is their remarkable stability toward organic solvents and other processing conditions. In addition to controlled bulk morphology, uniform molecular organization, and stability, a unique feature of the surface-initiated polymerization is that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films. Lastly, this was demonstrated using a combination of particle lithography and surface-initiated polymerization. In general, surface-initiated polymerization is not limited to polythiophene but can be also expanded toward other classes of semiconducting polymers and copolymers.« less

  12. Carbohydrate-protein interactions: molecular modeling insights.

    PubMed

    Pérez, Serge; Tvaroška, Igor

    2014-01-01

    The article reviews the significant contributions to, and the present status of, applications of computational methods for the characterization and prediction of protein-carbohydrate interactions. After a presentation of the specific features of carbohydrate modeling, along with a brief description of the experimental data and general features of carbohydrate-protein interactions, the survey provides a thorough coverage of the available computational methods and tools. At the quantum-mechanical level, the use of both molecular orbitals and density-functional theory is critically assessed. These are followed by a presentation and critical evaluation of the applications of semiempirical and empirical methods: QM/MM, molecular dynamics, free-energy calculations, metadynamics, molecular robotics, and others. The usefulness of molecular docking in structural glycobiology is evaluated by considering recent docking- validation studies on a range of protein targets. The range of applications of these theoretical methods provides insights into the structural, energetic, and mechanistic facets that occur in the course of the recognition processes. Selected examples are provided to exemplify the usefulness and the present limitations of these computational methods in their ability to assist in elucidation of the structural basis underlying the diverse function and biological roles of carbohydrates in their dialogue with proteins. These test cases cover the field of both carbohydrate biosynthesis and glycosyltransferases, as well as glycoside hydrolases. The phenomenon of (macro)molecular recognition is illustrated for the interactions of carbohydrates with such proteins as lectins, monoclonal antibodies, GAG-binding proteins, porins, and viruses. © 2014 Elsevier Inc. All rights reserved.

  13. Patterns of organic acids exuded by pioneering fungi from a glacier forefield are affected by carbohydrate sources

    NASA Astrophysics Data System (ADS)

    Brunner, Ivano; Goren, Asena; Schlumpf, Alessandro

    2014-01-01

    Bare soils in the area of retreating glaciers are ideal environments to study the role of microorganisms in the early soil formation and in processes of mineral weathering. The aim of our study was to investigate whether the source of carbohydrate would influence the patterns of organic acids exuded by fungal species. Three pioneering fungus species, isolated from fine granitic sediments in front of the Damma glacier from the central Swiss Alps, have previously been found to have the capability to exude organic acids and dissolve granite powder. In batch experiments, various carbohydrates, including glucose, cellulose, pectin, pollen, and cell remnants of cyanobacteria, fungi, and algae, were applied as carbohydrate sources and the patterns of exuded organic acids recorded. The results showed that two fungi, the zygomycete fungus Mucor hiemalis and the ascomycete fungus Penicillium chrysogenum, released a significantly higher amount of organic acids in dependence on specific carbohydrate sources. Pollen and algae as carbohydrate sources triggered significantly the exudation of malate in M. hiemalis, and pollen and cellulose that of oxalate in P. chrysogenum. We conclude that the occurrence of complex carbohydrate sources in nutrient-deficient deglaciated soils may positively influence the exudation of organic acids of fungi. In particular, pollen and remnants of other microorganisms can trigger the exudation of organic acids of fungi in order to promote the weathering of minerals and to make nutrients available that would otherwise be trapped in that cryospheric environment.

  14. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakdale, James S.; Ye, Jianchao; Smith, William L.

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  15. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE PAGES

    Oakdale, James S.; Ye, Jianchao; Smith, William L.; ...

    2016-11-28

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  16. Patterned surfaces in the drying of films composed of water, polymer, and alcohol

    NASA Astrophysics Data System (ADS)

    Fichot, Julie; Heyd, Rodolphe; Josserand, Christophe; Chourpa, Igor; Gombart, Emilie; Tranchant, Jean-Francois; Saboungi, Marie-Louise

    2012-12-01

    A study of the complex drying dynamics of polymeric mixtures with optical microscopy and gravimetric measurement is presented. Droplet formation is observed, followed by a collapse that leads to the residual craters in the dried film. The process is followed in situ under well-defined temperature and hygrometric conditions to determine the origin and nature of these droplets and craters. The drying process is usually completed within 1 h. The observations are explained using a simple diffusion model based on experimental results collected from mass and optical measurements as well as Raman confocal microspectrometry. Although the specific polymeric mixtures used here are of interest to the cosmetic industry, the general conclusions reached can apply to other polymeric aqueous solutions with applications to commercial and artistic painting.

  17. Radio-metabolite analysis of carbon-11 biochemical partitioning to non-structural carbohydrates for integrated metabolism and transport studies.

    PubMed

    Babst, Benjamin A; Karve, Abhijit A; Judt, Tatjana

    2013-06-01

    Metabolism and phloem transport of carbohydrates are interactive processes, yet each is often studied in isolation from the other. Carbon-11 ((11)C) has been successfully used to study transport and allocation processes dynamically over time. There is a need for techniques to determine metabolic partitioning of newly fixed carbon that are compatible with existing non-invasive (11)C-based methodologies for the study of phloem transport. In this report, we present methods using (11)C-labeled CO2 to trace carbon partitioning to the major non-structural carbohydrates in leaves-sucrose, glucose, fructose and starch. High-performance thin-layer chromatography (HPTLC) was adapted to provide multisample throughput, raising the possibility of measuring different tissues of the same individual plant, or for screening multiple plants. An additional advantage of HPTLC was that phosphor plate imaging of radioactivity had a much higher sensitivity and broader range of sensitivity than radio-HPLC detection, allowing measurement of (11)C partitioning to starch, which was previously not possible. Because of the high specific activity of (11)C and high sensitivity of detection, our method may have additional applications in the study of rapid metabolic responses to environmental changes that occur on a time scale of minutes. The use of this method in tandem with other (11)C assays for transport dynamics and whole-plant partitioning makes a powerful combination of tools to study carbohydrate metabolism and whole-plant transport as integrated processes.

  18. Surfing pathogens and the lessons learned for actin polymerization.

    PubMed

    Frischknecht, F; Way, M

    2001-01-01

    A number of unrelated bacterial species as well as vaccinia virus (ab)use the process of actin polymerization to facilitate and enhance their infection cycle. Studies into the mechanism by which these pathogens hijack and control the actin cytoskeleton have provided many interesting insights into the regulation of actin polymerization in migrating cells. This review focuses on what we have learnt from the actin-based motilities of Listeria, Shigella and vaccinia and discusses what we would still like to learn from our nasty friends, including enteropathogenic Escherichia coli and Rickettsia

  19. Polymeric Materials for Aerospace Power and Propulsion: Overview of Polymer Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2007-01-01

    Weight, durability and performance are all major concerns for any NASA mission. Use of lightweight materials, such as fiber reinforced polymer matrix composites can lead to significant reductions in vehicle weight and improvements in vehicle performance. Research in the Polymeric Materials Branch at NASA Glenn is focused on improving the durability, properties, processability and performance of polymeric materials by utilizing both conventional polymer science and engineering as well as nanotechnology and bioinspired approaches. This presentation will provide an overview of these efforts and highlight recent progress.

  20. Functionalized ormosil scaffolds processed by direct laser polymerization for application in tissue engineering

    NASA Astrophysics Data System (ADS)

    Matei, A.; Schou, J.; Canulescu, S.; Zamfirescu, M.; Albu, C.; Mitu, B.; Buruiana, E. C.; Buruiana, T.; Mustaciosu, C.; Petcu, I.; Dinescu, M.

    2013-08-01

    Synthesized N,N'-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate was polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for subsequent applications in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by covering the structures with two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation technique. The functionalized structures were tested in mouse fibroblasts culture and the cells morphology, proliferation, and attachment were analyzed.

  1. Polymeric materials science in the microgravity environment

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.

    1989-01-01

    The microgravity environment presents some interesting possibilities for the study of polymer science. Properties of polymeric materials depend heavily on their processing history and environment. Thus, there seem to be some potentially interesting and useful new materials that could be developed. The requirements for studying polymeric materials are in general much less rigorous than those developed for studying metals, for example. Many of the techniques developed for working with other materials, including heat sources, thermal control hardware and noncontact temperature measurement schemes should meet the needs of the polymer scientist.

  2. Process for fabricating PBI hollow fiber asymmetric membranes for gas separation and liquid separation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayaweera, Indira; Krishnan, Gopala N.; Sanjurjo, Angel

    2016-04-26

    The invention provides methods for preparing an asymmetric hollow fiber, the asymmetric hollow fibers prepared by such methods, and uses of the asymmetric hollow fibers. One method involves passing a polymeric solution through an outer annular orifice of a tube-in-orifice spinneret, passing a bore fluid though an inner tube of the spinneret, dropping the polymeric solution and bore fluid through an atmosphere over a dropping distance, and quenching the polymeric solution and bore fluid in a bath to form an asymmetric hollow fiber.

  3. Polymeric carbon nitride for solar hydrogen production.

    PubMed

    Li, Xiaobo; Masters, Anthony F; Maschmeyer, Thomas

    2017-07-04

    If solar hydrogen production from water is to be a realistic candidate for industrial hydrogen production, the development of photocatalysts, which avoid the use of expensive and/or toxic elements is highly desirable from a scalability, cost and environmental perspective. Metal-free polymeric carbon nitride is an attractive material that can absorb visible light and produce hydrogen from water. This article reviews recent developments in polymeric carbon nitride as used in photocatalysis and then develops the discussion focusing on the three primary processes of a photocatalytic reaction: light-harvesting, carrier generation/separation/transportation and surface reactions.

  4. Multiple stimulus reversible hydrogels

    DOEpatents

    Gutowska, Anna; Krzyminski, Karol J.

    2003-12-09

    A polymeric solution capable of gelling upon exposure to a critical minimum value of a plurality of environmental stimuli is disclosed. The polymeric solution may be an aqueous solution utilized in vivo and capable of having the gelation reversed if at least one of the stimuli fall below, or outside the range of, the critical minimum value. The aqueous polymeric solution can be used either in industrial or pharmaceutical environments. In the medical environment, the aqueous polymeric solution is provided with either a chemical or radioisotopic therapeutic agent for delivery to a specific body part. The primary advantage of the process is that exposure to one environmental stimuli alone will not cause gelation, thereby enabling the therapeutic agent to be conducted through the body for relatively long distances without gelation occurring.

  5. Multiple stimulus reversible hydrogels

    DOEpatents

    Gutowska, Anna; Krzyminski, Karol J.

    2006-04-25

    A polymeric solution capable of gelling upon exposure to a critical minimum value of a plurality of environmental stimuli is disclosed. The polymeric solution may be an aqueous solution utilized in vivo and capable of having the gelation reversed if at least one of the stimuli fall below, or outside the range of, the critical minimum value. The aqueous polymeric solution can be used either in industrial or pharmaceutical environments. In the medical environment, the aqueous polymeric solution is provided with either a chemical or radioisotopic therapeutic agent for delivery to a specific body part. The primary advantage of the process is that exposure to one environmental stimuli alone will not cause gelation, thereby enabling the therapeutic agent to be conducted through the body for relatively long distances without gelation occurring.

  6. Enhanced linearly polarized lasing emission from nanoimprinted surface-emitting distributed feedback laser based on polymeric liquid crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Soon Moon; Ha, Na Young; Chee, Mu Guen; Araoka, Fumito; Ishikawa, Ken; Takezoe, Hideo; Nishimura, Suzushi; Suzaki, Goro

    2008-12-01

    The authors have demonstrated the enhancement of linearly polarized lasing emission intensity using a structure made by a simple fabrication process. The enhanced lasing is achieved using a nanoimprinted distributed feedback structure together with spin-coated polymeric liquid crystals. The backward linearly TE-polarized lasing emission is transformed to left-handed circularly polarized light (L-CPL) by employing a dye-doped polymeric nematic liquid crystal (PNLC) film as a (-1/4)λ[=(3/4)λ] plate. The L-CPL is effectively reflected by a L-polymeric cholesteric liquid crystal film as a reflector and transformed back to TE-polarized light by the PNLC film; as a result one-directional emission intensity is enhanced.

  7. Lasing properties of polymerized chiral nematic Bragg onion microlasers.

    PubMed

    Humar, Matjaž; Araoka, Fumito; Takezoe, Hideo; Muševič, Igor

    2016-08-22

    Dye doped photocurable cholesteric liquid crystal was used to produce solid Bragg onion omnidirectional lasers. The lasers were produced by dispersing and polymerizing chiral nematic LC with parallel surface anchoring of LC molecules at the interface, extracted and transferred into another medium. Lasing characteristics were studied in carrier medium with different refractive index. The lasing in spherical cholesteric liquid crystal was attributed to two mechanisms, photonic bandedge lasing and lasing of whispering-gallery modes. The latter can be suppressed by using a higher index carrier fluid to prevent total internal reflection on the interface of the spheres. Pulse-to-pulse stability and threshold characteristics were also studied and compared to non-polymerized lasers. The polymerization process greatly increases the lasing stability.

  8. The autowave modes of solid phase polymerization of metal-containing monomers in two- and three-dimensional fiberglass-filled matrices.

    PubMed

    Barelko, V. V.; Pomogailo, A. D.; Dzhardimalieva, G. I.; Evstratova, S. I.; Rozenberg, A. S.; Uflyand, I. E.

    1999-06-01

    The phenomenon of autowave (frontal) solid phase polymerization of metal-containing monomers based on metal-acrylamide complexes is considered. The comparison of the features of autowave processes realized in both the single-component matrices of the monomer and the matrices filled by the fiberglass materials is performed. The unstable regimes of the polymerization wave as well as the conditions for the stabilization of the flat front in the filled matrices are described. The peculiarities of the frontal regimes in the three- and two-dimensional media are studied. Some possibilities for using of autowave polymerization in the fabrication of the polymer-fiberglass composites and composition prepregs are discussed. (c) 1999 American Institute of Physics.

  9. Evaluation available encapsulation materials for low-cost long-life silicon photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Carmichael, D. C.; Gaines, G. B.; Noel, G. T.; Sliemers, F. A.; Nance, G. P.; Bunk, A. R.; Brockway, M. C.

    1978-01-01

    Experimental evaluation of selected encapsulation designs and materials based on an earlier study which have potential for use in low cost, long-life photovoltaic arrays are reported. The performance of candidate materials and encapsulated cells were evaluated principally for three types of encapsulation designs based on their potentially low materials and processing costs: (1) polymeric coatings, transparent conformal coatings over the cell with a structural-support substrate; (2) polymeric film lamination, cells laminated between two films or sheets of polymeric materials; and (3) glass-covered systems, cells adhesively bonded to a glass cover (superstrate) with a polymeric pottant and a glass or other substrate material. Several other design types, including those utilizing polymer sheet and pottant materials, were also included in the investigation.

  10. Kinetics of waterborne fluoropolymers prepared by one-step semi-continuous emulsion polymerization of chlorotrifluoroethylene, vinyl acetate, butyl acrylate and Veova 10

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Wang, M. H.; Wang, Z. F.; Bian, J. M.

    2018-01-01

    Due to using gaseous fluorine monomer with toxicity, waterborne fluoropolymers are synthesized by semi-continuous high-pressure emulsion polymerization method which differs from free-pressure emulsion polymerization. To dates, the research on preparing process and kinetics for high-pressure emulsion polymerization is reported relatively less, which hinders researchers from understanding of mechanisms for monomer-fluorinated emulsion polymerization. The paper also provides a new method by element auxiliary analysis to calculate kinetics parameters of high-pressure emulsion polymerization. Based on aforementioned consideration, waterborne fluoropolymers were prepared by copolymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), butyl acrylate (BA) and vinyl ester of versatic acid (Veova 10) using potassium persulfate as initiator and mixed surfactants. The kinetics of emulsion polymerization of waterborne fluoropolymers was then investigated. Effects of emulsifier concentration, initiator concentration, and polymerization temperature on polymerization rate (Rp) were evaluated, and relationship was described as Rp∝[I]0.10 and Rp∝[E]0.12. The apparent activation energy was determined to be 33.61 kJ·mol-1. Moreover, the relative conversion rate of CTFE with the other monomers was observed, and results indicated that CTFE monomer more uniformly copolymerized with the other monomers. The resulting emulsion properties and pressure change in an autoclave were evaluated at different stirring rates. The initial reaction time, defined as the beginning time of dropwise addition, was determined by the change in solid content and particle size of emulsion.

  11. Analytical Methods to Evaluate the Quality of Edible Fats and Oils: The JOCS Standard Methods for Analysis of Fats, Oils and Related Materials (2013) and Advanced Methods.

    PubMed

    Endo, Yasushi

    2018-01-01

    Edible fats and oils are among the basic components of the human diet, along with carbohydrates and proteins, and they are the source of high energy and essential fatty acids such as linoleic and linolenic acids. Edible fats and oils are used in for pan- and deep-frying, and in salad dressing, mayonnaise and processed foods such as chocolates and cream. The physical and chemical properties of edible fats and oils can affect the quality of oil foods and hence must be evaluated in detail. The physical characteristics of edible fats and oils include color, specific gravity, refractive index, melting point, congeal point, smoke point, flash point, fire point, and viscosity, while the chemical characteristics include acid value, saponification value, iodine value, fatty acid composition, trans isomers, triacylglycerol composition, unsaponifiable matters (sterols, tocopherols) and minor components (phospholipids, chlorophyll pigments, glycidyl fatty acid esters). Peroxide value, p-anisidine value, carbonyl value, polar compounds and polymerized triacylglycerols are indexes of the deterioration of edible fats and oils. This review describes the analytical methods to evaluate the quality of edible fats and oils, especially the Standard Methods for Analysis of Fats, Oils and Related Materials edited by Japan Oil Chemists' Society (the JOCS standard methods) and advanced methods.

  12. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells

    PubMed Central

    Thirunavukkarasan, Madhumathi; Wang, Chao; Rao, Angad; Hind, Tatsuma; Teo, Yuan Ru; Siddiquee, Abrar Al-Mahmood; Goghari, Mohamed Ally Ibrahim; Kumar, Alan Prem

    2017-01-01

    Short chain fatty acids (2 to 6 carbons in length) are ubiquitous lipids that are present in human plasma at micromolar concentrations. In addition to serving as metabolic precursors for lipid and carbohydrate synthesis, they also act as cognate ligands for two known G protein-coupled receptors (GPCRs), FFAR2 and FFAR3. While there is evidence that these receptors may inhibit the progression of colorectal cancer, their roles in breast cancer cells are largely unknown. We evaluated the effects of enforced overexpression of these receptors in two phenotypically distinct breast cancer cell lines: MCF7 and MDA-MD-231. Our results demonstrate that both receptors inhibit cell invasiveness, but through different signaling processes. In invasive, mesenchymal-like MDA-MB-231 cells, FFAR2 inhibits the Hippo-Yap pathway and increases expression of adhesion protein E-cadherin, while FFAR3 inhibits MAPK signaling. Both receptors have the net effect of reducing actin polymerization and invasion of cells through a Matrigel matrix. These effects were absent in the less invasive, epithelial-like MCF7 cells. Correspondingly, there is reduced expression of both receptors in invasive breast carcinoma and in aggressive triple-negative breast tumors, relative to normal breast tissue. Cumulatively, our data suggest that the activation of cognate receptors by short chain fatty acids drives breast cancer cells toward a non-invasive phenotype and therefore may inhibit metastasis. PMID:29049318

  13. Enzymatic liquefaction of agarose above the sol-gel transition temperature using a thermostable endo-type β-agarase, Aga16B.

    PubMed

    Kim, Jung Hyun; Yun, Eun Ju; Seo, Nari; Yu, Sora; Kim, Dong Hyun; Cho, Kyung Mun; An, Hyun Joo; Kim, Jae-Han; Choi, In-Geol; Kim, Kyoung Heon

    2017-02-01

    The main carbohydrate of red macroalgae is agarose, a heterogeneous polysaccharide composed of D-galactose and 3,6-anhydro-L-galactose. When saccharifying agarose by enzymes, the unique physical properties of agarose, namely the sol-gel transition and the near-insolubility of agarose in water, limit the accessibility of agarose to the enzymes. Due to the lower accessibility of agarose to enzymes in the gel state than to the sol state, it is important to prevent the sol-gel transition by performing the enzymatic liquefaction of agarose at a temperature higher than the sol-gel transition temperature of agarose. In this study, a thermostable endo-type β-agarase, Aga16B, originating from Saccharophagus degradans 2-40 T , was characterized and introduced in the liquefaction process. Aga16B was thermostable up to 50 °C and depolymerized agarose mainly into neoagarooligosaccharides with degrees of polymerization 4 and 6. Aga16B was applied to enzymatic liquefaction of agarose at 45 °C, which was above the sol-gel transition temperature of 1 % (w/v) agarose (∼35 °C) when cooling agarose. This is the first systematic demonstration of enzymatic liquefaction of agarose, enabled by determining the sol-gel temperature of agarose under specific conditions and by characterizing the thermostability of an endo-type β-agarase.

  14. Molecular structures of fructans from Agave tequilana Weber var. azul.

    PubMed

    Lopez, Mercedes G; Mancilla-Margalli, Norma A; Mendoza-Diaz, Guillermo

    2003-12-31

    Agave plants utilize crassulacean acid metabolism (CAM) for CO(2) fixation. Fructans are the principal photosynthetic products generated by agave plants. These carbohydrates are fructose-bound polymers frequently with a single glucose moiety. Agave tequilana Weber var. azul is an economically important CAM species not only because it is the sole plant allowed for tequila production but because it is a potential source of prebiotics. Because of the large amounts of carbohydrates in A. tequilana, in this study the molecular structures of its fructans were determined by fructan derivatization for linkage analysis coupled with gas chromatography-mass spectrometry (GC-MS), nuclear magnetic resonance (NMR), and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS). Fructans were extracted from 8-year-old A. tequilana plants. The linkage types present in fructans from A. tequilana were determined by permethylation followed by reductive cleavage, acetylation, and finally GC-MS analysis. Analysis of the degree of polymerization (DP) estimated by (1)H NMR integration and (13)C NMR and confirmed by MALDI-TOF-MS showed a wide DP ranging from 3 to 29 units. All of the analyses performed demonstrated that fructans from A. tequilana consist of a complex mixture of fructooligosaccharides containing principally beta(2 --> 1) linkages, but also beta(2 --> 6) and branch moieties were observed. Finally, it can be stated that fructans from A. tequilana Weber var. azul are not an inulin type as previously thought.

  15. Temporal and longitudinal biofilm matrix analysis of a biofilter treating ethyl acetate during ozonation.

    PubMed

    Covarrubias-García, Itzel; Aizpuru, Aitor; Arriaga, Sonia

    2018-05-04

    The present paper focuses on the biofilm composition and pattern of biomass in gas biofiltration of ethyl acetate working under continuous addition of ozone (O 3 ). Two biofilters were operated for 230 days, one under continuous addition of O 3 (90 ppb v ) and another one without. Throughout the operation time, the extracellular polymeric substances (EPS), the main components in the extracellular matrix (ECM), were extracted from the biofilm and characterized qualitatively using Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and quantitatively by analyzing its main constituents: carbohydrates, proteins, and glucuronic acid. To date, EPS characterization has been attempted mainly with biofilm aggregates related to water treatment, not air biofiltration. The results of this study may be helpful and provide more information about EPS structure when O 3 was added. O 3 addition only affected the amount of EPS and not its composition. The greater effect was observed on carbohydrate content since it is the main component in EPS. The EPS/biomass ratio measured was twice lower with O 3 addition. Higher removal efficiency (RE) and mineralization rates were obtained with the biofilter subjected to O 3 addition, and a smaller volume of a reactor would be necessary to treat all contaminant under this condition. EPS content is only quantitatively reduced by O 3 addition, and at the low O 3 concentration applied , no structural alteration is noted regarding the composition of the EPS.

  16. Integrated metabolomic and proteomic analysis reveals systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress.

    PubMed

    Mujahid, Md; Prasuna, M Lakshmi; Sasikala, Ch; Ramana, Ch Venkata

    2015-02-06

    Aromatic amines are widely distributed in the environment and are major environmental pollutants. Although degradation of aromatic amines is well studied in bacteria, physiological adaptations and stress response to these toxic compounds is not yet fully understood. In the present study, systemic responses of Rubrivivax benzoatilyticus JA2 to aniline stress were deciphered using metabolite and iTRAQ-labeled protein profiling. Strain JA2 tolerated high concentrations of aniline (30 mM) with trace amounts of aniline being transformed to acetanilide. GC-MS metabolite profiling revealed aniline stress phenotype wherein amino acid, carbohydrate, fatty acid, nitrogen metabolisms, and TCA (tricarboxylic acid cycle) were modulated. Strain JA2 responded to aniline by remodeling the proteome, and cellular functions, such as signaling, transcription, translation, stress tolerance, transport and carbohydrate metabolism, were highly modulated. Key adaptive responses, such as transcription/translational changes, molecular chaperones to control protein folding, and efflux pumps implicated in solvent extrusion, were induced in response to aniline stress. Proteo-metabolomics indicated extensive rewiring of metabolism to aniline. TCA cycle and amino acid catabolism were down-regulated while gluconeogenesis and pentose phosphate pathways were up-regulated, leading to the synthesis of extracellular polymeric substances. Furthermore, increased saturated fatty acid ratios in membranes due to aniline stress suggest membrane adaptation. The present study thus indicates that strain JA2 employs multilayered responses: stress response, toxic compound tolerance, energy conservation, and metabolic rearrangements to aniline.

  17. Nature and consequences of non-covalent interactions between flavonoids and macronutrients in foods.

    PubMed

    Bordenave, Nicolas; Hamaker, Bruce R; Ferruzzi, Mario G

    2014-01-01

    Many of the potential health benefits of flavonoids have been associated with their specific chemical and biological properties including their ability to interact and bind non-covalently to macronutrients in foods. While flavonoid-protein interactions and binding have been the subject of intensive study, significantly less is understood about non-covalent interactions with carbohydrates and lipids. These interactions with macronutrients are likely to impact both the flavonoid properties in foods, such as their radical scavenging activity, and the food or beverage matrix itself, including their taste, texture and other sensorial properties. Overall, non-covalent binding of flavonoids with macronutrients is primarily driven by van der Waals interactions. From the flavonoid perspective, these interactions are modulated by characteristics such as degree of polymerization, molecular flexibility, number of external hydroxyl groups, or number of terminal galloyl groups. From the macronutrient standpoint, electrostatic and ionic interactions are generally predominant with carbohydrates, while hydrophobic interactions are generally predominant with lipids and mainly limited to interactions with flavonols. All of these interactions are involved in flavonoid-protein interactions. While primarily associated with undesirable characteristics in foods and beverages, such as astringency, negative impact on macronutrient digestibility and hazing, more recent efforts have attempted to leverage these interactions to develop controlled delivery systems or strategies to enhance flavonoids bioavailability. This paper aims at reviewing the fundamental bases for non-covalent interactions, their occurrence in food and beverage systems and their impact on the physico-chemical, organoleptic and some nutritional properties of food.

  18. Options for addressing exocrine pancreatic insufficiency in patients receiving enteral nutrition supplementation.

    PubMed

    Freedman, Steven D

    2017-07-01

    Patients with exocrine pancreatic insufficiency (EPI) have suboptimal secretion of pancreatic digestive enzymes and experience a range of clinical symptoms related to the malabsorption of fat. In patients with EPI unable to meet their nutritional requirements, enteral nutrition (EN) support is used to augment nutritional status. In addition to protein and carbohydrate, EN formulas contain fats as a calorie source, as well as vitamins and minerals to help prevent nutritional deficiencies related to malabsorption. Semielemental enteral nutrition formulas are advantageous as they contain hydrolyzed protein, shorter chain carbohydrates, and may contain medium chain triglycerides as a fat source. However, severely pancreatic insufficient patients may be unable to absorb complex long-chain triglycerides provided by EN formulas due to insufficient pancreatic lipase; replacement pancreatic enzyme products are recommended for these patients. Currently, none of the FDA-approved pancreatic enzyme replacement therapy (PERT) products are indicated for use in patients receiving enteral nutrition and administration of enzymes by mixing into enteral nutrition formula is not supported by guidelines as this route is associated with risks. RELiZORB (immobilized lipase) is a novel in-line digestive cartridge that has been designed to address the unmet need for PERT in patients receiving enteral nutrition. RELiZORB efficacy and compatibility with a range of commercially available polymeric and semielemental formulas with varying nutrient, caloric content, and triglyceride chain lengths have been demonstrated. In most formulas, RELiZORB efficiently hydrolyzed greater than 90% of fats within the formula into absorbable fatty acids and monoglycerides.

  19. Processable high temperature resistant addition type polyimide laminating resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.

    1973-01-01

    Basic studies that were performed using model compounds to elucidate the polymerization mechanism of the so-called addition-type (A-type) polyimides are reviewed. The fabrication and properties of polyimide/graphite fiber composites using A-type polyimide prepolymers as the matrix are also reviewed. An alternate method for preparing processable A-type polyimides by means of in situ polymerization of monomer reactants (PMR) on the fiber reinforcement is described. The elevated temperature properties of A-type PMR/graphite fiber composites are also presented.

  20. Molecular Sensing by Nanoporous Crystalline Polymers

    PubMed Central

    Pilla, Pierluigi; Cusano, Andrea; Cutolo, Antonello; Giordano, Michele; Mensitieri, Giuseppe; Rizzo, Paola; Sanguigno, Luigi; Venditto, Vincenzo; Guerra, Gaetano

    2009-01-01

    Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds. PMID:22303150

Top